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based on a �nite volume dis
retization te
hnique on a staggered grid. The
omputational domain is divided into non-overlapping 
ells with pressurenodes at the 
ell 
enter and (
omponent-wise) velo
ity nodes at the 
ellfa
es. The smoothing pro
edure is a so-
alled symmetri
 
oupled Gauss-Seidel te
hnique (SCGS). One iteration step of SCGS 
onsists of solvinglo
al problems for ea
h 
ell involving the pressure at the 
ell 
enter and theneighboring velo
ity 
omponents at the 
ell fa
es. This is done 
ell by 
ell ina Gauss-Seidel-type manner and, therefore, 
an be viewed as a multipli
ativeS
hwarz-type iteration.This multigrid te
hnique is not restri
ted to Navier-Stokes equations, it
an easily be extended to other mixed variational problems if one is ableto spe
ify appropriate lo
al sub-problems for the smoothing pro
edure. Ithas been widely used in pra
ti
e and has shown good 
onvergen
e results.However, very little is known so far about 
onvergen
e and smoothing prop-erties of the underlying iterative method SCGS. The authors of this paperare aware of only one 
ontribution, namely by Molenaar [9℄, where Fourieranalysis for a simple model problem (a mixed �nite element method of thePoisson equation in one dimension) was used.Besides the multipli
ative S
hwarz-type iteration des
ribed above an ad-ditive version of the method is also at hand, where the same type of lo
alsub-problems are solved independently of ea
h other in a Ja
obi-type manner.The aim of this paper is to 
ontribute to the analysis of this additive ver-sion of the iterative method for a general 
lass of symmetri
 mixed variationalproblems, whi
h in
ludes e.g. the Stokes equations. The theory applies to alarge variety of mixed �nite element methods on stru
tured and unstru
turedgrids. The analysis of the multipli
ative 
ase remains an open problem andis not 
overed by this paper.The paper is organized as follows: Se
tion 2 
ontains the framework fordes
ribing the 
lass of problems and the multigrid methods 
onsidered. InSe
tion 3 it is shown that the proposed additive S
hwarz-type methods be-long to the more general 
lass of symmetri
 inexa
t Uzawa methods. Forthis general 
lass of symmetri
 inexa
t Uzawa methods new 
onvergen
e andsmoothing properties are derived, whi
h 
an easily be applied to the 
onsid-ered additive S
hwarz-type methods. In Se
tion 4 the two major steps of themultigrid 
onvergen
e analysis, the approximation property and the smooth-ing property, are dis
ussed. Finally, in Se
tion 5 the theoreti
al results areapplied to the Crouzeix-Raviart element for the Stokes equations in
ludingsome numeri
al experiments.
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2 The frameworkLet V and Q be real Hilbert spa
es, a : V � V �! R, b : V � Q �! R,
 : Q � Q �! R 
ontinuous bilinear forms, and F : V �! R, G : Q �! R
ontinuous linear fun
tionals. We 
onsider the following mixed variationalproblem:Find u 2 V and p 2 Q su
h thata(u; v) + b(v; p) = hF; vi for all v 2 V;b(u; q)� 
(p; q) = hG; qi for all q 2 Q:Here, hF; vi (hG; qi) denotes the evaluation of the linear fun
tional F (G) atthe point v (q).More 
on
isely, the mixed variational problem 
an also be written as avariational problem on V �Q:Find (u; p) 2 V �Q su
h thatB((u; p); (v; q)) = hF ; (v; q)i for all (v; q) 2 V �Q (1)with the bilinear formB((w; r); (v; q)) = a(w; v) + b(v; r) + b(w; q)� 
(r; q)and the linear fun
tionalhF(v; q)i = hF; vi+ hG; qi:It is assumed that a and b are symmetri
 and non-negative and that B isstable on V �Q. Then the mixed variational problem (1) is well-posed and
an be interpreted as a saddle point problem.Typi
al examples of this type of problems are the Stokes problem from
uid me
hani
s, see Se
tion 5, various problems from linear elasti
ity (nearlyin
ompressible materials, mixed formulations based on the Hellinger-Reissnerprin
iple), or mixed formulations of boundary value problems for se
ondorder ellipti
 equations, see e.g. Brezzi, Fortin [5℄.The Hilbert spa
es V and Q are typi
ally subspa
es of Sobolev spa
eson some domain 
. Then, for dis
retizing the 
ontinuous problem (1), asequen
e of �nite element spa
es Vk and Qk are 
hosen for ea
h level k =1; 2; : : : , 
orresponding to a hierar
hy of in
reasingly �ner meshes on 
, andsymmetri
 bilinear forms Bk and linear fun
tionals Fk on Vk �Qk.These spa
es, linear and bilinear forms determine dis
rete problems atea
h level k: 3



