Spectral theory of rank one perturbations of selfadjoint operators

Anton Baranov

Department of Mathematics and Mechanics
St. Petersburg State University

(joint work with Dmitry Yakubovich, Yuriii Belov and Alexander Borichev)

The Sixth St. Petersburg Conference in Spectral Theory
3–8 July 2014
Eigenfunction expansions

Riesz bases of eigenfunctions, bases with brackets, linear summation methods, hereditary completeness, completeness.

Keldyš Theorem, 1951

Suppose A is a selfadjoint Hilbert space operator that belongs to a Schatten ideal \mathcal{S}_p, $0 < p < \infty$, and satisfies $\ker A = 0$. Let $L = A(I + S)$, where S is compact and $\ker(I + S) = 0$. Then the operators L and L^* are complete.

Matsaev completeness theorem, 1961 (weak perturbations)

Let $L = A(I + S)$, where A, S are compact operators on a Hilbert space, A is selfadjoint, $S \in \mathcal{S}_\omega$ (i.e., $\sum_{n=1}^{\infty} n^{-1} s_n < \infty$) and $\ker(I + S) = 0$. Then L and L^* are complete.

Eigenfunction expansions

Riesz bases of eigenfunctions, bases with brackets, linear summation methods, hereditary completeness, completeness.

Keldyš Theorem, 1951

Suppose A is a selfadjoint Hilbert space operator that belongs to a Schatten ideal S_p, $0 < p < \infty$, and satisfies $\text{Ker} \, A = 0$. Let $L = A(I + S)$, where S is compact and $\text{Ker} (I + S) = 0$. Then the operators L and L^* are complete.

Matsaev completeness theorem, 1961 (weak perturbations)

Let $L = A(I + S)$, where A, S are compact operators on a Hilbert space, A is selfadjoint, $S \in S_\omega$ (i.e., $\sum_{n=1}^{\infty} n^{-1}s_n < \infty$) and $\ker (I + S) = 0$. Then L and L^* are complete.

Eigenfunction expansions

Riesz bases of eigenfunctions, bases with brackets, linear summation methods, hereditary completeness, completeness.

Keldyš Theorem, 1951

Suppose A is a selfadjoint Hilbert space operator that belongs to a Schatten ideal \mathcal{S}_p, $0 < p < \infty$, and satisfies $\ker A = 0$. Let $L = A(I + S)$, where S is compact and $\ker(I + S) = 0$. Then the operators L and L^* are complete.

Matsaev completeness theorem, 1961 (weak perturbations)

Let $L = A(I + S)$, where A, S are compact operators on a Hilbert space, A is selfadjoint, $S \in \mathcal{S}_\omega$ (i.e., $\sum_{n=1}^{\infty} n^{-1}s_n < \infty$) and $\ker(I + S) = 0$. Then L and L^* are complete.

Eigenfunction expansions

Riesz bases of eigenfunctions, bases with brackets, linear summation methods, hereditary completeness, completeness.

Keldyš Theorem, 1951

Suppose A is a selfadjoint Hilbert space operator that belongs to a Schatten ideal \mathcal{S}_p, $0 < p < \infty$, and satisfies $\ker A = 0$. Let $L = A(I + S)$, where S is compact and $\ker(I + S) = 0$. Then the operators L and L^* are complete.

Matsaev completeness theorem, 1961 (weak perturbations)

Let $L = A(I + S)$, where A, S are compact operators on a Hilbert space, A is selfadjoint, $S \in \mathcal{S}_\omega$ (i.e., $\sum_{n=1}^{\infty} n^{-1} s_n < \infty$) and $\ker(I + S) = 0$. Then L and L^* are complete.

Let A be a compact selfadjoint operator in a Hilbert space H. Moreover, let its point spectrum $\sigma_p(A) = \{t_n\}$ be simple and $\text{Ker} A = \{0\}$.

