Definitizable normal linear operators on Krein spaces

Michael Kaltenbäck

Vienna University of Technology
Outline

Preliminaries
- Spectral Theorem of normal operators on Hilbert Spaces
- Krein spaces
- Selfadjoint definitizable operators

Dragging operators
- Embedding of Hilbert space in Krein space
- Embedding induced by definitizable operator

Zero-dimensional Ideals
- Structure of zero-dimensional Ideals
- Proper Function Class

Functional Calculus for normal, definitizable operators
- A Function class
- Functional Calculus
- Spectrum of N
Preliminaries

Dragging operators

Zero-dimensional Ideals

Functional Calculus for normal, definitizable operators
Spectral Theorem of normal operators on Hilbert Spaces

Recall: Given a normal $N = A + iB \in B(\mathcal{H})$, i.e. $NN^* = N^*N$,

• there exists unique spectral measure $E: \{\text{Borel-subsets}\} \rightarrow B(H)$ with support $\sigma(N)$ and $N = \int zdE(z)$;

• for $\phi: \sigma(N) \rightarrow \mathbb{C}$ bounded and measurable define, i.e. $\phi \in B(\sigma(N))$

\[\phi(N) := \int \phi(z) dE(z) \in \{N, N^*\}' \subseteq B(H) ; \]

• $\phi \mapsto \phi(N)$ is \ast-homomorphism s.t. for $\phi(z) = s(\text{Re}z, \text{Im}z)$ with $s \in \mathbb{C}[x,y]$ we have $\phi(N) = s(A,B)$, hence functional calculus;

• reobtain E by $E(\Delta) = \frac{1}{\Delta}(N)(\Delta)$.
Spectral Theorem of normal operators on Hilbert Spaces

Recall: Given a normal $N = A + iB \in B(\mathcal{H})$, i.e. $NN^* = N^*N$,

- there exists unique spectral measure $E : \{\text{'Borel-subsets'} \text{ of } \mathbb{C}\} \to B(\mathcal{H})$ with support $\sigma(N)$ and

$$N = \int z \, dE(z);$$
Spectral Theorem of normal operators on Hilbert Spaces

Recall: Given a normal $N = A + iB \in B(\mathcal{H})$, i.e. $NN^* = N^*N$,

- there exists unique spectral measure $E : \{\text{`Borel-subsets'} \text{ of } \mathbb{C}\} \rightarrow B(\mathcal{H})$ with support $\sigma(N)$ and

$$N = \int z \ dE(z);$$

- for $\phi : \sigma(N) \rightarrow \mathbb{C}$ bounded and measurable define, i.e. $\phi \in \mathcal{B}(\sigma(N))$

$$\phi(N) := \int \phi(z) \ dE(z) \in \{N, N^*\}'' \subseteq B(\mathcal{H});$$
Spectral Theorem of normal operators on Hilbert Spaces

Recall: Given a normal \(N = A + iB \in B(\mathcal{H}) \), i.e. \(NN^* = N^*N \),

- there exists unique spectral measure \(E : \{ \text{’Borel-subsets’ of } \mathbb{C} \} \rightarrow B(\mathcal{H}) \) with support \(\sigma(N) \) and
 \[
 N = \int z \, dE(z);
 \]

- for \(\phi : \sigma(N) \rightarrow \mathbb{C} \) bounded and measurable define, i.e. \(\phi \in \mathcal{B}(\sigma(N)) \)
 \[
 \phi(N) := \int \phi(z) \, dE(z) \in \{N, N^*\}'' \subseteq B(\mathcal{H});
 \]

- \(\phi \mapsto \phi(N) \) is \(*\)-homomorphism s.t. for \(\phi(z) = s(\text{Re } z, \text{Im } z) \) with \(s \in \mathbb{C}[x, y] \) we have \(\phi(N) = s(A, B) \), hence functional calculus;
Spectral Theorem of normal operators on Hilbert Spaces

Recall: Given a normal $N = A + iB \in B(\mathcal{H})$, i.e. $NN^* = N^*N$,

- there exists unique spectral measure $E : \{'\text{Borel-subsets}' \text{ of } \mathbb{C}\} \rightarrow B(\mathcal{H})$ with support $\sigma(N)$ and

\[N = \int z \, dE(z) ; \]

- for $\phi : \sigma(N) \rightarrow \mathbb{C}$ bounded and measurable define, i.e. $\phi \in \mathcal{B}(\sigma(N))$

\[\phi(N) := \int \phi(z) \, dE(z) \in \{N, N^*\}'' \subseteq B(\mathcal{H}) ; \]

- $\phi \mapsto \phi(N)$ is $*$-homomorphism s.t. for $\phi(z) = s(\text{Re } z, \text{Im } z)$ with $s \in \mathbb{C}[x, y]$ we have $\phi(N) = s(A, B)$, hence functional calculus;

- reobtain E by $E(\Delta) = 1_\Delta(N)$.
Krein Spaces

Recall:

- \((\mathcal{K}, \langle ., . \rangle)\) is Krein space, if \([., .] \) is hermitian sesquilinear form on vector space \(\mathcal{K}\) over \(\mathbb{C}\) such that
 \[
 \mathcal{K} = \mathcal{K}_+ [+] \mathcal{K}_- ,
 \]
 where \((\mathcal{K}_+, [., .])\) and \((\mathcal{K}_-, [-., .])\) are Hilbert spaces;
Krein Spaces

Recall:

- \((\mathcal{K}, [., .])\) is Krein space, if \([., .]\) is hermitian sesquilinear form on vector space \(\mathcal{K}\) over \(\mathbb{C}\) such that
 \[
 \mathcal{K} = \mathcal{K}_+[\mathbb{I}]\mathcal{K}_- ,
 \]
 where \((\mathcal{K}_+, [., .])\) and \((\mathcal{K}_-, -[., .])\) are Hilbert spaces;
- such decomposition induces Hilbert space scalar product by
 \[(x, y)_{\mathcal{K}_+, \mathcal{K}_-} := [x_+, y_+] - [x_-, y_-] \text{ on } \mathcal{K} ;\]
Krein Spaces

Recall:

- \((\mathcal{K}, [.,.])\) is Krein space, if \([.,.]\) is hermitian sesquilinear form on vector space \(\mathcal{K}\) over \(\mathbb{C}\) such that
 \[
 \mathcal{K} = \mathcal{K}_+ [+] \mathcal{K}_- ,
 \]
 where \((\mathcal{K}_+, [.,.])\) and \((\mathcal{K}_-, -[.,.])\) are Hilbert spaces;
- such decomposition induces Hilbert space scalar product by
 \[
 (x,y)_{\mathcal{K}_+,\mathcal{K}_-} := [x_+, y_+] - [x_-, y_-] \text{ on } \mathcal{K};
 \]
- there are many such decomposition; corresponding \((.,.)_{\mathcal{K}_+,\mathcal{K}_-}\) are equivalent to each other;
Krein Spaces

