Stieltjes and inverse Stieltjes families of linear relations in Hilbert spaces and their representations

Seppo Hassi

(University of Vaasa)

Joint work with Yury Arlinskiĭ

Vienna, Dec. 19, 2019
Nevanlinna families

Recall the definition of a Nevanlinna family, cf. e.g. [Dijksma, de Snoo (1974), Langer, Textorius (1977)].

Definition

A family of linear relations $\mathcal{M}(\lambda)$, $\lambda \in \mathbb{C} \setminus \mathbb{R}$, in a Hilbert space \mathcal{M} is called a Nevanlinna family if:

(i) $\mathcal{M}(\lambda)$ is maximal dissipative for every $\lambda \in \mathbb{C}^+$ (resp. accumulative for every $\lambda \in \mathbb{C}^-$);

(ii) $\mathcal{M}(\lambda)^{*} = \mathcal{M}(\bar{\lambda})$, $\lambda \in \mathbb{C} \setminus \mathbb{R}$;

(iii) for some (and hence for all) $\mu \in \mathbb{C}^{+} (\mathbb{C}^{-})$ the operator family

\[(\mathcal{M}(\lambda) + \mu)^{-1}(\in \mathcal{B}(\mathcal{M})) \text{ is holomorphic for all } \lambda \in \mathbb{C}^{+} (\mathbb{C}^{-}).\]

By (3) the family $\mathcal{M}(\lambda)$ is holomorphic in the resolvent sense of T. Kato, see [Kato (1995)]. $\mathcal{M}(\lambda)$ can also be considered as a pair of bounded holomorphic functions:

\[\mathcal{M}(\lambda) = \{(\mathcal{M}(\lambda) + \mu)^{-1}h, (I - \mu(\mathcal{M}(\lambda) + \mu)^{-1})h \} : h \in \mathcal{M} \quad (\lambda, \mu \in \mathbb{C}^\pm)\]. \hspace{1cm} (1.1)

The class of all Nevanlinna families in a Hilbert space \mathcal{M} is denoted by $\tilde{\mathcal{R}}(\mathcal{M})$. The multi-valued part M_∞ does not depend on $\lambda \in \mathbb{C} \setminus \mathbb{R}$, cf. (1.1), and \mathcal{M} admits a unique decomposition

\[\mathcal{M}(\lambda) = M_{\text{op}}(\lambda) \oplus M_\infty, \quad M_\infty = \{0\} \times \text{mul} \mathcal{M}(\lambda), \hspace{1cm} (1.2)\]

where $M_{\text{op}}(\lambda)$ is a Nevanlinna family of densely defined operators in $\mathcal{M} \ominus \text{mul} \mathcal{M}(\lambda)$; see [Kreîn, Langer (1971), § 4.3], [Langer, Textorius (1977), Proposition 1.2]. If $M_M := \text{mul} \mathcal{M}(\lambda)(= \text{const})$ and $M_{\text{op}}(\lambda)$ is the operator part of $\mathcal{M}(\lambda)$ in $\mathcal{M} \ominus M_M$, then

\[(\mathcal{M}(\lambda) - \mu I)^{-1} | M_M = 0, \quad (\mathcal{M}(\lambda) - \mu I)^{-1} = (M_{\text{op}}(\lambda) - \mu I)^{-1} P_{M_M} \mathcal{M}.\]
1. Some definitions

Stieltjes and inverse Stieltjes families

Definition

A family of linear relations $\mathcal{M}(\lambda)$, $\lambda \in \mathbb{C} \setminus \mathbb{R}_+$, in a Hilbert space \mathcal{M} is said to be a Stieltjes family (respectively, inverse Stieltjes family) if it is a Nevanlinna family for $\lambda \in \mathbb{C} \setminus \mathbb{R}$ and, moreover,

(i) for all $x < 0$ the linear relations $\mathcal{M}(x)$ are selfadjoint and $\mathcal{M}(x) \geq 0$ (respectively, $\mathcal{M}(x) \leq 0$),

(ii) the family $\mathcal{M}(\lambda)$ is holomorphic on \mathbb{R}_-, i.e., for any $x < 0$ and for some $\xi \in \rho(\mathcal{M}(x))$ (and hence for all $\xi \in \rho(\mathcal{M}(x))$) the resolvent $(\mathcal{M}(\lambda) - \xi I)^{-1}$ exists and is holomorphic in λ from a neighborhood of x, depending on ξ.

