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In this paper we consider a class of matrices A where all eigenvalues have negative real
parts and are of a common magnitude O(1). Concerning the behavior of €4 we provide
a necessary and sufficient condition, via Lyapunov transformation, for an estimate of
the form ||e*4]|2 < Ko exp(—t/K1) to be valid uniformly for ¢ > 0 with moderate-sized
constants Ko and KC;. All relevant relations are quantitatively specified.

1. Introduction and Background

In this paper we give a quantitative criterion for exponential decay in initial value
problems for linear ODE systems

y'(t) =Ay@), 120, W
¥(0) = %o
for a certain class of matrices A € C**" to be specified below.

The motivation for our considerations is twofold and deserves some introductory
remarks. First of all, concerning the historical context, let us recall the well-known
Kreiss Matrix Theorem (KMT) on linear Ly-stability (cf. Ref. 7), which provides
necessary and sufficient conditions for the uniform boundedness of matrix powers
A”, ie. for the existence of a constant® C such that |A”|l2 < C uniformly for
v — oo. For a fixed n X n matrix A such a condition for power-boundedness can
be formulated in an elementary way as an eigenstructure criterion. The essential
point behind the KMT is that it refers to families A of n x n matrices A, which
makes it a strong tool in the stability theory for ODE and PDE discretizations. In

*Dedicated to the memory of Richard Weiss.
TE-mail: w.auzinger@tuwien.ac.at
2In this introductory section, the notation C is to be understood in a generic sense.
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this general context, the straightforward eigenstructure criterion is of course too
weak. In the formulation of the KMT, other criteria of a more quantitative nature
appear, like the resolvent condition, ||(2I — A)™||2 < C/(|z| — 1) for all z € C with
|z| > 1. Another of these equivalent conditions characterizes stability by means of
a linear transformation H, with ||H||2||[H~||lz < C, such that ||A”]|z < 1 in the
corresponding “elliptic” norm || - ||z induced by H (see Refs. 9 and 10).

The essential point is that the relevant conditions have to be satisfied uniformly®
for all A € A. In the original formulation of the KMT, the relations involved were
not explicitly quantified. Within the past years, the theorem and conditions involved
have further been sharpened, quantified and generalized by a number of authors
(cf. e.g. Refs. 3, 8-10 and many others).

The problem of characterizing the behavior of matriz exponentials €' uniformly
w.r.t. ¢ > 0 has been investigated in the same spirit; in particular, in Refs. 3 and 8
criteria are formulated (based on appropriate resolvent conditions) for ||et4||s < C
(or, more generally, |le?4[|2 < Ce**) to be valid. In this context, the formulation of
another equivalent criterion involving the concept of an elliptic norm (as mentioned
above) would involve an appropriate Lyapunov transformation. However, a look at
the relevant literature reveals that this approach seems not to have been taken
so far.

The purpose of this paper is to present a criterion of this type, based on Lya-
punov transformation, for a particular class of matrices A, with eigenvalues of a
common magnitude O(1) having negative real parts. At first sight, this is a rather
trivial situation; however, in the case that A is not normal,° the exponential de-
cay (generally) only occurs after an initial phase where these solutions may (even

strongly) grow in || - ||2. Such a behavior can be characterized by an estimate of
the form

lletllz < Koexp(~t/K;) for arbitrary ¢ >0 2

with certain constants Ky and K.

Our essential result directly relates these constants to the condition number of a
certain Lyapunov transformation V “normalizing” A, (cf. (4) below): We shall show
that Ky and K; can be estimated in terms of the norms of V and its inverse, and
vice versa (with an additional dependence on the size of the eigenvalues of A4 and
on the dimension 7). The essential point is that all relations between the constants
involved will be gquantitatively specified.

