COMMUTING QUASI-INTERPOLATION OPERATORS
FOR MIXED FINITE ELEMENTS

JOACHIM SCHOBERL

ABSTRACT. Conforming finite elements for H(curl) and H (div)
spaces became a main research topics in numerical analysis. The
so called de Rham diagram [5, 8, 7, 4] relates the exact sequence
of continuous spaces H' — H(curl) — H(div) — L? to their cor-
responding discrete counterparts. Up to now, only the local nodal
interpolation operators, and global Fortin operators [3] have been
known to fulfill the commuting diagram property. In this paper,
new quasi-local, Clément-type operators satisfying the commuting
diagram property are introduced. The result, in particular, should
help to generalize and simplify existing multigrid theories as well
as a posteriori error estimates for Maxwell’s equations.

1. INTRODUCTION

The de Rham diagram compactly visualizes this paper’s results:

7 LN H (curl) curl H(div) Ay, g2

) [ [ [ o

v div,

w, — Qh chl) Vi, Sh .
The function spaces of the first row,
W .= Hl = {w € LQ(Q) :Vuw € [L2]3},
Q:= H(curl) = {q€[Ly(V)]?: curlq € [Lo]*},
V= H(div) = {v€[Ly(Q)]:dive € Ly},

form a sequence on the continuous level. The spaces in the second
row are the canonical finite element spaces. Here, we restrict ourselves
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to the lowest order elements on tetrahedral meshes, namely piecewise
linears for W}, lowest order Nédélec elements of first type [10] for Qp,
lowest order Raviart-Thomas elements [11] for V},, and piecewise con-
stants to generate Sj.

This paper presents new interpolation operators relating the con-
tinuous spaces to the discrete counterparts. Our operators are well
defined on the Lebesgue spaces, and each consecutive pair fulfills the
commuting diagram property,

(2) vV =119V, curlll® =T curl, and divII" = TI° div.

Additionally, local approximation properties are proven. Best to our
knowledge, only the local nodal interpolation operators, which are de-
fined on more regular sub-spaces [5], and the global Fortin operators
[3] were known to fulfill the commuting diagram property.

These new operators are, beyond possibly many other applications,
useful to simplify and generalize existing multigrid theory [9, 1] and a
posteriori error estimates [2].

2. DEFINITIONS

The domain €2 is assumed to be polyhedral and with Lipschitz bound-
ary. It is covered by a shape regular tetrahedral mesh. We define

the set of vertices V= {V;},
the set of edges & = {E;;},

the set of faces  F = {F};i.},

the set of tetrahedra T = {T;x}-

The two indices of an oriented edge specify the initial vertex and final
vertex. The three (four) indices of a face (a tetrahedron) specify the
vertices and the orientation. Using the notation [-] for the convex hull
we can write

El] = [‘/;7‘/}]7 Ejk - [W)W,Vk]a and E]kl = [‘/;,7‘/]7‘/]67‘/2]

The tangential unit vector 7 of the edge Ej; is a positive multiple of the
vector V; —V;, and the normal unit vector v of the face Fjjj, is a positive
multiple of the vector (V; — Vi) x (Vi — V;). We define the local mesh
size h associated with an edge, a face or an element as its diameter,
and the mesh size associated with a vertex as the maximal mesh size
of adjacent elements. Let ¢!, cpin, ol and 7, be the nodal basis
functions for the spaces W}, Qn, Vi, and Sy, respectively. They are
associated with a vertex, an edge, a face, and an element, respectively.
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Then, the nodal interpolation operators are

(Mw)(@) = Y wli)e] (x),

Viey

0@ = 3 [ 7o)

Ei €€

0@ = 3 [ s i),

(I%s)(z) = Z / sdxgofjkl(x).

It is well known and easily seen that these interpolation operators com-
mute in the sense of (2). To overcome point evaluation which requires
more regularity, local averaging operators [6, 12] for Sobolev spaces
have been introduced. For each vertex V;, let w; C QU B(V;, ch;) be a
set of non-zero measure. Next, fix some integer p > 0, and define for
each V; a function f; € Lo (w;) such that

/ fiw dx = w(V;) for all polynomials w up to order p.