Rank one perturbations

$$L = L(A, a, b) = A + a \otimes b, \quad a, b \in H,$$

$$Lf = Af + (f, b)a, \quad f \in H.$$

Some questions

- When $L(A, a, b)$ has a complete system of eigenvectors or root vectors (L is complete)?
- When does completeness of L imply completeness of L^*?
- When does L admit spectral synthesis?
- For which A there exists a rank one perturbation $L(A, a, b)$ which is a Volterra operator (i.e. $\text{Ker} L = \{0\}$, $\sigma(L) = \{0\}$)?
Let A be a compact selfadjoint operator in a Hilbert space H. Moreover, let its point spectrum $\sigma_p(A) = \{t_n\}$ be simple and $\text{Ker} \ A = \{0\}$.

Rank one perturbations

$L = L(A, a, b) = A + a \otimes b, \quad a, b \in H,$

$Lf = Af + (f, b)a, \quad f \in H.$

Some questions

- When $L(A, a, b)$ has a complete system of eigenvectors or root vectors (L is complete)?
- When does completeness of L imply completeness of L^*?
- When does L admit spectral synthesis?
- For which A there exists a rank one perturbation $L(A, a, b)$ which is a Volterra operator (i.e. $\text{Ker} \ L = \{0\}$, $\sigma(L) = \{0\}$)?
Let A be a compact selfadjoint operator in a Hilbert space H. Moreover, let its point spectrum $\sigma_p(A) = \{t_n\}$ be simple and $\text{Ker} \ A = \{0\}$.

Rank one perturbations

\[
L = L(A, a, b) = A + a \otimes b, \quad a, b \in H,
\]
\[
Lf = Af + (f, b)a, \quad f \in H.
\]

Some questions

- When $L(A, a, b)$ has a complete system of eigenvectors or root vectors (L is complete)?
- When does completeness of L imply completeness of L^*?
- When does L admit spectral synthesis?
- For which A there exists a rank one perturbation $L(A, a, b)$ which is a Volterra operator (i.e. $\text{Ker} \ L = \{0\}$, $\sigma(L) = \{0\}$)?
Two counterexamples

Completeness of L and L^*

Let $L = L(A, a, b)$ be complete. A trivial obstacle for completeness of L^* is that $\text{Ker } L$ is nontrivial, while $\text{Ker } L^*$ is trivial.

First example of a compact operator L such that $\text{Ker } L = \text{Ker } L^* = \{0\}$, L is complete, L^* is not – H.L. Hamburger (1951, Mathematische Nachrichten, Über die Zerlegung des Hilbertschen Raumes durch vollstetige lineare Transformationen)

A simpler example – Deckard, Foias, Pearcy (1979), a Hilbert–Schmidt class operator.

Theorem

For any compact selfadjoint operator A there exists a rank one perturbation $L = A + (\cdot, b)a$ of A such that $\text{Ker } L = \text{Ker } L^* = \{0\}$ and L is complete while L^* is not.
Two counterexamples

Completeness of L and L^*

Let $L = L(A, a, b)$ be complete. A trivial obstacle for completeness of L^* is that $\ker L$ is nontrivial, while $\ker L^*$ is trivial.

First example of a compact operator L such that $\ker L = \ker L^* = \{0\}$, L is complete, L^* is not – H.L. Hamburger (1951, Mathematische Nachrichten, Über die Zerlegung des Hilbertschen Raumes durch vollstetige lineare Transformationen)

A simpler example – Deckard, Foias, Pearcy (1979), a Hilbert–Schmidt class operator.

Theorem

For any compact selfadjoint operator A there exists a rank one perturbation $L = A + (\cdot, b)a$ of A such that $\ker L = \ker L^* = \{0\}$ and L is complete while L^* is not.
Spectral synthesis

We say that an operator $T \in \mathcal{L}(H)$ admits the spectral synthesis if for any invariant subspace E of T the restriction $T|_E$ is complete (equivalently, the eigenvectors which belong to E, span it).

Any normal compact operator admits spectral synthesis (J. Wermer, 1950)

First example of a compact operator without the spectral synthesis – H.L. Hamburger (1951, Math. Nachr.)

Theorem

For any compact selfadjoint operator A there exists a rank one perturbation $L = A + (\cdot, b)a$ of A such that both L and L^* are complete, but L does not admit the spectral synthesis.
Two counterexamples

Spectral synthesis

We say that an operator $T \in \mathcal{L}(H)$ admits the spectral synthesis if for any invariant subspace E of T the restriction $T|_E$ is complete (equivalently, the eigenvectors which belong to E, span it).

