Difference between revisions of "Publications"

From Wiki
Jump to: navigation, search
(Journal publications)
(Journal publications)
 
(66 intermediate revisions by the same user not shown)
Line 3: Line 3:
  
 
==== Recent work ====
 
==== Recent work ====
#T. Danczul and J. Schöberl, "A Reduced Basis Method for Fractional Diffusion Operators I", (submitted) [https://arxiv.org/abs/1904.05599]
+
#T. Danczul and J. Schöberl, "A Reduced Basis Method for Fractional Diffusion Operators II", (submitted 2020) [https://arxiv.org/abs/2005.03574 arXiv:2005.03574]
# M. Neunteufel and J. Schöberl, "The Hellan-Herrmann-Johnson Method for Nonlinear Shells", (to appear in Computers & Structures) [https://arxiv.org/abs/1904.04714]
+
# M Neunteufel, J Schöberl, "Fluid-structure interaction with H(div)-conforming finite elements", [https://arxiv.org/abs/2005.06360 arXiv:2005.06360]  
# M. Neunteufel and J. Schöberl, "Avoiding Membrane Locking with Regge Interpolation", (submitted) [https://arxiv.org/abs/1907.06232]
+
# D Melching, M Neunteufel, J Schöberl, U Stefanelli, "A finite-strain model for incomplete damage in elastoplastic materials", [https://arxiv.org/abs/2005.04965  arXiv:2005.04965] 
# J. Gopalakrishnan, P. L. Lederer, and J. Schöberl, "A mass conserving mixed stress formulation for Stokes flow with weakly imposed stress symmetry", [https://arxiv.org/abs/1901.04648 arXiv:1901.04648]
+
# J Gedicke, S Geevers, I Perugia, J Schöberl, "A polynomial-degree-robust a posteriori error estimator for N\'ed\'elec discretizations of magnetostatic problems", [https://arxiv.org/abs/arXiv:2004.08323  arXiv:2004.08323]
# J. Gopalakrishnan, P. L. Lederer, and J. Schöberl, "A mass conserving mixed stress formulation for the Stokes equations", IMA Journal of Numerical Analysis (to appear) [https://arxiv.org/abs/1806.07173 arXiv:1806.07173]
+
# P Gangl, K Sturm, M Neunteufel, J Schöberl, "Fully and Semi-Automated Shape Differentiation in NGSolve", [https://arxiv.org/abs/2004.06783 arXiv:2004.06783]
# G. Kitzler, J. Schöberl: ''A polynomial spectral method for the spatially homogenous Boltzmann equation in 3 dimension'', ASC Report 28/2017, Institute for Analysis and Scientific Computing, Vienna University of Technology, 2017 [http://www.asc.tuwien.ac.at/preprint/2017/asc28x2017.pdf pdf] <br/>
+
# B. Kapidani, J. Schöberl, "A matrix-free Discontinuous Galerkin method for the time dependent Maxwell equations in unbounded domains", [https://arxiv.org/abs/2002.08733 arXiv:2002.08733] 
#P. L. Lederer, C. Merdon, and J. Schöberl, "Refined a posteriori error estimation for classical and pressure-robust Stokes finite element methods", [http://arxiv.org/abs/1712.01625 arXiv:1712.01625]
+
# B. Kapidani, L. Codecasa, J. Schöberl, "An arbitrary-order Cell Method with block-diagonal mass-matrices for the time-dependent 2D Maxwell equations", [https://arxiv.org/abs/2001.07544 arXiv:2001.07544]
# D. Braess, A.S. Pechstein and J. Schöberl, "An Equilibration Based A Posteriori Error Estimate for the Biharmonic Equation and Two Finite Element Methods", 2017, https://arxiv.org/abs/1705.07607
+
# J. Gopalakrishnan, J. Schöberl, C. Wintersteiger, "Structure aware Runge-Kutta time stepping for spacetime tents", [https://arxiv.org/abs/2002.12243 arXiv:2002.12243]
# J. Schöberl: "C++11 Implementation of Finite Elements in NGSolve", ASC Report 30/2014, Institute for Analysis and Scientific Computing, Vienna University of Technology, 2014, [http://www.asc.tuwien.ac.at/~schoeberl/wiki/publications/ngs-cpp11.pdf preprint]
+
# J. Gopalakrishnan, M. Hochsteger, J. Schöberl, C. Wintersteiger, "An Explicit Mapped Tent Pitching Scheme for Maxwell Equations", [https://arxiv.org/abs/1906.11029 arXiv:1906.11029]
# J. Gopalakrishnan, J. Schöberl: ''Degree and wavenumber [in]dependence of a Schwarz preconditioner for the DPG method', To appear in ICOSAHOM 2014 Proceedings. [http://web.pdx.edu/~gjay/pub/schwarzdpg.pdf pdf]
+
#T. Danczul and J. Schöberl, "A Reduced Basis Method for Fractional Diffusion Operators I", (submitted 2019) [https://arxiv.org/abs/1904.05599 arXiv:1904.05599]
# G. Kitzler, J. Schöberl: ''Efficient Spectral Methods for the spatially homogeneous Boltzmann equation'', ASC Report 13/2013", Institute for Analysis and Scientific Computing, Vienna University of Technology, 2013 [http://www.asc.tuwien.ac.at/preprint/2013/asc13x2013.pdf pdf]
+
# M. Neunteufel and J. Schöberl, "Avoiding Membrane Locking with Regge Interpolation", (submitted 2019) [https://arxiv.org/abs/1907.06232 arXiv:1907.06232]
# J. Schöberl, C. Lehrenfeld: ''Domain Decomposition Preconditioning for High Order Hybrid Discontinuous Galerkin Methods on Tetrahedral Meshes'',[http://www.asc.tuwien.ac.at/~schoeberl/wiki/publications/DDHDG.pdf preprint] p 27-56 Advanced Finite Element Methods and Applications, Lecture Notes in Applied and Computational Mechanics 66, 2012
+
# G. Kitzler, J. Schöberl: "A spatial discontinuous Galerkin method with rescaled velocities for the Boltzmann equation", (submitted 2019) [https://arxiv.org/abs/1903.01904 arXiv:1903.01904]
# M. Huber, A. Pechstein, J. Schöberl: ''Hybrid Domain Decomposition Solvers for Scalar and Vectorial Wave Equation'',[http://publik.tuwien.ac.at/showentry.php?ID=197053&lang=1  ASC Report 15/2011]
 
# L. Beirão da Veiga, C. Chinosi, C. Lovadina, L.F. Pavarino, J. Schöberl: ''Quasi-uniformity of BDDC preconditioners for the MITC Reissner-Mindlin problem'', [http://www.imati.cnr.it/ian/PUBBLICAZIONI/Pubblicazioni2011.html I.M.A.T.I.-C.N.R.] (2011), 1-14, [http://www.asc.tuwien.ac.at/~schoeberl/wiki/publications/PlateDD_plus.pdf preprint]  
 