Recall:

- \((\mathcal{K}, [., .])\) is Krein space, if \([., .]\) is hermitian sesquilinear form on vector space \(\mathcal{K}\) over \(\mathbb{C}\) such that
 \[
 \mathcal{K} = \mathcal{K}_+[\dot{+}]\mathcal{K}_- ,
 \]
 where \((\mathcal{K}_+, [., .])\) and \((\mathcal{K}_-, -[., .])\) are Hilbert spaces;
- such decomposition induces Hilbert space scalar product by
 \[
 (x, y)_{\mathcal{K}_+,\mathcal{K}_-} := [x_+, y_+] - [x_-, y_-] \quad \text{on} \quad \mathcal{K};
 \]
- there are many such decomposition; corresponding \((., .)_{\mathcal{K}_+,\mathcal{K}_-}\) are equivalent to each other;
- unique Hilbert space topology on \(\mathcal{K}\);
Krein Spaces

Recall:

- \((\mathcal{K}, [., .])\) is Krein space, if \([., .]\) is hermitian sesquilinear form on vector space \(\mathcal{K}\) over \(\mathbb{C}\) such that
 \[
 \mathcal{K} = \mathcal{K}_+ [\cdot] \mathcal{K}_- ,
 \]
 where \((\mathcal{K}_+, [., .])\) and \((\mathcal{K}_-, [., .])\) are Hilbert spaces;

- such decomposition induces Hilbert space scalar product by
 \[
 (x, y)_{\mathcal{K}_+ , \mathcal{K}_-} := [x_+, y_+] - [x_-, y_-] \quad \text{on} \quad \mathcal{K};
 \]

- there are many such decomposition; corresponding \((., .)_{\mathcal{K}_+ , \mathcal{K}_-}\) are equivalent to each other;

- unique Hilbert space topology on \(\mathcal{K}\);

- for \(N \in B(\mathcal{K}_1, \mathcal{K}_2)\) Krein space adjoint \(N^[*] \in B(\mathcal{K}_2, \mathcal{K}_1)\) defined by
 \[
 [Nx, y]_2 = [x, N^[*]y]_1.
 \]
Our aim is to derive some sort of Spectral Theorem for normal operators $(N \in B(\mathcal{K})$ with $N[*]N = NN[*])$ in Krein spaces.
Our aim is to derive some sort of Spectral Theorem for normal operators \((N \in B(K) \text{ with } N^*N = NN^*)\) in Krein spaces.

- few hope even for general selfadjoint operators in Krein spaces;
Our aim is to derive some sort of Spectral Theorem for normal operators \((N \in B(K) \text{ with } N^* N = NN^*)\) in Krein spaces.

- few hope even for general selfadjoint operators in Krein spaces;
- in the early 1980’s Heinz Langer gave some sort of Spectral Theorem for definitizable selfadjoint operators:
Selfadjoint definitizable operators

Theorem (Heinz Langer)

Let \(A \in B(K) \) be selfadjoint and definitizable, i.e. \(A = A^\star \) and
\[p(A)x, x \geq 0 \text{ for all } x \in K \text{ for some } 0 \neq p \in \mathbb{R}[z]. \] Then:
Selfadjoint definitizable operators

Theorem (Heinz Langer)

Let $A \in B(\mathcal{K})$ be selfadjoint and definitizable, i.e. $A = A^*$ and $[p(A)x, x] \geq 0$ for all $x \in \mathcal{K}$ for some $0 \neq p \in \mathbb{R}[z]$. Then:

- $\sigma(A) \subseteq \mathbb{R} \cup p^{-1}\{0\}$; $\sigma(A)$ is symmetric wrt. \mathbb{R};
Selfadjoint definitizable operators

Theorem (Heinz Langer)

Let $A \in B(\mathcal{K})$ be selfadjoint and definitizable, i.e. $A = A^{[*]}$ and $[p(A)x, x] \geq 0$ for all $x \in \mathcal{K}$ for some $0 \neq p \in \mathbb{R}[z]$. Then:

- $\sigma(A) \subseteq \mathbb{R} \cup p^{-1}\{0\}$; $\sigma(A)$ is symmetric wrt. \mathbb{R};

- for Borel-subset $\Delta \subseteq \mathbb{R}$ with $p^{-1}\{0\} \cap \partial \Delta = \emptyset$ there exists $E(\Delta) = E(\Delta)^{[*]} \subseteq \{A\}'' \subseteq B(\mathcal{K})$ (bi-commutant of $\{A\}$) with $\sigma(A|_{\text{ran } E(\Delta)}) \subseteq \overline{\Delta}$;
Selfadjoint definitizable operators

Theorem (Heinz Langer)

Let $A \in B(\mathcal{K})$ be selfadjoint and definitizable, i.e. $A = A^*$ and
\[p(A)x, x \geq 0 \text{ for all } x \in \mathcal{K} \text{ for some } 0 \neq p \in \mathbb{R}[z]. \]
Then:

- $\sigma(A) \subseteq \mathbb{R} \cup p^{-1}\{0\}$; $\sigma(A)$ is symmetric wrt. \mathbb{R};
- for Borel-subset $\Delta \subseteq \mathbb{R}$ with $p^{-1}\{0\} \cap \partial \Delta = \emptyset$ there exists $E(\Delta) = E(\Delta)^{[*]} \in \{A\}'' \subseteq B(\mathcal{K})$ (bi-commutant of $\{A\}$) with $\sigma(A|_{\text{ran } E(\Delta)}) \subseteq \overline{\Delta}$;
- Riesz-projection $E(\{z\})$ corresponding to $z \in p^{-1}\{0\} \setminus \mathbb{R}$ satisfies $E(\{z\})^{[*]} = E(\{\overline{z}\})$ and $\text{ran } E(\{z\})$ is neutral, i.e. $[x, x] = 0$, $x \in \text{ran } E(\{z\})$.

Main idea of the proof: $E(\Delta)$ were obtained with contour integrals around Δ.
Selfadjoint definitizable operators

Theorem (Heinz Langer)

Let $A \in B(\mathcal{K})$ be selfadjoint and definitizable, i.e. $A = A^\ast$ and $[p(A)x, x] \geq 0$ for all $x \in \mathcal{K}$ for some $0 \neq p \in \mathbb{R}[z]$. Then:

- $\sigma(A) \subseteq \mathbb{R} \cup p^{-1}\{0\}$; $\sigma(A)$ is symmetric wrt. \mathbb{R};
- for Borel-subset $\Delta \subseteq \mathbb{R}$ with $p^{-1}\{0\} \cap \partial \Delta = \emptyset$ there exists $E(\Delta) = E(\Delta)^\ast \in \{A\}'' \subseteq B(\mathcal{K})$ (bi-commutant of $\{A\}$) with $\sigma(A|_{\text{ran } E(\Delta)}) \subseteq \overline{\Delta}$;
- Riesz-projection $E(\{z\})$ corresponding to $z \in p^{-1}\{0\} \setminus \mathbb{R}$ satisfies $E(\{z\})^\ast = E(\{\bar{z}\})$ and $\text{ran } E(\{z\})$ is neutral, i.e. $[x, x] = 0$, $x \in \text{ran } E(\{z\})$.