Find (uk; pk) 2 Vk �Qk su
h thatBk((uk; pk); (v; q)) = hFk; (v; q)i for all (v; q) 2 Vk �Qk: (2)A 
lass of eÆ
ient solvers of these dis
rete problems are multigrid al-gorithms: We additionally need 
oarse-to-�ne inter-grid transfer operatorsIkk�1 : Vk�1 � Qk�1 �! Vk � Qk. Then one iteration loop for solving (2) atlevel k is given in the following form:Let (u0k; p0k) 2 Vk � Qk be a given approximation of the solution to (2).Then the iteration pro
eeds in two stages:1. Smoothing: For j = 0; 1; : : : ; m� 1 
ompute (uj+1k ; pj+1k ) 2 Vk �Qk byan iterative pro
edure of the form(uj+1k ; pj+1k ) = Sk(ujk; pjk):2. Coarse grid 
orre
tion: Seth ~Fk�1; (v; q)i = hFk; Ikk�1(v; q)i � Bk �(umk ; pmk ); Ikk�1(v; q)�for (v; q) 2 Vk�1 �Qk�1 and let ( ~wk�1; ~rk�1) 2 Vk�1 �Qk�1 satisfyBk�1(( ~wk�1; ~rk�1); (v; q)) = h ~Fk�1; (v; q)i (3)for all (v; q) 2 Vk�1 �Qk�1.If k = 1, 
ompute the exa
t solution of (3) and set (wk�1; rk�1) =( ~wk�1; ~rk�1).If k > 1, 
ompute approximations (wk�1; rk�1) by applying � � 2iteration steps of the multigrid algorithm applied to (3) on level k � 1with zero starting values.Set (um+1k ; pm+1k ) = (umk ; pmk ) + Ikk�1(wk�1; rk�1):In the next se
tion the �rst stage of the multigrid iteration, the smoothingpro
edure, will be dis
ussed in detail:3 Additive S
hwarz-type methods and sym-metri
 inexa
t Uzawa methodsLet v 2 Vk and q 2 Qk. Then v 2 Rnk and q 2 Rmk denote their ve
torrepresentations (i.e. the ve
tors of 
oeÆ
ients relative to some bases in Vk4



and Qk). Furthermore, we introdu
e the matrix representation of the bilinearforms byBk((w; r); (v; q)) = (Akw; v)`2 + (Bkv; r)`2 + (Bkw; q)`2 � (Ckr; q)`2 ;and the ve
tor representation of the linear formshFk; (v; q)i = (fk; v)`2 + (gk; q)`2 :Here (:; :)`2 denotes the Eu
lidean s
alar produ
t, whose asso
iated ve
tornorm and matrix norm will both be denoted by k:k`2.In matrix-ve
tor notation the dis
rete problem (2) be
omes:Kk �ukpk� = �fkgk� with Kk = �Ak BTkBk �Ck� :Here, BTk denotes the transpose of the matrix Bk. We assume that Ak and Ckare symmetri
 positive semi-de�nite matri
es, and that Kk is a nonsingularmatrix.Sin
e the smoothing pro
edure involves only one level k of the hierar
hyof spa
es, we will simplify the notation for the rest of the se
tion by droppingthe subs
ript k and, additionally, omitting underlining the ve
tors. So, fromnow on, we dis
uss iterative methods (as smoothers) for linear systems ofequations of the form:K�up� = �fg� with K = �A BTB �C� ;where u 2 Rn , p 2 Rm , under the assumption that A is a symmetri
 positivesemi-de�nite n � n matrix, B is a m � n matrix, and C is a symmetri
semi-positive de�nite m�m matrix, and that K is nonsingular.For setting up lo
al sub-problems a set of linear operators is introdu
ed:Pi : Rni �! Rn ; Qi : Rmi �! Rm ; for i = 1; : : : ; N;where the dimensions ni and mi are typi
ally mu
h smaller than the dimen-sions n and m of the original spa
es, respe
tively. The operators Pi and Qiare interpreted as prolongation operators with asso
iated restri
tion opera-tors P Ti and QTi . We assume thatNXi=1 PiP Ti = I; (4)5



where I denotes the identity matrix. Starting from some approximations ujand pj of the exa
t solutions u and p we 
onsider iterative methods of form:uj+1 = uj + NXi=1 Piwji ; pj+1 = pj + NXi=1 Qirji ;where (wji ; rji ) solves the lo
al saddle point problem�Âi BTiBi BiÂ�1i BTi � Ŝi��wjirji � = �P Ti [f � Auj � BTpj℄QTi [g �Buj + Cpj℄ �with Ŝi = ��1(Ci + BiÂ�1i BTi ) for some relaxation parameter � > 0, i =1; : : : ; N .That means, that the residuals of the approximations are �rst restri
tedto the smaller spa
es, then a series of small saddle point problems must besolved, and, �nally, the solutions are prolongated and determine the nextiterate. This pro
ess 
an be viewed as an additive S
hwarz method.The introdu
tion of an additional relaxation parameter � will be ne
essaryfor the 
onvergen
e analysis. In the 
ase � = 1 the lo
al saddle point problems
ompletely resemble the global saddle point problem in shape.So far, no 
onditions are yet �xed for 
hoosing the matri
es Âi, Bi, andCi. Two important 
onditions on the matri
es of the lo
al problems areintrodu
ed in the next theorem:Theorem 1. Assume that (4) is satis�ed, the matri
es Âi and Ŝi are sym-metri
 and positive de�nite, and there is a symmetri
 positive de�nite n�n-matrix Â su
h that P Ti Â = ÂiP Ti (5)for all i = 1; 2; : : : ; N . Furthermore, assume that the matri
es Bi obey the
ondition QTi B = BiP Ti (6)for all i = 1; 2; : : : ; N .Then we have uj+1 = uj + wj; pj+1 = pj + rj; (7)where wj, rj satisfy the equationK̂�wjrj� = �fg�� K�ujpj� with K̂ = �Â BTB BÂ�1BT � Ŝ�6



