
A posteriori estimators for obstacle problems by the
hypercircle method

Dietrich Braess 1 Ronald H.W. Hoppe∗2,3 Joachim Schöberl 4
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Abstract

A posteriori error estimates for the obstacle problem are established in the frame-
work of the hypercircle method. To this end, we provide a general theorem of Prager–
Synge type. There is now no generic constant in the main term of the estimate. More-
over, the role of edge terms is elucidated, and the analysis also applies to other types
of a posteriori error estimators for obstacle problems.

1 Introduction

Elliptic obstacle problems often lead to the minimization of a quadratic functional J on a
subspace V ⊂ H1(Ω)

J(v) :=
1
2
a(v, v) − (f, v)0 (1.1)

subject to the constraint
v(x) ≥ ψ(x) for x ∈ Ω a.e. (1.2)

Here, f ∈ L2(Ω) and ψ ∈ C(Ω̄). When the problem is solved by the finite element method,
the constraint (1.2) is often replaced by pointwise inequalities

vh(xi) ≥ ψ(xi) (1.3)

for all nodal points xi of the grid. This discretization is natural, but it implies some extra
terms when a posteriori error estimates are computed; see, e.g., [2, 4, 5, 9, 14]. The reason
is that Lagrange multipliers for the constraints (1.3) are point functionals. An extension of
the functional to H−1(Ω) without a violation of the complementarity condition cannot be
guaranteed.
The complication is less severe when an a posteriori error estimate is determined by the
hypercircle method [11] that was made popular, e.g., by [10]. The procedure known from
linear theory can be adapted for the obstacle problem. We note that no extra term occurs
whenever the active point set has some regularity, i.e., if it is the closure of its interior.
Otherwise, a generalization of the Prager–Synge theorem for the obstacle problem also yields
an additional error term as we find in well-known estimators. Here, the resulting extra term
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enters into an exact expression for the error. It is therefore clear that it does not spoil the
efficiency of the error estimate.
We note that Weiss and Wohlmuth [15] observed a similar phenomenon when they considered
inequality constraints on the boundary of the domain Ω. On the other hand, Repin [12]
considered the hypercircle method without the regularity assumption of the active set, and
his result is closer to the classical estimates than to our result with the hypercircle method.
A patch-oriented construction following Braess and Schöberl [7] turns out to be appropriate
here, since the Lagrange multipliers for the discretized obstacle problem are associated
with the finite element equations on patches. Although there is a strong relation to the
determination of estimators by local Neumann problems (see, e.g., [1]), the latter is focused
on element-oriented constructions, and the considerations on patches only occur in auxiliary
steps.
Often the edge terms are dominating in a posteriori estimates for linear elliptic problems.
Those terms, however, may overestimate the error when obstacle problems are considered.
We can eliminate this effect in certain cases by relaxing the regularity requirement for the
hypercircle method.
The paper is organized as follows. Section 2 will provide a general theorem of Prager–
Synge type. The prerequisites from finite element theory are presented in Section 3. The
construction of the a posteriori error estimate in Section 4 will be organized such that no
extra term arises if possible. The efficiency will be treated in Sections 5 and 6. In two
appendices, a discussion of the role of edge terms in a posteriori estimates elucidates the
situation not only for the hypercircle method.

2 A theorem of Prager–Synge type

For convenience, we restrict ourselves to the Poisson equation with homogeneous Dirichlet
boundary conditions, i.e.,

a(u, v) :=
∫

Ω
∇u(x) · ∇v(x) dx

and V = H1
0 (Ω). The energy J is to be minimized on the convex set

K := {v ∈ V | v ≥ ψ a.e. in Ω}.

The solution u is known to be characterized by

a(u, v − u) ≥ (f, v − u)0 , v ∈ K. (2.1)

The Lagrange multiplier λ is defined by

〈λ, v〉 := a(u, v) − (f, v)0 , v ∈ V.

It follows from (2.1) that for all w ∈ V+

〈λ, u− ψ〉 = 0 and 〈λ,w〉 ≥ 0 , (2.2)

if we set V+ := {v ∈ V | v(x) ≥ 0 a.e.}. Moreover, we have

J(v) − J(u) (2.3)

=
1
2
‖∇v − ∇u‖2

0 + 〈λ, v − u〉 ∀v ∈ V,

2



and each term on the right-hand side of (2.3) is nonnegative, if v ∈ K. Often it is more
natural to give the error in terms of the difference J(v) − J(u) and not by the energy
norm. For instance, a convergence analysis of an adaptive P1 conforming finite element
approximation of (1.1), (1.2) in the sense of a guaranteed reduction of the objective functional
J has been provided in [5]; cf. also [13] for an approach using quadratic programming
techniques.
The dual problem is the maximization of the Trefftz functional

J∗(τ) := −1
2
‖τ‖2

0 − (div τ + f, ψ)0

on the dual convex cone

F := {τ ∈ H(div) | div τ + f ≤ 0 a.e.} .

It is known that there is no duality gap, i.e., J(u) = J∗(∇u), and

J∗(∇u) − J∗(τ) (2.4)

=
1
2
‖∇u− τ‖2 − (div τ + f, u− ψ)0

for all τ ∈ F .

Theorem of Prager and Synge type for obstacle problems.
Let v ∈ K ⊂ H1

0 (Ω) and τ ∈ F ⊂ H(div). Then

2[J(v) − J(u)] + 2[J∗(∇u) − J∗(τ)] (2.5)

= [ ‖∇u− ∇v‖2
0 + 2 〈λ, v − u〉]

+ [ ‖∇u− τ‖2
0 + 2(div τ + f, ψ − u)0]

= ‖∇v − τ‖2
0 + 2(div τ + f, ψ − v)0 .

