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Introduction

In the beginning of the twentieth century, mathematicians such as G. H. Hardy, F. and
M. Riesz and others started working on spaces of holomorphic functions defined on a
fixed domain in the complex plane. These spaces are named Hardy spaces and have a
number of interesting properties. For example, A. Beurling famously proved that Hardy
space functions could be factorised into inner and outer functions. This staple of complex
analysis can be found in most textbooks on the subject, cf. for example [Rud87] for an
overview.

However, Hardy spaces, and especially the Hardy-Hilbert space H2(D), can also be
examined against an operator theoretic background, giving alternative proofs to some
well-known theorems with the help of multiplication operators. The central question of
this Master’s thesis is now whether this approach can be broadened even further to also
work for linear relations.

We start this work with a short overview of the well-known notions we require from
functional analysis and give an introduction to linear relations. These materials were
covered in courses on functional analysis during my Master’s studies and can mostly be
found in [Wor11] and [Kal12].

In Chapter 2, we introduce the space H2(D) and look at some of its properties, linking it
to the Hilbert space of square-integrable functions on the torus in the process. Further-
more, one interesting result that we will generalise for linear relations, namely Theorem
2.1.14, is presented and Beurling’s Theorem on shift-invariant subspaces of H2(D) is
proved. For further reading we suggest [Neu10] as a starting point.

After collecting some facts about complex analysis for Banach-space valued holomor-
phic functions, Chapter 3 expands on the one-dimensional approach from Chapter 2.
Consequently, we find a number of analoguous properties for the Hardy-Hilbert space
H2(D;Cn) of vector-valued holomorphic functions. Furthermore, matrix-valued func-
tions are discussed to generalise multiplication operators to higher dimensions and an-
other version of Beurling’s Theorem is given. We recommend the excellent book [Nag10]
for a comprehensive treatment of this subject.

Finally, Chapter 4 characterises shift-invariant linear relations in Theorem 4.1.6, which
extends Theorem 2.1.14. We also try to recover properties of a linear relation, such
as it being an operator, from this characterisation. The chapter concludes with some
examples.
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Chapter 1

Preliminaries

In this chapter we will collect some of the concepts on which we will build our theory.
These include some well-known facts from functional analysis that are used throughout
this work, as well as an introduction to linear relations, which can be understood as
a way to generalise linear operators. We start with a short explanation of the used
notation.

1.1 Notation

We will understand N as to specifically exclude the number zero and write N0 if we
want to include it. Two subsets of the complex plane C are of special interest to us,
namely the unit disk, D :=

{
z ∈ C

∣∣ |z| < 1
}

, and its boundary, the unit circle or torus,
T :=

{
z ∈ C

∣∣ |z| = 1
}

. For a complex number z ∈ C, the expressions Re z and Im z
denote the real and imaginary part of z, respectively.

Throughout this work, X,Y, Z will be Banach spaces over C and their norm shall be
denoted by ‖.‖. We will write X ′ to refer to the topological dual of X, containing all
continuous linear mappings x′ : X → C. For Hilbert spaces, we will generally write
H or G and (., .) for their inner product. Elements of Cartesian products, i.e. ordered
pairs, are to be signified by [., .] and for sequences and nets we use (.). The index set
will mostly be N0, but we will use subscripts to clarify the notation wherever that is
necessary.

A mapping T : X → Y between Banach spaces X and Y will always be linear and also be
called a linear operator. The space of bounded operators is signified by B(X,Y ) — if X
and Y are identical, we write B(X) instead. It is a standard result that B(X,Y ) is itself a
Banach space, equipped with the operator norm, ‖T‖ = sup

{
‖Tx‖Y

∣∣ ‖x‖X ≤ 1
}

. It is
well-known that for linear operators boundedness is the same as continuity. Furthermore,
a linear operator T : dom T → Y , where dom T is a linear subspace of X, is called closed,
if its graph is closed in the product topology in X × Y . The range of T is denoted by
ran T .
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Chapter 1. Preliminaries

1.2 Basic Results from Functional Analysis

We start this section by recalling some fundamental theorems that we use later on. The
proofs of these claims can be found in any basic book on functional analysis, cf. [Heu92],
[Yos80] or [Wor11].

