
Scientific Computing –
Software Concepts for Solving
Partial Differential Equations

Joachim Schöberl

WS04/05

Abstract

Many problems in science and engineering are described by partial differential
equations. To solve these equations on non-trivial domains, numerical methods such
as the finite element method are required. In this lecture, I will shortly introduce
models from mechanical and electrical engineering, and present the numerical meth-
ods and algorithms. I will focus on the design of finite element software.

1 Partial Differential Equations in Science and Engi-

neering and the Finite Element Method

In this section, models from electrical and mechanical engineering are introduced. The
arising partial differential equations are solved with the finite element package NGSolve.
We will discuss the computed results and the solution procedures.

1.1 Electrostatics

The full Maxwell equations describe the interaction of electric and magnetic fields. In a
stationary limit, the electric fields can be modeled by a scalar equation, only. Electrostatics
models for example a charged capacitor.

The involved quantities are:

Symbol Unit
Φ V electrostatic potential
E V/m electric field intensity
D As/m2 dielectric displacement current density
ρ As/m3 charge density

1

Here, V is the abbreviation for Volt, and A is short for Ampere.
The quantities are related by

E = ∇Φ D = εE ρ = − div D. (1)

The material parameter ε is the dielectric coefficient.
Putting together the equations above, one ends up with the second order scalar equation

− div(ε∇Φ) = ρ (2)

Still, the potential Φ and the charge density ρ are two unknown fields, and we need
more information. Assume the domain consists of conductors and insulators. Then

• inside a conductor the voltage is constant. This implies that E, D, and ρ vanish
inside the conductor,

• there are no charges inside of an insulator.

This implies that charges are allowed only at the boundary of conductors. We write ρS for
the surface charge density.

Now, we pose the full model. Assume that the bounded domain Ω contains M separate
conductors ΩC

1 . . .Ω
C
M . Let ΩI be the complement Ω\∪ΩC

i . On Γ := ∂Ω we assume Φ = 0.
Then, the problem is described by the boundary value problem

− div(ε∇Φ) = 0 in ΩI ,

Φ = Φi in ΩC
i ,

Φ = 0 on Γ.

The scalars Φi are assumed to be known. E.g., these are the applied voltages to the plate
of a capacitor.

By mean of Gauss´ theorem one obtains

Dn = ρS,

i.e., the Neumann data for the second order equation.

1.1.1 Weak form and discretization

For shorter notation we set Γ0 := Γ, Γi = ∂Ωc
i , and rename Ω := ΩI . Then, the bvp is

− div(ε∇Φ) = 0 in Ω (3)

with Dirichlet boundary conditions

Φ = Φi on Γi. (4)

2

We have not yet defined a function space for the unknown field Φ. It will come out
naturally from the weak formulation. For this, we multiply (3) by an arbitrary smooth
function v vanishing on ∪Γi, integrate over the domain Ω, and apply integration by parts:

−
∫

Ω

div(εΦ)v dx =

∫
Ω

ε∇Φ · ∇v dx = 0.

This gives now the definition of the boundary value problem in weak form. Define the
function space

V := {v ∈ L2(Ω) : ∇v ∈ L2}.

That space is the Sobolev space H1(Ω), which is an Hilbert space with inner product
(u, v)L2 + (∇u,∇v)L2 . Now, search Φ ∈ V such that

Φ = Φi on Γi

and ∫
Ω

ε∇Φ · ∇v dx = 0 ∀ v ∈ V s.t. v = 0 onΓi.

Due to the choice of the space (H1 has well defined boundary values, trace theorem), this
is a well posed formulation. Indeed, there is a unique solution in V , which follows from
the inverse trace theorem, and the Lax-Milgram theorem.

An equivalent formulation (to the weak one) is the constrained minimization problem

min
v∈V

v=Φ on Γi

∫
ε |∇v|2 dx. (5)

Exercise: Show the equivalence

For two reasons which will become clear later, we replace the constrained minimization
problem by a penalty approximation with ’large’ penalty parameter α:

min
v∈V

∫
Ω

ε |∇v|2 dx+ α

∫
∪Γi

(v − Φi)
2 ds. (6)

The corresponding variational form is to find v ∈ V such that∫
Ω

ε∇Φ · ∇v dx+ α

∫
Γ

Φv ds = α

∫
Γ

Φiv ds ∀ v ∈ V. (7)

Now, the identity holds for all v ∈ V without restriction onto the boundary values.
By performing integration by parts again, one obtains the according b.c. in strong form

ε
∂Φ

∂n
+ αΦ = αΦi,

which is a b.c. of Robin type.

3

1.1.2 Finite Element Discretization

For the numerical treatment of (7) on replaces the infinite dimensional function space V by
a space VN of finite dimension N . The finite element method is one possibility to construct
spaces VN . The domain Ω is sub-divided into simple domains. Most popular are triangles
and quadrilaterals in 2D, and tetrahedra and (deformed) cubes in 3D. On these simple
domains, the approximation functions are usually polynomials.

.... basis functions, shape functions, dofs to ensure continuity, hat functions
Functions in VN are expanded in the basis {p1, . . . , pN}

ΦN(x) =
N∑

i=1

uipi(x).

The so called Galerkin approximation to (7) is to find ΦN ∈ VN such that∫
Ω

ε∇ΦN · ∇vN dx+ α

∫
Γ

ΦNvN ds = α

∫
Γ

ΦivN ds ∀ vN ∈ VN . (8)

We plug in the expansion of ΦN . Testing for all v ∈ VN is equivalent to test for all basis
functions. This leads to: Find u = (u1, . . . , uN) ∈ RN such that

N∑
i=1

{∫
Ω

ε∇pi · ∇pj dx+ α

∫
Γ

pipj ds︸ ︷︷ ︸
=:Aji

}
ui = α

∫
Γ

Φipj ds︸ ︷︷ ︸
=:fj

∀ j ∈ {1, . . . N}. (9)

This is the linear system of equations

Au = f.

The equation can either be solved by a direct elimination method, or, by an iterative
method such as the preconditioned conjugate gradients method. (Sparse) direct methods
are appropriate for problems of moderate size (about up to 200 000 unknowns for 2D prob-
lems, and 40 000 for 3D problems), but suffer from large memory and CPU requirements for
large problems. Iterative methods depend on the type of the applied preconditioner, i.e.,
an inexact inverse. A simple preconditioners is the diagonal of the matrix, good ones are
multigrid and more general Additive Schwarz methods. Preconditioning will be discussed
later in Section ..

1.1.3 Simulating a capacitor with NGSolve

We simulate a plate capacitor as drawn below. The capacity is defined as

C =
Q

U
,

4

where Q =
∫

Γ+
qS ds is the total charge on one plate, and U = Φ+ − Φ− is the voltage

(=difference of potential) between the plates.
Exercise: Show that the capacity is related to (twice of) the stored energy

CU2 =

∫
Ω

E ·Ddx.

The following Netgen input file describes the geometry above. First, a list of 12 points
is specified. The entries are x and y coordinates, and a local relative mesh refinement close
to this point. Then, a list of 12 line segments is specified. The first parameters give left
and right sub-domain number, 0 means outside. The next number specifies the type of
curve, 2 means straight line between the next 2 points. The last number is the relative
refinement along this line. Finally, with the -bc=1 flag, a boundary condition number is
specified. We set bc=1 on the outer boundary, and 2 and 3 for the two plates, respectively.

A run of Netgen with this input file generates the triangular mesh drawn above.

splinecurves2d
5

12
-3 -3 1
3 -3 1
3 3 1
-3 3 1

0.2 -0.5 10
0.3 -0.5 10
0.3 0.5 10
0.2 0.5 10
-0.3 -0.5 10
-0.2 -0.5 10
-0.2 0.5 10
-0.3 0.5 10

5

12
1 0 2 1 2 1 -bc=1
1 0 2 2 3 1 -bc=1
1 0 2 3 4 1 -bc=1
1 0 2 4 1 1 -bc=1

0 1 2 5 6 1 -bc=2
0 1 2 6 7 1 -bc=2
0 1 2 7 8 1 -bc=2
0 1 2 8 5 1 -bc=2

0 1 2 9 10 1 -bc=3
0 1 2 10 11 1 -bc=3
0 1 2 11 12 1 -bc=3
0 1 2 12 9 1 -bc=3

The pde we want to solve involves the bilinear form

A(Φ, v) =

∫
∪Ωi

εi∇Φ · ∇v +

∫
∪Γi

αiΦv.

The coefficients εi and αi can be specified for each sub-domain, and each piece of the
boundary, respectively. There is just one sub-domain, i.e., ε = (ε1) = (1). There are
three parts of the boundary, thus α = (0, 1e5, 1e5), where 105 is the chosen ’large’ penalty
parameter.

We apply +1V and −1V onto the electrodes. Thus the right hand side functional is

f(v) = 105
{∫

Γ2

1 v ds+

∫
Γ3

−1 v ds
}

=

∫
∪Γi

giv ds.

The coefficient g takes the values (0, 105,−105) on the pieces Γi of the boundary.
The NGSolve input file specifiing that variational problem is given below. First, the

filenames of the prepared geometry and mesh files must be specified. Then, one defines
coefficient functions, finite element spaces, gridfunctions, bilinear-forms, and linearforms
as required by the weak formulation. Several flags are possible to adjust the components.
A preconditioner defines an (inexact) inverse. The action starts with the numproc . The
numproc bvp takes the matrix provided by the bilinear-form, a right hand side vector
provided from the linear-form,and the vector from the gridfunction, and solves the linear
system of equations. Each numproc has a unique name such as np1.

geometry = demos/capacitor.in2d
mesh = demos/capacitor.vol

define constant geometryorder = 1
define constant refinep = 1

6

define coefficient coef_eps
1,

define coefficient coef_alpha
0, 1e5, 1e5,

define coefficient coef_g
0, 1e5, -1e5,

define fespace v -order=1
define gridfunction u -fespace=v

define bilinearform a -fespace=v -symmetric
laplace coef_eps
robin coef_alpha

define linearform f -fespace=v
neumann coef_g

define preconditioner c -type=direct -bilinearform=a
define preconditioner c -type=local -bilinearform=a
define preconditioner c -type=multigrid -bilinearform=a -smoothingsteps=1

numproc bvp np1 -bilinearform=a -linearform=f -gridfunction=u -preconditioner=c -maxsteps=1000

numproc drawflux np2 -bilinearform=a -solution=u -label=flux

evaluate energy:

define bilinearform aeval -fespace=v -symmetric -nonassemble
laplace coef_eps
numproc evaluate npeval -bilinearform=aeval -gridfunction=u -gridfunction2=u

error estimator:

define fespace verr -l2 -order=0
define gridfunction err -fespace=verr

numproc zzerrorestimator np3 -bilinearform=a -linearform=f -solution=u -error=err -minlevel=1
numproc markelements np4 -error=err -minlevel=1 -factor=0.5

7

Computed (double) energy
∫
D · E dx =

∫
ε|∇Φ|2 dx is 16.069, which gives a capacity

of

C =
16.069

22
= 4.017

As

V
.

1.2 Elasticity

We want to model the mechanical deformation of a body due to applied forces. A body
is called elastic, if the deformation returns to the initial state after removing the forces.
Otherwise, it is called elasto-plastic. We restrict ourself to the elastic behavior.

1.2.1 One dimensional elasticity

We start with a one-dimensional model. Take a beam (a, b) which is loaded by a force
density f in longitudinal (x) direction. We are interested in the displacement u(x) in
x-direction.

The involved variables are

• The deformation Φ, unit is [m]. The point x of the initial configuration is moved to
the point Φ(x). The displacement u is the difference Φ(x)− x.

• The force density f , unit [Newton/m] is the applied load inside the body, e.g., the
gravity. A boundary load g, unit [Newton] can be applied at the end of the beam. Its
orientation is in outward direction.

• The strain ε, unit [1]: It describes the elongation. Take two points x and y on the
beam. After deformation, their distance is Φ(y) − Φ(x). The relative elongation of
the beam is

(Φ(y)− Φ(x))− (y − x)

y − x
=
u(y)− u(x)

y − x
.

In the limit y → x, this is u′. We define the strain ε as

ε = u′.

8

• The stress σ, unit [Newton]: It describes internal forces. If we cut the piece (x, y)
out of the beam, we have to apply forces at x and y to keep that piece in equilibrium.
This force is called stress σ. Equilibrium for an internal interval is

σ(y)− σ(x) +

∫ y

x

f(s) ds = 0,

which leads in differential form to

σ′ = −f.

Equilibrium on an interval including the boundary (e.g., the point b) is

g(b)− σ(x) +

∫ b

x

f(s) ds = 0.