The classes of all Stieltjes and inverse Stieltjes families in a Hilbert space \mathcal{M} are denoted by $\tilde{S}(\mathcal{M})$ and $\tilde{S}^{-1}(\mathcal{M})$, respectively.

As in the case of scalar functions these classes are connected to each other. If $\mathcal{M}(\lambda)$ is a Stieltjes (resp. inverse Stieltjes) family, then:

(a) $-\mathcal{M}(1/\lambda)$ is an inverse Stieltjes (resp. Stieltjes) family,

(b) $-\mathcal{M}^{-1}(\lambda)$ is an inverse Stieltjes (resp. Stieltjes) family.
2. Examples

Example 1.

Let $B = B^*$ be nonnegative bounded or unbounded operator in a Hilbert space \mathcal{M}. Then

$$M(\lambda) = -\frac{1}{\lambda} B, \quad \lambda \in \mathbb{C} \setminus \{0\},$$

is a Stieltjes function and

$$M(\lambda) = \lambda B, \quad \lambda \in \mathbb{C},$$

is an inverse Stieltjes function.

By applying e.g. the transform $-M(\lambda)^{-1}$ one can obtain multi-valued inverse Stieltjes and Stieltjes families (respectively) with

$$\text{mul} (-M(\lambda)^{-1}) = \ker B.$$
Example 2.

Let \tilde{A} be a selfadjoint relation in a Hilbert space \mathcal{H} and let $M \subset \mathcal{H}$ be a closed subspace. Then

$$P_M(\tilde{A} - \lambda)^{-1} \upharpoonright M \in \tilde{R}(M),$$

(2.1)

is an operator valued Nevanlinna function.

If, in addition, $\tilde{A} \geq 0$, then $P_M(\tilde{A} - \lambda)^{-1} \upharpoonright M$ is a Stieltjes family of bounded operators.

In [Derkach, S.H., Malamud, de Snoo (2006), Theorem 3.9] in the context of the Weyl families of boundary relations it is shown that for an arbitrary Nevanlinna family $M \in \tilde{R}(M)$ there exists (up to unitary equivalence) a unique (M-minimal) selfadjoint relation \tilde{A} in $M \oplus \mathbb{R}$, such that

$$P_M(\tilde{A} - \lambda I)^{-1} \upharpoonright M = -(M(\lambda) + \lambda I)^{-1}, \quad \lambda \in \mathbb{C} \setminus \mathbb{R}. \tag{2.2}$$

Inverting the formula (2.2) leads to an equivalent expression

$$M(\lambda) = - \left(P_M \left(\tilde{A} - \lambda I \right)^{-1} \upharpoonright M \right)^{-1} - \lambda I_M, \quad \lambda \in \mathbb{C} \setminus \mathbb{R}. \tag{2.3}$$

If, in addition, $\tilde{A} \geq 0$, then (b) and (2.1) $\Rightarrow M(\cdot)$ in (2.3) is inverse Stieltjes.

(2.2) is closely related to the description of generalized resolvents by A.V. Shtraus [Shtraus (1954)]. Representations of operator valued Nevanlinna functions and Nevanlinna families as compressed resolvents of selfadjoint exit space extensions has been studied extensively; see e.g. [Arlinskiǐ, Belyi, Tsekanovskiǐ (2011), Derkach, Malamud (1991), Dijksma, de Snoo (1974), Kreǐn, Langer (1971), Kreǐn, Langer (1973), Langer, Textorius (1977)]. In [Arlinskiǐ, Belyi, Tsekanovskiǐ (2011)] Stieltjes/inverse Stieltjes matrix-valued functions appear as the impedance functions of singular L-systems.
Example 3. Stieltjes and inverse Stieltjes functions whose values are bounded operator in \mathcal{M}

Proposition

(For scalar case, see [Kac, Kreǐn (1968/1974)])

1) Any $\mathcal{B}(\mathcal{M})$-valued Stieltjes function Q admits an integral representation of the form

\[
Q(\lambda) = \Gamma_Q + \int_{\mathbb{R}_+} \frac{d\Sigma_Q(t)}{t - \lambda},
\]

where $\Gamma_Q = \Gamma_Q^* \in \mathcal{B}(\mathcal{M})$, $\Gamma_Q \geq 0$, $\Sigma_Q(t) \text{ is a } \mathcal{B}(\mathcal{M})\text{-valued non-decreasing on } \mathbb{R}_+$, $\Sigma_Q(0) = 0$ and \(\int_{\mathbb{R}_+} \frac{(d\Sigma_Q(t)f, f)}{t + 1} < \infty \) for all $f \in \mathcal{M}$.