# G. May, J. Schöberl: ''Analysis of a Spectral Difference Scheme with Flux Interpolation on Raviart-Thomas Elements'', [http://www.aices.rwth-aachen.de/research/preprints AICES report 2010/04-8] [http://www.asc.tuwien.ac.at/~schoeberl/wiki/publications/AICES-2010-04-08.pdf preprint]
 
  
 
==== Journal publications ====
 
==== Journal publications ====
 +
#P. L. Lederer, C. Lehrenfeld, and J. Schöberl, "Divergence-free tangential finite element methods for incompressible flows on surfaces", Int. J. for Num. Meth. Eng. 121(11) 2503-2533 (preprint :[https://arxiv.org/abs/1909.06229 arXiv:1909.06229 ])
 +
# K Hollaus, J. Schöberl, M. Schöbinger, "MSFEM and MOR to Minimize the Computational Costs of Nonlinear Eddy-Current Problems in Laminated Iron Cores", IEEE Trans. Magn. 56(2) (2020) 7508104, [https://ieeexplore.ieee.org/document/8955920 link] 
 +
#I. Perugia, J. Schöberl, P. Stocker, C. Wintersteiger, "Tent pitching and Trefftz-DG method for the acoustic wave equation", Computers & Mathematics with Applications (2020), online, [https://doi.org/10.1016/j.camwa.2020.01.006 link]
 +
#S. Holzinger, J. Schöberl, J. Gerstmayr, "The equations of motion for a rigid body using non-redundant unified local velocity coordinates", Multibody Syst. Dyn 48 (2020), 283-309, [https://doi.org/10.1007/s11044-019-09700-5 link]
 +
# C.-M. Pfeiler, M. Ruggeri, B. Stiftner, L. Exl, M. Hochsteger, G. Hrkac, J. Schöberl, N.J.Mauser, D. Praetorius, "Computational micromagnetics with Commics", Computer Physics Communication 248, 106965 (2020) [https://doi.org/10.1016/j.cpc.2019.106965 link], [https://arxiv.org/abs/1812.05931 arXiv:1812.05931]
 +
# J. Gopalakrishnan, P. L. Lederer, and J. Schöberl, "A mass conserving mixed stress formulation for Stokes flow with weakly imposed stress symmetry", SIAM Journal on Numerical Analysis 58(1), 706-732 (2020) [https://epubs.siam.org/doi/10.1137/19M1248960 link] [https://arxiv.org/abs/1901.04648 arXiv:1901.04648]
 +
# P.W. Schröder, V. John, P.L. Lederer, C. Lehrenfeld, G. Lube, J. Schöberl, "On reference solutions and the sensitivit of the 2D Kelvin-Helmholtz instability problem", Computers & Mathematics with Applications 77 (2019), 1010-1028 [https://doi.org/10.1016/j.camwa.2018.10.030 link], [https://arxiv.org/abs/1803.06893 arXiv:1803.06893] 
 +
# M. Schöbinger, S. Steentjes, J. Schöberl, K. Hameyer, K. Hollaus, "MSFEM for the Eddy Current Problem in a Laminated Core Including Hysteresis", IEEE Trans. Magn. 55(8) (2019) 7300809 [https://doi.org/10.1109/TMAG.2019.2907894  link] 
 +
# G. Kitzler, J. Schöberl, "A polynomial spectral method for the spatially homogeneous Boltzmann equation", SIAM J. Sci. Comp (2019), B27-B49, [https://arxiv.org/abs/1902.05789 arXiv:1902.05789]
 +
# D. Braess, A.S. Pechstein and J. Schöberl, "An Equilibration Based A Posteriori Error Estimate for the Biharmonic Equation and Two Finite Element Methods", IMA J. Numer. Anal 40(2), 2020, 951-975, online [https://doi.org/10.1093/imanum/drz005 link], [https://arxiv.org/abs/1705.07607 arXiv:1705.07607]
 +
# J. Gopalakrishnan, P. L. Lederer, and J. Schöberl, "A mass conserving mixed stress formulation for the Stokes equations",  IMA Journal of Numerical Analysis (to appear) [https://arxiv.org/abs/1806.07173 arXiv:1806.07173]
 +
# M. Neunteufel and J. Schöberl, "The Hellan-Herrmann-Johnson Method for Nonlinear Shells", Computers & Structures  225 (2019), 106109, [https://arxiv.org/abs/1904.04714 arXiv:1904.04714]
 
#P. L. Lederer, C. Merdon, and J. Schöberl, "Refined a posteriori error estimation for classical and pressure-robust Stokes finite element methods", Numerische Mathematik 142 (2019), 713-748  [http://arxiv.org/abs/1712.01625 arXiv:1712.01625]
 
#P. L. Lederer, C. Merdon, and J. Schöberl, "Refined a posteriori error estimation for classical and pressure-robust Stokes finite element methods", Numerische Mathematik 142 (2019), 713-748  [http://arxiv.org/abs/1712.01625 arXiv:1712.01625]
#P. L. Lederer, C. Lehrenfeld, and J. Schöberl, "Hybrid Discontinuous Galerkin methods with relaxed H(div)-conformity for incompressible flows. Part II",  ESAIM: Mathematical Modelling and Numerical Analysis (to appear) [https://arxiv.org/abs/1805.06787 arXiv:1805.06787]
+
#P. L. Lederer, C. Lehrenfeld, and J. Schöberl, "Hybrid Discontinuous Galerkin methods with relaxed H(div)-conformity for incompressible flows. Part II",  ESAIM: Mathematical Modelling and Numerical Analysis 53(2019), 503-522 [https://doi.org/10.1051/m2an/2018054 link] [https://arxiv.org/abs/1805.06787 arXiv:1805.06787]
#P. L. Lederer, C. Lehrenfeld, and J. Schöberl, "Hybrid Discontinuous Galerkin methods with relaxed H(div)-conformity for incompressible flows. Part I", SIAM Journal on Numerical Analysis (to appear) [https://arxiv.org/abs/1707.02782 arXiv:1707.02782]
+
#P. L. Lederer, C. Lehrenfeld, and J. Schöberl, "Hybrid Discontinuous Galerkin methods with relaxed H(div)-conformity for incompressible flows. Part I", SIAM Journal on Numerical Analysis 56(4), 2018, 2070-2094 [https://doi.org/10.1137/17M1138078 link] [https://arxiv.org/abs/1707.02782 arXiv:1707.02782]
# P. L. Lederer and J. Schöberl, "Polynomial robust stability analysis for H(div)-conforming finite elements for the Stokes equations", IMA Journal of Numerical Analysis, drx051, https://doi.org/10.1093/imanum/drx051 (2017), https://arxiv.org/abs/1612.01482
+
# P. L. Lederer and J. Schöberl, "Polynomial robust stability analysis for H(div)-conforming finite elements for the Stokes equations", IMA Journal of Numerical Analysis 38(4), 2018, 1832-1860, [https://doi.org/10.1093/imanum/drx051 link], [https://arxiv.org/abs/1612.01482 arXiv:1612.01482]
 