This leads to σn = g, where n is the outward unit-vector.

Hook’s law postulates a linear relation between the strain and the stress:

σ = Eε.

Combining the three equations

ε = u′ σ = Eε σ′ = −f

leads to the second order equation for the displacement u:

−(Eu′)′ = f.

Boundary conditions are

• Dirichlet b.c.: Prescribe the displacement at the boundary

• Neumann b.c: Prescibe the boundary load

The weak form is the minimization problem

min
v∈H1

v=g on ΓD

1

2

∫ b

a

E (v′)2dx−
∫ b

a

fv dx−
∫
{a,b}

gv ds.

The first term can be considered as energy stored due to the deformation of the body, the
second and third term is work applied against external forces.

9

1.2.2 Elasticity in more dimensions

Now, a body Ω ⊂ Rd is deformed due to volume and surface loads. The fields are now

• The deformation Φ : Ω → Rd and the displacement u = Φ(x)− x.

• The volume load density f : Ω → Rd, unit [N/md] and the surface load density
g : ∂Ω → Rd, unit [N/md−1].

• The strain is now measured in squared relative distances:

‖Φ(x+ ∆x)− Φ(x)‖2

‖∆x‖2
=
‖Φ′(x)∆x‖2

‖∆x‖2
+O(|∆x|)

The Cauchy Green strain tensor

C(x) := Φ′(x)T Φ′(x)

measures the stretching in a direction n via

nTCn = lim
ε→0

‖Φ(x+ εn)− Φ(x)‖2

‖εn‖2
.

A body is undergoing a rigid body motion (i.e., distances are kept constant) if and
only if C = I, i.e., Φ′ is an orthogonal matrix. This means det Φ′ ∈ {+1,−1}. By
continuity in time of the deformation process, one excludes −1. Thus a rigid body
motions implies that Φ′ is a rotation matrix. Φ can be a rotation plus a translation.

Now, we start from the weak formulation, i.e., the principle of minimal energy. For
this, let

W : Rd×d → R
be a function measuring the internal energy density caused by the strain C. The total
energy due to a displacement v is

V (v) =

∫
Ω

W (C(v))−
∫

Ω

fv −
∫

ΓN

gv, (10)

and the problem is now
min

v
v=ug on ΓD

V (v). (11)

A rigid body displacement does not cause internal energy, i.e.,

W (C) = 0 for C = I.

A simple energy funtional is the quadratic one, called Hook’s law

W (C) =
1

8

d∑
i,j,k,l=1

Dijkl(C − I)ij(C − I)kl =
1

8
D(C − I) : (C − I).

10

It envolves the fourth order material tensor D. An isotropic material (same properties in
all direction) has the special form

W (C) =
µ

4
|C − I|2 +

λ

8
(tr (C − I))2,

where µ and λ are called Lamé parameters. Here A : B =
∑

i,j AijBij is the inner product

of tensors, |A| := (A : A)1/2 is the norm, and trA =
∑

iAii is the trace of the tensor.

We will now evaluate the first order minimum conditions for the minimization
probem (11). The directional derivative of the functional V (u) into the direction v is

〈V ′(u), v〉 := lim
t→0

1

t
{V (u+ tv)− V (u)} .

The first order minimum conditions claim that V ′(u) = 0, i.e., 〈V ′(u), v〉 = 0 for all
directions v. We use the chain rule to evaluate the derivatives:

〈V ′(u), v〉 =

∫
Ω

dW (C(u))

dC
: 〈C ′(u), v〉 −

∫
Ω

fv −
∫

ΓN

gv

=

∫
Ω

dW (C(u))

dC
: {(I +∇u)T∇v + (∇v)T (I +∇u)} dx−

∫
Ω

fv −
∫

ΓN

gv

Since dW
dC

is symmetric, and A : (B+BT) = 2A : B for symmetric tensors A, the integrand
is equal to

2
dW

dC
: (I +∇u)T∇v = 2(I +∇u)dW

dC
: ∇v = 2∇Φ

dW

dC
: ∇v.

The variational formulation is now to find u such that u = ug on ΓD and∫
Ω

2(∇Φ)
dW

dC
: ∇v dx =

∫
Ω

fv +

∫
ΓN

gv ∀ v s.t. v = 0 on ΓD. (12)

First and second Piola Kirchhoff stress tensor ...
If we plug in Hook’s law W = 1

8
D(C − I) : (C − I), then dW

dC
= 1

4
D(C − I), and we

observe for the first factor

∇Φ
dW

dC
=

1

4
(I +∇u)D((I +∇u)T (I +∇u)− I)

=
1

4
D(∇u+ (∇u)T) +O((∇u)2).

In linear elasticity, one neglects the higher oder terms in ∇u. The left hand side becomes∫
1

2
{D(∇u+ (∇u)T)} : ∇v dx.

11

Again, we use that D(∇u+ (∇u)T) is symmetric to use also the symmetric form for v:∫
1

4
{D(∇u+ (∇u)T)} : {∇v + (∇v)T} dx.

We introduce a new symbol, called the linearized strain operator, or the symmetric
gradient operator

ε(u) =
1

2
{∇u+ (∇u)T}.

With this we arrived at the linear elasticity model: find u ∈ [H1(Ω)]d such that u = ug on
ΓD and∫

Ω

Dε(u) : ε(v) =

∫
Ω

fv dx+

∫
ΓN

gv ds ∀ v ∈ [H1(Ω)]d s.t. v = 0 on ΓD.

The symmetric tensor
σ := Dε(u)

is called strain tensor. It satisfies∫
σε(v) dx =

∫
σ : ∇v dx =

∫
−(div σ) · v +

∫
∂Ω

σn · v =

∫
fv +

∫
ΓN

gv.

Thus, we have derived the strong from

div σ = f

and the natural boundary conditions

σn = g on ΓN

1.2.3 Elasticity with NGSolve

geometry = ngsolve/pde_tutorial/beam.geo

mesh = ngsolve/pde_tutorial/beam.vol

define constant heapsize = 100000000

define coefficient E

1,

define coefficient nu

0.2,

define coefficient penalty

12

1e6, 0, 0, 0, 0, 0

define coefficient coef_force

5e-5,

finite element space with 3 components

define fespace v -dim=3 -order=5 -eliminate_internal -augmented=1

define gridfunction u -fespace=v

define linearform f -fespace=v

source coef_force -comp=3

define bilinearform a -fespace=v -symmetric -eliminate_internal -linearform=f

elasticity E nu

robin penalty -comp=1

robin penalty -comp=2

robin penalty -comp=3

define preconditioner c -type=direct -bilinearform=a

define preconditioner c -type=multigrid -bilinearform=a

numproc bvp np1 -bilinearform=a -linearform=f -gridfunction=u -preconditioner=c -maxsteps=200

compute stresses:

define fespace vp -dim=6 -order=5

define gridfunction stress -fespace=vp

numproc calcflux np2 -bilinearform=a -solution=u -flux=stress -applyd

13

1.3 Magnetostatics

A second limit problem of Maxwell equations are the equations for a stationary magnetic
field. Here, the involved quantities are

Symbol Unit
j A/m2 a given current density such that div j = 0
B V s/m2 magnetic flux density (German: “Induktion”)
H A/m magnetic field intensity (German: “Magnetische Feldstärke”)

All these quantities are vector fields. It is assumed that the currents have no sources, i.e.,

div j = 0.

Ampere’s law is that for every smooth surface S there holds∫
S

j · n ds =

∫
∂S

H · τds.

By Stokes´ theorem, the right hand side can be rewritten as
∫

S
curl H · n ds. Thus, there

holds
curl H = j

The hypotheses onto the magnetic flux B is that it has no sources, i.e.,

div B = 0

The two magnetic quantities B and H are related by the material law

B = µH,

where µ is called permeability. In general, the relation is non-linear, and may depend also
on the history. The magnetic flux density B induced by a prescribed current j in a coil is
drawn below:

14

The usual approach to handle these equations is to introduce a vector-potential A such
that

B = curl A

Since div curl = 0, this implies div B = 0. On the other hand, divB = 0 holds in R3,
which is simply connected, and thus allows to introduce the potential. Combining the
equations leads to the second order problem for A:

curlµ−1 curlA = j

As usual, we go over to the weak form. Multiply with test functions v and using the
integration by parts rule

∫
Ω

curlu · v =
∫

Ω
u · curl v +

∫
∂Ω

(n× u) · v ds:∫
Ω

µ−1 curl A · curl v ds+

∫
∂Ω

(n× µ−1 curl A) · v ds =

∫
Ω

j · v dx

This variational form shows two canonical boundary conditions:

• Posing the equation for arbitrary v implies that

n× µ−1 curl A = n×H = 0,

i.e., the tangential components of H vanish at the boundary. These are the natural
Neumann boundary conditions.

• Prescribe tangential boundary conditions for A, and put the tangential components
of v to 0, then

(n× µ−1 curlA) · v = µ−1 curl A · (v × n) = 0

These are the essential Dirichlet boundary conditions. They imply that B · n =
curlnAτ = 0 at the boundary.

The problem is: find A such that∫
Ω

µ−1 curl A · curl v ds =

∫
Ω

j · v dx ∀ v (13)

The solution is not unique. Since curl∇ = 0, adding an arbitrary gradient field to A gives
another solution. One possibility is to ignore the non-uniqueness, and work directly on the
factor space. An other approach is to select the unique vector potential being orthogonal
to gradients of arbitrary scalar fields, i.e.∫

A · ∇ϕ = 0 ∀ϕ (14)

This additional condition is called gauging. The b.c. onto ϕ have to correspond to the
ones of A: If A has 0-tangential b.c., then ϕ must have 0 b.c. as well.

15

1.3.1 The classical curl curl + div div approach

One idea is to perform integration by parts of the gauging-equation to obtain∫
Ω

A∇ϕdx = −
∫

Ω

divAϕdx+

∫
∂Ω

A · nϕds = 0

This implies divA = 0, and, for the case of Neumann boundary conditions also A · n = 0.
The classical approach is to utilize divA = 0 and add a consistent term to the variational
equation to obtain∫

µ−1 curl A · curl v dx+

∫
µ−1 div A · div v dx =

∫
f · v dx ∀ v,

with boundary conditions either A · τ = 0, or A · n = 0. For this problem, standard
continuous finite elements can be used. This approach was most popular until the 1990s.
But, it has serios disadvantages:

• For the case of highly different material parameters µ, the stability of the equation
gets really lost. Iteration numbers of iterative solvers go up, there are no robust
methods available.

• This approach cannot be used in electro-dynamics, where more terms come in. There,
the equation becomes (e.g., for the time harmonic setting in the so called A∗ formu-
lation) ∫

µ−1 curl A curl v dx− ω2

∫
ε(x)Av dx =

∫
j · v dx,

where ε is the dielectric material parameter. Now, choosing test functions v = ∇ϕ,
integration by parts gives the equation

div (εA) = 0,

there is no choice for gauging. In sub-domains with constant coefficients ε, this
implies divA = 0 in the sub-domains, but not globally. One could use this hidden
equation for stabilization:∫

µ−1 curl A curl v dx+

∫
µ−1 div (εA) div(εv) dx− ω2

∫
εAv dx =

∫
j · v dx.

But now, one cannot use continuous elements: The div− div-term is not finite in the
case of non-continuous coefficients ε. There are fixes by introducing an additional
scalar potential, but things don’t get simpler.

16

1.3.2 The H(curl) formulations

The modern approach is not to stabilize with the div− div term. The theoretical setting
is to add the gauging condition as given in (14). In general, when adding equations, one
has to add also additional unknowns. We pose the mixed formulation to find the vector
field A and the scalar field ϕ such that∫

µ−1 curlA curl v dx +
∫
v∇ϕ =

∫
j · v dx ∀ v∫

A∇ψ dx = 0 ∀ψ
The proper function space for A is the space

H(curl) = {v ∈ [L2]
3 : curl v ∈ [L2]

3},
with the norm

‖v‖2
H(curl) = ‖v‖2

L2
+ ‖ curl v‖2

L2
.

The space for the Lagrange parameter ϕ is the (H1, ‖∇ · ‖L2). Continuity of the mixed
formulation is immediate. The important LBB-condition

sup
v∈H(curl)

(v,∇ψ)

‖A‖H(curl)

≥ c |∇ψ|L2

is also simple to verify: Take v = ∇ψ. This is possible, since

∇H1 ⊂ H(curl).

That property is essential, and will also be inherited onto the discrete level. Kernel-
ellipticity is more involved, but also true.