2) Any $\mathcal{B}(\mathcal{M})$-valued inverse Stieltjes function R admits an integral representation of the form

\[
R(\lambda) = \Gamma_R + \lambda \Pi_R + \int_{\mathbb{R}_+} \left(\frac{1}{t - \lambda} - \frac{1}{t} \right) d\Sigma_R(t),
\]

where $\Gamma_R = \Gamma_R^* \in \mathcal{B}(\mathcal{M})$, $\Gamma_R \leq 0$, $0 \leq \Pi_R^* = \Pi_R \in \mathcal{B}(\mathcal{M})$, $\Sigma_R(t) \text{ is a } \mathcal{B}(\mathcal{M})\text{-valued and non-decreasing on } \mathbb{R}_+$, $\Sigma_R(0) = 0$ and \(\int_{\mathbb{R}_+} \frac{(d\Sigma_R(t)f, f)}{t(t + 1)} < \infty \) for all $f \in \mathcal{M}$.
A selfadjoint relation \tilde{A} in the orthogonal sum $\mathcal{H} = \mathcal{M} \oplus \mathcal{K}$ of Hilbert spaces is called \mathcal{M}-minimal ([Langer, Textorius (1977)], [Derkach, S.H., Malamud, de Snoo (2006)]), if

$$\mathcal{H} = \overline{\text{span}} \left\{ \mathcal{M} + (\tilde{A} - \lambda I)^{-1}\mathcal{M} : \lambda \in \mathbb{C} \setminus \mathbb{R} \right\}. \tag{3.1}$$

This definition can be extended to non-selfadjoint relations \tilde{A} in $\mathcal{H} = \mathcal{M} \oplus \mathcal{K}$ with $\rho(\tilde{A}) \neq \emptyset$ by replacing the set $\mathbb{C} \setminus \mathbb{R}$ in (3.1) by the resolvent set $\rho(\tilde{A})$, or by a union of open sets, including one open set from each connected component of $\rho(\tilde{A})$.

Minimality condition in this more general form is applied here e.g to nonnegative and maximal accretive relations with λ in (3.1) taken from the left half-plane in \mathbb{C}.

Two selfadjoint relations $\tilde{A}^{(1)}$ and $\tilde{A}^{(2)}$ in the Hilbert spaces $\mathcal{M} \oplus \mathcal{K}^{(1)}$ and $\mathcal{M} \oplus \mathcal{K}^{(2)}$, respectively, are said to be unitarily equivalent if there exists a unitary operator \mathcal{V} acting from $\mathcal{K}^{(1)}$ onto $\mathcal{K}^{(2)}$, such that

$$\tilde{A}^{(2)} = \left\{ \left\{ \left(\varphi, \varphi' \right) \right\} : \left\{ \left(\varphi, \varphi' \right) \right\} \in \tilde{A}^{(1)} \right\}, \varphi, \varphi' \in \mathcal{M}, \ f, f' \in \mathcal{K}.$$
Some transforms

\(\mathcal{H} \) a Hilbert space, \(\mathcal{M} \subset \mathcal{H} \) a closed subspace. Decompose \(\mathcal{H} = \mathcal{M} \oplus \mathcal{K} \) with \(\mathcal{K} := \mathcal{H} \ominus \mathcal{M} \).

Define the transformation \(\mathcal{P}_M \) in \((\mathcal{M} \oplus \mathcal{K})^2\) by

\[
\mathcal{P}_M : \left\{ \begin{pmatrix} \varphi \\ f \end{pmatrix}, \begin{pmatrix} \varphi' \\ f' \end{pmatrix} \right\} \mapsto \left\{ \begin{pmatrix} \varphi' \\ f \end{pmatrix}, \begin{pmatrix} \varphi \\ f' \end{pmatrix} \right\}, \quad \varphi, \varphi' \in \mathcal{M}, \ f, f' \in \mathcal{K},
\]

and the transformation \(\mathcal{J}_M \) in \((\mathcal{M} \oplus \mathcal{K})^2\) by

\[
\mathcal{J}_M : \left\{ \begin{pmatrix} \varphi \\ f \end{pmatrix}, \begin{pmatrix} \varphi' \\ f' \end{pmatrix} \right\} \mapsto \left\{ \begin{pmatrix} -i \varphi' \\ f \end{pmatrix}, \begin{pmatrix} i \varphi \\ f' \end{pmatrix} \right\}, \quad \varphi, \varphi' \in \mathcal{M}, \ f, f' \in \mathcal{K}.
\]