Furthermore, if v and τ satisfy the complementarity condition

(div τ + f, v − ψ)0 = 0 , (2.6)

then

‖∇u− ∇v‖2
0 + ‖∇u− τ‖2

0 (2.7)

≤ 2[J(v) − J(u)] + ‖∇u− τ‖2
0

≤ ‖∇v − τ‖2
0 .

Remark. We note that all inner products in (2.5) are nonnegative.

Proof: Since the boundary terms vanish when partial integration is applied, we have

(∇u− τ,∇v − ∇u)0
= (∇u,∇v − ∇u)0 + (div τ, v − u)0
= (∇u,∇v − ∇u)0
− (f, v − u)0 + (div τ + f, v − u)0
= 〈λ, v − u〉 + (div τ + f, v − u)0 .
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Now, the binomial formula is applied to the sum [∇v − ∇u] + [∇u− τ ] to obtain

‖∇v − τ‖2
0 = ‖∇v − ∇u‖2

0 + ‖∇u− τ‖2
0

+ 2 〈λ, v − u〉 + 2(div τ + f, v − u)0
= 2[J(v) − J(u)] + 2[J∗(∇u) − J∗(τ)]
+ (div τ + f, v − ψ)0 .

This proves (2.5). The inequality (2.7) follows from (2.3) and (2.4), and the proof is complete.

Obviously, the last term in (2.5) corresponds to the extra term in classical estimators. It
will be avoided whenever possible.

Remark 2.1 We emphasize that the assumption τ ∈ H(div) may be dropped in Prager and
Synge’s theorem, if we set 〈div τ, w〉 = −(τ,∇w) for w ∈ H1. In particular, if τ belongs to
the broken H(div) space introduced in Section 4, we have

〈div τ, w〉 (2.8)

=
∑
T

(div τ, w)0,T −
∑

e

∫
e

[τ · n]wds.

The benefit of this observation will be elucidated in Appendix B with a one-dimensional
example. The additional freedom will be used on edges in the contact zone (also in higher
dimensions), in particular, if the obstacle is specified by a non-affine function.

3 The Lagrange multiplier for the finite element solu-
tion

The discretization of the obstacle problem means that the linear space is replaced by a finite
element space Vh, which will be here the space of linear elements on a triangulation Th of
Ω ⊂ R

2. As usual, Ω is assumed to be a polygonal domain, and the obstacle is given by a
piecewise linear function ψ ∈ Vh.
The corresponding Lagrange multiplier λh is defined by

〈λh, w〉 = a(uh, w) − (f, w)0 (3.1)

for w ∈ Vh . Since the right-hand side is defined for all w ∈ V , we obtain an extension of λh

to V ′ by (3.1). Partial integration yields the representation

〈λh, w〉 (3.2)

= −
∑
T

(f, w)0,T +
∑

e

([
∂uh

∂n
], w)0,e .

It shows that this extension of the Lagrange multiplier contains also the information on the
residues outside the coincidence set.
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From a computational point of view, it is given by the nonnegative residues of the finite
element equations in the contact zone. Let φi ∈ Vh be the nodal basis function associated
with the nodal point xi. Then

λh,i := 〈λh, φi〉 ≥ 0 for all i , (3.3)

is the residue in the finite element inequalities and

λh,i = 0 , if uh(xi) − ψ(xi) > 0. (3.4)

Therefore, the discrete complementarity condition 〈λh, uh − ψ〉 = 0 holds and

〈λh, wh〉 =
∑

i

λh,iwh(xi) , wh ∈ Vh . (3.5)

The support of φi is the patch

ωi :=
⋃{

T̄ ∈ Th | xi ∈ ∂T
}
.

The coincidence set (active set) Ah := {x ∈ Ω | uh(x) = ψ(x)} is called regular, if it is the
closure of its interior. This means that each nodal point xi ∈ Ah lies on the boundary of a
triangle T which is contained in the coincidence set Ah.

4 Equilibration

The main task in the determination of the a posteriori error estimate is the construction of
a function σ that satisfies div σ ≤ −f and moreover the complementarity condition (2.6)
whenever possible. (The original requirement σ ∈ H(div) will be relaxed.) The procedure
is called equilibration. Following [7] we construct an appropriate τ in the broken Raviart–
Thomas space

RT−1 :={τ ∈ L2(Ω) | τ(x) = aT + bTx

with aT ∈ R
2, bT ∈ R in each T}.

More precisely, the resulting σ will satisfy

div σ + f̄ ≤ 0,
[σ · n] ≥ 0, (4.1)

where f̄ is the L2 projection of f in the space of piecewise constant functions. This means
that we separate the data oscillation from the main term of the estimate; cf. [9]. As usually,
we consider the associated error term

ch‖f − f̄‖0

as a term of higher order.
In contrast to the treatment of linear elliptic problems, inequalities are admitted in (4.1).
In addition, the complementarity conditions

(− div σ − f̄ , uh − ψ)0,T = 0,
([σ · n] , uh − ψ)0,e = 0 (4.2)

5



will be satisfied at least outside a neighborhood of the coincidence set, since the terms on
the left-hand side of (4.2) enter into the error bound. We will silently adopt this point and
repeat it only when necessary.
We recall that the finite element functions in the Raviart–Thomas space

RT := RT−1 ∩H(div),

are specified by their normal components on the edges of the grid. Similarly the functions
in the broken Raviart–Thomas space RT−1 are given, if the normal components are known
on both sides of the edges.
Obviously, ∇uh is a broken Raviart–Thomas function with zero divergence in each triangle.
The required σ will be obtained by a correction that eliminates the jumps of the normal
components on the edges. Specifically, the correction

σ∆ := τ − ∇uh (4.3)

shall satisfy the following properties:[
σ∆ · n

]
≥ −

[
∂uh
∂n

]
on each edge e,

div σ∆ ≤ −f̄ on each triangle T.
(4.4)

The desired σ∆, in turn, will be computed as a sum of local corrections with support in the
patches ωi,

σ∆ =
∑

i

σωi with suppσωi = ωi , (4.5)

and
[σωi · n] ≥ − 1

2

[
∂uh
∂n

]
, e ∈ ωi,

div σωi ≤ −fT,i , T ⊂ ωi,

σωi · n = 0 on ∂ωi \ ∂Ω,
(4.6)

where
fT,i := (1/|T |)

∫
T

fφidx.