We usually do not want to solve the mixed problem, but a positive definite one. This
can be obtained by regularization: Adding a ’small’ term

ε

∫
Av dx

to the mixed formulation is a regular perturbation, i.e., we change the solution of O(ε).
The perturbed problem is now:∫

µ−1 curlA curl v dx+ ε
∫
Av dx +

∫
v∇ϕ =

∫
j · v dx ∀ v∫

A∇ψ dx = 0 ∀ψ
We choose test functions v = ∇ϕ for the first line:∫

µ−1 curlA curl∇ϕdx︸ ︷︷ ︸
=0

+ε

∫
A∇ϕdx︸ ︷︷ ︸

=0

+

∫
∇ϕ∇ϕ =

∫
j∇ϕdx︸ ︷︷ ︸

=0

,

i.e, ∇ϕ = 0, and we can solve the regularized problem in A, only:∫
µ−1 curlA curl v dx+ ε

∫
Av dx =

∫
j · v dx ∀ v ∈ H(curl)

With the proper methods, everything (discretization, solvers, error estimators) are robust
in the regularization parameter ε.

17

1.3.3 Finite elements in H(curl)

We first derive the natural continuity properties of H(curl). Let u ∈ H(curl), and q =
curlu. Then, for all smooth vector functions ϕ vanishing at the boundary there holds∫
q · ϕ =

∫
curlu · ϕ =

∫
u · curlϕ. This relation is used to define the weak curl operator:

q is called the weak curl of u if there holds∫
Ω

q · ϕ =

∫
Ω

u · curlϕ ∀ϕ ∈ [C∞
0]3

An L2 function u is in H(curl) if curl u is in L2. A sufficient condition is the following:

Theorem 1. Let Ω =
⋃

Ωi be a domain decomposition. Assume that

ui = u|Ωi
is smooth

and the tangential components are continuous over sub-domain interfaces, i.e.,

ui × ni = −uj × nj on Ωi ∩ Ωj

Then u ∈ H(curl,Ω), and the locally defined curl u is the global, weak curl u.

Proof. We check that the local curl satisfies the definition of the weak curl:∫
Ω

(curlu)iϕdx =
∑
Ωi

∫
Ωi

curluiϕdx

=
∑
Ωi

∫
Ωi

ui curlϕdx+

∫
∂Ωi

(ni × ui)ϕds

=

∫
Ω

u curlϕdx+
∑

Ωi∩Ωj

∫
Ωi∩Ωj

[ni × ui + nj × uj]ϕds︸ ︷︷ ︸
=0

.

The opposite is true is well. If u ∈ H(curl,Ω), then u has continuous tangential
components.

This characterization motivates the definition of finite element spaces for H(curl) on
the mesh {T}. The type-II Nédélec elements of order k generate the space

V k
h = {v : v|T ∈ [P k]3, v · t continuous over element-interfaces}

The space is constructed by defining a basis. We start with a P 1-triangular element. In
2D, the H(curl) has 2 vector components. Each component is an affine linear function
on the triangle, i.e., has 3 parameters. Totally, the P 1 triangle has 6 parameters. We
demand continuity of the tangential component over element boundaries, i.e., the edges.

18

The tangential component is a linear function on the edge, thus, it is specified by two 2
degrees of freedom. 3 edges times 2 degrees of freedom specifiy the 6 parameters on the
element.

We now give a basis. Let Eij be an edge from vertex Vi to vertex Vj. Let ϕV
i and ϕV

j

be the corresponding vertex basis functions. Then we define the two basis functions

ϕE,0
ij := ϕV

i ∇ϕV
j −∇ϕV

i ϕ
V
j

as well as
ϕE,1

ij := ∇(ϕV
i ϕ

V
j) = ϕV

i ∇ϕV
j +∇ϕV

i ϕ
V
j

associated with the edge Eij.
Exercise: Show that this is a basis for V 1

h ⊂ H(curl). Verify that

• ϕE,0
ij and ϕE,1

ij ⊂ V 1
h

• ϕE,0
ij · τ = 0 and ϕE,1

ij · τ = 0 on edges E 6= Eij

• ϕE,0
ij · τ and ϕE,1

ij · τ are linearly independent on the edge Eij

In magnetostatics, we are only interested in the magnetic flux B = curlA, but not in
the vector potential A itself. The basis-functions ϕE,1

ij are gradients, so do not improve the

accuracy of the B-field. Thus, we might skip them, and work with the ϕE,0
ij , only. This are

the Nédélec elements of the first type, also known as edge elements.

1.3.4 Magnetostatics with NGSolve

We first give the definition of a 3D geometry as drawn in the field-lines plot above. We
specify the cylindrical coil by cutting out a smaller cylinder from a larger cylinder. The
air domain is bounded by a rectangular box. In Netgen, one can specify geometric prim-
itives such as infinite cylinders, half-spaces (called planes), and so on. One can construct
more complicated solids by forming the union (or) , intersection (and) or complements
(not) of simpler ones. One can specify boundary conditions with the -bc=xxx flag. The
final sub-domains are called Top-Level-Objects (tlo) and have to been specified. The
-col=[red,green,blue] flag gives the color for the visualization.

algebraic3d

solid coil = cylinder (0, 0, -1; 0, 0, 1; 0.4)

and not cylinder (0, 0, -1; 0, 0, 1; 0.2)

and plane (0, 0, 0.4; 0, 0, 1)

and plane (0, 0, -0.4; 0, 0, -1);

solid box = orthobrick (-2, -2, -2; 3, 2, 2) -bc=1;

solid air = box and not coil -bc=3;

19

tlo coil -col=[0, 1, 0];

tlo air -col=[0, 0, 1] -transparent;

The input-file for the solver is the tutorial example ’d7 coil.pde’: The current source
in the sub-domain of the coil is prescribed as function (y,−x, 0) in angular direction. An
H(curl) finite element space of arbitrary order is defined by specifiing the -hcurlho flag.
The flag -nograds specifies to skip all gradient basis functions. The keywords for the
integrators are

sourceedge jx jy jz
∫
j · v dx

curlcurledge nu
∫
ν curlu curl v dx

massedge sigma
∫
σu · v dx

The numproc drawflux inserts a field into the visualization dialog-box. It applies
the differential operator of the specified bilinear-form to the specified grid-function. The
-applyd flag specifies whether the field is multiplied with the coefficient function, or not.
Recall that the B-field is curl A, and the H-field is µ−1 curl A.

geometry = ngsolve/pde_tutorial/coil.geo

mesh = ngsolve/pde_tutorial/coil.vol

define constant geometryorder = 4

define constant secondorder = 0

define coefficient nu

1, 1,

define coefficient sigma

1e-6, 1e-6,

define coefficient cs1

(y), 0,

define coefficient cs2

(-x), 0,

define coefficient cs3

0, 0, 0

define fespace v -hcurlho -order=4 -nograds

define gridfunction u -fespace=v -novisual

define linearform f -fespace=v

sourceedge cs1 cs2 cs3 -definedon=1

20

define bilinearform a -fespace=v -symmetric

curlcurledge nu

massedge sigma -order=2

define bilinearform acurl -fespace=v -symmetric -nonassemble

curlcurledge nu

define preconditioner c -type=multigrid -bilinearform=a -cylce=1 -smoother=block -coarsetype=direct -coarsesmoothingsteps=5

numproc bvp np1 -bilinearform=a -linearform=f -gridfunction=u -preconditioner=c -maxsteps=50 -prec=1.e-8

numproc drawflux np5 -bilinearform=acurl -solution=u -label=B-field

numproc drawflux np6 -bilinearform=acurl -solution=u -label=H-field -applyd

21

2 Mathematical Objects and their implementation

In this chapter, we discuss the building blocks of the finite element method, and how they
are implemented in the object-oriented C++ code NGSolve.

2.1 Finite Elements

One has to build a basis for the finite element function space

Vh = {v ∈ C0 : v|T ∈ P k for all elements T in the mesh},

where C0 are the continuous functions. On triangles (and tetrahedra), the space P k is the
space of polynomials up to the total order k. On quadrilaterals (and 3D hexahedra), the
space P k = P k,k contains all polynomials up to order k in each variable.

The global basis is constructed by defining an local basis on each element such that the
local basis functions match at the element boundaries. To define the element basis, the
element T is considered as the mapping of one reference element, i.e.,

T = FT (TR).

This reduces the task to define a basis {ϕ1, . . . , ϕNT
} on the reference element. The basis

functions on the mapped element are

ϕT,i(FT (x)) := ϕi(x) ∀x ∈ TR

The basis functions on the reference element are called shape functions.

2.1.1 One dimensional finite elements

The lowest order finite element space consists of continuous and piecewise affine-linear
functions. A basis for the 1D reference element TR = (−1, 1) is

ϕ1 =
1 + x

2
, ϕ2 =

1− x

2
.

These functions are 1 in one vertex, and vanish in the other one. The global basis function
associated with the vertex V is ϕTl,2 on the left element, and ϕTr,1 for the right element.

To build C0-continuous elements of higher order, one adds more basis functions which
vanish at the boundary {−1,+1} to ensure continuity. These functions are called bubble
functions. A simple basis is the monomial one

ϕi+3 = xi(1− x2) ∀ i = 0, . . . p− 2.

Later, we will have to evaluate matrices like Aij :=
∫ +1

−1
ϕiϕj dx. When using this basis,

the matrix is very ill conditioned (comparable to the Hilbert matrix). Thus, one usually
chooses orthogonal polynomials as basis functions.

22

The kth Legendre polynomial Pk is a polynomial of order k which is L2(−1, 1)-orthogonal
to all polynomials of order l < k, i.e.,∫ 1

−1

Pk(x)Pl(x) dx = 0 ∀ l 6= k.

They are normalized such that Pk(1) = 1. Legendre polynomials can be evaluated effi-
ciently by the three-term reccurency

P0(x) = 1,

P1(x) = x,

Pk(x) =
2j − 1

j
xPk−1(x)−

j − 1

j
Pk−2(x) k ≥ 2.

Legendre polynomials do not vanish at the element boundaries. One possibility to
ensure this is to multiply with the quadratic bubble, i.e., to take (1−x2)Pk(x). A different
one (and the most popular one) is to introduce integrated Legendre polynomials

Lk(x) :=

∫ x

−1

Pk−1(s) ds.

For k ≥ 2, these polynomials vanish in {−1, 1}. The left end is clear, for the right end
there holds

Lk(1) =

∫ 1

−1

Pk−1 ds =

∫ 1

−1

P0Pk−1 dx = 0 ∀ k ≥ 2.

The idea behind the integrated Legendre polynomials is that they are orthogonal with
respect to the inner product (u′, v′)L2(−1,1).

Legendre polynomials belong to the more general family of Jacobi polynomials P
(α,β)
k

which are orthogonal polynomials with respect to the weighted inner product

(u, v) :=

∫ 1

−1

(1− x)α(1 + x)βuv dx.

There is a three term reccurency for the Jacobi polynomials as well. The bubble functions

ϕk = (1− x2)P
(2,2)
k

are L2-orthogonal.

2.1.2 Quadrilateral finite elements

We take the reference square (−1, 1)2. The lowest order basis functions are the bilinear
ones

ϕ1 =
(1 + x)(1 + y)

4
ϕ2 =

(1− x)(1 + y)

4
ϕ3 =

(1− x)(1− y)

4
ϕ4 =

(1 + x)(1− y)

4

23

These are functions which are 1 in one vertex, and vanish on all edges not containing this
vertex, in particular, in all other vertices. These basis functions are associated with the
vertices of the mesh. The restriction to the edges are linear functions. They are continuous
since they coincide in the vertices.

Next, we add functions to obtain polynomials of order p on the edges. These additional
basis functions must have support only on the elements containing the edge. This is
obtained by choosing edge bubble-functions vanishing in the vertices. For example, the
edge bubble functions for the edge (−1,−1)-(1,−1) on the reference element are defined
as

ϕE1,i := Li+2(x)
y + 1

2
i = 0, . . . , p− 2

These functions vanish on all other edges.
To obtain the full space P k,k, one has to add the element bubble functions

Li(x)Lj(y) i, j = 2, . . . , p.

These functions vanish on the boundary ∂T , and thus are always continuous to the neighbor
elements.

There appears one difficulty with the continuity of the edge basis functions: There are
even functions and odd functions on the edge. For the odd functions, the orientation of the
edge counts. When mapping the reference elements onto the domain, the orientation of
the edges do not necessarily match, and thus, the functions would not be continuous. One
possibility to resolve the conflict is to transform the basis functions. The odd functions
must change sign, if the edge of the reference element is oriented opposite to the global edge.
A second possibility is to parameterize the reference element: For each specific element,
take the global orientation of the edge onto the reference element. This is a transformation
of the arguments x or y. A simple possibility to orient edges is to define the direction from
the smaller vertex to the larger one. On the reference element, one has to know the global
vertex number to handle the orientation. This second approach is simpler for 3D elements
(in particular tetrahedral ones) and thus taken in NGSolve.

