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1 Introduction and Preliminaries

In [K1] M.G.Krein studied positive definite extensions to the whole real axis
of a continuous positive definite function defined on the intervall [−2a, 2a]. He
generalized some of his results to continuous hermitian functions with a finite
number of negative squares in [K2]. His study has been continued e.g. in [GL],
[KL2], [KL4], [KL5] and, more recently, in [BM], [KW1], [S].

In order to formulate the considered problems properly, we have to introduce
some notation. Denote by C[−2a, 2a] and C(R) the set of continuous complex
valued functions defined on the intervall [−2a, 2a] and R, respectively.

Definition 1.1. Let 0 < a ≤ ∞. We write f ∈ Pκ,a if f is a continuous

hermitian function, i.e. if f ∈ C[−2a, 2a] (C(R)) and f(−t) = f(t) for t ∈ [−2a, 2a]
(t ∈ R), and if the kernel f(t− s) has κ negative squares.

Explicitly this means that for all choices of n ∈ N and ti ∈ (−a, a), i = 1, . . . , n
the quadratic form

Q(ξ1, . . . , ξn) =

n
∑

i,j=1

f(tj − ti)ξiξj

has at most κ negative squares, and that for some choice of n and t1, . . . , tn it
has exactly κ negative squares. For abbreviation we write Pκ instead of Pκ,∞.

It turns out (see [GL]) that a function f ∈ Pκ0,a admits at least one extension
to the whole real axis which is contained in Pκ0

. In fact, in Pκ0
, there exists
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either exactly one or infinitely many extensions of f . However, it is not clear if
there exist extensions of f in Pκ with κ > κ0.

If f ∈ Pκ0,a has infinitely many extensions in Pκ0
, it was shown by M.G.Krein,

H.Langer and others (see [BM], [GL], [KL2], [KL4]) that the extensions of f in Pκ

correspond to certain selfadjoint operators acting in Pontryagin spaces. Under
some additional conditions besides the fact that f has infinitely many extensions
in Pκ0

, e.g. if f has a so called accelerant (see [KL4]) or if κ = κ0 (see [GL]) the
extensions of f in Pκ are parametrized by a formula of the type

i

∫ ∞

0

eiztf̃(t) dt =
w11(z)τ(z) + w12(z)

w21(z)τ(z) + w22(z)
, Im z > h, (1.1)

where h ≥ 0 and where wij(z), i, j = 1, 2 are entire functions, with a parameter
function τ(z) (see also [KL5]). The set of parameter functions depends on κ.

In this paper we show that there exists a number ∆(f) ∈ N ∪ {0,∞}, such
that:

(i) ∆(f) = 0 if and only if f has infinitely many extensions in Pκ0
.

(ii) If 0 < ∆(f) < ∞ then f has exactly one extension in Pκ0
, no extensions

in Pκ for κ0 < κ < κ0 + ∆(f) and infinitely many extensions in Pκ for
κ ≥ κ0 + ∆(f).

(iii) ∆(f) = ∞ if and only if f has exactly one extension in Pκ0
, and no exten-

sions in any set Pκ with κ > κ0.

Using some results of [KW2], we give a parametrization of the extensions f̃ ∈ Pκ,
κ ≥ κ0, of f ∈ Pκ0,a by a formula similar to (1.1). The set of parameter functions
τ(z) depends on ∆(f) and κ. The classical case (i.e. ∆(f) = 0) is also covered,
some of our results are new even for ∆(f) = 0.

In Section 2 we assume that the function f ∈ Pκ0,a has an extension f̃ ∈ Pκ for
some κ > κ0. A certain inner product space L(f, f̃) and a symmetric operator Sf̃

is associated to each extension f̃ ∈ Pκ of f with κ > κ0. It is shown that L(f, f̃)
and Sf̃ are unique up to isometric isomorphisms. In Section 3 we introduce the
notion of a defining set for a function f ∈ Pκ0,a. With a defining set a model,
consisting of a space H and an operator S, is associated. Also some properties of
H and S are investigated. It turns out in Section 4 that f admits an extension
f̃ ∈ Pκ for some κ > κ0 if and only if there exists a defining set. The number
∆(f) then is the number of elements of a minimal defining set. The model, H
and S, can be identified with L(f, f̃) and Sf̃ . It is shown that the extensions of
f correspond to selfadjoint extensions of S and are parametrized by (1.1).
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Throughout this paper we use the notion of linear relations in Pontryagin
spaces, in particular some results concerning symmetric relations provided in
[DS]. For general notation and elementary facts concerning Pontryagin spaces
and their linear operators see [IKL], concerning functions in Pκ,a see [S].

In the remaining part of this section we will fix some notations and recall
some results which are often used in the sequel.

For an inner product space L denote by Ind−L the maximal dimension of a
negative subspace of L, and let Ind0L = dimL◦, where L◦ denotes the isotropic
part of L: L◦ = L ∩ L⊥.

Definition 1.2. Let 0 < a ≤ ∞, f ∈ Pκ0,a and let fx, x ∈ (−a, a), be formal
elements. Denote by L(f) the inner product space

L(f) = {
n
∑

i=1

αifxi
|αi ∈ C, xi ∈ (−a, a)},

endowed with the inner product given by

[fx, fy]f = f(y − x).

The completion of the quotient space L(f)/L(f)◦ will be denoted by H(f).
Note that by definition the elements fx ∈ L(f) are linearly independent.

Moreover, we have
Ind−H(f) = Ind−L(f) = κ0.

Via the embedding g 7→ g(x) = [g, fx] we may regard H(f) as a subspace of
C[−a, a]. By this embedding the element fx corresponds to the right shift of f
by x: fx(t) = f(t− x).

In the remaining part of this section let f ∈ Pκ0,a be fixed. Choose a maximal
negative subspace L− of L(f). A fundamental symmetry J of L(f) is associated
with L− by

Jg =

{

−g , g ∈ L−

g , g ⊥ L−
.

Then
‖g‖f = [Jg, g]f for g ∈ L(f) (1.2)

is a seminorm on L(f). We will drop the indices at inner products and norms
whenever no confusion can occur.

The mapping

V ′
x(f) :

n
∑

i=1

αifyi
7→

n
∑

i=1

αifyi+x (1.3)
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on L(f) defined for those elements such that yi, yi + x ∈ (−a, a), i = 1, . . . , n,
induces a partial isometry on H(f), denoted by Vx(f), with domain

D (Vx(f)) = 〈fy|y + x ∈ (−a, a)〉.

The operators Vx(f) are continuous with respect to ‖.‖f (see [GL]), they are
unitary if and only if a = ∞. Moreover, we have (Vx(f)g)(y) = [Vx(f)g, fy] =
g(y − x).

Clearly the operators Vx(f) satisfy the semigroup property, i.e. Vx(f)Vy(f) =
Vx+y(f). The infinitesimal generator of this semigroup is the closure A(f) of the
operator A′(f) defined by

A′(f)g = i lim
xց0

Vx(f)g − g

x
, g ∈ D (A′(f)) , (1.4)

where

D (A′(f)) = {g ∈
⋃

x>0

D (Vx(f)) ⊆ H(f)| lim
xց0

Vx(f)g − g

x
exists }.

If we consider H(f) as a subspace of C(−a, a) we have, due to [BM] and [DS]:

Lemma 1.3. A(f) is a symmetric operator with equal defect numbers. Its
adjoint is given by

(A(f)∗g)(x) = −ig′(x),

hence

ker (A(f)∗ − z)) =

{

〈eizx〉 if eizx ∈ H(f)
{0} if eizx 6∈ H(f)

,

and A(f) has defect numbers (0, 0) (i.e. is selfadjoint) or (1, 1). The operator
A(f) is not selfadjoint if and only if ker (A(f)∗ − z) 6= {0} for at least κ0 + 1
points of C+. In this case we have

ker (A(f) − z) = 0 for z ∈ C \ R.

If a = ∞, A(f) is selfadjoint.
Note that A(f) is real with respect to the involution g+(x) = g(−x), i.e.

A(f)g+ = (A(f)g)+.

Definition 1.4. The function f ∈ Pκ0,a is called extendable, if it has an
extension in some set Pκ with κ > κ0, and it is called determining, if it has a
unique extension in Pκ0

.
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Remark 1.5. It follows from the considerations in [BM] together with Lemma
2.1 below that f ∈ Pκ0,a admits extensions f̃ ∈ Pκ with κ > κ0 if f is not
determining. This shows that f is extendable if and only if f admits more than
one extension in

⋃

κ≥κ0
Pκ.

Denote by N κ the set of all functions τ meromorphic in C \ R, such that
τ(z) = τ(z) and that the Nevanlinna kernel

Nτ (z, w) =
τ(z) − τ(w)

z − w

has κ negative squares. As usual the set N 0 is augmented by {∞}. The following
result is proved in [GL]:

Proposition 1.6. The function f ∈ Pκ0,a is determining if and only if A(f) is
selfadjoint. If f is not determining the extensions f̃ ∈ Pκ0

of f are parametrized
by the formula

i

∫ ∞

0

eiztf̃(t) dt =
w11(z)τ(z) + w12(z)

w21(z)τ(z) + w22(z)
, Im z > hA(f)

where the parameter τ(z) runs through the Nevanlinna class N 0. Here the matrix
W (z) is a resolvent matrix of A(f), and hA(f) ≥ 0 is such that the spectrum
of any selfadjoint extension of A(f), acting in a Pontryagin space with negative
index κ0, is contained in the strip {z||Im z| ≤ hA(f)}.