Since each interior edge of the triangulation Th belongs to two patches and
∑

i

∫
T
fφidx =∫

T
f 1 dx = |T | f̄ , the properties (4.6) imply (4.4).

Lemma 4.1 Let xi ∈ Ω \ ∂Ω be a node of the triangulation, and let φi ∈ Vh be the nodal
basis function with φi(xi) = 1 and φi(x) = 0 for x ∈ Ω \ ωi. Then

1
2

∑
e⊂ωi

∫
e

[
∂uh

∂n

]
ds

=
∑

T⊂ωi

∫
T

fφi dx + λh,i . (4.7)

Proof: Since uh is the finite element solution in Vh, we obtain from (3.1) with w = φi:∫
ωi

∇uh∇φidx =
∫

ωi

fφidx + λh,i . (4.8)
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σi,j,l

σi,j,r

σi,j+1,r
σi,j+1,l

Figure 1: Fluxes in a patch around a vertex xi. σi,j,r and σi,j,l are the normal components
of the fluxes that leave the triangle Tj on the right and left side, respectively. The triangles
are enumerated counter clockwise, and ej = ∂Tj ∩ ∂Tj+1 (with indices modulo the number
of triangles)

We recall that ∂uh/∂n is constant and φi is linear on each edge. Partial integration of the
left-hand side of (4.8) yields∫

ωi

∇uh∇φidx =
∑

T⊂ωi

∫
∂T

∂uh

∂n
φidx (4.9)

=
∑
e⊂ωi

∫
e

[
∂uh

∂n

]
φids

=
1
2

∑
e⊂ωi

∫
e

[
∂uh

∂n

]
ds.

Now, the assertion of the lemma follows from (4.8) and (4.9).

Next, we consider a patch around a node xi. The desired function σωi will be specified by
the integral fluxes

∫
e
σωi |T · nds on the two sides of each edge e ⊂ T ⊂ ωi. The boundary

condition (4.6)3 will always silently be assumed to hold.
First, we describe a cheap construction and distinguish four cases. In all cases Algorithm
4.2 will be applied. It follows the procedure known from linear theory; see [3, p.184]. Here
the input contains some extra parameters ΛT,i and Λe,i to cope with excess sources and
sinks. In particular, the parameters ΛT,i vanish in Case 1 below as in the linear case. The
parameters Λe,i are set to zero in all four cases and will be activated only later. The notation
for the algorithm is specified in Fig. 1.
Later, we will present a version with an optimization process in order to improve the effi-
ciency of the estimator.
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Algorithm 4.2

Set σi,1,r = 0;
for j = 1, 2, . . ., until an entire circuit around xi is completed (or an edge on ∂Ω is met)

{

fix σi,j,l such that
∫

ej

σωi · nds =
∫

Tj

fφidx−
∫

ej−1

σωi · nds+ ΛTj ,i;

fix σi,j+1,r such that [σωi · n] =

− 1
2

[∇uh · n] + Λej ,i on ej ;

}
The fluxes define a preliminary σ̃ with support ωi. Add a constant α to all σi,j,l and σi,j,r

for which ‖σ‖0 is minimal.

The two rules within the braces care that (4.6)1 and (4.6)2 hold. Since an additive constant
α does not change (4.6), it is fixed in the last step for minimizing the L2-norm.

Remark 4.3 There is an easy interpretation. By Gauss’ law the normal components of the
fluxes on the three edges of a triangle determine the magnitude of the source or sink in a
triangle. Similarly, there is a source or sink between the two sides of an edge that is given
by the jump of the flux on the edge and its length. Lemma 4.1 and (4.7) assert that the sum
of all of them in a patch vanishes.

Case 1. xi ∈ Ω \ ∂Ω and uh(xi) > ψ(xi).
Here (4.7) holds with λh,i = 0, and we apply Algorithm 4.2 with

ΛT,i = 0 for all T.

Case 2. xi ∈ Ω \ ∂Ω, uh(xi) = ψ(xi), and uh = ψ holds at least in one triangle T ⊂ ωi.
Let m = mi be the number of triangles in the patch on which uh = ψ holds. By assumption,
m ≥ 1. We set

ΛT,i :=
{ 1

mλh,i , if uh(x) = ψ(x) , x ∈ T,

0 , otherwise.
(4.10)

The algorithm now yields a correction that satisfies (4.6)1, (4.6)2 and the complementarity
relation ∑

T⊂ωi

(div σωi , uh − ψ)0 = 0.

Case 3. xi ∈ Ω \ ∂Ω, uh(xi) = ψ(xi), and uh(x) �= ψ(x) holds for at least one point in each
triangle T ⊂ ωi.
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Let m be the number of triangles in ωi. Set ΛT,i = 1
mλh,i. The algorithm yields a cor-

rection that satisfies (4.6)1, (4.6)2, but there will now be a nonzero contribution of the
complementarity term to the error estimate.

