Welcome to my website. I am a tenure track Assistant Professor (Laufbahnstelle) at TU Wien in the Institute of Analysis and Scientific Computing (ASC). You can reach me at mate.gerencser*at*tuwien.ac.at

My research interest lies in stochastic analysis: stochastic PDEs, regularity structures, rough paths, regularisation by noise, and numerical aspects of stochastic equations.


  1. Quantifying a convergence theorem of Gyöngy and Krylov
    with K. Dareiotis and K. Lê
  2. Regularisation by regular noise
  3. Singular paths spaces and applications
    with C. Bellingeri and P. K. Friz
  4. Porous media equations with multiplicative space-time white noise
    with K. Dareiotis and B. Gess
    Ann. Inst. H. Poincarée Probab. Statist, to appear (2021+), arXiv:2002.12924
  5. Approximation of SDEs - a stochastic sewing approach
    with O. Butkovsky and K. Dareiotis
  6. Nondivergence form quasilinear heat equations driven by space-time white noise
    Ann. Inst. H. Poincaré Anal. Non Linéaire (2020), doi:10.1016/j.anihpc.2020.01.003 arXiv:1902.07635
  7. On the regularisation of the noise for the Euler-Maruyama scheme with irregular drift
    with K. Dareiotis
    Electron. J. Probab. (2020), doi:10.1214/20-EJP479, arXiv:1812.04583
  8. Entropy solutions for stochastic porous medium equations
    with K. Dareiotis and B. Gess
    J. Differential Equations (2019), doi:10.1016/j.jde.2018.09.012, arXiv:1803.06953
  9. A solution theory for quasilinear singular SPDEs
    with M. Hairer
    Comm. Pure Appl. Math. (2019), doi:10.1002/cpa.21816, arXiv:1712.01881
  10. Boundary regularity of stochastic PDEs
    Ann. Probab. (2019), doi:10.1214/18-AOP1272, arXiv:1705.05364
  11. Singular SPDEs in domains with boundaries
    with M. Hairer
    Probab. Theory Related Fields (2019), doi:10.1007/s00440-018-0841-1, arXiv:1702.06522
  12. On stochastic differential equations with arbitrarily slow convergence rates for strong approximation in two space dimensions
    with A. Jentzen and D. Salimova
    Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. (2017) doi:10.1098/rspa.2017.0104, arXiv:1702.03229
  13. A Feynman-Kac formula for stochastic Dirichlet problems
    with I. Gyöngy
    Stochastic Process. Appl. (2019) doi:10.1016/j.spa.2018.04.003, arXiv:1611.04177
  14. Localization errors in solving stochastic partial differential equations in the whole space
    with I. Gyöngy
    Math. Comp. (2017), doi:10.1090/mcom/3201, arXiv:1508.05535
  15. Local L-estimates, weak Harnack inequality, and stochastic continuity of solutions of SPDEs
    with K. Dareiotis
    J. Differential Equations (2016), doi:10.1016/j.jde.2016.09.038, arXiv:1503.04472
  16. On the solvability of degenerate stochastic partial differential equations in Sobolev spaces
    with I. Gyöngy and N. V. Krylov
    Stoch. PDE: Anal. Comp. (2015), doi:10.1007/s40072-014-0042-6, arXiv:1404.4401
  17. On the boundedness of solutions of SPDEs
    with K. Dareiotis
    Stoch. PDE: Anal. Comp. (2015), doi:10.1007/s40072-014-0043-5, arXiv:1312.3843
  18. Finite difference schemes for stochastic partial differential equations in Sobolev spaces
    with I. Gyöngy
    Appl. Math. Optim. (2015), doi:10.1007/s00245-014-9272-2, arXiv:1308:4614


I am currently teaching the course Stochastic PDEs at TU Wien (20/21 Summer Semester). Further details can be found on TISS and TUWEL. If you cannot access these (which is especially likely if you are not affiliated with TU Wien) but would like to, let me know.