THEOREM 1.2.1 (Cauchy-Schwarz inequality). Let H be a linear space, equipped with
an inner product. Then we have

|(x, y)| ≤ ‖x‖ · ‖y‖

for x, y ∈ H, with equality if and only if x and y are linearly dependent.

THEOREM 1.2.2 (Principle of Uniform Boundedness). Let X be a Banach space and
Y be a normed space. Suppose that the family

{
Ti ∈ B(X,Y )

∣∣ i ∈ I} of bounded linear
operators from X to Y is pointwise bounded, i.e. for every x ∈ X we have

sup
i∈I
‖Tix‖ <∞,

then it is uniformly bounded, i.e.

sup
i∈I
‖Ti‖ <∞.

THEOREM 1.2.3 (Closed Graph Theorem). Let X,Y be Banach spaces and suppose
that T : X → Y is linear. If the graph of T is closed in X×Y then T must be continuous.

THEOREM 1.2.4 (Bounded Inverse Theorem). Let X,Y be Banach spaces and assume
that T : X → Y is a bijective linear operator. If T is continuous, then so is its inverse
T−1.

As a consequence of the theorems of Hahn-Banach we get the following

LEMMA 1.2.5. Let X be a locally convex topological vector space. Then the continuous
dual space X ′ is separating on X, i.e. for x, y ∈ X with x 6= y there exists f ∈ X ′ such
that f(x) 6= f(y).

Furthermore, we make use of

LEMMA 1.2.6 (Parseval’s identity). Let H be a Hilbert space and let
{
hα ∈ H

∣∣ α ∈ A}
be an orthonormal basis. Then for every x ∈ H we have

‖x‖2 =
∑
α∈A
|(x, hα)|2.

The proof of the next lemma can be found in [Kal12], II. Alternatively, Lemma 3.3.5
encompasses it as a special case in dimension one.
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Basic Results from Functional Analysis

LEMMA 1.2.7. Let (Ω,A, µ) be a measure space, where µ is nonnegative and finite.
Let h : Ω→ C be measurable. Consider the multiplication operator

Mh :

{
dom Mh → L2(µ)

f 7→ f · h

on the linear subspace dom Mh :=
{
f ∈ L2(µ)

∣∣ f · h ∈ L2(µ)
}

of L2(µ). Then we have

1. The space dom (Mh) is densely contained in L2(µ) and Mh is a closed operator,
i.e. the graph of Mh is closed in the product topology on L2(µ)× L2(µ).

2. The following statements are equivalent.

(a) The function h belongs to L∞(µ), i.e. it is essentially bounded.

(b) Mh is defined everywhere and bounded.

(c) Mh is bounded at least on an L2(µ)-dense linear subspace of its domain.

(d) Mh is defined everywhere.

In this case, Mh belongs to B(L2(µ)) and ‖Mh‖ = ‖h‖L∞.

For the next results on shift operators, we follow [Nag10], I.

DEFINITION 1.2.8. Let H be a Hilbert space.

1. Consider an isometry V ∈ B(H) on it. We call a subspace L of H wandering, if
V nL⊥L for all n ∈ N. In this case we define M+(L) :=

⊕∞
n=0 V

nL in H.

2. If U ∈ B(H) is unitary and A ⊆ H is a wandering subspace, i.e. UnA⊥A holds for
n ∈ Z\{0}, we define M(A) :=

⊕∞
n=−∞ U

nA.

Applying V to M+(L) gives VM+(L) =
⊕∞

n=1 V
nL = M+(L) 	 L, i.e. the orthogonal

complement of L in M+(L). Consequently,

L = M+(L)	 VM+(L). (1.1)

Notice that for the two way orthogonal sum M(A) =
⊕∞

n=−∞ U
nA the space A is not

uniquely determined.
These considerations lead to the following

DEFINITION 1.2.9. Let H,L,A and V,U ∈ B(H) be as in Definition 1.2.8.

1. If M+(L) = H, we call V a unilateral shift and L the generating subspace of H for
V , which is uniquely determined on account of (1.1).

2. If M(A) = H, we call U a bilateral shift and A a generating subspace of H for U .

DEFINITION 1.2.10. Let L be a closed subspace of a Hilbert space H and let T be
a linear operator on H. If we have TL = L, we say that L reduces T . More generally, if
TL ⊆ L is satisfied, we call L invariant under T or say that L is left invariant by T .