For the notion of a resolvent matrix see [KL3], the existence of a number hA(f)

with the above properties is proved in [KL1].

2 Extensions of Functions in Pκ0,a

Throughout this section let f ∈ Pκ0,a be fixed and assume that an extension
f̃ ∈ Pκ, κ > κ0, of f is given. Moreover, let Ã = A(f̃) be as in (1.4).

We call f̃ a generating element of Ã (or, equivalently, call Ã an f̃ -minimal
operator) if

H(f̃) = 〈f̃ , (Ã− z)−1f̃ |z ∈ ̺(Ã)〉.

Lemma 2.1. Let (Tt)t∈R be a strongly continuous group of operators in a Hilbert
space H, and let B be its infinitesimal generator. Assume that ̺(B) ∩ C

+ and
̺(B)∩C− is connected. Let U ⊆ ̺(B) have an accumulation point in C+ and in
C−. Then for any element x ∈ H

〈Ttx|t ∈ R〉 = 〈x, (B − z)−1x|z ∈ U〉.
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Proof : Let L = 〈x, (B − z)−1x|z ∈ ̺(B)〉. We first show that

L = 〈x, (B − z)−1x|z ∈ U〉.

Let (., .) be the scalar product of H and assume that g ⊥ x and g ⊥ (B − z)−1x
for z ∈ U , then

((B − z)−1x, g) = 0, z ∈ U. (2.1)

The function ((B−z)−1x, g) is holomorphic in ̺(B). Since ̺(B)∩C+ and ̺(B)∩
C

− is connected and U has an accumulation point in both components, (2.1)
implies that g ⊥ (B − z)−1x for all z ∈ ̺(B). Hence g ⊥ L.

The relation (γ > 0)

(B − z)−1x = i

∫ ∞

0

eiztTtx dt, Im z > γ,

and the analogous relation for Im z < −γ show that

〈Ttx|t ∈ R〉 ⊇ 〈x, (B − z)−1x|z ∈ ̺(B), |Im z| > γ〉 = L.

To prove the converse inclusion consider the Yoshida approximation

Bz = z2(B − z)−1 − z, z ∈ ̺(B),

of B. It follows that (Bz)
nx ∈ L for all n ∈ N. Thus

etBzx =
∞
∑

n=0

tn

n!
(Bz)

nx ∈ L

and the properties of the Yoshida approximation (see e.g. [Y]) imply that for
t > 0

Vtx = lim
z→+i∞

etBzx ∈ L.

The same considerations with −B instead of B show that Vtx ∈ L for t < 0.

Corollary 2.2. Whenever U ⊆ ̺(Ã) has an accumulation point in C+ and in
C− we have

H(f̃) = 〈f̃ , (Ã− z)−1f̃ |z ∈ U〉.

In particular the element f̃ is generating for Ã.
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Lemma 2.3. If L(f) is degenerated, f is determining. If f̃ ∈ Pκ, κ > κ0, is
an extension of f we have L(f) ⊆ H(f̃).
Proof : Let f̂ be an extension of f . Clearly L(f) ⊆ L(f̂) by the embedding
fx 7→ f̂x.

Assume that h =
n
∑

j=1

αjfxj
∈ L(f̂)◦∩L(f), h 6= 0, then f̂ satisfies the equation

n
∑

j=1

αj f̂(y − xj) = [h, f̂y] = 0 for y ∈ R. (2.2)

Hence f̂ is, as the solution of the difference equation (2.2) with the initial condi-
tion f̂(x) = f(x), x ∈ (−a, a), uniquely determined.

Assume that L(f) is degenerated and let f̂ ∈ Pκ0
be an extension of f . Since

L(f) and L(f̂) has the same negative index we must have L(f)◦ ⊆ L(f̂)◦, thus the
previous part of the proof applies and we find that f admits only one extension
in Pκ0

.
Note that, as f has at least one extension to Pκ0

, the solution of (2.2) is an
element of Pκ0

.
Now let f̃ ∈ Pκ be an extension of f with κ > κ0, then the previous consid-

erations show that L(f̃)
◦
∩ L(f) = {0}, hence L(f) ⊆ H(f̃).

Definition 2.4. Let f̃ ∈ Pκ, κ > κ0 be an extension of f . Denote by L(f, f̃)
the closure of L(f) as a subspace of H(f̃).

The topology of L(f, f̃) is in general strictly finer than the topology induced
by [., .]f̃ , as L(f, f̃) is in general not a regular subspace of H(f̃).

The inner product [., .]f as well as a definite norm ‖.‖f of L(f) are continuous
with respect to the norm ‖.‖f̃ of H(f̃). Therefore we may extend both to L(f, f̃).

Lemma 2.5. If g ∈ L(f, f̃)
◦

and z ∈ ̺(Ã) \ R, the relation

[(Ã− z)−1g, f̃x] = C(z, g)eizx, x ∈ (−a, a)

holds with C(z, g) = [(Ã− z)−1g, f̃ ].
If one of the functions C(z, g) and [(Ã− z)−1g, g] vanishes on a set U which

has an accumulation point in ̺(Ã) \ R, then g = 0.

Proof : Let g ∈ L(f, f̃)
◦
, then

g(x) = [g, fx] = 0 for x ∈ (−a, a).



8

Let Ut = Vt(f̃) be as in (1.3). As (see [KL2], [Ka]) there exists a number hÃ ≥ 0,
such that for Im z > hÃ the relation

(Ã− z)−1g(x) = i

∫ ∞

0

eiztUtg(x) dt = i

∫ ∞

0

eiztg(x− t) dt = i

∫ x

−∞

eiz(x−t)g(t) dt,

holds, we find for x ∈ (−a, a)

(Ã− z)−1g(x) = ieizx

∫ −a

−∞

e−iztg(t) dt = C(z, g)eizx (2.3)

with C(z, g) = i
∫ −a

−∞
e−iztg(t) dt. Substituting x = 0 shows that

C(z, g) = [(Ã− z)−1g, f̃ ]. (2.4)

The relations (2.3) and (2.4) extend to ̺(Ã)∩C+ by analyticity. For Im z < −hÃ

we apply the formulas of [Ka] to −Ã and (U ′
t) = (U−t) and find

(Ã− z)−1g(x) = −ieizx

∫ ∞

a

eiztg(t) dt = C(z, g)eizx,

where again C(z, g) = [(Ã− z)−1g, f̃ ]. These relations extend to ̺(Ã) ∩ C−.
Assume now that C(z, g) = 0 for z ∈ U , where U has an accumulation point

in ̺(Ã) \R. Without loss of generality assume that there exists an accumulation
point in C

+. Then
g ⊥ 〈f̃ , (Ã− z)−1f̃ |z ∈ U ∩ C

+〉,

and a holomorphy argument (compare the proof of Lemma 2.1) shows that

g ⊥ 〈f̃ , (Ã− z)−1f̃ |z ∈ ∩̺(Ã) ∩ C
−〉.

It is proved in [KL2] that the negative index of 〈f̃ , (Ã − z)−1f̃ |z ∈ C− ∩ ̺(Ã)〉
equals the negative index of 〈f̃ , (Ã− z)−1f̃ |z ∈ ̺(Ã) \ R〉. By Corollary 2.2 it is
therefore equal to κ. Let L− be a κ-dimensional negative subspace contained in
〈f̃ , (Ã − z)−1f̃ |z ∈ C− ∩ ̺(Ã)〉, then g ⊥ L−, and g is neutral, by assumption.
This implies g = 0.

To prove the remaining assertion assume on the contrary that

[(Ã− z)−1g, g] = 0 for z ∈ U.

If U has an accumulation point, say, in C+ we find by analyticity that [(Ã −
z)−1g, g] = 0 for z ∈ ̺(Ã)∩C

+. As [(Ã− z)−1g, g] is a real function, this implies
[(Ã− z)−1g, g] = 0 for all z ∈ ̺(Ã). By the resolvent identity, the subspace

〈(Ã− z)−1g|z ∈ ̺(Ã)〉
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is neutral. As the functions (Ã − z)−1g|(−a,a) = C(z, g)eizx|(−a,a) are linearly in-
dependent or equal to 0, this subspace has infinite dimension, a contradiction,
unless C(z, g) = 0 for all but finitely many values of z. The previous part of the
proof shows that then g = 0.

Lemma 2.6. Let f̃ ∈ Pκ, κ > κ0, be an extension of f . Then

H(f) ∼= L(f, f̃)/L(f, f̃)
◦

via the isomorphism fx 7→ f̃x + L(f, f̃)
◦
.

Proof : The mapping fx 7→ f̃x + L(f, f̃)
◦

induces an isometric relation between

the Pontryagin spaces H(f) and L(f, f̃)/L(f, f̃)
◦
. Its domain and range are dense

in the respective space. Hence it extends to an isomorphism (see [B]).

The following proposition generalizes Lemma 2.3 and gives a necessary and suf-
ficient condition for f to be determining.

Proposition 2.7. Let f̃ ∈ Pκ, κ > κ0 be an extension of f . The space L(f, f̃)
is degenerated if and only if f is determining.
Proof : Assume first that f is not determining. Let h ∈ L(f, f̃)

◦
and Ã = A(f̃),

then
[(Ã− z)−1h, f̃x] = C(z, h)eizx, x ∈ (−a, a).

