Difference between revisions of "Philip lederer"

From Wiki
Jump to: navigation, search
(Recent publications)
 
(One intermediate revision by the same user not shown)
Line 21: Line 21:
 
==== Recent publications ====
 
==== Recent publications ====
  
 +
#P. L. Lederer, "A Hellan-Herrmann-Johnson-like method for the stream function formulation of the Stokes equations in two and three space dimensions", (preprint :[https://arxiv.org/abs/2005.06506 arXiv:2005.06506])
 
#P. L. Lederer, S. Rhebergen, "A pressure-robust embedded discontinuous Galerkin method for the Stokes problem by reconstruction operators", (preprint :[https://arxiv.org/abs/2002.04951 arXiv:2002.04951])
 
#P. L. Lederer, S. Rhebergen, "A pressure-robust embedded discontinuous Galerkin method for the Stokes problem by reconstruction operators", (preprint :[https://arxiv.org/abs/2002.04951 arXiv:2002.04951])
  

Latest revision as of 12:55, 22 May 2020


 

Contact

Institute for Analysis and Scientific Computing
Wiedner Hauptstrasse 8-10
1040 Wien, Austria

Room: DA 03 K22
Tel: +43 1 58801 10123
Email: Philip Lederer

Recent publications

  1. P. L. Lederer, "A Hellan-Herrmann-Johnson-like method for the stream function formulation of the Stokes equations in two and three space dimensions", (preprint :arXiv:2005.06506)
  2. P. L. Lederer, S. Rhebergen, "A pressure-robust embedded discontinuous Galerkin method for the Stokes problem by reconstruction operators", (preprint :arXiv:2002.04951)

Publications

  1. P. L. Lederer, C. Lehrenfeld, and J. Schöberl, "Divergence-free tangential finite element methods for incompressible flows on surfaces", to appear in Int. J. for Num. Meth. Eng. (preprint :arXiv:1909.06229 )
  2. J. Gopalakrishnan, P. L. Lederer, and J. Schöberl, "A mass conserving mixed stress formulation for Stokes flow with weakly imposed stress symmetry", to appear in SIAM Journal on Numerical Analysis (preprint: arXiv:1901.04648)
  3. J. Gopalakrishnan, P. L. Lederer, and J. Schöberl, "A mass conserving mixed stress formulation for the Stokes equations", IMA Journal of Numerical Analysis IMA (preprint: arXiv:1806.07173)
  4. P. L. Lederer, C. Merdon, and J. Schöberl, "Refined a posteriori error estimation for classical and pressure-robust Stokes finite element methods", Numerische Mathematik Springer (preprint: arXiv:1712.01625)
  5. P. W. Schroeder, V. John, P. L. Lederer, C. Lehrenfeld, G. Lube, and J. Schöberl, "On reference solutions and the sensitivity of the 2d Kelvin-Helmholtz instability problem", Computers & Mathematics with Applications Elsevier (preprint: arXiv:1803.06893)
  6. P. L. Lederer, C. Lehrenfeld, and J. Schöberl, "Hybrid Discontinuous Galerkin methods with relaxed H(div)-conformity for incompressible flows. Part II", ESAIM:Mathematical Modelling and Numerical Analysis M2AN (preprint: arXiv:1805.06787)
  7. P. L. Lederer, C. Lehrenfeld, and J. Schöberl, "Hybrid Discontinuous Galerkin methods with relaxed H(div)-conformity for incompressible flows. Part I", SIAM Journal on Numerical Analysis SIAM (preprint: arXiv:1707.02782)
  8. P. L. Lederer and J. Schöberl, "Polynomial robust stability analysis for H(div)-conforming finite elements for the Stokes equations", IMA Journal of Numerical Analysis IMA (preprint: https://arxiv.org/abs/1612.01482)
  9. P. L. Lederer, A. Linke, C. Merdon, and J. Schöberl, "Divergence-free Reconstruction Operators for Pressure-Robust Stokes Discretizations With Continuous Pressure Finite Elements", SIAM Journal on Numerical Analysis SIAM (preprint: arXiv:1609.03701)

Proceeding articles

  1. Philip Lederer, Carl-Martin Pfeiler, Christoph Wintersteiger, and Christoph Lehrenfeld. Higher order unfitted fem for stokes interface problems. PAMM, 16(1):7--10, 2016. http

Theses

  1. P. Lederer "A Mass Conserving Mixed Stress Formulation for Incompressible Flows", Dissertation, TU Wien, 2019 pdf
  2. P. Lederer, "Pressure Robust Discretizations for Navier Stokes Equations: Divergence-free Reconstruction for Taylor-Hood Elements and High Order Hybrid Discontinuous Galerkin Methods", Diploma thesis, TU Wien, 2016, pdf (including fixes)
  3. P. Lederer, "Numerical computation for the incompressible Navier Stokes equations and the coupling with the convection diffusion equation for the temperature", Bachelor thesis, TU Wien, 2013, pdf

Awards

  1. Award of Excellence 2019 - Staatspreis für die besten Dissertationen (bmbwf)
  2. Best Paper Award of the faculty of Mathematics and Geoinformation 2018


Lectures

  1. Numerical methods for PDEs (SS 2020) link
  2. Numerical methods for PDEs (SS 2019) link
  3. Applied Mathematics Foundations (WS 2019) link

The linked pdf-files are preprint versions and may differ from the original journal publications