2.1.3 Triangular finite elements

The construction of a basis on triangles follows the same lines. It is useful to work with
barycentric coordinates λ1, λ2, and λ3. The vertex basis functions are exactly the barycen-
tric coordinates.

The edge-based basis functions on the edge between vertex i and vertex j are defined
as

ϕE,k = Lk+2

(λi − λj

λi + λj

)
(λi + λj)

k+2 k = 0, . . . , p− 2.

There holds

24

1. This is a polynomial of order k + 2. The first factor is rational of order k + 2 in the
denominator, and this is compensated by the second factor. The implementation of
these functions is possible by a division free three-term reccurency.

2. On the edge Eij there holds λi+λj = 1, and thus, the function simplifies to Lk+2(λi−
λj).

3. On the edge Ejk there holds λi = 0, and the function is Lk+2(−1)λk+2
j = 0. Similar

for the edge Eik.

Again, the element bubble functions are defined by a tensor product construction. For
this, let

uk = Lk+2

(λ1 − λ2

λ1 + λ2

)
(λ1 + λ2)

k+2 k = 0, . . . , p− 2,

vl = λ3Pl(2λ3 − 1) l = 0, . . . , p− 1

Then, the element bubble functions are

ϕk,l = ukvl ∀ k ≥ 0, l ≥ 0, l + k ≤ p− 3.

The first factor vanishes for the edges λ1 = 0 and λ2 = 0, and the second factor vanishes
for the edge λ3 = 0.

2.1.4 Tangential continuous finite elements

To approximate Maxwell equations (in H(curl)), we need vector valued finite elements
whose tangential components are continuous over element boundaries. We construct such
elements for triangles.

The simplest type of basis functions are the high order edge-based basis functions. Take
the gradients of the H1 edge-based basis functions of one order higher:

ΦE,i = ∇ϕE,i+1 i = 1, . . . , p

Since the global H1 basis functions are continuous over element boundaries, the tangential
component of their derivatives is continuous, as well. Above, we have defined p basis
functions up to order p. There is missing one more function. Since for edge bubble
functions there holds∫

E

ΦE,i · τ ds =

∫
E

∇ϕE,i+1 · τ ds = ϕE,i+1(VE1)− ϕE,i+1(VE2) = 0,

all these functions are (·τ, ·τ)L2(E)-orthogonal to the constant. One has to add the lowest
order edge-element basis function as defined in Section 1.3:

ΦE,0 = ∇ϕE1ϕE2 − ϕE1∇ϕE2

25

The tangential boundary values of the element-based basis functions must vanish. Re-
call the construction ϕT,ij = uivj for the H1-case. The first factor vanishes on the two
edges λ1 = 0 and λ2 = 0, while the second factor vanishes for λ3 = 0. The functions

Φ1
T,kl := (∇uk)vl

have vanishing tangential traces on all edges, since the tangential derivative of a bubble
function vanishes. The same holds for

Φ2
T,kl := uk(∇vl)

A third class of functions with vanishing tangential traces are

Φ2
T,kl := ΦE,0vl,

where ΦE,0 is the lowest order edge-basis function for the edge λ3 = 0. One can show that
these functions form a basis for {v ∈ [P p]2 : v ·τ = 0 on ∂T}. Instead of taking the first two
types a above, one may take the sum and the difference of them. This has the advantage
to include gradient basis functions explicitely (since ∇(ukvl) = (∇uk)vl + uk∇vl).

We were sloppy in defining the gradient. We need tangential continuity on the mapped
element, so the basis functions must be gradients on the mapped elements. But, on the
other hand, we want to define the H(curl) basis functions on the reference element. The
remedy is to define the transformation for H(curl)-basis functions compatible with gradi-
ents by

u(F (x)) := (F ′)−TuR(x) ∀x ∈ TR.

If uR is the gradient ∇wR on the reference element, then u = ∇w on the mapped element,
where w(F (x)) = wR(x). This transformation is called covariant transformation.

2.1.5 A class hierarchy for finite elements

In NGSolve, a hierarchy is designed to extract common properties of families of finite
elements:

Finite Element

Scalar−FE H(curl)−FE H(div)−FE ...

TrigP1

QuadP2 High−Order FE

HO−Trig HO−Tet
...

...

26

All these types correspond to C++ classes.
The base class must be general enough to include common properties of all type of

elements (currently in the mind of the author). These include the type of element, space
dimension, number of shape functions, and polynomial order. The C++ realization is:

class FiniteElement

{

protected:

int dimspace; // space dimension (1, 2, or 3)

ELEMENT_TYPE eltype; // element geometry (trig, quad, ...)

int ndof; // number of degrees of freedom

int order; // polynomial order

public:

FiniteElement (int adimspace, ELEMENT_TYPE aeltype, int andof, int aorder)

: dimspace(adimspace), eltype(aeltype), ndof(andof), order(aorder) { ; }

virtual ~FiniteElement () { ; }

int SpatialDim () const { return dimspace; }

int GetNDof () const { return ndof; }

int Order () const { return order; }

ELEMENT_TYPE ElementType() const { return eltype; }

};

The properties are chosen to be stored as member variables (instead of, e.g., provided by
virtual function calls) for faster access. A variable of each specific finite element type is
just defined once for the reference element, so additional memory cost is not an issue. The
base class has no methods for shape function evaluation since it is not clear whether the
shape functions are scalars or vectors.

Finite elements for scalar H1-problems have in common that they have scalar shape
functions, and the gradient is well defined. For historical reasons, H1 finite ele-
ments are called NodalFiniteElement. These class inherits the properties of the base
FiniteElement, and adds methods for shape function evaluation:

class NodalFiniteElement : public FiniteElement

{

...

virtual void CalcShape (const IntegrationPoint & ip,

Vector<> & shape) const = 0;

virtual void CalcDShape (const IntegrationPoint & ip,

Matrix<> & dshape) const;

};

27

A NodalFiniteElement offers just the interface to compute shape functions, but, it
does not know about the specific element, so it cannot compute shape functions. This is
provided by the mechanism of virtual functions. The function CalcShape computes the
vector of all shape functions in a given point ip on the reference element. It is a pure virtual
function (specified by the syntax = 0 at the end of the line) which means that every specific
finite element must overload the CalcShape function. The function CalcDShape computes
all partial derivatives of shape functions and stores them in the ndof × spacedim-matrix
dshape. There is a default implementation by numerical differentiation, but, the specific
finite element class may overload this function by computing the derivatives analytically.

A specific finite element is a triangular element with shape functions in P 1. Indeed,
also the CalcDShape method is overloaded:

class FE_Trig1 : public NodalFiniteElement

{

FE_Trig1() : NodalFiniteElement (2, ET_TRIG, 3, 1) { ; }

virtual ~FE_Trig1() { ; }

virtual void CalcShape (const IntegrationPoint & ip,

Vector<> & shape) const

{

shape(0) = ip(0);

shape(1) = ip(1);

shape(2) = 1-ip(0)-ip(1);

}

};

There were a plenty of elements implemented for fixed order up to 2 or 3.

The newer elements are high order elements of variable order. One can specify a polyno-
mial order for each edge, (and each face for 3D,) and the interior of the element separately.
The parametric reference element also contains the global vertex number to compute shape
functions with the right orientation. The following class collects the additional properties
for all scalar high order elements:

class H1HighOrderFiniteElement : public NodalFiniteElement

{

public:

int vnums[8]; // global vertex number

int order_inner;

int order_face[6];

int order_edge[12];

public:

H1HighOrderFiniteElement (int spacedim, ELEMENT_TYPE aeltype);

28

void SetVertexNumbers (Array<int> & vnums);

void SetOrderInner (int oi);

void SetOrderFace (const Array<int> & of);

void SetOrderEdge (const Array<int> & oe);

virtual void ComputeNDof () = 0;

};

Now, for each element geometry (trig, quad, tet, hex, ..), one high order finite element
class is defined. It computes the number of shape functions and the shape functions for a
specified order in each edge and the interior:

class H1HighOrderTrig : public H1HighOrderFiniteElement

{

H1HighOrderTrig (int aorder);

virtual void ComputeNDof();

virtual void CalcShape (const IntegrationPoint & ip,

Vector<> & shape) const;

};

In contrast to the NodalFiniteElement, the HCurlFiniteElement3D computes a ma-
trix of shape functions, and a matrix of the curl of the shape functions:

class HCurlFiniteElement3D : public FiniteElement

{

...

virtual void CalcShape (const IntegrationPoint & ip,

Matrix<> & shape) const = 0;

virtual void CalcCurlShape (const IntegrationPoint & ip,

Matrix<> & dshape) const;

};

2.1.6 The shape tester

The shape tester is a tool to visualize the basis-functions. It was written for debugging the
shape functions. There pops up a dialog box to select the index of the basis function.

geometry = examples/cube.geo

mesh = examples/cube.vol

define fespace v -h1ho -order=3

define gridfunction u -fespace=v

numproc shapetester np1 -gridfunction=u

29

2.2 Integration of bilinear-forms and linear-forms

After choosing the basis {ϕ1, . . . , ϕN} for the finite element space, the system matrix
A ∈ RN×N and right hand side vector f ∈ RN are defined by

Ai,j := A(ϕi, ϕj) and fj := f(ϕj).

For now, we assume that A(., .) has the structure

A(u, v) =

∫
Ω

B(v)tDB(u) dx,

where B(u) is some differential operator such as B(u) = ∇u, B(u) = u, B(u) = curl u,
etc. etc. The matrix D is a coefficient matrix, e.g., D = λ(x)I. Similar, the linear-form
has the structure

f(v) =

∫
Ω

dtB(v) dx,

where d is the coefficient vector. The case of boundary-integrals follows the same lines.
The convenient way to compute the global matrix is to split the integral over Ω into

integrals over the elements T , and use that the restriction of the global basis function ϕi

onto the element T is a shape function ϕT
α :

Ai,j =

∫
Ω

B(ϕj)
tDB(ϕi) dx =

∑
T∈T

∫
T

B(ϕT
β)tDB(ϕT

α)

One computes local element matrices AT ∈ RNT×NT by

AT
α,β =

∫
T

B(ϕT
β)tDB(ϕT

α) dx,

and assembles them together to the global matrix

A =
∑

T

(CT)tATCT ,

where CT ∈ RNT ,N is the connectivity matrix relating the restriction of the global basis
function ϕi to the local ones via

ϕi|T =

NT∑
α=1

CT
α,iϕ

T
α .

Usually, the CT consists mainly of 0s, and has NT entries 1. E.g., the orientation of edges
can be included into the connectivity matrices by −1 entries.

For many special cases, the integrals can be computed explicitely. But for more general
cases (e.g., with general coefficients), they must be computed by numerical integration.

30

For this, let IRk = {(xi, ωi)} be an integration rule or order k for the reference element

T̂ , i.e., ∫
bT f(x) dx ≈

∑
(xi,ωi)∈IRk

ωif(xi),

and the formula is exact for polynomials up to order k. The best integration rules for the
1D reference element are Gauss-rules, which can be generated for an arbitrary order k.
On other elements (quads, trigs, tets, hexes, ...) integration rules are formed by tensor
product construction.

On a general element T , which is obtained by the transformation FT , i.e., T = FT (T̂),
the transformed integration rule is∫

T

f(x) dx ≈
∑

(xi,ωi)∈IRk

ωif(FT (xi)) det(F ′
T (xi)).

Computing the element matrices by the integration rule gives

AT
α,β ≈

∑
(xi,ωi)

ωiB(ϕT
β)(FT (xi))

tDB(ϕT
α)(FT (xi)) det(F ′

T (xi)).

By combining the vectors B(ϕT
i)(FT (xi)) to a matrix (called B-matrix), the whole matrix

AT can be written as

AT ≈
∑

(xi,ωi)

ωi


B(ϕT

1)t

B(ϕT
2)t

...
B(ϕT

NT
)t

D
(
B(ϕT

1), . . . , B(ϕT
NT

)
)

det(F ′
T)

=
∑

(xi,ωi)

ωiB
tDB det(F ′

T)

The advantage of the matrix form is that for the implementation optimized matrix-matrix
operations can be used instead of hand-written loops.