3



Chapter 1. Preliminaries

We point out that considering only closed subspaces is no real restriction, since if L
satisfies TL ⊆ L for a bounded operator T , then the closure L will inherit this property.

THEOREM 1.2.11 (Wold decomposition). Let V be an arbitrary isometry on the Hil-
bert space H. Then H decomposes uniquely into an orthogonal sum H = H0 ⊕ H1 such
that H0 reduces V and H1 is left invariant, V � H0 is unitary and V � H1 is a unilateral
shift. The spaces can even be written down explicitly. In fact, if L := H	 V H, then

H0 =

∞⋂
n=0

V nH and H1 = M+(L).

It is possible that one of the subspaces is absent. Consider for example a unitary V ,
where the Wold decomposition will be trivial, i.e. H0 = H and H1 = {0}.

Proof of Theorem 1.2.11. By design, the subspace L of H is orthogonal to V H. Because
of V nL ⊆ V nH ⊆ V H for n ∈ N, we conclude that V nL⊥L, i.e. L is a wandering
subspace. Hence, we can form H1 := M+(L) and H0 := H	 H1.
Take an element h of H. If h is orthogonal to

⊕m−1
n=0 V

nL for every m ∈ N, then it must
be orthogonal to H1, and therefore h ∈ H0. The converse is clearly true as well. Using
the definition of L, we get

m−1⊕
n=0

V nL = L⊕ V L⊕ · · · ⊕ V m−1L =

= (H	 V H)⊕ (V H	 V 2H)⊕ · · · ⊕ (V m−1H	 V mH) =

= H	 V mH.

(1.2)

To clarify the last equality, keep in mind that H ⊇ V H ⊇ V 2H ⊇ . . . form a nonincreasing
sequence of closed subspaces of H. For nested closed inner product spaces A ⊇ B ⊇ C
we can consider the orthogonal projection PB on B and express every x ∈ A as the direct
sum x = (I − PB)x u PBx. As (I − PB)x ∈ C⊥, we see that x ∈ (A 	 C) is equivalent
to (I − PB)x ∈ A	 B and PBx ∈ B 	 C. Hence, (A	 B)⊕ (B 	 C) = A	 C and the
last identity of (1.2) follows. As a consequence, h ∈ H0 is also equivalent to h ∈ V mH
for all m ∈ N, and therefore H0 =

⋂∞
n=0 V

nH. Clearly, we can omit V 0H = H from the
intersection, so H0 =

⋂∞
n=1 V

nH. Hence,

V H0 = V
∞⋂
n=0

V nH =
∞⋂
n=0

V n+1H =
∞⋂
m=1

V mH = H0

proves that H0 reduces V and that V � H0 is unitary. Obviously, V H1 =
⊕∞

n=1 V
nL ⊆

H1, i.e. H1 is left invariant by V , and V � H1 is a unilateral shift. So we have proven
that there exists a decomposition as postulated.
To show uniqueness, we suppose that there is another decomposition H = G0⊕G1 with
the same properties. In particular, there exists a wandering subspace K with respect to
V , such that G1 = M+(K). But with the help of (1.1), we get

L = H	 V H = (G0 ⊕G1)	 (VG0 ⊕ VG1) = (G0 ⊕G1)	 (G0 ⊕ VG1) =
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Basic Results from Functional Analysis

= (G0 	G0)⊕ (G1 	 VG1) = G1 	 VG1 = K.

This shows that G0 = H0 and in turn G1 = H1.

We also need the following two propositions.

PROPOSITION 1.2.12. Let V be a unilateral shift on a Hilbert space H. Then there
exists a space G containing H and a bilateral shift U on G such that U � H = V .

Proof. Let L := H 	 V H. Clearly, we then have H =
⊕∞

n=0 V
nL. We form a space K,

which shall contain vectors of the form k = (`n)n∈Z, such that `n ∈ L for every n ∈ Z
and such that

‖k‖2K :=
∞∑

n=−∞
‖`n‖2L <∞.