These transformations are involutions in \((\mathcal{M} \oplus \mathcal{K})^2\): \((\mathcal{J}_M)^2 = (\mathcal{P}_M)^2 = I_{(\mathcal{M} \oplus \mathcal{K})^2} \).

Fix a fundamental symmetry in \(\mathcal{H} = \mathcal{M} \oplus \mathcal{K} \):

\[
\hat{\mathcal{J}}_M = \begin{bmatrix} -I_M & 0 \\ 0 & I_K \end{bmatrix}.
\]

The adjoint of (the graph of) \(T \) w.r.t. to \((\hat{\mathcal{J}}_M h, k)_{\mathcal{H}}\) is denoted by

\[
T^{[*]} := \hat{\mathcal{J}}_M T^* \hat{\mathcal{J}}_M,
\]

\(T^* \) the Hilbert space adjoint of \(T \) in \(\mathcal{H} \).

Then can define the notions of \(\hat{\mathcal{J}}_M \)-symmetric \((\hat{B} \subset \hat{B}^{[*]}), \hat{\mathcal{J}}_M \)-selfadjoint \((\hat{B} = \hat{B}^{[*]}), \hat{\mathcal{J}}_M \)-dissipative \((\text{Im} (\hat{J}_M u', u) \geq 0, \{u, u'\} \in \hat{B})\) for linear relations \(\hat{B} \) in \(\mathcal{H} \).
Some transforms (continued)

Proposition

Let \(\tilde{A} \) be a l.r. in \(\mathcal{H} = \mathcal{M} \oplus \mathcal{K} \) and let \(\hat{B} = \mathcal{P}_\mathcal{M}(\tilde{A}) \) be defined by (4.1). Then:

1. the transformation \(\mathcal{P}_\mathcal{M} \) preserves adjoints:
 \[\mathcal{P}_\mathcal{M}(\tilde{A}^*) = \hat{B}^* \] (4.4)

and gives a one-to-one correspondence between symmetric (selfadjoint, (maximal) dissipative) relations \(\tilde{A} \) in \(\mathcal{H} \) and \(\hat{J}_\mathcal{M} \)-symmetric (resp. \(\hat{J}_\mathcal{M} \)-selfadjoint, (maximal) \(\hat{J}_\mathcal{M} \)-dissipative) relations \(\hat{B} \) in \(\mathcal{H} \);

2. if \(\mathcal{h} = \{ h, h' \} \), \(\mathcal{k} = \{ k, k' \} \) \(\in \mathcal{H}^2 \) and \(\{ u, u' \} = \mathcal{P}_\mathcal{M} \mathcal{h}, \{ v, v' \} = \mathcal{P}_\mathcal{M} \mathcal{k} \), then
 \[(h', k) + (h, k') = (u', v) + (u, v') \quad \text{and} \quad \text{Re} (f', f) = \text{Re} (u', u) \] (4.5)

hence, \(\tilde{A} \) is accretive (\(m \)-accretive, skew-symmetric, skew-selfadjoint) \(\iff \hat{B} = \mathcal{P}_\mathcal{M}(\tilde{A}) \) is accretive (resp. \(m \)-accretive, skew-symmetric, skew-selfadjoint);

3. \(\mathcal{P}_\mathcal{M} \) gives a one-to-one correspondence between nonnegative (nonnegative selfadjoint) \(\tilde{A} \) in \(\mathcal{H} \) and \(\hat{J}_\mathcal{M} \)-symmetric accretive (resp. \(m \)-accretive) relations \(\hat{B} \) in \(\mathcal{H} \);

4. \(\tilde{A} = \tilde{A} \geq 0 \) and \(\hat{J}_\mathcal{M} \)-selfadjoint \(m \)-accretive \(\hat{B} = \mathcal{P}_\mathcal{M}(\tilde{A}) \) are simultaneously \(\mathcal{M} \)-minimal.
Compressed resolvents

The next result gives representations for the functions \(M(\lambda) \in \tilde{R}(\mathcal{M}), -M(\lambda)^{-1} \in \tilde{R}(\mathcal{M}) \), and \(-M(1/\lambda) \in \tilde{R}(\mathcal{M}) \) as compressed resolvents of certain selfadjoint relations.

