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based on a �nite volume disretization tehnique on a staggered grid. Theomputational domain is divided into non-overlapping ells with pressurenodes at the ell enter and (omponent-wise) veloity nodes at the ellfaes. The smoothing proedure is a so-alled symmetri oupled Gauss-Seidel tehnique (SCGS). One iteration step of SCGS onsists of solvingloal problems for eah ell involving the pressure at the ell enter and theneighboring veloity omponents at the ell faes. This is done ell by ell ina Gauss-Seidel-type manner and, therefore, an be viewed as a multipliativeShwarz-type iteration.This multigrid tehnique is not restrited to Navier-Stokes equations, itan easily be extended to other mixed variational problems if one is ableto speify appropriate loal sub-problems for the smoothing proedure. Ithas been widely used in pratie and has shown good onvergene results.However, very little is known so far about onvergene and smoothing prop-erties of the underlying iterative method SCGS. The authors of this paperare aware of only one ontribution, namely by Molenaar [9℄, where Fourieranalysis for a simple model problem (a mixed �nite element method of thePoisson equation in one dimension) was used.Besides the multipliative Shwarz-type iteration desribed above an ad-ditive version of the method is also at hand, where the same type of loalsub-problems are solved independently of eah other in a Jaobi-type manner.The aim of this paper is to ontribute to the analysis of this additive ver-sion of the iterative method for a general lass of symmetri mixed variationalproblems, whih inludes e.g. the Stokes equations. The theory applies to alarge variety of mixed �nite element methods on strutured and unstruturedgrids. The analysis of the multipliative ase remains an open problem andis not overed by this paper.The paper is organized as follows: Setion 2 ontains the framework fordesribing the lass of problems and the multigrid methods onsidered. InSetion 3 it is shown that the proposed additive Shwarz-type methods be-long to the more general lass of symmetri inexat Uzawa methods. Forthis general lass of symmetri inexat Uzawa methods new onvergene andsmoothing properties are derived, whih an easily be applied to the onsid-ered additive Shwarz-type methods. In Setion 4 the two major steps of themultigrid onvergene analysis, the approximation property and the smooth-ing property, are disussed. Finally, in Setion 5 the theoretial results areapplied to the Crouzeix-Raviart element for the Stokes equations inludingsome numerial experiments.
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2 The frameworkLet V and Q be real Hilbert spaes, a : V � V �! R, b : V � Q �! R, : Q � Q �! R ontinuous bilinear forms, and F : V �! R, G : Q �! Rontinuous linear funtionals. We onsider the following mixed variationalproblem:Find u 2 V and p 2 Q suh thata(u; v) + b(v; p) = hF; vi for all v 2 V;b(u; q)� (p; q) = hG; qi for all q 2 Q:Here, hF; vi (hG; qi) denotes the evaluation of the linear funtional F (G) atthe point v (q).More onisely, the mixed variational problem an also be written as avariational problem on V �Q:Find (u; p) 2 V �Q suh thatB((u; p); (v; q)) = hF ; (v; q)i for all (v; q) 2 V �Q (1)with the bilinear formB((w; r); (v; q)) = a(w; v) + b(v; r) + b(w; q)� (r; q)and the linear funtionalhF(v; q)i = hF; vi+ hG; qi:It is assumed that a and b are symmetri and non-negative and that B isstable on V �Q. Then the mixed variational problem (1) is well-posed andan be interpreted as a saddle point problem.Typial examples of this type of problems are the Stokes problem fromuid mehanis, see Setion 5, various problems from linear elastiity (nearlyinompressible materials, mixed formulations based on the Hellinger-Reissnerpriniple), or mixed formulations of boundary value problems for seondorder ellipti equations, see e.g. Brezzi, Fortin [5℄.The Hilbert spaes V and Q are typially subspaes of Sobolev spaeson some domain 
. Then, for disretizing the ontinuous problem (1), asequene of �nite element spaes Vk and Qk are hosen for eah level k =1; 2; : : : , orresponding to a hierarhy of inreasingly �ner meshes on 
, andsymmetri bilinear forms Bk and linear funtionals Fk on Vk �Qk.These spaes, linear and bilinear forms determine disrete problems ateah level k: 3