In this setting, U acting as U(`n)n∈Z = (`n−1)n∈Z is clearly a bilateral shift on K and a
generating subspace is given by all vectors (`n)n∈Z such that `n = 0 for n ∈ Z\{0} and
arbitrary `0 ∈ L. We can embed H in K by identifying h =

∑∞
n=0 V

n`n ∈ H with the
element kh = (`′n)n∈Z ∈ K, where `′n = `n for n ≥ 0 and `′n = 0 for n < 0. Clearly,

‖kh‖2K =
∞∑
n=0

‖`n‖2L =
∞∑
n=0

‖V n`n‖2L = ‖h‖2H

and the identification preserves the linear and metric structure of H. Additionally, U is
an extension of V because

V h = V

∞∑
n=0

V n`n =

∞∑
n=1

V n`n−1

will be identified with the element (`′n−1) = U(`′n). Because of this identification, we
therefore have K =

⊕∞
n=−∞ U

nL.

We follow [RR85], I., to prove the next result.

PROPOSITION 1.2.13. Let V ∈ B(H) be isometric and assume that L and K are
wandering subspaces such that M+(L) ⊇ M+(K). Furthermore, suppose that L is finite
dimensional. Then we have dimL ≥ dimK.

Proof. Let us start by pointing out that if P ∈ B(H) is an orthogonal projection and{
ej ∈ H

∣∣ j ∈ J} is an orthonormal basis for H, then dimPH =
∑

j∈J ‖Pej‖2. This is

easy to see: If
{
fk ∈ PH

∣∣ k ∈ K} is an orthonormal basis of PH, it then follows by
twice using Parseval’s identity that∑

j∈J
‖Pej‖2 =

∑
j∈J

∑
k∈K
|(Pej , fk)|2 =

∑
j∈J

∑
k∈K
|(ej , Pfk)|2 =

∑
j∈J

∑
k∈K
|(ej , fk)|2 =

5



Chapter 1. Preliminaries

=
∑
k∈K
‖fk‖2 = dimPH

as elements of [0,∞]. In fact, the last equality assumes that H is separable, but this is
automatically satisfied in our case.

Define P as the orthogonal projection from M+(L) onto M+(K). Consequently, V PV ∗

projects M+(L) onto VM+(K) and Q := (P − V PV ∗) projects M+(L) onto the orthog-
onal complement of VM+(K) in M+(K), which is K.

Now let
{
e` ∈ L

∣∣ ` ∈ L} be an orthonormal basis for L, which is finite by assumption.
Therefore,

{
V je` ∈M+(L)

∣∣ j ∈ N0, ` ∈ L
}

is an orthonormal basis for M+(L). Due to
our considerations at the beginning, we have

dimK = dimQM+(L) =
∑
`∈L

∞∑
j=0

‖QV je`‖2 =
∑
`∈L

∞∑
j=0

(QV je`, V
je`) =

= lim
n→∞

∑
`∈L

n∑
j=0

([P − V PV ∗]V je`, V
je`) =

= lim
n→∞

∑
`∈L

n∑
j=0

[(PV je`, V
je`)− (PV ∗V je`, V

∗V je`)] =

∗
= lim

n→∞

∑
`∈L

[ n∑
j=1

[(PV je`, V
je`)− (PV j−1e`, V

j−1e`)] + (Pe`, e`)
]

=

= lim
n→∞

∑
`∈L

(PV ne`, V
ne`) = lim

n→∞

∑
`∈L
‖PV ne`‖2 =

≤ lim
n→∞

∑
`∈L
‖PV n‖2‖e`‖2 =

∑
`∈L
‖e`‖2 =

= dimL,

where the equality marked with an asterisk follows from L ⊆ kerV ∗.

1.3 Linear Relations

Linear relations arise as a possible generalisation of linear operators. They are also useful
tools when investigating multi-valued linear functions, or linear mappings only defined
on a (possibly dense) subspace. We will follow [Kal12] and [Sch11] in our approach to
the topic and start from a purely algebraic point of view.

DEFINITION 1.3.1. Let X,Y be vector spaces over C. A subset R of the Cartesian
product X × Y is called a linear relation (between X and Y ; or on X if X = Y ) if it is
a linear subspace of X × Y . We write R ≤ X × Y for short.

A linear operator T : X → Y certainly is a linear relation by identifying it with its graph.
The converse does not hold true, as can be seen from the linear relation R := X×ls{y} for

6



Linear Relations

y ∈ Y \{0}, which acts as the map that assigns to every x ∈ X the same one-dimensional
subspace ls{y} of Y . Certainly, it is no well-defined function. Therefore, linear relations
are a generalisation of a linear operator. If in the following we call an operator a linear
relation, we always refer to its graph.