Lemma

Let \(\mathcal{M}(\cdot) \) be a Nevanlinna family in the Hilbert space \(\mathcal{M} \). Then, up to unitary equivalence, there exists a unique selfadjoint relation \(\tilde{A} \) in the Hilbert space \(\mathcal{M} \oplus \mathbb{R} \) which is \(\mathcal{M} \)-minimal and such that:

1. The Nevanlinna family \(\mathcal{M}(\lambda) \) has the representation

\[
\mathcal{M}(\lambda) = - \left(P_{\mathcal{M}} \left(\tilde{A} - \lambda I \right)^{-1} \right| \mathcal{M} \right)^{-1} - \lambda I_{\mathcal{M}}, \quad \lambda \in \mathbb{C} \setminus \mathbb{R}.
\] (4.6)

2. If \(\hat{\mathcal{A}} = J_{\mathcal{M}}(\tilde{A}) \) is as defined in (4.2), then

\[
-\mathcal{M}^{-1}(\lambda) = - \left(P_{\mathcal{M}} \left(\hat{\mathcal{A}} - \lambda I \right)^{-1} \right| \mathcal{M} \right)^{-1} - \lambda I_{\mathcal{M}}, \quad \lambda \in \mathbb{C} \setminus \mathbb{R},
\] (4.7)

3. If \(\check{\mathcal{A}} = -J_{\mathcal{R}}(\tilde{A}) \), then

\[
-\mathcal{M} \left(\frac{1}{\lambda} \right) = - \left(P_{\mathcal{M}} \left(\check{\mathcal{A}} - \lambda I \right)^{-1} \right| \mathcal{M} \right)^{-1} - \lambda I_{\mathcal{M}}, \quad \lambda \in \mathbb{C} \setminus \mathbb{R}.
\] (4.8)
Representations via compressed resolvents

Lemma
Let $\tilde{A} = \tilde{A} \geq 0$ in $\mathfrak{H} = \mathcal{M} \oplus \mathcal{K}$. Then:

1. \[P_M (\tilde{A} - \lambda I)^{-1} | M = -(R(\lambda) + \lambda I_M)^{-1}, \quad \lambda \in \mathbb{C} \setminus \mathbb{R}^+, \quad (4.9) \]
 with $R \in \tilde{S}(-1)(M)$.

2. If \hat{B} is a m-accretive and \hat{J}_M-selfadjoint w.r.t. \hat{J}_M in (4.3), then
 \[P_M (\hat{B} - \lambda I)^{-1} | M = (Q(\lambda) - \lambda I_M)^{-1}, \quad \text{Re} \lambda < 0, \quad (4.10) \]
 with $Q \in \tilde{S}(M)$.

3. If $\hat{A} = \hat{J}_M P_M(\hat{B}) = \left\{ \left[\begin{array}{cc} \frac{-ih}{f} & \frac{ih'}{f'} \end{array} \right], \left[\begin{array}{cc} h & f' \end{array} \right] \right\} \in \hat{B} \right\}$, then $\hat{A} = \tilde{\hat{A}}^*$ and
 \[P_M (\hat{A} - \lambda I)^{-1} | M = -(Q(\lambda) + \lambda I_M)^{-1}, \quad \lambda \in \mathbb{C} \setminus \mathbb{R}, \quad (4.11) \]
 and $Q \in \tilde{S}(M)$ is the same function as in (4.10).
Lemma (continued)

Lemma (continued)

(4) If \(\tilde{\mathcal{A}} = -\tilde{\mathcal{J}}(\hat{\mathcal{A}}) \), where \(\hat{\mathcal{A}} \) is as in (3), then \(\tilde{\mathcal{A}} = \hat{\mathcal{A}} \geq 0 \) and

\[
P_{\mathcal{M}} \left(\tilde{\mathcal{A}} - \lambda I \right)^{-1} \upharpoonright \mathcal{M} = - \left(-Q \left(\frac{1}{\lambda} \right) + \lambda I_{\mathcal{M}} \right)^{-1}, \quad \lambda \in \mathbb{C} \setminus \mathbb{R}^+, \quad (4.12)
\]

where \(-Q \left(\frac{1}{\lambda} \right) \in \tilde{\mathcal{S}}^{(-1)}(\mathcal{M}) \) and \(Q \in \tilde{\mathcal{S}}(\mathcal{M}) \) is the same function as in (4.10).