The first part in our proof (estimation of ||et4|y using bounds for V and
its inverse; see Sec. 2) is elementary and is provided only for the sake of self-
containedness. The second part, however, where estimates for ||V||z and [|[V~!]|y

bOn the other hand, an assertion of a nature like the KMT may also be useful for the case of a
fixed matrix A, in particular if the relevant constants C are quantitatively specified.

°Cf. also Refs. 1 and 2 for important remarks concerning the effect of non-normality, in particular
for stiff problems.
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are derived proceeding from (2), requires careful estimates based on Cauchy inte-
grals (see Sec. 3). The latter gives the interesting information — a condition (on
V) which is not only sufficient but also necessary (for (2) to hold) is a natural one.

Secondly, this quantitative criterion for exponential decay serves as an essen-
tial motivation in our numerical convergence theory for a general class of nonlinear
stiff initial value problems y’ = f(y). As argued in Ref. 2, non-normality of the
Jacobian f, causes significant technical difficulties in the stability and convergence
theory for discretizations like e.g. implicit Runge-Kutta schemes. One way around
this difficulty is to base the analysis on a semi-global linearization concept which
relates points in the phase space with corresponding points on an invariant mani-
fold containing smooth solutions. In this context, the use of an appropriate (local)
Lyapunov transformation (on the fast, stiff time scale) plays an essential role. A
more detailed description of this concept is out of the scope of this paper; we refer
to Refs. 2 and 4.

In the following, we restrict our considerations to matrices A satisfying the fol-
lowing assumption concerning the spectrum. We shall refer to this class of matrices
simply as “class (3)”:

Assumption 1.1. The eigenvalues A;,...,A, € C of A are contained in the
half disc

5(A):={z€C:Rez<—1,]1+2| <K} 3)
with radius K and location left to —1; cf. Fig. 1.
Notation 1.1. Throughout (-,-) denotes the standard inner product in C" and

|||z the induced (Euclidean) vector (resp. matrix) norm. A* denotes the Hermitian
adjoint of A € C**™.

5(4)

Fig. 1. Location of the spectrum of A.



26 W. Auzinger & A. Eder

2. The Lyapunov Equation. Estimation of ||e?4||; via a Related
Elliptic Norm

Consider the Lyapunov equation
A'V+VA=-I. 4)

Since we have assumed that all eigenvalues of A have negative real parts, there
exists a unique positive definite solution V' € C**™ of (4) (cf. Ref. 5). This matrix
induces a so-called elliptic norm

Iolly = 11V*/2ylla = (V) V2. 5)

Now we provide a simple estimate of the form (2) (valid for arbitrary matrices A
for which the spectrum is contained in the left half-plane); the constants Ky and
K, in (2) will be bounded in terms of the matrix V defined by (4).

To this end we insert an arbitrary solution y(t) of (1) and differentiate the
outcome [|y(¢)||%:

20,00 = (&Y + VAW, ¥(0)

= —lly®)IE < ~IVIF(Vy(@),y(2)) - (6)

Here we have used the Lyapunov equation (4) and (Vy,y) < ||V]||2||y||3. The in-
equality (6) implies

t
t <exp| — ——— 0 ; 7
IOl < exp ( = 5o IOl g
furthermore,
_ t
@)l < Vi1V =2l exp - )@
VT,
= (VI IV =111,)1/2 _ ¢
VIRV 72 exp (= 5ot )l ®
We obtain

Proposition 2.1. For all t > 0, |le*4||2 can be bounded in terms of the Lyapunov
transform V' (defined by (4)) in the following way:

t
le4la < (IVIIalIV12) 2 exp ( - —) .
2V

Le. the estimate (2) holds with Ko = (||V||2|[V"Y|2)}/2 and Ky = 2|V 2.
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3. Estimation of the Lyapunov Transform in Terms of
a Bound for ||et4||2

In this section we reverse the argument from above: We assume that for A from
class (3) an estimate (2) is valid, and derive a norm bound for V' (defined by (4))
and its inverse. These bounds will be explicitly given in terms of Ko, K; from (2),
K from assumption (3) and the matrix dimension n.