DEFINITION 1.3.2. Let R ≤ X × Y be a linear relation. We define

(i) the domain of R as dom R :=
{
x ∈ X

∣∣ ∃y ∈ Y : [x, y] ∈ R
}

,

(ii) the range of R as ran R :=
{
y ∈ Y

∣∣ ∃x ∈ X : [x, y] ∈ R
}

,

(iii) the kernel of R as ker R :=
{
x ∈ X

∣∣ [x, 0] ∈ R
}

, and

(iv) the multi-valued part of R as mul R :=
{
y ∈ Y

∣∣ [0, y] ∈ R
}

.

Obviously, all sets above are linear subspaces of X or Y , respectively. If we take Rx :={
y ∈ Y

∣∣ [x, y] ∈ R
}

for any x ∈ X, then we get a set-valued map R : X → P(Y ), which
maps all x /∈ dom R to ∅ and has range

⋃
x∈X Rx =

⋃
x∈dom RRx. This characterisation

can be further improved upon.

LEMMA 1.3.3. For a linear relation R ≤ X × Y and [x, y] ∈ R, we have

Rx = y + mul R.

Proof. Simply by definition, y + mul R =
{
y + z ∈ Y

∣∣ z ∈ mul R
}

.
⊆: Choose a ∈ Rx, meaning [x, a] ∈ R. Using linearity in combination with our assump-
tion [x, y] ∈ R, we get [0, a−y] ∈ R or a−y ∈ mul R. Hence, a = y+(a−y) ∈ y+mul R.
⊇: Choose a ∈ y+mul R. So there exists b ∈ mul R such that a = y+ b. Thus using our
assumption, [0, b], [x, y] ∈ R and, again by linearity, [x, b+ y] ∈ R hold true. Therefore,
a = b+ y ∈ Rx.

The lemma gives us an idea of how to measure how far a linear relation is away from being
an operator. In fact, a linear operator T is characterised by mul T = {0}. Clearly, if we
see T as a linear relation, its domain, range and kernel as defined above are equivalent
to the corresponding notions in operator theory.

DEFINITION 1.3.4. Let X,Y, Z be vector spaces over C. Let R,S ≤ X × Y and
T ≤ Y × Z be linear relations and α ∈ C. We define

(i) R+S :=
{

[x, y] ∈ X × Y
∣∣ ∃r, s ∈ Y : r + s = y, [x, r] ∈ R, [x, s] ∈ S

}
, the sum of

R and S,

(ii) R�S :=
{

[xr + xs, yr + ys] ∈ X × Y
∣∣ [xr, yr] ∈ R, [xs, ys] ∈ S

}
, the subspace sum

of R and S, and if it is direct, i.e. additionally satisfying R∩S = {[0, 0]}, we write
R�̇S,

(iii) αR :=
{

[x, αy] ∈ X × Y
∣∣ [x, y] ∈ R

}
, the scalar multiplication of R with α,

(iv) R−1 :=
{

[y, x] ∈ Y ×X
∣∣ [x, y] ∈ R

}
, the inverse of R,

7



Chapter 1. Preliminaries

(v) TR :=
{

[x, z] ∈ X × Z
∣∣ ∃y ∈ Y : [x, y] ∈ R, [y, z] ∈ T

}
, the composition ofR and

T .

The class of linear relations is closed under all these operations. Moreover, the sum and
composition are both associative, so

R+ (S +Q) = (R+ S) +Q and P (TR) = (PT )R

for Q ≤ X × Y, P ≤ Z ×W , and applying the inverse to a composition reverses the
order of the factors:

(TR)−1 = R−1T−1.

In the operator case, R + S is a linear operator defined on (dom R) ∩ (dom S) and it
coincides with the pointwise addition; αR is the usual multiplication of an operator with
a scalar; and TR is a linear operator with domain

{
x ∈ dom R

∣∣ Rx ∈ dom T
}

that acts
exactly like T ◦R.

Often, closed linear operators are of special interest in functional analysis. If we have
topologies at our disposal, we arrive at the following definition.

DEFINITION 1.3.5. Let X,Y be topological vector spaces over C. For a linear
relation R ≤ X × Y the closure of R with respect to the product topology on X × Y is
written as R. In case that R = R, we call R closed.