Any normal compact operator admits spectral synthesis (J. Wermer, 1950)

First example of a compact operator without the spectral synthesis – H.L. Hamburger (1951, Math. Nachr.)

Theorem

For any compact selfadjoint operator A there exists a rank one perturbation $L = A + (\cdot, b)a$ of A such that both L and L^* are complete, but L does not admit the spectral synthesis.
Let $\{x_n\}_{n \in \mathbb{N}}$ be a complete and minimal system in a separable Hilbert space (i.e., $\text{Span}\{x_n\} = H$ and $\text{Span}\{x_n\}_{n \neq n_0} \neq H$ for any n_0). Let $\{y_n\}_{n \in \mathbb{N}}$ be its biorthogonal system, $(x_m, y_n) = \delta_{mn}$.

$$x \in H \iff \sum_{n \in \mathbb{N}} (x, y_n)x_n.$$

We are interested in the following "weak reconstruction" property:

$$x \in \text{Span}\{(x, y_n)x_n\} \quad \text{for any} \quad x \in H.$$

In this case $\{x_n\}_{n \in \mathbb{N}}$ is said to be a hereditarily complete system or a strong M-basis ($M =$ Markushevich). Equivalent definition: for any partition $N = N_1 \cup N_2$, $N_1 \cap N_2 = \emptyset$, of the index set N, the mixed system $\{x_n\}_{n \in N_1} \cup \{y_n\}_{n \in N_2}$ is complete in H.

A.S. Marcus (1970): Let L be a compact operator with complete set of eigenvectors $\{x_n\}$ and trivial kernel. Then L admits the spectral synthesis if and only if $\{x_n\}$ is hereditarily complete.
Spectral synthesis and geometry of eigenvectors

Let \(\{x_n\}_{n \in \mathbb{N}} \) be a complete and minimal system in a separable Hilbert space (i.e., \(\text{Span}\{x_n\} = H \) and \(\text{Span}\{x_n\}_{n \neq n_0} \neq H \) for any \(n_0 \)). Let \(\{y_n\}_{n \in \mathbb{N}} \) be its biorthogonal system, \((x_m, y_n) = \delta_{mn}\).

\[
x \in H \iff \sum_{n \in \mathbb{N}} (x, y_n)x_n.
\]

We are interested in the following ”weak reconstruction” property:

\[
x \in \text{Span}\{(x, y_n)x_n\} \quad \text{for any} \quad x \in H.
\]

In this case \(\{x_n\}_{n \in \mathbb{N}} \) is said to be a hereditarily complete system or a strong M-basis (\(M = \text{Markushevich} \)). Equivalent definition: for any partition \(N = N_1 \cup N_2, \ N_1 \cap N_2 = \emptyset \), of the index set \(N \), the mixed system \(\{x_n\}_{n \in N_1} \cup \{y_n\}_{n \in N_2} \) is complete in \(H \).

A.S. Marcus (1970): Let \(L \) be a compact operator with complete set of eigenvectors \(\{x_n\} \) and trivial kernel. Then \(L \) admits the spectral synthesis if and only if \(\{x_n\} \) is hereditarily complete.
Let $\mu = \sum_n \mu_n \delta_{t_n}$ be a discrete measure on \mathbb{R} and let A be the (unbounded) operator of multiplication by x in $L^2(\mu)$, $(Af)(x) = xf(x)$, $f \in L^2(\mu)$. Assume that $0 \in \rho(A)$.

Let the triple (a, b, κ), where $a = (a_n)$, $b = (b_n)$, satisfy

$$\frac{a}{x}, \frac{b}{x} \in L^2(\mu); \quad \kappa \in \mathbb{C},$$

and

$$\kappa \neq \int_{\mathbb{R}} x^{-1} a(x) \overline{b(x)} \, d\mu(x)$$

in the case when $a \in L^2(\mu)$.