Main idea of the proof:

$E(\Delta)$ were obtained with contour integrals around Δ.
What is the proper definition for definitizability for normal operators?
What is the proper definition for definitizability for normal operators?

First try:

Definition

A normal \(N \in B(\mathcal{K}) \) is called definitizable, if the selfadjoint operators \(A := \frac{N+N^*}{2} \) and \(B := \frac{N-N^*}{2i} \) are definitizable in the sense that there exist \(p, q \in \mathbb{R}[z] \setminus \{0\} \) such that

\[
[p(A)x, x] \geq 0 \quad \text{and} \quad [q(B)x, x] \geq 0 \quad \text{for all} \quad x \in \mathcal{K}.
\]
What is the proper definition for definitizability for normal operators?

First try:

Definition

A normal $N \in B(\mathcal{K})$ is called definitizable, if the selfadjoint operators $A := \frac{N + N^*}{2}$ and $B := \frac{N - N^*}{2i}$ are definitizable in the sense that there exist $p, q \in \mathbb{R}[z] \setminus \{0\}$ such that

$$[p(A)x, x] \geq 0 \quad \text{and} \quad [q(B)x, x] \geq 0 \quad \text{for all} \quad x \in \mathcal{K}.$$

With this straightforward definition it was possible to derive a functional calculus.
What is the proper definition for definitizability for normal operators?

First try:

Definition
A normal $N \in B(K)$ is called definitizable, if the selfadjoint operators $A := \frac{N + N^*}{2}$ and $B := \frac{N - N^*}{2i}$ are definitizable in the sense that there exist $p, q \in \mathbb{R}[z] \setminus \{0\}$ such that

\[
[p(A)x, x] \geq 0 \quad \text{and} \quad [q(B)x, x] \geq 0 \quad \text{for all} \quad x \in K.
\]

With this straight forward definition it was possible to derive a functional calculus.

There are unsatisfactory phenomenons with this concept of definitizability. For example, it could be that a bijective $N = A + iB$ is definitizable in the above sense, but N^{-1} is not.
Second try:

Definition

For a normal $N \in B(K)$ we call $p(x, y) \in \mathbb{R}[x, y]$ a definitizing polynomial for N, if

$$[p(A, B)x, x] \geq 0 \quad \text{for all} \quad x \in K,$$

and N definitizable if there exist non-zero definitizing polynomials.
Second try:

Definition
For a normal $N \in B(K)$ we call $p(x, y) \in \mathbb{R}[x, y]$ a definitizing polynomial for N, if

$$[p(A, B)x, x] \geq 0 \quad \text{for all} \quad x \in K,$$

and N definitizable if there exist non-zero definitizing polynomials. For definitizable N let I be the ideal generated by all definitizing polynomials in $\mathbb{C}[x, y]$.
Second try:

Definition
For a normal $N \in B(\mathcal{K})$ we call $p(x, y) \in \mathbb{R}[x, y]$ a definitizing polynomial for N, if

$$[p(A, B)x, x] \geq 0 \quad \text{for all} \quad x \in \mathcal{K},$$

and N definitizable if there exist non-zero definitizing polynomials. For definitizable N let I be the ideal generated by all definitizing polynomials in $\mathbb{C}[x, y]$.

Rest of the talk is devoted to a Spectral Theorem for definitizable normal operators with a zero-dimensional I, i.e. \(\dim \mathbb{C}[x, y]/I < \infty \).
Method of Dragging Operators
Embedding of Hilbert space in Krein space

Let \mathcal{H} be a Hilbert space, \mathcal{K} be a Krein space, and let $T : \mathcal{H} \to \mathcal{K}$ be bounded linear embedding (injective).
Embedding of Hilbert space in Krein space

Let \mathcal{H} be a Hilbert space, \mathcal{K} be a Krein space, and let $T : \mathcal{H} \to \mathcal{K}$ be bounded linear embedding (injective).

$$
\begin{array}{c}
\mathcal{H} \\
\downarrow^T \\
\mathcal{K}
\end{array}
$$
Embedding of Hilbert space in Krein space

Let \(\mathcal{H} \) be a Hilbert space, \(\mathcal{K} \) be a Krein space, and let \(T : \mathcal{H} \to \mathcal{K} \) be bounded linear embedding (injective).

\[
\begin{array}{ccc}
\mathcal{H} & \xrightarrow{T} & \mathcal{K}
\end{array}
\]

Definition

For \(C \in B(\mathcal{K}) \) define

\[
\Theta(C) := T^{-1}CT = (T \times T)^{-1}(C),
\]

where \(C \) is identified with its graph viewed as a subspace of \(\mathcal{K} \times \mathcal{K} \), i.e. as a linear relation.
Embedding of Hilbert space in Krein space

In general $\Theta(C')$ is a not everywhere defined operator.
Embedding of Hilbert space in Krein space

In general $\Theta(C)$ is a not everywhere defined operator. But if $C(TT^{[*]}) = (TT^{[*]})C$, then $\Theta(C) \in B(\mathcal{H})$.
Embedding of Hilbert space in Krein space

In general $\Theta(C)$ is a not everywhere defined operator. But if $C(TT^*) = (TT^*)C$, then $\Theta(C) \in B(H)$.

Theorem (R.Pruckner,K.;M.Dritschel,J.Rovnyak)

$\Theta : C \mapsto T^{-1}CT$ constitutes \ast-Algebra Homomorphism

$$\Theta : \{TT^*\}' \to \{T^*[T]\}' \subset B(K) \subset B(H)$$
Embedding of Hilbert space in Krein space

In general $\Theta(C')$ is a not everywhere defined operator. But if $C(TT[*]) = (TT[*])C$, then $\Theta(C) \in B(\mathcal{H})$.

Theorem (R.Pruckner,K.;M.Dritschel,J.Rovnyak)

$\Theta : C \mapsto T^{-1}CT$ constitutes \ast-Algebra Homomorphism

$$\Theta : \{TT[*]\}' \rightarrow \{T[*]T\}'$$

satisfying $\Theta(I_{\mathcal{K}}) = I_{\mathcal{H}}$, $\Theta(TT[*]) = T[*]T$ and $\Theta(C)T[*] = T[*]C$ for all $C \in \{TT[*]\}'$.
Embedding of Hilbert space in Krein space

In general $\Theta(C')$ is a not everywhere defined operator. But if $C(TT^\ast) = (TT^\ast)C$, then $\Theta(C) \in B(\mathcal{H})$.