2.2.1 Examples of integrator

In the case of the bilinear-form ∫
ρ(x)uv dx,

i.e., B(u) = u and D = ρ(x), the B-matrix in R1×NT is

Bj,1 = (ϕT
j (xi))i=1,...NT

.

The shape functions ϕT on the mapped element T = FT (T̂) are defined by means of the
shape functions ϕ̂ on the reference element

ϕT (FT (x̂)) := ϕ̂(x̂) ∀ x̂ ∈ T̂ .

31

The bilinear-form of a scalar 2nd order problem with general coefficient matrix a ∈ Rd×d

is ∫
Ω

(a∇u) · ∇v dx.

In this case, the B-matrix is of dimension d×NT and has the components

Bk,j =
∂ϕT

j

∂xk

To express these derivatives by derivatives on the reference element, the chain rule is
involved (where d

dx
gives a row vector):

dϕT

dx
=

d

dx
ϕ̂(F−1

T (x)) =
dϕ̂

dx
(F−1

T (x))
dF−1

T (x)

dx
=
dϕ̂

dx
(F−1

T (x))(F ′)−1(F−1
T (x)).

Rewriting for column-vectors ∇ϕ gives

∇ϕT (FT (x̂)) = (F ′)−T (x̂)(∇ϕ̂)(x̂).

By first setting up the B̂-matrix for the reference element, i.e.,

B̂k,j =
∂ϕj

∂xk

,

the B-matrix is computed by the matrix-matrix operation

B = (F ′)−T B̂. (15)

The bilinear-form for linear elasticity (e.g., for 2D) involves the strain operator ε(u) =
1
2
{(∇u) + (∇u)T}. We rewrite this symmetric strain-matrix as a strain-vector in the form

B(u) =

 ε11(u)
ε22(u)
2ε12(u)

 =

 ∂u1

∂x1
∂u2

∂x2
∂u1

∂x2
+ ∂u2

∂x1

 .

A basis for the vector-field (ux, uy) is built by taking 2 copies of the scalar basis and
arranging it as{(

ϕT
1

0

)
,

(
0
ϕT

1

)
,

(
ϕT

2

0

)
,

(
0
ϕT

2

)
, . . . ,

(
ϕT

NT

0

)
,

(
0
ϕT

NT

)}
.

Thus, the B-matrix in R3×2NT takes the form

B =


∂ϕT

1

∂x1
0

∂ϕT
2

∂x1
0

0
∂ϕT

1

∂x2
0

∂ϕT
2

∂x2
· · ·

∂ϕT
1

∂x2

∂ϕT
1

∂x1

∂ϕT
2

∂x2

∂ϕT
2

∂x1


32

2.2.2 A template family of integrators

The element-matrix (and element-vector) integrators are implemented as classes. The base
class provides the interface to a function for computing the element matrix. It cannot be
implemented for the base-class, so it is a pure virtual function:

class BilinearFormIntegrator

{

public:

virtual

void AssembleElementMatrix (const FiniteElement & fel,

const ElementTransformation & eltrans,

Matrix<double> & elmat) = 0;

...

};

One has to provide a FiniteElement, which can evaluate the shape functions on the
reference element. The ElementTransformation knows about the mapping FT , and can
compute metric quantities such as F ′

T . The result is returned in the matrix elmat.
The common properties for integrators of the form

∫
B(v)tDB(u)dx are combined into

the family of classes T BDBIntegrator. Each member of the family has its own differential
operator B(.), and coefficient-matrix D. Such families of classes can be realized by class-
templates:

template <class DIFFOP, class DMATOP>

class T_BDBIntegrator : public BilinearFormIntegrator

{

protected:

DMATOP dmatop;

public:

virtual void

AssembleElementMatrix (const FiniteElement & fel,

const ElementTransformation & eltrans,

Matrix<double> & elmat) const

{

int ndof = fel.GetNDof();

elmat.SetSize (DIFFOP::DIM * ndof);

elmat = 0;

Matrix<double> bmat (DIFFOP::DIM_DMAT, DIFFOP::DIM * ndof);

Matrix<double> dbmat (DIFFOP::DIM_DMAT, DIFFOP::DIM * ndof);

Mat<DIFFOP::DIM_DMAT, DIFFOP::DIM_DMAT, double> dmat;

33

const IntegrationRule & ir = GetIntegrationRule (fel);

for (int i = 0 ; i < ir.GetNIP(); i++)

{

SpecificIntegrationPoint ip(ir[i], eltrans);

DIFFOP::GenerateMatrix (fel, ip, bmat);

dmatop.GenerateMatrix (fel, ip, dmat);

double fac = ip.GetJacobiDet() * ip.Weight();

dbmat = fac * (dmat * bmat);

elmat += Trans (bmat) * dbmat;

}

}

}

The dimension of the element matrices depend on the number of shape functions provided
by finite element, and of the differential operator. The diff-op provides the dimension of
the D-matrix (called DIFFOP::DIM DMAT), as well as the number of copies of the finite
element, e.g., 2 for linear elasticity in 2D, (called DIFFOP::DIM). While the size of the
B-matrix depends on the finite element, the size of the D-matrix is fixed at compile-time.
For this, once the matrix-class Matrix of dynamic size, and once, the matrix class with
fixed size Mat<H,W> is used. The integration rule depends on the geometry of the element,
and the polynomial order of the shape functions. The SpecificIntegrationPoint stores
the Jacobi matrix, which is computed by the ElementTransformation eltrans.

The DIFFOP class has the function GenerateMatrix to compute the B-matrix. It does
not need additional data, so a static function of the class is called. Similar, the DMATOP

class computes the D-matrix. But now, data (such as the value of coefficients) are involved,
and a function for the variable dmatop is called. The linear algebra expressions compute
the element matrix as derived above.

Some more secrets:

• Memory management to avoid many allocate/delete-operations

• combining several integration points for longer inner loops

• B-matrix of fixed height at compile-time

A differential operator has to provide some values such as the dimension of the D-
matrix, and has to compute the B-matrix. A gradient differential operator for D dimen-
sions is DiffOpGradient<D>. The B-matrix is computed according to equation (15):

/// Gradient operator of dimension D

template <int D> class DiffOpGradient

34

{

public:

enum { DIM = 1 };

enum { DIM_SPACE = D };

enum { DIM_ELEMENT = D };

enum { DIM_DMAT = D };

static void GenerateMatrix (const FiniteElement & fel,

const SpecificIntegrationPoint & ip,

Matrix<double> & mat)

{

mat = Trans (ip.GetJacobianInverse ()) * Trans (fel.GetDShape(ip));

}

};

To provide a simpler use of the integrators, we have defined classes combining differen-
tial operators and coefficient matrices, such as a D-dimensional LaplaceIntegrator<D>:

template <int D>

class LaplaceIntegrator : public T_BDBIntegrator<DiffOpGradient<D>, DiagDMat<D> >

{

public:

LaplaceIntegrator (CoefficientFunction * coeff)

: T_BDBIntegrator<DiffOpGradient<D>, DiagDMat<D> > (DiagDMat<D> (coeff))

{

;

}

};

A tutorial showing how to use the finite elements and integrators is
netgen/ngsolve/tutorial/demo fem.cpp

35

2.3 Linear algebra concepts

Vectors and matrices are central data types for any mathematical simulation software.
There are different competing design choices. E.g., if one needs many operations with
small matrices, or little operations with large ones. The first type is the one I have in mind
for the (dense) element matrix computations, while the second one is the type for the
assembled global (sparse) matrices. A related choice is whether matrix-matrix operations
are useful, or if just matrix-vector multiplications are efficiently possible.

2.3.1 Matrix and Vector data types

The cheapest useful vector data type stores the size of the vector, and has a pointer to the
data. In NGSolve, such a vector is called FlatVector. The prefix Flat is always used for
classes not taking care about memory-management. Such a FlatVector is used, when one
wants to use ones own allocation, or, if the data already exists in memory, and one wants
to put a Vector - data-structure over this array. The FlatVector is a template-class, where
the template argument specifies the data type for the elements of the vector. Useful types
are, e.g., double or std::complex<double> from the C++ standard library.

In the constructor, the vector-size and the pointer to the memory are set. One can
access the size, and one can access the vector’s elements with the bracket-operator, for
example u(i) = v(i) + w(i):

template <typename T = double>

class FlatVector

{

protected:

int size;

T * data;

public:

FlatVector (int as, T * adata) : size(as), data(adata) { ; }

int Size () const { return size; }

T & operator() (int i) { return data[i]; }

const T & operator() (int i) const { return data[i]; }

};

The Vector class extends the FlatVector by memory management. In the constructor,
the vector size is given. The Vector allocates the required memory, and initializes the base
class with it. The Vector has a destructor cleaning up the memory:

template <typename T = double>

class Vector : public FlatVector<T>

{

36

public:

Vector (int as) : FlatVector<T> (as, new T[as]) { ; }

~Vector() { delete [] data; }

};

Possible uses of Vector and FlatVector are:

Vector<double> u(10);

FlatVector<double> subvec(&u(6), 4);

Often, the size of the vector is known at compile-time. For this case, there is the Vec

template class. It can use static memory, instead of dynamic:

template <int SIZE, typename T = double>

class Vec

{

protected:

T data[SIZE];

public:

Vec () { ; }

int Size () const { return SIZE; }

T & operator() (int i) { return data[i]; }

const T & operator() (int i) const { return data[i]; }

};

Possible uses are for 3D - point coordinates. One can also build Vectors, where the
elements are Vecs:

Vector<Vec<3,double> > u(10);

u(10)(0) = 5;

In a similar way, there exist the matrix types FlatMatrix, Matrix, and Mat. The access
operators are of the form m(i,j).

2.3.2 Vector operations

Vectors should provide the vector space operations ’sum of vectors’ and ’multiplication
with a scalar’. A nice way to code vector-operations is like

Vector<double> u(10), v(10), w(10);

double alpha;

u = alpha * v + w;

The C++ beginners implementation is to implement the ’+’ operator, the ’*’ operator,
and the assignment operator ’=’ as follows:

37

template<typename T>

Vector<T> operator+ (const FlatVector<T> & a, const FlatVector<T> & b)

{

Vector<T> temp(a.Size());

for (int i = 0; i < a.Size(); i++) temp(i) = a(i) + b(i);

return temp;

}

template<typename T>

Vector<T> operator* (double a, const FlatVector<T> & b)

{

Vector<T> temp(a.Size());

for (int i = 0; i < b.Size(); i++) temp(i) = a * b(i);

return temp;

}

class FlatVector<T>

{

...

FlatVector<T> & operator= (const FlatVector<T> & v)

{

for (int i = 0; i < size; i++) data[i] = v(i);

return *this;

}

};

This vector implementation allows the nice notation, but at the costs of low performance:
Temporary objects must be allocated inside the operator functions, and, additionally for
the return values.

To avoid such temporary objects, one can provide the following assignment methods:

class FlatVector<T>

{

...

FlatVector<double> & void Set (double alpha, FlatVector<T> & v)

{

for (int i = 0; i < size; i++) data[i] = alpha * v(i);

return *this;

}

FlatVector<double> & Add (double alpha, FlatVector<T> & v)

{

for (int i = 0; i < size; i++) data[i] += alpha * v(i);

38

return *this;

}

The use of these methods look like:

u . Set (alpha, v) . Add (1, w);

... not that nice, but more efficient.

The remedy for this performance-readability conflict are expression templates. The
above operator notation gets inefficient, since the memory to store the result is not avail-
able when just knowing the vector arguments. The idea is to return a symbolic object
representing the sum of two vectors. This representation knows how to evaluate the ele-
ments of the sum:

template <typename VA, typename VB>

class SumVector

{

const VA & veca;

const VB & vecb;

public:

SumVector (const VA & a, const VB & b) : veca(a), vecb(b) { ; }

VA::TELEM operator() (int i) { return veca(i)+vecb(i); }

};

template <typename VA, typename VB>

SumVector<VA, VB> operator+ (const VA & a, const VB & b)

{ return SumVector<VA, VB> (a, b); }

The computation can only happen at a stage, when the memory for the result is known.
This is the case in the assignment operator:

class FlatVector

{

...

template <typename VA, typename VB>

void operator= (const SumVector<VA, VB> & sum)

{

for (int i = 0; i < size; i++) data[i] = sum(i);

}

}

Now, a construct like

u = v + w;

39

is possible. The ’+’ operator returns the object SumVector<Vector<double>,

Vector<double> >. The ’*’ operator is defined similar:

template <typename VB>

class ScaleVector

{

double scal;

const VB & vecb;

public:

ScaleVector (double a, const VB & b) : scal(a), vecb(b) { ; }

VB::TELEM operator() (int i) { return scal*vecb(i); }

};

template <typename VB>

ScaleVector<VB> operator* (double, const VB & b)

{ return ScaleVector<VB> (a, b); }

It is also possible to combine expressions:

u = alpha * v + w;

This results in a type SumVector<ScaleVector<Vector<double> >, Vector<double> >.