The corresponding singular perturbation $L = L(A, a, b, \kappa)$ of A is defined as follows:

$$\mathcal{D}(L) = \{ y = y_0 + c \cdot A^{-1}a : c \in \mathbb{C}, y_0 \in \mathcal{D}(A), \kappa c + \langle y_0, b \rangle = 0 \};$$

$$Ly = Ay_0, \quad y \in \mathcal{D}(L).$$
Let E be an entire function in the Hermite–Biehler class, that is E has no zeros in $\mathbb{C}_+ \cup \mathbb{R}$, and

$$|E(z)| > |E^*(z)|, \quad z \in \mathbb{C}_+,$$

where $E^*(z) = \overline{E(z)}$. With any such function we associate the de Branges space $\mathcal{H}(E)$ which consists of all entire functions F such that F/E and F^*/E restricted to \mathbb{C}_+ belong to the Hardy space $H^2 = H^2(\mathbb{C}_+)$. The inner product in $\mathcal{H}(E)$ is given by

$$(F, G)_E = \int_{\mathbb{R}} \frac{F(t)\overline{G(t)}}{|E(t)|^2} \, dt.$$
Let $\mu = \sum_n \mu_n \delta_{t_n}$, A — multiplication by x in $L^2(\mu)$, $a = (a_n)$, $b = (b_n)$, $\kappa \in \mathbb{C}$.

Theorem

Let $L = L(A, a, b, \kappa)$ be a singular rank one perturbation of A, where b is a cyclic vector for the resolvent of A, i.e., $b_n \neq 0$ for any n. Then there exists a de Branges space $\mathcal{H}(E)$ and an entire function G such that

$$G \notin \mathcal{H}(E), \quad \frac{G(z)}{z - z_0} \in \mathcal{H}(E) \quad \text{if} \quad G(z_0) = 0,$$

and L is unitary equivalent to the operator $T = T(E, G)$ which acts on $\mathcal{H}(E)$ by the formulas

$$\mathcal{D}(T) := \{F \in \mathcal{H}(E) : \text{there exists } c = c(F) \in \mathbb{C} : zF - cG \in \mathcal{H}(E)\},$$

$$TF := zF - cG, \quad F \in \mathcal{D}(T).$$
Conversely, any pair \((E, G)\) where \(E\) is an Hermite–Biehler function and the entire function \(G\) satisfies

\[
G \notin \mathcal{H}(E), \quad \frac{G(z)}{z - z_0} \in \mathcal{H}(E) \quad \text{if} \quad G(z_0) = 0,
\]

corresponds to some singular rank one perturbation \(L = L(A, a, b, \kappa)\) of the multiplication operator \(A\) in some space \(L^2(\mu)\) with \(x^{-1}a(x), x^{-1}b(x) \in L^2(\mu)\).

Functional models: V. Kapustin (rank-one perturbations of unitary operators), S. Naboko, A, Kiselev, V. Ryzhov.
The functions E and G appearing in the model for $L(A, a, b, \kappa)$ are related to the data (a, b, κ) by the following formulas. Let $E = A_E - iB_E$, where $A_E = (E + E^*)/2$, $B_E = (E^* - E)/2i$. Then

$$\frac{B_E(z)}{A_E(z)} = \sum_n \left(\frac{1}{t_n - z} - \frac{1}{t_n}\right) |b_n|^2 \mu_n, \quad (1)$$

and

$$\frac{G(z)}{A_E(z)} = \kappa + \sum_n \left(\frac{1}{t_n - z} - \frac{1}{t_n}\right) a_n \overline{b_n} \mu_n, \quad (2)$$

Note, in particular, that A_E vanishes exactly on the set \{t_n\}. The model essentially uses the expansions with respect to the orthogonal basis \{\frac{A_E}{z - t_n}\} of normalized reproducing kernels of $\mathcal{H}(E)$.
Spectrum of the model operator

\[TF := zF - cG, \quad F \in \mathcal{D}(T). \]

- \(\sigma(A) = Z(A_E) = \{ t_n \}; \)
- \(\sigma(T) = \sigma_p(T) = Z(G); \)
- The eigenspace of \(T \) corresponding to an eigenvalue \(\lambda \), \(\lambda \in Z(G) \), is spanned by \(g_\lambda \),
 \[g_\lambda(z) = \frac{G(z)}{z - \lambda}. \]
- Suppose \(T^* \) is correctly defined. Then \(\sigma(T^*) = \overline{Z(G)} \) and \(\ker(T^* - \overline{\lambda}I) \) is spanned by the reproducing kernel \(K_\lambda \).
Positive results about the completeness

Matsaev completeness theorem, 1961 (weak perturbations)

Let $L = A(I + S)$, where A, S are compact operators on a Hilbert space, A is selfadjoint, $S \in \mathcal{S}_\omega$ (i.e., $\sum_{n=1}^{\infty} n^{-1} s_n < \infty$) and $\ker(I + S) = 0$. Then L and L^* are complete.