and Ŝ =  NXi=1 QiŜ�1i QTi !�1 :Proof. From the lo
al sub-problems it follows thatÂiwji +BTi rji = P Ti [f � Auj �BTpj℄; (8)Biwji + [BiÂ�1i BTi � Ŝi℄rji = QTi [g � Buj + Cpj℄: (9)If (8) is multiplied by Pi and summed up, we obtainNXi=1 PiÂiwji + NXi=1 PiBTi rji = NXi=1 PiP Ti [f � Auj � BTpj℄= f � Auj � BTpj:From (5) and (6) we obtain PiÂi = ÂPi and PiBTi = BTQi, whi
h immedi-ately implies Âwj +BT rj = f � Auj � BTpj (10)with wj =PNi=1 Piwji and rj =PNi=1Qirji .From (8) we have wji = Â�1i (P Ti [f �Auj �BTpj℄�BTi rji ). Then (9), (5),and (6) implyŜirjj = BiÂ�1i P Ti [f � Auj �BT pj℄�QTi [g �Buj + Cpj℄= QTi (BÂ�1[f � Auj � BTpj℄� [g � Buj + Cpj℄):Therefore, rji = Ŝ�1i QTi (Â�1[f � Auj � BTpj℄� [g � Buj + Cpj℄):If these equations are multiplied by Qi and summed up, we obtainrj = NXi=1 QiŜ�1i QTi (BÂ�1[f � Auj �BT pj℄� [g � Buj + Cpj℄)= Ŝ�1(BÂ�1[f � Auj � BTpj℄� [g � Buj + Cpj℄): (11)From (10) and (11) it follows that�Â BT0 �Ŝ��wjrj� = � I 0�BÂ�1 I��f � Auj � BTpjg � Buj + Cpj � :If this equation is multiplied by the inverse of the matrix on the right handside, the proof is 
ompleted. 7



Remark 1. 1. The 
onditions (5) and (6) 
an also be written as 
ommu-tative diagrams:Rn Â���! RnPTi ??y ??yPTiRni Âi���! Rni Rn B���! RmPTi ??y ??yQTiRni Bi���! Rmi2. The pre
onditioner Ŝ is of the typi
al form of an additive S
hwarz pre-
onditioner.It 
an easily be seen that one step of the iteration (7) 
onsists of threesub-steps: Â(ûj+1 � uj) = f � Auj � BTpj;Ŝ(pj+1 � pj) = Bûj+1 � Cpj � g;Â(uj+1 � uj) = f � Auj � BTpj+1:In this sense the additive S
hwarz method 
an be interpreted as a symmetri
inexa
t Uzawa method. The 
onvergen
e properties of this 
lass of methodshave been investigated in Bank, Welfert, Yserentant [1℄ from the point of viewof inner and outer iterations, and, more generally, in Zulehner [13℄. This 
lassalso 
ontains the Braess-Sarazin smoothers and the inexa
t Braess-Sarazinsmoothers, see Braess, Sarazin [2℄, and Zulehner [12℄. However, none ofthe 
onvergen
e results in these papers is helpful for dis
ussing the so-
alledsmoothing property, whi
h is part of the multigrid 
onvergen
e analysis, seethe next se
tion, in our situation.Therefore, we will present a new 
onvergen
e result for general symmetri
inexa
t Uzawa methods (not only for the additive S
hwarz-type iteration
onsidered in Theorem 1) of the formuj+1 = uj + wj; pj+1 = pj + rj; (12)where wj, rj satisfyK̂�wjrj� = �fg�� K�ujpj� with K̂ = �Â BTB BÂ�1BT � Ŝ� ; (13)for general symmetri
 and positive de�nite matri
es Â and Ŝ, whi
h will behelpful in our 
ase.For this, we �rst introdu
e the iteration matrixM = I � K̂�1K;8