# A.S. Pechstein and J. Schöberl, "An analysis of the TDNNS method using natural norms", J. Numer. Math. 139(1), 93-120 (2018).  https://link.springer.com/article/10.1007/s00211-017-0933-3,  https://arxiv.org/abs/1606.06853
 
# A.S. Pechstein and J. Schöberl, "An analysis of the TDNNS method using natural norms", J. Numer. Math. 139(1), 93-120 (2018).  https://link.springer.com/article/10.1007/s00211-017-0933-3,  https://arxiv.org/abs/1606.06853
 +
#M. Schöbinger, J. Schöberl, K. Hollaus, "Multiscale FEM for the linear 2-D/1-D problem of eddy currents in thin iron sheets", IEEE Trans. Magn. 55 (2018),7400212 [https://doi.org/10.1109/TMAG.2018.2879030 link] 
 
#P. L. Lederer, A. Linke, C. Merdon, and J. Schöberl, "Divergence-free Reconstruction Operators for Pressure-Robust Stokes Discretizations With Continuous Pressure Finite Elements", SIAM Journal on Numerical Analysis, Vol. 55(3), pp. 1291-1314(2017)  [https://arxiv.org/abs/1609.03701 arXiv:1609.03701]
 
#P. L. Lederer, A. Linke, C. Merdon, and J. Schöberl, "Divergence-free Reconstruction Operators for Pressure-Robust Stokes Discretizations With Continuous Pressure Finite Elements", SIAM Journal on Numerical Analysis, Vol. 55(3), pp. 1291-1314(2017)  [https://arxiv.org/abs/1609.03701 arXiv:1609.03701]
 
# A.S. Pechstein and J. Schöberl, "The TDNNS method for Reissner-Mindlin plates", J. Numer. Math. (2017) 137, pp 713-740,  https://arxiv.org/abs/1704.03649
 
# A.S. Pechstein and J. Schöberl, "The TDNNS method for Reissner-Mindlin plates", J. Numer. Math. (2017) 137, pp 713-740,  https://arxiv.org/abs/1704.03649
 
#J. Gopalakrishnan and J. Schöberl and C. Wintersteiger, "Mapped tent pitching schemes for hyperbolic systems",  SIAM J. Sci. Comput. 39-6 (2017), pp. B1043-B1063 [http://arxiv.org/abs/1604.01081 arXiv:1604.01081]
 
#J. Gopalakrishnan and J. Schöberl and C. Wintersteiger, "Mapped tent pitching schemes for hyperbolic systems",  SIAM J. Sci. Comput. 39-6 (2017), pp. B1043-B1063 [http://arxiv.org/abs/1604.01081 arXiv:1604.01081]
#C. Lehrenfeld, J. Schöberl, "High order exactly divergence-free Hybrid Discontinuous Galerkin Methods for unsteady incompressible flows", Comp Meth in Applied Mechanics and Engineering (CMAME),, 307:339 -- 361, 2016, ASC Report No. 27/2015, ASC, TU Wien, 2015, [http://www.asc.tuwien.ac.at/preprint/2015/asc27x2015.pdf pdf]
+
#C. Lehrenfeld, J. Schöberl, "High order exactly divergence-free Hybrid Discontinuous Galerkin Methods for unsteady incompressible flows", Comp Meth in Applied Mechanics and Engineering (CMAME), 307:339 -- 361, 2016, ASC Report No. 27/2015, ASC, TU Wien, 2015, [http://www.asc.tuwien.ac.at/preprint/2015/asc27x2015.pdf pdf]
 
# G. Kitzler, J. Schöberl: ''A high order space momentum discontinuous Galerkin method for the Boltzmann equation'', Computers & Mathematics with Applications, Volume 70, Issue 7, October 2015, Pages 1539-1554  [http://www.asc.tuwien.ac.at/preprint/2014/asc28x2014.pdf ASC-preprint]
 
# G. Kitzler, J. Schöberl: ''A high order space momentum discontinuous Galerkin method for the Boltzmann equation'', Computers & Mathematics with Applications, Volume 70, Issue 7, October 2015, Pages 1539-1554  [http://www.asc.tuwien.ac.at/preprint/2014/asc28x2014.pdf ASC-preprint]
 
# CH. Brennecke, A. Linke, Ch. Merdon, J. Schöberl, Optimal and pressure-independent L2 velocity error estimates for a modified Crouzeix--Raviart Stokes element with BDM reconstructions, J. Comput. Math., 33 (2015) pp. 191--208.
 
# CH. Brennecke, A. Linke, Ch. Merdon, J. Schöberl, Optimal and pressure-independent L2 velocity error estimates for a modified Crouzeix--Raviart Stokes element with BDM reconstructions, J. Comput. Math., 33 (2015) pp. 191--208.
# Halla, M., Hohage, T., Nannen, L., Schöberl, J.  (2015) Hardy Space Infinite Elements for Time Harmonic Wave Equations with Phase and Group Velocities of Different Signs. Numerische Mathematik, 2015 [http://dx.doi.org/10.1007/s00211-015-0739-0 online].
+
# Halla, M., Hohage, T., Nannen, L., Schöberl, J.  (2016) Hardy Space Infinite Elements for Time Harmonic Wave Equations with Phase and Group Velocities of Different Signs. Numerische Mathematik 133(1), 103-139 [http://dx.doi.org/10.1007/s00211-015-0739-0 online].
 +
# K. Hollaus, J. Schöberl, "Multi-scale FEM and magnetic vector potential A for 3D eddy currents in laminated media", Compel 34(5), 2015, 1598-1608, [https://www.emerald.com/insight/content/doi/10.1108/COMPEL-02-2015-0090/full/html link] 
 
# M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl, H.E. Tureci, G. Strasse, K. Unterrainer, S. Rotter (2014) ''Reversing the pump dependence of a laser at an exceptional point'', Nature Communications, Vol 5, article nr 4034, Jun 2014 [http://www.nature.com/ncomms/2014/140613/ncomms5034/pdf/ncomms5034.pdf link]
 
# M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl, H.E. Tureci, G. Strasse, K. Unterrainer, S. Rotter (2014) ''Reversing the pump dependence of a laser at an exceptional point'', Nature Communications, Vol 5, article nr 4034, Jun 2014 [http://www.nature.com/ncomms/2014/140613/ncomms5034/pdf/ncomms5034.pdf link]
 
