Algebraische und analytische Theorie der Zetafunktion

Inhaltsverzeichnis

Die Riemannsche Zetafunktion: Motivation

1 Algebraische Grundlagen
 1.1 Freie Moduln .. 1
 1.2 Moduln über Hauptidealringen 5
 1.3 Nöthersche Moduln ... 7
 1.4 Lokalisierung .. 9
 1.5 Der Chinesische Restsatz ... 15
 1.6 Der ganze Abschluss .. 16
 1.7 Primideale ... 19
 1.8 Fortsetzung von Homomorphismen 21

2 Dedekind Ringe
 2.1 Dedekind Ringe ... 27
 2.2 Diskrete Bewertungsringe .. 31
 2.3 Galois Erweiterungen ... 33
 2.4 Verzweigung von Primidealen 37
 2.5 Explizite Faktorisierung einer Primstelle 41
 2.6 Die Diskriminante ... 44
 2.7 Quadratische Zahlkörper, Kreisteilungskörper 49

3 Die Riemannsche Zetafunktion: Definition
 3.1 Die Riemannsche Zetafunktion 61
 3.2 Definition von ζ_k ... 64

Literaturverzeichnis ... 67
iv

INHALTSVERZEICHNIS
Die Riemannsche Zetafunktion: Motivation

Aus der Kenntnis des analytischen Verhaltens der Riemannschen Zetafunktion

\[\zeta_Q(s) = \zeta(s) := \sum_{n \in \mathbb{N}} \frac{1}{n^s}, \text{ Re } s > 1, \]

gewinnt man Aussagen zahlentheoretischer Natur, z.B. über die Verteilung der Primzahlen:

Satz (Primzahlsatz). Sei \(\pi(N) \) die Anzahl der Primzahlen \(p \leq N \). Dann gilt für gewisse Konstanten \(\alpha, \beta > 0 \) (z.B. \(\alpha = 0.1, \beta = 0.01 \))

\[\pi(N) = \int_2^N \frac{dt}{\log t} + O\left(N e^{-\beta \log N} \right). \]

Insbesondere ist \(\pi(N) \sim \frac{N}{\log N} \).

Einige, relativ einfache, analytische Eigenschaften von \(\zeta_Q \) aus denen man mit Hilfe Tauberscher Sätze solche Aussagen erhalten kann sind:

Satz. (i) Eulersche Produktdarstellung: Für \(\text{Re } s > 1 \) gilt

\[\zeta_Q(s) = \prod_p \frac{1}{1 - \frac{1}{p^s}}. \]

(ii) \(\zeta_Q \) besitzt eine analytische Fortsetzung auf die gesamte rechte Halbebene \(\{ z \in \mathbb{C} : \text{Re } z > 0 \} \) mit Ausnahme des Punktes \(s = 1 \). An der Stelle 1 hat \(\zeta_Q \) einen Pol erster Ordnung mit Residuum 1.

(iii) \(\zeta_Q \) besitzt eine analytische Fortsetzung auf \(\mathbb{C} \setminus \{1\} \), nämlich vermöge der Funktionalgleichung

\[\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta_Q(s) = \pi^{-\frac{1-s}{2}} \Gamma\left(\frac{1-s}{2}\right) \zeta_Q(1-s). \]

Weiters benötigt man für diese genaue Abschätzung des Restgliedes Kenntnis über nullstellenfreie Bereiche der \(\zeta \)-Funktion. Kennt man große nullstellenfreie Bereiche, so kann man die Abschätzung besser machen.

Weiters studiert man auch die Häufigkeit von Primzahlen in arithmetischen Progressionen:
Satz (Page-Siegel-Walfisz). Sei $k \in \mathbb{N}$, $(a, h) = 1$, und bezeichne $\pi(N; k, a) = \# \{ p \text{ prim} : p \leq N, p \equiv a \mod k \}$. Dann gilt

$$
\pi(N; k, a) = \frac{1}{\varphi(k)} \int_2^N \frac{dt}{\log t} + O\left(Ne^{-\beta(\log N)^{\alpha}} \right)
$$

wobei φ die Eulersche φ-Funktion bezeichnet.

Insbesondere erhält man so den

Satz (Dirichlet). Sei $m \in \mathbb{N}$, $M := m\mathbb{Z}$. Dann gilt

$$
\lim_{N \to \infty} \frac{\# \{ p \text{ prim} : p \in M, p \leq N \}}{\# \{ p \text{ prim} : p \leq N \}} = \frac{1}{\varphi(m)}.
$$

Insbesondere gibt es in jeder arithmetischen Folge unendlich viele Primzahlen.

Zum Beweis solcher Aussagen verwendet man nicht nur analytische Eigenschaften der ζ-Funktion, sondern allgemeiner jene sogenannter Dirichletscher L-Reihen: Sei $k \in \mathbb{N}$ und χ ein Charakter $\mod k$, d.h. ein Charakter der Gruppe $(\mathbb{Z}/k\mathbb{Z})^*$ in natürlicher Weise definiert auf \mathbb{Z} ($(a, k) \neq 1 \Rightarrow \chi(a) = 0$). Dann ist die L-Reihe definiert als

$$
L_Q(s, \chi) = \sum_{n \in \mathbb{N}} \frac{\chi(n)}{n^s}.
$$

Für den trivialen Charakter $\chi = \chi_0$ erhält man genau $L_Q(s, \chi_0) = \zeta_Q(s) \cdot \Pi_{p \mid k} (1 - \frac{1}{p^s})$.

Satz. Für $\chi \neq \chi_0$ ist $L_Q(s, \chi)$ analytisch für $\Re s > 0$. Für $\chi = \chi_0$ ist $L_Q(s, \chi_0)$ analytisch für $\Re s > 0$ mit Ausnahme eines einfachen Pols bei $s = 1$ mit Residuum $\frac{\chi_0}{\phi(k)}$.

Tatsächlich ist $L_Q(s, \chi)$ für $\chi \neq \chi_0$ ganz und genügt ebenfalls einer Funktionalgleichung.

$$
\mathbb{Q} \rightarrow K \\
\uparrow \quad \uparrow \\
\mathbb{Z} \rightarrow A
$$

Zum Beispiel für $K = \mathbb{Q} (\sqrt{m})$ für $m \in \mathbb{N}$ quadratfrei wäre

$$
A = \mathbb{Z} + \mathbb{Z} \left\{ \sqrt{m} \right\} , \quad m \equiv 2, 3 \mod 4 \\
A = \mathbb{Z} + \mathbb{Z} \frac{\sqrt{m}}{2} , \quad m \equiv 1 \mod 4
$$

Neben den quadratischen Zahlkörpern sind auch die Kreisteilungskörper $\mathbb{Q}(w)$ wobei W eine primitive m-te ($m \in \mathbb{N}$) Einheitswurzel ist, fundamentale Beispiele algebraischer Zahlkörper. In dieser Situation wäre

$$
\mathbb{Q} \leftrightarrow \mathbb{Q}(w) \\
\uparrow \quad \uparrow \\
\mathbb{Z} \leftrightarrow \mathbb{Z}[w]
$$
Um Aussagen über die Primelemente von A zu bekommen benützt man wieder die Zetafunktion des Zahlkörpers $K, \zeta_K(s)$, und ihre analytischen Eigenschaften.

Wir werden im wesentlichen immer nur algebraische Zahlkörper betrachten. Zetafunktionen spielen aber auch in anderen Kontexten eine wichtige Rolle.

Sei z.B. $k = GF(q)$. Dann ist die Zetafunktion vom Funktionenkörper $k(x)/k$ gegeben als

$$Z(z) = \frac{1}{1-t} \prod_p \frac{1}{1 - z^{d(p)}}$$

wobei p alle irreduziblen (normierten) Polynome durchläuft.

Satz. Sei $\pi_q(n)$ die Anzahl der irreduziblen (normierten) Polynome vom Grad $\leq N$. Dann gilt

$$\pi_q(N) \sim \frac{q}{q-1} \frac{q^N}{N}.$$

Eine weitere interessante Situation ist die der algebraischen Funktionenkörper. Sei K ein Körper, x transzendent über K. Ein algebraischer Funktionenkörper ist eine endliche Erweiterung F von $K(x)$.

Betrachte z.B. $K = GF(q)$, $char K \neq 2, 3, x$ transzendent über K, und ein Element y das über $K(x)$ der Gleichung

$$y^2 = x^3 + ax + b$$

genügt wobei $a, b \in K, 4a^3 + 27b^2 \neq 0$. Dann ist $k(x, y)$ ein algebraischer Funktionenkörper über K.

Sei $n \in N$. Man spricht von

$$C_n = \{ (\alpha, \beta) \in GF(q^n)^2 : \beta^2 = \alpha^3 + a\alpha + b \}$$
als einer elliptischen Kurve über $GF(q^n)$. Sei

$$N_n := 1 + \vert C_n \vert$$

Dann ist die Zetafunktion von $K(x, y)/K$ gegeben als jene Potenzreihe $Z(t)$ sodass

$$\frac{Z'}{Z} = \sum_{n=1}^{\infty} N_n t^{n-1}$$

Mit Hilfe des Satzes von Hasse-Weil der besagt daß

$$Z(t) = \frac{(1 - \alpha t)(1 - \beta t)}{(1 - t)(1 - qt)}$$

wobei $|\alpha| = \sqrt{q}$ gilt, und der das genaue Analogon zur Riemannschen Vermutung darstellt, erhält man zum Beispiel

Satz (Hasse-Weil bound). Sei $N(r)$ die Anzahl der Primstellen von $GF(q^r)(x, y)/GF(q^r)$ mit Grad 1. Dann gilt

$$|N(r) - (q^r + 1)| \leq 2q^{r/2},$$

insbesondere also $N(r) \sim q^r$.

Man sieht daß die Approximationsgüte in $N(r) \sim q^r$ wie \sqrt{q} ist. Analogon beim Primzahlsatz (mit Restglied)

$$\pi(N) = \int_2^N \frac{dt}{\log t} + O\left(N e^{-\beta (\log N)^\alpha} \right)$$

wobei $\beta, \alpha > 0$ klein sind, wäre ”α beliebig klein”.

Kennt man nullstellenfreie Bereiche der Riemannsche Zetafunktion, kann man daraus α, β konstieren. Umgekehrt würde eine Nullstelle die nicht auf der kritischen Geraden liegt solcherart Abschätzung zumindest sehr unwahrscheinlich machen.
Kapitel 1

Algebraische Grundlagen

1.1 Freie Moduln

Im folgenden sei R immer ein kommutativer Ring mit Einselement.

Ist M ein R-Modul, so heißen $x_1, \ldots, x_n \in M$ linear unabhängig, wenn gilt ($r_1, \ldots, r_n \in R$)

$$\sum_{i=1}^{n} r_i x_i = 0 \Rightarrow r_1 = \ldots = r_n = 0.$$

Eine Teilmenge $X \subseteq M$ heißt linear unabhängig wenn jede endliche Teilmenge von X linear unabhängig ist. Eine Teilmenge $X \subseteq M$ heißt Basis wenn sie linear unabhängig ist und M (als R-Modul) erzeugt.

1.1.1 Definition. Ein R-Modul M heißt frei, wenn er eine Basis besitzt (und $
eq \{0\}$ ist).

Ist zum Beispiel I irgendeine Menge, so ist

$$M = \bigoplus_{i \in I} R$$

frei mit der Basis

$$\{(0, \ldots, 0, 1_{i-te Stelle}, 0, \ldots, 0) : i \in I\}$$

Umgekehrt: Ist M frei mit Basis $\{x_i : i \in I\}$, so gilt

$$M \cong \bigoplus_{i \in I} R.$$

Denn ist $x \in M$, so existieren $a_i, i \in I$, fast alle gleich Null, so daß $x = \sum a_i x_i$. Wegen der linearen Unabhängigkeit sind die a_i eindeutig bestimmt und offenbar gibt es zu jeder Wahl von a_i, fast alle $= 0$, ein x. Also ist

$$x \mapsto (a_i)_{i \in I}$$

eine Bijektion. Klarerweise respektiert sie die Modulooperationen.
1.1.2 Satz. Sei M ein R-Modul. Ist $X \subseteq M$ eine Basis von M so hat man die folgende Eigenschaft (N ist irgendein R-Modul)

\[
\begin{array}{c}
\subseteq \\
\varphi \\
\exists \tilde{\varphi} \\
\end{array}
\]

Beweis. Sei $x \in M$. Da X Basis ist existieren eindeutige a_i sodaß

\[x = \sum a_i x_i. \]

Definiere $\tilde{\varphi}(x) := \sum a_i \varphi(x_i)$.

Jeder Modul M ist Faktor eines freien Moduls. Z.B. von

\[F = \bigoplus_{x \in M} R. \]

1.1.3 Korollar. (i) Sei M frei mit Basis $X = (x_i)_{i \in I}$. Ist (mit der Notation wie im Satz) $(\varphi(x_i))_{i \in I}$ eine Basis von N, so ist $\tilde{\varphi}$ ein Isomorphismus.

(ii) Sind M_1, M_2 frei mit Basis X_1, X_2 und gilt $|X_1| = |X_2|$ so folgt $M_1 \cong M_2$.

Beweis.

ad(i): $\tilde{\varphi}$ ist surjektiv da $(\varphi(x_i))_{i \in I}$ ein Erzeugendensystem von N ist. $\tilde{\varphi}$ ist injektiv da $(\varphi(x_i))_{i \in I}$ linear unabhängig ist.

ad(ii): Eine Bijektion $\varphi : X_1 \to X_2$ induziert einen Isomorphismus.

1.1.4 Lemma. Sei M ein freier R-Modul mit Basis $(x_i)_{i \in I}$ und sei $a \in R$. Dann gilt

\[M = \bigoplus_{i \in I} Rx_i, \quad M/aM \cong \bigoplus_{i \in I} Rx_i/ax_i. \]

Es ist $Rx_i/ax_i \cong R/a$, der Modul M/aM ist freier R/a-Modul mit Basis $(x_i + aM)_{i \in I}$.

Beweis. Klar ist $M = \bigoplus_{i \in I} Rx_i$. Die kanonische Abbildung

\[\varphi : M \to \bigoplus_{i \in I} Rx_i/ax_i \]

hat Kern aM denn: Sei $x = \sum a_i x_i$. Dann ist

\[0 = \varphi(x) = (a_i x_i + ax_i)_{i \in I}. \]
1.1. FREIE MODULN

genau dann, wenn \(a_i \in a \) für alle \(i \in I \). Weiters ist \(R x_i / a x_i \cong R / a \) vermöge

\[
x x_i + a x_i \mapsto a.
\]

Also ist \(M / a M \) frei mit Basis \((x_i + a M)_{i \in I}\).

\[\square\]

1.1.5 Korollar. Sei \(M \) frei und seien \(X, Y \) Basen von \(M \). Dann gilt \(|X| = |Y| \).

Diese Kardinalität heißt die Dimension von \(M \).

Beweis. Sei \(\mathfrak{m} \) ein maximales Ideal von \(R \) (existiert wegen \(R \) hat Einselement und ist kommutativ). Dann ist

\[
M / \mathfrak{m} M
\]
ein \(R / \mathfrak{m} - \) Vektorraum mit Basen \(\{x + \mathfrak{m} M : x \in X\} \) und \(\{y + \mathfrak{m} M : y \in Y\} \)
also ist \(|X| = |Y| \).

\[\square\]

Ein \(R \)-Modul \(M \) heißt Hauptmodul, wenn er von einem Element erzeugt wird, d.h. \(\exists x \in M : M = Rx \). In diesem Fall ist

\[
M \cong R / \text{Ann}_R \{x\}
\]
wobei \(\text{Ann}_R \{x\} := \{r \in R : rx = 0\} \).

1.1.6 Lemma. Sei \(0 \to M' \xrightarrow{f} M' \xrightarrow{g} M'' \to 0 \) eine exakte Sequenz von \(R \)-Moduln. Dann sind äquivalent:

(i) \(\exists \varphi : M'' \to M : g \circ \varphi = \text{id} M'' \).

(ii) \(\exists \psi : M \to M' : \psi \circ f = \text{id} M' \).

In diesem Fall ist

\[
M = \text{Im} f \oplus \text{ker} \psi = \ker g \oplus \text{Im} \varphi,
\]

\[
M \cong M' \oplus M''
\]
und man sagt die exakte Sequenz ist split exakt.

Beweis. Es gelte (i): \(M'' \xrightarrow{\varphi} M \xrightarrow{f} M' \to 0 \). Sei \(x \in M \), dann ist

\[
x - \varphi \left(g(x) \right) \in \ker g.
\]

Also folgt \(M = \ker g + \text{Im} \varphi \). Diese Summe ist direkt, denn ist \(x = y + z \) mit \(y \in \ker g \) und \(z \in \text{Im} \varphi \), so folgt

\[
g(x) = g(y + z) = g(\varphi(w)) = w.
\]

Also ist \(w \) und damit \(z \) und damit \(y \) eindeutig bestimmt durch \(x \).

Wir haben also \(M = \ker g \oplus \text{Im} \varphi \). Wegen der Exaktheit ist \(\ker g = \text{Im} f \).

Definieren \(\psi \) wie folgt: Ist \(x = y + z \in M \), \(y = f(u) \), so sei \(\psi(x) := u \). \(\psi \) ist wohldefiniert denn \(f \) ist injektiv und erfüllt offenbar \(\psi \circ f = \text{id} M' \). Weiters ist \(\ker \psi = \text{Im} \varphi \), also \(M = \text{Im} f \oplus \ker \psi \). Weiters ist \(\text{Im} f \cong M' \) und \(g|\text{Im} \varphi \) ein Isomorphismus von \(\text{Im} \varphi \) auf \(M'' \).

Gilt (ii), so schließt man analog.

\[\square\]
1.17 Definition. Ein R-Modul P heißt projektiv, wenn gilt (M,M'' irgendeine R-Module)

\[\exists h \quad \forall f \quad g \]

Zum Beispiel ist jeder freie Modul projektiv. Denn ist P frei mit Basis X so definiere h auf X so daß $(g \circ h)(x) = f(x)$ (das ist möglich da g surjektiv) und setze $h|X$ zu einem Homomorphismus fort.

1.18 Satz. Es sind äquivalent:

(i) P ist projektiv.

(ii) Jede exakte Sequenz $0 \to M' \to M'' \to P \to 0$ splits.

(iii) P ist direkter Summand eines freien Moduls, d.h. $\exists M : F = P \oplus M$ frei.

Beweis.

(i) \Rightarrow (ii): Die Abbildung aus

\[\exists h \quad \forall f \quad g \]

liefert das splitting der Sequenz.

(ii) \Rightarrow (iii): Sei F frei so daß P ein Faktor von F ist:

\[0 \to M \to F \to P \to 0. \]

Diese Sequenz ist split, also $F \cong P \oplus M$.

(iii) \Rightarrow (i): Sei $F = P \oplus M$ frei (und daher projektiv)
1.2 Moduln über Hauptidealringen

1.2.1 Satz. Sei F freier Modul über dem Hauptidealring R (nullteilerfrei) und M ein Untermodul von F. Dann ist M frei und die Dimension von M höchstens so groß wie die von F.

Beweis.

Ist $x \in F$, $x \neq 0$, so folgt $\text{Ann}_R \{x\} = \{0\}$. Denn sei $(v_i)_{i \in I}$ Basis von F, $x = \sum a_i v_i$ und $a_i \neq 0$. Sei φ der Homomorphismus $\varphi : F \to R$ mit $v_0 \mapsto 1$, $v_i \mapsto 0$, $i \neq 0$. Ist $r \in \text{Ann}_R \{x\}$, so folgt

$$0 = \varphi(rx) = ra_0.$$

Da R nullteilerfrei ist folgt $r = 0$.

Wir betrachten zuerst den Fall das I endlich ist, $I = \{1, \ldots, n\}$. Sei $M_r := M \cap \langle v_1, \ldots, v_r \rangle$. Es ist $M_1 = M \cap \langle v_1 \rangle \subseteq \langle v_i \rangle$ und daher von der Gestalt $M_1 = \langle a_1 v_1 \rangle$ für ein $a_1 \in R$, denn

$$\{a \in R : av_1 \in M_1\}$$

ist ein Ideal von R und daher gleich (a_1). Also ist M_1 entweder $= \{0\}$ oder frei mit Dimension 1.

Sei nun induktiv angenommen, daß M_r frei von Dimension $\leq r$ ist. Sei

$$a := \{a \in R : \exists b_1 v_1 + \ldots + b_r v_r + av_{r+1} \in M\} \triangleleft R,$$

und sei $a = (a_{r+1})$. Ist $a_{r+1} = 0$, so folgt $M_{r+1} = M_r$. Andernfalls sei $w \in M_{r+1}$ so daß $w = b_1 v_1 + \ldots + b_r v_r + a_{r+1} v_{r+1}$. Für jedes $x \in M$ gibt es dann $c \in R$ so daß $x - cw \in M_r$, also folgt

$$M_{r+1} = M_r + \langle w \rangle.$$

Wegen $M_r \cap \langle w \rangle = \{0\}$ ist diese Summe direkt und da $\langle w \rangle$ frei ist folgt daß M_{r+1} frei ist und

$$\dim M_{r+1} = \dim M_r + 1 \leq r + 1.$$
§) Wir kommen zum Fall $|I| = \infty$. Für $J \subseteq I$ bezeichne

\[F_J := \langle v_i : i \in J \rangle, \ M_J := F_J \cap M. \]

Sei S die Menge aller Paare (M_J, w) so daß $w : J' \subseteq J \rightarrow M_J$ eine Basis von M_J ist. Die Menge S ist nicht leer. Denn sei J endlich so daß $M_J \neq \{0\}$. Dann ist M_J frei mit Dimension $\leq |J|$, d.h. $\exists J' \subseteq J$ und $w : J' \rightarrow M_J$ Basis, d.h. $(M_J, w) \in S$.

Wir definieren für $(M_J, w), \ (M_K, u) \in S$

\[(M_J, w) \leq (M_K, u) : \iff J \subseteq K, \ J' \subseteq K', \ u|_{J'} = w. \]

Offenbar ist \leq eine Ordnung und jede Kette hat ein Supremum $(\bigcup J)$.

Sei (M_J, w) ein maximales Element von S. Wir zeigen $J = I$, denn dann sind wir fertig. Angenommen $J \neq I$. Sei $k \in I \sm J, \ K = J \cup \{k\}$.

Gilt $M_K = M_J$ so ist $(M_K, w) \geq (M_J, w)$, ein WSI. Andernfalls ist

\[\{0\} \neq \{ c \in R : \exists c_{V_k} + y \in M, y \in M_J \} < R, \]

also gleich (a). Sei $w_k := av_k + y \in M$ (mit einem $y \in M_J$). Genau wie im "endlichen Fall" ist nun

\[\tilde{w} : \begin{cases}
K & \to M_K \\
I & \to \begin{cases}
w(l), & l \in J \\
w_k, & l = k \end{cases}
\end{cases} \]

eine Basis von M_K und es gilt

\[(M_K, \tilde{w}) \geq (M_J, w), \]

ein WSI.

\[\square \]

COAl.10

1.2.2 Korollar. Sei R Hauptidealring. Dann gilt:

(i) E endlich erzeugt und $E' \leq E$. Dann ist E' endlich erzeugt.

(ii) Jeder projektive Modul ist frei.

Beweis.

ad(i): Sei F freier Modul mit endlicher Basis und $\varphi : F \rightarrow E$. Dann ist $\varphi^{-1}(E')$ freier Modul mit endlicher Basis und daher $E' = \varphi(\varphi^{-1}(E'))$ endlich erzeugt.

ad(ii): Ist P projektiv so existiert M so daß $P \oplus M = F$ frei. Es ist also $P \leq F$ ebenfalls frei.

\[\square \]

Sei E ein R-Modul, $x \in E$ heißt Torsionselement, wenn gilt $	ext{Ann}_R\{x\} \neq \{0\}$

$E_{\text{tor}} := \{ x \in E : x \text{ Torsionselement} \}$. Ist $E_{\text{tor}} = E$, so heißt E Torsionsmodul, ist $E_{\text{tor}} = \{0\}$, so heißt E torsionsfrei.
1.3 Nötherische Moduln

1.2.3 Satz. Sei R Hauptidealring, E endlich erzeugter R-Modul. Dann ist E/E_{tor} frei. Es existiert $F \leq E$ frei, sodass

$E = E_{tor} \oplus F$.

Die Dimension von F ist eindeutig.

1.2.4 Lemma. Seien E, E' Moduln, E' frei, $f : E \to E'$ surjektiv. Dann existiert $F \leq E$ frei sodass $f|F$ ein Isomorphismus von F auf E' ist und es gilt $E = F \oplus \ker f$.

Beweis. E' ist frei, also auch projektiv. Die exakte Sequenz

$0 \to \ker f \hookrightarrow E \xrightarrow{j} E' \to 0$

ist daher split exakt und es existiert $\varphi : E' \to E$ sodass $f \circ \varphi = \text{id}_{E'}$ und es gilt

$E = \ker f \oplus \text{Im} \varphi$.

Wie in Lemma 1.1.6 gezeigt wurde, ist $f|\text{Im} \varphi$ ein Isomorphismus von $\text{Im} \varphi$ auf E'.