The above concept has one problem: The operators (e.g., ’+’) have un-specialized
template arguments, which define the operator for every type. This may conflict with
other ’+’ operators (e.g., for connecting strings). One has to introduce a joint base class
(called, e.g., VecExpr) for all vector classes (including SumVector etc.), and defines the
operators for members of the VecExpr family, only. To find back from the base-class to
the specific vector class, the so called Barton and Nackman-trick is applied: The base class
is a template family, and the derived class instantiates the base-class template argument
with itself:

template <typename T>

class VecExpr { };

template <typename T>

class FlatVector<T> : public VecExpr<FlatVector<T> >

{ ... };

template <typename VA, typename VB>

class SumVector : public VecExpr<SumVector<VA, VB> >

{ ... };

Now, the ’+’ operator can be defined for members of the VecExpr family, only:

40

template <typename VA, typename VB>

SumVector<VA, VB> operator+ (const VecExpr<VA> & a, const VecExpr<VB> & b)

{

return SumVector<VA,VB> (static_cast<VA> (a), static_cast<VB> & b);

}

What happens for u + v, where the vectors are of type FlatVector<double> ? The
elements u and v are derived from VecExpr<FlatVector<double> >, thus, the above
’+’ operator can be applied. The template parameters VA and VB are initialized with
FlatVector<double>. Inside the function, the elements a and b, which are known
to be of the base type VecExpr<FlatVector<double> >, are up-casted to the derived
type FlatVector<double>, what is indeed a valid cast. The result will be of the type
SumVector<FlatVector<double>, FlatVector<double> >.

The assignment operator also takes profit of the VecExpr family:

template <typename T> class FlatVector : public VecExpr<..>

{

...

template <typename TV>

FlatVector & operator= (const VecExpr<TV> & v)

{

for (int i = 0; i < size; i++) data[i] = static_cast<TV>(v) (i);

return *this;

}

}

This programming style is called expression templates. In NGSolve, these expression
templates are implemented in the basic linear algebra for vectors and dense matrices.
Vectors are considered to be matrices of width 1. Matrix expressions include matrix-matrix
products, sums, differences, negative matrices, and transpose matrices.

Expression templates are a challenge for compilers. Newer compilers (e.g. gcc3.x,
Visual.net) are able to generate code comparable to hand-written loops for the matrix-
vector operations. It is important to declare all the involved functions as inline to combine
everything into one block.

An example file showing the use of the basic linear algebra is ng-
solve/tutorial/demo bla.cpp.

2.3.3 Linalg library based on Matrix-Vector multiplication

The above concept applies well to dense matrices, but cannot be used this way for all matrix
operations providing just a matrix-vector multiplication. Examples for such matrices are
sparse matrices, or linear operators defined by iterative methods like Gauss-Seidel iteration.

41

Here, I am thinking about matrices of large dimension, where one does not worry about a
few virtual function calls.

In this case, we have a base class BaseMatrix providing a matrix-vector multiplication:

class BaseMatrix

{

virtual void MultAdd (double s, BaseVector & x, BaseVector & y) = 0;

// y += s * Mat * x

};

The specific matrices are derived from BaseMatrix and overload the MultAdd method. For
virtual functions, template-parameterized arguments are not allowed. Thus, one needs also
a BaseVector class. For the large matrices, I decided for a second family of matrices and
vectors independent of the Vector from the dense library. Vectors derived from BaseVector

were called VVector with V like in virtual. This vector family provides the Set and Add

functions:

class BaseVector

{

virtual BaseVector & Set (double s, BaseVector & v) = 0; // *this = s * v

virtual BaseVector & Add (double s, BaseVector & v) = 0; // *this += s * v

};

Also for the matrix-vector library, expression templates are defined to allow the ’nice’
notation. But now, the evaluation does not access vector/matrix elements, but calls the
virtual functions Set, Add, or MultAdd.

42

3 Key-technologies: Preconditioning and Adaptivity

The performance of the finite element method mainly depends on two components: How
to generate good meshes, and how to solve the arising linear matrix equations. In this
section, we discuss both of them.

3.1 Preconditioning

Usually, the finite element matrices are huge. Thus, a direct solver (like an LU factoriza-
tion) would require too much CPU-time as well as memory. Iterative methods have to be
applied.

A matrix C is called a preconditioner for A, if

• it approximates A, i.e., C ≈ A,

• the matrix-vector multiplication with its inverse is possible.

The quality of the preconditioner depends on how well it approximates the matrix, and
how efficient is the application of C−1.

Some preconditioners are

• C = I: The application is very cheap, but the approximation of A is in general bad.

• The Jacobi preconditioner C = diag{A}: The application is also very cheap, the
approximation of A might be reasonable. One of the most popular ones.

• Take C = A: The approximation is perfect, but the application of C−1 is in general
too expensive.

A preconditioner is usually applied to solve a linear equation Ax = b by an iterative
method. The simplest one is the Richardson iteration:

Take an initial guess x0, e.g., x0 = 0
Compute iteratively

xk+1 = xk + C−1(b− Axk)

The iteration is stopped as soon as the residual b − Axk is small. In the case of a
symmetric and positive definite matrix C, a useful norm is

‖b− Axk‖2
C−1 := (b− Axk)TC−1(b− Axk).

The evaluation requires just one additional inner product. The spectral radius ρ of I−C−1A
is the largest absolute value of an eigen-value of I − C−1A. If ρ < 1, then the Richardson
iteration converges with convergence rate ρ.

For symmetric and positive definite matrices A and C, the conjugate gradient iteration
can be applied. One step is comparable cheap to the Richardson iteration, but it converges
much faster. There exist many extensions for non-symmetric matrices (GMRes, QMR,
BiCG, ...).

In NGSolve, preconditioners are defined as follows

43

define preconditioner c1 -type=direct -bilinearform=a

define preconditioner c2 -type=local -bilinearform=a -test

This defines once the preconditioner C1 = A, and the Jacobi preconditioner C2 = diag{A}.
The bilinear-form A must be defined in advance. The direct preconditioner is realized by a
sparse Cholesky factorization of the (symmetric) matrix A. The -test flag specifies that
the eigenvalues of C−1

2 A will be computed, which is usually of interest when testing the
preconditioners.

The preconditioner is applied when solving the linear system by the numproc bvp:

numproc bvp np1 -bilinearform=a -linearform=f -gridfunction=u -preconditioner=c2

This calls the conjugate gradient iteration with preconditioner C2. If no preconditioner is
specified, the trivial one C = I is chosen. One can specify the relative accuracy (with, e.g.,
-prec=1e-8) at which the equation is solved, and the maximal allowed iteration number
(with, e.g., -maxstep=1000). When adding the flag -qmr, the quasi minimal residual
(QMR) iteration for non-symmetric matrices is used instead of the conjugate gradient
iteration.

3.1.1 Block Jacobi preconditioners

A generalization of the Jacobi preconditioner is to take a block version. This is defined by

C−1 =
m∑

i=1

Ei(EiAE
t
i)
−1Et

i ,

where Ei is a n× ni matrix, where each column vector is a unit vector. One has to invert
m matrices Ai := EiAE

t
i of the ’small’ dimension ni. The original Jacobi preconditioner is

included, here is m = n and Ei = (ei).
It is possible that each unit vector ej occurs in exactly one matrix Ei, or, it may appear

in several ones. These versions are called non-overlapping, and overlapping, respectively.
The idea of choosing the blocks is to design robust preconditioners with respect to some
(bad) parameters, e.g.,

• Anisotropic meshes: Choose blocks along the short direction(s)

• High order methods: Choose blocks containing all unknowns associated with an edge,
face, or cell

• Maxwell equations: Choose blocks containing gradient basis functions

A block-Jacobi preconditioner is defined by adding the -block flag:

define preconditioner c -type=local -bilinearform=a -block

In NGSolve, the blocks are provided by the finite element space (FESpace) object. The
method CreateSmoothingBlocks returns a table of size m. Each entry i of the table
contains the set of degrees of freedom associated with the block Ei. The matrix class
BlockJacobiPrecond implements the matrix-vector operation C−1 × v.

44

3.1.2 Block Gauss-Seidel iteration and preconditioners

A step of the Richardson iteration with a block-Jacobi preconditioner can be written as

Compute d = b− Ax, set w = 0
for i = 1, . . .m do

Get small vector di = Et
id

Compute small correction wi = A−1
i di

Collect vector w = w + Eiwi

Update vector x = x+ w

Instead of computing all the updates for the same residual d, an updated residual can be
used for each step:

for i = 1, . . .m do
Get small vector di = Et

i (b− Ax)
Compute small correction wi = A−1

i di

Update vector x = x+ Eiwi

This procedure defines also a preconditioner: Given a right hand side vector, start with
x = 0, and perform one or more Gauss-Seidel iterations. Then set C−1b := x. If one
performs the symmetric version, i.e., add the inverse loop for i = m, . . . , 1 afterwards, one
obtains a symmetric preconditioner (provided that A is symmetric).

The implementation of the (block) Gauss-Seidel iteration depends on the storage of the
matrix. Usually, a sparse matrix format stores the non-zero elements (by column indices
and values) for each row. This allows a cheap evaluation of the components di = Et

i (b−Ax)
of the residual. If only one half of a symmetric matrix is stored, the (block) Gauss Seidel
iteration is still possible, bot more tricky. The Gauss-Seidel iteration is implemented in
the GSSmooth method of the BlockJacobiPrecond class.

3.1.3 Twogrid and multigrid preconditioners

The approximation C ≈ A of a (block) Jacobi preconditioner gets worse, as the mesh
becomes finer. This leads to increasing numbers of necessary iterations. Here, the twogrid
(and multigrid) techniques help. The idea is to define additionally a coarse mesh, and
assemble the according finite element matrix AH . Assume that it is much smaller, and a
exact factorization is possible. Then, the inverse of the coarse grid matrix can be used as
additional component in the preconditioner.

We need a grid transfer operator, called EH , which transfers finite element functions
from the coarse grid to finite element functions on the fine grid. This operator is called
prolongation. Similar, one has to transfer residuals from the fine grid to residuals on the
coarse grid. This operator is called restriction, and is usually chosen as the transpose Et

h.
Then, an additive two-grid preconditioner is

C−1 = EHA
−1
H Et

H +
m∑

i=1

EiA
−1
i Ei.

45

The local fine grid steps are the same as in the block-Jacobi version. The quality of the
two-grid preconditioner depends now on the ratio of the mesh sizes between the (actual)
fine grid, and the (artificial) coarse grid. The additional costs are due to the factorization
of the coarse grid matrix. These are competing goals in choosing the best coarse grid.
The solution is multigrid, which introduces a whole sequence of grids in between. The
NGSolve finite element spaces can provide a Prolongation object performing the grid
transfer operations.

Usually, one starts from a coarse grid, which is refined to obtain the fine grid. In this
case of nested grids, the prolongation and restriction operators pop up naturally (e.g., by
setting the vertex value on the fine grid as mean value of its two parents on the coarser
grid).

Instead of an Jacobi-like additive coarse grid step, it can be also performed Gauss-Seidel
like after the local steps. This is indeed the classical two/multigrid method. The collection
of local steps is called smoother.

In NGSolve, the multigrid preconditioner can be defined as

define preconditioner c -type=multigrid -bilinearform=a

-smoothingsteps=1 -smoother=block

One can choose between a Gauss-Seidel (default) and the block-Gauss-Seidel smoother
(with -smoother=block), and can choose a few parameters. The -smoothingsteps choose
the number of local steps before and after the coarse grid correction step.

The flag -cycle chooses the number of recursive calls to the next coarser level. The de-
fault is -cycle=1, which is called the multigrid-V-cycle. The 2-cycle is called the multigrid-
W-cycle. Choosing -cycle=0 gives the Gauss-Seidel iteration on the fine grid only. This
is the way to choose a Gauss-Seidel preconditioner in NGSolve.

3.1.4 Preconditioning for high order finite elements

The preconditioners for high order finite element matrices are built similar to twogrid pre-
conditioners: Here, one artificially assembles a finite element matrix for the corresponding
lowest order finite elements. One runs a block-Jacobi / block-Gauss-Seidel iteration for
the high order space (e.g., with blocks related to edges, faces, cells), and then performs a
correction step with the low order matrix.