COROLLARY 1.3.6. Let X,Y be topological vector spaces over C. If R ≤ X × Y is
closed, then kerR is closed in X and mul R is closed in Y .

Proof. Let πX : X × Y → X be the projection to the first coordinate. Clearly, πX is
linear. If we restrict πX to X × {0}, it is bijective, continuous and it has a continuous
inverse, i.e. it is a homeomorphism. Since X × {0} is a closed subspace of X × Y , the
intersection R ∩ (X × {0}) is closed in X × Y as well. In particular, it is even a closed
subspace of X × {0}. As the kernel of R satisfies

kerR =
(
πX � (X × {0})

)(
R ∩ (X × {0})

)
,

it must be closed as the homeomorphic image of a closed set. The claim involving the
multi-valued part of R follows analoguously.

LEMMA 1.3.7. Let X,Y be topological vector spaces. We define

Φinv :

{
X × Y → Y ×X[
x, y
]
7→

[
y, x
] and Φα :

{
X × Y → X × Y[
x, y
]
7→

[
x, αy

] .

Then Φinv and Φα, for α ∈ C\{0}, are homeomorphisms.

Proof. The mapping Φinv clearly is involutary, hence bijective. Furthermore, since it
merely exchanges coordinates, it is continuous, so it is a homeomorphism.

8
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Similarly, Φα is bijective with inverse Φ 1
α

for α ∈ C\{0}. Writing Φα in block operator

form we have

Φα =

(
IX 0
0 αIY

)
on X × Y , so it is clearly bicontinuous.

COROLLARY 1.3.8. Let R ≤ X × Y be a linear relation between topological vector
spaces. Then (R)−1 = R−1 and αR = αR.

Proof. The assertions easily follow from Lemma 1.3.7. First, we have R−1 = Φinv(R) =
Φinv(R) = (R)−1 and secondly, we arrive at αR = Φα(R) = Φα(R) = αR.

In the following, R − λ is shorthand for R − λI, where I ≤ X × X is the identity
relation. Regarding the point ∞, we set (R −∞)−1 := R with ran (R −∞) = dom R
and ker(R−∞) = mul R.

DEFINITION 1.3.9. Let X be a Banach space and let R ≤ X×X be a linear relation.
Then we call

(i) ρ(R) :=
{
λ ∈ C ∪ {∞}

∣∣ (R− λ)−1 ∈ B(X)
}

the resolvent set,

(ii) σ(R) := (C ∪ {∞})\ρ(R) the spectrum of R, and in particular

(iii) σp(R) :=
{
λ ∈ σ(R)

∣∣ ker(R− λ) ) {0}
}

the point spectrum or set of eigenvalues.

LEMMA 1.3.10. Let X be a Banach space and assume that R ≤ X × X is a closed
linear relation. Then λ belongs to the resolvent set of R if and only if ker(R− λ) = {0}
and ran (R− λ) = X.

Proof. Since

mul (R− λ)−1 =
{
x ∈ X

∣∣ [0, x] ∈ (R− λ)−1
}

=

=
{
x ∈ X

∣∣ [x, 0] ∈ (R− λ)
}

=

= ker(R− λ)

and

dom (R− λ)−1 =
{
x ∈ X

∣∣ ∃y ∈ X : [x, y] ∈ (R− λ)−1
}

=

=
{
x ∈ X

∣∣ ∃y ∈ X : [y, x] ∈ (R− λ)
}

=

= ran (R− λ),

the fact that (R − λ)−1 is a bounded operator on X is equivalent to ker(R − λ) = {0}
and ran (R− λ) = X, the latter of which uses the Closed Graph Theorem 1.2.3.
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Considering linear operators between Hilbert spaces, one can define adjoint operators.
So, if we look at linear relations in such a setting, a similar concept arises. Given two
Hilbert spaces, H1 and H2, their Cartesian product becomes a Hilbert space as well, if
we equip it with the sum scalar product(

[x, y], [u, v]
)
H1×H2

:= (x, u)H1 + (y, v)H2

and we can set up the decomposition

H1 × H2 = (H1 × {0})⊕ ({0} × H2) ∼= H1 ⊕ H2.

DEFINITION 1.3.11. Let H1,H2 be Hilbert spaces over C and R ≤ H1 × H2 be a
linear relation. We call

R∗ :=
{

[y, x] ∈ H2 × H1

∣∣ (y, v)H2 = (x, u)H1 for all [u, v] ∈ R
}

the adjoint relation of R.