Beweis. (Satz 1.2.3):

\(\text{a) } E/E_{tor}\) ist torsionsfrei: Sei $x \in E$, $b \in R \setminus \{0\}$, $b(x + E_{tor}) = 0$. Dann ist $bx \in E_{tor}$, also $\exists c \in R \setminus \{0\} : c(bx) = 0$. Wegen $cb \neq 0$ folgt $x \in E_{tor}$.

\(\text{b) }$ Wir zeigen: Jeder endlich erzeugte torsionsfreie Modul M ist frei: Sei $\{y_1, \ldots, y_m\}$ ein Erzeugendensystem von M und wähle eine maximale lineare unabhängige Teilmenge $\{v_1, \ldots, v_n\}$ von $\{y_1, \ldots, y_m\}$. Hier ist $n \geq 1$, denn M ist torsionsfrei. Für jedes $j = 1, \ldots, m$ gibt es $a_j \in R \setminus \{0\}$, sodass

$\langle a_j y_j \rangle \subseteq \langle v_1, \ldots, v_n \rangle$.

Setze $a := a_1 \cdot \ldots \cdot a_m$, dann gilt also $aM \subseteq \langle v_1, \ldots, v_m \rangle$ und daher aM frei. Nun ist aM torsionsfrei ist, $x \mapsto ax$ ein Isomorphismus von M auf aM.

\(\text{c) }$ Wir haben gezeigt E/E_{tor} ist frei. Die Zerlegung $E = E_{tor} \oplus F$ folgt wegen Lemma 1.2.4.

\(\text{\square}\)

1.3 Nötherische Moduln

1.3.1 Satz. Sei M ein A-Modul. Dann sind äquivalent.

(i) Jeder Untermodul von M ist endlich erzeugt.

(ii) Jede aufsteigende Folge $M_1 \subseteq M_2 \subseteq \ldots$ von Untermoduln von M ist endlich.

(iii) Jede nichtleere Menge von Untermoduln von M hat ein maximaes Element.
In diesem Fall nennt man M nötherschen A-Modul.

Beweis.
(i) \Rightarrow (ii): Sei $N = \bigcup_i M_i \leq M$ und daher endlich erzeugt, $N = \langle x_1, \ldots, x_n \rangle$. Also existiert i mit $x_1, \ldots, x_n \in M_i$ und daher $N = M_i$.
(ii) \Rightarrow (iii): Angenommen es gibt eine Menge von Untermoduln ohne maximales Element. Dann erhält man induktiv

$$N_1 \subset N_2 \subset N_3 \subset \ldots$$

ein WS!
(iii) \Rightarrow (i): Sei $N \leq M$ gegeben, $a_0 \in N$. Ist $N \neq \langle a_0 \rangle$ wähle $a_1 \in N \setminus \langle a_0 \rangle$. Ist $N \neq \langle a_0, a_1 \rangle$ wähle $a_2 \in N \setminus \langle a_0, a_1 \rangle$, u.s.w. Wir erhalten

$$\langle a_0 \rangle \subset \langle a_0, a_1 \rangle \subset \ldots$$

und diese Menge hat kein maximales Element.

\[\Box \]

LEAI.14

1.3.2 Lemma. Sei M nötherscher A-Modul. Dann ist jeder Untermodul und jeder Faktormodul von M auch nöthersch.

Beweis. Für Untermoduln klar wegen (i). Für Faktormoduln wegen (ii), denn ist $\pi : M \rightarrow N$ surjektiv, so ist mit einer echt aufsteigenden Kette

$$N_1 \subset N_2 \subset \ldots \subset N$$

auch

$$\pi^{-1}(N_1) \subset \pi^{-1}(N_2) \subset \ldots \subset M.$$

\[\Box \]

LEAI.15

1.3.3 Lemma. Sei $N \leq M$. Sind N und M/N nöthersch, so auch M.

Beweis. Mit $L \leq M$ assoziere das Paar

$$L \mapsto (L \cap N, (L + N)/N).$$

Diese Zuordnung bildet echte Ketten auf echte Ketten ab: Sei $E \subset F$ und seien die assoziierten Paare gleich. Sei $x \in F$, dann existieren wegen $(E + N)/N = (F + N)/N$ Elemente $u, v \in N$, $y \in E$, so daß

$$x + u = y + v.$$

Es folgt $x - y = u - v \in F \cap N = E \cap N$, also $x \in E$.

\[\Box \]

COAI.16

1.3.4 Korollar. Endliche Summen nötherscher Moduln sind nöthersch.

Beweis. Mit N_1, N_2 ist auch $N_1 \oplus N_2$ nöthersch, denn $\pi_1 : N_1 \oplus N_2 \rightarrow N_1$, hat Kern N_2. Ist $M = N_1 + N_2$, so hat man $N_1 \oplus N_2 \rightarrow M$. Rest induktiv.

\[\Box \]

Ein Ring A heißt nöthersch, wenn er ein nötherscher Modul über sich selbst ist. D.h. jedes Ideal ist endlich erzeugt.
1.4. LOKALISIERUNG

1.3.5 Lemma. Sei A nöthersch. Es gilt:

(i) Ist M endlich erzeugter A-Modul, so ist auch M nöthersch.

(ii) Ist $\varphi : A \to B$ surjektiver Ring ($!)$ Homomorphismus, so ist B nöthersch.

(iii) Sei $S \subseteq A$ multiplikativ. Dann ist $S^{-1}A$ nöthersch.

Beweis.

ad(i): Es gibt einen surjektiven Homomorphismus $A^n \to M$.

ad(ii): Sei $b_1 \subseteq \ldots \subseteq b_n \subseteq \ldots \subseteq B$, dann ist $\varphi^{-1}(b_1) \subseteq \ldots \subseteq \varphi^{-1}(b_n) \subseteq \ldots \subseteq A$.

ad(iii): Ist $b_1 \subseteq \ldots \subseteq b_n \subseteq \ldots \subseteq S^{-1}A$ und schreibt man $b_i = S^{-1}a_i$ so ist $a_1 \subseteq \ldots \subseteq a_n \subseteq \ldots \subseteq A$ eine echte Kette.

\[\square\]

1.4 Lokalisierung

Sei A ein Ring, $S \subseteq A$ eine multiplikative Teilmenge, d.h.

\[s_1, s_2 \in S \Rightarrow s_1 \cdot s_2 \in S\]

Wir definieren eine Relation \sim auf $A \times S$ durch

\[(a_1, s_1) \sim (a_2, s_2) \ : \iff \exists t \in S : ta_2 s_1 = ta_1 s_2\]

1.4.1 Satz. Die Relation \sim ist eine Äquivalenzrelation. Die Menge $S^{-1}A := (A \times S)/\sim$ ist mit den Operationen

\[(a_1, s_1) + (a_2, s_2) := (a_1 s_2 + a_2 s_1, s_1 s_2),\]

\[(a_1, s_1) \cdot (a_2, s_2) := (a_1 a_2, s_1 s_2)\]

ein Ring, der sogenannte Quotientenring von A nach S. Das Element (a, s) wird oft mit a_s bezeichnet.

Beweis. Klar durch nachrechnen.

\[\square\]

Ein echtes Ideal $p \triangleleft A$ eines Ringes A heißt Primideal, wenn gilt:

\[x \cdot y \in p \Rightarrow (x \in p \lor y \in p),\]

oder, äquivalent, wenn $A \setminus p$ multiplikativ ist oder, ebenfalls äquivalent, wenn A/p multteilerfrei ist. Die Menge aller Primideale von A heißt das Spektrum von A und wird bezeichnet mit $\text{Spec}A$.

Der Ring A habe ein Einselement, dann heißt ein Element $x \in A$ Einheit, wenn es ein $y \in A$ gibt mit $xy = yx = 1$. Die Menge A^* der Einheiten bildet eine Gruppe, die sogenannte Einheitengruppe des Ringes A.

1.4.2 Bemerkung. (i) Enthält \(S \) keine Nullteiler, so gilt
\[
(a_1, s_1) \sim (a_2, s_2) \iff a_1 s_2 = a_2 s_1
\]
(ii) Habe \(A \) ein Einselement. Die Abbildung
\[
\iota_{A,S} : \begin{cases}
A & \to S^{-1}A \\
\quad a & \mapsto (a, 1)
\end{cases}
\]
is ein Ringhomomorphismus. Sie ist genau dann injektiv wenn \(S \) keine Nullteiler enthält. Ist insbesondere \(A \) nullteilerfrei, so ist \(S^{-1}A \) ein Unterring des Quotientenkörpers \(Q(A) \) von \(A \) (vgl. Korollar 1.4.4).

(iii) Beispiele:
(a) \(A \) nullteilerfrei, \(S = A \setminus \{0\} \). Dann ist \(S^{-1}A = Q(A) \).
(b) Ist \(S \subseteq A^* \), dann ist \(\iota_{A,S} \) ein Isomorphismus.
(c) \(0 \in S \). Dann ist \(S^{-1}A \cong \{0\} \).
(d) Sei \(p \in \text{Spec}A \) und setze \(S := A \setminus p \). Dann heißt
\[
A_p := S^{-1}A = (A \setminus p)^{-1}A
\]
die Lokalisierung von \(A \) in \(p \) (oder an der Stelle \(p \)).

1.4.3 Satz. Sei \(S \subseteq A \) multiplikativ, \(\phi : A \to B \) ein Ringhomomorphismus mit \(\phi(S) \subseteq B^* \). Dann gibt es einen eindeutigen Ringhomomorphismus \(\psi : S^{-1}A \to B \) mit
\[
\begin{array}{ccc}
A & \xrightarrow{\iota_{A,S}} & S^{-1}A \\
\quad \phi & \downarrow & \\
\quad \psi & \downarrow & B
\end{array}
\]
d.h. mit \(\phi = \psi \circ \iota_{A,S} \).

Beweis. Definiere
\[
\psi\left(\frac{a}{s}\right) := \phi(a)\phi(s)^{-1}
\]
Rest klar durch nachrechnen.

1.4.4 Korollar. Seien \(S \subseteq T \) zwei multiplikative Teilmengen von \(A \). Dann gibt es einen kanonischen Homomorphismus \(\iota_{S,T} : S^{-1}A \to T^{-1}A \) so daß
Im folgenden sei immer A kommutativer Ring mit Einselement.
Allgemein gilt bezüglich der Idealstruktur von $S^{-1}A$ der folgende Satz:

1.4.5 Satz. Bezeichne für ein Ideal a mit $S^{-1}a$ die Menge
$$S^{-1}a := \{\frac{a}{s} : a \in a, s \in S\}$$
Dann gilt

(i) $S^{-1}a$ ist ein Ideal von $S^{-1}A$. Ist $a \cap S \neq \emptyset$, so gilt $S^{-1}a = S^{-1}A$.
(ii) Ist b Ideal von $S^{-1}A$ und $a := \iota_{A,S}(b)$, so gilt
$$b = S^{-1}a.$$

Die in obigem Sinne definierte Abbildung Ψ die dem Ideal a von A das Ideal $S^{-1}a$ von $S^{-1}A$ zuordnet induziert eine ordnungserhaltende Bijektion von $\{p \in \operatorname{Spec} A : p \cap S = \emptyset\}$ auf $\operatorname{Spec} S^{-1}A$. Es gilt für $p \in \operatorname{Spec} A, p \cap S = \emptyset$ stets
$$\iota_{A,S}(S^{-1}p) = p.$$

Beweis.

ad (i): klar.

ad (ii): Ist $a \in a$, so folgt $\frac{a}{1} \in b$ und damit $\frac{a}{s} \in b$ für jedes $s \in S$. Sei $\frac{b}{1} \in b$, dann folgt auch $\frac{b}{s} \in b$ für jedes $s \in S$. Es gilt $\frac{b}{s} \in b$, daher $b \in a$.

Klarerweise ist Ψ ordnungserhaltend.

Sei $p \in \operatorname{Spec} A, p \cap S = \emptyset$ und sei
$$\frac{a_1}{s_1} \cdot \frac{a_2}{s_2} = \frac{a}{s} \in S^{-1}p,$$
d.h. $\frac{a_1}{s_1}, \frac{a_2}{s_2} \in S^{-1}p$. Dann existiert $t \in S$ mit $ta_1a_2s = tsp_1s_2 \in p$. Es folgt das eines von a_1, a_2 in p sein muss.

Sei $q \in \operatorname{Spec} S^{-1}A$. Dann ist $\iota_{A,S}^{-1}(q) \in \operatorname{Spec} A$ da $\iota_{A,S}$ ein Ringhomomorphismus ist.

Sei $p \in \operatorname{Spec} A$. Klar ist $p \subseteq \iota_{A,S}^{-1}(S^{-1}p)$. Sei $x \in A$ mit $\frac{x}{s} \in S^{-1}p$, d.h. $\frac{x}{s} \in S^{-1}p$. Dann folgt für ein gewisses $t \in S$ daß $txs = tsp \in p$, also folgt $x \in p$.

\[\square\]
1.4.6 Korollar. Es gilt: Ist A Hauptidealing, so auch $S^{-1}A$.

Beweis. Sei b ein Ideal von $S^{-1}A$. Dann gilt $b = S^{-1}a$ mit $a = \iota_{A,S}^{-1}b$. Sei $a = (a)$, dann gilt $b = S^{-1}(a) = S^{-1}A : \frac{1}{a}$.

\hfill\square

1.4.7 Definition. Ein Ring heißt lokal, wenn er genau ein maximales Ideal besitzt.

1.4.8 Korollar. (i) Sei $p \in \text{Spec} A$. Dann ist A_p lokal mit maximalem Ideal

$$pA_p := \{\frac{p}{s} : p \in p, s \in A \setminus p\} = \iota_{A,A_p}(p)A_p.$$

(ii) Sei A Hauptidealing und $p \in A$ ein Primelement. Dann ist $A_{(p)}$ ein Hauptidealing mit im wesentlichen (d.h. bis auf Einheiten) genau einem Primelement.

1.4.9 Satz. Sei $S \subseteq A$ multiplikativ, a ein Ideal von A und $\pi : A \rightarrow A/a$ die kanonische Projektion. Der kanonische Homomorphismus (vgl. Satz 1.4.3) $\psi : S^{-1}A \rightarrow \pi(S)^{-1}(A/a)$ ist surjektiv und hat Kern $S^{-1}a$. Insbesondere ist also

$$(S^{-1}A)/(S^{-1}a) \cong \pi(S)^{-1}(A/a).$$

Beweis. Betrachte die Homomorphismen.

\begin{center}
\begin{tikzcd}
A \ar{r}{\pi} & A/a \ar{r}{\iota_{A,a,\pi(S)}} & \pi(S)^{-1}(A/a) \\
& S^{-1}A \ar{u}{\iota_{A,S}} \ar{ur}{\psi}
\end{tikzcd}
\end{center}

Jedes Element von $\pi(S)^{-1}(A/a)$ ist von der Gestalt $\frac{\pi(a)}{\pi(s)}$ für gewisse $a \in A$, $s \in S$. Es ist unter ψ also Bild von $\frac{a}{s}$. Ist $\frac{\pi(a)}{\pi(s)} = 0$, so existiert $t \in S$ mit $\pi(t) \cdot \pi(a) = 0$, also $ta \in a$. Damit ist $\frac{a}{s} = \frac{ta}{ts} \in S^{-1}a$.

\hfill\square

1.4.10 Korollar. Ist $p \in \text{Spec} A$, so ist $A_p/pA_p \cong Q(A/p)$.

Beweis. Klar.

\hfill\square

Sei nun M ein A-Modul und $S \subseteq A$ multiplikativ. Definiere die Relation \sim auf $S \times M$ durch

$$(s_1,m_1) \sim (s_2,m_2) :\Leftrightarrow \exists t \in S : ts_1m_2 = ts_2m_1.$$

Dann ist $S^{-1}M := (S \times M)/\sim$ mit den kanonischen Operationen ein $S^{-1}A$-Modul.
1.4. LOKALISIERUNG

Ref. 11

1.4.11 Bemerkung. (i) Vermöge $\iota_{A,S} : A \to S^{-1}A$ ist $S^{-1}M$ auch ein A-Modul.

(ii)

$$
\iota_{M,S} : \begin{cases}
M & \to S^{-1}M \\
n & \mapsto \frac{n}{m}
\end{cases}
$$

ist ein A-Modul Homomorphismus.

(iii) $\iota_{A,S}$ ist genau dann injektiv, wenn S aus Nichtnullteilkern für M besteht (d.h. $sm \neq 0$ für alle $s \in S$, $m \in M \setminus \{0\}$).

(v) Es gilt (Satz vom Hauptnemer)

$$
S^{-1}\left(\sum_{i \in I} M_i \right) \cong \sum_{i \in I} S^{-1}M_i.
$$

(vi) Ist $p \in \text{Spec} A$, so bezeichne M_p den A_p-Modul $(A \setminus \{0\})^{-1}M$.

(vii) Ist a ein Ideal von A, so erhalten wir die bekannte Definition von $S^{-1}a$.

1.4.12 Satz. Seien M, N A-Module, $S \subseteq A$ multiplikativ, $\phi : M \to N$ A-linear. Dann gibt es genau eine $S^{-1}A$-lineare Abbildung $(S^{-1}\phi) : S^{-1}M \to S^{-1}N$ sodass

\[
\begin{array}{ccc}
M & \xrightarrow{\phi} & N \\
\downarrow & & \downarrow \\
S^{-1}M & \xrightarrow{\iota_{M,S}} & S^{-1}M \\
\downarrow & & \downarrow \\
S^{-1}\phi & \xrightarrow{\iota_{N,S}} & S^{-1}N
\end{array}
\]

Es gilt $S^{-1}\text{id}_M = \text{id}_{S^{-1}M}$ und

$$
S^{-1}(\phi \circ \psi) = (S^{-1}\phi) \circ (S^{-1}\psi).
$$

Beweis. Definiere $(S^{-1}\phi)((\frac{m}{a})) := \frac{\phi(m)}{a}$. Rest durch nachrechnen.

1.4.13 Satz. Sei $S \subseteq A$ multiplikativ. Ist

$$
M_1 \xrightarrow{\alpha} M_2 \xrightarrow{\beta} M_3
$$

Dann ist $M_2 \xrightarrow{\beta \circ \alpha^{-1}} M_3$

\square
Kapitel 1. Algebraische Grundlagen

Eine exakte Folge von A-Modul Homomorphismen, so ist auch

$$S^{-1}M_1 \xrightarrow{S^{-1}\alpha} S^{-1}M_2 \xrightarrow{S^{-1}\beta} S^{-1}M_3$$

exakt.

Beweis. $(S^{-1}\beta) \circ (S^{-1}\alpha) = S^{-1}(\beta \circ \alpha) = S^{-1}(0) = 0$. Sei $\alpha \in \text{Kern } S^{-1}\beta$. Dann existiert also $t \in S$ mit $t\beta(m) = 0$, d.h. $\beta(tm) = 0$. Sei $n \in M_1$ mit $\alpha(n) = tm$, dann ist

$$(S^{-1}\alpha)\left(\frac{n}{ts}\right) = \frac{\alpha(n)}{st} = \frac{tm}{ts} = \frac{m}{s}.$$

\[\square\]

1.4.14 Korollar. Ist U ein Untermodul von M, so gilt

$$(S^{-1}M)/(S^{-1}U) \cong S^{-1}(M/U).$$

1.4.15 Satz (Lokal-Global-Prinzip). Es gilt:

(i) $M = 0 \iff M_m = 0$ für alle maximalen Ideale m von A

(ii) Die A-lineare Abbildung $\phi : M \to N$ ist genau dann injektiv (surjektiv, Null), wenn für jedes maximale Ideale m von A die A_m-lineare Abbildung $\phi_m : M_m \to N_m$ diese Eigenschaft hat.

(iii) Sei U ein Untermodul von M, $x \in M$. Dann ist $x \in U$ genau dann wenn $\iota_{M,A\setminus m}(x) \in U_m$ für alle maximalen Ideale m.

(iv) Ist A nullteilerfrei und faßt man A_m auf als Unterring von $Q(A)$, so gilt

$$A = \bigcap_mA_m.$$

Beweis.

ad(i): \iff klar. Angenommen $M \neq 0, m \in M \setminus \{0\}$. Setze $N := A_m \subseteq M$, dann ist $N_m \subseteq M_m$ für jedes m. Sei a jedes Ideal von A mit $N \cong A/a$ und wähle ein maximales Ideal $m \supseteq a$. $P := A/\alpha_.$ Der kanonische Homomorphismus $N \to P$ ist surjektiv, also ist auch $N_m \to P_m$ surjektiv. Es genügt zu zeigen $P_m \neq 0$.

Alle Elemente von $A \setminus m$ sind Nichtnullteiler für P denn A/m ist ein Körper. Also ist $\iota_{P,A\setminus m} : P \to P_m$ injektiv. Da $P \neq 0$ folgt $P_m \neq 0$.

ad(ii): \implies wegen Satz 1.4.13, denn ϕ injektiv \iff $0 \to M \xrightarrow{\phi} N$, ϕ surjektiv \iff $M \xrightarrow{\phi} N \to 0$, $\phi = 0$ \iff $M \xrightarrow{\phi} N \cong N$.

\iff: Injektiv: Setze $K = \ker \phi$, dann hat man $0 \to K \to M \xrightarrow{\phi} N$. Also auch $0 \to K_m \to M_m \cong N_m$. Wegen ϕ_m injektiv folgt $K_m = 0$, also wegen (i) $K = 0$.

Surjektiv: Setze $K = \ker \phi$ und verwende genauso $M \xrightarrow{\phi} N \to K \to 0$.

Null: Sei wieder $K = \ker \phi$. Wegen $0 \to K \to M \cong N$ folgt $0 \to K_m \to M_m \cong N_m$ d.h. $K_m = M_m$. Wegen $(M/K)_m \cong M_m/K_m$ also $(M/K)_m = 0$, also $M/K = 0$.

1.5. DER CHINESISCHE RESTSATZ

ad(iii): Sei
\[\phi : \begin{cases} A & \to M/U \\ 1 & \mapsto x + U. \end{cases} \]
Dann ist \(\phi = 0 \iff x \in U. \)

Nach (ii) genau dann wenn \(\phi_m : A_m \to (M/U)_m \cong M_m/U_m \) gleich 0 für alle \(m. \)
Wegen \(\phi_m(1) = \frac{1}{m} + U_m \) ist das das Gewünschte.

ad(iv): Faßt man \(A_m \subseteq Q(A) \) auf, so ist \(\frac{1}{m} \) gleich \(x. \)

1.5 Der Chinesische Restsatz

Sind \(a_i \in I, \) Ideale von \(A, \) so ist das kleinste Ideal das alle \(a_i \) umfaßt
\[\sum_{i \in I} a_i = \left\{ \sum_{i \in I} x_i : x_i \in a_i, x_i = 0 \text{ für f.a. } i \right\} \]
Sind \(a, b \) Ideale, so ist \(a \cdot b \) das Ideal das von den Produkten \(x \cdot y, x \in a, y \in b, \)
erzeugt wird. Es gilt \(ab \subseteq a \cap b \) aber i.a. nicht =. Gilt \(a + b = A, \) so heißen \(a, b \)
coprime.

1.5.1 Lemma. Es gilt

(i) Sind \(a, b \) coprim so ist \(ab = a \cap b. \)
(ii) Sind \(a, b \) und \(a, c \) coprim, so auch \(a, bc. \)

(ii) Gilt \(a_1 + \cdots + a_n = A, \) und sind \(\nu_1, \ldots, \nu_n \in \mathbb{N}, \) so ist auch \(a_1^{\nu_1} + \cdots + a_n^{\nu_n} = A. \)

(iv) Sind \(a_1, \ldots, a_n \) paarweise coprim so gilt \(a_1 \cdot \cdots \cdot a_n = \bigcap_{i=1}^{n} a_i \)

Beweis.

ad(i): \(a \cap b = (a + b)(a \cap b) = a(a \cap b) + b(a \cap b) \subseteq ab. \)

ad(ii): Sei \(a \in a, b \in b \) sodaß \(a + b = 1 \) und \(a' \in a, c \in c \) sodaß \(a' + c = 1. \)
Dann folgt \(bc \in bc = (1-a)(1-a') = 1+[-a-a'+aa'] \in 1 + a. \)

ad(iii): Gilt \(a_1^{\nu_1} + (a_2^{\nu_2} + \cdots + a_n^{\nu_n}) = A, \) so erst recht \(a_1 + (a_2^{\nu_2} + \cdots + a_n^{\nu_n}) = A. \)
Wegen (ii) folgt \(a_1^{\nu_1+1} + a_2^{\nu_2} + \cdots + a_n^{\nu_n} = A. \)

Die Behauptung folgt also mittels Induktion.

ad(iv): Induktion unter Verwendung von (i), (ii).

Für Ideale \(a_1, \ldots, a_n \) sei \(\phi \) der kanonische Homomorphismus
\[\phi : \begin{cases} A & \to \prod_{i=1}^{n} (A/a_i) \\ a & \mapsto (a + a_1, \ldots, a + a_n) \end{cases} \]
Offenbar gilt \(\ker \phi = \bigcap_{i=1}^{n} a_i. \)
1.5.2 Satz (Chinesischer Restsatz). \(\phi \) ist surjektiv genau dann, wenn die \(a_1, \ldots, a_n \) paarweise coprim sind.