Theorem (R.Pruckner,K.;M.Dritschel,J.Rovnyak)

$\Theta : C \mapsto T^{-1}CT$ constitutes \ast-Algebra Homomorphism

$$
\Theta : \{TT^\ast\}' \rightarrow \{T^\ast T\}'
$$

$satisfying$ $\Theta(I_{\mathcal{K}}) = I_{\mathcal{H}},$ $\Theta(TT^\ast) = T^\ast T$ and $\Theta(C)T^\ast = T^\ast C$

for all $C \in \{TT^\ast\}'$.

In particular: $\Theta(N)$ is normal if $N \in \{TT^\ast\}'$ is normal.
Embedding of Hilbert space in Krein space

There is a mapping in the other direction:

Theorem

\[\Xi : B(\mathcal{H}) \rightarrow B(\mathcal{K}) \]
\[defined \ by \: \Xi(D) := TDT^\ast \]
\[for \: D \in B(\mathcal{H}) \]
Embedding of Hilbert space in Krein space

There is a mapping in the other direction:

Theorem

\(\Xi : B(\mathcal{H}) \rightarrow B(\mathcal{K}) \) defined by \(\Xi(D) := TDT^\ast \) for \(D \in B(\mathcal{H}) \)

- is linear and satisfies \(\Xi(D)^\ast = \Xi(D^\ast) \);
Embedding of Hilbert space in Krein space

There is a mapping in the other direction:

Theorem

\[\Xi : B(\mathcal{H}) \rightarrow B(\mathcal{K}) \text{ defined by } \Xi(D) := TDT^* \text{ for } D \in B(\mathcal{H}) \]

- **is linear and satisfies** \[\Xi(D)^* = \Xi(D^*) \];
- **maps** \(\{T^*T\}' \) **into** \(\{TT^*\}' \) **and** \(\{T^*T\}'' \) **into** \(\{TT^*\}'' \).
Embedding of Hilbert space in Krein space

There is a mapping in the other direction:

Theorem

\(\Xi : B(\mathcal{H}) \rightarrow B(\mathcal{K}) \) defined by \(\Xi(D) := TDT^* \) for \(D \in B(\mathcal{H}) \)

- is linear and satisfies \(\Xi(D)[*] = \Xi(D^*) \);
- maps \(\{T[*]T\}' \) into \(\{TT[*]\}' \) and \(\{T[*]T\}'' \) into \(\{TT[*]\}'' \).

For \(D, D_1 \in \{T[*]T\}' \), \(C \in \{TT[*]\}' \) we have:
- \(\Xi(DD_1 T[*]T) = \Xi(D) \Xi(D_1) \);
Embedding of Hilbert space in Krein space

There is a mapping in the other direction:

Theorem

\[\Xi : B(\mathcal{H}) \to B(\mathcal{K}) \text{ defined by } \Xi(D) := TDT^* \text{ for } D \in B(\mathcal{H}) \]

- is linear and satisfies \(\Xi(D)^* = \Xi(D^*) \);
- maps \(\{T^*T\}' \) into \(\{TT^*[\mathcal{K}]\}' \) and \(\{T^*[\mathcal{K}]T\}'' \) into \(\{TT^*[\mathcal{K}]\}'' \).

For \(D, D_1 \in \{T^*T\}' \), \(C \in \{TT^*[\mathcal{K}]\}' \) we have:

- \(\Xi(DD_1 T^*T) = \Xi(D) \Xi(D_1) \);
- \(\Xi(D \Theta(C)) = \Xi(D)C, \Xi(\Theta(C) \ D) = C\Xi(D) \);
Embedding of Hilbert space in Krein space

There is a mapping in the other direction:

Theorem

\[\Xi : B(\mathcal{H}) \to B(\mathcal{K}) \text{ defined by } \Xi(D) := TDT^* \text{ for } D \in B(\mathcal{H}) \]

- **is linear and satisfies** \(\Xi(D)^* = \Xi(D^*) \);
- **maps** \(\{T^*T\}' \text{ into } \{TT^*\}' \text{ and } \{T^*T\}'' \text{ into } \{TT^*\}'' \).

For \(D, D_1 \in \{T^*T\}' \), \(C \in \{TT^*\}' \) we have:

- \(\Xi(DD_1 T^*T) = \Xi(D) \Xi(D_1) \);
- \(\Xi(D \Theta(C)) = \Xi(D)C, \Xi(\Theta(C) D) = C\Xi(D) \);
- \(\Xi \circ \Theta(C) = TT^* C = C TT^* \).
Embedding of Hilbert space in Krein space
Embedding of Hilbert space in Krein space

\[\mathcal{H} \xrightarrow{T} \mathcal{K} \]

\[B(\mathcal{H}) \supseteq \{T^*[T]\}' \xleftarrow{\Theta} \{TT^*[T]\}' \subseteq B(\mathcal{K}) \]
Embedding of Hilbert space in Krein space

\[\mathcal{H} \xrightarrow{T} \mathcal{K} \]

\[B(\mathcal{H}) \supseteq \{T^*[]T\}' \xleftarrow{\Theta} \{TT^*[]\}' \subseteq B(\mathcal{K}) \]

\[B(\mathcal{H}) \supseteq \{T^*[]T\}' \xrightarrow{\Xi} \{TT^*[]\}' \subseteq B(\mathcal{K}) \]
Embedding induced by definitizable operator

- Given a definitizable normal $N = A + iB \in B(K)$ with definitizing $p_1, \ldots, p_m \in \mathbb{R}[z]$, define

$$\langle x, y \rangle := \left[\sum_{k} p_k(A, B) \right] x, y, \quad x, y \in K;$$
Embedding induced by definitizable operator

• Given a definitizable normal $N = A + iB \in B(\mathcal{K})$ with definitizing $p_1, \ldots, p_m \in \mathbb{R}[z]$, define

$$\langle x, y \rangle := \left[\sum_{k} p_k(A, B) \right] x, y, \quad x, y \in \mathcal{K};$$

• $\langle .,. \rangle$ positive semidefinite scalar product on \mathcal{K}, continuous wrt. natural Hilbert space topology on $\mathcal{K};$
Embedding induced by definitizable operator

- Given a definitizable normal $N = A + iB \in B(\mathcal{K})$ with definitizing $p_1, \ldots, p_m \in \mathbb{R}[z]$, define
 \[\langle x, y \rangle := \left[\sum_k p_k(A, B) \right] x, y, \quad x, y \in \mathcal{K}; \]

- $\langle ., . \rangle$ positive semidefinite scalar product on \mathcal{K}, continuous wrt. natural Hilbert space topology on \mathcal{K};
- Let \mathcal{H} be the completion of $\mathcal{K}/\{ x \in \mathcal{K} : \langle x, x \rangle = 0 \}$ wrt. $\langle ., . \rangle$;
Embedding induced by definitizable operator