# I. Sakalli, J. Schöberl, and E.W. Knapp: ''mFES: A Robust Molecular Finite Element Solver for Electrostatic Energy Computations'', Journal of Chemical Theory and Computation JCTC, Vol 10, pp 5095-5112, 2014, [http://pubs.acs.org/action/doSearch?AllField=&Title=&Contrib=sakalli&Abstract=&CaptionSpan=&x=0&y=0&publication=40026032&pubDateRange=Earliest&AfterYear=&AfterMonth=&BeforeYear=&BeforeMonth= link]
 
# I. Sakalli, J. Schöberl, and E.W. Knapp: ''mFES: A Robust Molecular Finite Element Solver for Electrostatic Energy Computations'', Journal of Chemical Theory and Computation JCTC, Vol 10, pp 5095-5112, 2014, [http://pubs.acs.org/action/doSearch?AllField=&Title=&Contrib=sakalli&Abstract=&CaptionSpan=&x=0&y=0&publication=40026032&pubDateRange=Earliest&AfterYear=&AfterMonth=&BeforeYear=&BeforeMonth= link]
# K.-A. Mardal, J. Schöberl and R. Winther: ''A uniformly stable Fortin operator for the Taylor–Hood element'', Numerische Mathematik, Vol 123(3), pp 537-551 [http://heim.ifi.uio.no/~rwinther/m-s-winther.pdf preprint]  
+
# K.-A. Mardal, J. Schöberl and R. Winther: ''A uniformly stable Fortin operator for the Taylor–Hood element'', Numerische Mathematik, 123(3), (2013) pp 537-551 [http://heim.ifi.uio.no/~rwinther/m-s-winther.pdf preprint]  
 
# Nannen, L. ,  Hohage, T. ,  Schädle, A.,  Schöberl. J. ''Exact Sequences of High Order Hardy Space Infinite Elements for Exterior Maxwell Problems'', SIAM J. Scientific Computing, 35(2): A1024-A1048, 2013, [http://dx.doi.org/10.1137/110860148 online], [http://arxiv.org/abs/1103.2288 arxiv], [http://num.math.uni-goettingen.de/nannen/downloads/Paper/Maxwell_short.pdf extended abstract].
 
# Nannen, L. ,  Hohage, T. ,  Schädle, A.,  Schöberl. J. ''Exact Sequences of High Order Hardy Space Infinite Elements for Exterior Maxwell Problems'', SIAM J. Scientific Computing, 35(2): A1024-A1048, 2013, [http://dx.doi.org/10.1137/110860148 online], [http://arxiv.org/abs/1103.2288 arxiv], [http://num.math.uni-goettingen.de/nannen/downloads/Paper/Maxwell_short.pdf extended abstract].
 
# A. Pechstein, J. Schöberl: ''Anisotropic mixed finite elements for elasticity'', International Journal for Numerical Methods in Engineering, Vol 90(2), pp 196-217 (2012) [http:DOI:10.1002/nme.3319 doi], [http://www.asc.tuwien.ac.at/~schoeberl/wiki/publications/anisotropic_TDNNS.pdf preprint]  
 
# A. Pechstein, J. Schöberl: ''Anisotropic mixed finite elements for elasticity'', International Journal for Numerical Methods in Engineering, Vol 90(2), pp 196-217 (2012) [http:DOI:10.1002/nme.3319 doi], [http://www.asc.tuwien.ac.at/~schoeberl/wiki/publications/anisotropic_TDNNS.pdf preprint]  
Line 84: Line 95:
  
 
==== Proceedings and Book Chapters ====
 
==== Proceedings and Book Chapters ====
 +
# J. Gopalakrishnan, J. Schöberl: ''Degree and wavenumber [in]dependence of a Schwarz preconditioner for the DPG method', Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014, Lecture Notes in Computational Science and Engineering, 106 (2015), 257-265 [https://doi.org/10.1007/978-3-319-19800-2_22 link] [http://web.pdx.edu/~gjay/pub/schwarzdpg.pdf pdf]
 +
# M. Huber, A. Pechstein, J. Schöberl: ''Hybrid Domain Decomposition Solvers for Scalar and Vectorial Wave Equation'', Domain Decomposition Methods in Science and Engineering XXI (2014), 351-358 [https://link.springer.com/chapter/10.1007/978-3-319-05789-7_32 link] [http://publik.tuwien.ac.at/showentry.php?ID=197053&lang=1  ASC Report 15/2011]
 +
# L. Beirão da Veiga, C. Chinosi, C. Lovadina, L.F. Pavarino, J. Schöberl: ''Quasi-uniformity of BDDC Methods for the MITC Reissner-Mindlin problem'', (2013), Domain Decomposition Methods in Science and Engineering XX, 639-646 [https://link.springer.com/chapter/10.1007/978-3-642-35275-1_76 link] [http://www.asc.tuwien.ac.at/~schoeberl/wiki/publications/PlateDD_plus.pdf preprint]
 +
# J. Schöberl, C. Lehrenfeld: ''Domain Decomposition Preconditioning for High Order Hybrid Discontinuous Galerkin Methods on Tetrahedral Meshes'',[http://www.asc.tuwien.ac.at/~schoeberl/wiki/publications/DDHDG.pdf preprint] p 27-56 Advanced Finite Element Methods and Applications, Lecture Notes in Applied and Computational Mechanics 66, 2012
 
#K. Hollaus, J. Schöberl, "Homogenization of the Eddy Current Problem in 2D," Proceedings of the 14th International IGTE Symposium on Numerical Field Calculation in Electrical Engineering, pp. 154-159, Graz, Austria, September 19-22, 2010. [http://www.asc.tuwien.ac.at/~khollaus/Publications/Paper_Hollaus_Homogenization_IGTE2010.pdf preprint]
 
#K. Hollaus, J. Schöberl, "Homogenization of the Eddy Current Problem in 2D," Proceedings of the 14th International IGTE Symposium on Numerical Field Calculation in Electrical Engineering, pp. 154-159, Graz, Austria, September 19-22, 2010. [http://www.asc.tuwien.ac.at/~khollaus/Publications/Paper_Hollaus_Homogenization_IGTE2010.pdf preprint]
 
# P.G. Gruber, J. Kienesberger, U. Langer, J. Schöberl, J. Valdman: ''Fast Solvers and A Posteriori Error Estimates in Elastoplasticity.'' in: Numerical and Symbolic Scientific Computing: Progress and Prospects, Ulrich Langer and Peter Paule (ed.), pp. 45-64. 2011. Springer, Wien,  ISBN-13: 978-3709107935 [http://www.asc.tuwien.ac.at/~schoeberl/wiki/publications/Numa-report-2009-15.pdf preprint]
 
# P.G. Gruber, J. Kienesberger, U. Langer, J. Schöberl, J. Valdman: ''Fast Solvers and A Posteriori Error Estimates in Elastoplasticity.'' in: Numerical and Symbolic Scientific Computing: Progress and Prospects, Ulrich Langer and Peter Paule (ed.), pp. 45-64. 2011. Springer, Wien,  ISBN-13: 978-3709107935 [http://www.asc.tuwien.ac.at/~schoeberl/wiki/publications/Numa-report-2009-15.pdf preprint]
Line 95: Line 110:
  