Find (uk; pk) 2 Vk �Qk suh thatBk((uk; pk); (v; q)) = hFk; (v; q)i for all (v; q) 2 Vk �Qk: (2)A lass of eÆient solvers of these disrete problems are multigrid al-gorithms: We additionally need oarse-to-�ne inter-grid transfer operatorsIkk�1 : Vk�1 � Qk�1 �! Vk � Qk. Then one iteration loop for solving (2) atlevel k is given in the following form:Let (u0k; p0k) 2 Vk � Qk be a given approximation of the solution to (2).Then the iteration proeeds in two stages:1. Smoothing: For j = 0; 1; : : : ; m� 1 ompute (uj+1k ; pj+1k ) 2 Vk �Qk byan iterative proedure of the form(uj+1k ; pj+1k ) = Sk(ujk; pjk):2. Coarse grid orretion: Seth ~Fk�1; (v; q)i = hFk; Ikk�1(v; q)i � Bk �(umk ; pmk ); Ikk�1(v; q)�for (v; q) 2 Vk�1 �Qk�1 and let ( ~wk�1; ~rk�1) 2 Vk�1 �Qk�1 satisfyBk�1(( ~wk�1; ~rk�1); (v; q)) = h ~Fk�1; (v; q)i (3)for all (v; q) 2 Vk�1 �Qk�1.If k = 1, ompute the exat solution of (3) and set (wk�1; rk�1) =( ~wk�1; ~rk�1).If k > 1, ompute approximations (wk�1; rk�1) by applying � � 2iteration steps of the multigrid algorithm applied to (3) on level k � 1with zero starting values.Set (um+1k ; pm+1k ) = (umk ; pmk ) + Ikk�1(wk�1; rk�1):In the next setion the �rst stage of the multigrid iteration, the smoothingproedure, will be disussed in detail:3 Additive Shwarz-type methods and sym-metri inexat Uzawa methodsLet v 2 Vk and q 2 Qk. Then v 2 Rnk and q 2 Rmk denote their vetorrepresentations (i.e. the vetors of oeÆients relative to some bases in Vk4



and Qk). Furthermore, we introdue the matrix representation of the bilinearforms byBk((w; r); (v; q)) = (Akw; v)`2 + (Bkv; r)`2 + (Bkw; q)`2 � (Ckr; q)`2 ;and the vetor representation of the linear formshFk; (v; q)i = (fk; v)`2 + (gk; q)`2 :Here (:; :)`2 denotes the Eulidean salar produt, whose assoiated vetornorm and matrix norm will both be denoted by k:k`2.In matrix-vetor notation the disrete problem (2) beomes:Kk �ukpk� = �fkgk� with Kk = �Ak BTkBk �Ck� :Here, BTk denotes the transpose of the matrix Bk. We assume that Ak and Ckare symmetri positive semi-de�nite matries, and that Kk is a nonsingularmatrix.Sine the smoothing proedure involves only one level k of the hierarhyof spaes, we will simplify the notation for the rest of the setion by droppingthe subsript k and, additionally, omitting underlining the vetors. So, fromnow on, we disuss iterative methods (as smoothers) for linear systems ofequations of the form:K�up� = �fg� with K = �A BTB �C� ;where u 2 Rn , p 2 Rm , under the assumption that A is a symmetri positivesemi-de�nite n � n matrix, B is a m � n matrix, and C is a symmetrisemi-positive de�nite m�m matrix, and that K is nonsingular.For setting up loal sub-problems a set of linear operators is introdued:Pi : Rni �! Rn ; Qi : Rmi �! Rm ; for i = 1; : : : ; N;where the dimensions ni and mi are typially muh smaller than the dimen-sions n and m of the original spaes, respetively. The operators Pi and Qiare interpreted as prolongation operators with assoiated restrition opera-tors P Ti and QTi . We assume thatNXi=1 PiP Ti = I; (4)5



where I denotes the identity matrix. Starting from some approximations ujand pj of the exat solutions u and p we onsider iterative methods of form:uj+1 = uj + NXi=1 Piwji ; pj+1 = pj + NXi=1 Qirji ;where (wji ; rji ) solves the loal saddle point problem�Âi BTiBi BiÂ�1i BTi � Ŝi��wjirji � = �P Ti [f � Auj � BTpj℄QTi [g �Buj + Cpj℄ �with Ŝi = ��1(Ci + BiÂ�1i BTi ) for some relaxation parameter � > 0, i =1; : : : ; N .That means, that the residuals of the approximations are �rst restritedto the smaller spaes, then a series of small saddle point problems must besolved, and, �nally, the solutions are prolongated and determine the nextiterate. This proess an be viewed as an additive Shwarz method.The introdution of an additional relaxation parameter � will be neessaryfor the onvergene analysis. In the ase � = 1 the loal saddle point problemsompletely resemble the global saddle point problem in shape.So far, no onditions are yet �xed for hoosing the matries Âi, Bi, andCi. Two important onditions on the matries of the loal problems areintrodued in the next theorem:Theorem 1. Assume that (4) is satis�ed, the matries Âi and Ŝi are sym-metri and positive de�nite, and there is a symmetri positive de�nite n�n-matrix Â suh that P Ti Â = ÂiP Ti (5)for all i = 1; 2; : : : ; N . Furthermore, assume that the matries Bi obey theondition QTi B = BiP Ti (6)for all i = 1; 2; : : : ; N .Then we have uj+1 = uj + wj; pj+1 = pj + rj; (7)where wj, rj satisfy the equationK̂�wjrj� = �fg�� K�ujpj� with K̂ = �Â BTB BÂ�1BT � Ŝ�6