whi
h 
ontrols the error propagation for the iterative method (12).In the next lemma, whi
h gives an important representation for M, thefollowing notations are used: M < N (N > M) i� N�M is positive de�nite,and M � N (N � M) i� N � M is positive semi-de�nite, for symmetri
matri
es M and N .Lemma 1. Let Â be a symmetri
 and positive de�nite n� n matrix, and Ŝa symmetri
 positive de�nite m�m matrix, satisfyingÂ > A and Ŝ > C +BÂ�1BT : (14)Then we have:The iteration matrix M = I � K̂�1K 
an be written in the formM = Q�1=2 �MQ1=2with the symmetri
 positive de�nite blo
k diagonal matrixQ = �Â� A 00 Ŝ � C � BÂ�1BT�and �M = PTNP;where N is a normal matrix and P satis�es the 
onditions kPk`2 � 1. More-over, for the spe
trum �(N ) we have:�(N ) � fz 2 C : ����z � 12 ���� = 12g: (15)Proof. Simple 
al
ulations show that the iteration matrix 
an be written inthe following form:M = K̂�1(K̂ � K)= �Â BTB BÂ�1BT � Ŝ��1�Â� A 00 C +BÂ�1BT � Ŝ�= � Â BT�B Ŝ �BÂ�1BT��1�Â� A 00 Ŝ � C �BÂ�1BT�Hen
e �M = Q1=2MQ�1=2 = Q1=2 � Â BT�B Ŝ �BÂ�1BT��1Q1=2= Q1=2D�1=2ND�1=2Q1=29



with D = �Â 00 Ŝ � BÂ�1BT� ; N = � I �BT� �B I ��1and �B = (Ŝ �BÂ�1BT )�1=2BÂ�1=2:Straight forward 
omputations show that N 
ommutes with N T , i.e. N isnormal, and that the eigenvalues � of N�1 are of the form 1 � i� with�2 � f0g[�( �B �BT ). So, the eigenvalues lie on the straight line of all 
omplexnumbers with real part 1. By the transformation z �! 1=z this straight lineis mapped to the 
ir
le (15), whi
h, therefore, must 
ontain all eigenvaluesof N .With P = D�1=2Q1=2 we obtain the required representation of the itera-tion matrix. Moreover, sin
e Q � D we havePPT = D�1=2QD�1=2 � I;whi
h 
ompletes the proof.Next we 
onsider the relaxed iterative methoduj+1 = uj + ! wj; pj+1 = pj + ! rj; (16)where wj, rj satisfy K̂�wjrj� = �fg�� K�ujpj�for some relaxation parameter ! > 0.The error propagation is now 
ontrolled by the iteration matrix (1�!)I+!M.The following 
onvergen
e result for the relaxed method is a 
onsequen
eof the representation of M in Lemma 1:Theorem 2. Let Â be a symmetri
 and positive de�nite n � n matrix, andŜ a symmetri
 positive de�nite m�m matrix, satisfying (14).Then we have: k(1� !)I + !MkQ � 1for all relaxation fa
tors ! 2 [0; 2℄ andk(1� !)I + !MkQ < 110



for all relaxation fa
tors ! 2 (0; 2). Here k:kQ denotes the matrix normasso
iated to the s
alar produ
t((w; r); (v; q))Q = ((Â� A)w; v)`2 + ((Ŝ � C �BÂ�1BT )r; q))`2:Proof. We use the notations introdu
ed in the proof of Theorem 1. Observethat k(1� !)I + !MkQ = k(1� !)I + ! �Mk`2:In a �rst step we show thatk(1� !)I + ! �Mk`2 � 1; (17)or equivalently, [(1� !)I + ! �M℄T [(1� !)I + ! �M℄ � I:We have[(1� !)I + ! �M℄T [(1� !)I + ! �M℄= !2 �MT �M+ !(1� !)[ �MT + �M℄ + (1� !)2I= !2PTN TPPTNP + !(1� !)PT [N T +N ℄P + (1� !)2I� !2PTN TNP + !(1� !)PT [N T +N ℄P + (1� !)2I= PT [(1� !)I + !N ℄T [(1� !)I + !N ℄P + (1� !)2[I � PTP℄:Sin
e N is a normal matrix, whose eigenvalues lie on the 
ir
le (15), it followsthat k(1� !)I + !Nk`2 = �((1� !)I + !N ) � 1for ! 2 [0; 2℄. Here �(M) denotes the spe
tral radius of a matrix M . There-fore [(1� !)I + !N ℄T [(1� !)I + !N ℄ � I;whi
h allows to 
ontinue the 
hain of estimates from above:[(1� !)I + ! �M℄T [(1� !)I + ! �M℄� PTP + (1� !)2[I � PTP℄= (1� !)2I + [1� (1� !)2℄PTP� (1� !)2I + [1� (1� !)2℄I = I;11



whi
h 
ompletes the proof of (17).In order to ex
lude the equality sign in (17) for ! 2 (0; 2), it remains toshow that there is no ve
tor z with kzk`2 = 1 and k[(1� !)I +! �M℄zk`2 = 1for ! 2 (0; 2). Assume now that su
h a ve
tor exists. Using the same 
hainof inequalities as before, one easily shows that1 = zT [(1� !)I + ! �M℄[(1� !)I + ! �M℄z� zTPT [(1� !)I + !N ℄T [(1� !)I + !N ℄Pz+ (1� !)2zT [I � PTP℄z� zTPTPz + (1� !)2zT [I � PTP℄z= (1� !)2zT z + [1� (1� !)2℄zTPTPz� zT z = 1:But this 
an only happen ifzTPT [(1� !)I + !N ℄T [(1� !)I + !N ℄Pz = zTPTPzand zTPTPz = zT z;whi
h imply [(1� !)I + !N ℄T [(1� !)I + !N ℄Pz = Pzand PTPz = z: (18)Sin
e (1�!)I+!N is a normal matrix, whose only eigenvalue with modulus1 is equal to 1, we 
an further dedu
e that[(1� !)I + !N ℄Pz = Pz;therefore NPz = Pz: (19)The relation (18) and 19 lead toPPTPz = Pz and N�1Pz = Pz;from whi
h we obtain(D �Q)w = 0 and (D1=2N�1D1=2 �D)w = 012



