
COMMUTING QUASI-INTERPOLATION OPERATORSFOR MIXED FINITE ELEMENTSJOACHIM SCH�OBERLAbstract. Conforming �nite elements for H(curl) and H(div)spaces became a main research topics in numerical analysis. Theso called de Rham diagram [5, 8, 7, 4] relates the exact sequenceof continuous spaces H1 ! H(curl) ! H(div) ! L2 to their cor-responding discrete counterparts. Up to now, only the local nodalinterpolation operators, and global Fortin operators [3] have beenknown to ful�ll the commuting diagram property. In this paper,new quasi-local, Cl�ement-type operators satisfying the commutingdiagram property are introduced. The result, in particular, shouldhelp to generalize and simplify existing multigrid theories as wellas a posteriori error estimates for Maxwell's equations.1. IntroductionThe de Rham diagram compactly visualizes this paper's results:H1 r�! H(curl) curl�! H(div) div�! L2??y�W ??y�Q ??y�V ??y�WWh r�! Qh curl�! Vh div�! Sh :(1)The function spaces of the �rst row,W := H1 := fw 2 L2(
) : rw 2 [L2]3g;Q := H(curl) := fq 2 [L2(
)]3 : curl q 2 [L2]3g;V := H(div) := fv 2 [L2(
)]3 : div v 2 L2g;S := L2(
)form a sequence on the continuous level. The spaces in the secondrow are the canonical �nite element spaces. Here, we restrict ourselves1991 Mathematics Subject Classi�cation. 65N30.Key words and phrases. Mixed �nite elements, Commuting diagram property,Clement operator.The author acknowledges the support of Texas A&M University, Institute forScienti�c Computing. 1



2 JOACHIM SCH�OBERLto the lowest order elements on tetrahedral meshes, namely piecewiselinears for Wh, lowest order N�ed�elec elements of �rst type [10] for Qh,lowest order Raviart-Thomas elements [11] for Vh, and piecewise con-stants to generate Sh.This paper presents new interpolation operators relating the con-tinuous spaces to the discrete counterparts. Our operators are wellde�ned on the Lebesgue spaces, and each consecutive pair ful�lls thecommuting diagram property,r�W = �Qr; curl�Q = �V curl; and div �V = �S div :(2)Additionally, local approximation properties are proven. Best to ourknowledge, only the local nodal interpolation operators, which are de-�ned on more regular sub-spaces [5], and the global Fortin operators[3] were known to ful�ll the commuting diagram property.These new operators are, beyond possibly many other applications,useful to simplify and generalize existing multigrid theory [9, 1] and aposteriori error estimates [2].2. DefinitionsThe domain 
 is assumed to be polyhedral and with Lipschitz bound-ary. It is covered by a shape regular tetrahedral mesh. We de�nethe set of vertices V = fVig;the set of edges E = fEijg;the set of faces F = fFijkg;the set of tetrahedra T = fTijklg:The two indices of an oriented edge specify the initial vertex and �nalvertex. The three (four) indices of a face (a tetrahedron) specify thevertices and the orientation. Using the notation [�] for the convex hullwe can writeEij = [Vi; Vj]; Fijk = [Vi; Vj; Vk]; and Tijkl = [Vi; Vj; Vk; Vl]:The tangential unit vector � of the edge Eij is a positive multiple of thevector Vj�Vi, and the normal unit vector � of the face Fijk is a positivemultiple of the vector (Vj � Vi)� (Vk � Vi). We de�ne the local meshsize h associated with an edge, a face or an element as its diameter,and the mesh size associated with a vertex as the maximal mesh sizeof adjacent elements. Let 'Wi , 'Qij, 'Vijk, and 'Sijkl be the nodal basisfunctions for the spaces Wh, Qh, Vh, and Sh, respectively. They areassociated with a vertex, an edge, a face, and an element, respectively.