and Ŝ =  NXi=1 QiŜ�1i QTi !�1 :Proof. From the loal sub-problems it follows thatÂiwji +BTi rji = P Ti [f � Auj �BTpj℄; (8)Biwji + [BiÂ�1i BTi � Ŝi℄rji = QTi [g � Buj + Cpj℄: (9)If (8) is multiplied by Pi and summed up, we obtainNXi=1 PiÂiwji + NXi=1 PiBTi rji = NXi=1 PiP Ti [f � Auj � BTpj℄= f � Auj � BTpj:From (5) and (6) we obtain PiÂi = ÂPi and PiBTi = BTQi, whih immedi-ately implies Âwj +BT rj = f � Auj � BTpj (10)with wj =PNi=1 Piwji and rj =PNi=1Qirji .From (8) we have wji = Â�1i (P Ti [f �Auj �BTpj℄�BTi rji ). Then (9), (5),and (6) implyŜirjj = BiÂ�1i P Ti [f � Auj �BT pj℄�QTi [g �Buj + Cpj℄= QTi (BÂ�1[f � Auj � BTpj℄� [g � Buj + Cpj℄):Therefore, rji = Ŝ�1i QTi (Â�1[f � Auj � BTpj℄� [g � Buj + Cpj℄):If these equations are multiplied by Qi and summed up, we obtainrj = NXi=1 QiŜ�1i QTi (BÂ�1[f � Auj �BT pj℄� [g � Buj + Cpj℄)= Ŝ�1(BÂ�1[f � Auj � BTpj℄� [g � Buj + Cpj℄): (11)From (10) and (11) it follows that�Â BT0 �Ŝ��wjrj� = � I 0�BÂ�1 I��f � Auj � BTpjg � Buj + Cpj � :If this equation is multiplied by the inverse of the matrix on the right handside, the proof is ompleted. 7



Remark 1. 1. The onditions (5) and (6) an also be written as ommu-tative diagrams:Rn Â���! RnPTi ??y ??yPTiRni Âi���! Rni Rn B���! RmPTi ??y ??yQTiRni Bi���! Rmi2. The preonditioner Ŝ is of the typial form of an additive Shwarz pre-onditioner.It an easily be seen that one step of the iteration (7) onsists of threesub-steps: Â(ûj+1 � uj) = f � Auj � BTpj;Ŝ(pj+1 � pj) = Bûj+1 � Cpj � g;Â(uj+1 � uj) = f � Auj � BTpj+1:In this sense the additive Shwarz method an be interpreted as a symmetriinexat Uzawa method. The onvergene properties of this lass of methodshave been investigated in Bank, Welfert, Yserentant [1℄ from the point of viewof inner and outer iterations, and, more generally, in Zulehner [13℄. This lassalso ontains the Braess-Sarazin smoothers and the inexat Braess-Sarazinsmoothers, see Braess, Sarazin [2℄, and Zulehner [12℄. However, none ofthe onvergene results in these papers is helpful for disussing the so-alledsmoothing property, whih is part of the multigrid onvergene analysis, seethe next setion, in our situation.Therefore, we will present a new onvergene result for general symmetriinexat Uzawa methods (not only for the additive Shwarz-type iterationonsidered in Theorem 1) of the formuj+1 = uj + wj; pj+1 = pj + rj; (12)where wj, rj satisfyK̂�wjrj� = �fg�� K�ujpj� with K̂ = �Â BTB BÂ�1BT � Ŝ� ; (13)for general symmetri and positive de�nite matries Â and Ŝ, whih will behelpful in our ase.For this, we �rst introdue the iteration matrixM = I � K̂�1K;8



whih ontrols the error propagation for the iterative method (12).In the next lemma, whih gives an important representation for M, thefollowing notations are used: M < N (N > M) i� N�M is positive de�nite,and M � N (N � M) i� N � M is positive semi-de�nite, for symmetrimatries M and N .Lemma 1. Let Â be a symmetri and positive de�nite n� n matrix, and Ŝa symmetri positive de�nite m�m matrix, satisfyingÂ > A and Ŝ > C +BÂ�1BT : (14)Then we have:The iteration matrix M = I � K̂�1K an be written in the formM = Q�1=2 �MQ1=2with the symmetri positive de�nite blok diagonal matrixQ = �Â� A 00 Ŝ � C � BÂ�1BT�and �M = PTNP;where N is a normal matrix and P satis�es the onditions kPk`2 � 1. More-over, for the spetrum �(N ) we have:�(N ) � fz 2 C : ����z � 12 ���� = 12g: (15)Proof. Simple alulations show that the iteration matrix an be written inthe following form:M = K̂�1(K̂ � K)= �Â BTB BÂ�1BT � Ŝ��1�Â� A 00 C +BÂ�1BT � Ŝ�= � Â BT�B Ŝ �BÂ�1BT��1�Â� A 00 Ŝ � C �BÂ�1BT�Hene �M = Q1=2MQ�1=2 = Q1=2 � Â BT�B Ŝ �BÂ�1BT��1Q1=2= Q1=2D�1=2ND�1=2Q1=29