- Given a definitizable normal $N = A + iB \in B(\mathcal{K})$ with definitizing $p_1, \ldots, p_m \in \mathbb{R}[z]$, define

$$\langle x, y \rangle := \left[\sum_k p_k(A, B) \right] x, y], \quad x, y \in \mathcal{K};$$

- $\langle ., . \rangle$ positive semidefinite scalar product on \mathcal{K}, continuous wrt. natural Hilbert space topology on \mathcal{K};
- Let \mathcal{H} be the completion of $\mathcal{K}/\{x \in \mathcal{K} : \langle x, x \rangle = 0\}$ wrt. $\langle ., . \rangle$;
- $\iota : \mathcal{K} \to \mathcal{H}$ shall be $x \mapsto x + \{x \in \mathcal{K} : \langle x, x \rangle = 0\}$;
Embedding induced by definitizable operator

- Given a definitizable normal \(N = A + iB \in B(\mathcal{K}) \) with definitizing \(p_1, \ldots, p_m \in \mathbb{R}[z] \), define

\[
\langle x, y \rangle := \left(\sum_k p_k(A, B) \right) x, y, \quad x, y \in \mathcal{K};
\]

- \(\langle ., . \rangle \) positive semidefinite scalar product on \(\mathcal{K} \), continuous wrt. natural Hilbert space topology on \(\mathcal{K} \);
- Let \(\mathcal{H} \) be the completion of \(\mathcal{K}/\{x \in \mathcal{K} : \langle x, x \rangle = 0\} \) wrt. \(\langle ., . \rangle \);
- \(\iota : \mathcal{K} \rightarrow \mathcal{H} \) shall be \(x \mapsto x + \{x \in \mathcal{K} : \langle x, x \rangle = 0\} \);
- \(T := \iota^* : \mathcal{H} \rightarrow \mathcal{K} \);
Embedding induced by definitizable operator

• Given a definitizable normal \(N = A + iB \in B(\mathcal{K}) \) with definitizing \(p_1, \ldots, p_m \in \mathbb{R}[z] \), define

\[
\langle x, y \rangle := \left(\sum_k p_k(A, B) \right)x, y, \quad x, y \in \mathcal{K} ;
\]

• \(\langle ., . \rangle \) positive semidefinite scalar product on \(\mathcal{K} \), continuous wrt. natural Hilbert space topology on \(\mathcal{K} \);

• Let \(\mathcal{H} \) be the completion of \(\mathcal{K}/\{x \in \mathcal{K} : \langle x, x \rangle = 0\} \) wrt. \(\langle ., . \rangle \);

• \(\iota : \mathcal{K} \to \mathcal{H} \) shall be \(x \mapsto x + \{x \in \mathcal{K} : \langle x, x \rangle = 0\} \);

• \(T := \iota^* : \mathcal{H} \to \mathcal{K} \);

• \(T \) is injective due to

\[
\ker T = \iota(\mathcal{K})^\perp = \mathcal{K}/\{x \in \mathcal{K} : \langle x, x \rangle = 0\}^\perp = \{0\}.
\]
Embedding induced by definitizable operator

\[\mathcal{H} \text{ and } T \text{ constructed from } [\left(\sum_k p_k(A, B) \right),. , .] \]
Embedding induced by definitizable operator

Construct \mathcal{H}_k and T_k in the same way from $[p_k(A, B), .]$
Embedding induced by definitizable operator

exist contractions \(R_k : \mathcal{H}_k \rightarrow \mathcal{H} \) with \(\sum_k R_k R_k^* = I_\mathcal{H} \)
Embedding induced by definitizable operator

Proposition

\[TT^*[\ast] = \sum_k p_k(A, B) \ (\in B(\mathcal{K})) \text{ and } N = A + iB \in \{TT^*[\ast]\}' \]
\[T_k T_k^*[\ast] = p_k(A, B) \ (\in B(\mathcal{K})) \text{ and } N = A + iB \in \{T_k T_k^*[\ast]\}' \]
Embedding induced by definitizable operator

Proposition

\[TT^\ast = \sum_k p_k(A, B) \ (\in B(K)) \ \text{and} \ N = A + iB \in \{TT^\ast\}' \]

\[T_k T_k^\ast = p_k(A, B) \ (\in B(K)) \ \text{and} \ N = A + iB \in \{T_k T_k^\ast\}' \]

Therefore:

- \(\Theta(N) \) and \(\Theta_k(N) = T_k^{-1} NT_k \) bounded and normal on \(\mathcal{H}, \mathcal{H}_k \);
Embedding induced by definitizable operator

Proposition

\[TT^* = \sum_k p_k(A, B) \ (\in B(\mathcal{K})) \text{ and } N = A + iB \in \{TT^*\}'. \]
\[T_k T_k^* = p_k(A, B) \ (\in B(\mathcal{K})) \text{ and } N = A + iB \in \{T_k T_k^*\}'. \]

Therefore:

- \(\Theta(N) \) and \(\Theta_k(N) = T_k^{-1} N T_k \) bounded and normal on \(\mathcal{H}, \mathcal{H}_k \);
- \(\Theta_k(N) \) has spectral measure
 \[E_k : \{\text{‘Borel-subsets’ of } \mathbb{C}\} \rightarrow B(\mathcal{H}_k); \]
Embedding induced by definitizable operator

Proposition

\[TT^\ast = \sum_k p_k(A, B) (\in B(K)) \text{ and } N = A + iB \in \{ TT^\ast \}' . \]
\[T_kT_k^\ast = p_k(A, B) (\in B(K)) \text{ and } N = A + iB \in \{ T_kT_k^\ast \}' . \]

Therefore:

- \(\Theta(N) \) and \(\Theta_k(N) = T_k^{-1} NT_k \) bounded and normal on \(\mathcal{H}, \mathcal{H}_k \);
- \(\Theta_k(N) \) has spectral measure \(E_k : \{'Borel-subsets' \text{ of } \mathbb{C}\} \rightarrow B(\mathcal{H}_k) \);
- \(\phi \mapsto \int \phi(z) dE_k(z) \) is \(*\)-algebra homomorphism from \(\{ \phi : \mathbb{C} \rightarrow \mathbb{C} | \phi \text{ bounded, measurable} \} \) into \(B(\mathcal{H}_k) \).
Embedding induced by definitizable operator

Proposition

\[TT^\ast = \sum_k p_k(A, B) \ (\in B(\mathcal{K})) \text{ and } N = A + iB \in \{TT^\ast\}' \]
\[T_kT_k^\ast = p_k(A, B) \ (\in B(\mathcal{K})) \text{ and } N = A + iB \in \{T_kT_k^\ast\}' \]

Therefore:

- \(\Theta(N) \) and \(\Theta_k(N) = T_k^{-1}NT_k \) bounded and normal on \(\mathcal{H}, \mathcal{H}_k \);
- \(\Theta_k(N) \) has spectral measure \(E_k : \{\text{'Borel-subsets'} \text{ of } \mathbb{C}\} \rightarrow B(\mathcal{H}_k) \);
- \(\phi \mapsto \int \phi(z) \, dE_k(z) \) is *-algebra homomorphism from \(\{\phi : \mathbb{C} \rightarrow \mathbb{C}|\phi \text{ bounded, measurable}\} \) into \(B(\mathcal{H}_k) \).