To this end we use the fact that V from (4) can be written as an integral
(cf. Ref. 5):

0 -
V= / etA"etAdt . 9)
0

We have assumed that (2) holds. Together with (9) and observing ||et4” ||z = ||€t4||2
we are led to

oo 2 KK
Vil < [~ K3exp (= ot)de = 552 (10)

Furthermore, multiplication of (4) with V! from left and right yields
VAT 4 AVl = V2 (1)
giving
IVHE =1V 722 < IV 2l A2 + AV Iz = 2l AlllV - s (12)
hence
V=2 < 2]|4]2- (13)

To draw the desired conclusion — namely to bound the norm of V and V-1
(in terms of K, Ko and K1) — we need a bound for ||A|2 valid under the given
assumption (2). This is the nontrivial step in our proof, and the rest of this paper
is devoted to it. For this purpose we write A as a Cauchy integral

=1 _ At
A= }i Az— A)ldz, (14)

where the positively oriented path I' C C encloses all eigenvalues Aj, j = 1,...,n
of A, which are contained in the half disc 5(A) (cf. Figs. 1 and 2).

We choose a special path T of length |[I'| = O(1) on which an estimate of the
norm of the resolvent R(z) := (z — A)~! will turn out to be O(1) and |z| = O(1)
for z € I'. Quantification and combination of these estimates will yield the desired
bound for ||A||2. The idea to construct this path is to partition T into a path Ty
parallel to the imaginary axis and two paths I'y, | ) symmetric w.r.t. the real axis
(cf. Fig. 2), in a way such that the resolvent on I'1, I's can be bounded with the
help of a bound for the resolvent on I'y. First we derive a resolvent bound for
the appropriately chosen I'g. To this end we use the Laplace transform formula
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Fig. 2. A special path I' = T’y + I'; +I' for the Cauchy integral (14).

(z = A7 = [(Pet2et4dt for Re(\j —2) < 0, j = 1,...,n. Under the given
assumption (2) this yields

o0
IG=)7e = | [ et
0 2

{e ]
< / e—(Rez)t“etAllzdt
0

° —(Rez+2-)t Ko
<y [ et * = et & (15)
for —— - +Rez > 0. Now we define Iy as
Lo :={z0+ (21— 2z0)s: s €[0,1]}, (16)
where 29,1 := —ﬁ F (K + )i, with
ri=1- E'Ilc_ > % 17)
We have
lz| € V(2K1)"24+ (K+7)2 =By for z €Ty, (18)
ITo| =2(K+1) =:Go. (19)
Since kl? +Rez >0 for z € Ty we can apply (15) to obtain
IR(2)]l2 = ||(z— A) Y2 < 2KoK; for z €Ty. (20)
The bounds (18)—(20) imply an estimate for the norm of (14) restricted to I':

1

1
5—;{ /[:o ZR(Z)dZ , < ;goBoKolcl = Co . (21)
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Now we define the path

[yi={z —sr:s€e]0,1]}U { -1+ (K+r)e¥:pe [g,w]} (22)

and the path I'; symmetric to I'; w.r.t. the real axis. For I'; and I's we have
|z| L1+K+7r=:By2, z€lia, (23)
P12 = (K +T)g +r=:G12. (24)

In order to bound the resolvent on I'; we consider the resolvent equation

R(z) = (z— 4)1 = (w—(zl - z)) -

=R(z;)~!