As f is not determining eizx ∈ H(f) for z ∈ C \ R by Lemma 1.3, thus there
exists elements g(z) ∈ L(f, f̃), such that

[g(z), f̃x] = C(z, h)eizx for z ∈ ̺(Ã) \ R, x ∈ (−a, a).

We find that (Ã− z)−1h − g(z) is orthogonal to L(f), hence also to L(f, f̃). In
particular,

[(Ã− z)−1h, h] = [(Ã− z)−1h− g(z), h] = 0. (2.5)

This relation holds for z ∈ ̺(Ã) \ R whenever C(z, h) 6= 0. Lemma 2.5 shows

that h = 0, hence L(f, f̃)
◦

= {0}.
Assume now on the contrary that L(f, f̃) is nondegenerated and that f is

determining. Then L(f, f̃) is a regular subspace of H(f̃) and we find, due to
Lemma 2.6

H(f) = L(f, f̃) ⊆ H(f̃),
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and clearly A(f) ⊆ Ã. Since A(f) is selfadjoint

(Ã− z)−1f̃ = (A(f) − z)−1f̃ ∈ H(f) for z ∈ ̺(Ã) ∩ ̺(A(f))

and it follows from Corollary 2.2 that H(f) = H(f̃), a contradiction as κ > κ0.

Definition 2.8. For z ∈ C \ R denote by Fz the functional defined on L(f) by

Fz(
n
∑

j=1

αjfxj
) =

n
∑

j=1

αje
izxj .

Proposition 2.9. Let dimL(f, f̃)
◦

= δ. The functionals Fz are continuous on
L(f) with respect to ‖.‖f̃ for all z ∈ −̺(Ã) with possible exception of an isolated
set. Moreover, the norm ‖.‖f̃ on L(f) is equivalent to the norm ‖.‖δ defined by

‖g‖2
δ = ‖g‖2 + |Fz1

(g)|2 + . . .+ |Fzδ
(g)|2 (2.6)

for a suitable choice of (mutually different) numbers z1, . . . , zδ. In fact z1, . . . , zδ

can be chosen within any open set U of C.
For any δ′ < dimL(f, f̃)

◦
the norm ‖.‖δ′ on L(f) (defined by a formula similar

to (2.6)) is strictly weaker than ‖.‖f̃ .

Proof : Consider first the case that δ = 0. As in this case L(f, f̃) is regular, the
topology of L(f, f̃) is given by the inner product restricted to L(f, f̃), which is
the same as [., .]. Moreover, Proposition 2.7 shows that f is not determining, i.e.
eizx ∈ H(f) for z ∈ C \ R. By Lemma 2.6 H(f) = L(f, f̃), thus the functionals
Fz are continuous on L(f) with respect to ‖.‖f̃ .

Before we proceed recall that ̺(Ã) is symmetric with respect to the real axis.

Assume now that δ > 0 and let h ∈ L(f, f̃)
◦
. Then the functionals Fz for z ∈ O,

where
O = {z ∈ −̺(Ã)|C(z, h) 6= 0},

are given by

Fz(g) = [g,
1

C(−z, h)
(Ã+ z)−1h], g ∈ L(f),

hence are continuous. The extension (by continuity) of Fz to L(f, f̃) is again
denoted by Fz. We find that the norm (2.6) is continuous with respect to ‖.‖f̃ ,
if z1, . . . , zδ ∈ O. Note that the complement of O has no accumulation point in
̺(Ã) \ R by Lemma 2.5.
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Let U be an open set, then U ∩ (̺(Ã) \ R) 6= ∅. We will construct sequences

h1, . . . , hδ ∈ L(f, f̃)
◦

and z1, . . . , zδ ∈ U , such that 〈h1, . . . , hδ〉 = L(f, f̃)
◦
,

[hi, (Ã+ zi)
−1hi] 6= 0 and C(−zi, hi) 6= 0,

[hj , (Ã+ zi)
−1hi] = 0 for j > i.

Choose h1 ∈ L(f, f̃)
◦
, then Lemma 2.5 shows that there exists a number z1 ∈

U ∩−̺(Ã) \ R, such that

[h1, (Ã+ z1)
−1h1] 6= 0 and C(−z1, h1) 6= 0.

The kernel D1 of the functional [., (Ã + z1)
−1h1] on L(f, f̃)

◦
has codimension 1.

Choose h2 in this kernel, then another application of Lemma 2.5 shows that there
exists z2 ∈ U ∩−̺(Ã), such that

[h2, (Ã+ z2)
−1h2] 6= 0 and C(−z2, h2) 6= 0.

Now consider D2 = ker
(

[., (Ã+ z1)
−1h1]

)

∩ ker
(

[., (Ã+ z2)
−1h2]

)

and proceed

inductively.
The space

L = L(f, f̃) + 〈(Ã+ zi)
−1hi|i = 1, . . . , δ〉

is a closed subspace of H(f̃). It is also nondegenerated: Assume on the contrary
that, for some element g ∈ L(f, f̃) and numbers λ1, . . . , λδ

g1 = g +
δ
∑

i=1

λi(Ã+ zi)
−1hi

is isotropic in L. Multiplication of g1 with hj for j = δ, δ − 1, . . . , 1 shows that

λj = 0 for all j. It follows that g1 = g, i.e. g1 ∈ L(f, f̃)
◦
. Due to the construction

of h1, . . . , hδ we may write

g1 =

δ
∑

i=1

µihi.

Multiplication with (Ã+ zi)
−1hi for i = 1, 2, . . . , δ shows that µi = 0 for all i, i.e.

g1 = 0. Hence the subspace L is regular, and thus its topology, and also that of
L(f, f̃), is induced by the inner product [., .]f̃ restricted to L.

For the definition of the norm ‖.‖δ choose the points z1, . . . , zδ constructed in
the previous paragraph. Let (xn) ∈ L(f, f̃) converge to some element x in the
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norm (2.6). As the inner product of H(f̃) coincides with [., .] on L(f, f̃) it follows
that for y ∈ L(f, f̃)

[xn, y]f̃ → [x, y]f̃ ,

and that
[xn, xn]f̃ → [x, x]f̃ .

Furthermore we have

[xn, (Ã+ zi)
−1hi] = Fzi

(xn) → Fzi
(x) = [x, (Ã+ zi)

−1hi].

These facts imply that xn → x in the norm of L (see [IKL]), hence also in H(f̃).
Thus ‖.‖f̃ is continuous with respect to ‖.‖δ and the induced topologies coincide.

If δ′ < δ choose

h ∈ L(f, f̃)
◦
∩

δ′
⋂

i=1

ker (Fzi
) , h 6= 0.

Then ‖h‖δ′ = 0, but ‖h‖f̃ 6= 0 as h 6= 0. If (xn) is a sequence of elements of L(f)
with xn → h, we find ‖xn‖f̃ → ‖h‖f̃ > 0, but ‖xn‖δ′ → 0, hence ‖.‖δ′ is strictly
weaker than ‖.‖f̃ on L(f).

Let Sf̃ be the restriction of Ã to L(f, f̃). As relations we may write

Sf̃ = Ã ∩ L(f, f̃)
2
.

The following theorem asserts that L(f, f̃) does not depend on f̃ . It will turn
out later, that Sf̃ also does not depend on f̃ .

Theorem 2.10. Let f ∈ Pκ0,a and let f̃ ∈ Pκ, f̃1 ∈ Pκ1
be extensions of f with

κ, κ1 > κ0. Then the mapping

ϕ : f̃x 7→ f̃1,x, x ∈ (−a, a)

induces a bicontinuous linear mapping of L(f, f̃) onto L(f, f̃1) which is isometric
with respect to the inner products [., .]f̃ and [., .]f̃1

.
Proof : Since [., .]f̃ and [., .]f̃1

coincide on L(f), the mapping ϕ is isometric.
Let z1, . . . , zδ be as in Proposition 2.9, then the functionals Fz are continuous

for z in some open subset O of C \ R. Again due to Proposition 2.9 we may
choose points w1, . . . , wδ′ ∈ O, such that the norm of L(f, f̃1) is equivalent to

‖g‖2
δ′ = ‖g‖2 + |Fw1

(g)|2 + . . .+ |Fwδ′
(g)|2.
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As each functional Fwi
is continuous with respect to ‖.‖δ on L(f) we find

‖g‖δ′ ≤ K‖g‖δ, g ∈ L(f)

hence ϕ can be extended to L(f, f̃) by continuity.
The same argument applies to ϕ−1 : f̃1,x 7→ f̃x, and therefore ϕ extends to an

isomorphism of L(f, f̃) onto L(f, f̃1).

Since ϕ is isometric, it maps the isotropic part of L(f, f̃) onto the isotropic part
of L(f, f̃1). In particular we have:

Corollary 2.11. The dimension of L(f, f̃)
◦

is independent of f̃ .
The next proposition shows that an extendable function is in some sense a

limit of not determining functions. For 0 < b < a denote by f(b) the restriction
of f to [−2b, 2b].

Lemma 2.12. Let a > 0 and f ∈ Pκ0,a. Then there exists a number b(f) < a,
such that f(b) ∈ Pκ0,b for b ∈ (b(f), a].
Proof : A maximal negative subspace of L(f) is spanned by elements

yi =

ni
∑

j=1

λi,jfxi,j
, i = 1, . . . , κ0

with xi,j ∈ (−a, a). The assertion follows with b(f) = maxi,j |xi,j|.