Question

How to drag spectral measure or functional calculus from the spaces \(\mathcal{H}_k \) to \(\mathcal{K} \)?
Structure of zero-dimensional Ideals
Primary decomposition

Applying the the Noether-Lasker Theorem from ring theory to the special situation of a zero-dimensional ideal I in $\mathbb{C}[x, y]$ we obtain minimal primary decomposition

$$I = Q_1 \cap \cdots \cap Q_m$$
Primary decomposition

Applying the Noether-Lasker Theorem from ring theory to the special situation of a zero-dimensional ideal I in $\mathbb{C}[x, y]$ we obtain minimal primary decomposition

$$I = Q_1 \cap \cdots \cap Q_m$$

- Q_j are primary ideals, i.e. $fg \in Q_j$ implies $f \in Q_j$ or $g^k \in Q$ for some $k \in \mathbb{N}$.
Primary decomposition

Applying the Noether-Lasker Theorem from ring theory to the special situation of a zero-dimensional ideal I in $\mathbb{C}[x, y]$ we obtain minimal primary decomposition

$$I = Q_1 \cap \cdots \cap Q_m$$

- Q_j are primary ideals, i.e. $fg \in Q_j$ implies $f \in Q_j$ or $g^k \in Q$ for some $k \in \mathbb{N}$.
- $Q_j \not\supset \bigcap_{i \neq j} Q_i$ for all $j = 1, \ldots, m$.
Primary decomposition

Applying the the Noether-Lasker Theorem from ring theory to the special situation of a zero-dimensional ideal I in $\mathbb{C}[x, y]$ we obtain minimal primary decomposition

$$I = Q_1 \cap \cdots \cap Q_m$$

- Q_j are primary ideals, i.e. $fg \in Q_j$ implies $f \in Q_j$ or $g^k \in Q$ for some $k \in \mathbb{N}$.
- $Q_j \nsubseteq \bigcap_{i \neq j} Q_i$ for all $j = 1, \ldots, m$.
- $P_j \neq P_i$ for $i \neq j$, where $P_j := \sqrt{Q_j}$ denotes the radical $\{ f \in \mathbb{C}[x, y] : f^k \in Q_j \text{ for some } k \in \mathbb{N} \}$.
Primary decomposition

Applying the the Noether-Lasker Theorem from ring theory to the special situation of a zero-dimensional ideal I in $\mathbb{C}[x,y]$ we obtain minimal primary decomposition

$$I = Q_1 \cap \cdots \cap Q_m$$

- Q_j are primary ideals, i.e. $fg \in Q_j$ implies $f \in Q_j$ or $g^k \in Q$ for some $k \in \mathbb{N}$.
- $Q_j \not\supseteq \bigcap_{i \neq j} Q_i$ for all $j = 1, \ldots, m$.
- $P_j \neq P_i$ for $i \neq j$, where $P_j := \sqrt{Q_j}$ denotes the radical $\{f \in \mathbb{C}[x,y] : f^k \in Q_j \text{ for some } k \in \mathbb{N}\}$.
- zero-dimensionality implies uniqueness of the above decomposition, and maximality of the P_j’s.
Primary decomposition

- Thus, $P_j = \{ p \in \mathbb{C}[x, y] : p(a_j) = 0 \}$ for unique and pairwise distinct $a_j \in \mathbb{C}^2$.
Primary decomposition

- Thus, $P_j = \{ p \in \mathbb{C}[x, y] : p(a_j) = 0 \}$ for unique and pairwise distinct $a_j \in \mathbb{C}^2$.
- For the variety $V(I) = \{ a \in \mathbb{C}^2 : f(a) = 0 \text{ for all } f \in I \}$ induced by I, we have $V(I) = \{ a_1, \ldots, a_m \}$.
Primary decomposition

• Thus, \(P_j = \{ p \in \mathbb{C}[x, y] : p(a_j) = 0 \} \) for unique and pairwise distinct \(a_j \in \mathbb{C}^2 \).

• For the variety \(V(I) = \{ a \in \mathbb{C}^2 : f(a) = 0 \text{ for all } f \in I \} \) induced by \(I \), we have \(V(I) = \{ a_1, \ldots, a_m \} \).

• We write \(Q(a) := Q_j \), \(P(a) := P_j \), if \(a = a_j \in V(I) \). Hence,

\[
I = \bigcap_{a \in V(I)} Q(a)
\]
Primary decomposition, real Ideal

Our I, which is the ideal generated in $\mathbb{C}[x, y]$ by all definitizing polynomials $p \in \mathbb{R}[x, y]$, satisfies $I = I^\#$, where $p^\#(x, y) = p(\bar{x}, \bar{y})$.
Primary decomposition, real Ideal

Our I, which is the ideal generated in $\mathbb{C}[x, y]$ by all definitizing polynomials $p \in \mathbb{R}[x, y]$, satisfies $I = I^#$, where $p^#(x, y) = p(\bar{x}, \bar{y})$.

- $Q(a)^# = Q(a^#)$, $P(a)^# = P(a^#)$, where $a^# \in \mathbb{C}$ is entrywise conjugation.
Primary decomposition, real Ideal

Our I, which is the ideal generated in $\mathbb{C}[x, y]$ by all definitizing polynomials $p \in \mathbb{R}[x, y]$, satisfies $I = I^\#$, where $p^+(x, y) = p(\bar{x}, \bar{y})$.

- $Q(a)^# = Q(a^#)$, $P(a)^# = P(a^#)$, where $a^# \in \mathbb{C}$ is entrywise conjugation.
- We consider $V_{\mathbb{R}}(I) := \{a_j : a_j \in \mathbb{R}^2\}$ as a subset of \mathbb{C} and $V(I) \setminus \mathbb{R}^2$ as a subset of \mathbb{C}^2; $V(I) \setminus \mathbb{R}^2$ invariant under $(\xi, \eta) \mapsto (\bar{\xi}, \bar{\eta})$.
Primary decomposition, real Ideal

Our I, which is the ideal generated in $\mathbb{C}[x, y]$ by all definitizing polynomials $p \in \mathbb{R}[x, y]$, satisfies $I = I^\#$, where $p^\#(x, y) = \overline{p(x, y)}$.