 
==== Technical Reports ====
 
==== Technical Reports ====
 
+
# G. Kitzler, J. Schöberl: ''A polynomial spectral method for the spatially homogenous Boltzmann equation in 3 dimension'', ASC Report 28/2017, Institute for Analysis and Scientific Computing, Vienna University of Technology, 2017 [http://www.asc.tuwien.ac.at/preprint/2017/asc28x2017.pdf pdf] <br/>
 +
# J. Schöberl: "C++11 Implementation of Finite Elements in NGSolve", ASC Report 30/2014, Institute for Analysis and Scientific Computing, Vienna University of Technology, 2014, [http://www.asc.tuwien.ac.at/~schoeberl/wiki/publications/ngs-cpp11.pdf preprint]
 
# J. Schöberl: ''Commuting quasi-interpolation operators for mixed finite elements.'' Preprint ISC-01-10-MATH, [http://isc.tamu.edu Institute for Scientific Computing], Texas A&M University, 2001, [http://www.asc.tuwien.ac.at/~schoeberl/wiki/publications/commuting.pdf pdf]
 
# J. Schöberl: ''Commuting quasi-interpolation operators for mixed finite elements.'' Preprint ISC-01-10-MATH, [http://isc.tamu.edu Institute for Scientific Computing], Texas A&M University, 2001, [http://www.asc.tuwien.ac.at/~schoeberl/wiki/publications/commuting.pdf pdf]
# ...
+
# G. May, J. Schöberl: ''Analysis of a Spectral Difference Scheme with Flux Interpolation on Raviart-Thomas Elements'', [http://www.aices.rwth-aachen.de/research/preprints AICES report 2010/04-8] [http://www.asc.tuwien.ac.at/~schoeberl/wiki/publications/AICES-2010-04-08.pdf preprint]
 +
# J. Schöberl: "Multigrid Methods for a Class of Parameter Dependent Problems in Primal Variables",  TR 99-3 of the SFB F013, "Numerical and Symbolic Scientific Computing", [http://www.sfb013.uni-linz.ac.at/reports/1999/ps-files/sfb99-03.ps.gz preprint]
  
 
==== Thesis ====
 
==== Thesis ====

Latest revision as of 14:20, 19 June 2020

Publications of the Resarch Group

Recent work

  1. T. Danczul and J. Schöberl, "A Reduced Basis Method for Fractional Diffusion Operators II", (submitted 2020) arXiv:2005.03574
  2. M Neunteufel, J Schöberl, "Fluid-structure interaction with H(div)-conforming finite elements", arXiv:2005.06360
  3. D Melching, M Neunteufel, J Schöberl, U Stefanelli, "A finite-strain model for incomplete damage in elastoplastic materials", arXiv:2005.04965 
  4. J Gedicke, S Geevers, I Perugia, J Schöberl, "A polynomial-degree-robust a posteriori error estimator for N\'ed\'elec discretizations of magnetostatic problems", arXiv:2004.08323
  5. P Gangl, K Sturm, M Neunteufel, J Schöberl, "Fully and Semi-Automated Shape Differentiation in NGSolve", arXiv:2004.06783
  6. B. Kapidani, J. Schöberl, "A matrix-free Discontinuous Galerkin method for the time dependent Maxwell equations in unbounded domains", arXiv:2002.08733 
  7. B. Kapidani, L. Codecasa, J. Schöberl, "An arbitrary-order Cell Method with block-diagonal mass-matrices for the time-dependent 2D Maxwell equations", arXiv:2001.07544
  8. J. Gopalakrishnan, J. Schöberl, C. Wintersteiger, "Structure aware Runge-Kutta time stepping for spacetime tents", arXiv:2002.12243
  9. J. Gopalakrishnan, M. Hochsteger, J. Schöberl, C. Wintersteiger, "An Explicit Mapped Tent Pitching Scheme for Maxwell Equations", arXiv:1906.11029
  10. T. Danczul and J. Schöberl, "A Reduced Basis Method for Fractional Diffusion Operators I", (submitted 2019) arXiv:1904.05599
  11. M. Neunteufel and J. Schöberl, "Avoiding Membrane Locking with Regge Interpolation", (submitted 2019) arXiv:1907.06232
  12. G. Kitzler, J. Schöberl: "A spatial discontinuous Galerkin method with rescaled velocities for the Boltzmann equation", (submitted 2019) arXiv:1903.01904