Generalized weak perturbations

We call $L = L(A, a, b, \kappa)$ a *generalized weak perturbation*, if

$$\sum_n \frac{|a_n b_n| \mu_n}{|t_n|} < \infty, \quad \sum_n \frac{a_n \overline{b_n} \mu_n}{t_n} \neq \kappa.$$

Theorem

If $L = L(A, a, b, \kappa)$ is a *generalized weak perturbations*, then L and L^* are complete.
Positive results about the completeness

Theorem (positive perturbations)

Let $L = L(A, a, b, \kappa)$ be a singular rank one perturbation, such that $a_n \overline{b_n} \geq 0$ for all but possibly a finite number of values of n and $\sum_n |t_n|^{-1}|a_n b_n| \mu_n = \infty$. Then L^* is correctly defined, and L and L^* are complete.
We call \(L = L(A, a, b, \kappa) \) a \textit{generalized weak perturbations}, if

\[
\sum_n \frac{|a_n b_n| \mu_n}{|t_n|} < \infty, \quad \sum_n \frac{a_n \overline{b_n} \mu_n}{t_n} \neq \kappa.
\]

A typical example: \(\sum_n |a_n|^2 t_n^{-2\alpha} \mu_n < \infty, \sum_n |b_n|^2 t_n^{-2+2\alpha} \mu_n < \infty, \alpha \in [0, 1] \).

There exists \(A \in S_p, p > 1/2 \), such that for any \(\alpha_1, \alpha_2 \in (0, 1) \) there exist \(a \in |x|^{\alpha_1} L^2(\mu) \) and \(b \in |x|^{\alpha_2} L^2(\mu) \) such that the spectrum of the perturbed operator is empty.

Thus, there exists a positive compact operator \(A_0 \) such that for any \(\alpha_1, \alpha_2 \in (0, 1) \) and there is a rank one perturbation \(L_0 \) of \(A_0 \) of the form

\[
L_0 = A_0 + A_0^{\alpha_1} S A_0^{\alpha_2},
\]

where \(S \) is a rank one operator and \(\text{Ker} L_0 = \text{Ker} L_0^* = 0 \), such that \(L_0 \) is a Volterra operator.
Completeness of L and of L^*

- Eigenfunctions of $L \leftrightarrow$ functions $\frac{G(z)}{z-\lambda}$, $\lambda \in Z(G)$.
- Eigenfunctions of $L^* \leftrightarrow$ reproducing kernels K_λ, $\lambda \in Z(G)$.

Theorem

Assume that $L = L(A, a, b, \kappa)$ and L^* are well defined and $a \notin L^2(\mu)$. Let L be complete. Then its adjoint L^* is also complete if any of the following conditions is fulfilled:

(i) $|a_n|^2 \mu_n \geq C|t_n|^{-N} > 0$ for some $N > 0$;

(ii) $|b_n a_n^{-1}| \leq C|t_n|^N$ for some $N > 0$.
Theorem

For any cyclic selfadjoint operator A with discrete spectrum $\{t_n\}$ such that $|t_n| \to \infty$, $|n| \to \infty$, there exists a rank one singular perturbation L of A (with real spectrum and trivial kernel), which is complete, while its adjoint L^* is correctly defined and incomplete.

A counterpart for compact operators

For any compact selfadjoint operator A° with simple spectrum and trivial kernel there exists a bounded rank one perturbation L° of A° with real spectrum such that L° is complete and $\ker L^\circ = 0$, while $(L^\circ)^*$ is not complete. Moreover, the orthogonal complement to the eigenvectors of $(L^\circ)^*$ may be infinite-dimensional.
Counterexample

Theorem
For any cyclic selfadjoint operator A with discrete spectrum $\{t_n\}$ such that $|t_n| \to \infty$, $|n| \to \infty$, there exists a rank one singular perturbation L of A (with real spectrum and trivial kernel), which is complete, while its adjoint L^* is correctly defined and incomplete.