with D = �Â 00 Ŝ � BÂ�1BT� ; N = � I �BT� �B I ��1and �B = (Ŝ �BÂ�1BT )�1=2BÂ�1=2:Straight forward omputations show that N ommutes with N T , i.e. N isnormal, and that the eigenvalues � of N�1 are of the form 1 � i� with�2 � f0g[�( �B �BT ). So, the eigenvalues lie on the straight line of all omplexnumbers with real part 1. By the transformation z �! 1=z this straight lineis mapped to the irle (15), whih, therefore, must ontain all eigenvaluesof N .With P = D�1=2Q1=2 we obtain the required representation of the itera-tion matrix. Moreover, sine Q � D we havePPT = D�1=2QD�1=2 � I;whih ompletes the proof.Next we onsider the relaxed iterative methoduj+1 = uj + ! wj; pj+1 = pj + ! rj; (16)where wj, rj satisfy K̂�wjrj� = �fg�� K�ujpj�for some relaxation parameter ! > 0.The error propagation is now ontrolled by the iteration matrix (1�!)I+!M.The following onvergene result for the relaxed method is a onsequeneof the representation of M in Lemma 1:Theorem 2. Let Â be a symmetri and positive de�nite n � n matrix, andŜ a symmetri positive de�nite m�m matrix, satisfying (14).Then we have: k(1� !)I + !MkQ � 1for all relaxation fators ! 2 [0; 2℄ andk(1� !)I + !MkQ < 110



for all relaxation fators ! 2 (0; 2). Here k:kQ denotes the matrix normassoiated to the salar produt((w; r); (v; q))Q = ((Â� A)w; v)`2 + ((Ŝ � C �BÂ�1BT )r; q))`2:Proof. We use the notations introdued in the proof of Theorem 1. Observethat k(1� !)I + !MkQ = k(1� !)I + ! �Mk`2:In a �rst step we show thatk(1� !)I + ! �Mk`2 � 1; (17)or equivalently, [(1� !)I + ! �M℄T [(1� !)I + ! �M℄ � I:We have[(1� !)I + ! �M℄T [(1� !)I + ! �M℄= !2 �MT �M+ !(1� !)[ �MT + �M℄ + (1� !)2I= !2PTN TPPTNP + !(1� !)PT [N T +N ℄P + (1� !)2I� !2PTN TNP + !(1� !)PT [N T +N ℄P + (1� !)2I= PT [(1� !)I + !N ℄T [(1� !)I + !N ℄P + (1� !)2[I � PTP℄:Sine N is a normal matrix, whose eigenvalues lie on the irle (15), it followsthat k(1� !)I + !Nk`2 = �((1� !)I + !N ) � 1for ! 2 [0; 2℄. Here �(M) denotes the spetral radius of a matrix M . There-fore [(1� !)I + !N ℄T [(1� !)I + !N ℄ � I;whih allows to ontinue the hain of estimates from above:[(1� !)I + ! �M℄T [(1� !)I + ! �M℄� PTP + (1� !)2[I � PTP℄= (1� !)2I + [1� (1� !)2℄PTP� (1� !)2I + [1� (1� !)2℄I = I;11



whih ompletes the proof of (17).In order to exlude the equality sign in (17) for ! 2 (0; 2), it remains toshow that there is no vetor z with kzk`2 = 1 and k[(1� !)I +! �M℄zk`2 = 1for ! 2 (0; 2). Assume now that suh a vetor exists. Using the same hainof inequalities as before, one easily shows that1 = zT [(1� !)I + ! �M℄[(1� !)I + ! �M℄z� zTPT [(1� !)I + !N ℄T [(1� !)I + !N ℄Pz+ (1� !)2zT [I � PTP℄z� zTPTPz + (1� !)2zT [I � PTP℄z= (1� !)2zT z + [1� (1� !)2℄zTPTPz� zT z = 1:But this an only happen ifzTPT [(1� !)I + !N ℄T [(1� !)I + !N ℄Pz = zTPTPzand zTPTPz = zT z;whih imply [(1� !)I + !N ℄T [(1� !)I + !N ℄Pz = Pzand PTPz = z: (18)Sine (1�!)I+!N is a normal matrix, whose only eigenvalue with modulus1 is equal to 1, we an further dedue that[(1� !)I + !N ℄Pz = Pz;therefore NPz = Pz: (19)The relation (18) and 19 lead toPPTPz = Pz and N�1Pz = Pz;from whih we obtain(D �Q)w = 0 and (D1=2N�1D1=2 �D)w = 012