Proposition 2.13. Let f ∈ Pκ0,a be extendable. Then for each b ∈ (b(f), a) the
function f(b) is not determining.

Proof : Let f̃ ∈ Pκ with κ > κ0 be an extension of f and assume on the contrary
that f(b) is in the class Pκ0,b and is determining for some value b(f) < b < a. Set
c = b+ a−b

2
, then we have the following inclusions

L(f(b), f̃) ⊆ L(f(c), f̃) ⊆ L(f, f̃) ⊆ H(f̃).

If Ux = Vx(f̃) denotes the family of unitary operators associated with f̃ , we have
with ε = a−b

2
for −ε < x < ε

UxL(f(b), f̃) ⊆ L(f(c), f̃) and UxL(f(c), f̃) ⊆ L(f, f̃).
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As f(b) is determining Proposition 2.7 shows that L(f(b), f̃)◦ 6= {0}. Since

Ind−L(f, f̃) = Ind−L(f(b), f̃),

an element h ∈ L(f(b), f̃)◦ is also isotropic in L(f, f̃). Hence for g ∈ L(f(c), f̃)
and −ε < x < ε we have

[Uxh, g] = [h, U−xg] = 0,

i.e. Uxh ∈ L(f(c), f̃)◦.
For −a < x < a set

σ(Uxh) = sup{y ≤ 0|(Uxh)(y) 6= 0}.

Note that for g ∈ H(f) we have σ(g) > −∞ if and only if there exists y ≤ 0,
such that [g, f̃y] 6= 0. If σ(g) = −∞ consider

σ′(g) = inf{y ≥ 0|g(y) 6= 0}

instead. The fact that 〈f̃x|x ∈ R〉 is dense in H(f̃) shows that at least one of
the numbers σ(h) and σ′(h) is finite. Assume that σ(h) > −∞, then σ(Uxh) =
σ(h) + x, as Ux is the right shift and h(y) = 0 for −a < y < a.

Consider a linear combination

n
∑

i=1

λiUxi
h, λn 6= 0, x1 < x2 < . . . < xn

with xi ∈ (−ε, ε). Let y be such that

σ(h) + xn−1 < y < σ(h) + xn = σ(Uxn
h) and (Uxn

h)(y) 6= 0,

then

[

n
∑

i=1

λiUxi
h, f̃y] =

n
∑

i=1

λi(Uxi
h)(y) = λn(Uxn

h)(y) 6= 0.

Hence
n
∑

i=1

λiUxi
h 6= 0, and we find that the elements Uxh for x ∈ (−ε, ε) span an

infinite dimensional space. As Uxh ∈ L(f(c), f̃)◦ this space is neutral, a contra-
diction.

Proposition 2.13 together with Lemma 2.3 has the following corollary:

Corollary 2.14. If L(f) is degenerated, f is not extendable.
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3 The Model Space

In Theorem 2.10 we have associated to an extendable function a model, i.e. an
inner product space and a symmetric operator. This section is concerned with
the construction and investigation of a certain inner product space (symmetric
operator) which will turn out in Section 4 to coincide with the above mentioned
model.

Let ‖.‖ be a definite seminorm on L(f) as in (1.2), and denote by (., .) the
corresponding inner product.

Definition 3.1. The finite set

{z1, . . . , zn} ⊆ C \ R

is called defining, if there exists an open set O with O∩C+ 6= ∅ and O∩C− 6= ∅,
such that for z ∈ O the functionals Fz are continuous on L(f) with respect to
the seminorm

‖g‖2
n = ‖g‖2 + |Fz1

(g)|2 + . . .+ |Fzn
(g)|2, g ∈ L(f). (3.1)

Remark 3.2. The seminorm ‖.‖n is induced by the inner product

(g1, g2)n = (g1, g2) + Fz1
(g1)Fz1

(g2) + . . .+ Fzn
(g1)Fzn

(g2)

Lemma 1.3 together with the first part of Proposition 1.6 has the following
corollary:

Corollary 3.3. The empty set is defining if and only if f is not determining.
Proof : If the empty set is defining there exist elements h(z) ∈ H(f), such that

Fz(g) = [g, h(z)], g ∈ H(f).

We have in particular
[fx, h(z)] = eizx,

hence A(f) has defect numbers (1, 1) by Lemma 1.3. The converse conclusion
also follows from Lemma 1.3.

The defining set {z1, . . . , zδ} is called minimal if no proper subset of {z1, . . . , zδ} is
defining. For a minimal defining set {z1, . . . , zδ} no functional Fzj

is continuous
with respect to the norm (3.1) constructed with {z1, . . . , zδ} \ {zj} instead of
{z1, . . . , zδ}.
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Remark 3.4. If f is extendable Proposition 2.9 shows that there exists a defining
set.

Assume throughout the following that there exists a defining set {z1, . . . , zδ}.
Without loss of generality we can assume that it is chosen minimal.

Lemma 3.5. If g ∈ L(f) and Fz(g) = 0 for z in some open set, we have g = 0.
In particular the seminorm ‖.‖δ is in fact a norm.

Proof : Let g =
m
∑

n=1

γnfxn
, then Fz(g) =

m
∑

n=1

γne
izxn, which is as a function of

z the Fourier transform of a discret measure with points of increase x1, . . . , xm.
Thus Fz(g) = 0 for all z implies g = 0.

Assume that g ∈ L(f) and ‖g‖δ = 0. As the functionals Fz are continuous
with respect to ‖.‖δ we find that Fz(g) = 0. Hence g = 0.

Denote by H the completion of L(f) with respect to the norm ‖.‖δ. As, for
g, h ∈ L(f),

|[g, h]| ≤ ‖g‖ · ‖h‖ ≤ ‖g‖δ‖h‖δ

holds, the inner product [., .] of L(f) can be extended to H by continuity.

Definition 3.6. The Hilbert space H with the norm ‖.‖δ additionally endowed
with the inner product [., .] is called the model space associated to f .

Note that the topology of H is in general strictly finer than the topology
induced by the inner product.

Remark 3.7. We will see (Corollary 4.4 below) that H does not depend on the
particular choice of a minimal defining set.

Proposition 3.8. Consider the inner product space 〈H, [., .]〉. We have

Ind−〈H, [., .]〉 = κ0,

and
Ind0〈H, [., .]〉 = δ.

Proof : Consider the identity mapping ι : 〈L(f), ‖.‖δ〉 → 〈L(f), ‖.‖〉 and the
canonical projection π : 〈L(f), ‖.‖〉 −→ H(f). Both mappings are continuous,
hence π ◦ ι can be extended to a mapping

ψ : 〈H, ‖.‖δ〉 −→ H(f).
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As π ◦ ι is an isometry with respect to [., .], and [., .] is continuous with respect to
‖.‖δ (the inner product of H(f) is of course continuous with respect to the norm
of H(f)), ψ is also isometric with respect to [., .]. Thus

Ind−〈H, [., .]〉 ≤ Ind−H(f) = κ0,

and in fact equality holds as L(f) ⊆ H.
For 0 ≤ n ≤ δ let

νn = dim {g ∈ H|‖g‖n = 0}.

Note that ν0 = Ind0〈H, [., .]〉 and νδ = 0. If δ = 0 the assertion already follows. If
δ > 0 we have νn ≤ νn−1 ≤ νn+1. For if g, h ∈ H such that ‖g‖n−1 = ‖h‖n−1 = 0,
but ‖g‖n, ‖h‖n 6= 0, we have

‖g‖2
n = |Fzn

(g)|2, ‖h‖2
n = |Fzn

(h)|2,

and thus for appropriate numbers λ, µ ∈ C

‖λg − µh‖2
n = ‖λg − µh‖2

n−1 + |Fzn
(λg − µh)|2 = 0,

which shows that νn−1 ≤ νn + 1. The inequality νn ≤ νn−1 follows from ‖.‖n−1 ≤
‖.‖n.

By the choice of zδ there exists a sequence xs ∈ L(f) with ‖xs‖δ−1 → 0 and
Fzδ

(xs) → 1. It follows that

‖xs − xt‖
2
δ = ‖xs − xt‖

2
δ−1 + |Fzδ

(xs − xt)|
2 → 0,

i.e. (xs) is a Cauchy sequence in the norm ‖.‖δ. Let h1 = lim xs. As ‖.‖δ−1 and
Fzδ

are continuous with respect to ‖.‖δ we find ‖h1‖δ−1 = 0 and Fzδ
(h1) = 1, in

particular h1 6= 0. Therefore νδ−1 = 1.
We proceed inductively: Let n ≥ 2 and note that Fzδ−n+1

|Dn
, where Dn =

L(f)∩
⋂δ

m=δ−n+2 ker (Fzm
) is not bounded with respect to ‖.‖δ−n, as Fzδ−n+1

is not
bounded with respect to this seminorm and Dn has finite codimension. Choose
a sequence xs ∈ Dn with ‖xs‖δ−n → 0 and Fzδ−n+1

(xs) → 1. We find

‖xs − xt‖
2
δ = ‖xs − xt‖

2
δ−n + |Fzδ−n+1

(xs − xt)|
2 → 0,

hence the limit hn = lim xs exists in H and we have ‖hn‖δ−n = 0, but
‖hn‖2

δ−n+1 = |Fzδ−n+1
(hn)|2 = 1. Thus νδ−n = νδ−n+1 + 1. After δ steps we

find that ν0 = δ.
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Remark 3.9. If δ = 0, i.e. f is not determining, the space H is nondegenerated,
and therefore H = H(f). In this case most of the following statements are well
known (see [GL]). Thus we will not consider the case δ = 0 seperately in the
proofs.