COMMUTING INTERPOLATION OPERATORS 3Then, the nodal interpolation operators are(IWw)(x) := XVi2Vw(Vi)'Wi (x);(IQq)(x) := XEij2E ZEij � � q ds 'Qij(x);(IV v)(x) := XFijk2F ZFijk � � v ds 'Vijk(x);(ISs)(x) := XTijkl2T ZTijkl s dx 'Sijkl(x):It is well known and easily seen that these interpolation operators com-mute in the sense of (2). To overcome point evaluation which requiresmore regularity, local averaging operators [6, 12] for Sobolev spaceshave been introduced. For each vertex Vi, let !i � 
 [ B(Vi; chi) be aset of non-zero measure. Next, �x some integer p � 0, and de�ne foreach Vi a function fi 2 L1(!i) such thatZ!i fiw dx = w(Vi) for all polynomials w up to order p.(3)There is no need to specify !i and fi exactly. One possibility is tochoose balls !i, and �x fi as unique polynomial of order p satisfyingproperty (3). We assume kfikL1 ' h�3i ;(4)which is usually proven by scaling arguments. There follows immedi-ately kfikL1 ' 1 and kfikL2 ' h�3=2i . Note that we did not assumeVi 2 !i. The Cl�ement type interpolation operator, de�ned on L2, is(�Ww)(x) := XVi2V	Wi (w) 'Wi (x) with(5) 	Wi (w) := Z!i fi(y)w(y) dy:The new interpolation operators for the remaining spaces are all derivedfrom the speci�c choice of the interpolation operator �W . Like theinterpolation point for �W is smeared out, we now move all the involvedvertices of the other operators:(�Qq)(x) := XEij2E	Qij(q) 'Qij(x) with(6)



4 JOACHIM SCH�OBERL	Qij(q) := Z!i Z!j fi(y1)fj(y2) Z[y1;y2] � � q ds dy2dy1:We take all line integrals starting in the domain !i and terminating in!j, and average them by the weight functions fi and fj. Similarly, wede�ne operators for H(div),(�V v)(x) := XFijk2F 	Vijk(v) 'Vijk(x) with(7) 	Vijk(v) = Z!i Z!j Z!k fi(y1)fj(y2)fk(y3) Z[y1;y2;y3] � � v ds dy3dy2dy1;and L2, (�Ss)(x) = XTijkl2T 	ijkl(s) 'Sijkl(x) with(8)	Sijkl(s) = Z!i Z!j Z!k Z!l fi(y1)fj(y2)fk(y3)fl(y4) Z[y1;y2;y3;y4] s dx dy4dy3dy2dy1:We do not want to bother to much about boundary conditions. Weassume that we have chosen the sets !i such that the involved integralsare all inside 
, and thus the integrands have a legal domain. Thesketch below shows the in
uence domain of the edge functional 	Qij.
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3. Properties of the interpolation operatorsWe start proving the algebraic property of the interpolation opera-tors.Theorem 1 (Commuting diagram property). The operators de�ned inSection 2 ful�ll the commuting diagram property (2).



COMMUTING INTERPOLATION OPERATORS 5Proof. We chose w 2 H1 and verify r�Ww = �Qrw. Since bothquantities are in Qh, it is enough to check the unisolvent edge func-tionals ZEij � � r�Ww ds = ZEij � ��Qrw ds:Integrating the line integral of the left hand side leads toZEij � � r�Ww ds = (�Ww)(Vj)� (�Ww)(Vi):The edge-functionals are, per de�nition, bi-orthogonal to the nodalbasis, thus the right hand side simpli�es toZEij � � �Qrw ds = ZEij � �XEi0j0 	Qi0j0(rw)'Qi0j0 ds = 	Qij(rw):Further evaluation leads to	Qij(rw) = Z!i Z!j fi(y1)fj(y2) Z[y1;y2] � � rw ds dy2dy1= Z!i Z!j fi(y1)fj(y2)fw(y2)� w(y1)g dy2dy1= Z!i fi(y1) dy1 Z!j fj(y2)w(y2) dy2 � Z!i fi(y1)w(y1) dy1 Z!j fj(y2) dy2= (�Ww)(Vj)� (�Ww)(Vi):The last step used R!i fi(y)dy = 1. The other two identities follow thesame line. We have to verifyZFijk � � curl�Q q ds = ZFijk � � �V curl q dsBy Stokes' theorem, the left hand side evaluates toZFijk � � curl�Q q ds = ZEij+Ejk+Eki � � �Q q ds = 	Qij(q) + 	Qjk(q) + 	Qki(q):