- \(Q(a)^\# = Q(a^\#), \ P(a)^\# = P(a^\#),\) where \(a^\# \in \mathbb{C}\) is entrywise conjugation.
- We consider \(V_\mathbb{R}(I) := \{a_j : a_j \in \mathbb{R}^2\}\) as a subset of \(\mathbb{C}\) and \(V(I) \setminus \mathbb{R}^2\) as a subset of \(\mathbb{C}^2\); \(V(I) \setminus \mathbb{R}^2\) invariant under \((\xi, \eta) \mapsto (\overline{\xi}, \overline{\eta})\).
- For \(w \in V_\mathbb{R}(I)\) algebra \(A(w) := \mathbb{C}[x, y]/(P(w) \cdot Q(w))\) is finite dimensional, because with \(Q(w)\) also \(P(w) \cdot Q(w)\) is primary and zero-dimensional.
Primary decomposition, real Ideal

Our I, which is the ideal generated in $\mathbb{C}[x, y]$ by all definitizing polynomials $p \in \mathbb{R}[x, y]$, satisfies $I = I^\#$, where $p^\#(x, y) = p(\bar{x}, \bar{y})$.

- $Q(a)^\# = Q(a^\#)$, $P(a)^\# = P(a^\#)$, where $a^\# \in \mathbb{C}$ is entrywise conjugation.
- We consider $V_{\mathbb{R}}(I) := \{a_j : a_j \in \mathbb{R}^2\}$ as a subset of \mathbb{C} and $V(I) \setminus \mathbb{R}^2$ as a subset of \mathbb{C}^2; $V(I) \setminus \mathbb{R}^2$ invariant under $(\xi, \eta) \mapsto (\bar{\xi}, \bar{\eta})$.
- For $w \in V_{\mathbb{R}}(I)$ algebra $\mathcal{A}(w) := \mathbb{C}[x, y]/(P(w) \cdot Q(w))$ is finite dimensional, because with $Q(w)$ also $P(w) \cdot Q(w)$ is primary and zero-dimensional.
- For $\zeta \in V(I) \setminus \mathbb{R}^2$ consider the finite-dimensional algebra $\mathcal{B}(\zeta) := \mathbb{C}[x, y]/Q(\zeta)$.

A Function class

Define Function class \mathcal{M}_N consisting of functions

$$\phi : (\sigma(\Theta(N)) \cup V_R(I)) \cup V(I) \setminus \mathbb{R}^2 \to$$

$$\subseteq \mathbb{C} \cup \bigcup_{w \in V_R(I)} A(w) \cup \bigcup_{\zeta \in V(I) \setminus \mathbb{R}^2} B(\zeta)$$
A Function class

Define Function class \mathcal{M}_N consisting of functions

$$\phi : \left(\sigma(\Theta(N)) \cup V_{\mathbb{R}}(I) \right) \cup V(I) \setminus \mathbb{R}^2 \rightarrow \mathbb{C}$$

such that

$$\phi(z) \in \begin{cases}
\mathcal{B}(z) & \text{for } z \in V(I) \setminus \mathbb{R}^2 , \\
\mathcal{A}(z) & \text{for } z \in V_{\mathbb{R}}(I) , \\
\mathbb{C} & \text{otherwise} .
\end{cases}$$
A Function class

Define Function class \mathcal{M}_N consisting of functions

$$\phi : \left(\sigma(\Theta(N)) \cup V_\mathbb{R}(I) \right) \cup V(I) \setminus \mathbb{R}^2 \rightarrow \mathbb{C} \cup \bigcup_{w \in V_\mathbb{R}(I)} A(w) \cup \bigcup_{\zeta \in V(I) \setminus \mathbb{R}^2} B(\zeta)$$

such that

$$\phi(z) \in \begin{cases} B(z) & \text{for } z \in V(I) \setminus \mathbb{R}^2, \\ A(z) & \text{for } z \in V_\mathbb{R}(I), \\ \mathbb{C} & \text{otherwise}. \end{cases}$$

\mathcal{M}_N becomes \ast-algebra when provided with pointwise with multiplication, addition and With $\phi \mapsto \phi^\#$, where $\phi^\#(z) := \phi(z^\#)^\#$.
Function class \mathcal{F}_N

I generated by finitely many definitizable $p_1, \ldots, p_m \in \mathbb{R}[z]$.

Function class \mathcal{F}_N

I generated by finitely many definitizable $p_1, \ldots, p_m \in \mathbb{R}[z]$. For all $w \in V_\mathbb{R}(I)$, which are non-isolated in $\sigma(\Theta(N)) \cup V_\mathbb{R}(I)$, we define a function β_w on a sufficiently small neighbourhood of w by

$$\beta_w(x + iy) := \max_{k=1,\ldots,m} |p_k(x, y)|.$$
Function class \mathcal{F}_N

I generated by finitely many definitizable $p_1, \ldots, p_m \in \mathbb{R}[z]$. For all $w \in V_{\mathbb{R}}(I)$, which are non-isolated in $\sigma(\Theta(N)) \cup V_{\mathbb{R}}(I)$, we define a function β_w on a sufficiently small neighbourhood of w by

$$\beta_w(x + iy) := \max_{k=1,\ldots,m} |p_k(x, y)|.$$

'Order of growth' towards w is independent of the chosen generators p_1, \ldots, p_m.

Function class \mathcal{F}_N

I generated by finitely many definitizable $p_1, \ldots, p_m \in \mathbb{R}[z]$. For all $w \in V_{\mathbb{R}}(I)$, which are non-isolated in $\sigma(\Theta(N)) \cup V_{\mathbb{R}}(I)$, we define a function β_w on a sufficiently small neighbourhood of w by

$$\beta_w(x + iy) := \max_{k=1,\ldots,m} |p_k(x, y)|.$$

'Order of growth' towards w is independent of the chosen generators p_1, \ldots, p_m.

Definition

We denote by \mathcal{F}_N the set of all elements $\phi \in \mathcal{M}_N$ such that
Function class \mathcal{F}_N

I generated by finitely many definitizable $p_1, \ldots, p_m \in \mathbb{R}[z]$. For all $w \in V_{\mathbb{R}}(I)$, which are non-isolated in $\sigma(\Theta(N)) \cup V_{\mathbb{R}}(I)$, we define a function β_w on a sufficiently small neighbourhood of w by

$$\beta_w(x + iy) := \max_{k=1,\ldots,m} |p_k(x, y)| .$$

'Order of growth' towards w is independent of the chosen generators p_1, \ldots, p_m.

Definition

We denote by \mathcal{F}_N the set of all elements $\phi \in \mathcal{M}_N$ such that

- $z \mapsto \phi(z)$ is measurable and bounded on $\sigma(\Theta(N)) \setminus V_{\mathbb{R}}(I)$;
Function class \mathcal{F}_N

I generated by finitely many definitizable $p_1, \ldots, p_m \in \mathbb{R}[z]$. For all $w \in V_{\mathbb{R}}(I)$, which are non-isolated in $\sigma(\Theta(N)) \cup V_{\mathbb{R}}(I)$, we define a function β_w on a sufficiently small neighbourhood of w by

$$\beta_w(x + iy) := \max_{k=1,\ldots,m} |p_k(x, y)|.$$

'Order of growth' towards w is independent of the chosen generators p_1, \ldots, p_m.