Moreover, if \(\tilde{\mathcal{A}} \) in (4.9) and \(\tilde{\mathcal{B}} \) in (4.10) are connected by \(\tilde{\mathcal{B}} = \Psi_{\mathcal{M}}(\tilde{\mathcal{A}}) \) then \(Q(\lambda) = -\mathcal{R}^{-1}(\lambda) \)

and, furthermore, \(\tilde{\mathcal{A}} = \tilde{\mathcal{A}}^{-1} \).
Characterization of inverse Stieltjes families

The next theorem shows that all inverse Stieltjes families $\mathcal{R} \in \tilde{S}(-1)(\mathcal{M})$ can be characterized by the statement (1) in Lemma 6.

Theorem

Let \mathcal{R} belong to the inverse Stieltjes class in \mathcal{M}. Then there exists up to unitary equivalence a unique nonnegative selfadjoint relation \tilde{A} in the Hilbert space $\mathcal{M} \oplus \mathbb{R}$ such that \tilde{A} is \mathcal{M}-minimal and the relation

$$P_\mathcal{M} \left(\tilde{A} - \lambda I \right)^{-1} | \mathcal{M} = - (\mathcal{R}(\lambda) + \lambda I_\mathcal{M})^{-1}, \quad \lambda \in \mathbb{C} \setminus \mathbb{R}_+$$

holds.
Characterization of Stieltjes families

For Stieltjes families $\mathcal{R} \in \tilde{S}(\mathcal{M})$ we have the following characterizations.

Theorem

Let \mathcal{Q} belong to the Stieltjes class in \mathcal{M}. Then:

1. There exists (up to the unitary equivalence) a unique m-accretive \hat{B} in $\mathcal{M} \oplus \mathcal{K}$ such that \hat{B} is $\hat{J}_\mathcal{M}$-selfadjoint w.r.t. $\hat{J}_\mathcal{M}$ in (4.3), such that \hat{B} is \mathcal{M}-minimal and

 \[
 P_{\mathcal{M}} \left(\hat{B} - \lambda I \right)^{-1} \upharpoonright \mathcal{M} = (\mathcal{Q}(\lambda) - \lambda I_{\mathcal{M}})^{-1}
 \]

 holds for all $\text{Re} \lambda < 0$.

2. There exists (up to the unitary equivalence) a unique selfadjoint \hat{A} in $\mathcal{M} \oplus \mathcal{K}$, such that \hat{A} is \mathcal{M}-minimal and its transform $\hat{J}_\mathcal{M}(\hat{A})$ is nonnegative, and

 \[
 P_{\mathcal{M}} \left(\hat{A} - \lambda I \right)^{-1} \upharpoonright \mathcal{M} = - (\mathcal{Q}(\lambda) + \lambda I_{\mathcal{M}})^{-1}
 \]

 holds for all $\lambda \in \mathbb{C} \setminus \mathbb{R}$.

Furthermore, one can choose

\[
\hat{A} = \hat{J}_\mathcal{M} P_{\mathcal{M}}(\hat{B}).
\]
Two further characterizations
The next lemma is an extension of [Kac, Kreĭn (1968/1974)] from the scalar case.

Lemma

With \(\lambda \in \mathbb{C} \setminus \mathbb{R}_+ \) the following assertions are equivalent:

1. \(Q(\lambda) \in \tilde{S}(\mathcal{M}) \);
2. \(-Q^{-1}(\lambda) \in \tilde{S}(-1)(\mathcal{M}) \);
3. \(\lambda Q(\lambda) \in \tilde{S}(-1)(\mathcal{M}) \).