for w = D�1=2Pz. That means�A 00 C�w = 0 and � 0 BT�B 0 �w = 0:This, however, implies Kw = 0. Therefore, w = 0 and z = 0, in 
ontradi
tionto the assumption kzk`2 = 1.Theorem 2 states that the relaxed method (16) 
onverges for all relaxationparameters ! 2 (0; 2). Of parti
ular interest is the limiting 
ase ! ! 2, forwhi
h Theorem 2 guarantees at least that the iterates do not blow up, i.e.:k2M� IkQ � 1:This property leads to an important estimate, formulated in the next theoremand needed in the forth
oming multigrid 
onvergen
e analysis:Theorem 3. Let Â be a symmetri
 and positive de�nite n � n matrix, andŜ a symmetri
 positive de�nite m�m matrix, satisfyingÂ � A and Ŝ � C +BÂ�1BT :Then kKMmk`2 � �0(m) kK̂ � Kk`2with K given by (13) and�0(m) = 12m�1�m� 1[m℄=2℄� � 8>><>>: r 2�(m� 1) for even m;r 2�m for odd m;where �nk� denotes the binomial 
oeÆ
ient and [x℄ denotes the largest integersmaller than or equal to x 2 R.Proof. We �rst assume that the stri
t inequalities Â > A and Ŝ > C +BÂ�1BT hold. Then we have with the notations used in the proofs of thelast two theorems:KMm = (K̂ � K)(I �M)Mm�1= (K̂ � K)Q�1=2(I � �M) �Mm�1Q1=2= �I 00 �I�Q1=2(I � �M) �Mm�1Q1=213



Therefore, kKMmk`2 � k(I � �M) �Mm�1k`2 kQk`2 :From Q = �I 00 �I� (K̂ � K)we obtain kQk`2 = kK̂ � Kk`2:From Theorem 2 it follows thatk2 �M� Ik`2 � 1:Then Reusken's lemma, see Reusken [10℄, Ha
kbus
h [8℄, impliesk(I � �M) �Mm�1k`2 � �0(m)with �0(m) = 12m�1�m� 1[m℄=2℄� � 8>><>>: r 2�(m� 1) for even m;r 2�m for odd m:A simple 
losure argument for the 
ase Â � A and Ŝ � C + BÂ�1BT
ompletes the proof.4 Multigrid 
onvergen
e analysisA 
lassi
al te
hnique for analyzing the 
onvergen
e of multigrid methodsrelies on two properties: the approximation property and the smoothingproperty, see Ha
kbus
h [7℄, whi
h will be dis
ussed in this se
tion.First we need mesh-dependent norms on Vk � Qk. Let jjj(:; :)jjj0;k be anL2-like norm on Vk �Qk, for whi
h we assume thatjjj(v; q)jjj0;k � �kvk2̀2 + kqk2̀2�1=2 = 



�vq�



`2 (20)for v 2 Vk, q 2 Qk with ve
tor representations v 2 Rnk , q 2 Rmk . Thesymbol � denotes the equivalen
e of norms.14



Next we introdu
e a se
ond dis
rete norm on Vk �Qk byjjj(w; r)jjj2;k = sup(v;q)2Vk�Qk jBk((w; r); (v; q))jjjj(v; q)jjj0;k :Then, under reasonable assumptions on the 
ontinuous problem and itsdis
retization, it 
an be shown for the two-grid algorithm (i.e. exa
t solutionof the 
oarse grid 
orre
tion equation (3) at level k � 1) thatjjjBkjjj0;k jjj(um+1k � uk; pm+1k � pk)jjj0;k � 
A jjj(umk � uk; pmk � pk)jjj2;k;for some 
onstant 
A whi
h is independent of k. See e.g. Brenner [3℄, [4℄ forseveral 
ases of mixed variational problems and appropriate �nite elementspa
es, for whi
h this property, the so-
alled approximation property, 
ouldbe shown. In the next se
tion the approximation property for the Crouzeix-Raviart element for the Stokes problem is dis
ussed in detail.The missing part to 
omplete the proof of the two-grid 
onvergen
e is thesmoothing property:jjj(umk � uk; pmk � pk)jjj2;k � �(m) jjjBkjjj0;k jjj(u0k � uk; p0k � pk)jjj0;kfor some fun
tion �(m) whi
h is independent of k, and�(m)! 0 for m!1:The 
onvergen
e of the two-grid method for a suÆ
iently large number m ofsmoothing steps easily follows by 
ombining the approximation property andthe smoothing property. From this the 
onvergen
e of the multigrid method
an be derived by standard arguments, see, e.g., Ha
kbus
h [7℄.From the matrix representation of the bilinear form Bk and the s
aling(20) we obtain jjj(v; q)jjj2;k � 



