Directing functionals and de Branges space completions in almost Pontryagin spaces

Harald Woracek

Institute for Analysis and Scientific Computing,
Vienna University of Technology, Wiedner Hauptstraße 8–10, Austria
http://www.asc.tuwien.ac.at/~woracek, harald.woracek@tuwien.ac.at

The following theorem holds: Let L be a – not necessarily nondegenerated or complete – positive semidefinite inner product space carrying an antilinear isometric involution, and let S be a symmetric operator in L. If S possesses a universal directing functional $\Phi : L \times \mathbb{C} \to \mathbb{C}$ which is real w.r.t. the given involution, and the closure of S in the completion of L has defect index $(1, 1)$, then there exists a de Branges (Hilbert-) space B such that $x \mapsto \Phi(x, \cdot)$ maps L isometrically onto a dense subspace of B and the multiplication operator in B is the closure of the image of S under this map.

In this paper we consider a version of universal directing functionals defined on an open set $\Omega \subseteq \mathbb{C}$ instead of the whole plane, and inner product spaces L having finite negative index. We seek for representations of S in a class of reproducing kernel almost Pontryagin spaces of functions on Ω having de Branges-type properties. Our main result is a version of the above stated theorem, which gives conditions making sure that Φ establishes such a representation. This result is accompanied by a converse statement and some supplements.

As a corollary, we obtain that if a de Branges-type inner product space of analytic functions on Ω has a reproducing kernel almost Pontryagin space completion, then this completion is a de Branges-type almost Pontryagin space. This is an important fact in applications. The corresponding result in the case that $\Omega = \mathbb{C}$ and L is positive semidefinite is well-known, often used, and goes back (at least) to work of M.Riesz in the 1920’s.