There is no need to specify w; and f; exactly. One possibility is to
choose balls w;, and fix f; as unique polynomial of order p satisfying
property (3). We assume

(4) 1 fillow = 772,
which is usually proven by scaling arguments. There follows immedi-

ately ||filln, =~ 1 and ||fil|r, =~ h_3/2. Note that we did not assume
V; € w;. The Clément type 1nterp01ati0n operator, defined on Ls, is

(5) (Mw)(z) =Y O (w) ¢ (z)  with

Viey

= /w fily)w

The new interpolation operators for the remaining spaces are all derived
from the specific choice of the interpolation operator II'". Like the
interpolation point for I is smeared out, we now move all the involved
vertices of the other operators:

(6) = Uq) ¢l(zr)  with

Eje€
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: //ﬂmﬁm /T@$QMM

Wi Wj [y1,y2]

We take all line integrals starting in the domain w; and terminating in
wj;, and average them by the weight functions f; and f;. Similarly, we
define operators for H(div),

(7) Z \Ilmk: sz]k ) with
ZJkE}-
zyk ///fz Y f] Y2) fi(y3) / v - vds dysdyadys,
wi wj wg [y1,y2,y3]

and Lo,
(8) (%) (x) = Y Winls) ¢alx)  with

Tiju €T
U7in(s) ////ﬁmbmﬂ%mw)/sM@MMMM

Wi Wi W wy [y1,92,

y3,¥4]

We do not want to bother to much about boundary conditions. We
assume that we have chosen the sets w; such that the involved integrals
are all inside €2, and thus the integrands have a legal domain. The
sketch below shows the influence domain of the edge functional \Ifg

wj W

> O

3. PROPERTIES OF THE INTERPOLATION OPERATORS

We start proving the algebraic property of the interpolation opera-
tors.

Theorem 1 (Commuting diagram property). The operators defined in
Section 2 fulfill the commuting diagram property (2).
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Proof. We chose w € H' and verify VIIw = II?Vw. Since both
quantities are in @)y, it is enough to check the unisolvent edge func-
tionals

/T-VHWwds:/ 7 II9Vwds.
E

ij E;j
Integrating the line integral of the left hand side leads to
/ P VIV wds = (Vw)(V;) = (T w)(Vi).
Ei]‘

The edge-functionals are, per definition, bi-orthogonal to the nodal
basis, thus the right hand side simplifies to

/ T-HvadS:/ 0L (Vw)ed, ds = U2 (Vw).
Eij U E/ -
Further evaluation leads to

¥2(Van) //f y) f; () /T-desddeyl

wi wj [y1,y2]

_ / / £ ) £ () {w (o) — w () } dyodyy

w; wj

= /fi(y1)dy1 /fj(yg)w(yg) dyg—/fi(y1)’lU(y1)dy1 /fj(?JQ) dys

= (TMw)(V) — (I w)(V;).

The last step used [ fi(y)dy = 1. The other two identities follow the
same line. We have to verify

A

ijk

V-curIHqus:/ v 11V curl qds

Fijp,
By Stokes’ theorem, the left hand side evaluates to

/l/-curIHqus: / T-HquSZ‘I’g(Q)+\I’ﬁc(Q)+\I’in(Q)-

Fip Eij+Ej}
+Eg;
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Again, by bi-orthogonality, the right hand side simplifies to ¥;; v (curl q),
and, using definitions, Stokes’ theorem, and fw_ fi dx =1, we conclude

Wtele) = [ [ [5nwin [ v-cutads dydydy

wi Wi Wk [y1,y2,y3]
= ///fz y1) fi(y2) fe(ys) / 7+ qds dysdysdy;
Wi wj Wk yljl_%]ﬂyz],ygl
Y3:Y1

= \Ifg(q) + \Ifﬁﬁ(q) + \III?Z(q)
The last identity is left to the reader. O

Remark 2. In the proof of Theorem 1, we have observed the discrete
integration rules

U2(Vw) = U (w) — Y (w),
W (lg) = U8(g)+ () + ¥90),
\Ijisjkl(div v) = \Ijz‘;k( )+ ‘I’zgz( v) + Wy (v) + ‘I’]kz( v).

Lemma 3 (Ly-stability). The operators I, 119, 11V, and I1° are well
defined on L. Their norms are independent of the local mesh size.