The space H can be embedded canonically into a Pontryagin space Pc: Let

H = Hn[+̇]H◦

be a decomposition of H with a closed nondegenerated space Hn, and put

Pc = Hn[+̇](H◦+̇H1)

where H1 is a neutral space and skewly linked to H◦. Clearly, Pc is a Pontryagin
space and

Ind−Pc = κ0 + δ.

By definition the inner product of Pc restricted to H is equal to [., .]. In fact,
the norm of Pc restricted to H is equivalent to ‖.‖δ.

In the sequel we will need another lemma.

Lemma 3.10. Let {z1, . . . , zδ} be a minimal defining set, let h ∈ H◦ and assume
that h ∈ ker (Fz) whenever Fz is continuous, with possible exception of one point
z0. Then h = 0.
Proof : If z0 6= zi for i = 1, . . . , δ we find

‖h‖2
δ = ‖h‖2 + |Fz1

(h)|2 + . . .+ |Fzδ
(h)|2 = 0,

thus h = 0.
Assume now that h 6∈ ker (Fz0

), say for z0 = zδ. Consider the space L = 〈h〉⊥,
where the orthogonal complement has to be understood within H and with respect
to the inner product (., .)δ. Let z be such that Fz is continuous and let Fz be
represented by

Fz(g) = (g, l(z))δ for g ∈ H,

then l(z) ∈ L for z 6= zδ. We show that the norms ‖.‖δ−1 and ‖.‖δ are equivalent
on L. This fact will follow once we have proved that ‖.‖δ is equivalent on H to
the norm induced by

(g1, g2)0 = (g1, g2)+

δ−1
∑

i=1

(g1, l(zi))δ(l(zi), g2)δ +
‖l(zδ)‖2

δ

‖h‖2
δ

(g1, h)δ(h, g2)δ, g1, g2 ∈ H.

If Ph and Pl(zδ) denotes the orthogonal projection onto 〈h〉 and 〈l(zδ)〉, respec-
tively, we find

(g1, g2)0 = ((I − Pl(zδ) + Ph)g1, g2)δ.
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It is proved in [AG], p.96, that

‖Ph − Pl(zδ)‖δ = max

(

sup
g∈〈l(zδ)〉,‖g‖δ=1

‖(I − Ph)g‖δ, sup
g∈〈h〉,‖g‖δ=1

‖(I − Pl(zδ))g‖δ

)

.

As h is not orthogonal to l(zδ) this implies that ‖Ph − Pl(zδ)‖δ < 1, hence
I − Pl(zδ) + Ph is boundedly invertible and we find that the norms ‖.‖δ and ‖.‖0

are equivalent. Denote by P the orthogonal projection of H onto L. Lemma
3.5 shows that h 6∈ L(f), hence the restriction P |L(f) is injective. Therefore we
can consider L as the completion of L(f) with respect to the norm ‖.‖δ−1. Since
l(z) ∈ L for z in some open set which contains points of the upper and lower
half plane, we find that the set {z1, . . . , zδ−1} is defining, a contradiction. Thus
h = 0.

Consider the semigroup V ′
x : L(f) → L(f) of partially defined isometries,

given by (1.3). In the following lemmata we investigate some properties of the
operators V ′

x.

Lemma 3.11. The operators V ′
x, x ∈ (−a, a), are continuous on L(f) with

respect to ‖.‖δ. In fact for some constant B > 0

‖V ′
x‖

2
δ ≤ emaxj(B,2|zj |)a for |x| < a. (3.2)

If g ∈ L(f) is in the domain of V ′
y for some y ∈ (−a, a), then the mapping

x 7→ V ′
xg

is continuous on [0, y], y > 0 ( [y, 0], y < 0).
Proof : It is proved in [GL] that the operators V ′

x considered in the space H(f)
satisfy ‖V ′

x‖ ≤ eB|x| for some B > 0. If g =
∑

l αlfyl
we compute

Fz(V
′
xg) =

∑

l

αlFz(fyl+x) =
∑

l

αle
iz(yl+x) =

= eizx(
∑

l

αle
izyl) = eizxFz(g). (3.3)

We find

‖V ′
xg‖

2
δ = ‖V ′

xg‖
2 +

∑

j

|Fzj
(V ′

xg)|
2 ≤ eBx‖g‖2 +

∑

j

|eizjx|2|Fzj
(g)|2 ≤
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≤ eBx‖g‖2 + max
j

|eizjx|2 ·
∑

j

|Fzj
(g)|2 ≤ max

j
(eBx, |e−izjx|2)‖g‖2

δ.

This shows that

‖V ′
x‖

2
δ ≤ emaxj(B,2|zj |)|x| ≤ emaxj(B,2|zj |)a for |x| < a.

To prove that x 7→ V ′
xg is continuous, it suffices to show that fx depends contin-

uously on x in the norm of L(f). Since f is continuous, we have for x→ x0

[fx − fx0
, fy] = f(y − x) − f(y − x0) → 0,

[fx − fx0
, fx − fx0

] = 2f(0) − f(x− x0) − f(x0 − x) → 0.

The assertion follows from [IKL].

Due to Lemma 3.11 we can extend V ′
x to H. This extension, also denoted by Vx,

has the domain
D (Vx) = 〈fy|y ∈ (−a, a− x)〉.

It follows from (3.2) that the mapping x 7→ Vxg is continuous, even for g ∈ H.

Lemma 3.12. Let 0 ≤ x < a, g ∈ D (Vx), z ∈ C and assume that Fz is
continuous. Then

Fz(Vxg) = eizxFz(g). (3.4)

If g ∈ ker (Vx − λ), we have g ∈ ker (Fz) for all z such that Fz is continuous and
eizx 6= λ.
Proof : Since D (Vx) = 〈fy|y ∈ (−a, a− x)〉 there exists a sequence gn =
∑

i λ
n
i fxn

i
∈ 〈fy|y ∈ (−a, a − x)〉, such that gn → g. The relation (3.3) shows

that
Fz(Vxgn) = eizxFz(gn).

Since Fz is continuous, this implies (3.4).
If Vxg = λg we have

λFz(g) = Fz(Vxg) = eizxFz(g),

hence either λ = eizx or Fz(g) = 0.
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Definition 3.13. Denote by 1
i
S the infinitesimal generator of the semigroup Vx

in H, i.e. let S be the closure of the operator

S ′g = i lim
tց0

Vtg − g

t
(3.5)

with domain

D (S ′) = {g ∈
⋃

tց0

D (Vt) ⊆ H| lim
tց0

Vtg − g

t
exists}.

It is proved in [BM] that S is densely defined.

Proposition 3.14. Let b(f) be as in Lemma 2.12. For b ∈ (b(f), a) the spaces
H(f(b)) are regular subspaces of Pc. If b(f) < b < c < a we have, with the obvious
identifications,

H(f(b)) ⊆ H(f(c)) ⊆ H ⊆ Pc.

Moreover,
⋃

b(f)<b<a

H(f(b)) = H.

The corresponding symmetries Sb = A(f(b)) satisfy

Sb ⊆ Sc ⊆ S.

Moreover,
H/H◦ = H(f) and S/H◦ ⊆ A(f). (3.6)

Proof : We clearly have

L(f(b)) ⊆ L(f(c)) ⊆ H,

where the closure has to be understood with respect to the norm ‖.‖δ of H.
To prove that L(f(b)) is nondegenerated assume on the contrary that h ∈

L(f(b))
◦

and h 6= 0, here the isotropic subspace is understood with respect to the
inner product [., .]. If L− denotes a maximal negative subspace of L(f(b)), we
have h ⊥ L− and of course h ⊥ H◦. Since Ind−Pc = κ0 + δ, dimL− = κ0 and
dimH◦ = δ it follows that h ∈ H◦, i.e. we have

L(f(b))
◦
⊆ H◦,

hence also L(f(b))
◦
⊆ L(f(b′))

◦
for b < b′. Consider the linear space

L =
⋃

b∈(b(f),a)

L(f(b))
◦
⊆ H◦.



22

Note that L 6= {0} and let L = 〈h1, . . . , hn〉, here n ≤ δ < ∞. If hi ∈ L(f(bi))
◦

we have hi ∈ D
(

V a−bi
2

)

and for |x| ≤ a−bi

2

Vxhi ∈ L(f
(

a+bi
2

)
)
◦
⊆ L,

as hi ∈ H◦, V a−bi
2

L(f(bi)) ⊆ L(f
(

a+bi
2

)
) and V a−bi

2

L(f
(

a+bi
2

)
) ⊆ H. Let b = maxi bi

and let ε = a−b
2

, then

L ⊆ D (Vx) and VxL ⊆ L for − ε < x < ε.

Let x ∈ (−ε, ε), x 6= 0. As L is finite dimensional there exists an eigenvalue λ
of Vx with corresponding eigenvector h ∈ L, h 6= 0. Lemma 3.12 implies that
h ∈ ker (Fz) if Fz is continuous and eizx 6= λ. Since {z1, . . . , zδ} is minimal the
values zj are distinct. If x is sufficiently small, hence also the values eizjx are
distinct. Together with L ⊆ H◦ this shows that Lemma 3.10 can be applied,
which yields h = 0, a contradiction. Hence L(f(b)) is a regular subspace of Pc.