Case 4. xi ∈ ∂Ω.
The edges and triangles in ωi are enumerated such that the algorithm starts at an edge
on ∂Ω and stops at the other edge on the boundary. Since the circuit is incomplete, no
condition has to be satisfied, and we can perform the algorithm with ΛT,i = 0 for all T ⊂ ωi.
By construction, (4.6) is guaranteed in all four cases.

The case 1 corresponds to the construction for linear elliptic equations [3, p. 184], and it is
optimal in the framework of local procedures. In the cases 2 and 3 the efficiency of the result
can be improved. Instead of fixing the variables ΛT,i a priori, they are determined by a small
quadratic program. In order to have a unified description and to avoid the distinction of
the cases, the optimization is generally included:

ηPS,i := (4.11)

min{‖τ‖2
0 + 2(div τ + fφi, ψ − uh)0

+ 2([(τ + ∇uh) · n] , uh − ψ)0,∪e}

with τ determined by Algorithm 4.2 executed with parameters subject to the constraints∑
T⊂ωi

ΛT,i +
∑
e⊂ωi

|e| Λe,i = λh,i ,

ΛT,i ≥ 0 for all T ⊂ ωi ,

Λe,i ≥ 0 for all e ⊂ ωi .

The optimization problem is solvable, since a feasible solution exists. This follows from the
procedure with a priori fixed parameters. If the node in the interior of the patch does not
belong to the coincidence set, then λh,i = 0, all slack variables vanish, and the optimization
is trivial. We have not used the short notation with (2.8) in order to see the jumps more
clearly.

After summing the corrections on all the patches we obtain the final estimate.

Theorem 4.4 Let each σωi be determined as described above and σ∆ by (4.5). Then we
have the a posteriori error estimate

‖∇u− ∇uh‖2
0 ≤J(uh) − J(u)

≤‖σ∆‖2
0 + ch2‖f − f̄‖2

0

+ 2(div σ∆ + f̄ , ψ − uh)0
+ 2(

[
σ∆ · n

]
, uh − ψ)0,∪e .

Here, the term in the third line gets nonzero contributions only via Step 3, and in each
triangle T ,

− div σ∆ − f̄ =
1

|T |
∑

i

ΛT,i .
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5 Relation to residual estimators

By Theorem 4.4, the hypercircle method results in a reliable estimator. For studying its
efficiency we will compare the estimator with the classical ones for the obstacle problem.
In particular, we focus on residual estimators. The relation to the true error of the finite
element solution will be investigated in the next section.
The optimization problem (4.11) on a patch ωi will be modified to achieve a simpler, but
equivalent one. For simplicity we drop the index i whenever there is no danger of confusion.
(There is, e.g., the exception fT,i.) First, (4.11) is rewritten,

ηPS = min
{

‖τ‖2
0 + 2 〈div τ + fφi, ψ − uh〉

}
, (5.1)

subject to

div τ ≤ −fT,i , τ ∈ RT−1(ω),
[τ · n] ≥ −(1/2)[∇uh · n], (5.2)
τ · n = 0 on ∂ω .

For τ ∈ RT−1(ω)/ker(divRT−1), a scaling argument shows that

c1 ‖τ‖2
0 ≤ ‖ div τ‖2

−1,h ≤ c−1
1 ‖τ‖2

0,

where

‖ div τ‖2
−1,h

:=
∑
T⊂ω

h2
T ‖ div τ‖2

0,T +
∑
e⊂ω

he ‖[τ · n]‖2
0,e .

The jumps of τ on the edges are now also considered as (distributional) parts of div τ in the
spirit of Remarks 2.1 and 4.3. Therefore, we define s = div τ by setting

sT := (div τ)T ,

se := −[τ · n]e .

In particular, s is given by 2m real numbers if ω consist of m triangles and τ ∈ RT−1(ω).
Hence,

c1 ηPS ≤ ηs := (5.3)

min
{

‖s‖2
−1,h + 2(s+ fφi, ψ − uh)0,ω

+ 2(s+
1
2
[∇uh · n], uh − ψ)0,∪e

}
,

subject to

sT ≤ −fT,i,

se ≤ (1/2)[∇uh · n], (5.4)
〈s, 1〉 = 0.
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Here, the total divergence on the patch is defined by

〈s, 1〉 :=
∑
T⊂ω

|T |sT +
∑
e⊂ω

|e|se .

Equation (5.4)3 was hidden in (5.1) by the condition τ · n = 0 on ∂ω.
The elimination of the condition (5.4)3 will make the construction simpler.

Lemma 5.1 Assume that uh = ψ holds in at least one triangle of ω, and let ω consist of
m triangles. Let

ηs,2 := min{‖s‖2
−1,h + 2(s+ fφi, ψ − uh)0,ω

+2(s+
1
2
[∇uh · n], uh − ψ)0,∪e}, (5.5)

subject to

sT ≤ −fT,i,

se ≤ (1/2)[∇uh · n]

be the error estimator without the constraint (5.4)3. Then

ηs ≥ ηs,2 ≥ (1 +
√

2m)−2c2 ηs (5.6)

with the constant c2 depending only on the shape parameter.

Proof: The two terms in (5.5)1 are nonnegative. There is a constant c2 that depends only
on the shape parameter such that

c2h
2
T ≤ |T | ≤ c−1

2 h2
T .

Therefore, we consider the minimization of the equivalent expression∑
T⊂ω

(|T |sT )2 +
∑
e⊂ω

(|e|se)2

+ 2(s+ fφi, ψ − uh)0,ω

+ 2(s+
1
2
[∇uh · n], uh − ψ)0,∪e .