Beweis. \(\Rightarrow \): Sei \(a \in A \) so daß \(\phi(a) = (1, 0, \ldots, 0) \). Dann gilt \(1 = (1 - a) + a \in a_1 + a_k \) für \(k = 2, \ldots, n \).

\(\Leftarrow \): Seien \(a_i \in a_1, b_i \in a_i, i = 2, \ldots, n \), so daß \(a_i + b_i = 1 \). Setze \(a = \prod_{i=2}^{n} b_i \in a_2 \cap \ldots \cap a_n \). Es gilt

\[
a = \prod_{i=2}^{n} (1 - a_i) = 1 + a'
\]

für ein gewisses \(a' \in a_1 \), also folgt \(\phi(a) = (1, 0, \ldots, 0) \).

Anders formuliert erhält man: Seien \(a_1, \ldots, a_n \) paarweise coprim, und sind \(b_1, \ldots, b_n \in A \), so existiert ein \(x \in A \) mit

\[
x \equiv b_i \text{ mod } a_i, \ i = 1, \ldots, n.
\]

1.6 Der ganze Abschluss

Ab jetzt: Ring = Integritätsbereich.

1.6.1 Definition. Sei \(A \) ein Ring, \(L \) ein Körper mit \(L \supseteq A \), und \(x \in L \). Dann heißt \(x \) ganz über \(A \) wenn \(x \) einer Gleichung der Gestalt

\[
x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 = 0, a_i \in A,
\]

genügt. Eine Ringerweiterung \(A \subseteq B \) heißt ganz, wenn jedes Element von \(B \) ganz über \(A \) ist.

1.6.2 Satz. Es gilt:

(i) Sei \(A \subseteq L, x \in L \). Dann ist \(x \) ganz über \(A \) genau dann, wenn es einen endlich erzeugten \(A \)-Modul \(M \subseteq L, M \neq \{0\} \), gibt, so daß \(xM \subseteq M \).

(ii) Sei \(K = Q(A), x \) algebraisch über \(K \). Dann gibt es \(c \in A, c \neq 0 \), so daß \(cx \) ganz über \(A \) ist.

(iii) Sei \(B \supseteq A \) ganz. Ist \(B \) endlich erzeugt als \(A \)-Algebra, so ist \(B \) endlich erzeugt als \(A \)-Modul.

(iv) Sei \(A \subseteq B \subseteq C \). Ist \(B \) ganz über \(A \) und \(C \) ganz über \(B \), so ist \(C \) ganz über \(A \).

(v) Sei \(A \subseteq B \) ganz, \(\sigma \) ein Homomorphismus von \(B \). Dann ist \(\sigma(B) \) ganz über \(\sigma(A) \).

(vi) Sei \(A \subseteq B \) ganz, \(S \subseteq A \) multiplikativ. Dann ist \(S^{-1}A \subseteq S^{-1}B \) ganz.

Beweis.\(\Rightarrow \): Der von \(\{1, \ldots, x^n-1\} \) erzeugte \(A \)-Modul hat die gewünschten Eigenschaften.
1.6. DER GANZE ABSCHLUSS

\[\iff: \text{Sei } M = v_1 A + \ldots + v_n A \text{ mit } M \neq 0, xM \subseteq M. \text{ dann gibt es } a_{ij} \in A \text{ mit } \]
\[x v_1 = a_1 v_1 + \cdots + a_1 v_n \]
\[\vdots \]
\[x v_n = a_n v_1 + \cdots + a_n v_n \]

Es folgt
\[\det \begin{pmatrix} x - a_1 & \cdots & -a_{1n} \\ \vdots & \ddots & \vdots \\ -a_m & \cdots & x - a_{nm} \end{pmatrix} = 0 \]

und wir haben eine Ganzheitsgleichung.

\[\ad(ii): \text{ Sei } a_n x^n + \cdots + a_0 = 0 \text{ mit } a_i \in A, a_n \neq 0. \text{ Dann folgt } \]
\[(a_n x)^n + \cdots + a_n a_1 (a_n x) + a_n a_0 = 0, \]

also ist \(a_n x \) ganz über \(A \).

\[\ad(iii): \text{ Induktion nach der Anzahl der Erzeugenden: Sei } B = A[x]. \text{ Ist } x^n + a_{n-1} x^{n-1} + \cdots + a_0 = 0 \text{ eine Ganzheitsgleichung, so ist } \{1, \ldots, x^{n-1}\} \text{ ein } A-\]

Modul-Erzeugendensystem von \(B \).

Sei \(B = A[x_1, \ldots, x_{k+1}] \). Nach Induktionsvoraussetzung ist \(A[x_1, \ldots, x_k] \) endlich erzeugter \(A \)-Modul. Klarerweise ist \(B \) ganz über \(A[x_1, \ldots, x_k] \), also nach Induktionsannahme endlich erzeugter \(A[x_1, \ldots, x_k] \)-Modul.

\[\ad(iv): \text{ Sei } x \in C, x^n + b_{n-1} x^{n-1} + \cdots + b_0 = 0 \text{ eine Ganzheitsgleichung über } B. \]

Sei \(B_1 = A[b_0, \ldots, b_{n-1}] \), dann ist \(B_1 \) ein endlich erzeugter \(A \)-Modul wegen \((iii) \). \(B_1[x] \) ist ein endlich erzeugter \(B_1 \)-Modul also auch endlich erzeugter \(A \)-Modul und \(x B_1[x] \subseteq B_1[x] \).

\[\ad(v): \text{ Eine Ganzheitsgleichung geht bei Anwendung von } \sigma \text{ wegen } \sigma(1) = 1 \text{ in eine } \]

Ganzheitsgleichung über.

\[\ad(vi): \text{ Sei } x \in B, s \in S. \text{ Sei } M \text{ ein endlich erzeugter } A \text{-Modul mit } x M \subseteq M. \]

Dann ist \(S^{-1} M \) endlich erzeugter \(S^{-1} A \)-Modul und \(x S^{-1} M \subseteq S^{-1} M \).

\[\square \]

\textit{Definition.} Sei \(A \subseteq L \). Die Menge \(B = \{ x \in L : x \text{ ganz über } A \} \) heißt

der ganze Abschluß von \(A \) in \(L \).

\(A \) heißt ganz abgeschlossen in \(L \) falls \(B = A \). \(A \) heißt ganz abgeschlossen, wenn \(A \) ganz abgeschlossen in \(Q(A) \).

\textit{Satz.} Sei \(A \subseteq L, B \) der ganze Abschluß von \(A \) in \(L \). Dann ist \(B \) ein \(A \text{-Ring. } B \text{ ist ganz abgeschlossen in } L \).

\textit{Beweis.} Seien \(x, y \in B, M, N \subseteq L \) zwei endlich erzeugte \(A \)-Moduln mit \(x M \subseteq M, y N \subseteq N \). Dann ist \(NM \) endlich erzeugter \(A \)-Modul und \((x \pm y) NM \subseteq NM, (xy) NM \subseteq NM \). \(x \) ist ganz über \(B \) \(\Rightarrow \) ganz über \(A \) \(\Rightarrow \) \(x \in B \).

\[\square \]
1.6.5 Korollar. Sei A ein Ring, $K = Q(A)$ und L eine endliche separable Erweiterung von K. Ist $x \in L$ ganz über A, so ist L/K-Norm und L/K-Spur von x (sowie auch alle anderen Koeffizienten des Minimalpolynoms von x über K) ganz über A.

Beweis. Sei σ ein Homomorphismus von L über K. Dann ist $\sigma(x)$ ganz über $\sigma(A) = A$. Damit sind auch alle Polynome in den $\sigma(x)$, insbesondere also die elementarsymmetrischen Funktionen ganz über A. \hfill \square

(ii) Sei A ZPE, dann ist A ganz abgeschlossen.

(iv) Ist A ganz abgeschlossen in L, so auch $S^{-1}A$.

(v) Ist B der ganze Abschluss von A in L, dann ist $S^{-1}B$ der ganze Abschluss von $S^{-1}A$ in L.

Beweis.

$\text{ad}(i)$: Da A nöthersch ist genügt es zu zeigen, daß B in einem endlich erzeugten A-Modul enthalten ist.

Sei w_1, \ldots, w_n eine VR-Basis von L über K. Nach Multiplikation mit geeigneten Elementen aus A sei $\operatorname{obd} A w_i \in B$. Die L/K-Spur $\text{Tr} : L \to K$ ist K-linear und $\neq 0$. Ist $\alpha \in L$, $\alpha \neq 0$, so ist $\text{Tr}(\alpha x) \in L^d$ und $\alpha \mapsto \text{Tr}(\alpha x)$ ist ein K-Homomorphismus von L nach L^d. Sein Kern ist 0, also ist $L \cong L^d$ unter $\alpha \mapsto \text{Tr}(\alpha x)$. Sei w'_1, \ldots, w'_n die duale Basis bezgl $\text{Tr}(xy)$, d.h.

$$\text{Tr}(w_j w'_j) = \delta_{ij},$$

und sei $c \in A$ so daß $w'_j c \in B$.

Sei $z \in B$, dann ist $zw'_j c \in B$ und damit $\text{Tr}(zw'_j c) \in A$ da A ganz abgeschlossen ist. Sei

$$z = b_1 w_1 + \cdots + b_n w_n, b_j \in K,$$

dann ist also $\text{Tr}(zw'_j c) = cb_j \in A$. Also gilt

$$z \in Ac^{-1} w_1 + \cdots + Ac^{-1} w_n.$$

$\text{ad}(ii)$: Sei $\frac{a}{b} \in Q(A)$ ganz und sei p ein Primelement, $p|b$. Es gilt für gewisse $a_j \in A$

$$\left(\frac{a}{b} \right)^n + a_{n-1} \left(\frac{a}{b} \right)^{n-1} + \cdots + a_0 = 0,$$

also

$$a^n + a_{n-1} b a^{n-1} + \cdots + a_0 b^n = 0,$$

und es folgt $p|a$, d.h. $\frac{a}{b} \in A$.
1.7. PRIMIDEALE

ad(iii): Der A-Modul B ist torsionsfrei ($x \in B \setminus \{0\}$, $a \in R$, $ax = 0 \Rightarrow a = 0$), also (Satz 1.2.3) frei. Sei $B = Aw_1 + \ldots + Aw_n$, dann ist $L = Kw_1 + \ldots + K w_n$, und die w_j sind linear unabhängig auch über K. Eine solche Basis $\{w_1, \ldots, w_n\}$ nennt man auch Ganzheitsbasis.

ad(iv): Sei $x \in L$ ganz über $S^{-1}A$, sei also

$$x^n + x^{n-1} \frac{b_{n-1}}{s_{n-1}} + \cdots + \frac{b_0}{s_0} = 0, s_j \in S, b_j \in A.$$

Dann existiert $s \in S$, sodaß sx ganz über A und daher $sx \in A$. Damit ist $x \in S^{-1}A$.

ad(v): $B \supseteq A$ ist ganz, also auch $S^{-1}B \supseteq S^{-1}A$. Ist $x \in L$ ganz über $S^{-1}A$ so erst recht über $S^{-1}B$ und daher $x \in S^{-1}B$, da mit B auch $S^{-1}B$ ganz abgeschlossen in L.

DE1.25

1.6.7 Definition, Sei K eine endliche Erweiterung von \mathbb{Q} und O_K der ganze Abschluß von \mathbb{Z} in K. Dann heißt K algebraischer Zahlkörper und O_K Ring der ganzen Zahlen in K.

Bemerke, daß Z ganz abgeschlossen ist und O_K ein freier Z-Modul vom Rang $[L : \mathbb{Q}]$.

1.7 Primideale

Sei $A \subseteq B$ eine Ringerweiterung

1.7.1 Definition, Sei $p \in \text{Spec } A$, $\mathfrak{p} \in \text{Spec } B$. Wir sagen \mathfrak{p} liegt über p, $\mathfrak{p}|p$ wenn gilt $\mathfrak{p} \cap A = p$.

Sei $\mathfrak{p}|p$, dann induziert die Einbettung $A \subseteq B$ eine Einbettung $A/p \subseteq B/\mathfrak{p}$, man hat das Diagramm

$$
\begin{array}{c}
B \rightarrow B/\mathfrak{p} \\
\uparrow \uparrow \\
A \rightarrow A/p
\end{array}
$$

Ist $A \subseteq B$ ganz, so erhält man mit der kanonischen Projektion $\pi : B \rightarrow B/\mathfrak{p}$, daß B/\mathfrak{p} ganz über A/p ist.

1.7.2 Lemma (Nakayama Lemma). Sei A ein Ring, a Ideal von A das in allen maximalen Idealen enthalten ist, M ein endlich erzeugter A-Modul. Gilt $aM = M$, so folgt $M = 0$.

Beweis. Sei M erzeugt von w_1, \ldots, w_m wobei m minimal. Dann gibt es $a_i \in a$ so daß

$$w_1 = a_1 w_1 + \cdots + a_m w_m,$$

also

$$(1 - a_1)w_1 = a_2 w_2 + \cdots + a_m w_m.$$

Da a_1 in allen maximalen Idealen liegt, ist $1 - a_1 \in A^*$, also wird M von w_2, \ldots, w_m erzeugt.

DE1.26
1.7.3 **Satz.** Sei $A \subseteq B$ ganz, $p \in \text{Spec } A$. Dann gilt $pB \neq B$ und es existiert $\mathfrak{P} \in \text{Spec } B$ mit $\mathfrak{P}|p$.

Beweis.

:: Sei $S = A \setminus p$. Dann ist $S^{-1}B \subseteq S^{-1}A$ ganz, und es gilt

$$pB_p = pA_pB = pA_pB_p = m_pB_p$$

wobei m_p das maximale Ideal von A_p ist. Es genügt also die erste Behauptung für den Fall A lokal zu zeigen.

:: Angenommen $pB = B$, dann ist

$$1 = a_1b_1 + \cdots + a_nb_n,$$

mit gewissen $a_i \in p$, $b_i \in B$. Sei $B_0 = A[b_1, \ldots, b_n]$, dann ist $pB_0 = B_0$ und da alle b_i ganz sind, ist B_0 endlich erzeugter A-Modul. Wegen dem Nakayama Lemma folgt $B_0 = 0$, WSI.

:: Zur zweiten Aussage: Wir haben das Diagramm der Inklusionen

$$
\begin{array}{ccc}
B & \longrightarrow & B_p \subseteq (A \setminus p)^{-1}B \\
\uparrow & & \uparrow \\
A & \longrightarrow & A_p
\end{array}
$$

Wir haben schon gezeigt $m_pB_p \neq B_p$, also ist m_pB_p enthalten in einem maximalen Ideal \mathfrak{M} von B_p. Dann ist $\mathfrak{M} \cap A_p \supseteq m_p$ und da m_p maximal ist $\mathfrak{M} \cap A_p = m_p$ ($1 \notin \mathfrak{M} \cap A_p$). Setze

$$\mathfrak{P} = \mathfrak{M} \cap B.$$

Dann ist $\mathfrak{P} \in \text{Spec } B$ und nach obigem Diagramm ist $\mathfrak{M} \cap A = p$ also $\mathfrak{P} \cap A = p$.

\[\square \]

1.7.4 **Korollar.** Sei $A \subseteq B$ ganz und sei $\mathfrak{P}|p$. Dann ist \mathfrak{P} maximal genau dann, wenn p maximal.

Beweis.

:: Sei p maximal, dann ist A/p ein Körper. Sei $x \in B/\mathfrak{P}$, $x \neq 0$, dann ist x ganz über A/p, also algebraisch. Damit ist

$$(A/p)[x] \subseteq B/\mathfrak{P}$$

ein Körper, also $x \in (B/\mathfrak{P})^*$.

:: Ist p nicht maximal, so ist $\text{Spec}(A/p) \neq \emptyset$, also auch $\text{Spec}(B/\mathfrak{P}) \neq \emptyset$.

\[\square \]
1.8 Fortsetzung von Homomorphismen

Sei A Ring (kommutativ mit 1) und $p \in \operatorname{Spec} A$. Wir haben gezeigt (Satz 1.4.3) dass sich ein Homomorphismus $\varphi : A \to L$ in einen Körper L mit $\ker \varphi = p$ fortsetzen lässt zu $\psi : A_p \to L$. Und zwar durch

$$\psi\left(\frac{x}{y}\right) := \frac{\varphi(x)}{\varphi(y)}$$

Sei nun R ein lokaler Ring mit maximalem Ideal m, B ganz über R und $\varphi : R \to L$ ein Homomorphismus in einen algebraisch abgeschlossenen Körper L mit $\ker \varphi = m$. Wegen Satz 1.7.3 existiert ein maximales Ideal \mathfrak{m} von B das über m liegt. Dann ist B/\mathfrak{m} eine algebraische Erweiterung von R/m. φ induziert einen Isomorphismus von R/m und $\varphi(R) \subseteq L$. Diesen kann man auf die Erweiterung B/\mathfrak{m} fortsetzen. Man hat also

$$\varphi$$

Insgesamt hat man φ auf B fortgesetzt.

1.8.1 Lemma. Sei $A \subseteq B$ ganz, L algebraisch abgeschlossen, $\varphi : A \to L$. Dann hat φ eine Fortsetzung auf B.

 Beweis. Sei $p = \ker \varphi \in \operatorname{Spec} A$ (da L Körper), $S = A \setminus p$. Dann hat man das $S^{-1}B \supseteq A_p$ ganz ist.
1.8.2 Satz. Sei A Ring, K Körper, $A \subseteq K$, $x \in K \setminus \{0\}$. Weiter sei $\varphi : A \rightarrow L$ in einen algebraisch abgeschlossenen Körper L. Dann hat φ entweder eine Fortsetzung auf $A[x]$ oder eine auf $A[x^{-1}]$.

Beweis.

:) Sei $p = \ker \varphi$, dann hat φ Fortsetzung auf A_p. Sei also oBdA A lokal mit maximalen Ideal m und $\ker \varphi = m$.

:) Fall $mA[x^{-1}] = A[x^{-1}]$: Dann ist

$$1 = a_0 + a_1 x^{-1} + \ldots + a_n x^{-n}$$

mit $a_j \in m$. Es folgt

$$(1 - a_0) x^n - a_1 x^{n-1} - \ldots - a_n = 0.$$

Wegen $a_0 \in m$ und A lokal, ist $1 - a_0 \in A^*$, also x ganz über A. Also hat wegen Lemma 1.8.1 φ eine Fortsetzung auf $A[x]$.

:) Fall $mA[x^{-1}] \neq A[x^{-1}]$: Sei \mathfrak{P} maximales Ideal von $A[x^{-1}]$ mit $mA[x^{-1}] \subseteq \mathfrak{P}$. Dann ist $A \cap \mathfrak{P} \supseteq m$ und wegen m maximal sogar $A \cap \mathfrak{P} = m$.

Sei ψ so daß
Nun ist $A/m \rightarrow A[x^{-1}]/\mathfrak{P}$ und ψ hat eine Fortsetzung auf $A[x^{-1}]/\mathfrak{P} = (A/m)(x^{-1} + \mathfrak{P})$. Egal ob $x^{-1} + \mathfrak{P}$ algebraisch (L algebraisch abgeschlossen) oder transzendent (trivial) ist. Zusammensetzen mit der kanonischen Projektion

$$A[x^{-1}] \rightarrow A[x^{-1}]/\mathfrak{P}$$

liefer eine Fortsetzung auf $A[x^{-1}]$.

1.8.3 Korollar. Sei $A \subseteq K$, L algebraisch abgeschlossen, $\varphi : A \rightarrow L$. Sei B ein Unterring von K, maximal, so daß φ eine Fortsetzung auf B hat. Dann ist B lokal und für jedes $x \in K$ gilt $x \in B$ oder $x^{-1} \in B$.

\Box
Beweis. Wegen dem Zornschen Lemma existieren solche maximale Unterringe und wegen dem letzten Satz haben sie die verlangte Eigenschaft.

Ein Unterring B von K mit $\forall x \in K : (x \in B$ oder $x^{-1} \in B)$ heißt Bewertungsring. Jeder Bewertungsring ist lokal (vgl. Beweis von Satz 2.2.4). Sind R, Q lokale Ringe mit maximalen Idealen m, M so sagen wir Q liegt über R wenn $Q \supseteq R$, $M \cap R = m$.

1.8.4 Satz. Sei R lokal, $R \subseteq L$ Körper, $x \in L$. Dann ist x ganz über R genau dann wenn x in jedem Bewertungsring $Q \subseteq L$ ist der über R liegt.

Beweis.

: Sei x nicht ganz über R (\ldots maximale Ideal von R). Wir zeigen daß das Ideal (m, x^{-1}) von $R[\mathbb{Q}]$ nicht ganz $R[\mathbb{Q}]$ ist. Andernfalls hätte man

$$-1 = a_n \left(\frac{1}{x}\right)^n + \ldots + a_1 \left(\frac{1}{x}\right) + y$$

für gewisse $a_j \in R$, $y \in m$. Es folgt

$$\left(1 + y\right)x^n + \ldots + a_n = 0.$$

Wegen $y \in m$ und \mathbb{Q} lokal ist $1 + y \in \mathbb{Q}$, also x ganz über R, ein WS!

Sei \mathfrak{P} maximales Ideal von $\mathbb{A}[\mathbb{Q}]$ mit $\mathfrak{P} \supseteq (m, x^{-1})$. Wegen $\mathfrak{P} \cap R \supseteq m$ folgt $\mathfrak{P} \cap R = m$. Der kanonische Homomorphismus

$$R[\mathbb{Q}] \rightarrow R[\mathbb{Q}] / \mathfrak{P} \subseteq \left(R[\mathbb{Q}] / \mathfrak{P}\right)^n$$

läßt sich fortsetzen auf einen Bewertungsring Q von L. Wegen $x^{-1} \mapsto 0$ ist $x \notin Q$. Es ist insbesondere Q kein Körper und das maximale Ideal M von Q umfaßt \mathfrak{P}, denn $\mathfrak{P} \mapsto 0$. Also folgt $\mathfrak{P} \cap R = m$.

: Sei x ganz über R, $x^n + a_{n-1}x^{n-1} + \ldots + a_0 = 0$ eine Ganzheitsgleichung, $a_j \in R$. Sei Q ein Bewertungsring von L der über R liegt. Angenommen $x \notin Q$, dann folgt $x^{-1} \in M$ (maximales Ideal von Q). Aus der Ganzheitsgleichung erhält man

$$1 = -a_{n-1}x^{-1} - \ldots - a_0x^{-n} \in M,$$

ein WS!

1.8.5 Satz. Sei \mathbb{A} Ring, $\mathbb{A} \subseteq L$ Körper. Dann ist $x \in L$ ganz über \mathbb{A}, genau dann wenn x in jedem Bewertungsring Q mit $\mathbb{A} \subseteq Q \subseteq L$ liegt.

Beweis.

: Sei x in jedem Bewertungsring. oBdA sei $x \neq 0$. Ist $x^{-1} \in \mathbb{A}[\mathbb{Q}]$, so hat man

$$x = c_0 + c_1 \frac{1}{x} + \ldots + c_n \left(\frac{1}{x}\right)^n$$

mit $c_j \in \mathbb{A}$. Es folgt x ganz über \mathbb{A}. Ist x^{-1} keine Einheit, so ist also $(x^{-1}) \mathbb{A}[\mathbb{Q}]$ ein echtes Ideal von $\mathbb{A}[\mathbb{Q}]$. Set M maximales Ideal von $\mathbb{A}[\mathbb{Q}]$ mit $(\frac{1}{x}) \subseteq M$

Der Homomorphismus

$$\mathbb{A}[\mathbb{Q}] \rightarrow \mathbb{A}[\mathbb{Q}] / M \subseteq \left(\mathbb{A}[\mathbb{Q}] / M\right)^n$$
setzt sich auf einen Bewertungsring Q von L fort. Es gilt $x^{-1} \to 0$, also $x \notin Q$

WS!

· Ist x ganz, so erhält man genauso wie vorher einen WS!.

☐
Kapitel 2

Dedekind Ringe

2.1 Dedekind Ringe

2.1.1 Definition. Ein nötherscher Ring der ganz abgeschlossen ist und in dem jedes Primideal maximal ist heißt Dedekind Ring.

2.1.2 Definition. Sei R ein Ring, $K = Q(R)$. Eine Menge $a \subseteq K$ heißt gebrochenes Ideal von R in K, falls a ein R-Modul ist und es ein $c \in R \setminus \{0\}$ gibt, sodass $ca \subseteq R$ (c... „Hauptnenner“)

Ist R nöthersch, so ist ca und damit auch a endlich erzeugt. Zwei gebrochene Ideale a, b können genauso wie Ideale multipliziert werden $a \cdot b = \{x \cdot y : x \in a, y \in b\}_{R-MODULE}.

Beweis. Wir zeigen zuerst die zweite Behauptung.