6 JOACHIM SCH�OBERLAgain, by bi-orthogonality, the right hand side simpli�es to 	Vijk(curl q),and, using de�nitions, Stokes' theorem, and R!i fi dx = 1, we conclude	Vijk(curl q) = Z!i Z!j Z!k fi(y1)fj(y2)fk(y3) Z[y1;y2;y3] � � curl q ds dy3dy2dy1= Z!i Z!j Z!k fi(y1)fj(y2)fk(y3) Z[y1;y2]+[y2;y3]+[y3;y1] � � q ds dy3dy2dy1= 	Qij(q) + 	Qjk(q) + 	Qki(q):The last identity is left to the reader.Remark 2. In the proof of Theorem 1, we have observed the discreteintegration rules	Qij(rw) = 	Wj (w)� 	Wi (w);	Vijk(curl q) = 	Qij(q) + 	Qjk(q) + 	Qki(q);	Sijkl(div v) = 	Vijk(v) + 	Vijl(v) + 	Vikl(v) + 	Vjkl(v):Lemma 3 (L2-stability). The operators �W , �Q, �V , and �S are wellde�ned on L2. Their norms are independent of the local mesh size.Proof. The L2-norm of �nite element functions is equivalent to a prop-erly scaled l2 norm of nodal values (see [1] for the vector valued ele-ments): kwhk20 ' XVi2V h3iwh(Vi)2kqhk20 ' XEij2E hi�ZEij � � qh ds�2kvhk20 ' XFijk2F h�1i �ZFijk � � vh ds�2kshk20 ' XTijkl2T h�3i �ZTijkl sh dx�2The nodal values of �Ww are bounded by(�Ww)(Vi) = 	Wi (w) = Z!i fi(y)w(y) dy� kfik0 kwk0;!i ' h�3=2i kwk0;!i;



COMMUTING INTERPOLATION OPERATORS 7summing up and using the �nite overlap of !i, we obtain the (wellknown) result for �W . Next, we check stability for the edge-interpolationoperator by using its nodal valuesZEij � � (�Qq) ds = 	Qij(q) = Z!i Z!j fi(y1)fj(y2) Z[y1;y2] � � q ds dy1dy2:Transforming the line [y1; y2] to the unit interval, i.e.,Z[y1;y2] � � q ds = Z 10 (y2 � y1) � q(y1 + �(y2 � y1)) d�;allows to switch the order of integration, and the estimate jy2�y1j � hileads to	Qij(q) � hi 1Z0 Z!i Z!j jfi(y1)j jfj(y2)j jq(y1 + �(y2 � y1))j dy2dy1d�:In the following, we distinguish the two cases � > 1=2 and � � 1=2,and evaluate on the �rst. By means of the linear transformationL : !j ! [!i; !j] : y2 ! y1 + �(y2 � y1);Cauchy-Schwartz w.r.t. !j, and transformation rules, the upper half ofthe integral is bounded byhi Z 11=2 jfi(y1)j kfjk0;!j kq(L�)k0;!j dy1d�= hi Z 11=2 jfi(y1)j kfjk0;!j ��3=2kq(�)k0;L(!j) dy1d�� hi Z 11=2 jfi(y1)j kfjk0;!j kqk0;[!i;!j ]dy1d�� hikfikL1kfjk0kqk0;[!i;!j ]� h�1=2i kqk0;[!i;!j ]:The case � � 1=2 is symmetric, which completes the bound for �Q.The boundedness of �V and �S are similar.Lemma 4 (Consistency). Let all functions fi be consistent up to orderp. The operators �V , �Q, �V , and �S require p � 0, p � 1, p � 2,and p � 3, respectively, to preserve constants on patches.Proof. We show that for constant arguments the local averaging func-tionals coincide with the nodal interpolation operators. This is clear



