Michael Feischl Associate Professor for Computational PDEs

michael.feischl@tuwien.ac.at
Institute for Analysis and Scientific Computing (E 101)
TU Wien, Wiedner Hauptstra├če 8-10, 1040 Vienna
Office: DA 04 L14
Phone: +43 (1) 58801 10154

Workshop @ Erwin-Schrödinger-Institute, Vienna:
Adaptivity, High Dimensionality and Randomness
Co-Organizers: C. Carstensen, A. Cohen, C. Schwab
Date: April 4-8, 2022

Research Interests

My research focuses on three main areas (see also online talks ):

Recent publications (complete list below):
  1. Feischl, M. and Scaglioni, A. Convergence of adaptive stochastic collocation with finite elements. In Computers & Mathematics with Applications, 98: 139-156, 2021. doi 
  2. Akrivis, G.; Feischl, M.; Kovács, B. and Lubich, C. Higher-order linearly implicit full discretization of the Landau-Lifshitz-Gilbert equation. In Math. Comp., 90 (329): 995-1038, 2021. doi 
  3. Bohn, J. and Feischl, M. Recurrent neural networks as optimal mesh refinement strategies. In Comput. Math. Appl., 97: 61-76, 2021. doi 

Teaching

Workgroup

PostDoc PhD MSc
  • Lorenz Fischl
  • Hubert Hackl
  • Johannes Reicher

Software

List of Publications and Preprints

  1. Feischl, M. and Scaglioni, A. Convergence of adaptive stochastic collocation with finite elements. In Computers & Mathematics with Applications, 98: 139-156, 2021. doi 
  2. Akrivis, G.; Feischl, M.; Kovács, B. and Lubich, C. Higher-order linearly implicit full discretization of the Landau-Lifshitz-Gilbert equation. In Math. Comp., 90 (329): 995-1038, 2021. doi 
  3. Bohn, J. and Feischl, M. Recurrent neural networks as optimal mesh refinement strategies. In Comput. Math. Appl., 97: 61-76, 2021. doi 
  4. Feischl, M. Inf-sup stability implies quasi-orthogonality. Preprint: arXiv:2008.12198, 2021.
  5. Dick, J. and Feischl, M. A quasi-Monte Carlo data compression algorithm for machine learning. In Journal of Complexity: 101587, 2021. doi 
  6. Feischl, M. and Schwab, Ch. Exponential convergence in $H^1$ of $hp$-FEM for Gevrey regularity with isotropic singularities. In Numer. Math., 144 (2): 323-346, 2020. doi 
  7. Feischl, M. and Peterseim, D. Sparse compression of expected solution operators. In SIAM J. Numer. Anal., 58 (6): 3144-3164, 2020. doi 
  8. Feischl, M. An extension of general quasi-orthogonality. In Technical Report, 2020.
  9. Jan Bohn, M. F. and Kovacs, B. FEM-BEM coupling for Maxwell-Landau-Lifshitz-Gilbert equations via convolution quadrature: Weak form and numerical approximation. Preprint: CRC 1173 Preprint 2020/10, 2020.
  10. Feischl, M. Optimality of a standard adaptive finite element method for the Stokes problem. In SIAM J. Numer. Anal., 57 (3): 1124-1157, 2019. doi 
  11. Dick, J.; Feischl, M. and Schwab, C. Improved efficiency of a multi-index FEM for computational uncertainty quantification. In SIAM J. Numer. Anal., 57 (4): 1744-1769, 2019. doi 
  12. Feischl, M.; Kuo, F. Y. and Sloan, I. H. Fast random field generation with $H$-matrices. In Numer. Math., 140 (3): 639-676, 2018. doi 
  13. Feischl, M. Optimal adaptivity for non-symmetric FEM/BEM coupling. Preprint: arXiv:1710.06082, 2017.
  14. Feischl, M; Gantner, G; Haberl, A and Praetorius, D Optimal convergence for adaptive IGA boundary element methods for weakly-singular integral equations. In Numer. Math., 136: 147-182, 2017.
  15. Aurada, M; Feischl, M; Führer, T; Karkulik, M; Melenk, J. M and Praetorius, D Local inverse estimates for non-local boundary integral operators. In Math. Comp., 86 (308): 2651-2686, 2017.
  16. Feischl, M and Tran, T The Eddy Current--LLG Equations: FEM-BEM Coupling and A Priori Error Estimates. In SIAM J. Numer. Anal., 55 (4): 1786-1819, 2017.
  17. Feischl, M and Tran, T Existence of arbitrarily regular solutions of the LLG equation in 3D with natural boundary conditions. In SIAM J. Math. Anal., 49 (6): 4470-4490, 2017.
  18. Feischl, M; Gantner, G; Haberl, A and Praetorius, D Adaptive 2D IGA boundary element methods. In Eng. Anal. Bound. Elem., 62: 141-153, 2016.
  19. Feischl, M; Praetorius, D and Van der Zee, K An abstract analysis of optimal goal-oriented adaptivity. In SIAM J. Numer. Anal., 54: 1423-1448, 2016.
  20. Feischl, M; Führer, T; Niederer, M; Strommer, S; Steinboeck, A and Praetorius, D Efficient numerical computation of direct exchange areas in thermal radiation analysis. In Numerical Heat Transfer, Part B: Fundamentals, 69 (6): 511-533, 2016.
  21. Feischl, M; Führer, T; Praetorius, D and Stephan, E. P Optimal additive Schwarz preconditioning for hypersingular integral equations on locally refined triangulations. In Calcolo, 2016. doi 
  22. Aurada, M; Feischl, M; Führer, T; Karkulik, M and Praetorius, D Energy norm based error estimators for adaptive BEM for hypersingular integral equations. In Appl. Numer. Math., 95: 15-35, 2015.