A counterpart for compact operators
For any compact selfadjoint operator A° with simple spectrum and trivial kernel there exists a bounded rank one perturbation L° of A° with real spectrum such that L° is complete and $\ker L^\circ = 0$, while $(L^\circ)^*$ is not complete. Moreover, the orthogonal complement to the eigenvectors of $(L^\circ)^*$ may be infinite-dimensional.
Perturbations without the spectral synthesis

- Completeness of $L \leftrightarrow$ completeness of a system of reproducing kernels $\{K_\lambda\}$ in $\mathcal{H}(E)$;

- Completeness of $L^* \leftrightarrow$ completeness of the system biorthogonal to the system of reproducing kernels;

- Spectral synthesis for $L \leftrightarrow$ hereditary completeness of $\{K_\lambda\}_{\lambda \in \Lambda}$, i.e., for any partition $\Lambda = \Lambda_1 \cup \Lambda_2$, the system $\{K_\lambda\}_{\lambda \in \Lambda_1} \cup \{g_\lambda\}_{\lambda \in \Lambda_2}$ is complete in $\mathcal{H}(E)$. Recall that $Z(G) = \Lambda$, $g_\lambda = G/(\cdot - \lambda)$.

Theorem

For any spectrum $\{t_n\}$ there exists a rank one perturbation $L = A + (\cdot, b)a$ of A such that both L and L^* are complete, but L does not admit the spectral synthesis.
Spectral synthesis for exponential systems

Special case: \(\{t_n\} = \mathbb{Z}, \mu_n \equiv 1, b_n \equiv 1. \) Then \(\mathcal{H}(E) = \mathcal{PW}_\pi. \)

A.B., Yu. Belov, A. Borichev (Adv Math., 2013): there exist nonhereditary complete systems of RK in \(\mathcal{PW}_\pi. \) However, the orthogonal complement to any mixed system \(\{K_\lambda\}_{\lambda \in \Lambda_1} \cup \{g_\lambda\}_{\lambda \in \Lambda_2} \) is always at most one-dimensional.

Systems of reproducing kernels in \(\mathcal{PW}_\pi \) are Fourier images of exponential systems in \(L^2(-\pi, \pi). \) Let \(e_\lambda(t) = e^{i\lambda t}. \) Consider \(\{e_\lambda\}_{\lambda \in \Lambda} \) in \(L^2(-\pi, \pi). \)

- Completeness – Levinson (1940), Beurling and Malliavin (1960-s), Makarov, Poltoratskii (2005).
In the example of a rank one perturbation without synthesis, it may fail with an infinite defect, that is, the orthogonal complement to the root vectors in some invariant subspace M will be infinite-dimensional.

Theorem

Let A_0 be a compact selfadjoint operator with simple spectrum $\{s_n\}$, $s_n \neq 0$. Assume that $\{s_n\}_{n \in I}$ is ordered so that $s_n > 0$ and s_n decrease for $n \geq 0$, and $s_n < 0$ and increase for $n < 0$ and

$$|s_{n+1} - s_n| \geq C_1 |s_n|^{N_1}$$

for some $C_1, N_1 > 0$. Let $L_0 = A_0 + a \otimes b$ be a bounded rank-one perturbation of A_0 such that $a, b \notin xL^2(\mu)$ and $|a_n|^2 \mu_n \geq C_2 |s_n|^{N_2}$ for some $C_2, N_2 > 0$. Assume that operator L_0 is complete and that all its eigenvalues are simple and non-zero. Denote by $\{f_j\}_{j \in J}$ the eigenvectors of L_0. Then for any L_0-invariant subspace M we have

$$\dim \left(M \ominus \overline{\text{Lin} \{f_j : f_j \in M\}} \right) < \infty,$$

where the upper bound for the dimension depends only N_1 and N_2.
Volterra rank one perturbations

Problem

Let A_0 be a compact selfadjoint operator with the (simple) spectrum $\{s_n\}$. When (for which spectra $\{s_n\}$) there exist a rank one perturbation L_0 of A_0 which is a Volterra operator?