- (Re) (= - z)R(zl»)_l

regular matrix!
= (I = (21— 2)R(z1))"'R(2z1) for z€T};. (25)
The norm of the matrix (I — (21 — 2)R(21)) ™! can be bounded by (cf. Ref. 6)

I — (21 — 2)R(z1) 157"
|det(I — (21 — 2)R(z1))|

I(T = (21 = 2)R(21)) ]2 < (26)

We note that

lz1 — 2| S V(K +2r2+ (K+7)2 =R forzel; (27)

and estimate with the help of (20) (note that z; is the point where 'y and Iy
intersect):

”I — (Zl — Z)R(Zl)nz <1+ |21 - Z”IR(Zl)“z <142RKoK: =N (28)

for z € I'y. To derive a bound for

n

(1~ e = (e = ] |1 - e H [ o)
for z € T';, we use
|z+c_7-]Zr2% forzeTly, (30)
ol < VIR +TP + @K AP = 2 (3)
for j =1,...,n. This implies
Ichjl<2Z=:D for z € Ty, i=1,...,n. (32)

|Z+Cj| -
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The resolvent equation (25) together with the estimates (20), (26), (28) and (32)
result in the desired resolvent bound

IR(2)ll2 < I = (21 — 2)R(21)) " l2ll R(z1) |2 < 2D"N™ KoKy (33)

for z € I';. By symmetry, the same bound is valid on I'2. As a consequence of (23),
(24) and (33) we obtain

1

o /PL2 zR(2)dz

Combination of (21) and (34) now yields the desired estimate

2
1 -
lle <3 |5 [ e - a)a:

Jj=0
Finally, the estimates (10) and (13) together with (35) give us the desired result.

1
< ;91,231,273’7\/ 1Ky =: Ci2. (34)

2

<Co+2C12- (35)
2

Proposition 3.1. If the matriz A from class (3) satisfies (2), then
lAll2 < 2(Co + 2C1,2) 5
the Lyapunov transform V (defined by (4)) and its inverse can be estimated by

2K
VI < S8, v < 2(Co + 2612)-

The constants C; in these bounds can be explicitly expressed in terms of K and Ko,
K1 as in the above proof. In addition, C1,2 depends exponentially on the matriz
dimension n (cf. (34)).

Remark 3.1. The sharpness of our results (in particular concerning the exponen-
tial dependence on n in Proposition 3.1) may be worth investigating.

For the case of a general matrix A (without an a priori assumption concerning
the distribution of eigenvalues), the question on whether and in what way the
behavior of et4 can be characterized in the same spirit is also of interest.

References

1. W. Auzinger, R. Frank and G. Kirlinger, A note on convergence concepts for stiff
problems, Computing 44 (1990) 197-208.

2. W. Auzinger, R. Frank and H. J. Stetter, Vienna contributions to the development of
RK-methods, Appl. Numer. Math. 22 (1996) 35—49.

3. W. Auzinger and G. Kirlinger, Kreiss resolvent conditions and strengthened Cauchy—
Schwarz inequalities, Appl. Numer. Math. 18 (1995) 57-67.

4. W. Auzinger, A. Eder and R. Frank, “Convergence theory for implicit Runge-Kutta
methods applied to a one-parameter family of stiff differential equations”, Report
123/98, Institute for Applied and Numerical Mathematics, Vienna University of Tech-
nology, 1998.

5. R. A. Horn and C. R. Johnson, Topics in Matrix Analysis (Cambridge Univ.
Press, 1991).

Lyapunov Transformation and Ezponential Decay in Linear ODE Systems 31

6. T.Kato, A Short Introduction to Perturbation Theory for Linear Operators
(Springer, 1982).

7. H. O. Kreiss, Uber die Stabilitdtsdefinition fiir Differenzengleichungen die Differen-
tialgleichungen approzimieren, BIT 2 (1962) 153-181.

8. R. J. LeVeque and L. N. Trefethen, On the resolvent condition in the Kreiss matriz
theorem, BIT 24 (1984) 584-591.

9. J. C. Strikwerda and B. A. Wade, “A survey of the Kreiss matrix theorem for power
bounded families of matrices and its extensions”, Tech Report 1250, Department of
Computer Sciences, University of Wisconsin — Madison, October 1994.

10. E. Tadmor, The eguivalence of Lo-stability, the resolvent condition, and strict H-
stability, Lin. Alg. Appl. 41 (1981) 151-159.