This shows that the relation fx 7→ fx + H◦ yields an isometry between the
Pontryagin spaces L(f(b)) and H(f(b)). As its domain and range are dense, it
extends to an isomorphism and we find

L(f(b)) = H(f(b)).

As H(f(b)) ⊆ H(f(c)) ⊆ H as regular subspaces we find Sb ⊆ Sc ⊆ S.
The mapping ϕ : fx + H◦ 7→ fx yields an isometry between the Pontryagin

spaces H/H◦ and H(f), hence extends to an isomorphism. Since the isometry
fx + H◦ 7→ fx is continuous and intertwines the respective shift operators, we
have S/H◦ ⊆ A(f).

This result has a number of corollaries.

Corollary 3.15. Let b ∈ (b(f), a), then f(b) is not determining.
Proof : There exists an open set O, such that for z ∈ O the functionals Fz

are continuous on H, hence also on the regular subspace H(f(b)). It follows that
eizx|(−b,b) ∈ H(f(b)), thus f(b) is not determining.

Similar as in Corollary 2.14 we obtain:

Corollary 3.16. The space L(f) is nondegenerated.
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Corollary 3.17. The relation S is symmetric. Hence R (S − z) is closed for
all z ∈ C \ R.
Proof : The fact that S is symmetric follows from S/H◦ ⊆ A(f), as H◦ is
isotropic.

The remaining assertion follows from [DS], as we can regard S as a symmetric
relation in Pc.

Corollary 3.18. Let z ∈ ̺(A(f)). Then, for h ∈ R (S − z) ∩H◦, we have

k ∈ H◦, if (h; k) ∈ (S − z)−1,

and for h ∈ D (S) ∩H◦ we have

k ∈ H◦, if (h; k) ∈ S.

Proof : Consider the canonical projection π of H onto H(f). Then (h; k) ∈
(S − z)−1h implies that πk = (A(f) − z)−1πh = 0, hence k ∈ H◦. Similar
(h; k) ∈ S implies πk = A(f)πh = 0, hence k ∈ H◦.

Proposition 3.19. We have

S =
⋃

b∈I

Sb

whenever I ⊆ (b(f), a) has the right endpoint a as accummulation point. In
particular

R (S − z) =
⋃

b∈I

R (Sb − z),

if z is such that R (S − z) is closed.
Proof : Clearly S ⊇

⋃

b∈I Sb. To show the reverse inclusion consider the operator
S ′ as given in (3.5) and let g ∈ D (S)′, g ∈ D (Vt) for t ≤ t0. Then, by definition,

−iS ′g = lim
τ→0

Vτg − g

τ
.

For t < t0
2

put

gt =
1

t

∫ t

0

Vsg ds,
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then gt ∈ D (Vτ ) for τ ≤ t0
2
, and

lim
t→0

gt = g.

If τ < t we have

Vτgt − gt

τ
=

1

tτ

(
∫ τ+t

τ

Vsg ds−

∫ t

0

Vsg ds

)

=
1

tτ

(
∫ t+τ

t

Vsg ds−

∫ τ

0

Vsg ds

)

=

=
1

t

(

Vt

1

τ

∫ τ

0

Vsg ds−
1

τ

∫ τ

0

Vsg ds

)

,

hence

lim
τ→0

Vτgt − gt

τ
=
Vtg − g

t
.

It follows that for t < t0
2

the relation gt ∈ D (S)′ and

−iS ′gt =
Vtg − g

t

holds, and we find
lim
t→0

S ′gt = S ′g.

Since 〈fx|x ∈ (−a, a − t0)〉 is dense in D (Vt0) there exists a sequence gn ∈
〈fx|x ∈ (−a, a− t0)〉, such that

lim
n→∞

gn = g.

As each gn is a finite linear combination of elements fx there exists a number
bn ∈ (a− t0

2
, a), bn ∈ I, such that gn ∈ H(f(bn)). Define

gn,t =
1

t

∫ t

0

Vsgn ds,

then, as t < t0
2
, we have gn,t ∈ H(f(bn)), and for τ < t0

2
we have gn,t ∈ D (Vτ ).

Moreover, for some number K > 0

‖gn,t − gt‖δ = ‖
1

t

∫ t

0

Vs(gn − g) ds‖δ ≤

≤ max
s∈[0,t]

‖Vs‖δ · ‖gn − g‖δ ≤ K‖gn − g‖δ,

where the last inequality follows from Lemma 3.11. Hence

lim
n→∞

gn,t = gt.
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A similar computation as above shows that

lim
τ→0

Vτgn,t − gn,t

τ
=
Vtgn − gn

t

holds. As, for t < t0
2

we have Vtgn ∈ H(f(bn)), and for τ < t0
2
− t we have

gn,t ∈ D (Vτ ) and Vτgn,t ∈ H(fbn
), we find that gn,t ∈ D (Sbn

) and

−iSbn
gn,t =

Vtgn − gn

t
.

It follows that for each t < t0
2

lim
n→∞

Sbn
gn,t = S ′gt.

Let ε > 0 be given and choose t > 0, such that

‖gt − g‖δ < ε and ‖S ′gt − S ′g‖δ < ε.

Now choose n ∈ N, such that

‖gn,t − gt‖δ < ε and ‖Sbn
gn,t − S ′gt‖δ < ε,

which implies that

‖g − gn,t‖δ < 2ε and ‖S ′g − Sbn
gn,t‖δ < 2ε.

These facts show that

S ′ ⊆
⋃

b∈I

Sb,

and we find S =
⋃

b∈I Sb.
Since R (S − z) is closed and ϕ : (g, h) 7→ h− zg is a continuous mapping of

S onto R (S − z) we find

R (S − z) =
⋃

b∈I

R (Sb − z).

Recall that, although the inner product of H is in general degenerated, the defect
numbers of an operator in H can be defined as usual (see [KW1]).

Theorem 3.20. The relation S is an operator and has defect numbers (1, 1).
Moreover, each eigenvalue of S is also an eigenvalue of A(f).
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We have
R (S − z) = ker (Fz) (3.7)

if Fz is continuous and R (S − z) is closed. Moreover, for h ∈ H◦

S ∩ (〈h〉 × 〈h〉) = {0}, (3.8)

and for z ∈ C

dim ker (S − z) ≤ dim ker (A(f) − z). (3.9)

If H◦ 6= {0}, we have for each z ∈ ̺(A(f))

R (S − z) + H◦ = H, (3.10)

and, for each h ∈ H◦, h 6= 0, the relation

R (S − z) + 〈h〉 = H (3.11)

holds for all z ∈ ̺(A(f)) with possible exception of finitely many points.
The relation S ∩ (H◦)2 is in fact an operator, its domain has codimension 1

in H◦, and it has no eigenvalues.
Proof : First we are concerned with the proof of (3.7). If Fz is continuous (and
continuously extended to Pc) there exists an element k(z) ∈ Pc, such that

Fz(g) = [g, k(z)] for g ∈ Pc.

Let b ∈ (b(f), a) and denote by Pb the orthogonal projection of Pc onto the
regular subspace H(f(b)). We have for x ∈ (−b, b)

[fx, Pbk(z)] = [fx, k(z)] = eizx,

hence Pbk(z) is a defect element of Sb at z, i.e.

R (Sb − z) = 〈Pbk(z)〉
⊥ = ker (Fz) ∩H(f(b)). (3.12)

From (3.12) and the fact that ker (Fz) is closed it follows that

⋃

b∈I

R (Sb − z) ⊆ ker (Fz) .

To show the reverse inclusion let g ∈ ker (Fz). Let (bn) be a sequence of numbers
b(f) < bn < a, bn ∈ I, increasing to a, and let gn ∈ L(fbn

) be such that gn → g
as n→ ∞. Then, due to (3.12)

gn − [gn,
Pbn

k(z)

‖Pbn
k(z)‖δ

]
Pbn

k(z)

‖Pbn
k(z)‖δ

=
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= gn − [gn, k(z)]
Pbn

k(z)

‖Pbn
k(z)‖δ

1

‖Pbn
k(z)‖δ

∈ R (Sbn
− z) . (3.13)

As gn → g we have
[gn, k(z)] → [g, k(z)] = 0.

Assume that Pbn
k(z) → 0 as n→ ∞. Then we would have [f, Pbn

k(z)] → 0, but

[f, Pbn
k(z)] = [f, k(z)] = 1.

Hence, at least for some subsequence of (bn), the values of 1
‖Pbnk(z)‖δ

remain

bounded. This shows that the second term on the left hand side of (3.13) tends
to 0, and we find

g ∈
⋃

b∈I

R (Sb − z).

Thus Proposition 3.19 shows that (3.7) holds.
To prove (3.8) assume on the contrary that (λh, µh) ∈ S for some h ∈ H◦ and

λ, µ not both zero. Then

(µ− zλ)h ∈ R (S − z) ,

hence h ∈ R (S − z) = ker (Fz) with possible exception of one point z0 = (µ

λ
).