Kk �vq�



`2 :From this, it easily follows that the smoothing property translates to thefollowing 
onditions in matrix-notation:kKkMmk k`2 � �(m) kKkk`2 : (21)If kK̂k � Kkk`2 � 
R kKkk`2for some 
onstant 
R, Theorem 3 immediately implies the smoothing property(21) with smoothing rate �(m) = 
R �0(m) = O(1=pm).15



5 Appli
ation to the Crouzeix{Raviart ele-ment for the Stokes problemLet 
 be a bounded 
onvex polygonal domain in R2 and f a given fun
tion inL2(
). The Stokes problem with homogeneous Diri
hlet boundary 
onditionsis given by: ��u+ grad p = f in 
;div u = 0 in 
;u = 0 on �
;Z
 p dx = 0:The weak formulation of this problem leads to a mixed variational problem:Find u 2 V = H10 (
)2 and p 2 Q = L20(
), the subspa
e L2(
) withvanishing mean value, su
h thata(u; v) + b(v; p) = hF; vi for all v 2 V;b(u; q) = 0 for all q 2 Q;with a(w; v) = Z
 gradw : grad v dx;b(v; q) = � Z
 q div v dx;hF; vi = Z
 f � v dx:Let (Tk) be a sequen
e of triangulations of 
, where Tk+1 is obtainedby 
onne
ting the midpoints of edges of the triangles in Tk. We denotemaxfdiamT : T 2 Tkg by hk.Then the Crouzeix{Raviart element, see [6℄, is determined by the follow-ing non-
onforming �nite element spa
es:Vk = fv 2 L2(
)2 : v��T is linear for all T 2 Tk;v is 
ontinuous at the midpoints of interelement boundariesand v = 0 at the midpoints of edges along �
gQk = fq 2 L20(
) : q��T is 
onstant for all T 2 TkgThe �nite element dis
retization is given by the dis
rete variational prob-lem: 16



Find uk 2 Vk and pk 2 Qk su
h thatak(uk; v) + bk(v; pk) = hF; vi for all v 2 Vk;bk(uk; q) = 0 for all q 2 Qkwith ak(w; v) = XT2Tk ZT gradw : grad v dx;bk(v; q) = �XT2Tk ZT q div v dx;whi
h eventually leads to a linear system�Ak BTkBk 0 ��ukpk� = �fkgk� ;where the unknowns uk are ordered pointwise.Next a multigrid method is formulated by spe
ifying the inter-grid trans-fer operators and the smoothing pro
edure.Following Brenner [3℄ the inter-grid transfer operators Ikk�1 : Vk�1�Qk�1 �!Vk �Qk are given by Ikk�1(v; q) = (Jkk�1v; q)withJkk�1v(me) = � v(me) if me 2 intT for some T 2 Tk�112 [vjT1 + vjT2℄ if e � T1 \ T2 for some T1; T2 2 Tk�1at midpoints me of internal edges e in Tk.The mesh-dependent L2-like norm on Vk �Qk is given byjjj(v; q)jjj0;k = hkvk2L2(
)2 + h2k kqk2L2(
)i1=2 :By an appropriate s
aling we 
an a
hieve thatkvkL2(
)2 � kvk`2; h2k kqkL2(
) � kqk`2Then 
ondition (20) is satis�ed.Lemma 3.3 and Lemma 5.3 in Brenner [3℄ 
ontain the approximationpropertyjjjBkjjj0;k jjj(um+1k � uk; pm+1k � pk)jjj0;k � 
A jjj(umk � uk; pmk � pk)jjj2;k17



for some 
onstants 
A, independent of the grid level k.For the smoothing pro
edure we have to de�ne appropriate lo
al sub-problems at grid level k.Let Nk;e = f1; 2; : : : ; Nk;eg denote the index set of all midpoints of inter-element boundaries and Nk;T = f1; 2; : : : ; Nk;Tg the index set of all trianglesin Tk. With these notations we have for the dimension of the saddle pointproblem: nk = 2Nk;e and mk = Nk;T .For ea
h i 2 Nk;T let Nk;i � Nk;e be the subset of all indi
es whi
h
orrespond to the midpoints of all interior edges of the triangle with indexi. So, Nk;i 
onsists of 3 indi
es for interior triangles, the number of indi
esredu
es to 2 or 1 near the boundary of the domain.To ea
h triangle with index i we assign a lo
al sub-problem of dimensionnk;i = 2 jNk;ij and mk;i = 1 by de�ning the following 
anoni
al prolongations:Qk;i is the mk � 1 matrix whose entry of the i-th row is equal to 1, allother entries are 0.P̂k;i is the nk � nk;i matrix, or better the nk=2 � nk;i=2 blo
k matrix of2 � 2 blo
ks, whose blo
k 
olumns 
orrespond to the indi
es l 2 Nk;i. Thel-th blo
k position of the l-th blo
k 
olumn is equal to the 2 � 2 identitymatrix, all other entries are 0.It is easy to see that Nk;TXi=1 P̂k;iP̂ Tk;i = 2 I;be
ause ea
h midpoint of an edge is 
ontained in exa
tly 2 di�erent sets Nk;i.Therefore, for Pk;i = 1p2 P̂k;ithe 
orre
t s
aling 
ondition Nk;TXi=1 Pk;iP Tk;i = Iof Theorem 1 is satis�ed.Next we 
hoose for Âk the s
aled Ja
obi pre
onditioner of Ak:Âk = 1� diag(Ak) (22)with � small enough to ensure Âk � Ak, i.e.:1� diag(Ak) � Ak:18