Like a prolongation operator for the twogrid method, one needs a transfer matrix from
the low order basis to the high order basis. If the high order basis is built such that the
low order basis functions are a subset of the high order basis functions, then the transfer
operator is trivial: Just take these coefficients, and set the high order coefficients to 0. In
NGSolve, the low order basis functions are always the first basis functions for the high
order space.

One can combine both techniques: Define a coarse grid, on which the low order finite
element matrix can be factorized. Build the low order finite element matrix on a fine grid
as an intermediate level. For this one, only (Gauss-Seidel) smoothing is performed. Finally,
do smoothing only for the high order matrix on the fine grid. This sequence of operations

46

is involved when defining the multigrid preconditioner. The artificial low order matrices
are generated automatically for the high order finite element spaces.

3.2 A posteriori error estimates and Local Mesh Refinement

We will derive methods to estimate the error of the computed finite element approximation.
Such a posteriori error estimates may use the finite element solution uh, and input data
such as the source term f :

η(uh, f)

An error estimator is called reliable, if it is an upper bound for the error, i.e., there
exists a constant C1 such that

‖u− uh‖V ≤ C1 η(uh, f) (16)

An error estimator is efficient, if it is a lower bound for the error, i.e., there exists a
constant C2 such that

‖u− uh‖V ≥ C2 η(uh, f). (17)

The constants will in general depend on the shape of the triangles, but must not depend
on the source term f , or the (unknown) solution u. They should not depend on the shape
of the domain Ω.

One use of the a posteriori error estimator is to know the accuracy of the finite element
approximation. A second one is to guide the construction of a new mesh to improve the
accuracy of a new finite element approximation.

The usual error estimators are defined as sum over element contributions:

η2(uh, f) =
∑
T∈T

η2
T (uh, f)

The local contributions should correspond to the local error. For the common error
estimators there holds the local efficiency estimates

‖u− uh‖V (ωT) ≥ C2 ηT (uh, f).

The patch ωT contains T and all its neighbor elements.

We consider variational problems: Find u ∈ V such that

A(u, v) = f(v) ∀ v ∈ V,

where A(., .) is an inf-sup stable bilinear-form:

inf
u∈V

sup
v∈V

A(u, v)

‖u‖V ‖v‖V

� 1.

47

In particular, if A(., .) is coercive (A(v, v) � ‖v‖2
V), then A(., .) is inf-sup stable. The inf-sup

stability includes more general problems such as saddle-point problems, or Helmholtz-type
problems (if not in resonance). This stability property allows to transfer the error to a
residual:

‖u− uh‖V � sup
v∈V

A(u− uh, v)

‖v‖V

= sup
v∈V

f(v)− A(uh, v)

‖v‖V

= ‖f(.)− A(uh, .)‖V ∗ (18)

We will work on this residual in the following sections.

3.2.1 Partition of unity and the Clément operator

A partition of unity is a family of local functions {ψi} such that∑
ψi = 1 and 0 ≤ ψi ≤ 1.

A partition of unity associated with the triangulation T satisfies

suppψi ⊂ ωVi
,

where ωVi
is the vertex patch ∪Vi∈TT . One particular p.u. are the vertex basis functions.

They satisfy
‖∇ψi‖L∞ � h−1

i .

The hi is the maximal diameter of elements connected with the vertex Vi. The constant in
this estimate depends on the shape of the triangles.

The p.u. allows to localize a function. Take v ∈ H1(Ω), then (ψiv) ∈ H1
0 (ωVi

), with
norm bounds

‖∇(ψiv)‖L2 ≤ ‖(∇ψ)v‖L2 + ‖ψ∇v‖L2

≤ h−1‖v‖L2 + ‖∇v‖L2 .

This is not a stable estimate, since the right hand side blows up for small mesh-sizes
h. Except in Lp-spaces, a function cannot be decomposed stable into local functions. But,
after subtracting a function resolving the mesh-scale, the localization is stable:

Theorem 2. Assume there exists an operator Πh : V → Vh. Then following two claims
are equivalent:

• The operator is bounded and satisfies an approximation property

‖∇Πhv‖L2(Ω) + ‖h−1(v − Πhv)‖L2(Ω) � ‖∇v‖L2(Ω)

• The interpolation-rest v − Πhv can be stable localized, i.e.,

v − Πhv =
∑

vi s.t.
∑

‖∇vi‖2
L2
� ‖∇v‖2

L2

with vi = ψiv.

Indeed, such operators are available (Clément, Scott-Zhang, ...). The constants depend
on the shape of the triangles. The concept is the same for other function spaces.

48

3.2.2 Error estimators by solving local Dirichlet problems

By (18), there exists a v ∈ V such that the error is bounded as

‖u− uh‖V � f(v)− A(uh, v)

‖v‖

Now, use the partition of unity to split the v into finite element part, and local components,
i.e., v = vh +

∑
vi with ‖vh‖2 +

∑
‖vi‖2 � ‖v‖2. This allows to bound the error

‖u− uh‖V � f(vh +
∑
vi)− A(uh, vh +

∑
vi)

{‖vh‖2
V +

∑
‖vj‖2

V }1/2

≤ |f(vh)− A(uh, vh)|
{‖vh‖2

V +
∑
‖vj‖2

V }1/2
+

∑
|f(vi)− A(uh, vi)|

{‖vh‖2
V +

∑
‖vj‖2

V }1/2

≤ |f(vh)− A(uh, vh)|
‖vh‖V

+

∑
‖vi‖ |f(vi)−A(uh,vi)|

‖vi‖

{
∑
‖vj‖2

V }1/2

≤ |f(vh)− A(uh, vh)|
‖vh‖V

+
∑ |f(vi)− A(uh, vi)|2

‖vi‖2
V

≤ |f(vh)− A(uh, vh)|
‖vh‖V

+
{∑ |f(vi)− A(uh, vi)|2

‖vi‖2
V

}1/2

Finally, using the Galerkin orthogonality A(uh, vh) = f(vh), we obtain

‖u− uh‖2
V =

∑ |f(vi)− A(uh, vi)|2

‖vi‖2
V

≤
∑

sup
ṽi∈Vi

|f(ṽi)− A(uh, ṽi)|2

‖ṽi‖2
V

The last terms are dual norms in V ∗
i , which can be (in principal) computed by solving

variational problems:

sup
ṽi∈Vi

|f(ṽi)− A(uh, ṽi)|2

‖ṽi‖2
V

= ‖wi‖2
V ,

with wi ∈ Vi such that

(wi, vi)V = f(vi)− A(uh, vi) ∀ vi ∈ Vi.

Of course, the local Dirichlet problem cannot be solved exactly, but it can be approximated
by a method of higher order.

3.2.3 Error estimators based on flux averaging

For the standard H1-problem,
− div(a∇u) = f,

the residual evaluates to

sup
v∈H1

∫
fv dx−

∫
a∇uh∇v dx

‖v‖
. (19)

49

Since a∇uh has no divergence in L2, we cannot integrate by parts. The idea is to compute
an approximation for the flux, i.e.,

ph ≈ a∇uh

such that ph ∈ H(div). This can be done by averaging into (normal)-continuous finite
elements. Then

‖u− uh‖V � sup
v∈V

∫
fv dx−

∫
ph∇v dx+

∫
(ph − a∇uh)∇v dx

‖v‖

= sup
v∈V

∫
(f + div ph)v dx+

∫
(ph − a∇uh)∇v dx

‖v‖
≤ ‖f + div ph‖H−1 + ‖ph − a∇uh‖L2

The H−1-norm is not a local norm, as it was desired. By subtracting the Clément inter-
polant in the numerator of (19), one can avoid the dual norm, and achieve a scaled L2

norm:
‖u− uh‖H1 � ‖h (f + div ph)‖L2 + ‖ph − a∇uh‖L2

Sometimes (e.g., lowest order elements), the first term can be skipped. Then, with av-
eraging to continuous flux-elements, this estimator is the classical and most popular
Zienkiewicz-Zhu error-estimator. In the case of jumping coefficients, or high order ele-
ments, the averaging into normal-continuous (Raviart-Thomas) elements is of advantage.

3.2.4 Goal driven error estimates

The above error estimators estimate the error in the energy norm V . Some applications
require to compute certain values (such as point values, average values, line integrals, fluxes
through surfaces, ...). These values are described by linear functionals b : V → R. We
want to design a method such that the error in this goal, i.e.,

b(u)− b(uh)

is small. The technique is to solve additionally the dual problem, where the right hand
side is the goal functional:

Find w ∈ V : A(v, w) = b(v) ∀ v ∈ V.

Usually, one cannot solve the dual problem either, and one applies a Galerkin method also
for the dual problem:

Find wh ∈ Vh : A(vh, wh) = b(vh) ∀ vh ∈ Vh.

In the case of point values, the solution of the dual problem is the Green function (which
is not in H1). The error in the goal is

b(u− uh) = A(u− uh, w) = A(u− uh, w − wh).

50

A rigorous upper bound for the error in the goal is obtained by using continuity of the
bilinear-form, and energy error estimates η1 and η2 for the primal and dual problem,
respectively:

|b(u− uh)| � ‖u− uh‖V ‖w − wh‖V � η1(uh, f) η2(wh, b).

A good heuristic is the following (unfortunately, not correct) estimate

b(u−uh) = A(u−uh, w−wh) �
∑
T∈T

‖u−uh‖H1(T) ‖w−wh‖H1(T) �
∑

T

η1
T (uh, f) η2

T (wh, b)

(20)
The last step would require a local reliability estimate. But, this is not true.

We can interpret (20) that way: The local estimators η2
T (wh) provide a way for weighting

the primal local estimators according to the desired goal.

3.2.5 Mesh refinement algorithms

A posteriori error estimates are used to control recursive mesh refinement:

Start with initial mesh T
Loop

compute fe solution uh on T
compute error estimator ηT (uh, f)
if η ≤ tolerance then stop
refine elements with large ηT to obtain a new mesh

The mesh refinement algorithm has to take care of

• generating a sequence of regular meshes

• generating a sequence of shape regular meshes

Red-Green Refinement:
A marked element is split into four equivalent elements (called red refinement):

But, the obtained mesh is not regular. To avoid such irregular nodes, also neighboring
elements must be split (called green closure):

51

If one continues to refine that way, the shape of the elements may get worse and worse:

A solution is that elements of the green closure will not be further refined. Instead, remove
the green closure, and replace it by red refinement.

Marked edge bisection:
Each triangle has one marked edge. The triangle is only refined by cutting from the middle
of the marked edge to the opposite vertex. The marked edges of the new triangles are the
edges of the old triangle.

If there occurs an irregular node, then also the neighbor triangle must be refined.

To ensure finite termination, one has to avoid cycles in the initial mesh. This can be
obtained by first sorting the edges (e.g., by length), end then, always choose the largest
edges as marked edge.

Both of these refinement algorithms are also possible in 3D.

52

4 Applications

4.1 Structural mechanics

Many engineering applications involve thin structures (walls of a building, body of a car,
...). On thin structures, the standard approach has a problem: One observed that the
simulation results get worse as the thickness decreases. The explanation is that the constant
in Korn’s inequality gets small for thin structures. To understand and overcome this
problem, we go over to beam, plate and shell models.

We consider a thin (t� 1) two-dimensional body

Ω = I × (−t/2, t/2) with I = (0, 1)

Recall the bilinear-form in the case of an isotropic material:

A(u, v) =

∫
2µ ε(u) : ε(v) + λ div u div v dx

The goal is to derive a system of one-dimensional equations to describe the two-dimensional
deformation. This we obtain by a semi-discretization. Define

ṼM =

{(
ux(x, y)

uy(x, y)

)
∈ V : ux(x, y) =

Mx∑
i=0

ui
x(x)y

i, uy(x, y) =

My∑
i=0

ui
y(x)y

i

}
.

This function space on Ω ⊂ R2 is isomorph to a one-dimensional function space with values
in RMx+My+2. We perform semi-discretization by searching for ũ ∈ ṼM such that

A(ũ, ṽ) = f(ṽ) ∀ ṽ ∈ ṼM .

As Mx,My →∞, ṼM → V , and we obtain convergence ũ→ u.

The lowest order (qualitative) good approximating semi-discrete space is to set Mx = 1
and My = 0. This is

Ṽ =

{(
U(x)− β(x)y

w(x)

)}
Evaluating the bilinear-form (of an isotropic material) leads to

A

((
U − yβ

w

)
,

(
Ũ − yβ̃

w̃

))
= (2µ+ λ)t

∫ 1

0

U ′Ũ ′ dx+

(2µ+ λ)
t3

12

∫ 1

0

β′β̃′ + 2µ
t

2

∫ 1

0

(w′ − β)(w̃′ − β̃) dx

53

The meaning of the three functions is as follows. The function U(x) is the average
(over the cross section) longitudinal displacement, w(x) is the vertical displacement. The
function β is the linearized rotation of the normal vector.