for w = D�1=2Pz. That means�A 00 C�w = 0 and � 0 BT�B 0 �w = 0:This, however, implies Kw = 0. Therefore, w = 0 and z = 0, in ontraditionto the assumption kzk`2 = 1.Theorem 2 states that the relaxed method (16) onverges for all relaxationparameters ! 2 (0; 2). Of partiular interest is the limiting ase ! ! 2, forwhih Theorem 2 guarantees at least that the iterates do not blow up, i.e.:k2M� IkQ � 1:This property leads to an important estimate, formulated in the next theoremand needed in the forthoming multigrid onvergene analysis:Theorem 3. Let Â be a symmetri and positive de�nite n � n matrix, andŜ a symmetri positive de�nite m�m matrix, satisfyingÂ � A and Ŝ � C +BÂ�1BT :Then kKMmk`2 � �0(m) kK̂ � Kk`2with K given by (13) and�0(m) = 12m�1�m� 1[m℄=2℄� � 8>><>>: r 2�(m� 1) for even m;r 2�m for odd m;where �nk� denotes the binomial oeÆient and [x℄ denotes the largest integersmaller than or equal to x 2 R.Proof. We �rst assume that the strit inequalities Â > A and Ŝ > C +BÂ�1BT hold. Then we have with the notations used in the proofs of thelast two theorems:KMm = (K̂ � K)(I �M)Mm�1= (K̂ � K)Q�1=2(I � �M) �Mm�1Q1=2= �I 00 �I�Q1=2(I � �M) �Mm�1Q1=213



Therefore, kKMmk`2 � k(I � �M) �Mm�1k`2 kQk`2 :From Q = �I 00 �I� (K̂ � K)we obtain kQk`2 = kK̂ � Kk`2:From Theorem 2 it follows thatk2 �M� Ik`2 � 1:Then Reusken's lemma, see Reusken [10℄, Hakbush [8℄, impliesk(I � �M) �Mm�1k`2 � �0(m)with �0(m) = 12m�1�m� 1[m℄=2℄� � 8>><>>: r 2�(m� 1) for even m;r 2�m for odd m:A simple losure argument for the ase Â � A and Ŝ � C + BÂ�1BTompletes the proof.4 Multigrid onvergene analysisA lassial tehnique for analyzing the onvergene of multigrid methodsrelies on two properties: the approximation property and the smoothingproperty, see Hakbush [7℄, whih will be disussed in this setion.First we need mesh-dependent norms on Vk � Qk. Let jjj(:; :)jjj0;k be anL2-like norm on Vk �Qk, for whih we assume thatjjj(v; q)jjj0;k � �kvk2̀2 + kqk2̀2�1=2 = �vq�`2 (20)for v 2 Vk, q 2 Qk with vetor representations v 2 Rnk , q 2 Rmk . Thesymbol � denotes the equivalene of norms.14



Next we introdue a seond disrete norm on Vk �Qk byjjj(w; r)jjj2;k = sup(v;q)2Vk�Qk jBk((w; r); (v; q))jjjj(v; q)jjj0;k :Then, under reasonable assumptions on the ontinuous problem and itsdisretization, it an be shown for the two-grid algorithm (i.e. exat solutionof the oarse grid orretion equation (3) at level k � 1) thatjjjBkjjj0;k jjj(um+1k � uk; pm+1k � pk)jjj0;k � A jjj(umk � uk; pmk � pk)jjj2;k;for some onstant A whih is independent of k. See e.g. Brenner [3℄, [4℄ forseveral ases of mixed variational problems and appropriate �nite elementspaes, for whih this property, the so-alled approximation property, ouldbe shown. In the next setion the approximation property for the Crouzeix-Raviart element for the Stokes problem is disussed in detail.The missing part to omplete the proof of the two-grid onvergene is thesmoothing property:jjj(umk � uk; pmk � pk)jjj2;k � �(m) jjjBkjjj0;k jjj(u0k � uk; p0k � pk)jjj0;kfor some funtion �(m) whih is independent of k, and�(m)! 0 for m!1:The onvergene of the two-grid method for a suÆiently large number m ofsmoothing steps easily follows by ombining the approximation property andthe smoothing property. From this the onvergene of the multigrid methodan be derived by standard arguments, see, e.g., Hakbush [7℄.From the matrix representation of the bilinear form Bk and the saling(20) we obtain jjj(v; q)jjj2;k � Kk �vq�`2 :From this, it easily follows that the smoothing property translates to thefollowing onditions in matrix-notation:kKkMmk k`2 � �(m) kKkk`2 : (21)If kK̂k � Kkk`2 � R kKkk`2for some onstant R, Theorem 3 immediately implies the smoothing property(21) with smoothing rate �(m) = R �0(m) = O(1=pm).15