Theorem

1. Let \(Q \in \tilde{S}(\mathcal{M}) \). Then there is a Hilbert space \(\mathcal{H} = \mathcal{M} \oplus \mathcal{K} \) and (up to unitary equivalence) a unique \(\mathcal{M} \)-minimal nonnegative selfadjoint \(\tilde{A} \) in \(\mathcal{H} \) such that

\[
Q(\lambda) = -\frac{1}{\lambda} \left(P_{\mathcal{M}} (\tilde{A} - \lambda I)^{-1} | \mathcal{M} \right)^{-1} - I_{\mathcal{M}}, \quad \lambda \in \mathbb{C} \setminus \mathbb{R}_+. \quad (4.15)
\]

2. Let \(\mathcal{R} \in \tilde{S}(-1)(\mathcal{M}) \). Then there is a Hilbert space \(\mathcal{H} = \mathcal{M} \oplus \mathcal{K} \) and (up to unitary equivalence) a unique \(\mathcal{M} \)-minimal nonnegative selfadjoint \(\tilde{B} \) in \(\mathcal{H} \) such that

\[
\mathcal{R}(\lambda) = I_{\mathcal{M}} - \left(P_{\mathcal{M}} (I - \lambda \tilde{B})^{-1} | \mathcal{M} \right)^{-1}, \quad \lambda \in \mathbb{C} \setminus \mathbb{R}_+. \quad (4.16)
\]

Moreover, if \(Q(\lambda) \in \tilde{S}(\mathcal{M}) \) is represented by means of \(\tilde{A} \) in (4.15), then \(-Q(\lambda)^{-1} \) admits the representation (4.16) by means of \(\tilde{B} = \tilde{A}^{-1} \).
The mappings Φ_+ and Φ_- and their fixed points

Recall that by Lemma 10 the transformation

$$
\tilde{S}(M) \ni Q(\lambda) \mapsto \tilde{Q}(\lambda) := -\frac{Q(\lambda)^{-1}}{\lambda} \in \tilde{S}(M)
$$

is well defined mapping in the Stieltjes class. In fact, Φ_+ is an automorphism of the class $\tilde{S}(M)$. Analogously, the transformation

$$
\tilde{S}^{-1}(M) \ni R(\lambda) \mapsto \tilde{R}(\lambda) := -\lambda R(\lambda)^{-1} \in \tilde{S}^{-1}(M)
$$

is an automorphism of the class $\tilde{S}^{-1}(M)$. Here the main purpose is to find the fixed points of these two mappings.

Proposition

Let the mappings $\Phi_+ : \tilde{S}(M) \to \tilde{S}(M)$ and $\Phi_- : \tilde{S}^{-1}(M) \to \tilde{S}^{-1}(M)$ be as defined above. Then with $\lambda \in \mathbb{C} \setminus \mathbb{R}_+$:

1. the mapping Φ_+ has a unique fixed point

 $$
 Q_0(\lambda) = \frac{i}{\sqrt{\lambda}} l_M, \quad Q_0(-1) = l_M;
 $$

2. the mapping Φ_- has a unique fixed point

 $$
 R_0(\lambda) = i\sqrt{\lambda} l_M, \quad R_0(-1) = -l_M.
 $$
Combined Nevanlinna-Schur class

Definition
Let M be a Hilbert space. A $B(M)$-valued Nevanlinna function Ω which is holomorphic on $\mathbb{C} \setminus \{(-\infty, -1] \cup [1, +\infty)\}$ is said to belong to the class $RS(M)$ if

$$
-1 \leq \Omega(x) \leq 1, \quad x \in (-1, 1).
$$

It is proved in [Arlinskiĭ, S.H. (2020)] that the class $RS(M)$ is a subclass of Schur functions $S(M)$. Thus the class $RS(M)$ consists of functions that are Nevanlinna functions in $\mathbb{C} \setminus \mathbb{R}$ and simultaneously Schur functions on the open unit disk.

This class is called a combined Nevanlinna-Schur class of $B(M)$-valued operator functions and explains the notation $RS(M)$.