\cdot Sei a ein Ideal von R. Dann existiert ein Produkt von Primidealen $p_1 \cdot \ldots \cdot p_r \subseteq a$: Angenommen es existiert ein Ideal das diese Eigenschaft nicht hat. Da R nöthersch ist, gibt es ein maximales solches a. Dieses kann nicht prim sein, also existiert $b_1, b_2 \in R$ mit $b_1, b_2 \notin a, b_1 b_2 \in a$. Sei $a_1 = (a, b_1), a_2 = (a, b_2)$, dann gilt $a_1 a_2 \subseteq a$ aber $a_1 \not\supseteq a, a_2 \not\supseteq a$. Also enthält a_1, a_2 ein Produkt von Primidealen. Damit aber auch a, WSI.

\cdot Jedes maximale Ideal p ist invertierbar: Sei p^{-1} die Menge aller $x \in K$ sodass $xp \subseteq R$. Dann ist $p^{-1} \supseteq R$. Wir zeigen daß $p^{-1} \not\subseteq R$: Sei $a \in p, a \neq 0$. Wähle r minimal sodass

$p_1 \cdot \ldots \cdot p_r \subseteq (a) \subseteq p.$

Dann ist eines der p_j enthalten in p und da jedes Primideal maximal ist folgt

$p_i = p_i$. ObdA sei $i = 1$. Es gilt $p_2 \cdot \ldots \cdot p_r \not\subseteq (a)$, wähle $b \in p_2 \cdot \ldots \cdot p_r \setminus (a)$. Dann ist $bp \subseteq (a)$ und daher $ba^{-1}p \subseteq R$, also ist $ba^{-1} \in p^{-1}$. Wegen $b \notin (a)$ ist

$ba^{-1} \not\subseteq R.$

Es folgt $p \subseteq pp^{-1} \subseteq R$, also da p maximal ist $p = pp^{-1}$ oder $R = pp^{-1}$. Wäre $pp^{-1} = p$, so würde p^{-1} den endlich erzeugten R-Modul p invariant lassen und wäre daher ganz über R: Ein WSI da R ganz abgeschlossen ist. Also ist $pp^{-1} = R.$

27
Jedes Ideal \(\neq \{0\} \) ist invertierbar: Angenommen nicht. Dann existiert ein Ideal \(a \) das nicht invertierbar ist und maximal mit dieser Eigenschaft. \(a \) kann nicht maximal sein. Sei \(p \) maximal mit \(a \subseteq p \). Dann ist
\[
a \subseteq ap^{-1} \subseteq aa^{-1} \subseteq R
\]
wo \(a^{-1} := \{ x \in K : xa \subseteq R \} \). Da \(a \) endlich erzeugter \(R \)-Modul ist, ist \(ap^{-1} \nsubseteq a \), da \(p^{-1} \) nicht ganz sein kann. Also hat \(ap^{-1} \) ein Inverses \(b \) und \(bp \) ist ein Inverses für \(ap \).

\(\cdot \) Sei \(a \) ein Ideal \(\neq \{0\} \) und \(\mathfrak{c} \) ein gebrochenes Ideal sodaß \(ac = R \). Dann gilt \(c = a^{-1} := \{ x \in K : xa \subseteq R \}\): Offenbar ist \(\mathfrak{c} \subseteq a^{-1} \). Ist \(xa \subseteq R \), so ist \(xa \mathfrak{c} \subseteq \mathfrak{c} \) und wegen \(\mathfrak{ac} = R \) also \(x \in \mathfrak{c} \).

\(\cdot \) Jedes gebrochene Ideal \(\neq \{0\} \) ist invertierbar: Sei \(a \) gebrochenes Ideal. Wähle \(c \in R \) sodaß \(ca \subseteq R \), und sei \(b \) Inverses für \(ca \), d.h. \(ca b = R \). Dann ist \(cb \) Inverses für \(a \).

Wir kommen zur ersten Behauptung:

\(\cdot \) Angenommen es gibt ein Ideal \(\neq \{0\} \) daß nicht gleich einem Produkt von Primidealen ist. Sei \(a \) maximal mit dieser Eigenschaft und sei \(p \) maximales Ideal mit \(a \subseteq p \). Dann ist \(ap^{-1} \subseteq R \) und \(ap^{-1} \nsubseteq a \). Also ist \(ap^{-1} \) Produkt von Primidealen. Damit auch \(a \). WS!

\(\cdot \) Sind \(a, b \) gebrochene Ideale, so sagen wir \(a \mid b \) wenn gilt \(b \subseteq a \) oder äquivalent wenn es ein Ideal \(\mathfrak{c} \) gibt mit \(b = \mathfrak{ac} \). Sind \(p_1, q_i \) prim und
\[
p_1 \cdot \ldots \cdot p_r = q_1 \cdot \ldots \cdot q_s,
\]
so gilt also \(p_1 \subseteq q_1 \cdot \ldots \cdot q_s \) und daher \(p_i \subseteq q_i \) für ein \(i \), also \(p_1 = q_i \). Induktiv weiter erhält man \(r = s \) und \(p_i = q_i \) bis auf eine Permutation.

\(\cdot \) Ist \(a \) gebrochenes Ideal wähle \(c \in R \) mit \(ca \subseteq R \). Sei \((c) = p_1 \cdot \ldots \cdot p_r \), \(ca = q_1 \cdot \ldots \cdot q_s \). Dann ist also
\[
a = \frac{q_1 \cdot \ldots \cdot q_s}{p_1 \cdot \ldots \cdot p_r}
\]
Kürzt man alle oben und unten vorkommenden Ideale so ist die Darstellung eindeutig.

\(\Box \)

2.1.4 Korollar. Sei \(R \) Dedekind, \(a \in R \). Dann existieren nur endlich viele Ideale \(b \triangleleft R \) mit \(a \triangleleft b \).

Beispiel. Sei
\[
(a) = p_1^{\alpha_1} \cdot \ldots \cdot p_r^{\alpha_r}.
\]

Dann gilt
\[
b \triangleleft (a) \iff b = p_1^{\beta_1} \cdot \ldots \cdot p_r^{\beta_r} \text{ mit } \beta_i \leq \alpha_i.
\]

\(\Box \)
2.1. DEDEKIND RINGE

2.1.5 Lemma. Sei A Dedekind, B der ganze Abschluß von A in einer endlichen separablen Erweiterung von $K = Q(A)$. Dann ist B Dedekind.

Beweis. B ist nöthersch wegen Satz 1.6.6, (i), ganz abgeschlossen wegen Satz 1.6.4, jedes Primideal ist maximal wegen Korollar 1.7.4. □

Z ist Dedekind, also folgt

2.1.6 Lemma. Sei K ein algebraischer Zahlkörper, O_K der Ring der ganzen Zahlen in K. Dann ist O_K Dedekind Ring. Die multiplikative Gruppe der gebrochenen Ideale $\neq \{0\}$ bezeichnet man mit I_K.

Ein gebrochenes Hauptideal, ist ein gebrochener Ideal der Gestalt αR mit $\alpha \in K$. Die Menge P_K der gebrochenen Hauptideale ist eine Untergruppe von I_K.

2.1.7 Definition. $C_K := I_K/P_K$ heißt Idealklassengruppe von K.

C_K mißt "wie weit O_K von der ZPE-Situation weg ist ".

Sei R ein Dedekind Ring. Dann ist $I_K \cong \sum_{p \in \text{Spec } K} R$, die Divisorengruppe.

Ist $a = \prod_{p \in \text{Spec } K} p^{r_p}$, so sagen wir $r_p = \text{ord}_p a$. Ist $\text{ord}_p a > 0 (= 0, < 0)$, so hat a eine Nullstelle bei p (ist eine Einheit bei p, hat einen Pol bei p).

Offenbar gilt $a|b \iff \forall p : \text{ord}_p a \leq \text{ord}_p b$. Es ist $\text{ord}_p (\alpha) = 0$ genau dann wenn α eine Einheit in R_p ist.

2.1.8 Lemma. Sei R ein Dedekind Ring mit nur endlich vielen Primidealen. Dann ist R ein Hauptidealring.

Beweis. Seien p_1, \ldots, p_s die Primideale von R. Sei a ein Ideal,

$$a = p_1^{r_1} \ldots p_s^{r_s}.$$

Wähle $\pi_i \in p_i \setminus p_i^2$ und $a \in R$ mit $\alpha \equiv p_i^{r_i} \mod p_i^{r_i+1}$. Sei

$$\alpha = p_1^{r_1} \ldots p_s^{r_s},$$

dann folgt unmittelbar $e_i = r_i$ und daher $\alpha = a$. □

2.1.9 Lemma. Sei A Dedekind Ring, $S \subseteq A$ multiplikativ. Dann ist $S^{-1}A$ ein Dedekind Ring. Die Abbildung

$$a \mapsto S^{-1}a = \{\frac{a}{s} : a \in a, s \in S\}$$

induziert einen Homomorphismus der Gruppe der gebrochenen Ideale von A auf die von $S^{-1}A$. Ein Ideal ist ein Kern $\iff a_0S \neq \emptyset$.

Beweis.

·) Wegen Lemma 1.3.5, (iii), ist $S^{-1}A$ nöthersch, wegen Satz 1.6.6, (iv), ganz abgeschlossen, und wegen Satz 1.4.5 ist jedes Primideal von $S^{-1}A$ maximal.

·) Wegen $S^{-1}(a-b) = (S^{-1}a) - (S^{-1}b)$ gibt die Abbildung einen Homomorphismus von der Gruppe der gebrochenen Ideale von A in die von $S^{-1}A$. Wegen Satz 1.4.5, (ii), ist dieser surjektiv.
.. Ist \(a \cap S \neq \emptyset \), so ist \(S^{-1}a = S^{-1}A \). Ist umgekehrt \(S^{-1}a = S^{-1}A \), so ist \(1 = \frac{a}{s} \) für gewisse \(a \in a, s \in S \), also \(a \cap S \neq \emptyset \).

\[1 \]

2.1.10 Lemma. Sei \(A \) einen Dedekind Ring und sei die Idealklassengruppe endlich. Sei \(a_1, \ldots, a_r \) ein vollständiges Repräsentantensystem der Idealklassen. Ist \(b \in \bigcap a_i, b \neq 0, b \in A \), und ist \(S = \{1, b, b^2, b^3, \ldots\} \), dann ist \(S^{-1}A \) Hauptidealring.

Beweis. Bei Anwendung von \(S^{-1}A \) werden die \(a_i \) auf \(S^{-1}A \) abgebildet. Da Hauptideale auf Hauptideale gehen, folgt die Behauptung, dass \(S^{-1}A \) surjektiv ist.

\[2 \]

Für den Ring der ganzen Zahlen in einem algebraischen Zahlkörper ist tatsächlich \(C_K \) endlich.

2.1.11 Lemma. Sei \(K \) ein algebraischer Zahlkörper. Dann existiert \(M \in \mathbb{N} \) mit der folgenden Eigenschaft: Sind \(a, b \in O_K, \beta \neq 0 \), dann existiert \(t \in \mathbb{N}, 1 \leq t \leq M \), und \(w \in O_K \), so dass

\[|N_K^K(ta - w)\beta| < |N_K^K(\beta)|. \]

Beweis.

\(1 \) Es genügt zu zeigen: \(\exists M \in \mathbb{N} : \forall \gamma \in K \exists 1 \leq t \leq M, w \in O_K : |N(t\gamma - w)| < 1. \)

\(2 \) Betrachte \(K \subseteq \mathbb{C} \). Sei \(w_1, \ldots, w_n \) eine Ganzheitsbasis von \(O_K \). Für \(\gamma \in K, \gamma = \sum \gamma_i w_i \), gilt \(n = [K : \mathbb{R}] \)

\[|N_K^K(\gamma)| = \prod_{\sigma \text{ Erweiterung}} |\sum \gamma_i \sigma(w_i)| \leq (\max |\gamma_i|)^n \left(\prod_{\sigma} |\sigma(w_i)| \right) \]

Wähle \(m > \sqrt{C} \) und setze \(M := m^n. \)

\(3 \) Ist \(\gamma \in K, \gamma = \sum \gamma_i w_i \) \((\gamma_i \in \mathbb{Q}) \) schreibe

\[\gamma_i = a_i + b_i \text{ mit } a_i \in \mathbb{Z}, 0 \leq b_i < 1. \]

Setze \([\gamma] := \sum a_i w_i, \{\gamma\} := \sigma b_i w_i \). Dann ist \(\gamma = [\gamma] + \{\gamma\}, [\gamma] \in O_K \), und \(\{\gamma\} \) hat Koordinaten zwischen 0 und 1.

\(4 \) Betrachte die Abbildung \(\phi : K \rightarrow \mathbb{R}^M \) mit

\[\phi(\sum \gamma_i w_i) := (\gamma_1, \ldots, \gamma_n). \]

Stets liegt \(\{\gamma\} \) im Einheitswürfel. Zerlege diesen in \(m^n \) Würfeln mit Seitenlänge \(\frac{1}{m} \) und betrachte die Punkte \(\phi([k\gamma]), 1 \leq k \leq m^n + 1. \) Mindestens zwei müssen im gleichen Teilwürfel liegen, z.B. \(\phi([h\gamma]) \) und \(\phi([l\gamma]), h > l. \) Es ist \(t = h - l \leq m^n, \)

\[t\gamma = h\gamma - l\gamma = [h\gamma] - [l\gamma] + ([h\gamma] - [l\gamma]) \]

Dann ist \(w \in O_K \) und die Beträge der Koordinaten von \(\delta \) höchstens \(\frac{1}{m} \). Es folgt

\[|N_K^K(\delta)| \leq \left(\frac{1}{m} \right)^n C < 1. \]
2.2. DISKRETE BEWERTUNGSRINGE

Beweis. Sei $a \not\in O_K$. Für jedes $\alpha \in a$, $\alpha \neq 0$, ist $|N^K_0(\alpha)| \in \mathbb{N}$. Wähle $\beta \in a, \beta \neq 0$, so daß $|N^K_0(\beta)|$ minimal ist. Für jedes $\alpha \in O_K$ existiert $t, 1 \leq t \leq M$, so daß $(w \in O_K$ geeignet$)$

$$|N^K_0(t\alpha - w\beta)| < |N^K_0(\beta)|.$$

Es folgt

$$t\alpha - w\beta = 0,$$

und damit also

$$M!a \subseteq (\beta)_{O_K}.$$

Setze $b := \frac{1}{M!}M!a$. Dann ist $b \in O_K$, und es gilt $M!a = (\beta)b$. Da $\beta \in a$ folgt $M!\beta \in (\beta)b$, also $M! \in b$. Damit gibt es für b nur endlich viele Möglichkeiten und wir haben $a \equiv b$ in I_K modulo P_K.

2.1.13 Korollar. Sei a gebrochenes Ideal. Dann ist a^{h_K} ein gebrochenes Hauptideal.

Beweis. $a^{h_K} = 1$ in C_K.

Beweis. Sei $a \in M$. Zu jedem p existiert $x_p \in N, s_p \in S_p$, so daß $s_p a = x_p$. Sei b das von den s_p erzeugte Ideal, dann gilt $b = A$, also

$$1 = \sum y_p s_p$$

für gewisse $y_p \in A$ die fast alle $= 0$ sind. Es folgt

$$a = \sum y_p s_p a = \sum y_p x_p \in N.$$

2.2 Diskrete Bewertungsringe

2.2.1 Definition. Ein lokaler Dedekind Ring heißt diskreter Bewertungsring.

R ist ein diskreter Bewertungsring genau dann wenn er ein Hauptidealring mit genau einem Primideal ist. Ist A Dedekind und p ein Primideal, so ist also A_p ein diskreter Bewertungsring. Sei R diskreter Bewertungsring und π das Prinziplement. Dann läßt sich also jedes $x \in R$ schreiben als $x = cn^{\nu}$ mit $c \in R^*$ und $\nu \in \mathbb{N} \cup \{0\}$.
2.2.2 Definition. Sei K ein Körper, Γ eine geordnete Gruppe ($0 \notin \Gamma$). Eine Abbildung
\begin{align*}
v : \begin{cases}
K & \to \Gamma \cup \{0\} \\
x & \mapsto |x|
\end{cases}
\end{align*}
heißt Bewertung von K (mit Wertegruppe $v(K \setminus \{0\}) \subseteq \Gamma$) falls gilt
(i) $v(x) = 0 \iff x = 0$
(ii) $v(xy) = v(x) \cdot v(y)$
(iii) $v(x + y) \leq \max\{v(x), v(y)\}$.
Die Bewertung heißt diskret, wenn die Wertegruppe zyklisch ist.

2.2.3 Definition. Sei K ein Körper, R ein Unterring von K. R heißt Bewertungerring, falls gilt
\[\forall x \in K : (x \in R \lor x^{-1} \in R). \]
Ist R diskreter Bewertungerring, so ist R Bewertungerring in $K = Q(R)$.

2.2.4 Satz. Sei K ein Körper, v eine Bewertung von K. Dann ist
\[R_v := \{ x \in K : v(x) \leq 1 \Gamma \}. \]
ein Bewertungerring. Ist umgekehrt $R \subseteq K (= Q(R))$ ein Bewertungerring so existiert eine Bewertung v von K mit $R = R_v$. Es ist R_v lokal mit maximalen Ideal $m = \{ x \in K : v(x) < 1 \}$ und $R_v^* = \{ x \in K : v(x) = 1 \}$.
R ist ein diskreter Bewertungerring genau dann wenn er ein Bewertungerring ist der von einer diskreten Bewertung kommt.

Beweis.
\begin{itemize}
\item[·] Ist v eine Bewertung, so ist $v(1) = v(x)v(x^{-1})$, also entweder $v(x) \leq v(1)$ oder $v(x^{-1}) \leq v(1)$, da $v(1) = v(1)v(1)$ ist, ist $v(1) = 1 \Gamma$ das Einselement von Γ.
\item[·] Sei R ein Bewertungerring. Wir zeigen, daß R lokal ist: Sei $U = R^*$ die Einheitsgruppe. Es genügt zu zeigen, daß $R \setminus U$ ein Ideal von R ist. Seien $x, y \in R \setminus U$ und sei z.B. $\frac{x}{y} \in R$. Dann gilt
\[1 + \frac{x}{y} = (x + y) \frac{1}{y} \in R. \]
Wäre $x + y \in U$, so wäre auch $y \in U$ WSI. Sei $x \in R \setminus U$, $z \in R$. Wäre $zx \in U$, ($zx)b = 1$, für ein $b \in R$, so wäre auch $x \in U$, denn $(zb)x = 1$ WSI.
\item[·] Sei m das maximale Ideal von R, dann ist $R = U \cup m$ und daher $(m^* = m \setminus \{0\})$
\[K^* = m^* \cup U \cup (m^*)^{-1}, \]
as disjunkte Vereinigung. Da m^* multiplikativ ist, ist
\[\Gamma = K^*/U \]
eine geordnete Gruppe ($xU < U \iff x \in m^*$). Für $x \in K^*$ setze $v(x) := xU \in \Gamma$, für $x = 0$ setze $v(x) = 0$.

2.3 GALOIS ERWEITERUNGEN

γ) Seien \(x, y \in K^* \), z.B. \(\frac{1}{x}, \frac{1}{y} \in R \) also \(v(x)v(y)^{-1} \leq U \). Dann ist \(1 + \frac{1}{y} \in R \), also \(v(1 + \frac{1}{y}) \leq U \). Es folgt wegen \(1 + \frac{z}{y} = (x + y)^{-1} \) daß \(v(x + y)v(y)^{-1} \leq U \) und daher \(v(x + y) \leq v(y) \).

Also ist \(v \) Bewertung von \(K \) und klarerweise ist \(R = R_v \).

γ) Sei \(v \) eine diskrete Bewertung, \(R = R_v \) der Bewertungsring zu \(v \). Wähle einen Erzeuger \(\gamma \) von \(\Gamma \) und schreibe \(\gamma = v(\pi) \). Da mit \(\gamma \) auch \(\gamma^{-1} \) die Gruppe \(\Gamma \) erzeugt sei oBdA \(\pi \in R \). Da \(\gamma \neq 1 \) folgt \(\pi \in \mathfrak{m} \). Jedes Element \(x \in K^* \) läßt sich schreiben (eindeutig) als

\[
x = u\pi^r
\]

mit \(r \in \mathbb{Z} \) und \(u \in U \), denn \(v(x) = \gamma^r \) für ein \(r \). Es folgt daß \(\mathfrak{m} = (\pi) \). Allgemein sind alle Ideale vom \(R \) gegeben durch

\[
(\pi) \supseteq (\pi^2) \supseteq (\pi^3) \supseteq \ldots ,
\]

denn ist \(a \) Ideal von \(R \), so folgt \(a = (\pi^s) \) für \(s = \min\{r : x = u\pi^r \in a\} \). Klarerweise ist \((\pi^s) \) für \(s > 1 \) nicht prim, also ist \(R \) ein Hauptidealring mit genau einem Primideal. So ein Element \(\pi \) heißt auch oft ein lokaler Parameter.

γ) Sei \(R_v \) ein diskreter Bewertungsring, \(\mathfrak{m} = (\pi) \) dann hat die Primfaktorzerlegung von \(x \in R \) die Gestalt \(x = r\pi^r, r \in \mathbb{Z}, u \in R^* \) weil es nur ein Primitivgitter gibt (bis auf Konjugierte). Damit hat jedes Element \(x \) von \(K^* \) die Gestalt \(x = u\pi^r, r \in \mathbb{Z}, u \in R^* \) und es folgt \(\langle v(\pi) \rangle = \Gamma \).

\[\square \]

2.3 Galois Erweiterungen

Ist \(A \) ganz abgeschlossen in \(K = Q(A), L \) wie endliche Galois-Erweiterung von \(K \) mit Gruppe \(G \), und \(B \) der ganze Abschluß von \(A \) in \(L \), dann gilt \(\sigma B = B, \sigma \in G \) (vgl. Satz 16.2, (v)).

2.3.1 Satz. Sei \(A \) ganz abgeschlossen, \(L \) eine endliche Galoisische Erweiterung von \(K = Q(A) \) mit Gruppe \(G \), \(B \) der ganze Abschluß von \(A \) in \(L \). Sei \(\mathfrak{p} \in \text{Spec} A, \mathfrak{p}, Q \in \text{Spec} B \) die über \(p \) liegen. Dann existiert \(\sigma \in G \) so daß \(\sigma\mathfrak{p} = \mathfrak{Q} \).

Beweis.

γ) Betrachte zuerst den Fall daß \(p \) maximal ist. Angenommen \(\mathfrak{p} \neq \sigma\Omega \) für alle \(\sigma \in G \). Dann existiert \(x \in B \) mit (Chinesischer Restsatz).

\[
x \equiv 0 \mod \mathfrak{p}, x \equiv 1 \mod \sigma Q, \sigma \in G.
\]

Die Norm \(N^L_K(x) = \prod_{\sigma \in G} \sigma x \) liegt in \(B \cap K = A \) denn \(A \) ist ganz abgeschlossen und sogar in \(\mathfrak{p} \cap K = p \). Jedoch ist stets \(\sigma x \notin \Omega \), also \(N^L_K(x) \notin \Omega \cap K = p \), WS!

γ) Sei nun allgemein \(p \in \text{Spec} A \). Wir lokalisieren: Sei \(S = A \setminus p \). Dann ist \(S^{-1}B \) der ganze Abschluß von \(S^{-1}A \) in \(L \), \(S^{-1}p \) maximales Ideal von \(S^{-1}A \), \(S^{-1}\mathfrak{p}, S^{-1}Q \in \text{Spec} S^{-1}B \) und liegen über \(S^{-1}p \). Es folgt daß \(\sigma \in G \) gibt

mit \(\sigma(S^{-1}\mathfrak{p}) = S^{-1}\mathfrak{Q} \). Da \(S \subseteq K \) und daher bei \(\sigma \) fix bleibt folgt \(\sigma\mathfrak{p} = \mathfrak{Q} \).
2.3.2 Korollar. Sei A ganz abgeschlossen, E endliche separable Erweiterung von $K = Q(A)$, B der ganze Abschluß von A in E. Sei $p \in \text{Spec } A$. Dann gibt es nur endliche Primideale von B die über A liegen.

Beweis. Sei L die kleinste Galois-Erweiterung von K die E enthält. Sind Ω_1, Ω_2 verschiedene Primideale von B über p, und $\mathfrak{P}_1, \mathfrak{P}_2$ Primideale vom ganzen Abschluß C von A in L die über Ω_1 bzw. Ω_2 liegen, dann ist $\mathfrak{P}_1 \neq \mathfrak{P}_2$ und $\mathfrak{P}_1, \mathfrak{P}_2$ liegen über p. Wegen dem Satz gibt es nur endlich viele solche \mathfrak{P}'s.

\[\text{DEI.43}\]

2.3.3 Definition. Sei p maximales Ideal von A, \mathfrak{P} maximales Ideal von B das über A liegt. Die Gruppe

$G_\mathfrak{P} := \{\sigma \in G : \sigma \mathfrak{P} = \mathfrak{P}\}$

heißt Zerlegungsgruppe von \mathfrak{P}. Ihr Fixpunktkörper L^d heißt Zerlegungskörper von \mathfrak{P}.