5 Appliation to the Crouzeix{Raviart ele-ment for the Stokes problemLet 
 be a bounded onvex polygonal domain in R2 and f a given funtion inL2(
). The Stokes problem with homogeneous Dirihlet boundary onditionsis given by: ��u+ grad p = f in 
;div u = 0 in 
;u = 0 on �
;Z
 p dx = 0:The weak formulation of this problem leads to a mixed variational problem:Find u 2 V = H10 (
)2 and p 2 Q = L20(
), the subspae L2(
) withvanishing mean value, suh thata(u; v) + b(v; p) = hF; vi for all v 2 V;b(u; q) = 0 for all q 2 Q;with a(w; v) = Z
 gradw : grad v dx;b(v; q) = � Z
 q div v dx;hF; vi = Z
 f � v dx:Let (Tk) be a sequene of triangulations of 
, where Tk+1 is obtainedby onneting the midpoints of edges of the triangles in Tk. We denotemaxfdiamT : T 2 Tkg by hk.Then the Crouzeix{Raviart element, see [6℄, is determined by the follow-ing non-onforming �nite element spaes:Vk = fv 2 L2(
)2 : v��T is linear for all T 2 Tk;v is ontinuous at the midpoints of interelement boundariesand v = 0 at the midpoints of edges along �
gQk = fq 2 L20(
) : q��T is onstant for all T 2 TkgThe �nite element disretization is given by the disrete variational prob-lem: 16



Find uk 2 Vk and pk 2 Qk suh thatak(uk; v) + bk(v; pk) = hF; vi for all v 2 Vk;bk(uk; q) = 0 for all q 2 Qkwith ak(w; v) = XT2Tk ZT gradw : grad v dx;bk(v; q) = �XT2Tk ZT q div v dx;whih eventually leads to a linear system�Ak BTkBk 0 ��ukpk� = �fkgk� ;where the unknowns uk are ordered pointwise.Next a multigrid method is formulated by speifying the inter-grid trans-fer operators and the smoothing proedure.Following Brenner [3℄ the inter-grid transfer operators Ikk�1 : Vk�1�Qk�1 �!Vk �Qk are given by Ikk�1(v; q) = (Jkk�1v; q)withJkk�1v(me) = � v(me) if me 2 intT for some T 2 Tk�112 [vjT1 + vjT2℄ if e � T1 \ T2 for some T1; T2 2 Tk�1at midpoints me of internal edges e in Tk.The mesh-dependent L2-like norm on Vk �Qk is given byjjj(v; q)jjj0;k = hkvk2L2(
)2 + h2k kqk2L2(
)i1=2 :By an appropriate saling we an ahieve thatkvkL2(
)2 � kvk`2; h2k kqkL2(
) � kqk`2Then ondition (20) is satis�ed.Lemma 3.3 and Lemma 5.3 in Brenner [3℄ ontain the approximationpropertyjjjBkjjj0;k jjj(um+1k � uk; pm+1k � pk)jjj0;k � A jjj(umk � uk; pmk � pk)jjj2;k17



for some onstants A, independent of the grid level k.For the smoothing proedure we have to de�ne appropriate loal sub-problems at grid level k.Let Nk;e = f1; 2; : : : ; Nk;eg denote the index set of all midpoints of inter-element boundaries and Nk;T = f1; 2; : : : ; Nk;Tg the index set of all trianglesin Tk. With these notations we have for the dimension of the saddle pointproblem: nk = 2Nk;e and mk = Nk;T .For eah i 2 Nk;T let Nk;i � Nk;e be the subset of all indies whihorrespond to the midpoints of all interior edges of the triangle with indexi. So, Nk;i onsists of 3 indies for interior triangles, the number of indiesredues to 2 or 1 near the boundary of the domain.To eah triangle with index i we assign a loal sub-problem of dimensionnk;i = 2 jNk;ij and mk;i = 1 by de�ning the following anonial prolongations:Qk;i is the mk � 1 matrix whose entry of the i-th row is equal to 1, allother entries are 0.P̂k;i is the nk � nk;i matrix, or better the nk=2 � nk;i=2 blok matrix of2 � 2 bloks, whose blok olumns orrespond to the indies l 2 Nk;i. Thel-th blok position of the l-th blok olumn is equal to the 2 � 2 identitymatrix, all other entries are 0.It is easy to see that Nk;TXi=1 P̂k;iP̂ Tk;i = 2 I;beause eah midpoint of an edge is ontained in exatly 2 di�erent sets Nk;i.Therefore, for Pk;i = 1p2 P̂k;ithe orret saling ondition Nk;TXi=1 Pk;iP Tk;i = Iof Theorem 1 is satis�ed.Next we hoose for Âk the saled Jaobi preonditioner of Ak:Âk = 1� diag(Ak) (22)with � small enough to ensure Âk � Ak, i.e.:1� diag(Ak) � Ak:18