We assume that the load f(x, y) does not depend on y. Then, the linear form is

f

(
Ũ − yβ̃

w̃

)
= t

∫ 1

0

fxŨ dx+ t

∫ 1

0

fyw̃ dx

The semi-discretization in this space leads to two decoupled problems. The first one
describes the longitudinal displacement: Find U ∈ H1(I) such that

(2µ+ λ)t

∫ 1

0

U ′Ũ ′ dx = t

∫ 1

0

fxŨ
′ dx ∀U ′ ∈ H1(I).

The small thickness parameter t cancels out. It is a simple second order problem for the
longitudinal displacement.

The second problems involves the 1D functions w and β: Find (w, β) ∈ V =? such that

(2µ+ λ)
t3

12

∫ 1

0

β′β̃′ dx+ µt

∫ 1

0

(w′ − β)(w̃′ − β̃) dx = t

∫ 1

0

fyw̃ dx ∀ (w̃, β̃) ∈ V

The first term models bending. The derivative of the rotation β is (approximative) the
curvature of the deformed beam. The second one is called the shear term: For thin beams,
the angle β ≈ tan β is approximatively w′. This term measures the difference w′−β. This
second problem is called the Timoshenko beam model.

For simplification, we skip the parameters µ and λ, and the constants. We rescale the
equation by dividing by t3: Find (w, β) such that∫

β′β̃′ dx+
1

t2

∫
(w′ − β)(w̃′ − β̃) dx =

∫
t−2fw̃ dx. (21)

This scaling in t is natural. With t → 0, and a force density f ∼ t2, the deformation
converges to a limit. We define the scaled force density

f̃ = t−2f

In principle, this is a well posed problem in [H1]2:

Lemma 3. Assume boundary conditions w(0) = β(0) = 0. The bilinear-form
A((w, β), (w̃, β̃)) of (21) is continuous

A((w, β), (w̃, β̃)) � t−2(‖w‖H1 + ‖β‖H1)(‖w̃‖H1 + ‖β̃‖H1)

and coercive
A((w, β), (w, β)) ≥ ‖w‖2

H1 + ‖β‖2
H1

54

Proof: ...
As the thickness t becomes small, the ratio of the continuity and coercivity bounds

becomes large ! This ratio occurs in the error estimates, and indicates problems. Really,
numerical computations show bad convergence for small thickness t.

The large coefficient in front of the term
∫

(w′− β)(w̃′− β̃) forces the difference w′− β
to be small. If we use piece-wise linear finite elements for w and β, then w′

h is a piece-wise
constant function, and βh is continuous. If w′

h − βh ≈ 0, then βh must be a constant
function !

The idea is to weaken the term with the large coefficient. We plug in the projection P 0

into piece-wise constant functions: Find (wh, βh) such that∫
β′hβ̃

′
h dx+

1

t2

∫
P 0(w′

h − βh)P
0(w̃′

h − β̃h) dx =

∫
f̃ w̃h dx. (22)

Now, there are finite element functions wh and βh fulfilling P 0(w′
h − βh) ≈ 0.

In the engineering community there are many such tricks to modify the bilinear-form.
Our goal is to understand and analyze the obtained method.

Again, the key is a mixed method. Start from equation (21) and introduce a new
variable

p = t−2(w′ − β). (23)

Using the new variable in (21), and formulating the definition (23) of p in weak form leads
to the bigger system: Find (w, β) ∈ V and p ∈ Q such that∫

β′β̃′ dx +
∫

(w̃′ − β)p dx =
∫
f̃ w̃ dx ∀ (w, β) ∈ V∫

(w′ − β)p̃ dx − t2
∫
p p̃ dx = 0 ∀ p̃ ∈ Q.

(24)

This is a mixed formulation of the abstract structure: Find u ∈ V and p ∈ Q such that

a(u, v) + b(v, p) = f(v) ∀ v ∈ V,
b(u, q) − t2c(p, q) = 0 ∀ q ∈ Q.

(25)

The big advantage now is that the parameter t does not occur in the denominator, and
the limit t→ 0 can be performed.

This is a family of well posed problems.

Theorem 4 (Brezzi’s theorem). Assume that a(., .) and b(., .) are continuous bilinear-forms

a(u, v) ≤ α2 ‖u‖V ‖v‖V ∀u, v ∈ V, (26)

b(u, q) ≤ β2 ‖u‖V ‖q‖Q ∀u ∈ V, ∀ q ∈ Q. (27)

Assume there holds coercivity of a(., .) on the kernel,i.e.,

a(u, u) ≥ α1 ‖u‖2
V ∀u ∈ V0, (28)

55

and there holds the LBB (Ladyshenskaja-Babuška-Brezzi) condition

sup
u∈V

b(u, q)

‖u‖V

≥ β1 ‖q‖Q ∀ q ∈ Q. (29)

Then, the mixed problem is uniquely solvable. The solution fulfills the stability estimate

‖u‖V + ‖p‖Q ≤ c{‖f‖V ∗ + ‖g‖Q∗},

with the constant c depending on α1, α2, β1, β2.

Theorem 5 (extended Brezzi). Assume that the assumptions of Theorem 4 are true.
Furthermore, assume that

a(u, u) ≥ 0,

and c(p, q) is a symmetric, continuous and non-negative bilinear-form. Then, the big form

B((u, p), (v, q)) = a(u, v) + b(u, q) + b(v, p)− t2 c(p, q)

is continuous and stable uniformly in t ∈ [0, 1].

We check Brezzi’s condition for the beam model. The spaces are V = [H1]2 and Q = L2.
Continuity of the bilinear-forms a(., .), b(., .), and c(., .) is clear. The LBB condition is

sup
w,β

∫
(w′ − β)q dx

‖w‖H1 + ‖β‖H1

� ‖q‖L2

We construct a candidate for the supremum:

w(x) =

∫ x

0

q(s) ds and β = 0

Then ∫
(w′ − β)q dx

‖w‖H1 + ‖β‖H1

�
∫
q2 dx

‖w′‖
= ‖q‖L2

Finally, we have to check kernel ellipticity. The kernel is

V0 = {(w, β) : β = w′}.

On V0 there holds

‖w‖1
H1 + ‖β‖2

H1 � ‖w′‖2 + ‖β‖2
H1 = ‖β‖2

L2
+ ‖β‖2

H1

� ‖β′‖L2 = a((w, β), (w, β))

The lowest order finite element discretization of the mixed system is to choose contin-
uous and piece-wise linear elements for wh and βh, and piecewise constants for ph. The
discrete problem reads as: Find (wh, βh) ∈ Vh and ph ∈ Qh such that∫

β′hβ̃
′
h dx +

∫
(w̃′

h − βh)ph dx =
∫
f̃ w̃h dx ∀ (wh, βh) ∈ Vh∫

(w′
h − βh)p̃h dx − t2

∫
ph p̃h dx = 0 ∀ p̃h ∈ Qh.

(30)

56

This is a inf-sup stable system on the discrete spaces Vh and Qh. This means, we obtain
the uniform a priori error estimate

‖(w − wh, β − βh)‖H1 + ‖p− ph‖L2 � inf
w̃h,β̃h,p̃h

‖(w − w̃h, β − β̃h)‖H1 + ‖p− p̃h‖L2

� h {‖w‖H2 + ‖β‖H2 + ‖p‖H1}

The required regularity is realistic.
The second equation of the discrete mixed system (30) states that

ph = t−2P 0(w′
h − βh)

If we insert this observation into the first row, we obtain exactly the discretization method
(22) ! Here, the mixed formulation is a tool for analyzing a non-standard (primal) dis-
cretization method. Both formulations are equivalent. They produce exactly the same
finite element functions. The mixed formulation is the key for the error estimates.

The two pictures below show simulations of a Timoshenko beam. It is fixed at the left
end, the load density is constant one. We compute the vertical deformation w(1) at the
right boundary. We vary the thickness t between 10−1 and 10−3. The left pictures shows
the result of a standard conforming method, the right picture shows the results of the
method using the projection. As the thickness decreases, the standard method becomes
worse. Unless h is less than t, the results are completely wrong ! The improved method
converges uniformly well with respect to t:

0

0.02

0.04

0.06

0.08

0.1

0.12

1 10 100 1000 10000

w
(1

)

Elements

t=1e-1
t=1e-2
t=1e-3

0

0.02

0.04

0.06

0.08

0.1

0.12

1 10 100 1000

w
(1

)

Elements

t=1e-1
t=1e-2
t=1e-3

57

4.2 Wave equations

Wave equations can model acoustic, elastic, electro-magnetic, or any other type of waves.
Acoustic waves (sound waves) involve as variables the air pressure p, and the velocity v of
the air particles. A non-constant pressure accelerates particles, for which we assume the
linear relation

v̇ = −c1∇p.

Sources of the velocity field lead to changing air density, and thus to changing air pressure:

ṗ = −c2 div v.

Combining the equations, and setting c = c1c2 leads to the second order hyperbolic equation

p̈− c∆p = 0.

Waves can be excited from boundary values (e.g., vibrating structures), or volume terms.
We assume some given volume sources f , and set (after renaming u = p)

ü− c∆u = f.

Given boundary values, and initial values for u and u̇, one can solve the equation in time
domain. Most often, one is interested in the behavior of waves at certain frequencies. Thus,
one assumes a time-harmonic source, e.g.,

f(x, t) = f(x) cos(ωt)

Inserting the Ansatz u(x, t) = u(x) cos(ωt) into the equation leads to

−c∆u− ω2u = f.

If existent, this gives one solution for the instationary problem with some specific initial
values. The weak formulation is to find u ∈ H1 such that∫

Ω

c∇u∇v dx− ω2

∫
Ω

uv dx =

∫
Ω

fv ∀ v.

The involved bilinear-form is not elliptic, which does not allow to apply Lax-Milgram to
prove existence and uniqueness of a solution. Indeed, it ω is a resonance frequency, i.e.,
there exists a non-zero u such that∫

c∇u∇v dx = ω2

∫
uv dx ∀ v,

then the right hand side f = 0 has a non-trivial solution. ω2 is an eigen-value, and u is the
corresponding eigenfunction. On bounded domains (only !), the eigen-values are discrete
(compact embedding of H1 into L2). If ω2 is not an eigen-value, then there is a unique
solution (Fredholm-theory).

58

4.2.1 Wave equations on unbounded domains

Unbounded domains are common for acoustic problems. Sound radiates into the (practi-
cally) unbounded atmosphere. If we want to use finite elements, we have to compute on a
finite domain, and have to introduce artificial boundary conditions simulating the infinite
domain. The picture left shows a sound wave which is scattered on a box (modeled by
Neumann b.c.) The outer boundary conditions are so called absorbing boundary condi-
tions, which imitate an infinite domain. The right picture shows a (radar) wave scattered
form a 2D-airplane.

We start with the 1D equation −cu′′ + ü = 0 on R. The functions

cos(kx+ ωt+ α)

such that ck2 − ω2 = 0 are solutions. These functions take the same values for all points
x = −ω

k
t. This means, they travel with the speed of sound −ω

k
. If k is positive, then it is

a left-going wave, otherwise, it is a right-going wave.
Our model is now:

• there are sources f only in a bounded interval I.

• left from I, the solution should be a left-going wave, and right from I, the solution
should be a right-going wave

It will be easier to describe solutions by complex functions. The functions

u(x, t) = ei(kx+ωt+α)

are solutions of the homogeneous problem. Taking the real part gives the physical solution.
The functions satisfy

u′(x, t) = ikei(kx+ωt+α) = iku(x, t).

This can be used as a boundary condition. Let k = + ω√
c
. The boundary condition

∂u

∂n
= −iku

59

is satisfied by the right-going wave u(x, t) = ei(−kx+ωt+α) on the right boundary, and by the
left-going wave u(x, t) = ei(kx+ωt+α) on the left boundary. The same Robin-type boundary
conditions can be applied in 2D and 3D. It is exactly satisfied by waves in normal direction
to the boundary, but is an approximation to waves in other directions.

The weak form is: Find u ∈ H1(Ω, C) such that∫
Ω

c∇u∇v dx− ω2

∫
Ω

uv dx− ik

∫
ΓR

uv dx =

∫
Ω

fv dx.

This problem has always a unique solution depending continuously on the right hand side.
The bilinear-form is complex and symmetric. The same holds for the arising finite

element matrix. Efficient equation solvers are an interesting open problem !

60