Sei A nöthersch, ganz abgeschlossen, L separable Erweiterung von $K = Q(A)$, B der ganze Abschluß von A in L, $p \in \text{Spec } A$ maximal, $\mathfrak{P} \in \text{Spec } B$ über p. Dann heißt die Körpererweiterung

$B/\mathfrak{P} : A/p$

die Restklassenkörpererweiterung von \mathfrak{P}/p. Wegen Satz 1.6.6, (i, Beweis), gilt

$[B/\mathfrak{P} : A/p] \leq [L : K].$

Die Gruppe $G_\mathfrak{P}$ operiert in natürlicher Weise auf B/\mathfrak{P} und läßt A/p punktweise fest. Wir haben also einen Homomorphismus

$G_\mathfrak{P} \rightarrow \text{Aut}(B/\mathfrak{P} : A/p)).$

Ist $G = \bigcup \sigma_j G_\mathfrak{P}$ eine Zerlegung von G in Nebenklassen, dann sind die $\sigma_j \mathfrak{P}$ genau die verschiedenen Primideale über p.

Die Zerlegungsgruppe von $\sigma \mathfrak{P}$ ist gleich $\sigma G_\mathfrak{P} \sigma^{-1}$.

2.3.4 Lemma. L^d ist der kleinste Zwischenkörper $E, K \subseteq E \subseteq L$, mit der Eigenschaft daß \mathfrak{P} das einzige Primideal von B ist das über dem Primideal $\mathfrak{P} \cap E$ von $B \cap E$ liegt.

Beweis.

1.) Sei $E = L^d$. $B^d = B \cap L^d$ ist der ganze Abschluß von A in L^d, ist also ganz abgeschlossen. L ist eine endliche Galoiserweiterung von L^d mit Gruppe $G_\mathfrak{P}$. Wegen Satz 2.3.1 ist \mathfrak{P} das einzige Primideal über $\mathfrak{P} \cap B^d$.

2.) Habe E die obige Eigenschaft und sei H die Gruppe von L über E. Setze $q = \mathfrak{P} \cap E$. Wegen Satz 2.3.1 sind die $\sigma \mathfrak{P}, \sigma \in H$, genau die Primideale über q. Es folgt $\sigma \mathfrak{P} = \mathfrak{P}$, d.h. $H \subseteq G_\mathfrak{P}$ und damit $E \supseteq L^d$. \[\text{LEI.44}\]
2.3.5 **Satz.** Sei $\Omega = B^d \cap \mathfrak{P}$. Dann gilt (mittels der kanonischen Einbettung $A/\mathfrak{p} \to B^d/\Omega$) $A/\mathfrak{p} = B^d/\Omega$.

Beweis. Ist $\sigma \in G \setminus G_\mathfrak{P}$, so ist also $\sigma \mathfrak{P} \neq \mathfrak{P}$ bzw. $\sigma^{-1} \mathfrak{P} \neq \mathfrak{P}$. Setze $\Omega_\sigma = \sigma^{-1} \mathfrak{P} \cap B^d$. Dann ist $\Omega_\sigma \neq \Omega$, denn über Ω liegt ja nur ein Primideal nämlich \mathfrak{P}.

Sei $x \in B^d$, dann existiert $y \in B^d$ mit

$$y \equiv x \mod \Omega$$
$$y \equiv 1 \mod \Omega_\sigma, \sigma \in G \setminus G_\mathfrak{P}.$$

Speziell folgt

$$y \equiv x \mod \mathfrak{P}$$
$$y \equiv 1 \mod \sigma^{-1} \mathfrak{P}, \sigma \in G \setminus G_\mathfrak{P},$$

also

$$\sigma y \equiv 1 \mod \mathfrak{P}, \sigma \in G \setminus G_\mathfrak{P}.$$

Die Norm $N_{K}^{B} (y)$ ist das Produkt $\prod \sigma y$ wobei σ ein vollständiges Restsystem modulo $G_\mathfrak{P}$ durchläuft. Also folgt

$$N_{K}^{B} (y) \equiv x \mod \mathfrak{P}.$$

Die linke Seite liegt in A, die rechte in B^d. Also gilt die Kongruenz sogar modulo Ω.

Ist $x \in B$, so bezeichne \bar{x} die Restklasse von x modulo \mathfrak{P}, $\bar{x} \in B/\mathfrak{P}$. Der Homomorphismus von $G_\mathfrak{P}$ nach $\operatorname{Aut}(B/\mathfrak{P} : A/\mathfrak{p})$ sei bezeichnet mit $\sigma \mapsto \bar{\sigma}$. Dann ist offenbar

$$\bar{\sigma} \bar{x} = \bar{\sigma x}.$$

Ist $f(X)$ ein Polynom mit Koeffizienten in B, $f(X) = b_nX^n + \cdots + b_0$, so bezeichne $\bar{f}(X)$ das Polynom über B/\mathfrak{P}

$$\bar{f}(X) = \bar{b}_nX^n + \cdots + \bar{b}_0.$$

2.3.6 **Satz.** Sei A ganz abgeschlossen, L eine endliche Galois Erweiterung von $K = Q(A)$ mit Gruppe G, B der ganze Abschluß von A in L. Sei \mathfrak{p} maximales Ideal von A und \mathfrak{P} maximales Ideal von B das über \mathfrak{p} liegt. Dann ist B/\mathfrak{P} eine normale Erweiterung von A/\mathfrak{p} und die Abbildung $\sigma \mapsto \bar{\sigma}$ ist ein Homomorphismus von $G_\mathfrak{P}$ auf die Galoisgruppe $\operatorname{Aut}(B/\mathfrak{P} : A/\mathfrak{p})$.

Beweis.

1) Setze $\bar{B} = B/\mathfrak{P}, \bar{A} = A/\mathfrak{p}$. Sei $\bar{x} \in \bar{B}$, und sei $f(X)$ das Minimalkopon von x über K. Da x ganz über \bar{A} ist sind alle Koeffizienten von f in \bar{A} und damit auch alle anderen Wurzeln in L von f sogar in B. Es schreibt sich also f in B in Linearfaktoren und dann L/K ist normal

$$f(X) = (X - x_1) \cdots (X - x_m).$$
Da \bar{x} eine Wurzel des Polynoms

$$f(X) = (X - \bar{x}_1) \cdots (X - \bar{x}_m) \in \bar{B}[X]$$

erfüllt das Minimalpolynom von \bar{x} auch in Linearfaktoren. Also ist \bar{B}/\bar{A} normal.

• Wegen obigem folgt daß

$$[\bar{A}(\bar{x}) : \bar{A}] \leq [K(\bar{x}) : K] \leq [L : K].$$

Da die maximale separable Erweiterung E von \bar{A} in \bar{B} durch ein Element erzeugt wird folgt $[E : \bar{A}] \leq [L : K] < \infty$. Sie ist also eine endliche Galois Erweiterung von \bar{A}, denn \bar{B}/\bar{A} ist normal und daher auch $E : \bar{A}$.

• ObdA liegt über p nur ein Primideal: Wegen Satz 2.3.5 ist

$$\text{Aut}(\bar{B} : \bar{A}) = \text{Aut}(\bar{B} : B^d/\Omega),$$

um die Surjektivität von $\sigma \mapsto \bar{\sigma}$ zu zeigen, können wir also die Situation $K = L^d$ annehmen. D.h. $G = G_p$.

• Sei also $G = G_p$. Sei $x \in B$ sodaß \bar{x} die maximale separable Erweiterung von \bar{A} in \bar{B} erzeugt und sei f das Minimalpolynom von x über K. Ein Automorphismus $\bar{\tau}$ von $\bar{B} : \bar{A}$ ist durch seine Wirkung auf \bar{x} eindeutig bestimmt. Offenbar ist $\bar{\tau} \bar{x}$ eine Wurzel von \bar{f}. Ist y irgend eine Wurzel von f so existiert $\sigma \in G = G_p$ sodaß $\sigma x = y$. Zu jedem $\bar{\sigma}$ existiert daher ein $\sigma \in G_p$ sodaß $\bar{\sigma} = \bar{\tau}$.

\[\square\]

2.3.7 *Korollar*. Seien A,K,B,L,G wie im Satz, sei p ein maximales Ideal von A, $\varphi : A \to A/p$ der kanonische Homomorphismus. Sind ψ_1, ψ_2 Homomorphismen von B in einen algebraischen Abschluß von A/p die φ fortsetzen, so existiert $\sigma \in G$ sodaß

$$\psi_1 = \psi_2 \circ \sigma.$$

Beweis.

• Sei ψ_1, ψ_2 Primideale von B die über p liegen, also existiert wegen Satz 2.3.1 ein $\bar{\tau} \in G$ sodaß $\psi_1, \psi_2 \circ \bar{\tau}$ den selben Kern haben. ObdA haben also ψ_1, ψ_2 den gleichen Kern \mathfrak{q}.

• Sei also $\ker \psi_1 = \ker \psi_2 = \mathfrak{q}$. Sei $B/\mathfrak{q} \subseteq (A/p)^n$. $\psi_1 : B \to (A/p)^n$ induziert eine Einbettung $\psi_1 : B/\mathfrak{q} \to (A/p)^n$. Da B/\mathfrak{q} normal über A/p ist folgt $\bar{\psi}_1 \in \text{Aut}(B/\mathfrak{q} : A/p)$. Genau so für ψ_2. Also existiert $\sigma \in G_{\mathfrak{q}}$ so daß $\bar{\psi}_2^{-1} \circ \bar{\psi}_1 = \bar{\sigma}$. Man hat das Diagramm

\[\square\]
2.4 Verzweigung von Primidealen

Sei A ein Dedekind Ring, L eine endliche separable Erweiterung von $K = Q(A)$, B der ganze Abschluß von A in L.

Ist $p \in \text{Spec} A$, so ist pB ein Ideal von B. Daher gilt mit gewissen $\mathfrak{p}_i \in \text{Spec} B, \epsilon_i \geq 1$,

$$pB = \mathfrak{p}_1^{\epsilon_1} \cdot \ldots \cdot \mathfrak{p}_r^{\epsilon_r}.$$

2.4.1 Lemma. Eine Primstelle $\mathfrak{p} \in \text{Spec} B$ kommt in obiger Faktorisierung genau dann vor wenn sie über p liegt.

Beweis. Da jedes $\mathfrak{p} \in \text{Spec} B$ maximal ist und die Faktoren paarweise coprim, gilt

$$\mathfrak{p}_1^{\epsilon_1} \cdot \ldots \cdot \mathfrak{p}_r^{\epsilon_r} = \mathfrak{p}_1^{\epsilon_1} \cap \ldots \cap \mathfrak{p}_r^{\epsilon_r}.$$

Ist \mathfrak{p} eine Primstelle über p die nicht vorkommt, so wäre ($\mathfrak{p} \supset pB$)

$$pB = \mathfrak{p}_1^{\epsilon_1} \cap \ldots \cap \mathfrak{p}_r^{\epsilon_r} = \mathfrak{p}_1^{\epsilon_1} \cap \ldots \cap \mathfrak{p}_r^{\epsilon_r} \cap \mathfrak{p},$$

ein WS! zur Eindeutigkeit der Faktorisierung. Umgekehrt ist klarerweise $\mathfrak{p}_i \supset pB \supset p$ und da p maximal ist und $1 \notin \mathfrak{p}_i$ folgt $\mathfrak{p}_i \cap A = p$.

2.4.2 Definition. Liegt \mathfrak{p} über p, so heißt der Exponent $e(\mathfrak{p}/p)$ von \mathfrak{p} in der Zerlegung von pB der Verzweigungsindex von \mathfrak{p}/p, und $f(\mathfrak{p}/p) = [B/\mathfrak{p} : A/p]$ der Restklassengrad von \mathfrak{p}/p.

Für $\mathfrak{p} \in \text{Spec} B$ definiert man

$$N_K^L(\mathfrak{p}) := p^{f(\mathfrak{p}/p)}$$

wobei $p := \mathfrak{p} \cap A$. Die Norm N_K^L gibt also einen Homomorphismus

$$N_K^L : I(B) \rightarrow I(A).$$

2.4.3 Lemma. Sei A Dedekind, $K = Q(A), K \subseteq E \subseteq L$ endliche separable Erweiterungen, $A \subseteq B \subseteq C$ die entsprechenden ganzen Abschluß von A in an E bzw. L. Sei $p \in \text{Spec} A, q \in \text{Spec} B, \mathfrak{p} \in \text{Spec} C, q/p, \mathfrak{p}/q$. Dann gilt

(i) $$e(\mathfrak{p}/p) = e(\mathfrak{p}/q)e(q/p)$$

(ii) $$f(\mathfrak{p}/p) = f(\mathfrak{p}/q)f(q/p)$$

(iii) $$N_K^E \circ N_E^L = N_K^L.$$

Beweis. Klar nach Definition.

LEI.48

LEI.49

LEI.50

LEI.51
Beweis. Ist x_1, \ldots, x_n Basis von M über A, d.h.

$$M = \sum_{i=1}^{n} A x_i \text{ (direkte Summe)},$$

so ist $M/pM = \sum_{i=1}^{n} (A/p)x_i \text{ (direkte Summe)}$, wobei x_i die Restklasse von x_i modulo pM. Denn ist

$$\sum \lambda_i x_i = 0 \text{ in } M/pM,$$

so ist $\sum \lambda_i x_i \in pM$. Es gilt $pM = \sum p x_i$ und wegen der Eindeutigkeit der Darstellung folgt $\lambda_i = 0$.

\[\square\]

2.4.5 Satz. Sei A Dedekind, $K = Q(A)$, L endlich separable Erweiterung von K, B der ganze Abschluß von A in L. Ist $p \in \text{Spec } A$, so gilt

$$[L : K] = \sum_{\mathfrak{P}/p} e(\mathfrak{P}/p) f(\mathfrak{P}/p).$$

Beweis.

\(\cdot\) ObdA sei A lokal: Wir lokalisieren bei p. Ist $S = A \setminus p$, betrachte also die Situation $S^{-1}A \subseteq K \subseteq L$. Es ist $S^{-1}B$ der ganze Abschluß von $S^{-1}A$ in L. Ist

$$pB = \mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_r^{e_r},$$

so ist wegen Lemma 2.1.9

$$(S^{-1}p)(S^{-1}B) = S^{-1}(pB) = (S^{-1}\mathfrak{P}_1)^{e_1} \cdots (S^{-1}\mathfrak{P}_r)^{e_r},$$

Daher sind die $S^{-1}\mathfrak{P}_i$ sind alle Primideale über $S^{-1}p$ ($S^{-1}\mathfrak{P}_i \neq S^{-1}B$ da $S \cap \mathfrak{P}_i = \emptyset$) und $e(S^{-1}\mathfrak{P}/S^{-1}p) = e(\mathfrak{P}/p)$. Wegen Satz 1.4.9 ist für jedes \mathfrak{P}/p

$$S^{-1}B/S^{-1}\mathfrak{P} \cong B/\mathfrak{P}, \quad S^{-1}A/S^{-1}p \cong A/p,$$

also $f(S^{-1}\mathfrak{P}/S^{-1}p) = f(\mathfrak{P}/p)$.

Sei $pB = \mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_r^{e_r}$. Der Homomorphismus

$$B \to \prod_{i=1}^{r} B/\mathfrak{P}_i^{e_i}$$

ist surjektiv und hat Kern pB. Wegen $\mathfrak{P}_i^{e_i} \supseteq p$ ist $B/\mathfrak{P}_i^{e_i}$ ein A/p - Vektorraum, also auch die direkte Summe auf der rechten Seite. Klarerweise ist der Homomorphismus

$$B/pB \to \prod_{i=1}^{r} B/\mathfrak{P}_i^{e_i}$$

ein A/p-Homomorphismus.
2.4. VERZWEIGUNG VON PRIMIDEALEN

Wir bestimmen die Dimension von B/\mathfrak{P}^e. Sei π ein Erzeuger von \mathfrak{P} und $j \geq 1$. Wegen $p\mathfrak{P}^j \subseteq \mathfrak{P}^{j+1}$ ist $\mathfrak{P}^j/\mathfrak{P}^{j+1}$ ein A/p-Vektorraum. Die Abbildung $x \mapsto x\pi^j$ induziert einen Homomorphismus

$$B/\mathfrak{P} \to \mathfrak{P}^j/\mathfrak{P}^{j+1}$$

Die Dimension von $\mathfrak{P}^j/\mathfrak{P}^{j+1}$ ist also stets gleich der von B/\mathfrak{P} über A/p, also gleich $f(\mathfrak{P}/p)$. Mit der Kompositionsreihe

$$B > \mathfrak{P} > \mathfrak{P}^2 > \cdots > \mathfrak{P}^e$$

erhält man $\dim B/\mathfrak{P}^e = e \cdot f$. Also ist

$$[L : K] = \dim B/pB = \sum_{\mathfrak{P}/p} e(\mathfrak{P}/p)f(\mathfrak{P}/p).$$

2.4.6 Korollar. Sei $a \in I(A)$, dann gilt

$$N^L_K(aB) = a^{[L:K]}.$$

Beweis. Ist p prim, $pB = \mathfrak{P}^{e_1} \cdot \cdots \cdot \mathfrak{P}^{e_r}$, so gilt

$$N^L_K(pB) = N^L_K(\mathfrak{P})^{e_1} \cdots N^L_K(\mathfrak{P})^{e_r} = p^{\sum e_iI_i} = p^{[L:K]}.$$

2.4.7 Korollar. Sei L Galois über K und $p \in \text{Spec} A$. Dann sind alle $e(\mathfrak{P}/p)$ gleich (einer Zahl e) und alle $f(\mathfrak{P}/p)$ gleich (einer Zahl f). Ist $r = \#\{\mathfrak{P} : \mathfrak{P}/p\}$, so gilt

$$efr = [L : K].$$

Beweis. Man erhält alle \mathfrak{P}/p aus einem durch Anwendung von $\sigma \in G$. Es ist $B/\mathfrak{P} \cong B/\sigma\mathfrak{P}$ und wegen $\sigma(pB) = pB$ sind die Exponenten e_i auch alle gleich.

2.4.8 Korollar. Sei L Galois über K mit Gruppe G und sei \mathfrak{P}/p. Dann gilt

$$(pB = (\mathfrak{P}_1 \cdot \cdots \cdot \mathfrak{P}_r)^e)$$

$$N^L_K(\mathfrak{P})B = \prod_{\sigma \in G} \sigma \mathfrak{P} = (\mathfrak{P}_1 \cdot \cdots \cdot \mathfrak{P}_r)^{ef}.$$

Es gilt $|G:\mathfrak{P}| = ef$.

Beweis. G operiert transitiv auf $\{\mathfrak{P} : \mathfrak{P}/p\}$ und $G_{\mathfrak{P}}$ ist die Isotropiegruppe.

2.4.9 Korollar. Sei A Dedekind, $K = Q(A)$, E endliche separable Erweiterung von K, B der ganze Abschluß von A in E. Sei $b = (\beta)$ ein gebrochenes Hauptideal von B. Dann gilt

$$N^E_K(b) = (N^E_K(\beta))$$

wobei die Norm rechts die übliche Norm ist.
Beweis.
·) Sei \(L \) die kleinste Galois Erweiterung von \(K \) die \(E \) enthält. \(C \) der ganze Abschluß von \(B \) in \(L \). Es gilt, da \(L : E \) Galois ist

\[
N_{E}^{L}(bC) = b^{[L:E]}, \quad N_{E}^{L}(\beta) = \beta^{[L:E]}.
\]

Haben wir die Aussage gezeigt für den Fall einer Galois Erweiterung, so haben wir

\[
N_{E}^{L}(bC) = (N_{E}^{L}(\beta)),
\]

und wegen

\[
N_{K}^{E} = N_{K}^{E} \circ N_{E}^{L},
\]

\[
N_{E}^{L}(b)^{[L:E]} = (N_{K}^{E}(\beta))^{[L:E]}.
\]

Wegen der eindeutigen Primzerlegung in \(I(A) \) folgt dann auch

\[
N_{K}^{E}(b) = (N_{K}^{E}(\beta)).
\]

·) Sei also \(\mathfrak{o} \mathfrak{B} \mathfrak{d} \mathfrak{A} \) \(E \) Galois über \(K \). Dann gilt \(N_{K}^{E}(\beta) = \prod_{\sigma \in G} \sigma \beta \), also

\[
(N_{K}^{E}(\beta))A \cdot B = \prod_{\sigma \in G} \sigma(\beta)B = \prod_{\sigma \in G} \sigma b = N_{K}^{E}b \cdot B
\]

wegen Korollar 2.4.8. Es folgt

\[
(N_{K}^{E}(\beta))_{A}^{[E:K]} = N_{K}^{E}[N_{K}^{E}(\beta)]_{A}B = N_{K}^{E}[N_{K}^{E}b \cdot B] = (N_{K}^{E}b)^{[E:K]}
\]

Wegen der eindeutigen Primzerlegung in \(I(A) \) folgt

\[
(N_{K}^{E}(\beta))_{A} = N_{K}^{E}b
\]

\(\square \)

2.4.10 Satz. Sei \(A \) diskreter Bewertungsring, \(K = Q(A) \), \(L \) endliche separable Erweiterung von \(K \), \(B \) ganze Abschluß von \(A \) in \(L \). Weiters liege nur ein \(\mathfrak{P} \in \text{Spec} B \) über dem maximalen Ideal \(\mathfrak{p} \) von \(A \), und sei der Körper \(B/\mathfrak{P} \) über \(A/\mathfrak{p} \) erzeugt von einem \(\beta \) mod \(\mathfrak{P} \), \(\beta \in B \). Sei \(\pi \) ein Element von \(B \) mit Ordnung 1 bei \(\mathfrak{P} \). Dann gilt \(A[\beta, \pi] = B \).

Beweis. Sei \(C = A[\beta, \pi] \). \(C \) ist ein \(A \)-Untermodul von \(B \). Wegen dem Nakayama Lemma angewendet auf \(B/C \) genügt es zu zeigen daß

\[
pB + C = B
\]

Sei \(pB = \mathfrak{P}^{e} \). Dann erzeugen die Elemente \(\beta \pi^{i} \) den Raum \(B/\mathfrak{P}^{e} \) als \(A/p \)-Vektorraum (vgl. Satz 2.4.5). Also kann man jedes \(x \in B \) schreiben als

\[
x = \sum c_{ij} \beta^{i} \pi^{j} \mod pB
\]

mit gewissen \(c_{ij} \in A \).
2.5. EXPLIZITE FAKTORISIERUNG EINER PRIMSTELLE

2.4.11 Satz. Sei A Dedekind und sei \(|A/p| < \infty\) für alle \(p \in \text{Spec } A\). Ist a Ideal von A bezeichne mit \(Na := |A/a|\). Dann gilt

\[Na = \prod_p |Np|^{\sigma_p a}. \]

Beweis. Es ist \(A/a \cong \prod_p A/p^{\sigma_p a}\), Es genügt also \(|A/p^n|\) zu bestimmen. Dazu lokalisiere bei \(p\), dann ist \(O_D A\) p Hauptideal. Dann ist offenbar \(A/p \cong p/p^2 \cong \ldots\), also \(|A/p^n| = |A/p|^n|\).

\[\Box \]

2.4.12 Bemerkung. Sei \(K\) ein algebraischer Zahlkörper \(O_K\) der Ring der ganzen Zahlen in \(K\). Sei \(p \in \text{Spec } O_K\), \(p/(p)\). Dann gilt

\[N_p = p^{f(p/p)}. \]

Ist \(\alpha \in O_K\), so gilt \(N^K_a(\alpha) = \pm N(\alpha)\). Es gibt für jedes \(M\) nur endlich viele Ideale \(a\) mit \(Na \leq M\).

2.5 Explizite Faktorisierung einer Primstelle

Wir betrachten die folgende Situation: A Dedekind, \(K = Q(A)\), \(E\) endliche separable Erweiterung von \(K\), \(B\) ganze Abschluß von \(A\) in \(E\). Sei \(p \in \text{Spec } A\).

Sei vorausgesetzt \(B = A[\alpha]\) für ein geeignetes \(\alpha \in B\).

2.5.1 Bemerkung. Es gilt nicht immer \(B = A[\alpha]\). Jedoch ist für alle bis auf endlich viele \(p \in \text{Spec } A\)

\[B_p = A_p[\alpha_p]. \]

Sei \(f\) das Minimalpolynom von \(\alpha\) (über \(K\)). Beachte daß \(f \in A[X]\). Die kanonische Projektion

\[\pi : A \to A/p =: \bar{A} \]

sei (koeffizientenweise) fortgesetzt zu \(\bar{\pi} : A[X] \to \bar{A}[X]\). Sei \(\bar{f} := \bar{\pi}f\) und sei

\[\bar{f}(X) = \bar{P}_1(X)^{e_1} \cdots \bar{P}_r(X)^{e_r}, \]

\(\bar{P}_i = \bar{A}[X]\), \(\bar{P}_i = \bar{\pi}P_i\), \(P_i\) normiert, die Zerlegung von \(\bar{f}\) in irreduzible (normierte) Faktoren. Sei \(L\) ein algebraischer Abschluß von \(\bar{A}\). Sei \(\Phi\) die Menge aller Fortsetzungen \(\phi\) von \(\pi\) zu einem Homomorphismus \(\phi : B \to L\).