Sine Ak has at most 5 non-zero entries per row, it suÆes to have � � 1=5.For the loal sub-problems we hoose just the restrition of Âk to thoseomponents of uk whose indies are in Nk;i:Âk;i = P̂ Tk;iÂkP̂k;i: (23)Sine the matries Âk and Âk;i are diagonal the ondition (5) is satis�ed.The other matries of the loal sub-problems are spei�ed similarly: ForB̂k;i = QTk;iBkP̂k;ione an easily verify the relationQTk;iBk = B̂k;iP̂ Tk;i:The argument is, that the i-th omponent of Bkv, whih orresponds to thevalue of Bkv on the triangle with index i, depends only on the veloities inthe neighboring midpoints of that triangle, whose indies are olleted in theset Nk;i. On this index set P Tk;i ats like the identity.From this identity the ondition (6) immediately follows if we setBk;i = p2 B̂k;i: (24)Finally, we set Ck;i = 0: (25)With the notations of Theorem 1 the de�nitions (23), (24) and (25) leadto Ŝk;i = 2� QTk;iBkÂ�1k BTkQk;i:Hene Ŝk = 2� 0�Nk;TXi=1 Qk;i(QTk;iBkÂ�1k BTkQk;i)�1QTk;i1A�1= 2� diag(BkÂ�1k BTk ): (26)Aording to the onditions of Theorem 3 the relaxation parameter � has tohosen suh that Ŝk � BkÂ�1k BTk , i.e.:2� diag(BkÂ�1k BTk ) � BkÂ�1k BTk19



Beause of the sparsity pattern of BkÂ�1k BTk it an easily be shown that itsuÆes to hoose � � 1=2.Finally, the last missing part for the smoothing property is the estimatekK̂k �Kkk`2 � R kKkk`2:Using the simple estimates k diag(M)k`2 � kMk`2 for any matrix M andkMk`2 � kNk`2 for symmetri matries M , N with 0 �M � N we havekK̂k � Kkk`2 = max(kÂk � Akk`2; kŜk �BkÂ�1k BTk k`2)� max(kÂkk`2 ; kŜkk`2)� max(��1kAkk`2; 2��1kBkÂ�1k BTk k`2):The entries of Â�1k BTk are of the form bk(v; q)=ak(v; v), where v and q are basisfuntions with loal support. A standard saling argument shows that theseentries are bounded independently of k, say by some onstant S. Consideringthe sparsity pattern of BTk , one obtainskÂ�1k BTk k`2 � 3S:ThereforekK̂k �Kkk`2 � max(��1kAkk`2 ; 6S��1kBkk`2)� max(��1; 6S��1)max(kAkk`2 ; kBkk`2)� max(��1; 6S��1) kKkk`2= R kKkk`2with R = max(��1; 6S��1).Remark 2. The onstrution of loal sub-problems satisfying (4), (5) and(6) an easily be extended to general �nite element disretizations. Assumefor simpliity there is a nodal basis for the �nite element spaes, the u-nodesdetermine Vk and the p-nodes determine Qk. First the spae Rmk for thedual variable p is split into a diret sum of subspaes orresponding to dis-joint index-sets Mk;i, i = 1; 2; : : : ; Nk of p-nodes. In the simplest ase Mk;ionsists of just one index representing one individual p-node. The prolon-gation Qk;i is the orresponding anonial embedding into Rmk . All u-nodeswhih are onneted to some p-node with index in Mk;i (i.e. the orrespond-ing entry b(v; q) is non-zero) determine an index-set Nk;i. The prolongationP̂k;i is the orresponding anonial embedding into Rnk .For Âk one an hoose any blok-diagonal matrix with 2 � 2 diagonalbloks. The loal sub-problems are given by the matries Âk;i = P̂ Tk;iÂkP̂k;i,B̂k;i = QTk;iBkP̂k;i and Ck;i = QTk;iCkQi;k.20



All entries of value 1 in P̂k;i orrespond to some u-node with index j 2Nk;i. In order to guarantee (4) these entries have to be replaed by 1=p�k;jwhere �k;j is the number of index sets Nk;l with j 2 Nk;l (the loal overlapdepth at that u-node). This gives the orreted prolongation operators Pk;i.The saling of B̂k;i has to be hanged aordingly, resulting in the orretedmatries Bk;i.Next we present some numerial results for the example 
 = (0; 1)�(0; 1),f = 0. The initial grid (level k = 1) onsists of two triangles by onnetingthe verties (0; 0) and (1; 1).Randomly hosen starting values for u0k and p0k for the exat solutionuk = 0 and pk = 0 were used.The disretized equations on grid level k were solved by a multigrid iter-ation with the W-yle and m=2 pre- and m=2 post-smoothing steps. Thepreonditioners Âk and Ŝk were hosen aording to (22) and (26). Usingthe orresponding maximum eigenvalues, whih were numerially determinedby the Lanzos method, the parameters � and � were adjusted suh thatÂk � Ak and Ŝk � BkA�1k BTk . Table 1 ontains the number of unknownsnk and mk depending on the level k and the (averaged) onvergene rates qdepending on the level k and the number m of smoothing steps.Table 1: Convergene rates for the additive Shwarz smootherunknowns smoothing stepslevel k nk mk 14 16 18 20 24 324 416 128 0.790 0.590 0.373 0.237 0.130 0.2595 1 600 512 0.768 0.571 0.395 0.356 0.331 0.3066 6 272 2 048 0.773 0.578 0.403 0.368 0.349 0.3007 24 832 8 192 0.772 0.577 0.404 0.370 0.354 0.3028 98 816 32 768 0.772 0.577 0.410 0.378 0.358 0.304The onvergene rates show the typial multigrid behavior: asymptotiindependene of the grid level and improvement of the rates with an inreas-ing number of smoothing steps. No onvergene ould be obtained with lessthe 7 pre- and 7 post-smoothing steps.The next table 2 shows the rates with the multipliative version of thesmoother. In this ase no partiular saling was performed, i.e. the loalsaddle point problems are given by restriting the global saddle point problemto the orresponding loal variables. 21