Equivalent problem for inverse operators: when there is a singular rank one perturbation of an unbounded selfadjoint operator $A = A_0^{-1}$ which has empty spectrum?

Known results: if $T = A + iB$ is a Volterra operator and $A \in \mathcal{G}_p$, $p > 1$, then $B \in \mathcal{G}_p$ (Matsaev)

Krein class \mathcal{K}_1

An entire function F is in the Krein class \mathcal{K}_1, if it is real on \mathbb{R}, has only real simple zeros t_n and may be represented as

$$
\frac{1}{F(z)} = q + \sum_n c_n \left(\frac{1}{t_n - z} - \frac{1}{t_n} \right), \quad \sum_n t_n^{-2} |c_n| < \infty.
$$
Volterra rank one perturbations

Problem

Let A_0 be a compact selfadjoint operator with the (simple) spectrum $\{s_n\}$. When (for which spectra $\{s_n\}$) there exist a rank one perturbation L_0 of A_0 which is a Volterra operator?

Equivalent problem for inverse operators: when there is a singular rank one perturbation of an unbounded selfadjoint operator $A = A_0^{-1}$ which has empty spectrum?

Known results: if $T = A + iB$ is a Volterra operator and $A \in \mathcal{S}_p$, $p > 1$, then $B \in \mathcal{S}_p$ (Matsaev)

Krein class \mathcal{K}_1

An entire function F is in the Krein class \mathcal{K}_1, if it is real on \mathbb{R}, has only real simple zeros t_n and may be represented as

$$
\frac{1}{F(z)} = q + \sum_n c_n \left(\frac{1}{t_n - z} - \frac{1}{t_n} \right), \quad \sum_n t_n^{-2} |c_n| < \infty.
$$
Volterra rank one perturbations

Theorem

Let $t_n \in \mathbb{R}$ and $|t_n| \to \infty$, $|n| \to \infty$. The following are equivalent:

(i) The spectrum $\{t_n\}$ may be removed by a rank one perturbation;

(ii) There exists a function $F \in \mathcal{K}_1$ such that the zero set of F coincides with $\{t_n\}$.

A counterpart for compact operators

Let $s_n \in \mathbb{R}$, $s_n \neq 0$, and $|s_n| \to 0$, $|n| \to \infty$, and let A_0 be a compact selfadjoint operator with point spectrum $\{s_n\}$. The following are equivalent:

(i) There exists a rank one perturbation $L_0 = A_0 + a_0 \otimes b_0$ such that L_0 is a Volterra operator;

(ii) The points $t_n = s_n^{-1}$ form the zero set of some function $F \in \mathcal{K}_1$.
Theorem

Let \(t_n \in \mathbb{R} \) and \(|t_n| \to \infty, |n| \to \infty \). The following are equivalent:

(i) The spectrum \(\{t_n\} \) may be removed by a rank one perturbation;
(ii) There exists a function \(F \in \mathcal{K}_1 \) such that the zero set of \(F \) coincides with \(\{t_n\} \).

A counterpart for compact operators

Let \(s_n \in \mathbb{R}, s_n \neq 0 \), and \(|s_n| \to 0, |n| \to \infty \), and let \(A_0 \) be a compact selfadjoint operator with point spectrum \(\{s_n\} \). The following are equivalent:

(i) There exists a rank one perturbation \(L_0 = A_0 + a_0 \otimes b_0 \) such that \(L_0 \) is a Volterra operator;
(ii) The points \(t_n = s_n^{-1} \) form the zero set of some function \(F \in \mathcal{K}_1 \).
Volterra rank one perturbations

Theorem

Let $t_n \in \mathbb{R}$ and $|t_n| \to \infty$, $|n| \to \infty$. The following are equivalent:

(i) The spectrum $\{t_n\}$ may be removed by a rank one perturbation;

(ii) There exists a function $F \in \mathcal{K}_1$ such that the zero set of F coincides with $\{t_n\}$.

A rather counterintuitive consequence of this theorem is that adding a finite number of points to the spectrum helps it to become removable, while deleting a finite number of points may make it non-removable.