\(\Phi\) steht in bijektiver Beziehung zu der Nullstellennmenge von \(\bar{f}\) vermöge \(\phi \mapsto \phi(\alpha)\). Denn wegen \(f(\alpha) = 0\) muß für \(\phi \in \Phi\) gelten

\[0 = \phi(f(\alpha)) = \bar{f}(\phi(\alpha)). \]

Ist umgekehrt \(\bar{f}(\beta) = 0\), so ist die Abbildung

\[\phi : \begin{array}{c} B \\ g(\alpha) \end{array} \to \begin{array}{c} L \\ \bar{g}(\beta) \end{array} \quad (g = A[X]) \]

wohldefiniert: Ist \(g(\alpha) = 0\), so folgt \(f|g\) also auch \(\bar{f}|\bar{g}\), also \(\bar{g}(\beta) = 0\). Offenbar setzt \(\phi\) auch \(\pi\) fort. Wegen \(B = A[\alpha]\) ist \(\phi\) überall definiert. Weiters wegen \(B = A[\alpha]\) ist ein \(\phi \in \Phi\) durch \(\phi(\alpha)\) eindeutig bestimmt.
2.5.2 **Satz.** Seien \(\phi, \psi \in \Phi \), dann ist \(\ker \phi = \ker \psi \) genau dann, wenn \(\phi(\alpha) \) und \(\psi(\alpha) \) Nullstellen des gleichen irreduziblen Faktors \(\overline{P}_i \) sind. Es gilt

\[
\{ \mathfrak{p} \in \text{Spec} \ B : \mathfrak{p}/p \} = \{ \ker \phi : \phi \in \Phi \},
\]

d.h. die über \(p \) liegenden Primideale stehen in bijektiver Beziehung zu den irreduziblen Faktoren von \(f \). Gehört \(\mathfrak{p} \) zu \(\overline{P}_i \), so gilt

\[
e(\mathfrak{p}/p) = e_i, \ f(\mathfrak{p}/p) = \deg \overline{P}_i, \ \mathfrak{p} = pB + \overline{P}_i(\alpha)B.
\]

Beweis.

\(\cdot \) Es gilt \(\ker \phi \cap A = p \): Da \(\phi \) die Projektion \(\pi \) fortsetzt ist \(p \subseteq \ker \phi \). Sei \(\gamma \in A \cap \ker \phi \). Dann ist

\[
0 = \phi(\gamma) = \pi(\gamma),
\]

d.h. \(\gamma \in p \) (\(p \) das maximale Ideal von \(A \)).

\(\cdot \) Betrachte das Diagramm

\[
\begin{array}{ccc}
A[X] & \xrightarrow{\pi} & \overline{A}[X] \\
\downarrow{\tau_\alpha} & & \downarrow{\tau_\beta} \\
B & \xrightarrow{\phi} & \text{Im } \phi \subseteq L \\
\end{array}
\]

wobei \(\tau_\alpha \) bzw. \(\tau_\beta \) die Punktauswertung an \(\alpha \) bzw. \(\beta \) ist und \(\beta = \phi(\alpha) \). Sei \(\beta \) Nullstelle von \(\overline{P}_i \), dann faktorisiert sich \(\tau_\beta \) als

\[
\begin{array}{ccc}
\overline{A}[X] & \xrightarrow{\tau_\beta} & \overline{A}[X]/(\overline{P}_i) \\
\downarrow{\tau_\beta} & & \downarrow{\tau_\beta} \\
\text{Im } \phi & & \\
\end{array}
\]

und \(\phi \) als
2.5. EXPLIZITE FAKTORISIERUNG EINER PRIMSTELLE

\[
\begin{array}{c}
B \\
\phi \\
\downarrow \\
\text{Im } \phi \\
\downarrow \\
\tilde{\phi} \\
\downarrow \\
B/\ker \phi \\
\end{array}
\]

Es folgt \(B/\ker \phi \cong \tilde{A}[X]/(\tilde{P}_i) \). Da \(\tilde{P}_i \) irreduzibel ist, folgt \(\ker \phi \in \text{Spec } B \). Weiter ist

\[\ker \tau_\beta \circ \tilde{\pi} = \ker \phi \circ \tau_\alpha. \]

Die linke Seite ist gleich \(\tilde{\pi}^{-1}((\tilde{P}_i)) \), die rechte gleich \(\tau_\alpha^{-1}(\ker \phi) \). Da \(\tau_\alpha \) surjektiv ist, folgt

\[\ker \phi = \tau_\alpha(\tau_{\alpha}^{-1}(\ker \phi)) = \tau_\alpha(\tilde{\pi}^{-1}((\tilde{P}_i))), \]

gehören also \(\phi, \psi \) zu \(\tilde{P}_i \) so ist \(\ker \phi = \ker \psi \).

\(\cdot \) Ist umgekehrt \(\ker \phi = \ker \psi \), und gehört \(\phi \) zu \(\tilde{P}_i \) und \(\psi \) zu \(\tilde{P}_j \), so folgt

\[(\tilde{P}_i) = \tilde{\pi}(\tilde{\pi}^{-1}((\tilde{P}_i))) = \tilde{\pi}(\tau_\alpha^{-1}(\ker \phi)) = \tilde{\pi}(\tau_\alpha^{-1}(\ker \psi)) = (\tilde{P}_j), \]

also \(\tilde{P}_i = \tilde{P}_j \).

\(\cdot \) Sei \(\mathfrak{P} \in \text{Spec } B, \mathfrak{P}/p \), und sei \(L' \) ein algebraischer Abschluß von \(A/p \) mit \(L' \supseteq B/\mathfrak{P} \). \(L' \cong L \) über \(\tilde{A} \) vermöge \(\iota, \sigma : B \rightarrow B/\mathfrak{P} \) die kanonische Projektion. Dann ist

\[\phi := \iota \circ \sigma : B \rightarrow L \]

eine Fortsetzung von \(\pi \) und \(\ker \phi = \mathfrak{P} \).

\(\cdot \) Wie schon festgestellt, ist (wenn \(\mathfrak{P}/p \) zu \(\tilde{P}_i \) gehört)

\[B/\mathfrak{P} \cong \tilde{A}[X]/(\tilde{P}_i) \]

und dieser Isomorphismus ist ein \(\tilde{A} \)-Vektorraum Isomorphismus denn eingeschränkt auf \(\tilde{A} \) ist er id. Also folgt

\[f(\mathfrak{P}/p) = [B/\mathfrak{P} : \tilde{A}] = \deg \tilde{P}_i (= \deg P_i) \]

Es gilt \(pB = \tau_\alpha(p[X]) \). Denn ist \(\gamma \in B \), so schreibt sich \(\gamma = g(\alpha) \) und daher \(p\gamma = (pg)(\alpha) \) und für \(p \in \mathfrak{P} \) ist \(pg \in p[X] \). Umgekehrt ist

\[\tau_\alpha(pX^k) = p\alpha^k \in pB. \]

Offenbar ist \(p[X] = \ker \tilde{\pi} \). Gehört nun \(\mathfrak{P} \) zu \(\tilde{P}_i \) so ist

\[\mathfrak{P} = \ker \phi = \tau_\alpha(\tilde{\pi}^{-1}((\tilde{P}_i))) = \tau_\alpha((P_i)_{\tilde{A}[X]} + p[X]) = P_i(\alpha)B + pB. \]
Es gilt $f - P_1^{e_1} \cdots P_r^{e_r} \in \ker \pi = p[X]$, also wegen $f(\alpha) = 0$

$$-P_1(\alpha)^{e_1} \cdots P_r(\alpha)^{e_r} = \pi(f - P_1^{e_1} \cdots P_r^{e_r}) \in pB.$$

Nun gilt, wenn Ψ_i / p zu $\tilde{\Psi}_i$ gehört,

$$\Psi_i^{e_i} \subseteq pB + P_i^{e_i}(\alpha)B,$$

also folgt

$$\Psi_1^{e_1} \cdots \Psi_r^{e_r} \subseteq pB + P_1^{e_1}(\alpha) \cdots P_r^{e_r}(\alpha)B \subseteq pB.$$

Damit ist

$$e_i \geq e(\Psi_i / p), \ i = 1, \ldots, r.$$

Wegen

$$\sum e_i \deg P_i = \deg f = \left[E : K \right] = \sum e(\Psi_i / p) f(\Psi_i / p) =: \sum e(\Psi_i / p) \deg P_i$$

folgt $e_i = e(\Psi_i / p)$.

\[
\square
\]

2.6 Die Diskriminante

Sei im folgenden L / K endliche Erweiterung, $[L : K] = n$.

2.6.1 Definition. Seien $\alpha_1, \ldots, \alpha_n \in K$. Dann heißt

$$\Delta(\alpha_1, \ldots, \alpha_n) := \det(\text{tr}(\alpha_i \alpha_j))_{i,j=1}^n$$

die Diskriminante von $\alpha_1, \ldots, \alpha_n$.

2.6.2 Satz. Ist $\Delta(\alpha_1, \ldots, \alpha_n) \neq 0$, dann ist $\{\alpha_1, \ldots, \alpha_n\}$ eine Basis von L/K. Ist L/K separabel auch umgekehrt.

Beweis.

1. Seien $\alpha_1, \ldots, \alpha_n$ linear abhängig. Dann existieren $a_1, \ldots, a_n \in K$, nicht alle gleich 0, so dass $\sum a_i \alpha_i = 0$. Es folgt

$$\sum a_i \text{tr}(\alpha_i \alpha_j) = 0, \ j = 1, \ldots, n,$$

also muß $\det(\text{tr}(\alpha_i \alpha_j))_{i,j=1}^n = 0$ gelten.

2. Seien $\alpha_1, \ldots, \alpha_n$ linear unabhängig und sei $\Delta(\alpha_1, \ldots, \alpha_n) = 0$. Dann gibt es eine nichttriviale Lösung x_1, \ldots, x_n von

$$\sum x_i \text{tr}(\alpha_i \alpha_j) = 0, \ j = 1, \ldots, n.$$

Setze $\alpha := \sum x_i \alpha_i$. Dann ist $\alpha \neq 0$. Es gilt $\text{tr}(\alpha \alpha_j) = 0$ für alle $j = 1, \ldots, n$. Da $\alpha_1, \ldots, \alpha_n$ Basis folgt $\text{tr}(\alpha \beta) = 0$, $\beta \in L$, also $\text{tr} \gamma = 0$, $\gamma \in L$. WS! zu L/K separabel.

\[
\square
\]
2.6. DIE DISKRIMINANTE

2.6.3 Lemma. Seien \(\{\alpha_1, \ldots, \alpha_n\} \), \(\{\beta_1, \ldots, \beta_n\} \) Basen von \(L/K \). Seien \(a_{ij} \in K \) sodass \(\alpha_i = \sum a_{ij} \beta_j \). Dann gilt

\[
\Delta(\alpha_1, \ldots, \alpha_n) = \det(a_{ij})^2 \Delta(\beta_1, \ldots, \beta_n).
\]

Beweis. Es gilt

\[
\alpha_i \alpha_k = \sum_{j=1}^{n} a_{ij} a_{kj} \beta_j \beta_k.
\]

Setze \(A = (\text{tr}(\alpha_i \alpha_k)), B = (\text{tr}(\beta_j \beta_k)), C = (a_{ij}) \), dann ist \(A = C^T B C \).

2.6.4 Lemma. Sei \(L/K \) separabel, \(\{\sigma_j : j = 1, \ldots, n\} \) die Einbettungen von \(L/K \). Dann gilt

\[
\Delta(\alpha_1, \ldots, \alpha_n) = \left(\det(\sigma_j(\alpha_i))_{i,j=1}^{n} \right)^2.
\]

Beweis. Es gilt

\[
\text{tr}(\alpha_i \alpha_j) = \sum_i \sigma_i(\alpha_i \alpha_j).
\]

Setze \(A = (\text{tr}(\alpha_i \alpha_j)), B = (\sigma_i(\alpha_i)) \), dann gilt \(A = BB^T \).

2.6.5 Satz. Sei \(L/K \) separabel und sei \(\beta \in L \) sodass \(\{1, \beta, \ldots, \beta^{n-1}\} \) linear unabhängig ist. Sei \(f \in K[X] \) das Minimalpolynom von \(\beta \) über \(K \). Dann gilt

\[
\Delta(1, \beta, \ldots, \beta^{n-1}) = (-1)^{\frac{n(n-1)}{2}} N(f'()\beta)).
\]

Beweis. Die Determinante der Vandermonde Matrix \((\sigma_j(\beta^i)) \) ist gleich

\[
\prod_{i<j}(\sigma_j(\beta) - \sigma_i(\beta)),
\]

und es folgt

\[
\Delta(1, \beta, \ldots, \beta^{n-1}) = (-1)^{\frac{n(n-1)}{2}} \prod_{i \neq j}(\sigma_j(\beta) - \sigma_i(\beta)).
\]

Es gilt \(f(X) = \prod_i (X - \sigma_i(\beta)) \) und daher

\[
f'(\sigma_j(\beta)) = \prod_{i \neq j}(\sigma_j(\beta) - \sigma_i(\beta), \ j = 1, \ldots, n.
\]

Nun ist \(f'(\sigma_j(\beta)) = \sigma_j(f'(\beta)) \) und

\[
N(f'(\beta)) = \prod_j \sigma_j(f'(\beta)).
\]
2.6.6 Satz. Sei K ein algebraischer Zahlkörper, $n = [K : \mathbb{Q}]$, $a \in O_K$. Sei $\alpha_1, \ldots, \alpha_n \in a$ eine Basis von K/\mathbb{Q}, sodass $|\Delta(\alpha_1, \ldots, \alpha_n)|$ minimal ist (solche $\alpha_1, \ldots, \alpha_n$ existieren stets). Dann gilt

$$a = Z\alpha_1 + \cdots + Z\alpha_n.$$

Und umgekehrt.

Beweis.

.: Es gibt stets eine Basis in α, denn es gibt eine in O_K und multipliziert man diese mit einem $a \in \alpha \setminus \{0\}$, so hat man das Gewünschte. Es gilt $\Delta(\alpha_1, \ldots, \alpha_n) \in Z \setminus \{0\}$ also $|\Delta(\alpha_1, \ldots, \alpha_n)| \in \mathbb{N}$, daher existiert eine Basis mit der geforderten Minimalitätseigenschaft.

.: Trivial ist $Z\alpha_1 + \cdots + Z\alpha_n \subseteq \alpha$. Sei also $\alpha \in \alpha$ und schreibe

$$\alpha = \gamma_1 \alpha_1 + \cdots + \gamma_n \alpha_n, \quad \gamma_i \in \mathbb{Q}.$$

Sind alle $\gamma_i \in Z$ sind wir fertig. Sei angenommen ein $\gamma_i \not\in Z$, o.B.d.A $\gamma_1 \not\in Z$. Schreibe $\gamma_1 = \theta m + \vartheta, m \in Z, 0 < \vartheta < 1$, und setze

$$\beta_1 := \alpha - m \alpha_1, \quad \beta_2 := \alpha_2, \ldots, \beta_n := \alpha_n.$$

Dann ist $\{\beta_1, \ldots, \beta_n\}$ eine Basis und $\subseteq \alpha$. Die Transformationsmatrix zwischen diesen Basen ist wegen $\beta_1 = \vartheta \alpha_1 + \gamma_2 \alpha_2 + \cdots + \gamma_n \alpha_n$ gleich

$$\begin{pmatrix} \vartheta & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}.$$

Wir erhalten $|\Delta(\beta_1, \ldots, \beta_n)| = |\vartheta^2 \Delta(\alpha_1, \ldots, \alpha_n)| < |\Delta(\alpha_1, \ldots, \alpha_n)|$ ein WSI zur Minimalitätseigenschaft.

.: Sind $\{\alpha_1, \ldots, \alpha_n\}$ und $\{\beta_1, \ldots, \beta_n\}$ Basen mit $a = Z\alpha_1 + \cdots + Z\alpha_n = Z\beta_1 + \cdots + Z\beta_n$, so ist die Transformationsmatrix ganzzahlig und invertierbar. Ihre Determinante also $= \pm 1$.

\square

DEI.67

2.6.7 Definition. Der Wert $\Delta(a) = \min |\Delta(\alpha_1, \ldots, \alpha_n)|$ heißt die Diskriminante von a, $\delta_K := \Delta(O_K)$ kurz Diskriminante von K.

LEI.67a

2.6.8 Lemma. Sei F/\mathbb{Q} ein algebraischer Zahlkörper, $[F : \mathbb{Q}] = n$. Sei $\alpha_1, \ldots, \alpha_n \in O_F$ eine Basis von F/\mathbb{Q}. Dann gilt

$$\Delta(\alpha_1, \ldots, \alpha_n) O_F \subseteq Z\alpha_1 + \cdots + Z\alpha_n.$$

Beweis. Sei $w \in O_F$, $w = \sum a_i \alpha_i$, $a_i \in \mathbb{Q}$ Alle Elemente $\text{tr}(w \alpha_j)$ und $\text{tr}(\alpha_i \alpha_j)$ sind in Z und es gilt

$$\text{tr}(w \alpha_j) = \sum a_i \text{tr}(\alpha_i \alpha_j), \quad j = 1, \ldots, n.$$
Wegen der Cramerschen Regel schreibt sich a_i als ganze Zahl dividiert durch $\Delta(a_1, \ldots, a_n)$.

Sei K ein algebraischer Zahlkörper, $[K : \mathbb{Q}] = n$. Wir konstruieren eine Ganzheitsbasis.

2.6.9 Satz. Seien $a_1, \ldots, a_n \in O_K$ linear unabhängig (über \mathbb{Q}). Dann existiert eine Ganzheitsbasis w_1, \ldots, w_n so daß

$$a_j = c_{ji} w_1 + \cdots + c_{jj} w_j, \quad j = 1, \ldots, n,$$

mit gewissen $c_{ji} \in \mathbb{Z}$.

Beweis.

(1) Sei d_{ii} die kleinste natürliche Zahl so daß für gewisse $d_{i1}, \ldots, d_{i,i-1} \in \mathbb{Z}$

$$w_i = \frac{1}{\Delta(a_1, \ldots, a_n)} \sum_{j=1}^{i} d_{ij} a_j \in O_K.$$

Die w_i sind linear unabhängig über \mathbb{Q}, denn sie entstehen aus (a_1, \ldots, a_n) durch Multiplikation mit einer Dreiecksmatrix und $d_{ii} \neq 0$.

(2) Sei $c \in O_K$ von der Form

$$c = \frac{1}{\Delta(a_1, \ldots, a_n)} (c_1 a_1 + \cdots + c_j a_j)$$

für gewisse $c_i \in \mathbb{Z}$ und ein gewisses $j \in \{1, \ldots, n\}$. Dann gilt $d_{jj} | c_j$: Schreibe $c_j = s d_{jj} + r$ mit $s, r \in \mathbb{Z}$, $0 \leq r < d_{jj}$. Es ist

$$c - s w_j \in O_K$$

und es ist

$$c - s w_j = \frac{1}{\Delta(a_1, \ldots, a_n)} \left((c_1 - s d_{jj}) a_1 + (c_2 - s d_{jj}) a_2 + \cdots + r a_j \right),$$

ein WS! zur Minimalität von d_{jj} falls nicht $r = 0$.

(3) Sei M_0 der von w_1, \ldots, w_n erzeugte \mathbb{Z}-Modul. Wir zeigen mit Induktion nach j, daß jedes Element von O_K der Gestalt

$$x = \frac{1}{\Delta(a_1, \ldots, a_n)} (x_1 a_1 + \cdots + x_j a_j), \quad x_i \in \mathbb{Z},$$

in M_0 liegt. Für $j = n$ heißt dies wegen Lemma 2.6.8 daß $M_0 = O_K$.

$j = 1$ wegen dem letzten Punkt ist $d_{11} | x_1$ und daher $x = \frac{x_1}{d_{11}} w_1 \in M_0$.

$j - 1 \rightarrow j$ Es gilt $d_{jj} | x_j$. Es ist

$$x - \frac{x_j}{d_{jj}} w_j \in O_K$$

und nach Induktionsvoraussetzung in M_0: $\frac{x_j}{d_{jj}} w_j \in M_0$, also folgt $x \in M_0$.

2.6.10 Satz. Seien \(a_1, \ldots, a_n \in O_K \) linear unabhängig über \(\mathbb{Q} \) und sei \(m \) der Index von \(M = \mathbb{Z} a_1 + \cdots + \mathbb{Z} a_n \) in \(O_K \). Dann gilt

\[
\Delta(a_1, \ldots, a_n) = \pm m^2 \delta_K.
\]

Beweis. Sei \(w_1, \ldots, w_n \) eine Ganzheitsbasis von \(O_K \). Sei \(b_1, \ldots, b_n \in M \) so daß

\[
b_i = \sum_{k=1}^{n} c_{ik} w_k, \quad c_{ik} \in \mathbb{Z},
\]

wobei \(c_{ii} \in \mathbb{N} \) kleinstmöglich ist. Genau wie in Satz 2.6.9 sieht man daß \(b_1, \ldots, b_n \) ein freies Erzeugendensystem von \(M \) ist und das \(t_1 w_1 + \cdots + t_i w_i \) \((t_j \in \mathbb{Z}) \) nur in \(M \) liegen kann, wenn \(c_{ii} \) ist. Also sind die Zahlen

\[
\alpha_1 w_1 + \cdots + \alpha_n w_n, \quad 0 \leq \alpha_j < c_{jj},
\]

paarweise inkongruent modulo \(M \). Offenbar sind es genau \(c_1 \cdot \ldots \cdot c_n \) viele.

Wir zeigen, daß sie ein vollständiges Repräsentantensystem modulo \(M \) bilden. Sei

\[
\xi = \sum_{k=1}^{n} \lambda_k w_k, \quad \lambda_k \in \mathbb{Z},
\]

ein Element von \(O_K \). Sei \(0 \leq \mu_n < c_{nn} \) so daß \(\lambda_n \equiv \mu_n \) mod \(c_{nn} \) und setze

\[
A_n = \frac{\lambda_n - \mu_n}{c_{nn}},
\]

Dann gilt

\[
\xi = A_n b_n + \mu_n w_n + \sum_{k=1}^{n-1} (\lambda_k - A_n c_{nk}) w_k.
\]

Sei \(0 \leq \mu_{n-1} < c_{n-1,n-1} \), so daß \(\lambda_{n-1} = A_n c_{n,n-1} \equiv \mu_{n-1} \) mod \(c_{n-1,n-1} \). Setze

\[
A_{n-1} = \frac{\lambda_{n-1} - \mu_{n-1} - A_n c_{n,n-1}}{c_{n-1,n-1}}.
\]

Dann gilt

\[
\xi = A_n b_n + \mu_n w_n + A_{n-1} b_{n-1} + \mu_{n-1} w_{n-1} + \sum_{k=1}^{n-2} (\lambda_k - A_n c_{nk} - A_{n-1} c_{n-1,k}) w_k.
\]

Verfährt man weiter, so erhält man schließlich

\[
\xi = \sum_{k=1}^{n} \alpha_k b_n + \sum_{k=1}^{n} \mu_k w_k
\]

wobei \(\alpha_k, \mu_k \in \mathbb{Z}, \quad 0 \leq \mu_k < c_{kk} \). Also ist der Index

\[
m = [O_K : M] = c_1 \cdot \ldots \cdot c_{nn}.
\]
2.7. QUADRATISCHE ZAHLKÖRPER, KREISTEILUNGSKÖRPER

und

\[\Delta(b_1, \ldots, b_n) = (\det(c_{ij}))^2 \Delta(w_1, \ldots, w_n) = (c_1 \cdot \ldots \cdot c_{nn})^2 \delta_K. \]

Da sowohl \(\{a_1, \ldots, a_n\} \) als auch \(\{b_1, \ldots, b_n\} \) den Modul \(M \) erzeugen ist

\[(a_1, \ldots, a_n) = (b_1, \ldots, b_n)(\gamma_{ij}) \]

mit \((\gamma_{ij}) \in \mathbb{Z}^{n \times n} \) invertierbar, also

\[\Delta(a_1, \ldots, a_n) = \pm \Delta(b_1, \ldots, b_n). \]

\[
\Box
\]

2.6.11 Lemma. Ist \(n \in \mathbb{Z}, a \in K, b = a + n, \) so gilt \(\Delta(1, a, \ldots, a^{n-1}) = \Delta(1, b, \ldots, b^{n-1}). \)

Beweis. Wie in Satz 2.6.5 gilt

\[\Delta(1, a, \ldots, a^{n-1}) = (-1)^{\frac{n(n-1)}{2}} \prod_{i \neq j} (\sigma_j(a) - \sigma_i(a)). \]

Es ist

\[\sigma_j(b) - \sigma_i(b) = (\sigma_j(a) + n) - (\sigma_i(a) + n) = \sigma_j(a) - \sigma_i(a). \]

\[
\Box
\]

2.7 Quadratische Zahlkörper, Kreisteilungskörper

Ein algebraischer Zahlkörper \(F \) heißt quadratischer Zahlkörper, wenn \(|F : \mathbb{Q}| = 2. \)

2.7.1 Satz. Sei \(F \) ein quadratischer Zahlkörper. Dann ist \(F = \mathbb{Q}(\sqrt{d}) \) für eine gewisse quadratfreie ganze Zahl \(d. \) \(F/\mathbb{Q} \) ist Galois mit Gruppe

\[G = \{ \text{id}_F, \sqrt{d} \mapsto -\sqrt{d} \}. \]

Es gilt

\[\mathcal{O}_F = \begin{cases} \mathbb{Z} + \mathbb{Z}\sqrt{d}, & d \equiv 2, 3 \mod 4 \\ \mathbb{Z} + \mathbb{Z}\frac{-1+\sqrt{d}}{2}, & d \equiv 1 \mod 4 \end{cases} \]

Beweis.