Definition

We denote by \mathcal{F}_N the set of all elements $\phi \in \mathcal{M}_N$ such that

- $z \mapsto \phi(z)$ is measurable and bounded on $\sigma(\Theta(N)) \setminus V_{\mathbb{R}}(I)$;
- for each $w \in V_{\mathbb{R}}(I)$ which is non-isolated in $\sigma(\Theta(N)) \cup V_{\mathbb{R}}(I)$

$$\phi(z) - \phi(w)|_{x = \Re z, y = \Im z} = O(\beta_w(z)) \quad \text{as} \quad \sigma(\Theta(N)) \setminus V_{\mathbb{R}}(I) \ni z \to w.$$
Function class \mathcal{F}_N

\mathcal{F}_N is sub-\ast-algebra of \mathcal{M}_N.
Function class \mathcal{F}_N

\mathcal{F}_N is sub-\ast-algebra of \mathcal{M}_N.

Lemma

\mathcal{F}_N 'contains' $\mathbb{C}[x, y]$ in the following sense:
Function class \mathcal{F}_N

\mathcal{F}_N is sub-\ast-algebra of \mathcal{M}_N.

Lemma

\mathcal{F}_N 'contains' $\mathbb{C}[x, y]$ in the following sense:
For $s \in \mathbb{C}[x, y]$ the function $s_N \in \mathcal{M}_N$ defined by

$$s_N(z) = \begin{cases}
 s(\text{Re} \ z, \text{Im} \ z), & z \in \sigma(N) \setminus V_{\mathbb{R}}(I), \\
 s + (P(z) \cdot Q(z)) \in \mathcal{A}(z), & z \in V_{\mathbb{R}}(I), \\
 s + Q(z) \in \mathcal{B}(z), & z \in V(I) \setminus \mathbb{R}^2.
\end{cases}$$

belongs to \mathcal{F}_N.
Function class \mathcal{F}_N

Lemma

For each $\phi \in \mathcal{F}_N$ there exists a $p(x, y) \in \mathbb{C}[x, y]$ and $f_1, \ldots, f_m \in \mathcal{B}(\sigma(\Theta(N)) \cup V_{\mathbb{R}}(I))$ with $f_k(w) = 0$ for $w \in V_{\mathbb{R}}(I)$ such that

$$\phi(z) = p_N(z) + \sum_k f_k(z) \cdot (p_k)_N(z)$$

for all $z \in \sigma(\Theta(N)) \cup V_{\mathbb{R}}(I)$, and that $\phi(\zeta) = p_N(\zeta)$ for all $\zeta \in V(I) \setminus \mathbb{R}^2$.
FUNCTIONAL CALCULUS FOR NORMAL, DEFINITIZABLE OPERATORS
Functional Calculus

Definition

For $\phi \in \mathcal{F}_N$ let $p(x, y) \in \mathbb{C}[x, y]$ and $f_1, \ldots, f_m \in \mathcal{B}(\sigma(\Theta(N)) \cup V_{\mathbb{R}}(I))$ be as in the previous lemma.
Definition

For \(\phi \in \mathcal{F}_N \) let \(p(x, y) \in \mathbb{C}[x, y] \) and \(f_1, \ldots, f_m \in \mathfrak{B}(\sigma(\Theta(N)) \cup V_{\mathbb{R}}(I)) \) be as in the previous lemma. Then we define

\[
\phi(N) := p(A, B) + \sum_{k=1}^{m} \Xi_k \left(\int_{\sigma(\Theta_k(N))} f_k dE_k \right).
\]
Functional Calculus

Definition
For $\phi \in \mathcal{F}_N$ let $p(x, y) \in \mathbb{C}[x, y]$ and $f_1, \ldots, f_m \in \mathcal{B}(\sigma(\Theta(N)) \cup V_\mathbb{R}(I))$ be as in the previous lemma. Then we define

$$\phi(N) := p(A, B) + \sum_{k=1}^{m} \Xi_k \left(\int_{\sigma(\Theta_k(N))} f_k \, dE_k \right).$$

Recall: $\Xi_k : B(H_k) \to B(\mathcal{K})$ such that $\Xi_k(D) = T_k DT_k^{[*]}$.
Functional Calculus

Theorem (Functional Calculus for normal operators)

- $\phi(N)$ independent of particular choice of $p \in \mathbb{C}[x, y]$ and f_1, \ldots, f_m as long as the assertion of the previous lemma is satisfied.
Theorem (Functional Calculus for normal operators)

- $\phi(N)$ independent of particular choice of $p \in \mathbb{C}[x, y]$ and f_1, \ldots, f_m as long as the assertion of the previous lemma is satisfied.
- The mapping $\phi \mapsto \phi(N)$ constitutes *-homomorphism from \mathcal{F}_N into $\{N, N^*\}'' (\subseteq B(\mathcal{K}))$.
Functional Calculus

Theorem (Functional Calculus for normal operators)

- \(\phi(N) \) independent of particular choice of \(p \in \mathbb{C}[x, y] \) and \(f_1, \ldots, f_m \) as long as the assertion of the previous lemma is satisfied.

- The mapping \(\phi \mapsto \phi(N) \) constitutes \(\ast \)-homomorphism from \(\mathcal{F}_N \) into \(\{N, N^*\}'' \) (\(\subseteq B(K) \)).

- For \(s \in \mathbb{C}[x, y] \) and \(\phi = s_N \in \mathcal{F}_N \) we have \(\phi(N) = s(A, B) \).
Spectrum of N

Proposition

$$\sigma(N) = \sigma(\Theta(N)) \cup (V_{\mathbb{R}}(I) \cap \sigma(N)) \cup \\
\{\alpha + i\beta : (\alpha, \beta) \in V(I) \setminus \mathbb{R}^2, \alpha + i\beta, \alpha + i\beta \in \sigma(N)\}$$
Spectrum of N

Proposition

\[\sigma(N) = \sigma(\Theta(N)) \cup (V_{\mathbb{R}}(I) \cap \sigma(N)) \cup \{\alpha + i\beta : (\alpha, \beta) \in V(I) \setminus \mathbb{R}^2, \alpha + i\beta, \bar{\alpha} + i\bar{\beta} \in \sigma(N)\}\]

Accordingly, Functional Calculus is supported on

\[\sigma(\Theta(N)) \cup (V_{\mathbb{R}}(I) \cap \sigma(N)) \cup \{\alpha + i\beta : (\alpha, \beta) \in V(I) \setminus \mathbb{R}^2, \alpha + i\beta, \bar{\alpha} + i\bar{\beta} \in \sigma(N)\}\]