Journal publications

  1. P. L. Lederer, C. Lehrenfeld, and J. Schöberl, "Divergence-free tangential finite element methods for incompressible flows on surfaces", Int. J. for Num. Meth. Eng. 121(11) 2503-2533 (preprint :arXiv:1909.06229 )
  2. K Hollaus, J. Schöberl, M. Schöbinger, "MSFEM and MOR to Minimize the Computational Costs of Nonlinear Eddy-Current Problems in Laminated Iron Cores", IEEE Trans. Magn. 56(2) (2020) 7508104, link 
  3. I. Perugia, J. Schöberl, P. Stocker, C. Wintersteiger, "Tent pitching and Trefftz-DG method for the acoustic wave equation", Computers & Mathematics with Applications (2020), online, link
  4. S. Holzinger, J. Schöberl, J. Gerstmayr, "The equations of motion for a rigid body using non-redundant unified local velocity coordinates", Multibody Syst. Dyn 48 (2020), 283-309, link
  5. C.-M. Pfeiler, M. Ruggeri, B. Stiftner, L. Exl, M. Hochsteger, G. Hrkac, J. Schöberl, N.J.Mauser, D. Praetorius, "Computational micromagnetics with Commics", Computer Physics Communication 248, 106965 (2020) link, arXiv:1812.05931
  6. J. Gopalakrishnan, P. L. Lederer, and J. Schöberl, "A mass conserving mixed stress formulation for Stokes flow with weakly imposed stress symmetry", SIAM Journal on Numerical Analysis 58(1), 706-732 (2020) link arXiv:1901.04648
  7. P.W. Schröder, V. John, P.L. Lederer, C. Lehrenfeld, G. Lube, J. Schöberl, "On reference solutions and the sensitivit of the 2D Kelvin-Helmholtz instability problem", Computers & Mathematics with Applications 77 (2019), 1010-1028 link, arXiv:1803.06893 
  8. M. Schöbinger, S. Steentjes, J. Schöberl, K. Hameyer, K. Hollaus, "MSFEM for the Eddy Current Problem in a Laminated Core Including Hysteresis", IEEE Trans. Magn. 55(8) (2019) 7300809 link 
  9. G. Kitzler, J. Schöberl, "A polynomial spectral method for the spatially homogeneous Boltzmann equation", SIAM J. Sci. Comp (2019), B27-B49, arXiv:1902.05789
  10. D. Braess, A.S. Pechstein and J. Schöberl, "An Equilibration Based A Posteriori Error Estimate for the Biharmonic Equation and Two Finite Element Methods", IMA J. Numer. Anal 40(2), 2020, 951-975, online link, arXiv:1705.07607
  11. J. Gopalakrishnan, P. L. Lederer, and J. Schöberl, "A mass conserving mixed stress formulation for the Stokes equations", IMA Journal of Numerical Analysis (to appear) arXiv:1806.07173
  12. M. Neunteufel and J. Schöberl, "The Hellan-Herrmann-Johnson Method for Nonlinear Shells", Computers & Structures 225 (2019), 106109, arXiv:1904.04714
  13. P. L. Lederer, C. Merdon, and J. Schöberl, "Refined a posteriori error estimation for classical and pressure-robust Stokes finite element methods", Numerische Mathematik 142 (2019), 713-748 arXiv:1712.01625
  14. P. L. Lederer, C. Lehrenfeld, and J. Schöberl, "Hybrid Discontinuous Galerkin methods with relaxed H(div)-conformity for incompressible flows. Part II", ESAIM: Mathematical Modelling and Numerical Analysis 53(2019), 503-522 link arXiv:1805.06787
  15. P. L. Lederer, C. Lehrenfeld, and J. Schöberl, "Hybrid Discontinuous Galerkin methods with relaxed H(div)-conformity for incompressible flows. Part I", SIAM Journal on Numerical Analysis 56(4), 2018, 2070-2094 link arXiv:1707.02782
  16. P. L. Lederer and J. Schöberl, "Polynomial robust stability analysis for H(div)-conforming finite elements for the Stokes equations", IMA Journal of Numerical Analysis 38(4), 2018, 1832-1860, link, arXiv:1612.01482
  17. A.S. Pechstein and J. Schöberl, "An analysis of the TDNNS method using natural norms", J. Numer. Math. 139(1), 93-120 (2018). https://link.springer.com/article/10.1007/s00211-017-0933-3, https://arxiv.org/abs/1606.06853
  18. M. Schöbinger, J. Schöberl, K. Hollaus, "Multiscale FEM for the linear 2-D/1-D problem of eddy currents in thin iron sheets", IEEE Trans. Magn. 55 (2018),7400212 link 
  19. P. L. Lederer, A. Linke, C. Merdon, and J. Schöberl, "Divergence-free Reconstruction Operators for Pressure-Robust Stokes Discretizations With Continuous Pressure Finite Elements", SIAM Journal on Numerical Analysis, Vol. 55(3), pp. 1291-1314(2017) arXiv:1609.03701
  20. A.S. Pechstein and J. Schöberl, "The TDNNS method for Reissner-Mindlin plates", J. Numer. Math. (2017) 137, pp 713-740, https://arxiv.org/abs/1704.03649
  21. J. Gopalakrishnan and J. Schöberl and C. Wintersteiger, "Mapped tent pitching schemes for hyperbolic systems", SIAM J. Sci. Comput. 39-6 (2017), pp. B1043-B1063 arXiv:1604.01081
  22. C. Lehrenfeld, J. Schöberl, "High order exactly divergence-free Hybrid Discontinuous Galerkin Methods for unsteady incompressible flows", Comp Meth in Applied Mechanics and Engineering (CMAME), 307:339 -- 361, 2016, ASC Report No. 27/2015, ASC, TU Wien, 2015, pdf
  23. G. Kitzler, J. Schöberl: A high order space momentum discontinuous Galerkin method for the Boltzmann equation, Computers & Mathematics with Applications, Volume 70, Issue 7, October 2015, Pages 1539-1554 ASC-preprint
  24. CH. Brennecke, A. Linke, Ch. Merdon, J. Schöberl, Optimal and pressure-independent L2 velocity error estimates for a modified Crouzeix--Raviart Stokes element with BDM reconstructions, J. Comput. Math., 33 (2015) pp. 191--208.
  25. Halla, M., Hohage, T., Nannen, L., Schöberl, J. (2016) Hardy Space Infinite Elements for Time Harmonic Wave Equations with Phase and Group Velocities of Different Signs. Numerische Mathematik 133(1), 103-139 online.
  26. K. Hollaus, J. Schöberl, "Multi-scale FEM and magnetic vector potential A for 3D eddy currents in laminated media", Compel 34(5), 2015, 1598-1608, link 
  27. M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl, H.E. Tureci, G. Strasse, K. Unterrainer, S. Rotter (2014) Reversing the pump dependence of a laser at an exceptional point, Nature Communications, Vol 5, article nr 4034, Jun 2014 link
  28. I. Sakalli, J. Schöberl, and E.W. Knapp: mFES: A Robust Molecular Finite Element Solver for Electrostatic Energy Computations, Journal of Chemical Theory and Computation JCTC, Vol 10, pp 5095-5112, 2014, link
  29. K.-A. Mardal, J. Schöberl and R. Winther: A uniformly stable Fortin operator for the Taylor–Hood element, Numerische Mathematik, 123(3), (2013) pp 537-551 preprint
  30. Nannen, L. , Hohage, T. , Schädle, A., Schöberl. J. Exact Sequences of High Order Hardy Space Infinite Elements for Exterior Maxwell Problems, SIAM J. Scientific Computing, 35(2): A1024-A1048, 2013, online, arxiv, extended abstract.
  31. A. Pechstein, J. Schöberl: Anisotropic mixed finite elements for elasticity, International Journal for Numerical Methods in Engineering, Vol 90(2), pp 196-217 (2012) [http:DOI:10.1002/nme.3319 doi], preprint
  32. A. Balan, G. May and J. Schöberl: A Stable High-Order Spectral Difference Method for Hyperbolic Conservation Laws in Triangular Elements., Journal of Computational Physics, Vol 231(5), 2359-2375 (2012) DOI: 10.1016/j.jcp.2011.11.041
  33. L. Demkowicz, J. Gopalakrishnan, J. Schöberl: Polynomial Extension Operators. Part III. Mathematics of Computation, Vol. 81 (2012), 1289-1326, DOI: 10.1090/S0025-5718-2011-02536-6,preprint
  34. A. Pechstein, J. Schöberl: Tangential-Displacement and Normal-Normal-Stress Continuous Mixed Finite Elements for Elasticity. Mathematical Models and Methods in Applied Sciences (M3AS) Vol 21(8), pp 1761-1782 (2011) DOI: 10.1142/S0218202511005568 extended preprint
  35. J. Schöberl, R. Simon, W. Zulehner: A Robust Multigrid Method for Elliptic Optimal Control Problems. SIAM J Numerical Analysis Vol 49(4), pp 1482-1503 (2011) DOI: 10.1137/100783285 preprint]