Examples

Let $t_n = n^\gamma$, $n \in \mathbb{N}$. Then the spectrum $\{t_n\}$ is removable for $\gamma \geq 2$ and non-removable for $\gamma < 2$.

$\gamma = 2$ is the critical exponent. The spectrum $\{n^2\}_{n \geq 1}$ is removable, but $\{n^2\}_{n \geq 2}$ is not.
Theorem (Livshits, 1946)

Let $L^\circ = A^\circ + iB^\circ$ be a Volterra operator (in some Hilbert space H) such that both A° and B° are selfadjoint and B° is of rank one, $B^\circ = b^\circ \otimes b^\circ$. Then the spectrum of A° is given by $s_n = c(n + 1/2)^{-1}$, $n \in \mathbb{Z}$, for some $c \in \mathbb{R}$, $c \neq 0$.

From this, one may deduce that A° is unitary equivalent to the integral operator (having the same spectrum)

$$(\tilde{A}f)(x) = i \int_0^{2\pi c} f(t) \text{sign}(x - t) \, dt, \quad f \in L^2(0, 2\pi c),$$

while L° is unitary equivalent to the integration operator

$$(\tilde{L}f)(x) = 2i \int_0^x f(t) \, dt.$$
Theorem (Livshits, 1946)

Let \(L^\circ = A^\circ + iB^\circ \) be a Volterra operator (in some Hilbert space \(H \)) such that both \(A^\circ \) and \(B^\circ \) are selfadjoint and \(B^\circ \) is of rank one, \(B^\circ = b^\circ \otimes b^\circ \). Then the spectrum of \(A^\circ \) is given by

\[s_n = c(n + 1/2)^{-1}, \quad n \in \mathbb{Z}, \text{ for some } c \in \mathbb{R}, \quad c \neq 0. \]

From this, one may deduce that \(A^\circ \) is unitary equivalent to the integral operator (having the same spectrum)

\[(\tilde{A}f)(x) = i \int_0^{2\pi c} f(t)\text{sign}(x - t) \, dt, \quad f \in L^2(0, 2\pi c), \]

while \(L^\circ \) is unitary equivalent to the integration operator

\[(\tilde{L}f)(x) = 2i \int_0^x f(t) \, dt. \]
Passing to the unbounded inverses we obtain a singular rank one perturbation $L = L(A, a, b, \kappa)$ of the operator A of multiplication by the independent variable in some space $L^2(\mu)$ where $\mu = \sum_n \mu_n \delta_{t_n}$, $t_n = s_n^{-1}$, $\kappa = -1$, $a = ib$.

Let $E = A_E - iB_E$. Then

$$\frac{B_E(z)}{A_E(z)} = \delta + \sum_n \left(\frac{1}{t_n - z} - \frac{1}{t_n} \right) |b_n|^2 \mu_n,$$

$$\frac{G(z)}{A_E(z)} = -1 + i \sum_n \left(\frac{1}{t_n - z} - \frac{1}{t_n} \right) |b_n|^2 \mu_n.$$
Passing to the unbounded inverses we obtain a singular rank one perturbation \(L = L(A, a, b, \kappa) \) of the operator \(A \) of multiplication by the independent variable in some space \(L^2(\mu) \) where \(\mu = \sum_n \mu_n \delta_{t_n}, \ t_n = s_n^{-1}, \ \kappa = -1, \ a = ib. \)

Let \(E = A_E - iB_E \). Then

\[
\frac{B_E(z)}{A_E(z)} = \delta + \sum_n \left(\frac{1}{t_n - z} - \frac{1}{t_n} \right) |b_n|^2 \mu_n,
\]

\[
\frac{G(z)}{A_E(z)} = -1 + i \sum_n \left(\frac{1}{t_n - z} - \frac{1}{t_n} \right) |b_n|^2 \mu_n,
\]

Since \(L \) (and, thus, the model operator \(T \)) is the inverse to a Volterra operator, \(Z(G) = \emptyset \), and so \(G(z) = \exp(i \pi cz) \) for some real \(c \). Thus,

\[
e^{i \pi cz} = -A_E(z) + i (B_E(z) - \delta A_E(z)),
\]

Hence, \(A_E(z) = \cos \pi cz, \ t_n = c^{-1}(n + 1/2). \)