Lemma 3.10 shows that h = 0, thus (3.8) is proved.
Let ϕ be the isometry of H onto H(f) as given in Proposition 3.14. Then ϕ

maps ker (S − z) into ker (A(f) − z). As ker (ϕ) = H◦ and, by (3.8), ker (S − z)∩
H◦ = {0} the restriction ϕ|ker(S−z) is injective. Hence z being an eigenvalue of S
implies z ∈ σp(A(f)) and the relation (3.9) holds. A similar argument shows that
S is an operator: Let (0, h) ∈ S, then (0, ϕh) ∈ A(f). As A(f) is an operator we
obtain ϕh = 0, i.e. h ∈ H◦. The relation (3.8) shows that h = 0.

Let O be as in Definition 3.1. To show that S has defect numbers (1, 1) it
suffices to observe that for z ∈ ̺(A(f)) ∩ C± ∩O

codim(R (S − z)) = 1 and ker (S − z) = {0}.

To prove (3.10) assume the contrary. This yields that H◦ ⊆ R (S − z), as S
has defect numbers (1, 1). Since z ∈ ̺(A(f)) we find that (S−z)−1 is an operator
and satisfies, due to Corollary 3.18, (S−z)−1H◦ ⊆ H◦. Therefore it has a nonzero
eigenvector, which contradicts (3.8).

Finally, to prove (3.11), assume on the contrary that some h ∈ H◦, h 6= 0 is
element of R (S − z) for infinitely many zi ∈ ̺(A(f)), i ∈ N. Let hi = (S−zi)

−1h,
then hi ∈ H◦. Thus the elements hi are linearly dependend, say

n
∑

i=1

λihi = 0 (3.14)
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is a nontrivial vanishing linear combination of minimal lenght. As hi 6= 0 we have
n ≥ 2. Since S is an operator, and hi ∈ D (S), we obtain

(
n
∑

i=1

λi)h+
n
∑

i=1

λizihi = 0. (3.15)

If
n
∑

i=1

λi = 0 we can eliminate from (3.14) and (3.15) the term, say, i = n, and

obtain a shorter nontrivial vanishing linear combination of the elements hi, a

contradiction. Hence
n
∑

i=1

λi 6= 0, and we obtain h ∈ D (S). Repeated application

of S to the relation (3.15) shows that Sjh ∈ D (S) for each j ∈ N0. Clearly
Sjh ∈ H◦, hence the space 〈Sjh〉 is a finite dimensional invariant subspace of S
and is contained in D (S). Thus the operator S has a nonzero eigenvector within
〈Sjh〉, a contradiction to (3.8).

Since (3.10) implies that for z ∈ ̺(A(f)) the relation R (S/H◦ − z) = H/H◦

holds, we have

Corollary 3.21. In the second relation of (3.6) in Proposition 3.14 in fact
equality holds:

S/H◦ = A(f).

Remark 3.22. In the definition of a defining set (Definition 3.1) we could use
the condition

There exist points z± ∈ ̺(A(f))∩C±, z± 6∈ {z1, . . . , zδ}∪{z1, . . . , zδ}, such
that Fz± is continuous with respect to ‖.‖δ.

instead of the condition ”There exists an open set ...”. Then, except of Corollary
3.3, the results of this section remain in principle valid. We choose the weaker
definition to include the case that f is not determining.

4 Parametrization of Extensions

We start this section by showing that extensions of f correspond to extensions
of S.

First let us introduce the notion of the minimal part of a relation. Let
A be a selfadjoint relation in a Pontryagin space P, and let M be a, not
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necessarily closed, subspace of P . Denote by LM the subspace LM =
〈M, (A− z)−1M|z ∈ ̺(A)〉, and put

PM = LM/L◦
M.

The M-minimal part of A is the relation

AM = (A ∩ L2
M)/L◦

M.

The relation AM is again selfadjoint and ̺(AM) ⊇ ̺(A). These facts follow from
some results of [DS].

Lemma 4.1. Assume that there exists a minimal defining set and let H and S
be as in the previous section.

Let A be a selfadjoint relation in a Pontryagin space P with ̺(A) 6= ∅, let
ϕ : H → P be an isometric mapping, and assume that

ϕS = {(ϕa;ϕb) ∈ P2|(a; b) ∈ S} ⊆ A.

If there exists a nontrivial subspace L ⊆ H◦, such that ϕL is invariant under each
resolvent (A − z)−1, then ϕH itself is invariant under each resolvent (A− z)−1.
In this case we have

[(A− z)−1f, f ] = [(A(f) − z)−1f, f ].

Proof : First note that if H is nondegenerated, i.e. δ = 0, the assumptions of
the lemma cannot be satisfied, hence there is nothing to prove.

Choose an element h ∈ L, h 6= 0. Theorem 3.20 shows that for all z ∈ C \ R,
with possible exception of a finite set M , the relation

R (S − z) + 〈h〉 = H

holds. Since a resolvent (A − z)−1 maps ϕR (S − z) into ϕH and 〈ϕh〉 into
ϕL ⊆ ϕH, we find that

(A− z)−1ϕH ⊆ ϕH, z ∈ ̺(A) \M.

As ϕH is a closed subspace of P the invariance of ϕH follows for all z ∈ ̺(A).
Consider the ϕH-minimal part of A. Clearly LϕH = ϕH, and we obtain

from Proposition 3.14 that PϕH = H(f). Since ϕS/ϕH◦ ⊆ AϕH, it follows from
Proposition 3.14 and Theorem 3.20 that AϕH = A(f). Thus

[(A− z)−1f, f ] = [(AϕH − z)−1f, f ] = [(A(f) − z)−1f, f ].
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Note that, since H may be degenerated, ϕ may have a nontrivial kernel.
For a selfadjoint operator Ã let hÃ be such that the spectrum of Ã is contained

in the strip {z||Im z| ≤ hÃ}. The existence of such a number hÃ is proved e.g. in
[IKL].

Proposition 4.2. Assume that {z1, . . . , zδ} is a minimal defining set. Let Ã be
a selfadjoint relation in a Pontryagin space P with ̺(Ã) 6= ∅, and assume that
H ⊆ P and S ⊆ Ã. Then there exists a (unique) function f̃ : R → C, such that

i

∫ ∞

0

eiztf̃(t) dt = [(Ã− z)−1f, f ], Im z > hÃ (4.1)

holds. The function f̃ extends f and is contained in a set Pκ with κ = κ0 or
κ0 + δ ≤ κ ≤ Ind−P.

If Ã is f -minimal, the relation Ã is in fact an operator and we have κ =
Ind−P. Moreover, P = H(f̃) and Ã = A(f̃).
Proof : First note that, due to the fact that S is densely defined in the norm
‖.‖δ of H, we have

H = D (S) ⊆ D
(

Ã
)

(4.2)

in the norm of P, hence f ∈ D
(

Ã
)

.

Consider now the case that Ã is f -minimal. This implies that

D
(

Ã
)

⊇ 〈f, (Ã− z)−1f |z ∈ ̺(Ã)〉 = P,

i.e. Ã is densely defined and hence an operator.
It is shown in [KL2] (Satz 1.5 and Satz 5.3) that there exists a unique function

f̃ defined by (4.1), and that it is an element of Pκ where κ = Ind−P . Moreover,

f̃(x) = [f, Uxf ], x ∈ R,

when Ux is the group of unitary operators generated by Ã. Since Ã ⊇ S we have
(with a similar proof as in [GL]) Ux ⊇ Vx. Hence, for x ∈ (−a, a),

f̃(x) = [f, Uxf ] = [f, Vxf ] = f(x),

i.e. f̃ is an extension of f . Since the mapping ϕ : fx 7→ Uxf is an isometry of
L(f̃) into P, and Ã being f -minimal is equivalent to the fact that

P = 〈Uxf |x ∈ R〉,
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we find that H(f̃) = P. Then clearly A(f̃) = Ã.

In the following let Ã be an arbitrary relation. Put M = D
(

Ã
)

and consider

the M-minimal part of Ã. Note that

LM = D
(

Ã
)

and L◦
M = Ã(0)◦.

If L◦
M ∩H 6= {0} Lemma 4.1 applies with

L = L◦
M ∩H,

and shows that f̃ exists and is in fact the unique extension of f in Pκ0
. If

L◦
M ∩ H = {0} we can regard H as a subspace of PM. We have Ind−PM =

Ind−P − dim Ã(0)◦, and clearly [(Ã− z)−1f, f ] = [(ÃM − z)−1f, f ]. Also clearly
S ⊆ ÃM.

Iterate the process described in the above paragraph. Since the negative index
of the considered Pontryagin space decreases this process must terminate with
either f̃ ∈ Pκ0

or with a relation Ã1 such that Ã1(0)◦ = {0} and [(Ã−z)−1f, f ] =
[(Ã1 − z)−1f, f ]. Decompose Ã1 as

Ã1 = Ã1,s[+̇]Ã1,∞,

with a selfadjoint operator Ã1,s acting in D
(

Ã1

)

. Since Ã1 ⊇ S and D (S) = H

we have D
(

Ã1

)

⊇ H, therefore the operator Ã1,s extends S.

Due to the above considerations we may restrict our attention to the case
of an operator Ã. There exists (see [BM]) a group (Ut)t∈R of unitary operators
which has Ã as its infinitesimal generator, and satisfies Ut ⊇ Vt.

Put M = 〈f〉 and consider the M-minimal part of Ã. Lemma 2.1 shows that

H = 〈Vtf |t ∈ (−a, a)〉 ⊆ 〈Utf |t ∈ R〉 ⊆ LM.