\(\cdot \) Sei \(\alpha \in F \setminus \mathbb{Q}. \) Dann gilt \(F = \mathbb{Q}(\alpha) \) und \(\alpha \) muß einer Gleichung der Gestalt

\[aX^2 + bX + c = 0 \]

mit gewissen \(a, b, c \in \mathbb{Z} \) genügen. Es folgt

\[\alpha = \frac{1}{2a} \left(-b \pm \sqrt{b^2 - 4ac} \right). \]
Schreibe $b^2 - 4ac$ in der Form A^2d mit $A, d \in \mathbb{Z}, d$ quadratfrei. Dann gilt offenbar

$$\alpha = \frac{1}{2a}(- b \pm A\sqrt{d}),$$

also ist $F = \mathbb{Q}(\sqrt{d})$.

1. Die Abbildung

$$\sigma : \begin{cases} F & \rightarrow F \\ a + b \sqrt{d} & \mapsto a - b \sqrt{d}. \end{cases}$$

ist offenbar ein Automorphismus von F/\mathbb{Q}, denn $\sqrt{d}, -\sqrt{d}$ sind Nullstellen des irreduziblen Polynoms $X^2 - d$. Der Fixpunktkörper von $G = \{\text{id}_F, \sigma\}$ ist gleich \mathbb{Q}, also ist F/\mathbb{Q} Galois mit Gruppe G. F ist der Zerfallungskörper des separablen Polynoms $X^2 - d$.

1. Ist $\gamma \in \mathcal{O}_F$, so ist $\text{tr}_F^\mathbb{Q}(\gamma), N_F^\mathbb{Q}(\gamma) \in \mathbb{Z}$. Da das Minimalpolynom von γ die Gestalt $X^2 - \text{tr}_F^\mathbb{Q}(\gamma)X + N_F^\mathbb{Q}(\gamma)$ hat gilt auch die Umkehrung. Man berechnet für $\gamma = r + s\sqrt{d}, r, s \in \mathbb{Q}$

$$\text{tr}_F^\mathbb{Q}(\gamma) = 2r, \ N_F^\mathbb{Q}(\gamma) = r^2 - s^2d.$$

Es folgt

$$\gamma \in \mathcal{O}_F \Leftrightarrow 2r \in \mathbb{Z} \wedge r^2 - s^2d \in \mathbb{Z}.$$

Sei nun $\gamma \in \mathcal{O}_F$. Dann folgt $4s^2d \in \mathbb{Z}$ und da d quadratfrei ist $2s \in \mathbb{Z}$. Bezeichne $m := 2r, n = 2s$. Dann gilt $m^2 - n^2d = 4(r^2 - s^2d) \equiv 0 \mod 4$.

Sei $d \equiv 1, 3 \mod 4$. Dann gilt

$$0 \equiv m^2 - dn^2 \equiv \begin{cases} m^2 + 2n^2 & , d \equiv 2 \\ m^2 + n^2 & , d \equiv 3 \quad (\mod 4) \end{cases}$$

Da

$$x^2 \equiv \begin{cases} 0 & , x \text{ gerade} \\ 1 & , x \text{ ungerade} \quad (\mod 4) \end{cases}$$

ist dies nur möglich für m, n gerade. Es folgt $r, s \in \mathbb{Z}$. Umgekehrt ist trivialerweise $\mathbb{Z} + \mathbb{Z}\sqrt{d} \subseteq \mathcal{O}_K$, denn $\sqrt{d} \in \mathcal{O}_K$.

Sei $d \equiv 1 \mod 4$. Dann ist $m^2 - dn^2 \equiv m^2 - n^2 \mod 4$, also sind m und n entweder beide gerade oder beide ungerade. Es ist

$$\gamma = \frac{m}{2} + \frac{n}{2}\sqrt{d} = \frac{m + n}{2} - \frac{1 + \sqrt{d}}{2} \in \mathbb{Z} + \mathbb{Z}\sqrt{d} = \frac{1 + \sqrt{d}}{2}.$$

Umgekehrt ist $\text{tr}_F^\mathbb{Q}(\frac{1 + \sqrt{d}}{2}) = -1, N_F^\mathbb{Q}(\frac{1 + \sqrt{d}}{2}) = \frac{1 - d}{4} \in \mathbb{Z}$.

\[\square\]
2.7. QUADRATISCHE ZAHLKÖRPER, KREISTEILUNGSKÖRPER

2.7.2 Lemma. Es gilt

\[\delta_F = \begin{cases} 4d & , d \equiv 2, 3 \mod 4 \\ d & , d \equiv 1 \mod 4 \end{cases} \]

Beweis.

\(\triangleright \) Sei \(d \equiv 2, 3 \mod 4, \alpha_1 = 1, \alpha_2 = \sqrt{d} \). Dann ist

\[\delta_F = \det(\text{tr}(\alpha_i \alpha_j)) = \det \begin{pmatrix} 2 & 0 \\ 0 & 2d \end{pmatrix} = 4d. \]

\(\triangleright \) Sei \(d \equiv 1 \mod 4, \alpha_1 = 1, \alpha_2 = \frac{1 + \sqrt{d}}{2} \). Dann ist

\[(\text{tr}(\alpha_i \alpha_j)) = \begin{pmatrix} 2 & -1 \\ -1 & \frac{1 - \sqrt{d}}{2} \end{pmatrix}, \]

also \(\delta_F = d \).

\[\blacklozenge \]

Den durch \(\sqrt{d} \rightarrow -\sqrt{d} \) gegebenen Anhomorphismus von \(F/\mathbb{Q} \) bezeichne mit \(x \mapsto x' \). Ist \(p \) eine Primzahl, und ist \(p \in \text{Spec } O_F, p/(p), \) so sind alle über \((p) \) liegenden Primideale gegeben durch \(\{p, p'\} \) (es kann \(p = p' \) sein).

2.7.3 Satz. Sei \(p \) Primzahl. Dann gilt:

Fall \(p \) ungerade:

(i) \(p \nmid \delta_F, d \text{ quadratischer Rest } \mod p \Rightarrow (p) = pp', p \neq p' \).

(ii) \(p \nmid \delta_F, d \text{ quadratischer Nichtrest } \mod p \Rightarrow (p) = p. \)

(iii) \(p^2 \delta_F \Rightarrow (p) = p^2. \)

Fall \(p = 2; \)

(i) \(2 \nmid \delta_F, d \equiv 1 \mod 8 \Rightarrow (2) = pp', p \neq p' \)

(ii) \(2 \nmid \delta_F, d \equiv 5 \mod 8 \Rightarrow (2) = p \)

(iii) \(2^2 \delta_F \Rightarrow (2) = p^2 \)

Bemerkungen: Ist \(d \equiv 2, 3 \mod 8, \) so ist \(\delta_F \equiv 4d \) also \(2 \mid \delta_F. \) Ist \(d \equiv 0, 4 \mod 8 \) so ist \(d \) nicht quadratfrei.

Beweis. Sei \(r = \#\{p \in \text{Spec } O_F : p/(p)\} \), \(e \) der (gemeinsame) Verzweigungindex und \(f \) der (gemeinsame) Restklassengrad. Wegen \(efr = [F : \mathbb{Q}] = 2 \) können nur drei Fälle eintreten:

(I) \(r = 2, e = 1, f = 1 \)

(II) \(r = 1, e = 1, f = 2 \)

(III) \(r = 1, e = 2, f = 1 \)

Sei \(p \neq 2. \)
(i): Sei \(a^2 \equiv d \mod p \). Wir zeigen
\[
(p) = (p)\left(p, a + \sqrt{d}, a - \sqrt{d}, \frac{a^2 - d}{p}\right) = (p, a + \sqrt{d}, a - \sqrt{d}).
\]

Zum ersten "\(": Der zweite Faktor rechts enthält \(p \) und \(2a \). Da \(p, 2a \) relativ prim sind, ist er gleich \(O_F \). Zum zweiten "\(": Es gilt:
\[
p \cdot p = p \cdot (a + \sqrt{d}) \cdot p, p(a - \sqrt{d}) = p \cdot (a - \sqrt{d}),
\]
\[
p \cdot \frac{a^2 - d}{p} = (a + \sqrt{d})(a - \sqrt{d}).
\]

Es kann nicht gelten \((p, a + \sqrt{d}), (p, a - \sqrt{d}) \subseteq p\), denn dann würde \(p \) sowohl \(p \) als auch \(2a \) enthalten. Also gibt es mehr als ein Primideal über \((p) \).

(ii): Sei \(p/(p) \). Wir zeigen \(f(p/(p)) = 2 \). Wäre \(f(p/(p)) = 1 \), so ist also \(O_F/p = \mathbb{Z}/p\mathbb{Z} \). Sei \(a \in \mathbb{Z} \), so dass \(a \equiv \sqrt{d} \mod p \), dann gilt \(a^2 \equiv d \mod p \) und wegen \(p/(p) \) auch \(a^2 \equiv d \mod p \). WS!

(iii): Wir zeigen
\[
(p) = (p)(p, \sqrt{d}/p) = (p, \sqrt{d}).
\]

Zum ersten "\(": Der zweite Faktor ist gleich \(O_F \) denn er enthält \(p \) und \(\sqrt{d} \) und die beiden sind relativ prim denn \(d \) ist quadratfrei. Zum zweiten "\(": Es gilt
\[
p \cdot p = p \cdot p, p\sqrt{d} = p\sqrt{d}, p \cdot \frac{d}{p} = \sqrt{d} \cdot \sqrt{d}.
\]

Es folgt dass jedes \(\mathfrak{p} \) in der Darstellung von \((p) \) mindestens quadratisch auftreten muss.

Sei \(p = 2 \):

(i): Sei \(d \equiv 1 \mod 8 \) (dann ist \(\delta_F = d \) also \(2 \nmid \delta_F \)). Es gilt
\[
(2) = (2, 1 + \sqrt{d}/2, 1 - \sqrt{d}/2) = (2, 1 + \sqrt{d}/2, 1 - \sqrt{d}/2).
\]
Zum ersten "\(": Der zweite Faktor ist gleich \(O_F \). Zum zweiten "\(":
\[
2 \cdot 2 = 2 \cdot 2, 2 \cdot \frac{1 + \sqrt{d}}{2} = \frac{1 + \sqrt{d}}{2}, 2 \cdot \frac{1 - \sqrt{d}}{2} = \frac{1 - \sqrt{d}}{2},
\]
\[
\frac{2 - 1 - d}{8} = \frac{1 + \sqrt{d}}{2}, \frac{1 - \sqrt{d}}{2}.
\]

Weiter kann nicht \((2, \frac{1 + \sqrt{d}}{2}), (2, \frac{1 - \sqrt{d}}{2}) \subseteq p \), denn sonst \(1 \in \mathfrak{p} \).

(ii): Sei \(d \equiv 5 \mod 8 \) (wieder ist \(\delta_F = d \) also \(2 \nmid \delta_F \)). Sei \(p|(2) \), und angenommen \(f(p/(2)) = 1 \). Dann existiert \(a \in \mathbb{Z} \) mit \(a \equiv \frac{1 + \sqrt{d}}{2} \mod p \). Da \(\frac{1 + \sqrt{d}}{2} \) der Gleichung \(X^2 - X + \frac{1 - d}{4} = 0 \) genügt folgt \(a^2 - a + \frac{1 - d}{4} = 0 \mod p \) also auch
\[
a^2 - a + \frac{1 - d}{4} \equiv 0 \mod (2).
\]
Da stets \(a^2 - a \equiv 0 \mod 2 \) folgt \(2|\frac{1 - d}{4} \) d.h. \(d \equiv 1 \mod 8 \). WS!
2.7. **QUADRATISCHE ZAHLKÖRPER, KREISTEILUNGSKÖRPER**

(iii): Sei $2|\delta_F$. Dann muß $d \equiv 2,3 \mod 4$ sein. Für $d \equiv 2 \mod 4$ gilt

$$(2) = \left(2, \sqrt{d}\right)^2,$$

für $d \equiv 3 \mod 4$ gilt

$$(2) = \left(2, 1 + \sqrt{d}\right)^2.$$

\[\square\]

2.7.4 Satz. Sei $d < 0$. Dann gilt

(i) $d = -1 \Rightarrow O_F^* = \{1, i, -1, -i\}$

(ii) $d = -3 \Rightarrow O_F^* = \{\pm 1, \pm w, \pm w^2\}$ mit $w = \frac{-1 + \sqrt{-3}}{2}$

(iii) $d < -3, d = -2 \Rightarrow O_F^* = \{\pm 1\}$

Sei $d > 0$. Dann gibt es eine Einheit $u > 0, u \in O_F \subseteq \mathbb{R}$, sodaß

$O_F^* = \{\pm u^m : m \in \mathbb{Z}\}$.

Beweis. Sei $d < 0$.

• $d \equiv 2,3 \mod 4$. Ist $u \in O_F^*$, schreibe $u = x + y \sqrt{d}, x, y \in \mathbb{Z}$. Dann ist

$$\pm 1 = N(u) = x^2 + |d|y^2.$$

Ist $d = -1$, folgt (i). Ist $|d| > 1$ folgt $u = \pm 1$.

• $d \equiv 1 \mod 4$. Schreibe $u \in O_F^*$ als $u = \frac{x + y \sqrt{d}}{2}$ mit $x, y \in \mathbb{Z}, x \equiv y \mod 2$. Dann ist

$$\pm 1 = N(u) = \frac{x^2 + |d|y^2}{4},$$

also $x^2 + |d|y^2 = 4$. Im Fall $d = -3$ erhält man aus $x^2 + 3y^2 = 4$ die Möglichkeiten

(ii). Ist $|d| > 3$, folgt $u = \pm 1$.

Sei $d > 0$:

• Wähle $x, y \in \mathbb{N}$ eine Lösung der Pellschen Gleichung $x^2 - dy^2 = 1$. Dann ist

$$1 = N(u) = u \cdot u',$$

und $u > 1$. Wähle $M > u$.

• Es gibt nur endlich viele $\alpha \in O_F$ mit $\max\{|\alpha|, |\alpha'|\} \leq M$: In jedem Fall läßt sich $\alpha \in O_F$ schreiben als $\alpha = \frac{x + y \sqrt{d}}{2}$ mit gewissen $x, y \in \mathbb{Z}$. Wegen $\alpha' = \frac{x - y \sqrt{d}}{2}$ folgt

$$\max\{|\alpha|, |\alpha'|\} = \frac{|x| + |y| \sqrt{d}}{2},$$

• Ist $v \in O_F^*$, $1 < v < M$, so ist $v' = \pm \frac{1}{v}$, also $1 < v' < 1$. Es kann daher nur endlich viele solche v geben.

• Sei ϵ die kleinste Einheit $1 < \epsilon < M$. Ist $\tau \in O_F^*, \tau > 0$, sei $s \in \mathbb{Z}$ sodaß $\epsilon^s \leq \tau < \epsilon^{s+1}$. Dann ist also $1 \leq \tau \epsilon^{-s} < \epsilon$ und da $\tau \epsilon^{-s} \in O_F^*$ folgt $\tau \epsilon^{-s} = 1$.

Ist $\tau < 0, \tau \in O_F^*$, so folgt $-\tau = \epsilon^s$, also $\tau = -\epsilon^s$.
2.7.5 Definition. Sei \(m \in \mathbb{N}, \zeta_m := e^{\frac{2\pi i}{m}} \). Der algebraische Zahlkörper \(F = \mathbb{Q}(\zeta_m) \) heißt Kreisteilungskörper der Ordnung \(m \).

Es ist \(\zeta_m \) Nullstelle von \(X^m - 1 \) und es gilt

\[
X^m - 1 = (X - 1)(X - \zeta_m) \cdots (X - \zeta_m^{m-1}),
\]
also ist \(F \) der Zerfallungskörper des (separablen) Polynoms \(X^m - 1 \) und daher ist \(F/\mathbb{Q} \) Galois.

2.7.6 Lemma. Sei \(G = \text{Gal}(F/\mathbb{Q}) \) für \(F = \mathbb{Q}(\zeta_m) \). Dann ist \(G \cong (\mathbb{Z}/m\mathbb{Z})^* \) via \(\vartheta : G \rightarrow (\mathbb{Z}/m\mathbb{Z})^* \) wobei für \(\sigma \in G \) gilt \(\sigma \zeta_m = \zeta_m^{\vartheta(\sigma)} \). Also ist \([F : \mathbb{Q}] = \varphi(m) \), wobei \(\varphi \) die Eulersche \(\varphi \)-Funktion bezeichnet.

Beweis. Ist \(\sigma \in G \) so folgt aus \(\zeta_m^m = 1 \) auch \((\sigma(\zeta_m))^m = 1 \), also

\[
\sigma \zeta_m = \zeta_m^{\vartheta(\sigma)}
\]

für ein geeignetes \(\vartheta(\sigma) \in \mathbb{Z}/m\mathbb{Z} \). Da \(\sigma^{-1} \) existiert und \(\zeta_m = \zeta_m^1 \) folgt \(\vartheta(\sigma) \in (\mathbb{Z}/m\mathbb{Z})^* \). Wegen \(F = \mathbb{Q}(\zeta_m) \) ist \(\vartheta \) injektiv.

Sei \(f \) das Minimalpolynom von \(\zeta_m \), dann gilt \(f \in \mathbb{Z}[X] \) und \(X^m - 1 = f(X) \cdot h(X) \) für ein gewisses \(h \in \mathbb{Z}[X] \). Sei \(p \) prim, \(p \nmid m \). Angenommen \(f(\zeta_m^p) \neq 0 \). Dann folgt \(h(\zeta_m^p) = 0 \). Betrachte modulo \(p \) Dann ist \(h(X^p) \equiv h(X)^p \), also \(h(\zeta_m^p) \equiv 0 \) und damit haben \(f \) und \(h \) modulo \(p \) einen gemeinsamen Faktor. Also hat \(X^m - 1 \) modulo \(p \) mehrfache Nullstellen, ein Widerspruch, denn \((X^m - 1)^m = mX^{m-1} \) hat nur die Nullstelle 0. Es folgt dass für jedes \(a \) mit \((a, m) = 1 \) gilt \(f(\zeta_m^a) = 0 \). Damit ist \(\vartheta \) surjektiv.

\[
\phi_m(X) := \prod_{(a, m) = 1} (X - \zeta_m^a). \phi_m \text{ heißt } m \text{-tes Kreisteilungspolynom. Offenbar gilt } \prod_{d|\text{max}} \phi_d(X) = X^m - 1.
\]

2.7.7 Lemma. Es gilt \(\phi_m(X) \in \mathbb{Z}[X] \), \(\phi_m \) ist irreduzibel.

Beweis. Es gilt \(\phi_m(X) = \prod_{\sigma \in G} (X - \sigma \zeta_m) \), also ist \(\phi_m \) das Minimalpolynom von \(\zeta_m \) über \(\mathbb{Q} \). Wegen \(\zeta_m \) ganz und \(\mathbb{Z} \) ganz abgeschlossen gilt \(\phi_m \in \mathbb{Z}[X] \).

2.7.8 Lemma. Sei \(p \) Primzahl, \(p \nmid \mathfrak{p} \), \(\mathfrak{p} \in \text{Spec} \mathbb{O}_F, \mathfrak{p}/(p), \zeta := \zeta_m \). Dann sind \(1, \zeta, \ldots, \zeta^{m-1} \) verschiedene Elemente in \(O_F/\mathfrak{p} \). Es gilt:

\[
p^{f(\mathfrak{p}/(p))} \equiv 1 \mod m.
\]

Beweis. Es gilt \(1 + X + \ldots + X^{m-1} = \prod_{i=1}^{m-1} (X - \zeta^i) \), also folgt \((X = 1) \)

\[
m = \prod_{i=1}^{m-1} (1 - \zeta^i).
\]

Da \(p \nmid m \) ist \(m \not\equiv 0 \mod \mathfrak{p} \). Also folgt \(\zeta^i \not\equiv 1 \mod \mathfrak{p} \) für alle \(i = 1, \ldots, m-1 \). Damit ist \(i \neq j \mod \mathfrak{p} \) für alle \(0 \leq i, j \leq m-1, i \neq j \).

Die Elemente \(\{1, \zeta, \ldots, \zeta^{m-1}\} \) sind also eine Untergruppe von \((O_F/\mathfrak{p})^* \) mit Ordnung \(m \). Es folgt \(m|(p^f(\mathfrak{p}/(p)) - 1) \).
2.7. QUADRATISCHE ZAHLKÖRPER, KREISTEILUNGSKÖRPER

2.7.9 Lemma. Es gilt $\Delta(1, \zeta, \ldots, \zeta^{(m)-1}) \mid m^{\phi(m)}$.

Beweis. Es gilt $X^m - 1 = \phi_m(X)g(X)$ für ein gewisses $g \in \mathbb{Z}[X]$. Es folgt $mX^{m-1} = \phi'_m(X)g(X) + \phi_m(X)g'(X)$ und damit

$$m\zeta^{m-1} = \phi'_m(\zeta)g(\zeta).$$

Wegen $N(\zeta) = \pm 1$ folgt

$$\pm m^{\phi(m)} = N\left(\phi'_m(\zeta)\right)N\left(g(\zeta)\right) = \pm \Delta(1, \zeta, \ldots, \zeta^{(m)-1})N\left(g(\zeta)\right).$$

\[\square\]

2.7.10 Lemma. Sei p Primzahl, $p \nmid m$. Dann gilt

(i) $O_F \equiv \mathbb{Z}[\zeta] \mod (p)_{O_F}$.

(ii) Ist $n \in \mathbb{N}$ mit $p^n \equiv 1 \mod m$, so gilt $w^{p^n} \equiv w \mod (p)_{O_F}$, $w \in O_F$.

(iii) $\sigma_w w \equiv w^p \mod (p)_{O_F}$, $w \in O_F$ ($\sigma_w(\zeta) = \zeta^p$).

Beweis.

\[\square\]

2.7.11 Satz. Sei p Primzahl, $\mathfrak{P} \in \text{Spec} O_F$, $\mathfrak{P} / (p)$. Dann gilt: Ist p ungerade so ist \mathfrak{P} verzweigt ($e(\mathfrak{P} / (p)) > 1$) $\iff p \mid m$. Ist $p = 2$ so ist \mathfrak{P} verzweigt $\iff 4 \mid m$. Genauer gilt

(i) Sei $p \nmid m$ und sei $f \in \mathbb{N}$ die kleinste Zahl mit $p^f \equiv 1 \mod m$. Dann ist

$$p_{O_F} = \mathfrak{P}_1 \cdot \ldots \cdot \mathfrak{P}_r$$

mit paarweise verschiedenen \mathfrak{P}_i. Es ist $f(\mathfrak{P} / (p)) = f$ und $r = \left(\frac{m}{f}\right)$.

\[\square\]
(ii) Angenommen m ist prim. Sei $p = m$, dann ist (p) vollständig verzweigt, es gilt für $\mathfrak{P} := (1 - \zeta_p)_{O_F} \in \text{Spec } O_F$ daß $f(\mathfrak{P}/(p)) = 1$ und

$$(p)_{O_F} = \mathfrak{P}^{p^{-1}}$$

Beweis.

1) Sei $p \nmid m$, dann ist \mathfrak{P} unverzweigt: Angenommen $pO_F \subseteq \mathfrak{P}^2$. Wähle $w \in \mathfrak{P} \setminus \mathfrak{P}^2$. Es gilt (für ein n mit $p^n \equiv 1 \mod m$)

$$w^{p^n} \equiv w \mod pO_F$$

und daher $w^{p^n} \equiv w \mod \mathfrak{P}^2$. Wegen $p^n \geq 2$ ist $w^{p^n} \in \mathfrak{P}^2$ und damit auch $w \in \mathfrak{P}^2$. Wegen Lemma 2.7.8 gilt $p^{f_1} \equiv 1 \mod m$ und daher $f|f_1$.

Also ist $f = f(\mathfrak{P}/(p))$. Nach obigem ist $e(\mathfrak{P}/(p)) = 1$ und es folgt

$$r = \frac{|F: \mathfrak{P}|}{ef} = \frac{\varphi(m)}{f}.$$
2.7. QUADRATISCHE ZAHLKÖRPER, KREISTEILUNGSKÖRPER

.) Sei \(p = 2, 4|m \). Dann ist \(i \in \Omega(\zeta_m) \) und klarerweise ist \(i \in O_F^\ast \). Wegen
\[(1 - i)^2 = (-i)^2 \text{ folgt}
\]
\[(2)_{OF} = (1 - i)^2_{OF}\]
und es folgt wie oben das alle \(\mathfrak{p}/(2) \) verzweigt sind.