Proof. The Lo-norm of finite element functions is equivalent to a prop-
erly scaled Iy norm of nodal values (see [1] for the vector valued ele-

ments):
lwalls ~ > hfwn(V;)?
Vievy
2
lanlls =~ Zh</ T'thS)
Eije€
2
ol =~ 32 ([ vevas)
Fijke}- Fijk
2
sl = Ym0 o)
Tijri€T Tijri

The nodal values of IT"w are bounded by
o)) = W) = [ A dy

—3/2
< fillo lwllow: = by *|fwllo s

N
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summing up and using the finite overlap of w;, we obtain the (well
known) result for [I". Next, we check stability for the edge-interpolation
operator by using its nodal values

/ 7 (%) ds = W2(q) = / / Fin) F () / r - qds dydy.
E;ij wi wj [y1,y2]

Transforming the line [y, y2] to the unit interval, i.e.,

1
/ T-qd5:/(yQ—yl)-q(y1+a(y2—y1))da,
[y1,y2] 0

allows to switch the order of integration, and the estimate |ys —y1| < h;
leads to

w2a) < h [ [ [ 1G5l + oty - 30) disddo

w; wj

In the following, we distinguish the two cases o > 1/2 and o < 1/2,
and evaluate on the first. By means of the linear transformation

L:w;— [U}i,w]‘] Dy =y oy — ),

Cauchy-Schwartz w.r.t. w;, and transformation rules, the upper half of
the integral is bounded by

1
hi /1/2 ()| 1 fillogw; 11a(L) low; dyrdo

—3/2

Ow; O ||q(')||0,L(wj) dydo

1
_ / I,

1
< h / O o el
1/2
= hillfill o 1 filloll @l o,wsw;]
—1/2
= hz / ||q 0,[w;,w;]-

The case o < 1/2 is symmetric, which completes the bound for TI%.
The boundedness of IT"V and IT° are similar. O

Lemma 4 (Consistency). Let all functions f; be consistent up to order
p. The operators 11V, 112, TIV, and I1° require p > 0, p > 1, p > 2,
and p > 3, respectively, to preserve constants on patches.

Proof. We show that for constant arguments the local averaging func-
tionals coincide with the nodal interpolation operators. This is clear
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for II". Now, consider II% applied to the constant ¢:

//fzyl fg y2 /T-qudy1dy2

[y1,y2]

= ///fz 1 f] y2 y2—y1) q dysdydo

w1 w2

= /fz’(yl)dyl /fj(yz)(yz-q) dyQ—/fi(yl)(yl-q)dyl /fj(yQ),dyQ

= 1(Varg)=(Vi-q) 1= / T qds.
[V1,V2]
The argument is similar for IIY. Now, the transformation to the unit

triangle F' leads to a second order polynomial with respect to the ver-
tices y1, yo, and ys:

(v ///fz y1) fi(y2) fr (y3) / v - v ds dysdyzdy;

Wi W W yl,yz,yg

= ////fzf]fk (y2 — y1) X (y3 — y1)] - v dysdyzdyrdo

F w1 w2 w3
= [(Va—Vi) x (Vs —WA)] -0 = / U uds.
[V1,V2,V3]

Finally, the transformation of integrals for the volume element leads to
the third order polynomial det{y> — y1,y3 — y1, 91 — y1}- O

Together, Ls-stability and consistency give approximation:

Theorem 5 (Ly-approximation). Define for each tetrahedron T = Ty

the smallest patch of elements T containing [w;, wj, wg, w|. Let the order
p be large enough according to Lemma 4. Then the following approzi-
mation estimates are valid:

|w — = hr |w|1,7~“
lg - < hr |q|1,T
o =T 0llor = hrlvl, 7
Is = ¥sllor = hrls| 4.
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Proof. We state the estimate for W, the others are completely identic.

Define the mean value w = |f|_1ffwd:c, and use consistency, Lo-
continuity, and Friedrichs’ inequality:
lw =T wllor = [I(1 =T")(w —@)lor

= w —o)ll,7
= hT|w|1,T'

O

Corollary 6 (Approximation in semi-norm). The interpolation oper-
ators fulfill the following approximation properties with respect to the
Semi-noTms:

IV(w -1 w)llor = hr|Vwlz  forp>1
| curl(q — 11%)|
|div(v —TTV0)|lor = hrl divgl, 7 forp >3

o = hr|curlg|, 5 forp>2

Proof. The estimates follow directly from the commuting diagram prop-
erty and from the approximation in Ly. We show the case for H (curl),
the others are identic:

|| curl(q — HQq)HO,T =[|(I — HV) curl g|lo,r < hy|curl gl r.
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