  23. Feischl, M; Gantner, G; Haberl, A; Praetorius, D and Führer, T Adaptive boundary element methods for optimal convergence of point errors. In Numer. Math., 2015.
  24. Feischl, M; Führer, T; Praetorius, D and Stephan, E. P Optimal preconditioning for the symmetric and nonsymmetric coupling of adaptive finite elements and boundary elements. In Numer. Methods Partial Differential Equations, 2015.
  25. Feischl, M; Führer, T; Karkulik, M; Melenk, J. M and Praetorius, D Quasi-optimal convergence rates for adaptive boundary element methods with data approximation. Part II: Hyper-singular integral equation. In Electron. Trans. Numer. Anal., 44: 153-176, 2015.
  26. Feischl, M; Gantner, G and Praetorius, D Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations. In Comput. Methods Appl. Mech. Engrg., 290: 362-386, 2015.
  27. Feischl, M; Führer, T; Karkulik, M and Praetorius, D Stability of symmetric and nonsymmetric FEM-BEM couplings for nonlinear elasticity problems. In Numer. Math., 130: 199-223, 2015.
  28. Bruckner, F; Süss, D; Feischl, M; Führer, T; Goldenits, P; Page, M; Praetorius, D and Ruggeri, M Multiscale modeling in micromagnetics: Existence of solutions and numerical integration. In Math. Models Methods Appl. Sci., 24: 2627-2662, 2014.
  29. Carstensen, C; Feischl, M; Page, M and Praetorius, D Axioms of adaptivity. In Comput. Math. Appl., 67: 1195-1253, 2014.
  30. Feischl, M; Führer, T; Heuer, N; Karkulik, M and Praetorius, D Adaptive Boundary Element Methods: A Posteriori Error Estimators, Adaptivity, Convergence, and Implementation. In Arch. Comput. Methods Eng., 22: 309-389, 2014.
  31. Feischl, M; Führer, T and Praetorius, D Adaptive FEM with optimal convergence rates for a certain class of nonsymmetric and possibly nonlinear problems. In SIAM J. Numer. Anal., 52: 601-625, 2014.
  32. Feischl, M; Page, M and Praetorius, D Convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data. In J. Comput. Appl. Math., 255: 481-501, 2014.
  33. Feischl, M; Page, M and Praetorius, D Convergence of adaptive FEM for some elliptic obstacle problem with inhomogeneous Dirichlet data. In Int. J. Numer. Anal. Model., 11: 230-254, 2014.
  34. Feischl, M; Führer, T; Mitscha-Eibl, G; Praetorius, D and Stephan, E. P Convergence of adaptive BEM and adaptive FEM-BEM coupling for estimators without h-weighting factor. In Comput. Methods Appl. Math., 14: 485-508, 2014.
  35. Feischl, M; Führer, T; Karkulik, M and Praetorius, D ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve. In Eng. Anal. Bound. Elem., 38: 49-60, 2014.
  36. Aurada, M; Feischl, M; F├╝hrer, T; Karkulik, M; Melenk, J.M and Praetorius, D Classical FEM-BEM coupling methods: Nonlinearities, well-posedness, and adaptivity. In Comput. Mech., 51 (4): 399-419, 2013.
  37. Aurada, M; Feischl, M; Kemetmüller, J; Page, M and Praetorius, D Each $H^{{1/2}}$-stable projection yields convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data in $\mathbb{R}^d$. In ESAIM Math. Model. Numer. Anal., 47: 1207-1235, 2013.
  38. Aurada, M; Feischl, M; Führer, T; Karkulik, M and Praetorius, D Efficiency and optimality of some weighted-residual error estimator for adaptive 2D boundary element methods. In Comput. Methods Appl. Math., 13: 305-332, 2013.
  39. Aurada, M; Ebner, M; Feischl, M; Ferraz-Leite, S; Führer, T; Goldenits, P; Karkulik, M; Mayr, M and Praetorius, D HILBERT - a MATLAB implementation of adaptive 2D-BEM. In Numer. Algorithms, 2013.
  40. Bruckner, F; Vogler, C; Bergmair, B; Huber, T; Fuger, M; Süss, D; Feischl, M; Führer, T; Page, M and Praetorius, D Combining micromagnetism and magnetostatic Maxwell equations for multiscale magnetic simulations. In J. Magn. Magn. Mater., 343: 163-168, 2013.
  41. Feischl, M; Führer, T; Karkulik, M; Melenk, J. M and Praetorius, D Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, Part I: weakly-singular integral equation. In Calcolo: 1-32, 2013.
  42. Feischl, M; Karkulik, M; Melenk, J. M and Praetorius, D Quasi-optimal convergence rate for an adaptive boundary element method. In SIAM J. Numer. Anal., 51: 1327-1348, 2013.
  43. Aurada, M; Feischl, M; Karkulik, M and Praetorius, D A posteriori error estimates for the Johnson-N\'ed\'elec FEM-BEM coupling. In Eng. Anal. Bound. Elem., 36: 255-266, 2012.
  44. Aurada, M; Feischl, M and Praetorius, D Convergence of some adaptive FEM-BEM coupling for elliptic but possibly nonlinear interface problems. In ESAIM Math. Model. Numer. Anal., 46: 1147-1173, 2012.
  45. Bruckner, F; Vogler, C; Feischl, M; Praetorius, D; Bergmair, B; Huber, T; Fuger, M and Süss, D 3D FEM-BEM-coupling method to solve magnetostatic Maxwell equations. In J. Magn. Magn. Mater., 324: 1862-1866, 2012.