Sin
e Ak has at most 5 non-zero entries per row, it suÆ
es to have � � 1=5.For the lo
al sub-problems we 
hoose just the restri
tion of Âk to those
omponents of uk whose indi
es are in Nk;i:Âk;i = P̂ Tk;iÂkP̂k;i: (23)Sin
e the matri
es Âk and Âk;i are diagonal the 
ondition (5) is satis�ed.The other matri
es of the lo
al sub-problems are spe
i�ed similarly: ForB̂k;i = QTk;iBkP̂k;ione 
an easily verify the relationQTk;iBk = B̂k;iP̂ Tk;i:The argument is, that the i-th 
omponent of Bkv, whi
h 
orresponds to thevalue of Bkv on the triangle with index i, depends only on the velo
ities inthe neighboring midpoints of that triangle, whose indi
es are 
olle
ted in theset Nk;i. On this index set P Tk;i a
ts like the identity.From this identity the 
ondition (6) immediately follows if we setBk;i = p2 B̂k;i: (24)Finally, we set Ck;i = 0: (25)With the notations of Theorem 1 the de�nitions (23), (24) and (25) leadto Ŝk;i = 2� QTk;iBkÂ�1k BTkQk;i:Hen
e Ŝk = 2� 0�Nk;TXi=1 Qk;i(QTk;iBkÂ�1k BTkQk;i)�1QTk;i1A�1= 2� diag(BkÂ�1k BTk ): (26)A

ording to the 
onditions of Theorem 3 the relaxation parameter � has to
hosen su
h that Ŝk � BkÂ�1k BTk , i.e.:2� diag(BkÂ�1k BTk ) � BkÂ�1k BTk19



Be
ause of the sparsity pattern of BkÂ�1k BTk it 
an easily be shown that itsuÆ
es to 
hoose � � 1=2.Finally, the last missing part for the smoothing property is the estimatekK̂k �Kkk`2 � 
R kKkk`2:Using the simple estimates k diag(M)k`2 � kMk`2 for any matrix M andkMk`2 � kNk`2 for symmetri
 matri
es M , N with 0 �M � N we havekK̂k � Kkk`2 = max(kÂk � Akk`2; kŜk �BkÂ�1k BTk k`2)� max(kÂkk`2 ; kŜkk`2)� max(��1kAkk`2; 2��1kBkÂ�1k BTk k`2):The entries of Â�1k BTk are of the form bk(v; q)=ak(v; v), where v and q are basisfun
tions with lo
al support. A standard s
aling argument shows that theseentries are bounded independently of k, say by some 
onstant 
S. Consideringthe sparsity pattern of BTk , one obtainskÂ�1k BTk k`2 � 3
S:ThereforekK̂k �Kkk`2 � max(��1kAkk`2 ; 6
S��1kBkk`2)� max(��1; 6
S��1)max(kAkk`2 ; kBkk`2)� max(��1; 6
S��1) kKkk`2= 
R kKkk`2with 
R = max(��1; 6
S��1).Remark 2. The 
onstru
tion of lo
al sub-problems satisfying (4), (5) and(6) 
an easily be extended to general �nite element dis
retizations. Assumefor simpli
ity there is a nodal basis for the �nite element spa
es, the u-nodesdetermine Vk and the p-nodes determine Qk. First the spa
e Rmk for thedual variable p is split into a dire
t sum of subspa
es 
orresponding to dis-joint index-sets Mk;i, i = 1; 2; : : : ; Nk of p-nodes. In the simplest 
ase Mk;i
onsists of just one index representing one individual p-node. The prolon-gation Qk;i is the 
orresponding 
anoni
al embedding into Rmk . All u-nodeswhi
h are 
onne
ted to some p-node with index in Mk;i (i.e. the 
orrespond-ing entry b(v; q) is non-zero) determine an index-set Nk;i. The prolongationP̂k;i is the 
orresponding 
anoni
al embedding into Rnk .For Âk one 
an 
hoose any blo
k-diagonal matrix with 2 � 2 diagonalblo
ks. The lo
al sub-problems are given by the matri
es Âk;i = P̂ Tk;iÂkP̂k;i,B̂k;i = QTk;iBkP̂k;i and Ck;i = QTk;iCkQi;k.20