Observe the following mapping properties

$$
\lambda \in \mathbb{C} \setminus \mathbb{R}_+ \iff z := \frac{1 + \lambda}{1 - \lambda} \in \mathbb{C} \setminus \{(-\infty, -1] \cup [1, +\infty)\}, \quad (6.1)
$$

with inverse transform for λ,

$$
\lambda = \frac{z - 1}{z + 1}, \quad \text{Im} \lambda = \frac{2 \text{Im} z}{|z + 1|^2}. \quad (6.2)
$$
Connection of Stieltjes and inverse Stieltjes families to the combined Nevanlinna-Schur class

Lemma

Let $\Omega \in \mathcal{RS}(\mathcal{M})$. Then for all $\lambda \in \mathbb{C} \setminus \mathbb{R}_+$,

\[
Q(\lambda) = -I + 2 \left(l_\mathcal{M} - \Omega \left(\frac{1 + \lambda}{1 - \lambda} \right) \right)^{-1} \Rightarrow \left\{ \left\{ \left(l_\mathcal{M} - \Omega \left(\frac{1 + \lambda}{1 - \lambda} \right) \right) h, \left(l_\mathcal{M} + \Omega \left(\frac{1 + \lambda}{1 - \lambda} \right) \right) h \right\} : h \in \mathcal{M} \right\}
\]

(6.3)

is a Stieltjes family and

\[
R(\lambda) = I - 2 \left(l_\mathcal{M} + \Omega \left(\frac{1 + \lambda}{1 - \lambda} \right) \right)^{-1} \Rightarrow \left\{ \left\{ \left(l_\mathcal{M} + \Omega \left(\frac{1 + \lambda}{1 - \lambda} \right) \right) h, \left(\Omega \left(\frac{1 + \lambda}{1 - \lambda} \right) - l_\mathcal{M} \right) h \right\} : h \in \mathcal{M} \right\}
\]

(6.4)

is an inverse Stieltjes family.

Conversely, if $Q(\lambda)$ is a Stieltjes family (resp. $R(\lambda)$ is an inverse Stieltjes family) in \mathcal{M}, then there exists a function $\Omega \in \mathcal{RS}(\mathcal{M})$ such that (6.3) (resp. (6.4)) holds.

Observe, that the functions Q in (6.3) and R in (6.4) are connected by $R = -Q^{-1}$.
Inner functions in the Stieltjes and inverse Stieltjes classes

An operator valued Schur function is said to be inner/co-inner/bi-inner if almost everywhere on the unit disk the non-tangential limit values to the unit circle T are, respectively, isometric/co-isometric/unitary. It is proved in [Arlinskiĭ, S.H. (2020)] that the function Ω of the class $\mathcal{RS}(\mathcal{M})$ is inner if and only if it admits the representation

$$\Omega(z) = (zl + \tilde{D})(l + z\tilde{D})^{-1}, \quad z \in \mathbb{C} \setminus \{(-\infty, -1] \cup [1, +\infty)\},$$

where \tilde{D} is a selfadjoint contraction in \mathcal{M}.

The Stieltjes class $\mathcal{S}(\mathcal{M})$ and the inverse Stieltjes class $\tilde{\mathcal{S}}(-1)(\mathcal{M})$ are connected to the class $\mathcal{RS}(\mathcal{M})$ as described in Lemma 14. Notice that (cf. (6.2))

$$\text{Re} \lambda = \frac{|z|^2 - 1}{|z + 1|^2}, \quad \lambda = \frac{z - 1}{z + 1}.$$

In particular, the transform $z \to \frac{z - 1}{z + 1}$ maps $\mathbb{T} \setminus \{1, -1\}$ (nonreal part of the unit circle) bijectively onto the set $\{iy : y \in \mathbb{R}, y \neq 0\}$. This motivates the following definition.

Definition
A family S from the class $\tilde{\mathcal{S}}(\mathcal{M})$ ($\tilde{\mathcal{S}}(-1)(\mathcal{M})$) is said to be inner if holds for all $y \in \mathbb{R} \setminus \{0\}$:

$$\text{Re} (S(iy)f, f) = 0, \quad f \in \text{dom} S(iy).$$
Characterization of inner functions

Proposition

All inner families in the Stieltjes and inverse Stieltjes classes are described as follows:

1. The inner families from the class \(\tilde{S}(M) \) are of the form

\[
Q(\lambda) = -\lambda^{-1} B, \quad \lambda \in \mathbb{C} \setminus \mathbb{R}_+, \tag{7.2}
\]

where \(B \) runs through the set of all nonnegative selfadjoint relations in \(M \).

2. The inner families from the class \(\tilde{S}^{-1}(M) \) are of the form

\[
R(\lambda) = \lambda C, \quad \lambda \in \mathbb{C} \setminus \mathbb{R}_+, \tag{7.3}
\]

where \(C \) runs through the set of all nonnegative selfadjoint relations in \(M \).

Further details and results can be found in:

