Perturbations of L-systems

Sergey Belyi
Troy University (USA)

Operator Theory and Krein Spaces
Vienna, Austria
2019
Let E and \mathcal{H} be Hilbert spaces and let T be an unbounded operator in \mathcal{H}.

\begin{equation*}
\begin{cases}
(T - zI)x = KJ\varphi_-,
\varphi_+ = \varphi_- - 2iK^*x,
\end{cases}
\text{Im } T = KJK^*.
\end{equation*}

Here $\varphi_- \in E$ is an input vector, $\varphi_+ \in E$ is an output vector, and $x \in \mathcal{H}$ is a vector of the state space. $J = J^* = J^{-1} \in [E, E]$.
Let E and \mathcal{H} be Hilbert spaces and let T be an unbounded operator in \mathcal{H}.

\[
\begin{align*}
\begin{cases}
(T - zI)x &= KJ\varphi_-, \\
\varphi_+ &= \varphi_- - 2iK^*x,
\end{cases}
\quad \text{Im } T = KJK^*.
\end{align*}
\]

Here $\varphi_- \in E$ is an input vector, $\varphi_+ \in E$ is an output vector, and $x \in \mathcal{H}$ is a vector of the state space. $J = J^* = J^{-1} \in [E, E]$.
Let E and \mathcal{H} be Hilbert spaces and let T be an unbounded operator in \mathcal{H}.

L-system

\[
\begin{aligned}
(T - zI)x &= KJ\varphi_-, & \text{Im } T &= KJK^*, \\
\varphi_+ &= \varphi_- - 2iK^*x,
\end{aligned}
\]

Here $\varphi_- \in E$ is an input vector, $\varphi_+ \in E$ is an output vector, and $x \in \mathcal{H}$ is a vector of the state space. $J = J^* = J^{-1} \in [E, E]$.
L-system

\[\Theta = \begin{pmatrix} \mathcal{A} & K & J \\ \mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_- & E \end{pmatrix} \]

(1)

- \(\mathcal{A} \) is a bounded linear operator from \(\mathcal{H}_+ \) to \(\mathcal{H}_- \)
 \((\ast)-extension of \(T \in \Omega(\dot{\mathcal{A}}) \), i.e., \(\mathcal{A} \supset T \supset \dot{\mathcal{A}}, \mathcal{A}^* \supset T^* \supset \dot{\mathcal{A}} \));
- \(\mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_- \) is a rigged Hilbert space, \(\dim E < \infty \);
- \(\text{Im} \mathcal{A} = KJK^* \);
- \(K \) is a linear bounded operator from \(E \) into \(\mathcal{H}_- \);
- \(J = J^* = J^{-1} \in [E, E] \).
L-system

\[\Theta = \begin{pmatrix}
\mathbb{A} & K \\
\mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_- & J \\
\end{pmatrix} \] \hspace{1cm} (1)

- \(\mathbb{A} \) is a bounded linear operator from \(\mathcal{H}_+ \) to \(\mathcal{H}_- \)
 \((\ast)-extension of \(T \in \Omega(\mathbb{A}) \), i.e., \(\mathbb{A} \supset T \supset \dot{\mathbb{A}} \), \(\mathbb{A}^* \supset T^* \supset \dot{\mathbb{A}} \));
- \(\mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_- \) is a rigged Hilbert space, \(\dim E < \infty \);
- \(\text{Im} \mathbb{A} = KJK^* \);
- \(K \) is a linear bounded operator from \(E \) into \(\mathcal{H}_- \);
- \(J = J^* = J^{-1} \in [E, E] \).
L-system

\[\Theta = \begin{pmatrix} \mathbb{A} & K & J \\ \mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_- & E \end{pmatrix} \] (1)

- \mathbb{A} is a bounded linear operator from \mathcal{H}_+ to \mathcal{H}_- ((\ast)-extension of $T \in \Omega(\hat{\mathbb{A}})$, i.e., $\mathbb{A} \supset T \supset \hat{\mathbb{A}}$, $\mathbb{A}^* \supset T^* \supset \hat{\mathbb{A}}$);
- $\mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_-$ is a rigged Hilbert space, $\dim E < \infty$;
- $\text{Im } \mathbb{A} = KJK^*$;
- K is a linear bounded operator from E into \mathcal{H}_-;
- $J = J^* = J^{-1} \in [E, E]$.
L-system

The matrix Θ is given by

$$\Theta = \begin{pmatrix} \mathbb{A} & K & J \\ \mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_- & E \end{pmatrix} \quad (1)$$

- \mathbb{A} is a bounded linear operator from \mathcal{H}_+ to \mathcal{H}_- ((*)-extension of $T \in \Omega(\dot{\mathbb{A}})$, i.e., $\mathbb{A} \supset T \supset \dot{\mathbb{A}}$, $\mathbb{A}^* \supset T^* \supset \dot{\mathbb{A}}$);
- $\mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_-$ is a rigged Hilbert space, $\dim E < \infty$;
- $\text{Im} \mathbb{A} = KJK^*$;
- K is a linear bounded operator from E into \mathcal{H}_-;
- $J = J^* = J^{-1} \in [E, E]$.
L-system

\[\Theta = \begin{pmatrix} A & K & J \\ \mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_- & E \end{pmatrix} \]

- \(A \) is a bounded linear operator from \(\mathcal{H}_+ \) to \(\mathcal{H}_- \) ((\(\ast \))-extension of \(T \in \Omega(\hat{A}) \), i.e., \(A \supset T \supset \hat{A}, A^\ast \supset T^\ast \supset \hat{A} \));
- \(\mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_- \) is a rigged Hilbert space, \(\text{dim } E < \infty \);
- \(\text{Im } A = KJK^\ast \);
- \(K \) is a linear bounded operator from \(E \) into \(\mathcal{H}_- \);
- \(J = J^\ast = J^{-1} \in [E, E] \).
L-system

\[\Theta = \begin{pmatrix} \mathbb{A} & K & J \\ \mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_- & \mathcal{E} \end{pmatrix} \]

- \(\mathbb{A} \) is a bounded linear operator from \(\mathcal{H}_+ \) to \(\mathcal{H}_- \) ((*)-extension of \(T \in \Omega(\hat{\mathbb{A}}) \), i.e., \(\mathbb{A} \supset T \supset \hat{\mathbb{A}}, \mathbb{A}^* \supset T^* \supset \hat{\mathbb{A}} \));
- \(\mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_- \) is a rigged Hilbert space, \(\dim E < \infty \);
- \(\text{Im} \, \mathbb{A} = \mathcal{K} \mathcal{J} \mathcal{K}^* \);
- \(K \) is a linear bounded operator from \(E \) into \(\mathcal{H}_- \);
- \(J = J^* = J^{-1} \in [E, E] \).
\[\Theta = \begin{pmatrix} A & K & J \\ H_+ \subset H \subset H_- & E \end{pmatrix} \quad (1) \]

- \(A \) is a bounded linear operator from \(H_+ \) to \(H_- \) ((*)-extension of \(T \in \Omega(\hat{A}) \), i.e., \(\hat{A} \supset T \supset \hat{A}, \hat{A}^* \supset T^* \supset \hat{A} \));
- \(H_+ \subset H \subset H_- \) is a rigged Hilbert space, \(\dim E < \infty \);
- \(\text{Im} \hat{A} = KJK^* \);
- \(K \) is a linear bounded operator from \(E \) into \(H_- \);
- \(J = J^* = J^{-1} \in [E, E] \).
Uniqueness of an L-system

- T is a **main operator** of the L-system.
- \hat{A} is a symmetric operator, the largest common Hermitian part of T and T^*.
- A is a (\ast)-extensions of T, i.e., $A \supset T$, $A^* \supset T^*$,
- \hat{A} is a quasi-kernel of $\text{Re} A$, a self-adjoint extension of \hat{A} such that $\text{Re} A \supset \hat{A} = \hat{A}^* \supset \hat{A}$.

The triple of operators \hat{A}, T, and \hat{A} define an L-system uniquely.
Uniqueness of an L-system

- T is a **main operator** of the L-system.
- \dot{A} is a **symmetric operator**, the largest common Hermitian part of T and T^*.
- A is a $\left(\ast\right)$-extensions of T, i.e., $A \supset T$, $A^\ast \supset T^*$,
- \hat{A} is a **quasi-kernel** of $\text{Re} A$, a self-adjoint extension of \dot{A} such that $\text{Re} A \supset \hat{A} = \hat{A}^\ast \supset \dot{A}$.

The triple of operators \dot{A}, T, and \hat{A} define an L-system uniquely.
Uniqueness of an L-system

- T is a **main operator** of the L-system.
- $\dot{\mathbb{A}}$ is a **symmetric operator**, the largest common Hermitian part of T and T^*.
- \mathbb{A} is a (\ast)-extensions of T, i.e., $\mathbb{A} \supseteq T$, $\mathbb{A}^* \supseteq T^*$,
- $\hat{\mathbb{A}}$ is a quasi-kernel of $\text{Re} \mathbb{A}$, a self-adjoint extension of $\dot{\mathbb{A}}$ such that $\text{Re} \mathbb{A} \supseteq \hat{\mathbb{A}} = \mathbb{A}^* \supseteq \dot{\mathbb{A}}$.

The triple of operators $\dot{\mathbb{A}}$, T, and $\hat{\mathbb{A}}$ define an L-system uniquely.
Uniqueness of an L-system

- T is a **main operator** of the L-system.
- \hat{A} is a **symmetric operator**, the largest common Hermitian part of T and T^*.
- A is a (\ast)-extensions of T, i.e., $A \supset T$, $A^* \supset T^*$,
- \hat{A} is a **quasi-kernel** of $\text{Re } A$, a self-adjoint extension of \hat{A} such that $\text{Re } A \supset \hat{A} = \hat{A}^* \supset \hat{A}$.

The triple of operators \hat{A}, T, and \hat{A} define an L-system uniquely.
Uniqueness of an L-system

- T is a **main operator** of the L-system.
- \hat{A} is a **symmetric operator**, the largest common Hermitian part of T and T^*.
- A is a (\ast)-extensions of T, i.e., $A \supset T$, $A^* \supset T^*$,
- \hat{A} is a **quasi-kernel** of $\text{Re} \ A$, a self-adjoint extension of \hat{A} such that $\text{Re} \ A \supset \hat{A} = \hat{A}^* \supset \hat{A}$.

The triple of operators \hat{A}, T, and \hat{A} define an L-system uniquely.
Transfer and Impedance function of an L-system

Transfer function

\[W_{\Theta}(z) = I - 2iK^*(A - zI)^{-1}KJ \]

Impedance function of \(\Theta = \text{LFT of } W_{\Theta}(z) \)

\[V_{\Theta}(z) = i[W_{\Theta}(z) + I]^{-1}[W_{\Theta}(z) - I]J = K^*(\text{Re } A - zI)^{-1}K \quad (2) \]
Transfer and Impedance function of an L-system

Transfer function

\[W_\Theta(z) = I - 2iK^*(A - zI)^{-1}KJ \]

Impedance function of \(\Theta = \text{LFT of } W_\Theta(z) \)

\[V_\Theta(z) = i[W_\Theta(z) + I]^{-1}[W_\Theta(z) - I]J = K^*(\text{Re} A - zI)^{-1}K \] (2)
Transfer and Impedance function of an L-system

Transfer function

\[W_\Theta(z) = I - 2iK^*(\mathbb{A} - zI)^{-1}KJ \]

Impedance function of \(\Theta = \text{LFT of } W_\Theta(z) \)

\[V_\Theta(z) = i[W_\Theta(z) + I]^{-1}[W_\Theta(z) - I]J = K^*(\text{Re}\mathbb{A} - zI)^{-1}K \quad (2) \]
Direct and Inverse Realization Problems

Direct Problem Given an L-system Θ we need to derive transfer function $W_\Theta(z)$ and classify the impedance function $V_\Theta(z)$

Inverse Problem Given a function $V(z)$ of a certain class we need to construct an L-system Θ such that

$$V(z) = i[W_\Theta(z) + I]^{-1}[W_\Theta(z) - I]J$$
Direct and Inverse Realization Problems

Direct Problem Given an L-system Θ we need to derive transfer function $W_\Theta(z)$ and classify the impedance function $V_\Theta(z)$

Inverse Problem Given a function $V(z)$ of a certain class we need to construct an L-system Θ such that

$$V(z) = i[W_\Theta(z) + I]^{-1}[W_\Theta(z) - I]J$$
Direct and Inverse Realization Problems

Direct Problem Given an L-system Θ we need to derive transfer function $W_\Theta(z)$ and classify the impedance function $V_\Theta(z)$

Inverse Problem Given a function $V(z)$ of a certain class we need to construct an L-system Θ such that

$$V(z) = i[W_\Theta(z) + I]^{-1}[W_\Theta(z) - I]J$$
An L-system w/1-D input-output

One-dimensional L-system

\[\Theta = \begin{pmatrix} A & K & 1 \\ \mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_- \\ C \end{pmatrix} \]
An L-system w/1-D input-output

One-dimensional L-system

\[\Theta = \begin{pmatrix} A & K & 1 \\ \mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_- & \mathbb{C} \end{pmatrix} \] (3)
Main operator T

In L-system (3) $T \neq T^*$ is a maximal dissipative extension of a symmetric operator \hat{A} with deficiency indices $(1, 1)$,

$$\text{Im}(Tf, f) \geq 0, \quad f \in \text{Dom}(T).$$

Operator T is quasi-self-adjoint that is, $\hat{A} \subset T \subset \hat{A}^*$ and

$$g_+ - \kappa g_- \in \text{Dom}(T) \quad \text{for some } |\kappa| < 1. \quad (4)$$

Operator T is the main operator of L-system (3).
Let \hat{A} be a self-adjoint extension of A such that

$$\text{Re} A \supset \hat{A} = \hat{A}^* \supset A.$$

By von Neumann’s formula

$$\text{Dom}(\hat{A}) = \text{Dom}(A) \oplus (1 + U) \ker(\hat{A}^* - iI),$$

where U is a unimodular parameter, $|U| = 1$. Operator \hat{A} is the quasi-kernel of the real part $\text{Re} A$ of the state-space operator A.

Quasi-kernel \hat{A} of $\text{Re} A$
A unique L-system w/1-D input-output

A triple \((\hat{A}, T, \hat{A})\) of a symmetric operator, main operator, and a quasi-kernel in a Hilbert space \(\mathcal{H}\) defines an L-system

\[
\Theta = \begin{pmatrix}
\hat{A} & K & 1 \\
\mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_- \\
\mathbb{C}
\end{pmatrix}
\] \hspace{1cm} (5)

uniquely. This L-system \(\Theta\) has a one-dimensional input-output space \(E = \mathbb{C}\).
Hypothesis 1, $U = -1$

Hypothesis (1)

Suppose that $T \neq T^*$ is a maximal dissipative extension of a symmetric operator \hat{A} with deficiency indices $(1, 1)$ and \hat{A} is a self-adjoint (reference) extension of \hat{A}. Let deficiency elements $g_\pm \in \ker(\hat{A}^* \mp il)$ be normalized, $\|g_\pm\| = 1$, and such that

$g_+ - g_- \in \text{Dom}(A)$ and $g_+ - \kappa g_- \in \text{Dom}(T)$ for some $|\kappa| < 1$.
Hypothesis 1, $U = -1$

Hypothesis (1)

Suppose that $T \neq T^*$ is a maximal dissipative extension of a symmetric operator \hat{A} with deficiency indices $(1, 1)$ and \hat{A} is a self-adjoint (reference) extension of \dot{A}. Let deficiency elements $g_\pm \in \ker(\hat{A}^* \mp iI)$ be normalized, $\|g_\pm\| = 1$, and such that

$g_+ - g_- \in \text{Dom}(A)$ and $g_+ - \kappa g_- \in \text{Dom}(T)$ for some $|\kappa| < 1$.
Hypothesis 2 ("Anti-hypothesis"), $U = 1$

Hypothesis (2)

Suppose that $T \neq T^*$ is a maximal dissipative extension of a symmetric operator \hat{A} with deficiency indices $(1, 1)$ and \hat{A} is a self-adjoint (reference) extension of \hat{A}. Let deficiency elements $g_\pm \in \ker(\hat{A}^* \mp iI)$ be normalized, $\|g_\pm\| = 1$, and such that

$g_+ + g_- \in \text{Dom}(A)$ and $g_+ - \kappa g_- \in \text{Dom}(T)$ for some $|\kappa| < 1$.
Hypothesis 2 ("Anti-hypothesis"), \(U = 1 \)

Hypothesis (2)

Suppose that \(T \neq T^* \) is a maximal dissipative extension of a symmetric operator \(\hat{A} \) with deficiency indices \((1, 1)\) and \(\hat{A} \) is a self-adjoint (reference) extension of \(A \). Let deficiency elements \(g_\pm \in \ker(\hat{A}^* \mp il) \) be normalized, \(\|g_\pm\| = 1 \), and such that

\[
g_+ + g_- \in \text{Dom}(A) \quad \text{and} \quad g_+ - \kappa g_- \in \text{Dom}(T) \quad \text{for some} \quad |\kappa| < 1.
\]
Donoghue class M

Denote by M the Donoghue class of all analytic mappings M from \mathbb{C}_+ into itself that admits the representation

$$M(z) = \int_{\mathbb{R}} \left(\frac{1}{\lambda - z} - \frac{\lambda}{1 + \lambda^2} \right) d\mu,$$ \hspace{1cm} (6)

where μ is an infinite Borel measure and

$$\int_{\mathbb{R}} \frac{d\mu(\lambda)}{1 + \lambda^2} = 1, \quad \text{equivalently,} \quad M(i) = i.$$ \hspace{1cm} (7)
Generalized Donoghue classes \mathcal{M}_κ and $\mathcal{M}_{-1}\kappa$

An analytic function M from \mathbb{C}_+ into itself belongs to the generalized Donoghue class \mathcal{M}_κ, $(0 \leq \kappa < 1)$ if it admits the representation (6) and

$$\int_{\mathbb{R}} \frac{d\mu(\lambda)}{1 + \lambda^2} = a = \frac{1 - \kappa}{1 + \kappa} < 1 \iff M(i) = i \frac{1 - \kappa}{1 + \kappa}$$

(8)

and to the generalized Donoghue class $\mathcal{M}_{-1}\kappa$, $(0 \leq \kappa < 1)$ if it admits the representation (6) and

$$\int_{\mathbb{R}} \frac{d\mu(\lambda)}{1 + \lambda^2} = a = \frac{1 + \kappa}{1 - \kappa} > 1 \iff M(i) = i \frac{1 + \kappa}{1 - \kappa}.$$

(9)

Clearly, $\mathcal{M}_0 = \mathcal{M}_{-1}^{-1} = \mathcal{M}$.
Generalized Donoghue classes \mathcal{M}_κ and $\mathcal{M}_{-\kappa}$

An analytic function M from \mathbb{C}_+ into itself belongs to the generalized Donoghue class \mathcal{M}_κ, $(0 \leq \kappa < 1)$ if it admits the representation (6) and

$$\int_{\mathbb{R}} \frac{d\mu(\lambda)}{1 + \lambda^2} = a = \frac{1 - \kappa}{1 + \kappa} < 1 \iff M(i) = i \frac{1 - \kappa}{1 + \kappa} \quad (8)$$

and to the generalized Donoghue class $\mathcal{M}_{-\kappa}$, $(0 \leq \kappa < 1)$ if it admits the representation (6) and

$$\int_{\mathbb{R}} \frac{d\mu(\lambda)}{1 + \lambda^2} = a = \frac{1 + \kappa}{1 - \kappa} > 1 \iff M(i) = i \frac{1 + \kappa}{1 - \kappa}. \quad (9)$$

Clearly, $\mathcal{M}_0 = \mathcal{M}_{0}^{-1} = \mathcal{M}$.
Generalized Donoghue classes \mathcal{M}_κ and \mathcal{M}_κ^{-1}

An analytic function M from \mathbb{C}_+ into itself belongs to the generalized Donoghue class \mathcal{M}_κ, $(0 \leq \kappa < 1)$ if it admits the representation (6) and

$$\int_{\mathbb{R}} \frac{d\mu(\lambda)}{1 + \lambda^2} = a = \frac{1 - \kappa}{1 + \kappa} < 1 \iff M(i) = i \frac{1 - \kappa}{1 + \kappa} \quad (8)$$

and to the generalized Donoghue class \mathcal{M}_κ^{-1}, $(0 \leq \kappa < 1)$ if it admits the representation (6) and

$$\int_{\mathbb{R}} \frac{d\mu(\lambda)}{1 + \lambda^2} = a = \frac{1 + \kappa}{1 - \kappa} > 1 \iff M(i) = i \frac{1 + \kappa}{1 - \kappa} \quad (9)$$

Clearly, $\mathcal{M}_0 = \mathcal{M}_0^{-1} = \mathcal{M}$.

Generalized Donoghue classes \mathcal{M}_κ and \mathcal{M}_κ^{-1}
Generalized Donoghue classes \mathcal{M}_κ and \mathcal{M}^{-1}_κ

An analytic function M from \mathbb{C}_+ into itself belongs to the generalized Donoghue class \mathcal{M}_κ, $(0 \leq \kappa < 1)$ if it admits the representation (6) and

$$\int_{\mathbb{R}} \frac{d\mu(\lambda)}{1 + \lambda^2} = a = \frac{1 - \kappa}{1 + \kappa} < 1 \iff M(i) = i \frac{1 - \kappa}{1 + \kappa} \quad (8)$$

and to the generalized Donoghue class \mathcal{M}^{-1}_κ, $(0 \leq \kappa < 1)$ if it admits the representation (6) and

$$\int_{\mathbb{R}} \frac{d\mu(\lambda)}{1 + \lambda^2} = a = \frac{1 + \kappa}{1 - \kappa} > 1 \iff M(i) = i \frac{1 + \kappa}{1 - \kappa}. \quad (9)$$

Clearly, $\mathcal{M}_0 = \mathcal{M}^{-1}_0 = \mathcal{M}$.
A scalar Herglotz-Nevanlinna function $V(z)$ belongs to the class \mathcal{M}^Q if it admits the following integral representation

$$V(z) = Q + \int_{\mathbb{R}} \left(\frac{1}{\lambda - z} - \frac{\lambda}{1 + \lambda^2} \right) d\mu, \quad Q = \bar{Q}, \quad (10)$$

and has condition (7) on the measure μ. Similarly, we introduce perturbed classes \mathcal{M}^Q_κ and $\mathcal{M}^{-1, Q}_{\kappa}$ if normalization conditions (8) and (9), respectively, hold on measure μ in (10).
A scalar Herglotz-Nevanlinna function $V(z)$ belongs to the class \mathcal{M}^Q if it admits the following integral representation

$$V(z) = Q + \int_{\mathbb{R}} \left(\frac{1}{\lambda - z} - \frac{\lambda}{1 + \lambda^2} \right) d\mu, \quad Q = \bar{Q}, \quad (10)$$

and has condition (7) on the measure μ. Similarly, we introduce perturbed classes \mathcal{M}^Q_κ and $\mathcal{M}^{-1,Q}_\kappa$ if normalization conditions (8) and (9), respectively, hold on measure μ in (10).
Donoghue class impedance functions

Theorem (B., Makarov, Tsekanovskii, '15)

Let Θ of the form (5) be an L-system whose main operator T has the von Neumann parameter κ, $(0 \leq \kappa < 1)$. Then its impedance function $V_\Theta(z)$ belongs to the Donoghue class \mathcal{M} if and only if $\kappa = 0$.
Donoghue class impedance functions

Theorem (B., Makarov, Tsekanovskii, ’15)

Let Θ of the form (5) be an L-system whose main operator T has the von Neumann parameter κ, $(0 \leq \kappa < 1)$. Then its impedance function $V_{\Theta}(z)$ belongs to the Donoghue class \mathcal{M} if and only if $\kappa = 0$.
Theorem (B., Makarov, Tsekanovskii, ’15)

Let Θ_κ, $0 \leq \kappa < 1$, of the form (5) be an L-system with the main operator T. Then its impedance function $V_{\Theta_\kappa}(z)$ belongs to the generalized Donoghue class \mathcal{M}_κ if and only if the triple $(\hat{\mathcal{A}}, T, \hat{\mathcal{A}})$ satisfies Hypothesis 1.

Theorem (B., Makarov, Tsekanovskii, ’16)

Let Θ_κ, $0 \leq \kappa < 1$, of the form (5) be an L-system with the main operator T. Then its impedance function $V_{\Theta_\kappa}(z)$ belongs to the generalized Donoghue class $\mathcal{M}_{-1, \kappa}$ if and only if the triple $(\hat{\mathcal{A}}, T, \hat{\mathcal{A}})$ satisfies Hypothesis 2.
Theorem (B., Makarov, Tsekanovskii, ’15)

Let Θ_κ, $0 \leq \kappa < 1$, of the form (5) be an L-system with the main operator T. Then its impedance function $V_{\Theta_\kappa}(z)$ belongs to the generalized Donoghue class \mathcal{M}_κ if and only if the triple (\dot{A}, T, \hat{A}) satisfies Hypothesis 1.

Theorem (B., Makarov, Tsekanovskii, ’16)

Let Θ_κ, $0 \leq \kappa < 1$, of the form (5) be an L-system with the main operator T. Then its impedance function $V_{\Theta_\kappa}(z)$ belongs to the generalized Donoghue class $\mathcal{M}_{-1}^{-\kappa}$ if and only if the triple (\dot{A}, T, \hat{A}) satisfies Hypothesis 2.
Theorem (B., Makarov, Tsekanovskii, ’15)

Let Θ_κ, $0 \leq \kappa < 1$, of the form (5) be an L-system with the main
operator T. Then its impedance function $V_{\Theta_\kappa}(z)$ belongs to the
generalized Donoghue class \mathcal{M}_κ if and only if the triple
(\hat{A}, T, \hat{A}) satisfies Hypothesis 1.

Theorem (B., Makarov, Tsekanovskii, ’16)

Let Θ_κ, $0 \leq \kappa < 1$, of the form (5) be an L-system with the main
operator T. Then its impedance function $V_{\Theta_\kappa}(z)$ belongs to the
generalized Donoghue class \mathcal{M}_{-1}^κ if and only if the triple
(\hat{A}, T, \hat{A}) satisfies Hypothesis 2.
Realization of Donoghue classes

\[\Theta = \begin{pmatrix} A & K & 1 \\ \mathcal{H}_+ & \mathcal{H} & \mathcal{H}_- \end{pmatrix} \]

Function class

\[V(z) \in \mathcal{M} \]

\[T \text{ has } \kappa = 0 \]

\[U \text{ is an arbitrary unimodular number.} \]
Realization of Donoghue classes

\[\Theta = \begin{pmatrix} A & K & 1 \\ \mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_- & C \end{pmatrix} \]

Function class

\[V(z) \in \mathcal{M} \]

\[T \text{ has } \kappa = 0 \]

\[U \text{ is an arbitrary unimodular number.} \]
Realization of Donoghue classes

\[\Theta = \begin{pmatrix} \mathcal{A} & K & 1 \\ \mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_- & 1 \\ \mathcal{C} & & & & \end{pmatrix} \]

Function class

\[V(z) \in \mathcal{M} \]

\(T \) has \(\kappa = 0 \)

\(U \) is an arbitrary unimodular number.
Realization of Donoghue classes

$$\Theta = \begin{pmatrix} A & K \\ \mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_- & 1 \end{pmatrix}$$

Function class

$$V(z) \in \mathcal{M}$$

T has $\kappa = 0$

U is an arbitrary unimodular number.
Realization of Donoghue classes

\[\Theta = \begin{pmatrix} \mathcal{A} & K & 1 \\ \mathcal{H}_+ & \subset & \mathcal{H} & \subset & \mathcal{H}_- \end{pmatrix} \]

Function class

\[V(z) \in \mathcal{M} \]

\[T \] has \(\kappa = 0 \)

\(U \) is an arbitrary unimodular number.
Realization of Donoghue classes

\[\Theta = \begin{pmatrix} A \\ \mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_- \end{pmatrix} \begin{pmatrix} K & 1 \\ \mathfrak{c} \end{pmatrix} \]

Function class

\[V(z) \in \mathcal{M} \]

\[T \quad \text{has} \quad \kappa = 0 \]

\(U \) is an arbitrary unimodular number.
Realization of Donoghue classes

\[\Theta = \begin{pmatrix} A & K & 1 \\ \mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_- & 1 & \mathbb{C} \end{pmatrix} \]

Function class

\[V(z) \in \mathcal{M}_\kappa \]

\(T \) has von Neumann parameter \(\kappa \)

\(\hat{A} \) is parameterized with \(U = -1 \)

\((\hat{A}, T, \hat{A}) \) satisfies Hypothesis 1.
Realization of Donoghue classes

\[\Theta = \begin{pmatrix} \Lambda & K & 1 \\ \mathcal{H}_+ & \subset & \mathcal{H} & \subset & \mathcal{H}_- \end{pmatrix} \]

Function class

\[V(z) \in \mathcal{M}_\kappa \]

\(T \) has von Neumann parameter \(\kappa \)

\(\hat{A} \) is parameterized with \(U = -1 \)

\((\hat{A}, T, \hat{A}) \) satisfies Hypothesis 1.
Realization of Donoghue classes

\[\Theta = \begin{pmatrix} A & K & 1 \\ \mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_- & C \end{pmatrix} \]

Function class

\[V(z) \in \mathcal{M}_\kappa \]

\(T \) has von Neumann parameter \(\kappa \)

\(\hat{\hat{A}} \) is parameterized with \(U = -1 \)

\((\hat{\hat{A}}, T, \hat{\hat{A}}) \) satisfies Hypothesis 1.
Realization of Donoghue classes

\[\Theta = \begin{pmatrix} \hat{A} & K & 1 \\ \mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_- & C \end{pmatrix} \]

- \(V(z) \in M_\kappa \)
- \(T \) has von Neumann parameter \(\kappa \)
- \(\hat{A} \) is parameterized with \(U = -1 \)

\((\hat{A}, T, \hat{A})\) satisfies Hypothesis 1.
Realization of Donoghue classes

\[\Theta = \begin{pmatrix} \hat{A} & K & 1 \\ \mathcal{H}_+ & \subset & \mathcal{H} & \subset & \mathcal{H}_- \end{pmatrix} \]

\(T \) has von Neumann parameter \(\kappa \)
\(\hat{A} \) is parameterized with \(U = -1 \)

(\(\hat{A}, T, \hat{A} \)) satisfies Hypothesis 1.
Realization of Donoghue classes

\[\Theta = \begin{pmatrix} \hat{A} & K & 1 \\ \mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_- \end{pmatrix} \]

Function class

\[V(z) \in \mathcal{M}_\kappa \]

\(T \) has von Neumann parameter \(\kappa \)

\(\hat{A} \) is parameterized with \(U = -1 \)

\((\hat{A}, T, \hat{A}) \) satisfies Hypothesis 1.
Realization of Donoghue classes

\[\Theta = \begin{pmatrix} \Lambda & K & 1 \\ \mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_- & \mathbb{C} \end{pmatrix} \]

Function class

\[V(z) \in \mathfrak{M}_{-1}^{\kappa} \]

\(T \) has von Neumann parameter \(\kappa \)

\(\hat{A} \) is parameterized with \(U = 1 \)

\((\hat{A}, T, \hat{A}) \) satisfies Hypothesis 2.
Realization of Donoghue classes

\[\Theta = \begin{pmatrix} A & K & 1 \\ \mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_- & 1 \end{pmatrix} \]

Function class

\[V(z) \in M_{\kappa}^{-1} \]

\(T \) has von Neumann parameter \(\kappa \)

\(\hat{A} \) is parameterized with \(U = 1 \)

\((\hat{A}, T, \hat{A}) \) satisfies Hypothesis 2.
Realization of Donoghue classes

\[\Theta = \begin{pmatrix} A & K & 1 \\ H_+ \subset H \subset H_- & C \end{pmatrix} \]

Function class

\[V(z) \in \mathcal{M}^{-1}_\kappa \]

\[T \] has von Neumann parameter \(\kappa \)

\(\hat{A} \) is parameterized with \(U = 1 \)

\((\hat{A}, T, \hat{A}) \) satisfies Hypothesis 2.
Realization of Donoghue classes

\[\Theta = \left(\begin{array}{ccc} \hat{A} & K & 1 \\ \mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_- & 1 & 1 \end{array} \right) \]

Function class

\[V(z) \in \mathcal{M}_{\kappa}^{-1} \]

\(T \) has von Neumann parameter \(\kappa \)

\(\hat{A} \) is parameterized with \(U = 1 \)

\((\hat{A}, T, \hat{A}) \) satisfies Hypothesis 2.
Realization of Donoghue classes

\[\Theta = \begin{pmatrix} A & K & 1 \\ \mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_- \end{pmatrix} \]

\(\mathcal{T} \) has von Neumann parameter \(\kappa \)

\(\hat{A} \) is parameterized with \(U = 1 \)

\((\hat{A}, T, \hat{A})\) satisfies Hypothesis 2.
Realization of Donoghue classes

\[\Theta = \begin{pmatrix} \hat{A} & K & 1 \\ \mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_- & 1 \end{pmatrix} \]

Function class

\[V(z) \in \mathcal{M}_\kappa^{-1} \]

\begin{itemize}
 \item T has von Neumann parameter κ
 \item \hat{A} is parameterized with $U = 1$
 \item (\hat{A}, T, \hat{A}) satisfies Hypothesis 2.
\end{itemize}
Realization of perturbed Donoghue classes

\[\Theta = \begin{pmatrix} A & K & 1 \\ \mathcal{H}_+ & \subset & \mathcal{H} & \subset & \mathcal{H}_- \end{pmatrix} \]

Function class
\[V(z) \in \mathcal{M} \]

Function class
\[V(z) \in \mathcal{M}_{\kappa_0} \]

Function class
\[V(z) \in \mathcal{M}_{\kappa_0}^{-1} \]

\[T \ 	ext{has von Neumann parameter} \ \kappa = ? \]

\[\hat{A} \ 	ext{is parameterized with} \ U = ? \]
Realization of perturbed Donoghue classes

Function class

\[V(z) \in \mathcal{M} \]

Function class

\[V(z) \in \mathcal{M}_{\kappa_0} \]

Function class

\[V(z) \in \mathcal{M}_{\kappa_0}^{-1} \]

\[\Theta = \begin{pmatrix} \mathcal{A} & K & 1 \\ \mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_- \end{pmatrix} \]

\(T \) has von Neumann parameter \(\kappa = ? \).

\(\hat{A} \) is parameterized with \(U = ? \).
Realization of perturbed Donoghue classes

Function class
\[V(z) \in M \]

\[V(z) \in M_{\kappa_0} \]

\[\Theta = \left(\begin{array}{ccc} A & K & 1 \\ \mathcal{H}_+ & \subset & \mathcal{H} & \subset & \mathcal{H}_- \\ C & \end{array} \right) \]

\[T \text{ has von Neumann parameter } \kappa = ?. \]

\[\hat{A} \text{ is parameterized with } U = ?. \]
Realization of perturbed Donoghue classes

Let \(\Theta = \left(\begin{array}{ccc} A & K & 1 \\ \mathcal{H}_+ & \subset & \mathcal{H} & \subset & \mathcal{H}_- \\ C & \end{array} \right) \)

- **Function class**
 - \(V(z) \in \mathcal{M} \)

- **Function class**
 - \(V(z) \in \mathcal{M}_{\kappa_0} \)

- **Function class**
 - \(V(z) \in \mathcal{M}_{\kappa_0}^{-1} \)

\(T \) has von Neumann parameter \(\kappa = ? \).

\(\hat{A} \) is parameterized with \(U = ? \).
Realization of perturbed Donoghue classes

Function class
\[V(z) \in \mathcal{M} \]

Function class
\[V(z) \in \mathcal{M}_{\kappa_0} \]

Function class
\[V(z) \in \mathcal{M}_{\kappa_0}^{-1} \]

Perturbed function
\[\hat{A} = Q + V(z) \]

\[\Theta = \begin{pmatrix} A & K & 1 \\ \mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_- & C \end{pmatrix} \]

\(T \) has von Neumann parameter \(\kappa = ? \).

\(\hat{A} \) is parameterized with \(U = ? \).
Realization of perturbed Donoghue classes

\[\Theta = \begin{pmatrix} \mathcal{A} & K & 1 \\ \mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_- & 1 & 0 \\ \mathcal{C} & 0 & 1 \end{pmatrix} \]

\(T \) has von Neumann parameter \(\kappa = ? \).

\(\hat{A} \) is parameterized with \(U = ? \).
Realization of perturbed Donoghue classes

Function class
\[V(z) \in \mathcal{M} \]

Function class
\[V(z) \in \mathcal{M}_{\kappa_0} \]

Function class
\[V(z) \in \mathcal{M}_{-1}^{\kappa_0} \]

Perturbed function
\[Q + V(z) \]

\[\Theta = \begin{pmatrix} \tilde{A} & K & 1 \\ \mathcal{H} & \subset & \mathcal{H} & \subset & \mathcal{H} & \subset & \mathcal{H} \end{pmatrix} \]

\(T \) has von Neumann parameter \(\kappa = ? \).

\(\tilde{A} \) is parameterized with \(U = ? \).
Realization of perturbed Donoghue classes

Function class
\(V(z) \in \mathcal{M} \)

Function class
\(V(z) \in \mathcal{M}_{\kappa_0} \)

Function class
\(V(z) \in \mathcal{M}^{-1}_{\kappa_0} \)

Perturbed function
\(Q + V(z) \)

\[\Theta = \left(\begin{array}{ccc} \mathcal{A} & K & 1 \\ \mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_- & & \end{array} \right) \]

\(\hat{A} \) is parameterized with \(U = ? \).

\(T \) has von Neumann parameter \(\kappa = ? \).
Realization of perturbed Donoghue classes

Function class
\(V(z) \in \mathcal{M} \)

Function class
\(V(z) \in \mathcal{M}_{\kappa_0} \)

Function class
\(V(z) \in \mathcal{M}_{\kappa_0}^{-1} \)

Perturbed function
\(Q + V(z) \)

\[\Theta = \begin{pmatrix} \hat{A} & K & 1 \\ \mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_- & \mathbb{C} \end{pmatrix} \]

\(T \) has von Neumann parameter \(\kappa = ? \).

\(\hat{A} \) is parameterized with \(U = ? \).
Realization of class \mathcal{M}^Q

Theorem (B., Tsekanovskii, ’19)

Let $V(z)$ belong to the class \mathcal{M}^Q. Then $V(z)$ can be realized by a minimal L-system Θ with the main operator T whose von Neumann’s parameter κ is determined as a function of Q. by the formula

$$\kappa = \frac{|Q|}{\sqrt{Q^2 + 4}}, \quad Q \neq 0. \quad (11)$$

Moreover, the unimodular parameter U of the quasi-kernel \hat{A} of Θ is also uniquely defined by Q.

$$U = \frac{Q}{|Q|} \cdot \frac{-Q + 2i}{\sqrt{Q^2 + 4}}, \quad Q \neq 0. \quad (12)$$
Theorem (B., Tsekanovskii, ’19)

Let $V(z)$ belong to the class \mathcal{M}^Q. Then $V(z)$ can be realized by a minimal L-system Θ with the main operator T whose von Neumann’s parameter κ is determined as a function of Q by the formula

$$\kappa = \frac{|Q|}{\sqrt{Q^2 + 4}}, \quad Q \neq 0. \quad (11)$$

Moreover, the unimodular parameter U of the quasi-kernel \hat{A} of Θ is also uniquely defined by Q.

$$U = \frac{Q}{|Q|} \cdot \frac{-Q + 2i}{\sqrt{Q^2 + 4}}, \quad Q \neq 0. \quad (12)$$
Realization of class $\mathcal{M}_κ^Q$

Theorem (B., Tsekanovskii, ’19)

Let $V(z)$ belong to the class $\mathcal{M}_κ^Q$ and have a normalization parameter $0 < a < 1$. Then $V(z)$ can be realized by a minimal L-system Θ with the main operator T whose von Neumann’s parameter $κ$ is uniquely determined as a function of Q and a.

\[
κ = \frac{\left(b - 2Q^2 - \sqrt{b^2 + 4Q^2}\right)^2 - a \left(b - \sqrt{b^2 + 4Q^2}\right)^2 + 4Q^2a(a - 1)}{\left(b - 2Q^2 - \sqrt{b^2 + 4Q^2}\right)^2 + a \left(b - \sqrt{b^2 + 4Q^2}\right)^2 + 4Q^2a(a + 1)}
\]

where $Q \neq 0$ and $b = Q^2 + a^2 - 1$.

(13)
Realization of class \(\mathcal{M}_{\kappa}^{Q} \)

Theorem (B., Tsekanovskii, ’19)

Let \(V(z) \) belong to the class \(\mathcal{M}_{\kappa_0}^{Q} \) and have a normalization parameter \(0 < a < 1 \). Then \(V(z) \) can be realized by a minimal L-system \(\Theta \) with the main operator \(T \) whose von Neumann’s parameter \(\kappa \) is uniquely determined as a function of \(Q \) and \(a \).

\[
\kappa = \frac{\left(b - 2Q^2 - \sqrt{b^2 + 4Q^2} \right)^2 - a \left(b - \sqrt{b^2 + 4Q^2} \right)^2 + 4Q^2a(a - 1)}{\left(b - 2Q^2 - \sqrt{b^2 + 4Q^2} \right)^2 + a \left(b - \sqrt{b^2 + 4Q^2} \right)^2 + 4Q^2a(a + 1)}
\]

where \(Q \neq 0 \) and \(b = Q^2 + a^2 - 1 \).
Theorem (B., Tsekanovskiĭ, ’19)

Moreover, the quasi-kernel $\hat{\mathbb{A}}$ of $\text{Re} \mathbb{A}$ of the realizing L-system Θ is uniquely defined with

$$U = \frac{(a + Qi)(1 - \kappa^2) - 1 - \kappa^2}{2\kappa}, \quad Q \neq 0. \quad (14)$$
Theorem (B., Tsekanovskii, ’19)