  36. A Hannukainen, M. Huber and J. Schöberl: A Mixed Hybrid Finite Element Method for the Helmholtz Equation. Journal of Modern Optics Vol. 58, Nos. 5-6, 424-437 (2011) DOI: 10.1080/09500340.2010.527067 preprint
  37. H. Egger, M. Hanke, C. Schneider, J. Schöberl, S. Zaglmlayr: Adjoint based sampling methods for electromagnetic scattering. Inverse Problems 26 (2010) 074006 preprint
  38. P. Monk, J. Schöberl, A. Sinwel: Hybridizing Raviart-Thomas elements for the Helmholtz equation. Electromagnetics, Vol 30(1), pages 149-176 (2010) preprint
  39. H. Egger, J. Schöberl: A Mixed-Hybrid-Discontinuous Galerkin Finite Element Method for Convection-Diffusion Problems. IMA Journal of Numerical Analysis, Vol 30(4), 1206-1234 (2010) preprint
  40. L. Demkowicz, J. Gopalakrishnan, J. Schöberl: Polynomial Extension Operators. Part II. SIAM J Numerical Analysis, Vol 47(5), pages 3293-3324 (2009) preprint
  41. R.H.W. Hoppe, J. Schöberl: Convergence of Adaptive Edge Element Methods for the 3D Eddy Current Equations. Journal of Computational Mathematics, Vol 27, pages 657-676 (2009) preprint
  42. J. Schöberl, R. Stenberg: Multigrid Methods for Stabilized Reissner Mindlin Plate Formulations. SIAM J Numerical Analysis, Vol 47(4), pages 2735-2751 (2009) preprint
  43. D. Braess, J. Schöberl, V. Pillwein: Equilibrated Residual Error Estimates are p-Robust. Computer Methods in Applied Mechanics and Engineering, Vol 198, pages 1189-1197 (2009) preprint
  44. M. Huber, J. Schöberl, A. Sinwel, S. Zaglmayr: Simulation of Diffraction in periodic Media with a coupled Finite Element and Plane Wave Approach SIAM J Scientific Computing, 31(2), pages 1500-1517, 2009, preprint
  45. L. Demkowicz, J. Gopalakrishnan, J. Schöberl: Polynomial Extension Operators. Part I. SIAM J Numerical Analysis, Vol 46(6), 3006-3031, 2008 preprint
  46. D. Braess, R.H.W. Hoppe, J. Schöberl: A posteriori estimators for obstacle problems by the hypercircle method Computing and Visualization in Science , 11(4-6), pages 351-362, 2008. preprint
  47. D. Braess and J. Schöberl: Equilibrated Residual Error Estimator for Maxwell's Equations. Mathematics of Computation, Vol 77(262), 651-672, 2008 preprint
  48. J. Schöberl: A posteriori error estimates for Maxwell Equations. Mathematics of Computation, Vol 77(262), 633-649, 2008 preprint
  49. J. Schöberl, J. Melenk, C. Pechstein, and S. Zaglmayr: Additive Schwarz Preconditioning for p-Version Triangular and Tetrahedral Finite Elements IMA Journal of Numerical Analysis, Vol 28, pages 1-24,2008 preprint
  50. M. Schinnerl, M. Kaltenbacher, U. Langer, R. Lerch, and J. Schöberl. Numerical Simulation of Magneto-Mechanical Sensors and Actuators. Surveys on Mathematics for Industry, 18(2), 223-271, 2007} preprint
  51. J. Schöberl and W. Zulehner: Symmetric Indefinite Preconditioners for saddle Point Problems with Applications to PDE-Constrained Optimization Problems. SIAM Journal on Matrix Analysis and Applications, Vol 29(3), pages 752-773, 2007 preprint
  52. S. Hein, T. Hohage, W. Koch, and J. Schöberl: Acoustic Resonacnes in a High Lift Configuration. Journal of Fluid Mechanics 582, pages 179-202, 2007 preprint
  53. A. Becirovic, P. Paule, V. Pillwein, A. Riese, C. Schneider, and J.Schöberl: Hypergeometric Summation Algorithms for High-order Finite Elements. Computing, 78(3), pages 235-249, 2006 preprint
  54. S. Beuchler and J. Schöberl: New shape functions for triangular p-FEM using integrated Jacobi polynomials Numerische Mathematik 103(3), pages 339-366, 2006 preprint
  55. D. Boffi, F. Kikuchi, and J. Schöberl: Edge element computation of Maxwell's eigenvalues on general quadrilateral meshes. Mathematical Models and Methods in Applied Sciences 16:265-273, 2006 preprint
  56. C. Carstensen and J. Schöberl: Residual-based a posteriori error estimate for a mixed Reissner-Mindlin plate finite element method. Numerische Mathematik 103(2), pages 225-250, 2006 preprint
  57. J. Gerstmayr and J. Schöberl: A 3D finite element method for flexible multibody systems. Multibody System Dynamics, 15, pages 309-324, 2006 preprint
  58. M. Hofer, N. Finger, G. Kovacs, J. Schöberl, S. Zaglmayr, U. Langer, and R. Lerch: Finite Element Simulation of Wave Propagation in Periodic Piezoelectric SAW Structures. IEEE Transactions on UFFC, 53(6), pages 1192-1201, 2006 preprint
  59. F. Bachinger, U. Langer, and J. Schöberl: Efficient Solvers for Nonlinear Time-Periodic Eddy Current Problems. Computing and Visualization in Science, 9(4), pages 197-207, 2006 preprint
  60. J. Schöberl and S. Zaglmayr: High order Nedelec elements with local complete sequence properties. International Journal for Computation and Mathematics in Electrical and Electronic Engineering (COMPEL), 24(2), pages 374-384, 2005 preprint
  61. F. Bachinger, U. Langer, and J. Schöberl: Numerical Analysis of Nonlinear Multiharmonic Eddy Current Problems. Numerische Mathematik. 100(4), pages 594-616, 2005 preprint
  62. S. Beuchler and J. Schöberl: Optimal extensions on tensor-product meshes. Applied Numerical Mathematics 54(3-4), pages 391-405, 2005 preprint
  63. Z. Dostal and J. Schöberl: Minimizing quadratic functions over non-negative cone with the rate of convergence and finite termination. Computational Optimization and Applications 30(1), pages 23-44, 2005 preprint
  64. R.D. Lazarov, J.E. Pasciak, J. Schöberl, and P.S. Vassilevski: Almost optimal interior penalty discontinuous approximations of symmetric elliptic problems on non-matching grids. Numerische Mathematik 96, pages 295-315, 2003 preprint
  65. J. Schöberl and W. Zulehner: On Schwarz-type Smoothers for Saddle Point Problems. Numerische Mathematik 95(2), pages 377-399, 2003 preprint
  66. S. Reitzinger and J. Schöberl: Algebraic Multigrid for Edge Elements. Numerical Linear Algebra with Applications 9(3), pages 223-238, 2002 preprint
  67. M. Schinnerl, J. Schöberl, M. Kaltenbacher, and R. Lerch: Multigrid Methods for the 3D Simulation of Nonlinear Magneto-Mechanical Systems. IEEE Transactions Magnetics 38(3), pages 1497-1511, 2002 preprint
  68. T. Apel and J. Schöberl: Multigrid Methods for Anisotropic Edge Refinement SIAM Journal on Numerical Analyis 40(5), pages 1993-2006, 2002 preprint
  69. B. Kaltenbacher and J. Schöberl: A Saddle Point Variational Formulation for Projection-Regularized Parameter Identification. Numerische Mathematik 91(4), pages 675-697, 2002 preprint
  70. T. Apel, S. Nicaise, and J. Schöberl: A non-conforming finite element method with anisotropic mesh grading for the Stokes problem in domains with edges. IMA Journal of Numerical Analysis 21, pages 843-856, 2001 preprint
  71. T. Apel, S. Nicaise, and J. Schöberl: Crouzeix-Raviart type finite elements on anisotropic meshes. Numerische Mathematik 89(2), pages 193-223, 2001 preprint
  72. J. Schöberl: Efficient Contact Solvers Based on Domain Decomposition Techniques. Computers & Mathematics with Applications 42, pages 1217-1228, 2001 preprint
  73. G. Haase, U. Langer, S. Reitzinger, and J. Schöberl: Algebraic Multigrid Methods based on Element Preconditioning. International Journal of Computer Mathematics 78(4): pages 676-598, 2001 preprint
  74. J. Schöberl: Multigrid Methods for a Parameter Dependent Problem in Primal Variables. Numerische Mathematik , 84(1), pages 97-119 (1999) preprint
  75. J. Schöberl: Solving the Signorini Problem on the Basis of Domain Decomposition Techniques. Computing, 60(4), pages 323-344, 1998. preprint
  76. J. Schöberl: NETGEN - An advancing front 2D/3D-mesh generator based on abstract rules. Computing and Visualization in Science, 1(1), pages 41-52, 1997. preprint