\(\square\)

2.7.12 Korollar. Sei \(\mathfrak{p}/(p), \ p \mid m \). Dann ist \(G_{\mathfrak{p}} = \langle \sigma_p \rangle \).

Beweis. Sei \(w \in \mathfrak{p} \). Dann gilt \(\sigma_p(w) \equiv w^p \equiv 0 \mod \mathfrak{p} \), also \(\sigma_p \mathfrak{p} \subseteq \mathfrak{p} \). Da \(\sigma_p \mathfrak{p} \) maximal ist folgt \(\sigma_p \mathfrak{p} = \mathfrak{p} \). Es gilt \(r \cdot |G_{\mathfrak{p}}| = \varphi(m) \), also muß \(|G_{\mathfrak{p}}| = f \) sein. Nun ist \(f \) die Ordnung von \(\sigma_p \), also \(f = |\langle \sigma_p \rangle| \).

\(\square\)

2.7.13 Satz. Sei \(m \) prim. Dann gilt \(O_F = \mathbb{Z}[\zeta] \).

Beweis.

.) Die Inklusion \(O_F \supseteq \mathbb{Z}[\zeta] \) ist klar. Sei \(\alpha \in O_F, \alpha = a_0 + a_1 \zeta + \ldots + a_{m-2} \zeta^{m-2} \) mit gewissen \(a_i \in \mathbb{Q} \) (beachte \([F : \mathbb{Q}] = \varphi(m) = m - 1 \)).

.) Es gilt \(ma_i \in \mathbb{Z} \): Da \(m \) prim ist, ist \(\deg \phi_m = [F : \mathbb{Q}] = \varphi(m) = m - 1 \), also
\(\phi_m(X) = 1 + X + \ldots + X^{m-1} \). Es folgt

\[\text{tr} \ z = -1, \ m \mid j. \]

Also ist (\(s = 0, \ldots, m - 2 \))

\[\text{tr}(\alpha z^{-s}) = \text{tr}(a_0 z^{-s} + a_s + \ldots + a_{m-2} z^{m-2-s}) = \]
\[= -a_0 - \ldots - a_{s-1} + (m - 1)a_s - a_{s+1} - \ldots - a_{m-2}, \]
und daher

\[\text{tr}(\alpha z^{-s} - \alpha z) = ma_s. \]

Wegen \(\alpha z^{-s} - \alpha z \in O_F \) folgt \(ma_s \in \mathbb{Z} \).

.) Sei \(\lambda := 1 - \zeta \), dann gilt \((m)_{OF} = (\lambda)^{m-1}_{OF} \). Schreibe

\[ma = b_0 + b_1 \lambda + \ldots + b_{m-2} \lambda^{m-2}, b_i \in \mathbb{Z}. \]

Wegen \(ma \in (m)_{OF} \subseteq (\lambda)_{OF} \) folgt \(\lambda b_0 \in O_F \). Wegen \(m = \lambda^{m-1} u \) für ein \(u \in O_F^\ast \) gilt

\[m^{m-1} = N(m) = \pm N(\lambda^{m-1}) = \pm N(\lambda)^{m-1} \]
und es folgt wegen \(N(\lambda)|N(b_0) \) in \(\mathbb{Z} \) auch \(m^{m-1} | (b_0^{m-1})^{m-1} \) in \(\mathbb{Z} \). Da \(m \) prim folgt \(m|b_0 \). Also folgt \(\lambda^{m-1} | b_0 \) in \(O_F \) und wir erhalten wegen \(ma \in (m)_{OF} \subseteq (\lambda^2)_{OF} \) auch

\[\lambda^2 | b_1 \lambda \in O_F, \]
also \(\lambda | b_1 \) in \(O_F \). Nimmt man die Norm so folgt wieder \(m|b_1 \). Fährt man so fort erhält man \(m|b_i, i = 0, \ldots, m - 2 \), also

\[\alpha = \frac{b_0}{m} + \frac{b_1}{m} \lambda + \ldots + \frac{b_{m-2}}{m} \lambda^{m-2} \in \mathbb{Z}[\lambda] = \mathbb{Z}[\zeta]. \]
Wir betrachten als weiteres Beispiel den algebraischen Zahlkörper $K = \mathbb{Q}(\sqrt{2})$. Dieser ist nicht Galois, die Homomorphismen von K/\mathbb{Q} sind gegeben durch

\[
\begin{align*}
\text{id} & : 3\sqrt{2} \mapsto 3\sqrt{2} \\
\sigma_1 & : 3\sqrt{2} \mapsto \zeta_3 3\sqrt{2} \\
\sigma_2 & : 3\sqrt{2} \mapsto \zeta_3^2 3\sqrt{2}
\end{align*}
\]

wobei $\zeta_3 = e^{\frac{2\pi i}{3}}$.

Wir wollen zunächst (für allg. $\mathbb{Q}(\sqrt[m]{m})$ siehe [Narkiewicz] O_K bestimmen. Dazu brauchen wir ein Lemma.

\textbf{2.7.14 Lemma.} Sei $K = \mathbb{Q}(a)$, $a \in O_K$ ein algebraischer Zahlkörper, $f(X)$ das Minimalpolynom von a. Sei angenommen daß f Eisenstein ist bezüglich einer Primzahl p, d.h. mit $f(X) = X^m + \ldots + a_0$ gilt

\[p|a_i, \ i = 0, \ldots, m-1, \ p^2 \not| a_0.\]

Dann ist der Index $[O_K : \mathbb{Z}[a + \ldots + Za^{n-1}]]$ nicht durch p teilbar.

\textbf{Beweis.} Wegen $a^n = -(a_{n-1}a^{n-1} + \ldots + a_0)$ und $p|a_i$ ist $\frac{a^n}{p} \in O_K$. Weiter ist $N_K^O(a) = a_0$ nicht durch p^2 teilbar.

Setze $M = \mathbb{Z} + Za + \ldots + Za^{n-1}$, $m = [O_K : M]$. Angenommen $p|m$.

Dann existiert ein Element $\xi \in O_K$ sodass

\[\xi \not\in M, \ p\xi \in M.\]

Denn $O_{K/M}$ ist eine abelsche Gruppe der Ordnung m, und wegen $p|m$ existiert ein Element mit Ordnung p. Dann ist also $\xi = (b_0 + b_1a + \ldots + b_{n-1}a^{n-1})\frac{1}{p}$ mit gewissen $b_i \in \mathbb{Z}$ so daß nicht alle b_i durch p teilbar sind. Sei f minimal so daß $p \not| b_j$, und betrachte

\[\eta := (b_ja^j + \ldots + b_{n-1}a^{n-1})\frac{1}{p} = \xi - \left(\frac{b_0}{p} + \frac{b_1}{p} a + \ldots + \frac{b_{j-1}}{p} a^{j-1}\right) \in O_K.
\]

Es folgt

\[\zeta := b_ja^{n-1}\frac{1}{p} = \frac{a^n}{p} - \left(\frac{b_{j+1}}{p} a^{j+1} + \ldots + \frac{b_{n-1}}{p} a^{n-2}\right) \in O_K.
\]

Es folgt

\[N(\zeta) = b_j^nN(a)^{n-1}\frac{1}{p^n} \in \mathbb{Z}.
\]

Da $p^2 \not| N(a)$ folgt $p|b_j^n$ und damit $p|b_j$ WS!.

\textbf{2.7.15 Satz.} Sei $K = \mathbb{Q}(\sqrt{2})$. Dann gilt

\[O_K = \mathbb{Z}[\sqrt{2}].\]
2.7. QUADRATISCHE ZAHLKÖRPER, KREISTEILUNGSKÖRPER

Beweis. Setze $\alpha = \sqrt[3]{2}$. Das Minimalpolynom ist $f(X) = X^3 - 2$. Wegen Satz 2.6.5 gilt

$$\Delta(1, \alpha, \alpha^2) = (-1)^3N(3\sqrt[3]{4}) = 3^3 \cdot 2^2.$$

Sei $m = [O_K : \mathbb{Z}[\alpha]]$. Dann gilt wegen Satz 2.6.10

$$\pm 3^3 \cdot 2^2 = m^2 \delta_K \quad (2.1, \ast)$$

f ist Eisenstein bzgl. 2, also gilt $2 \nmid m$. Betrachte das Element $\beta = \alpha - 2$. Sein Minimalpolynom ist

$$g(X) = f(X + 2) = (X + 2)^3 - 2 = X^3 + 3 \cdot 2X^2 + 3 \cdot 4X + 6.$$

Es gilt $\mathbb{Z}[\alpha] = \mathbb{Z}[\beta]$, also auch $m = [O_K : \mathbb{Z}[\alpha]] = [O_K : \mathbb{Z}[\beta]]$ und $\Delta(1, \alpha, \alpha^2) = \Delta(1, \beta, \beta^2)$. Da g Eisenstein bzgl. 3 ist folgt $3 \nmid m$.

Wegen (2.1, *) folgt $m = 1$.

Wir betrachten das Primideal (5). Es gilt

$$X^3 - 2 \equiv (X - 3)(X^2 + 3X - 1) \mod 5$$

und $X^2 + 3X - 1$ ist irreduzibel $\mod 5$ denn es hat keine Nullstelle (ausprobieren).

Wegen Satz 2.5.2 erhält man

$$5O_K = \mathfrak{p}_1 \mathfrak{p}_2$$

wobei $f(\mathfrak{p}_1/(5)) = 1$, $f(\mathfrak{p}_2/(5)) = 2$.
Kapitel 3

Die Riemannsche Zetafunktion: Definition

3.1 Die Riemannsche Zetafunktion

Zuerst einige Resultate über Dirichlet-Reihen.
Seien \((a_n)_{n \in \mathbb{N}}\) und \((b_n)_{n \in \mathbb{N}}\) Folgen komplexer Zahlen. Setze \(A_n := a_1 + \ldots + a_n, B_n := b_1 + \ldots + b_n\). Dann gilt

\[
\sum_{n=1}^{N} a_n b_n = A_N b_N + \sum_{n=1}^{N-1} A_n (b_n - b_{n+1})
\]

Eine Dirichlet-Reihe ist eine Reihe der Gestalt

\[
\sum_{n=1}^{\infty} \frac{a_n}{n^s}, \quad s \in \mathbb{C},
\]

wobei \((a_n)_{n \in \mathbb{N}}\) eine Folge komplexer Zahlen ist. Schreibe im folgenden \(s = \sigma + it\) mit \(\sigma, t \in \mathbb{R}\).

3.1.1 Lemma. Ist die Dirichlet-Reihe \(\sum_{n=1}^{\infty} \frac{a_n}{n^s}\) konvergent für ein \(s = s_0\), so auch für alle \(s\) mit \(\text{Re}\, s > \text{Re}\, s_0\), und zwar gleichmäßig auf allen kompakten Teilmengen dieser offenen Halbebene.

Beweis. Schreibe \(n^s = n^{s_0} n^{(s-s_0)}\) und wende partielle Summation an auf die Reihe

\[
\sum \frac{a_n}{n^s} = \sum \frac{a_n}{n^{s_0}} \cdot \frac{1}{n^{s-s_0}}.
\]

Ist \(P_n(s_0) = \sum_{m=1}^{n} \frac{a_m}{m^s}\), so erhält man

\[
\sum_{k=m+1}^{n} \frac{a_k}{n^{s_0}} = \frac{P_n(s_0)}{n^{s-s_0}} - \frac{P_m(s_0)}{m^{s-s_0}} + \sum_{k=m+1}^{n} P_k(s_0) \left[\frac{1}{k^{s-s_0}} - \frac{1}{(k+1)^{s-s_0}} \right] = (*)
\]

61
Es gilt

\[
\frac{1}{k^{s-s_0}} - \frac{1}{(k + 1)^{s-s_0}} = (s - s_0) \int_k^{k+1} \frac{1}{x^{s-s_0+1}} \, dx.
\]

Sei \(M \) so daß \(|P_k(s_0)| \leq M, \; k \in \mathbb{N} \). Dann ist

\[
\left| \left(s \right) \right| \leq \frac{M}{n^{s-s_0}} + \frac{M}{m^{s-s_0}} + M(s-s_0) \int_{m+1}^{n+1} \frac{1}{x^{s-s_0+1}} \, dx \leq \frac{M(1}{n^{s-s_0}} + \frac{1}{m^{s-s_0}} + \frac{s-s_0}{(m+1)^{s-s_0}}
\]

und dieser Ausdruck strebt für \(m,n \to \infty \) gegen 0 und zwar gleichmäßig auf jedem Kompaktum in \(\{\sigma \geq \sigma_0\} \). □

Die Zahl

\[
\sigma_0 := \inf \left\{ \sigma \in \mathbb{R} : \sum \frac{a_n}{n^\sigma} \text{ konvergiert} \right\}
\]

heißt Konvergenzabzisse von \(\sum \frac{a_n}{n^\sigma} \).

Ist die Dirichlet-Reihe konvergent für \(s_1 = \sigma_1 + it_1 \), so muß gelten \(a_n = o(n^{\sigma_1}) \). Es folgt daß die Reihe in jeder Halbebene \(\{ \text{Re}(s) \geq \sigma_1 + \delta \} \) absolut und gleichmäßig konvergiert. Denn vergleiche mit \(\sum \frac{1}{n^{\sigma+\delta}} \).

Lemma. Sei \(\sigma_1 \geq 0 \) und sei \(A_\infty = a_1 + \ldots + a_n = O(n^{\sigma_1}) \). Dann ist die Konvergenzabzisse von \(\sum \frac{a_n}{n^\sigma} \) stets \(\leq \sigma_1 \).

Beweis. Sei \(|A_\infty| \leq C n^{\sigma_1} \), sei \(\delta > 0 \) und \(\sigma \geq \sigma_1 + \delta \), sei \(P_n(s) = \sum_{k=1}^{n} \frac{a_k}{k^s} \). Dann gilt

\[
P_n(s) - P_m(s) = \frac{A_n}{n^s} - \frac{A_m}{m^s} + \sum_{n=m+1}^{n-1} A_k \left(\frac{1}{k^s} - \frac{1}{(k+1)^s} \right) = \frac{A_n}{n^s} - \frac{A_m}{m^s} + \sum_{k=m+1}^{n-1} A_k \frac{k^{1-s}}{k} \int_k^{k+1} \frac{1}{x^{s+1}} \, dx.
\]

Also folgt

\[
\left| P_n(s) - P_m(s) \right| \leq \frac{C}{n^{\sigma-\sigma_1} + \frac{C}{m^{\sigma-\sigma_1}} + C|s| \int_{m+1}^{\infty} \frac{1}{x^{\sigma+1}} \, dx \leq \frac{C}{n^\sigma + \frac{1}{m^\sigma} + |s| \frac{1}{(m+1)^\sigma}} \to 0, \; m,n \to \infty.
\]

□

Definition. Die Riemannsche Zetafunktion ist definiert als die Reihe

\[
\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}.
\]
3.1. DIE RIEMANNSCHE ZETA-FUNKTION

Die Funktion $\zeta(s)$ ist analytisch auf $\{Re\ s > 1\}$, denn setze in Lemma 3.1.2 $\sigma_1 = 1$. Weiter gilt für $s \in \mathbb{R}$, $s > 1$,

$$\frac{1}{s-1} = \int_1^\infty \frac{1}{x^s} \, dx \leq \zeta(s) \leq 1 + \frac{1}{s-1}.$$

Also folgt

$$1 \leq (s-1)\zeta(s) \leq s, \ s > 1, \quad (3.1, +)$$

3.1.4 Satz. Die Funktion $\zeta(s)$ ist analytisch auf $\{Re\ s > 0\}$ mit Ausnahme des Punktes $s = 1$ wo sie einen Pol erster Ordnung mit Residuum 1 hat.

Beweis.
• betrachte die Dirichlet-Reihe

$$\sum_{n=1}^\infty \frac{(-1)^{n-1}}{n^s} =: \zeta_2(s).$$

Wegen Lemma 3.1.2 ist ζ_2 analytisch auf $\{Re\ s > 0\}$. Nun gilt

$$2 \cdot \frac{\zeta(s)}{2^s} + \zeta_2(s) = \zeta(s),$$

also $\zeta(s)(1 - \frac{1}{2^s}) = \zeta_2(s)$. Daher hat ζ eine analytische Fortsetzung auf $\{Re\ s > 0\}$ mit möglicher Ausnahme der Punkte s mit $2^s = 1$, das sind

$$s = 1 + \frac{2\pi n}{\log 2}, n \in \mathbb{Z}.$$

Dort liegen höchstens Pole. Bei $s = 1$ ist also ein einfacher Pol mit Residuum 1 wegen (3.1, +).

• betrachte die Reihe

$$\zeta_r(s) := 1 + \frac{1}{2^s} + \ldots + \frac{1}{(r-1)^s} - \frac{r-1}{r^s} + \frac{1}{(r+1)^s} + \ldots .$$

Die Partialsummen der Koeffizienten sind $\leq r$, also ist ζ_r analytisch für $Re\ s > 0$.

Es gilt

$$\zeta_r(s) = \left(1 - \frac{1}{r^s}\right)\zeta(s),$$

also ist ζ analytisch auf $\{Re\ s > 0\}$ mit möglicher Ausnahme von

$$s = 1 + \frac{2\pi n}{\log r}, n \in \mathbb{Z}.$$

Es bleibt nur $s = 1$ als Pol möglich, denn wäre z.B.

$$1 + \frac{2\pi m}{\log 3} = 1 + \frac{2\pi n}{\log 2},$$

so wäre $3^m = 2^n$, ein WSI.
3.1.5 Korollar. Sei $(a_n)_{n \in \mathbb{N}}, A_n = a_1 + \ldots + a_n, 0 \leq \sigma_1 < 1, \rho \in \mathbb{C}$. Ist
\[A_n = n \rho + O(n^{\sigma_1}), \]
dann hat die Dirichlet-Reihe
\[f(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} \]
eine analytische Fortsetzung auf $\{\Re s > 0\}$ mit Ausnahme von $s = 1$ wo ein einfacher Pol mit Residuum ρ liegt.

Beweis. Wende Lemma 3.1.2 und Satz 3.1.4 an auf $f(s) - \rho \zeta(s)$.

3.2 Definition von ζ_k
Wir schreiben im folgenden $f \sim g$ wenn sich f und g nur um eine analytische Funktion unterscheiden.

3.2.1 Lemma. Es gilt
(i) (Eulersche Produktdarstellung)
\[\zeta(s) = \prod_{p \in \mathbb{P}} \frac{1}{1 - \frac{1}{p^s}}, \Re s > 1. \]
(ii)
\[\log \zeta(s) = \sum_{p \in \mathbb{P}, m \geq 1} \frac{1}{mp^m s}. \]
(iii)
\[\log \zeta(s) \sim \sum_{p \in \mathbb{P}} \frac{1}{p^s} \sim \log \frac{1}{s - 1}. \]

Beweis. Betrachte die Reihe
\[R = \sum_{p \in \mathbb{P}} \sum_{m \geq 1} \frac{1}{mp^m s}. \]
Es gilt für $\sigma > 1$
\[\sum_{p \in \mathbb{P}} \sum_{m \geq 1} \left| \frac{1}{mp^m s} \right| = \sum_{p \in \mathbb{P}} \sum_{m \geq 1} \frac{1}{mp^m s} = - \sum_{p \in \mathbb{P}} \log \left(1 - \frac{1}{p^s} \right) \]
Wegen $\lim_{p \to \infty} \frac{1}{p^s} = 0$ und $\lim_{s \to 0} \frac{\log(1 - x)}{x} = -1$. Ist diese Reihe mit $\sum_{p \in \mathbb{P}} \frac{1}{p^s}$ konvergent ($\sigma > 1$). Man darf in R also die Summationsreihenfolge austauschen sowie beliebig anordnen. Wegen der absoluten Konvergenz von $\sum_{p} \log(1 - \frac{1}{p^s})$
3.2. Definition von ζ_K

folgt das das Eukl-Produkt absolut konvergiert. Damit ist die Anwendung des Distributivgesetzes erlaubt und man erhält wegen ZPE in \mathbb{Z}:

$$\prod_p \frac{1}{1 - \frac{1}{p^s}} = \prod_p \sum_{m \geq 1} \frac{1}{p^{ms}} = \sum_{n \in \mathbb{N}} \frac{1}{n^s} = \zeta(s).$$

Gleichzeitig folgt

$$\log \zeta(s) = -\sum_p \log \left(1 - \frac{1}{p^s}\right) = \sum_{p \in \text{FZ}, m \geq 1} \frac{1}{mp^m}.$$

Klarerweise ist $\log \zeta(s) \sim \log \frac{1}{s-1}$. Beachte, daß

$$\sum_{p \in \text{FZ}, m \geq 2} \left|\frac{1}{mp^m}\right| = \sum_{p \in \text{FZ}} \sum_{m \geq 2} \frac{1}{mp^m} = \frac{1}{2} \sum_{p \in \text{FZ}} \left(\log(1 - \frac{1}{p^s}) + \frac{1}{p^s}\right).$$

Wegen

$$\lim_{x \to 0} \frac{\log(1 - x) + x}{x^2} = -\frac{1}{2}$$

ist diese Reihe vergleichbar mit $\sum_{p \in \text{FZ}} \frac{1}{p^s}$ und daher konvergent für $\sigma > \frac{1}{2}$ und dort analytisch. Es ist

$$\log \zeta(s) = \sum_p \frac{1}{p^s} + \sum_{p \in \text{FZ}, m \geq 2} \frac{1}{mp^m}.$$

□

Sei nun $k \neq \mathbb{Q}$ ein algebraischer Zahlkörper, $[k : \mathbb{R}] = N$. Es ist für ein $p \in \text{Spec } O_k$, $p/(p)$,

$$N^A_k(p) = (p^{f(p/(p))})_Z = (Np)_Z$$

wo $Np = |O_k/p| = p^{f(p/(p))}$ ist.

3.2.2 Definition. Die Dedekindsche Zetafunktion des algebraischen Zahlkörpers k ist

$$\zeta_k(s) := \prod_{p \in \text{Spec } O_k} \frac{1}{1 - \frac{1}{Np^s}}.$$

3.2.3 Lemma. ζ_k ist analytisch für $\sigma > 1$. Es gilt

(i) $\zeta_k(s) = \sum_{a \in O_k} \frac{1}{N_a^s}$

(ii) $\log \zeta_k(s) = \sum_{p, m \geq 1} \frac{1}{mNp^{ms}}$

(iii) $\log \zeta_k(s) \sim \sum_{p, l_p = 1} \frac{1}{Np^s}$.

DEll. 7 LEll. 8
KAPITEL 3. DIE RIEMANNSCHE ZETAFUNKTION: DEFINITION

Beweis. Es gilt \(\sum_{p/(p)} f_p \leq N \), also gibt es höchstens \(N \) viele \(p/(p) \) und es folgt

\[
\sum_{p, m \geq 1} \left| \frac{1}{m N p^{\sigma m}} \right| \geq \sum_{p \not\in \mathbb{Z}, m \geq 1} \frac{N}{m N p^{\sigma m}} < \infty, \sigma > 1.
\]

Es ist

\[
\sum_p \log \left(1 - \frac{1}{N p^s} \right) \approx 1 \sum_{p, m \geq 1} \frac{1}{N m N p^{\sigma m}} \leq \sum_{p \not\in \mathbb{Z}} \frac{N}{p^s}
\]

absolut konvergent, und damit auch das Produkt in der Definition von \(\zeta_k \) und stellt eine in \(\{ \Re s > 1 \} \) analytische Funktion dar. Weiter ist

\[
\log \zeta_k(s) = - \sum_p \log \left(1 - \frac{1}{N p^s} \right) = \sum_{p, m \geq 1} \frac{1}{m N p^{\sigma m}}.
\]

Die Reihe

\[
\sum_{(p > 1) \vee (m \geq 2)} \frac{1}{m N p^{\sigma m}} = R
\]

vergleicht man mit \(\sum_{p \not\in \mathbb{Z}, m \geq 2} \frac{N}{m p^{\sigma m}} + \sum_{p > 1} \frac{1}{N p^s} \) und die zweite Reihe ist \(\leq \sum_{p \not\in \mathbb{Z}} \frac{N}{p^s} \). Also ist \(R \) konvergent für \(\sigma > \frac{1}{2} \).

\(\square \)
Literaturverzeichnis

[BIV, brueske.et.al] R. BRÜSKE, F. ISCHEBECK, F. VOEGEL:

[I, ireland.rosen] K. IRELAND, M. ROSEN:
A Classical Introduction to Modern Number
Theory, GTM 84, Springer Verlag, 1990.

[L, lang] S. LANG:
Algebraic Number Theory,
GTM 110, Springer Verlag, 1986.

[L, lang/algebra] S. LANG:
Algebra,
GTM 211, Springer Verlag, ???.

[N, narkiewicz] W. NARKIEWICZ:
Elementary and Analytic Theory of Algebraic Num-
bers, ???.

[RV, ramakrishnan.valenza] D. RAMAKRISHNAN, R. VALENZA:
Fourier Analysis on
Number Fields,
GTM 186, Springer Verlag, 1999

[S, stichtenoth] H. STICHTENOTHE: Algebraic Function Fields and Codes,
Springer Verlag, 1993.

[vdW, vdw] B. L. VAN DER WAERDEN:
Algebra I/II,

[W, weil] A. WEIL: Basic Number Theory,
Springer Verlag, 1967.