Moreover, the quasi-kernel \hat{A} of $\text{Re} A$ of the realizing L-system Θ is uniquely defined with

$$U = \frac{(a + Qi)(1 - \kappa^2) - 1 - \kappa^2}{2\kappa}, \quad Q \neq 0. \quad (14)$$
Realization of class $\mathcal{M}_{\kappa}^{-1,Q}$

Theorem (B., Tsekanovskii, ’19)

Let $V(z)$ belong to the class $\mathcal{M}_{\kappa_0}^{-1,Q}$ and have a normalization parameter $a > 1$. Then $V(z)$ can be realized by a minimal L-system Θ with the main operator T whose von Neumann’s parameter κ is uniquely determined as a function of Q and a.

$$\kappa = \frac{a \left(b + \sqrt{b^2 + 4Q^2} \right)^2 - \left(b - 2Q^2 + \sqrt{b^2 + 4Q^2} \right)^2 - 4Q^2 a(a - 1)}{\left(b - 2Q^2 + \sqrt{b^2 + 4Q^2} \right)^2 + a \left(b + \sqrt{b^2 + 4Q^2} \right)^2 + 4Q^2 a(a + 1)}$$

(15)

where $Q \neq 0$ and $b = Q^2 + a^2 - 1$.
Realization of class $\mathcal{M}_{\kappa}^{-1, Q}$

Theorem (B., Tsekanovskii, ’19)

Let $V(z)$ belong to the class $\mathcal{M}_{\kappa_0}^{-1, Q}$ and have a normalization parameter $a > 1$. Then $V(z)$ can be realized by a minimal L-system Θ with the main operator T whose von Neumann’s parameter κ is uniquely determined as a function of Q and a.

$$\kappa = \frac{a \left(b + \sqrt{b^2 + 4Q^2} \right)^2 - \left(b - 2Q^2 + \sqrt{b^2 + 4Q^2} \right)^2 - 4Q^2 a(a - 1)}{\left(b - 2Q^2 + \sqrt{b^2 + 4Q^2} \right)^2 + a \left(b + \sqrt{b^2 + 4Q^2} \right)^2 + 4Q^2 a(a + 1)}$$

(15)

where $Q \neq 0$ and $b = Q^2 + a^2 - 1$.
Realization of class $\mathcal{M}_{-1,Q}^\kappa$

Theorem (B., Tsekanovskii, ’19)

Moreover, the quasi-kernel \hat{A} of $\text{Re}A$ of the realizing L-system Θ is uniquely defined with

$$U = \frac{(a + Qi)(1 - \kappa^2) - 1 - \kappa^2}{2\kappa}, \quad Q \neq 0. \quad (16)$$
Realization of class $\mathcal{M}^{-1,Q}_\kappa$

Theorem (B., Tsekanovskii, ’19)

Moreover, the quasi-kernel \hat{A} of $\text{Re} A$ of the realizing L-system Θ is uniquely defined with

$$U = \frac{(a + Qi)(1 - \kappa^2) - 1 - \kappa^2}{2\kappa}, \quad Q \neq 0.$$ (16)
Direct theorem for L-systems

Theorem (B., Tsekanovskiĭ, ’19)

Let Θ be a minimal L-system of the form (5) with the main operator T and its von Neumann’s parameter κ, ($0 \leq \kappa < 1$). Then only one of the following takes place:

1. $V_\Theta(z)$ belongs to class M^Q and κ is determined by (11) for some Q;

2. $V_\Theta(z)$ belongs to class M^{κ_0} and κ is determined by (13) for some Q and $a = \frac{1-\kappa_0}{1+\kappa_0}$;

3. $V_\Theta(z)$ belongs to class M^{-1,κ_0} and κ is determined by (15) for some Q and $a = \frac{1+\kappa_0}{1-\kappa_0}$.

The values of Q and κ_0 are determined from integral representation (10) of $V_\Theta(z)$.
Direct theorem for L-systems

Theorem (B., Tsekanovskii, ’19)

Let Θ be a minimal L-system of the form (5) with the main operator T and its von Neumann’s parameter κ, $0 \leq \kappa < 1$. Then only one of the following takes place:

1. $V_{\Theta}(z)$ belongs to class M^Q and κ is determined by (11) for some Q;

2. $V_{\Theta}(z)$ belongs to class $M^{Q}_{\kappa_0}$ and κ is determined by (13) for some Q and $a = \frac{1-\kappa_0}{1+\kappa_0}$;

3. $V_{\Theta}(z)$ belongs to class $M^{-1, Q}_{\kappa_0}$ and κ is determined by (15) for some Q and $a = \frac{1+\kappa_0}{1-\kappa_0}$.

The values of Q and κ_0 are determined from integral representation (10) of $V_{\Theta}(z)$.
Theorem (B., Tsekanovskii, ’19)

Let Θ be a minimal L-system of the form (5) with the main operator T and its von Neumann’s parameter κ, $(0 \leq \kappa < 1)$. Then only one of the following takes place:

1. $V_\Theta(z)$ belongs to class \mathfrak{M}^Q and κ is determined by (11) for some Q;

2. $V_\Theta(z)$ belongs to class $\mathfrak{M}^Q_{\kappa_0}$ and κ is determined by (13) for some Q and $a = \frac{1-\kappa_0}{1+\kappa_0}$;

3. $V_\Theta(z)$ belongs to class $\mathfrak{M}^{-1,Q}$ and κ is determined by (15) for some Q and $a = \frac{1+\kappa_0}{1-\kappa_0}$.

The values of Q and κ_0 are determined from integral representation (10) of $V_\Theta(z)$.
Theorem (B., Tsekanovskiĭ, ’19)

Let Θ be a minimal L-system of the form (5) with the main operator T and its von Neumann’s parameter κ, ($0 \leq \kappa < 1$). Then only one of the following takes place:

1. $V_{\Theta}(z)$ belongs to class \mathcal{M}^Q and κ is determined by (11) for some Q;

2. $V_{\Theta}(z)$ belongs to class \mathcal{M}^{κ_0} and κ is determined by (13) for some Q and $a = \frac{1-\kappa_0}{1+\kappa_0}$;

3. $V_{\Theta}(z)$ belongs to class $\mathcal{M}^{-1,\kappa_0}$ and κ is determined by (15) for some Q and $a = \frac{1+\kappa_0}{1-\kappa_0}$.

The values of Q and κ_0 are determined from integral representation (10) of $V_{\Theta}(z)$.
Theorem (B., Tsekanovskii, ’19)

Let Θ be a minimal L-system of the form (5) with the main operator T and its von Neumann’s parameter κ, $(0 \leq \kappa < 1)$. Then only one of the following takes place:

1. $V_{\Theta}(z)$ belongs to class \mathcal{M}^Q and κ is determined by (11) for some Q;

2. $V_{\Theta}(z)$ belongs to class $\mathcal{M}_{\kappa_0}^Q$ and κ is determined by (13) for some Q and $a = \frac{1-\kappa_0}{1+\kappa_0}$;

3. $V_{\Theta}(z)$ belongs to class $\mathcal{M}_{\kappa_0}^{-1, Q}$ and κ is determined by (15) for some Q and $a = \frac{1+\kappa_0}{1-\kappa_0}$.