Proceedings and Book Chapters

  1. J. Gopalakrishnan, J. Schöberl: Degree and wavenumber [in]dependence of a Schwarz preconditioner for the DPG method', Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014, Lecture Notes in Computational Science and Engineering, 106 (2015), 257-265 link pdf
  2. M. Huber, A. Pechstein, J. Schöberl: Hybrid Domain Decomposition Solvers for Scalar and Vectorial Wave Equation, Domain Decomposition Methods in Science and Engineering XXI (2014), 351-358 link ASC Report 15/2011
  3. L. Beirão da Veiga, C. Chinosi, C. Lovadina, L.F. Pavarino, J. Schöberl: Quasi-uniformity of BDDC Methods for the MITC Reissner-Mindlin problem, (2013), Domain Decomposition Methods in Science and Engineering XX, 639-646 link preprint
  4. J. Schöberl, C. Lehrenfeld: Domain Decomposition Preconditioning for High Order Hybrid Discontinuous Galerkin Methods on Tetrahedral Meshes,preprint p 27-56 Advanced Finite Element Methods and Applications, Lecture Notes in Applied and Computational Mechanics 66, 2012
  5. K. Hollaus, J. Schöberl, "Homogenization of the Eddy Current Problem in 2D," Proceedings of the 14th International IGTE Symposium on Numerical Field Calculation in Electrical Engineering, pp. 154-159, Graz, Austria, September 19-22, 2010. preprint
  6. P.G. Gruber, J. Kienesberger, U. Langer, J. Schöberl, J. Valdman: Fast Solvers and A Posteriori Error Estimates in Elastoplasticity. in: Numerical and Symbolic Scientific Computing: Progress and Prospects, Ulrich Langer and Peter Paule (ed.), pp. 45-64. 2011. Springer, Wien, ISBN-13: 978-3709107935 preprint
  7. S. Beuchler, V. Pillwein, J. Schöberl and S. Zaglmayr: Sparsity optimized high order finite element functions on simplices in: Numerical and Symbolic Scientific Computing: Progress and Prospects, Ulrich Langer and Peter Paule (ed.), pp. 21-44. 2011. Springer, Wien, ISBN-13: 978-3709107935 preprint
  8. C Koutschan, C Lehrenfeld, J. Schöberl: Computer Algebra meets Finite Elements: an Efficient Implementation for Maxwell's Equations in: Numerical and Symbolic Scientific Computing: Progress and Prospects, Ulrich Langer and Peter Paule (ed.), pp. 105-122. 2011. Springer, Wien, ISBN-13: 978-3709107935 arxiv:1104.4208
  9. A. Balan, G. May and J. Schöberl: A Stable Spectral Difference Method for Triangles, AIAA paper number 2011-47, 49th American Institute of Aeronautics and Astronautics Aerospace Sciences Meeting, Orlando, Florida, January 2011 preprint
  10. K. Hollaus, D. Feldengut, J. Schöberl, M. Wabro, D. Omeragic: Nitsche-type Mortaring for Maxwell's Equations PIERS Proceedings, 397 - 402, July 5-8, Cambridge, USA 2010 preprint
  11. J. Schöberl: A multilevel decomposition result in H(curl). in Multigrid, Multilevel and Multiscale Methods, EMG 2005 CD, Eds: P. Wesseling, C.W. Oosterlee, P. Hemker, ISBN 90-9020969-7, preprint
  12. S. Zaglmayr, J. Schöberl, and U. Langer: Eigenvalue Problems in Surface Acoustic Wave Filter Simulation. Progress in Industrial Mathematics at ECMI 2004, pp. 75-99, Springer Verlag, Nov. 2005, preprint
  13. ...

Technical Reports

  1. G. Kitzler, J. Schöberl: A polynomial spectral method for the spatially homogenous Boltzmann equation in 3 dimension, ASC Report 28/2017, Institute for Analysis and Scientific Computing, Vienna University of Technology, 2017 pdf
  2. J. Schöberl: "C++11 Implementation of Finite Elements in NGSolve", ASC Report 30/2014, Institute for Analysis and Scientific Computing, Vienna University of Technology, 2014, preprint
  3. J. Schöberl: Commuting quasi-interpolation operators for mixed finite elements. Preprint ISC-01-10-MATH, Institute for Scientific Computing, Texas A&M University, 2001, pdf
  4. G. May, J. Schöberl: Analysis of a Spectral Difference Scheme with Flux Interpolation on Raviart-Thomas Elements, AICES report 2010/04-8 preprint
  5. J. Schöberl: "Multigrid Methods for a Class of Parameter Dependent Problems in Primal Variables", TR 99-3 of the SFB F013, "Numerical and Symbolic Scientific Computing", preprint

Thesis

  • J. Schöberl: Robust Multigrid Methods for Parameter Dependent Problems, Dissertation, Johannes Kepler Universität Linz, 1999 pdf

the linked pdf-files are preprint versions and may differ from the original journal publications