Let s be the minimizer of the problem (5.5). We construct a feasible candidate s̃ that
satisfies the averaging constraint (5.4)3, and the functional will increase only by the given
m-dependent factor.
Case (a): Assume that 〈s, 1〉 > 0.
Let T be a triangle with uh = ψ on T . We set s̃ := s and redefine it on the special triangle

s̃T := sT − |T |−1 〈s, 1〉

without changing the other values. A straight forward calculation shows that ‖s̃ − s‖2 ≤
2m‖s‖2. Hence, ‖s̃‖ ≤ (1 +

√
2m)‖s‖2 holds for the modified (−1, h)-norm. Obviously, s̃ is
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feasible due to the negative correction, and the second term on the right-hand side of (5.5)
does not change. The assertion holds in this case.
Case (b). Assume that 〈s, 1〉 < 0. Set

ŝT := fT,i, s̃e := ŝe := se.

Since there exists a feasible solution of the minimization problem, it follows that 〈ŝ, 1〉 ≥ 0.
For T ∈ ω, the convex combination

s̃T := sT +
− 〈s, 1〉

〈ŝ, 1〉 − 〈s, 1〉 |T |−1(ŝT − sT )

yields a feasible solution. Since we have distributed the mean value on one or more triangles,
the ‖·‖1,h norm is not more increased than in case 1. The second term in (5.5) was diminished
or unchanged by the choice above, and the proof of the nontrivial part is complete.
The inequality ηs ≥ ηs,2 is obvious.

Since the quadratic terms in (5.5) are diagonal, the variables are now separated in the
problem, and the minimizer is easily determined. Adding now the label of the patch, we
have

sT,i = RT,i := min{fT,i, h
−2 uh − ψ}, (5.7)

se,i = Re,i := min{1
2

[∂uh

∂n

]
, h−1 uh − ψ}.

Here and in the sequel, an overlined quantity refers to the mean value on the subset under
consideration. We associate to the choice (5.7) residual type error estimators. There are
element terms (area-based terms)

ηT,i (5.8)

:= h2
T (−fT,i,min{−fT,i, h

−2 uh − ψ})0,T

=
{
h2

T ‖fT,i‖2
0,T , if − fT,i ≤ h−2

T uh − ψ,

(−fT,i, uh − ψ)0,T , otherwise

and, with the abbreviation λe := [∂uh
∂n ], the edge terms

ηe,i :=he(λe,min{λe, h
−1 uh − ψ

e})0,e

=
{
he ‖λe‖2

0,e , if heλe ≤ uh − ψ
e

(λe, uh − ψ)0,e , otherwise.
(5.9)

The quantities above reflect the fact that a continuous transition between the coincidence
set and the points in its neighborhood is reasonable.

Theorem 5.2 The Prager-Synge error estimator is equivalent to the residual error estima-
tor, i.e.,

ηPS,i ≈
∑

T⊂ωi

ηT,i +
∑
e⊂ωi

ηe,i .
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Proof: We present the proof for the element terms, the edge terms can be treated in the
same way. Moreover, we recall the equivalence of ηPS,i with the variants in Lemma 5.1.
Case 1. −fT,i ≤ h−2

T uh − ψ. Then we have sT = −fT,i and the contribution of the element
T to ηs in (5.3) is

ηs,T = h2
T ‖fT,i‖2

0,T

+ 2 (−fT,i + fT,i, ψ − uh)0,T

= h2
T ‖fT,i‖2

0,T .

Case 2. −fT,i > h−2
T uh − ψ. Then we have sT = h−2

T uh − ψ. Note that the two con-
tributions are nonnegative. Hence, we may multiply by a factor of two for eliminating
inconvenient terms

ηs,T =h−2
T ‖uh − ψ‖2

0,T +

+ 2(−h−2 uh − ψ − fT,i, uh − ψ)0,T

≤ 2h−2
T ‖uh − ψ‖2

0,T +

+ 2(−h−2 uh − ψ − fT,i, uh − ψ)0,T

= 2 (−fT,i, uh − ψ)0,T .

Similarly, by taking half of the second term we obtain ηs,T ≥ (−fT,i, uh − ψ)0,T .

6 Efficiency

We proceed with the analysis of the efficiency and focus our attention on the hypercircle
method. However, the results will be of interest for residual-type estimators as well. First,
we see that solving local Dirichlet problems is efficient.

Lemma 6.1 Assume that vi ∈ H1
0 (ωi) and vi ≥ ψ − uh. Then∑
i

{J(uh) − J(uh + vi)}

≤ 3
{
J(uh) − J(u)

}
.

Proof: Let each vi satisfy the assumption of the lemma, and let m be the maximal number
of overlapping patches. Obviously, m ≤ 3 holds in 2-space. The element w := 1

m

∑
vi is in

the convex set, and thus

J(uh) − J(uh + w) ≤ J(uh) − J(u) (6.1)

From Young’s inequality it follows that

‖w‖2
a = ‖ 1

m

∑
vi‖2

a ≤ 1
m

∑
‖vi‖2

a .
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The differences of the energies evaluates to

J(uh) − J(uh + v) (6.2)

=
1
2
a(uh, uh) − (f, uh)0 − 1

2
a(uh, uh)

− a(uh, v) − 1
2
a(v, v) + (f, uh + v)0

= −a(uh, v) + (f, v)0 − 1
2
a(v, v)

= − 〈λh, v〉 − 1
2
a(v, v).

By applying (6.2) to v = w and v = vi and recalling (6.2) we obtain∑
i

{J(uh) − J(uh + vi)}

=
∑

i

{
− 〈λh, vi〉 − 1

2
‖vi‖2

}

≤ − 〈λh,mw〉 −m
1
2

‖w‖2

= m {J(uh) − J(uh + w)}
≤ m {J(uh) − J(u)} .

Following Lemma 6.1 we will construct a correction v ≥ ψ − uh such that the improvement
(6.2) dominates the residual error estimator. This shows its efficiency. Some elementary
properties of the element bubble functions bT and the edge bubble functions be are required.
They are defined in terms of the barycentric coordinates

bT := λ1λ2λ3 , be := λ1λ2.

Lemma 6.2 (1) Let g be a linear function that is non-negative on a triangle T and ḡ be its
mean-value on T . Then

12 ḡ bT (x) ≤ g(x) for all x ∈ T. (6.3)

(2) There is a constant c ≈ 1 (c ≤ 12) such that

c ≤
∫
bT

‖∇b‖2h2 (6.4)

and ∫
bT =

1
60

|T |.

Proof: (1) Let αi denote the non-negative value of g at the vertex i. We write g(x) =∑3
i=1 αiλi and note that ḡ = (1/3)

∑3
i=1 αi. If the indices i, j, k are in cyclic order, we
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obtain

g(x) =
3∑

i=1

αiλi ≥
3∑

i=1

αiλi(4λjλk)

= 4
3∑

i=1

αibT = 12ḡ bT .

(2) The estimate (6.4) follows by standard scaling arguments. The last equation is obtained
by simple computation of the integral.

Next we refer to the lower bounds of the error that result from the local Dirichlet problems
on elements or edges and their neighborhood

ED,T := sup
v∈H1

0(T )
v≥ψ−uh

J(uh) − J(uh + v)

ED,e := sup
v∈H1

0(ωe)
v≥ψ−uh

J(uh) − J(uh + v)

In particular, Lemma 6.1 yields∑
T

ED,T +
∑

e

ED,e ≤ c
{
J(uh) − J(u)

}
.

Theorem 6.3 There exists a constant c
such that the area portion of the estimator ηPS satisfies

ηT ≤ c ED,T .

Proof: Given T ⊂ ωi , let

v := cbT max{h2
T fT,i, ψ − uh} ∈ H1

0 (T ),

where c is the constant in Lemma 6.2. By definition, v ≥ cbT ψ − uh ≥ 12bT ψ − uh ≥ ψ−uh.
Hence, uh + v ≥ ψ.
Since the support of v is contained in the element T , it follows from (3.1) that

ED,T ≥ J(uh) − J(uh + v)

= −1
2
‖∇v‖2

0 − 〈λh, v〉

= −1
2
‖∇v‖2

0 − (−fT , v).

We distinguish two cases.
Case 1. h2

T fT < ψ − uh.
Then v = cbTψ − uh and fT is negative.

ED,T ≥ −1
2
c2‖∇bT ‖2 |ψ − uh|2

−
∫
bT cfT ψ − uh ≥ −1

2
c

∫
bT |ψ − uh|2

− c

∫
bT fT ψ − uh ≥ c

120
|T ||fT |uh − ψ.
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Case 2. h2
T fT ≥ ψ − uh.

Then v = cbTh
2
T fT,i and

ED,T ≥ −1
2
c2‖∇bT ‖2 |h2

TλT |2

+
∫
bT ch

2
T f

2
T ≥ 1

2
c

∫
bT |h2

T f
2
T |

=
c

120
h2

T ‖fT ‖2
0,T .

In both cases, the local improvement ED,T dominates a multiple of the residual error esti-
mator ηT .

Theorem 6.4 There exists a constant c
such that the edge portion of the estimator ηPS satisfies

ηe ≤ c χeED,e.

with the efficiency measure χe defined as

χe = 1 unless[
∂uh

∂n

]
< 0 and h2

T fT < −uh − ψ (6.5)

and

χe = max
{

1, max
T⊂ωe

min
{ hfT[

∂uh
∂n

] , h2|fT |
uh − ψ

}}
. (6.6)

The proof is postponed to Appendix C.
The theorems show that the element terms of the estimator due to Prager and Synge are
efficient, but that we have a weaker result for the ingredients of the edges. We may summarize
the results as

J(uh) − J(u) ≥ c1‖σ∆‖2
0

− c2
∑
T

h2
T ‖f − f̄‖2

0

− c3
∑
e,T

′
he

[
∂uh

∂n

]
e

∫
T

fT ,

where the prime at the last sum indicates that it runs over those pairs with e ⊂ T̄ ,
[

∂uh
∂n

]
< 0,

and h2
T fT < −uh − ψ.

An example in Appendix A shows the loss of efficiency with exactly the factor (6.6), since
the extra terms are much larger than the true error. The discussion of the example also
elucidates that there is an inherent handicap with obstacle problems. Fortunately, this is no
drawback in actual computations, if local refinements take care of extra terms. These extra
terms can be data oscillations on patches [2] or associated with the error in the Lagrange
multipliers [14]. In order to achieve an error reduction, the refinement has to be organized
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in such a way that not only the estimator but also the extra terms are reduced within the
adaptive cycle; see, e.g., [5] and [6].
On the other hand, we demonstrate in Appendix B that the estimator due to Prager–Synge
deals very well with other phenomena of non-affine obstacles if one-sided jumps are admitted
with the equilibrated fluxes.

A A Counterexample

The handicap of a posteriori error estimates for obstacle problems and their efficiency is
elucidated by a one-dimensional example. The obstacle will be even affine linear.
Let b � d > 0, and consider the variational problem in H1(−1,+1):

1
2

∫ +1

−1
v′(x)2dx+ b

∫ 0

−1
v(x)dx −→ min! (A.1)

with the constraint ψ = 0 and the boundary conditions v(−1) = 0, v(1) = d. A boundary
point −z of the contact zone is given by z + 1

2z
2 = d/b, i.e., z ≈ d/b. The solution of the

variational problem is

u(x) =

⎧⎪⎨
⎪⎩

0, −1 ≤ x ≤ −z,
1
2b(z + x)2, −z ≤ x ≤ 0,
1
2bz

2 + bz x, 0 ≤ x ≤ 1;

see Figure 2. The corresponding finite element solution with one node at 0 is

uh(x) =

{
0, −1 ≤ x ≤ 0,
x, 0 ≤ x ≤ 1.

A straight-forward calculation yields

|u− uh|21

=
1
2

∫ 0

−z

b2(x+ z)2dx+ (d− bz)2
∫ 1

0
dx

=
1
3
b2z3 + (

1
2
bz2)2 ≤ d3/b.

Since the jump of u′
h equals d, the error bound is ≈ d2. Hence, the quotient of the error

estimate and the true error is ≈ b/d ≈ fT /λe, and the formula (6.6) for the efficiency
measure is sharp (modulo a constant). Note that the same edge term as in the estimate due
to Prager–Synge is encountered in the typical classical estimators [2, 4, 5, 9, 14]. It is no
drawback in actual computations; cf. Section 6.
On purpose, we have chosen an example with an affine obstacle. We get a similar example
with zero data oscillation if non-affine obstacles are chosen. If we extend the load in (A.1) to
the complete domain and set ψ(x) = x on [0, 1], then the finite element solution is the same.
A symmetry argument shows that the exact solution changes so little, that the efficiency
problem is the same. Obviously the kink of the obstacle implies the deterioration here.
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uh

-1 0 1

u

-z

Figure 2: Exact and finite element solution of the problem in Appendix A.

uh

-1 0 1

ψ

u
τ

-1 1

1

-1

Figure 3: Exact and finite element solution of the problem in Appendix B and the equili-
brated flux.

B Effects of edge terms with inequalities

Another one-dimensional example shows that the hypercircle method can cope with non-
affine obstacles better than some well-known estimators. We gain appropriate flexibility by
admitting equilibrated fluxes τ �∈ H(div) as stated in Remark 2.1. This is positive in contrast
to the example in the preceding appendix, but the situation is different, since the jump there
has the opposite sign. – The discussion of the example may be of interest independently of
the hypercircle method. Therefore, some arguments of Section 2 are repeated.
Let 0 < b � 1, and consider the variational problem in H1

0 (−1,+1):

1
2

∫ +1

−1
v′(x)2dx− 2b

∫ +1

−1
v(x)dx −→ min!

with the constraint
ψ(x) = 1 − 2|x|

and homogeneous Dirichlet boundary conditions.
The solution is obviously u(x) = 1 − |x| + b |x|(1 − |x|); see Figure 3. The finite element
solution with linear elements and one node at the midpoint of the interval is

uh(x) = 1 − |x|.

Let τ be a piecewise polynomial with a possible jump at x = 0. We have

‖u′
h − u′‖2

0 + ‖u′ − τ‖2
0 ≤ ‖u′

h − τ‖2
0 (B.1)

if (u′ − τ, u′
h −u′)0 ≥ 0. We start as in the prof of (2.7), but proceed in the spirit of Remark
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2.1. In this example, we have f = 2b and

(u′ − τ, u′
h − u′)0 (B.2)

= (u′, u′
h − u′)0 − (f, uh − u)0

−
∫ 1

−1
τ(u′

h − u′)dx+ (f, uh − u)0

= 〈λ, uh − u〉 +
∫ 1

−1
(τ + 2b)(uh − u)dx

− [τ(0+) − τ(0−)](u− uh)(0).

From the characterization of the exact solution we know that the first term in (B.2) is
nonnegative. The second term vanishes, if we have pointwise τ ′ = −b. Since x = 0 belongs
to the active point set, we have (u− uh)(0) ≥ 0, and the last term is nonnegative whenever
the jump of τ is nonpositive. Therefore, the appropriate equilibration leads to

τ(x) =

{
ρ− bx, x < 0,

−ρ− bx, x ≥ 0

with an arbitrary ρ ≥ 0. The resulting estimator ‖u′
h − τ‖0 attains its minimum for ρ =

1 − b/2. Here ‖u′
h − τ‖0 = b/

√
6 and the estimator equals ‖u′

h − u′‖0. This proves the
efficiency.
Error estimators which contain jump terms of ∇uh or of ∇(uh − ψ) cannot be efficient for
small values of the parameter b.

C Proof of Theorem 6.4

Lemma C.1 (1) Let g be a linear function that is non-negative on a triangle T and ḡe be
its mean-value on the edge e ⊂ T . Then

2 ḡe be(x) ≤ g(x) for all x ∈ T. (C.1)

(2) There is a constant c ≈ 1 (c ≤ 2) such that

c ≤
∫
be

‖∇be‖2h
. (C.2)

(3) Let 0 < z < 1 and

b(z)
e = max{0, (λ1 − λ3/z)(λ2 − λ3/z)} (C.3)

be a bubble function whose support is reduced to a strip of with 2zh. Then

‖b(z)
e ‖2

0,T ≈ h2z,

‖∇b(z)
e ‖2

0,T ≈ z−1,

‖b(z)
e ‖2

0,e ≈ h.
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Proof: (1) Let αi denote the non-negative value of g at the vertex i. We write g(x) =∑3
i=1 αiλi and note that ḡe = (1/2)

∑2
i=1 αi. We obtain

g(x) =
3∑

i=1

αiλi ≥
2∑

i=1

αiλi

≥
2∑

i=1

αiλ1λ2 = 2ḡe be .