The values of Q and κ_0 are determined from integral representation (10) of $V_{\Theta}(z)$.
Direct theorem for L-systems

Theorem (B., Tsekanovskii, ’19)

Let \(\Theta \) be a minimal L-system of the form (5) with the main operator \(T \) and its von Neumann’s parameter \(\kappa \), \(0 \leq \kappa < 1 \).

Then only one of the following takes place:

1. \(V_\Theta(z) \) belongs to class \(\mathcal{M}^Q \) and \(\kappa \) is determined by (11) for some \(Q \);

2. \(V_\Theta(z) \) belongs to class \(\mathcal{M}^{\kappa_0}_Q \) and \(\kappa \) is determined by (13) for some \(Q \) and \(a = \frac{1-\kappa_0}{1+\kappa_0} \);

3. \(V_\Theta(z) \) belongs to class \(\mathcal{M}^{-1,Q}_{\kappa_0} \) and \(\kappa \) is determined by (15) for some \(Q \) and \(a = \frac{1+\kappa_0}{1-\kappa_0} \).

The values of \(Q \) and \(\kappa_0 \) are determined from integral representation (10) of \(V_\Theta(z) \).
Suppose we are given an L-system Θ whose impedance function $V_{\Theta}(z)$ belongs to one of the Donoghue classes \mathcal{M}, \mathcal{M}_{κ_0}, or $\mathcal{M}_{-1\kappa_0}$. Let also $Q \neq 0$ be any real number.

Perturbation of an L-system

An L-system Θ^Q whose construction is based on the elements of a given L-system Θ (subject to either of Hypotheses 1 or 2) is called the **perturbation of an L-system Θ** if

$$V_{\Theta^Q}(z) = Q + V_{\Theta}(z).$$
Suppose we are given an L-system Θ whose impedance function $V_{\Theta}(z)$ belongs to one of the Donoghue classes M, M_{κ_0}, or M_{-1}^{-1}. Let also $Q \neq 0$ be any real number.

Perturbation of an L-system

An L-system Θ^Q whose construction is based on the elements of a given L-system Θ (subject to either of Hypotheses 1 or 2) is called the **perturbation of an L-system** Θ if

$$V_{\Theta^Q}(z) = Q + V_{\Theta}(z).$$
Perturbing an L-system

Unperturbed L-system

\[\Theta = \begin{pmatrix} A & K & 1 \\ H_+ & H & H_- \end{pmatrix} \]

Given unperturbed L-system.
Perturbing an L-system

Unperturbed L-system

\[\Theta = \begin{pmatrix} A & K & 1 \\ \mathcal{H}_+ & \subset & \mathcal{H} & \subset & \mathcal{H}_- \\ \mathbb{C} & & & & & & \end{pmatrix} \]

Given unperturbed L-system.
Perturbing an L-system

Unperturbed L-system

\[\Theta = \begin{pmatrix} \mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_- & 1 \\ \mathbb{C} \end{pmatrix} \]

Keep the symmetric operator \(\dot{A} \) and state space \(\mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_- \).
Perturbing an L-system

Unperturbed L-system

\[\Theta = \begin{pmatrix} \mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_- & 1 \\ \mathbb{C} & \mathbb{C} \end{pmatrix} \]

Construct state-space operator A^Q and channel operator K^Q.
Perturbing an L-system

\[\Theta^Q = \begin{pmatrix} A^Q & K^Q & 1 \\ \mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_- \end{pmatrix} \]

Obtain perturbed L-system \(\Theta^Q \) such that \(V_{\Theta^Q}(z) = Q + V_{\Theta_0}(z) \).
Theorem (B., Tsekanovskii, ’19)

Let Θ_0 be an L-system satisfying the conditions of Hypothesis 1 and such that $V_{\Theta_0}(z) \in M$. Then for any real number $Q \neq 0$ there exists another L-system Θ^Q with the same symmetric operator \hat{A} as in Θ_0 and such that

$$V_{\Theta^Q}(z) = Q + V_{\Theta}(z).$$

Moreover, the von Neumann parameter κ of its main operator T^Q is determined by the formula (11) while the quasi-kernel \hat{A}^Q is defined by U from (12).
Theorem (B., Tsekanovskiĭ, ’19)

Let Θ_0 be an L-system satisfying the conditions of Hypothesis 1 and such that $V_{\Theta_0}(z) \in \mathcal{M}$. Then for any real number $Q \neq 0$ there exists another L-system Θ^Q with the same symmetric operator \dot{A} as in Θ_0 and such that

$$V_{\Theta^Q}(z) = Q + V_{\Theta}(z).$$

Moreover, the von Neumann parameter κ of its main operator T^Q is determined by the formula (11) while the quasi-kernel \hat{A}^Q is defined by U from (12).
Perturbation of class M_{κ} systems

Theorem (B., Tsekanovskii, ’19)

Let Θ_{κ_0} be an L-system and such that $V_{\Theta_0}(z) \in M_{\kappa_0}$. Then for any real number $Q \neq 0$ there exists another L-system $\Theta_{\kappa, Q}$ with the same symmetric operator \hat{A} as in Θ_{κ_0} and such that

$$V_{\Theta_{\kappa, Q}}(z) = Q + V_{\Theta_{\kappa_0}}(z).$$

Moreover, the von Neumann parameter κ of its main operator T^Q is determined by the formula (13) while the quasi-kernel \hat{A}^Q is defined by U from (14).
Perturbation of class \mathcal{M}_κ systems

Theorem (B., Tsekanovskii, ’19)

Let Θ_{κ_0} be an L-system and such that $V_{\Theta_0}(z) \in \mathcal{M}_{\kappa_0}$. Then for any real number $Q \neq 0$ there exists another L-system Θ^Q_{κ} with the same symmetric operator \hat{A} as in Θ_{κ_0} and such that

$$V_{\Theta^Q_{\kappa}}(z) = Q + V_{\Theta_{\kappa_0}}(z).$$

Moreover, the von Neumann parameter κ of its main operator T^Q is determined by the formula (13) while the quasi-kernel \hat{A}^Q is defined by U from (14).
Theorem (B., Tsekanovskii, ’19)

Let Θ_{κ_0} be an L-system such that $V_{\Theta_0}(z) \in \mathcal{M}_{\kappa_0}^{-1}$. Then for any real number $Q \neq 0$ there exists another L-system Θ_Q^κ with the same symmetric operator \hat{A} as in Θ_{κ_0} and such that

$$V_{\Theta_Q^\kappa}(z) = Q + V_{\Theta_{\kappa_0}}(z).$$

Moreover, the von Neumann parameter κ of its main operator T^Q is determined by the formula (15) while the quasi-kernel \hat{A}^Q is defined by U from (16).
Theorem (B., Tsekanovskiĭ, ’19)

Let Θ_{κ_0} be an L-system such that $V_{\Theta_0}(z) \in \mathcal{M}_{\kappa_0}^{-1}$. Then for any real number $Q \neq 0$ there exists another L-system Θ^Q_{κ} with the same symmetric operator \hat{A} as in Θ_{κ_0} and such that

$$V_{\Theta^Q_{\kappa}}(z) = Q + V_{\Theta_{\kappa_0}}(z).$$

Moreover, the von Neumann parameter κ of its main operator T^Q is determined by the formula (15) while the quasi-kernel \hat{A}^Q is defined by U from (16).

Thank you!
Thank you!