Table 2: Convergene rates for the multipliative Shwarz smootherunknowns smoothing stepslevel k nk mk 4 6 8 10 12 144 416 128 0.580 0.346 0.213 0.182 0.138 0.0795 1 600 512 0.590 0.351 0.206 0.167 0.159 0.1366 6 272 2 048 0.579 0.351 0.207 0.177 0.157 0.1387 24 832 8 192 0.589 0.347 0.208 0.177 0.158 0.1398 98 816 32 768 0.601 0.345 0.209 0.180 0.160 0.142As expeted, the rates for the multipliative Shwarz smoother (Vanka-smoother) are signi�antly better than the rates for the additive Shwarzsmoother. Convergene ourred for less smoothing steps: only 2 pre- and 2post-smoothing steps are required to guarantee onvergene.A reasonable measure for omparing the two di�erent methods with avarying number m of smoothing steps is the total omputational work Wtneessary for reduing an initial error by a fator 1=e.The number of iterations It for ahieving this redution is asymptotiallygiven by It = �1= ln q, where q is the onvergene rate of the method.If we assume that the total amount of omputational work Wt is dom-inated by the omputational work for performing the smoothing steps andthat the omputational work for one smoothing step is the same for theadditive as well as for the multipliative version, say W0, we obtain Wt =It � m � W0 = Wr � W0, where the relative work fator Wr is given byWr = �m= ln q.The next two tables 3 and 4 show the relative work fators for the additiveand the multipliative smoothers, based on the onvergene rates at level 8.Table 3: Relative work fators for the additive Shwarz smoothersmoothing steps 14 16 18 20 24 32Wr 54.1 29.1 20.2 20.6 23.4 26.9One an see that the most eÆient ase for the additive Shwarz smoother,the W-yle with 9 pre- and 9 post-smoothing steps, requires about four timesmore work than the optimal ase for the multipliative Shwarz smoother,the W-yle with 4 pre- and 4 post-smoothing steps.In summary, the numerial experiments on�rm the theoretial results22



Table 4: Relative work fators for the multipliative Shwarz smoothersmoothing steps 4 6 8 10 12 14Wr 7.9 5.6 5.1 5.8 6.5 7.2on the additive Shwarz smoother. The multipliative Shwarz smootherleads to signi�antly better rates, however, a theoretial analysis for theonvergene and smoothing properties of this iteration is still missing.Referenes[1℄ R. E. Bank, B. D. Welfert, and H. Yserentant. A lass of iterativemethods for solving saddle point problems. Numer. Math., 56:645 {666, 1990.[2℄ D. Braess and R. Sarazin. An eÆient smoother for the Stokes problem.Appl. Numer. Math., 23(1):3{19, 1997.[3℄ S. C. Brenner. A nononforming mixed multigrid method for the puredisplaement problem in planar linear elastiity. SIAM J. Numer. Anal.,30(1):116{135, 1993.[4℄ S. C. Brenner. Multigrid methods for parameter dependent problems.RAIRO, Modelisation Math. Anal. Numer., 30:265 { 297, 1996.[5℄ F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods.Springer-Verlag, 1991.[6℄ M. Crouzeix and P.-A. Raviart. Conforming and nononforming �niteelement methods for solving the stationary Stokes equations. R.A.I.R.O.Anal. Numer., 7:33{76, 1973.[7℄ W. Hakbush. Multi-Grid Methods and Appliations. Springer-Verlag,Berlin, 1985.[8℄ W. Hakbush. Iterative Solutions of Large Sparse Systems of Equations.Springer Verlag, New York, 1994.[9℄ J. Molenaar. A two-grid analysis of the ombination of mixed �nite ele-ments and Vanka-type relaxation. In W. Hakbush and U. Trottenberg,editors, Multigrid methods III, Pro. 3rd Eur. Conf., Bonn/Ger. 1990,ISNM 98, pages 313{323. Birkh�auser Verlag, 1991.23
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