(2) The estimate (C.2) follows by standard scaling arguments. Moreover, we have
∫

e
be =

(1/6)|e|.
(3) The estimates follow by standard scaling arguments.

Proof of the theorem.
We recall λe =

[
∂uh
∂n

]
. Given e ⊂ ωi, let

v := cbe max{−heλe, ψ − uh
e} ∈ H1

0 (ωe),

where c is the constant in Lemma C.1. By definition, v ≥ cbe ψ − uh
e ≥ 2be ψ − uh

e ≥
ψ − uh. Hence, uh + v ≥ ψ.
From (3.1) we obtain for v ∈ H1

0 (ωe):

ED,e ≥ J(uh) − J(uh + v)

= −1
2
‖∇v‖2

0 − 〈λh, v〉 (C.4)

= −1
2
‖∇v‖2

0 − (−f, v)ωe − (λe, v)e .

We distinguish two cases.
Case 1. heλe ≥ uh − ψ

e
. Then λe is positive and v = −cbe uh − ψ

e
is negative. We have

ηe = (λe, uh − ψ
e
)0,e ≥ |uh − ψ

e|2.

Now (C.4) yields

ED,e ≥ −1
2
c2‖∇be‖2 |ψ − uh

e|2

+
∫

ωe

fv −
∫

e

becλe ψ − uh
e

≥ −1
2
c

∫
e

be h
−1|ψ − uh

e|2 +
∫

ωe

fv

+ c

∫
e

beλe ψ − uh
e

≥ c

12
|e||λe| uh − ψ

e
+

∫
ωe

fv

≥ c ηe +
∑

T⊂ωe

∫
T

fT v. (C.5)
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Case 2. heλe < uh − ψ
e
. In this case we have

ηe = h2|λe|2

and consider a test function with the modified bubble function

v = −αb(z)
e heλe.

The parameters α > 0 and z < 1 will be fixed later. Since b(z)
e ≤ be, we get uh + v ≥ ψ as

above.
By the inverse inequalities in Lemma C.1 and (C.4) we get

ED,e ≥ −1
2
‖∇v‖2

0 − 〈λh, v〉

= − 1
2
α2h2λ2

e‖∇b(z)
e ‖2

0

+αhλ2
e

∫
e

b(z)
e +

∫
ωe

fv

≥ − c1
α2h2

z
λ2

e

+c2αh2λ2
e +

∫
ωe

fv .

Now we choose α = c2z
2c1

to absorb the first term by the second one and obtain

ED,e ≥ c3zηe +
∑

T⊂ωe

∫
T

fT v. (C.6)

The interaction of the edge bubbles with the element bubbles is given by the last terms in
(C.5) and (C.6). The terms will be absorbed by the observation

ED,T ≤ ED,e if e ⊂ T̄ (C.7)

with the exception specified in Theorem 6.2.
By definition, the test function v has the opposite sign as λe. Therefore, we can drop the
term if λefT < 0. Otherwise we distinguish three cases. In all of them ηT = h2

T ‖fT ‖2
0,T , and

we set z = 1.
Case a) heλe ≥ uh − ψ

e
and fT > 0.

A standard scaling argument yields
‖h−1be‖0,T ≤ c. Moreover, ηe = hλe uh − ψ

e ≤ (uh − ψ
e
)2, and

−
∫

T

fT v ≤ ‖hfT ‖0,T ‖h−1v‖0,T

= ‖hfT ‖0,T ‖h−1be‖0,T c|ψ − uh
e|

≤ cη
1/2
T η1/2

e .
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Case b) 0 ≤ heλe < uh − ψ
e

and fT > 0.
A similar scaling argument and ηe = h2λ2

e yields

−
∫

T

fT v ≤ ‖hfT ‖0,T ‖h−1v‖0,T

= ‖hfT ‖0,T ‖h−1b(z)
e ‖0,T α|hλe|

≤ αη
1/2
T η1/2

e .

Case c) λe < 0 and −uh − ψ ≤ h2
T fT < 0.

Here ηe = h2λ2
e and −

∫
T
fT v can be bounded as in Case b).

In any of the three cases, by Young’s inequality it follows that

ED,e ≥ c ηe − c
∑

T⊂ωe

η
1/2
T η1/2

e

≥ c ηe − c
∑

T⊂ωe

ηT . (C.8)

Finally, combining Theorem 6.3 and (C.7) we absorb the last term in (C.5) and (C.6) to
obtain

ηe ≤ cED,e.

As a precaution we recall that the generic constant c can attain different values at different
places.
In the case that was excluded, i.e.,

λe < 0 and h2
T fT < −uh − ψ

we obtain only a weaker bound of h2
T fT in terms of ηT ,

h2|fT |2 ≤ h2|fT |
uh − ψ

ηT .

The factor on the right-hand side leads to the last term in the efficiency measure (6.6). It
guarantees efficiency if we are far away from the obstacle.
We alternatively restart with (C.6) and insert v and choose α = c2z

2c1
:

ED,e ≥ c3zηe − αh|λe|
∑

T⊂ωe

|(fT , b
(z)
e )0,T

≥ c3zηe − c4z
2η1/2

e

∑
T⊂ωe

h2fT .

We proceed with a Young inequality to get

ED,e ≥ c5zηe − c6z
3h4|fT |2

and set z = hλe
2h2|fT |

√
c5/c6 to absorb the second term by the first one to get the bound

ED,e ≥ c
λe

hfT
ηe = c

η
1/2
e

h2fT
ηe .

This estimate is advantageous if the estimator is large compared to the load.
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