All entries of value 1 in P̂k;i 
orrespond to some u-node with index j 2Nk;i. In order to guarantee (4) these entries have to be repla
ed by 1=p�k;jwhere �k;j is the number of index sets Nk;l with j 2 Nk;l (the lo
al overlapdepth at that u-node). This gives the 
orre
ted prolongation operators Pk;i.The s
aling of B̂k;i has to be 
hanged a

ordingly, resulting in the 
orre
tedmatri
es Bk;i.Next we present some numeri
al results for the example 
 = (0; 1)�(0; 1),f = 0. The initial grid (level k = 1) 
onsists of two triangles by 
onne
tingthe verti
es (0; 0) and (1; 1).Randomly 
hosen starting values for u0k and p0k for the exa
t solutionuk = 0 and pk = 0 were used.The dis
retized equations on grid level k were solved by a multigrid iter-ation with the W-
y
le and m=2 pre- and m=2 post-smoothing steps. Thepre
onditioners Âk and Ŝk were 
hosen a

ording to (22) and (26). Usingthe 
orresponding maximum eigenvalues, whi
h were numeri
ally determinedby the Lan
zos method, the parameters � and � were adjusted su
h thatÂk � Ak and Ŝk � BkA�1k BTk . Table 1 
ontains the number of unknownsnk and mk depending on the level k and the (averaged) 
onvergen
e rates qdepending on the level k and the number m of smoothing steps.Table 1: Convergen
e rates for the additive S
hwarz smootherunknowns smoothing stepslevel k nk mk 14 16 18 20 24 324 416 128 0.790 0.590 0.373 0.237 0.130 0.2595 1 600 512 0.768 0.571 0.395 0.356 0.331 0.3066 6 272 2 048 0.773 0.578 0.403 0.368 0.349 0.3007 24 832 8 192 0.772 0.577 0.404 0.370 0.354 0.3028 98 816 32 768 0.772 0.577 0.410 0.378 0.358 0.304The 
onvergen
e rates show the typi
al multigrid behavior: asymptoti
independen
e of the grid level and improvement of the rates with an in
reas-ing number of smoothing steps. No 
onvergen
e 
ould be obtained with lessthe 7 pre- and 7 post-smoothing steps.The next table 2 shows the rates with the multipli
ative version of thesmoother. In this 
ase no parti
ular s
aling was performed, i.e. the lo
alsaddle point problems are given by restri
ting the global saddle point problemto the 
orresponding lo
al variables. 21



Table 2: Convergen
e rates for the multipli
ative S
hwarz smootherunknowns smoothing stepslevel k nk mk 4 6 8 10 12 144 416 128 0.580 0.346 0.213 0.182 0.138 0.0795 1 600 512 0.590 0.351 0.206 0.167 0.159 0.1366 6 272 2 048 0.579 0.351 0.207 0.177 0.157 0.1387 24 832 8 192 0.589 0.347 0.208 0.177 0.158 0.1398 98 816 32 768 0.601 0.345 0.209 0.180 0.160 0.142As expe
ted, the rates for the multipli
ative S
hwarz smoother (Vanka-smoother) are signi�
antly better than the rates for the additive S
hwarzsmoother. Convergen
e o

urred for less smoothing steps: only 2 pre- and 2post-smoothing steps are required to guarantee 
onvergen
e.A reasonable measure for 
omparing the two di�erent methods with avarying number m of smoothing steps is the total 
omputational work Wtne
essary for redu
ing an initial error by a fa
tor 1=e.The number of iterations It for a
hieving this redu
tion is asymptoti
allygiven by It = �1= ln q, where q is the 
onvergen
e rate of the method.If we assume that the total amount of 
omputational work Wt is dom-inated by the 
omputational work for performing the smoothing steps andthat the 
omputational work for one smoothing step is the same for theadditive as well as for the multipli
ative version, say W0, we obtain Wt =It � m � W0 = Wr � W0, where the relative work fa
tor Wr is given byWr = �m= ln q.The next two tables 3 and 4 show the relative work fa
tors for the additiveand the multipli
ative smoothers, based on the 
onvergen
e rates at level 8.Table 3: Relative work fa
tors for the additive S
hwarz smoothersmoothing steps 14 16 18 20 24 32Wr 54.1 29.1 20.2 20.6 23.4 26.9One 
an see that the most eÆ
ient 
ase for the additive S
hwarz smoother,the W-
y
le with 9 pre- and 9 post-smoothing steps, requires about four timesmore work than the optimal 
ase for the multipli
ative S
hwarz smoother,the W-
y
le with 4 pre- and 4 post-smoothing steps.In summary, the numeri
al experiments 
on�rm the theoreti
al results22



Table 4: Relative work fa
tors for the multipli
ative S
hwarz smoothersmoothing steps 4 6 8 10 12 14Wr 7.9 5.6 5.1 5.8 6.5 7.2on the additive S
hwarz smoother. The multipli
ative S
hwarz smootherleads to signi�
antly better rates, however, a theoreti
al analysis for the
onvergen
e and smoothing properties of this iteration is still missing.Referen
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