If L◦
M ∩H 6= {0}, Lemma 4.1 applies with

L = L◦
M ∩H,

and shows that f̃ ∈ Pκ0
, when f̃ is the function determined by Ã via (4.1) (see

[KL2]). Otherwise the relation ÃM extends S and is f -minimal. Then the first
part of this proof applies.

In order to apply Proposition 4.2 we have to show that S admits minimal selfad-
joint extension.
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Proposition 4.3. Let S be as above, and assume that δ > 0. Then there exists
a selfadjoint extension of S, which acts in a Pontryagin space with negative index
κ0 + δ and is f -minimal.
Proof : Consider the space Pc (as constructed in the previous section) and
let z ∈ ̺(A(f)) be fixed. The mapping V = (S − z)(S − z)−1 is an isometry of
R (S − z) onto R (S − z). Theorem 3.20 shows that R (S − z)◦ = R (S − z)∩H◦,
hence dimR (S − z)◦ = δ− 1, and similar for R (S − z). Since the dimensions of
the isotropic parts of range and domain of V are equal, V is injective. Let

R (S − z) ∩H◦ = 〈h1, . . . , hδ−1〉,

and put ki = V hi for i = 1, . . . , δ − 1. Then

R (S − z) ∩H◦ = 〈k1, . . . , kδ−1〉.

Choose hδ and kδ such that

〈h1, . . . , hδ〉 = 〈k1, . . . , kδ〉 = H◦.

Fix complements Hn,z and Hn,z of H◦ in H, such that Hn,z ⊆ R (S − z) and
Hn,z ⊆ R (S − z) and choose elements h′i ⊥ Hn,z, k

′
i ⊥ Hn,z for i = 1, . . . , δ, such

that
Pc = Hn,z[+̇](〈h1, . . . , hδ〉+̇〈h′1, . . . , h

′
δ〉),

and also
Pc = Hn,z[+̇](〈k1, . . . , kδ〉+̇〈k′1, . . . , k

′
δ〉).

Moreover, let the bases {hi} and {h′i} (and similar for the k’s) be skewly linked,
i.e. let

[hi, hj ] = [ki, kj] = [h′i, h
′
j] = [k′i, k

′
j] = 0, [hi, h

′
j] = [ki, k

′
j] = δij.

Define an extension U of V by

Uhδ = k′δ, Uh
′
δ = kδ,

Uh′i = k′i, i = 1, . . . , δ − 1.

It is easily checked that U is unitary.
Let Ã be the inverse Cayley transform of U , then Ã is a selfadjoint relation

extending S. Due to (4.2) we have

Ã(0) ⊆ H⊥ = H◦.
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If Ã(0) 6= {0}, Lemma 4.1 applied with L = Ã(0) shows that H is invariant under
each resolvent of Ã. Since U = I + (z − z)(Ã − z)−1 this yields a contradiction
to the definition of U . Hence Ã is an operator.

Put M = 〈f〉 and consider the M-minimal part of Ã. The same argument as
in the last paragraph of the proof of Proposition 4.2 shows that LM ⊇ H, hence
L◦

M ⊆ H◦. If LM is degenerated, Lemma 4.1 applies with L = L◦
M. Similar

as in the previous paragraph this leads to a contradiction to the definition of U ,
thus LM is nondegenerated. Together with the fact H ⊆ LM this shows that
LM = Pc. Hence Ã is an f -minimal extension of S in the space Pc.

These results have a number of corollaries.

Corollary 4.4. Let {z1, . . . , zδ} be a minimal defining set and let f̃ ∈ Pκ,
κ > κ0, be an extension of f . Then

H = L(f, f̃) and S = Sf̃ .

Each minimal defining set contains the same number of points.
Proof : If δ = 0 the assertion is clear, since then L(f, f̃) is a regular subspace.
So consider the case δ > 0. By Proposition 4.3 there exists an extension Ã ⊆ P2

c

of S which holds the properties assumed in Proposition 4.2. If f̃1 is the associated
extension of f , we have Pc = H(f̃1). Hence H = L(f, f̃1). Theorem 2.10 shows
that H = L(f, f̃). Clearly S ⊆ Sf̃ . We show that R

(

Sf̃ − z
)

= R (S − z) for
all z ∈ C \ R with possible exception of an isolated set. This clearly implies that
Sf̃ = S. Assume on the contrary that R

(

Sf̃ − z
)

= H for z in a set M which
has an accumulation point in C \ R. For such z we have

(Ã− z)−1H ⊆ H,

in particular (Ã− z)−1f̃ ∈ H. Let h ∈ H◦, h 6= 0, then

[(Ã− z)−1h, f ] = 0

for z ∈ M . Lemma 2.5 yields h = 0, a contradiction.
To prove the remaining assertion note that for any minimal defining set

{z1, . . . , zδ} we can make the above constructions, hence obtain that

δ = Ind0H = Ind0L(f, f̃)

for a certain extension f̃ of f . The assertion now follows from Corollary 2.11.

Denote the number of points contained in some minimal defining set by ∆(f). If
there does not exist any defining set put ∆(f) = ∞.
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Corollary 4.5. The function f is extendable if and only if ∆(f) <∞, and f is
determining if and only if ∆(f) > 0. If 0 < ∆(f) < ∞, f admits no extensions
in a set Pκ with κ0 < κ < κ0 + ∆(f), but has extensions in Pκ0+∆(f).
Proof : The first assertion follows from the considerations in Corollary 4.4 and
Remark 3.4. The second assertion is a restatement of Corollary 3.3.

Let 0 < ∆(f) <∞ and assume that f̃ ∈ Pκ is an extension of f with κ > κ0.
Then, by Corollary 4.4,

κ = Ind−H(f̃) ≥ Ind−H + Ind0H = κ0 + ∆(f).

The remaining assertion follows from Proposition 4.2 and Proposition 4.3.

Now we are in position to show that extensions of f and extensions of S corre-
spond bijectively.

Proposition 4.6. Let f ∈ Pκ0,a be extendable, i.e. assume ∆(f) < ∞, and let
κ ≥ κ0 + ∆(f). The relation

i

∫ ∞

0

eiztf̃(t) dt = [(Ã− z)−1f, f ], Im z > hÃ (4.3)

establishes a one-to-one correspondence between the extensions f̃ ∈ Pκ of f and
the selfadjoint operator extensions Ã of S which act in some Pontryagin space
P ⊃ H with Ind−P = κ and which are f -minimal.
Proof : We have already proved in Proposition 4.2 that an extension of S leads
to an extension of f .

Assume first that ∆(f) > 0. Let an extension f̃ ∈ Pκ of f be given, then

H = L(f, f̃) ⊆ H(f̃) and S ⊆ A(f̃).

The operators Ux(f̃) form a group of unitary operators and satisfy

[f̃ , Uxf̃ ] = [f̃ , f̃x] = f̃(x).

The relation (4.3) follows from [Ka]. Moreover, Ind−H(f̃) = κ and A(f̃) is f -
minimal.

If ∆(f) = 0 Proposition 2.7 shows that L(f, f̃) = H(f) and S ⊆ A(f̃). Hence,
also in this case the assertion follows. Moreover, it follows from [KL2] that the
correspondence given by (4.3) is one-to-one.
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In the following we use the results of [KW2] on the parametrization of gen-
eralized resolvents in order to obtain a parametrization of the extensions of f .
Proposition 3.8 and Theorem 3.20 show that these results can be applied to the
model space H and the operator S constructed in the previous section.

Definition 4.7. For ν,∆ ∈ N0, denote by K∆
ν the set of all complex valued

functions τ(z), meromorphic in C \ R, which satisfy τ(z) = τ(z) for z in their
domain of holomorphy ̺(τ), and are such that the maximal number of negative
squares of quadratic forms (m ∈ N0, z1, . . . , zm ∈ ̺(τ))

Q(ξ1, . . . , ξm; η0, . . . , η∆−1) =

m
∑

i,j=1

Nτ (zi, zj)ξiξj +

∆−1
∑

k=0

m
∑

i=1

ℜ
(

zk
i ξiηk

)

is ν.
Note that K0

ν = N ν . Let us recall that K∆
ν contains infinitely many elements

if ν ≥ ∆ and is empty if ν < ∆.
Now we obtain from Proposition 4.2 and [KW2] the following theorem:

Theorem 4.8. Let f ∈ Pκ0,a be given and assume that ∆(f) <∞. The relation

i

∫ ∞

0

eiztf̃(t) dt =
w11(z)τ(z) + w12(z)

w21(z)τ(z) + w22(z)
, Im z > hÃ,

establishes a bijective correspondence between the extensions f̃ ∈ Pκ, κ ≥ κ0 +
∆(f), of f and the parameter functions

τ(z) ∈ K∆(f)
κ−κ0

.

If ∆(f) > 0 the unique extension of f in Pκ0
corresponds to the parameter func-

tion τ(z) = ∞.
The matrix

W (z) =

(

w11(z) w12(z)
w21(z) w22(z)

)

is a resolvent matrix associated with the model operator S.
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[GL] M.Grossmann, H.Langer: Über indexerhaltende Erweiterungen eines her-

miteschen Operators im Pontrjaginraum,

Math.Nachr. 64 (1974), 289-317.

[IKL] I.S.Iohvidov, M.G.Krein, H.Langer : Introduction to the Spectral Theory of

Operators in Spaces with an Indefinite Metric,

Akademie Verlag, Berlin 1982.
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