8 JOACHIM SCH�OBERLfor �W . Now, consider �Q applied to the constant q:	Qij(q) = Z!i Z!j fi(y1)fj(y2) Z[y1;y2] � � q ds dy1dy2= 1Z0 Z!1 Z!2 fi(y1)fj(y2)(y2 � y1) � q dy2dy1d�= Z!1 fi(y1)dy1 Z!2 fj(y2)(y2 � q) dy2 � Z!1 fi(y1)(y1 � q)dy1 Z!2 fj(y2); dy2= 1 (V2 � q)� (V1 � q) 1 = Z[V1;V2] � � q ds:The argument is similar for �V . Now, the transformation to the unittriangle F̂ leads to a second order polynomial with respect to the ver-tices y1; y2, and y3:	Vijk(v) = Z!i Z!j Z!k fi(y1)fj(y2)fk(y3) Z[y1;y2;y3] � � v ds dy3dy2dy1= ẐF Z!1 Z!2 Z!3 fifjfk [(y2 � y1)� (y3 � y1)] � v dy3dy2dy1d�= [(V2 � V1)� (V3 � V1)] � v = Z[V1;V2;V3] � � v ds:Finally, the transformation of integrals for the volume element leads tothe third order polynomial detfy2 � y1; y3 � y1; y4 � y1g.Together, L2-stability and consistency give approximation:Theorem 5 (L2-approximation). De�ne for each tetrahedron T = Tijklthe smallest patch of elements eT containing [!i; !j; !k; !l]. Let the orderp be large enough according to Lemma 4. Then the following approxi-mation estimates are valid:kw � �Wwk0;T � hT jwj1;eTkq � �Qqk0;T � hT jqj1;eTkv � �V vk0;T � hT jvj1;eTks� �Ssk0;T � hT jsj1;eT :



COMMUTING INTERPOLATION OPERATORS 9Proof. We state the estimate for W , the others are completely identic.De�ne the mean value w = jeT j�1 R eT w dx, and use consistency, L2-continuity, and Friedrichs' inequality:kw � �Wwk0;T = k(I � �W )(w � w)k0;T� k(w � w)k0;eT� hT jwj1;eT :Corollary 6 (Approximation in semi-norm). The interpolation oper-ators ful�ll the following approximation properties with respect to thesemi-norms:kr(w � �Ww)k0;T � hT jrwj1;eT for p � 1k curl(q � �Qq)k0;T � hT j curl qj1;eT for p � 2k div(v � �V v)k0;T � hT j div qj1;eT for p � 3Proof. The estimates follow directly from the commuting diagram prop-erty and from the approximation in L2. We show the case for H(curl),the others are identic:k curl(q � �Qq)k0;T = k(I � �V ) curl qk0;T � hT j curl qj1;T :References[1] D. N. Arnold, R. S. Falk, and R. Winther. Multigrid in H(div) and H(curl).Numer. Math., 85:197{218, 2000.[2] R. Beck, R. Hiptmair, R. Hoppe, and B. Wohlmuth. Residual based a posteriorierror estimators for eddy current computations. M2AN, 34(1):159{182, 2000.[3] D. Bo�. Discrete compactness and fortin operator for edge elements. Numer.math., 87:229{246, 2000.[4] D. Bo�. A note on the discrete compactness property and the de Rham dia-gram. Appl. Math. Letters, 14:33{38, 2001.[5] A. Bossavit. Mixed �nite elements and the complex of whitney forms. InJ. Whiteman, editor, The Mathematics of Finite Elements and Applica-tions VI, pages 137{144. Academic Press, London, 1988.[6] P. Cl�ement. Approximation by �nite element functions using local regulariza-tion. R.A.I.R.O. Anal. Numer., pages 77{84, 1975.[7] L. Demkowicz and I. Babu�ska. Optimal p interpolation error estimates foredge �nite elements of variable order in 2d. Technical Report 01-11, TICAM,University of Texas at Austin, 2001.[8] L. Demkowicz, P. Monk, L. Vardapetyan, and W. Rachowicz. De Rham dia-gram for hp �nite element spaces. Technical Report 99-06, TICAM, 1999. (toappear in Math. and Comp. with appl.).



10 JOACHIM SCH�OBERL[9] R. Hiptmair. Multigrid method for Maxwell's equations. SIAM J. Numer.Anal., 36:204{225, 1999.[10] J.-C. N�ed�elec. Mixed �nite elements in R3 . Numer. Math., 35:315{341, 1980.[11] P.-A. Raviart and J.-M. Thomas. A mixed �nite element method for secondorder elliptic problems. In I. Galligani and E. Magenes, editors, MathematicalAspects of the Finite Element Method, Lecture Notes in Mathematics, pages292{315. Springer, Berlin, 1977.[12] L. R. Scott and S. Zhang. Finite element interpolation of nonsmooth functionssatisfying boundary conditions. Math. Comp., 54(190):483{493, 1990.URL: http://www.sfb013.uni-linz.ac.at/�joachimCurrent address : SFB \Scienti�c Computing", Freist�adterstr. 313, 4020 Linz,Austria