LEMMA 1.3.12. Let R ≤ H1 × H2 be a linear relation between Hilbert spaces. Then

(i) R∗ is always a closed linear relation.

(ii) We have R = R∗∗. In particular, R is closed iff R = R∗∗

(iii) (R−1)∗ = (R∗)−1.

Proof. (i): By definition, an element [y, x] ∈ R∗ must fulfil (y, v) = (x, u) for every
[u, v] ∈ R. This condition can be rewritten to read

(
[y, x], [−v, u]

)
H2×H1

= 0. So R∗

contains precisely those elements [y, x] ∈ H2×H1 that are orthogonal to all [−v, u] where

[u, v] ∈ R. Consequently, we have R∗ =
(
Φinv ◦ Φ−1(R)

)⊥H2×H1 and as an orthogonal
complement R∗ is a closed linear subspace of H2 × H1.
(ii): Using the same reasoning, an element [a, b] ∈ R∗∗ must fulfil (a, l) = (b, k) for all
[k, l] ∈ R∗, which amounts to

(
[a, b], [l,−k]

)
H1×H2

= 0. So R∗∗ contains exactly those

elements of H1 × H2 that are orthogonal to all [l,−k] for [k, l] ∈ R∗. This means R∗∗ =(
Φ−1 ◦Φinv(R

∗)
)⊥H1×H2 . Finally, we observe that for S ≤ H2 ×H1 and T ≤ H1 ×H2 we

have Φinv(S
⊥H2×H1 ) =

(
Φinv(S)

)⊥H1×H2 and Φ−1(T⊥H1×H2 ) =
(
Φ−1(T )

)⊥H1×H2 : For the

former equation, keep in mind that [a, b] ∈ (Φinv(S))⊥H1×H2 is equivalent to [a, b]⊥[y, x]
for all [y, x] ∈ Φinv(S), i.e. [b, a]⊥[x, y] for all [x, y] ∈ S. In other words, this is equivalent
to [a, b] ∈ Φinv(S

⊥H2×H1 ). For the latter we take into account that for [x, y] ∈ T and
[a, b] ∈ H1 ×H2 the expression [x, y]⊥[a,−b] is equivalent to (a, x)− (b, y) = 0, which in
turn is the same as [x,−y]⊥[a, b]. Combining these results, we get

R∗∗ =
(

Φ−1 ◦ Φinv

(
(Φinv ◦ Φ−1(R))⊥H2×H1

))⊥H1×H2
=

=
((

Φ−1 ◦ Φinv ◦ Φinv ◦ Φ−1(R)
)⊥H1×H2

)⊥H1×H2
= R⊥⊥ = R.

10
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(iii): Using the above reasoning we also get

(R∗)−1 = Φinv

((
Φinv ◦ Φ−1(R)

)⊥H2×H1

)
=
(
Φ−1(R)

)⊥H1×H2 =

=
(
− IH1×H2Φ−1(R)

)⊥H1×H2 =
(
Φinv ◦ Φ−1 ◦ Φinv ◦ Φ−1 ◦ Φ−1(R)

)⊥H1×H2 =

=
(
Φinv ◦ Φ−1 ◦ Φinv(R)

)⊥H1×H2 =
(

Φinv ◦ Φ−1

(
Φinv(R)

))⊥H1×H2
= (R−1)∗.

Finally, we can transfer some more notions from operator theory to linear relations.

DEFINITION 1.3.13. Let R ≤ H1 × H2 be a linear relation between two Hilbert
spaces. It is called

(i) isometric, if R−1 ⊆ R∗,

(ii) unitary, if R−1 = R∗.

In the case that H1 = H2, we call R

(iii) symmetric, if R ⊆ R∗,

(iv) selfadjoint, if R = R∗.

11





Chapter 2

Operators on the Hardy-Hilbert
Space

In this chapter we will explore a certain Hardy space, namelyH2(D), and link it to various
other well-understood Hilbert spaces. First, we will concern ourselves with holomorphic
functions on the disk. Secondly, the boundary values of such functions are briefly ex-
amined and then discussed in the context of square-integrable functions on the torus,
L2(T). Considering operators on H2(D) and L2(T), we find a criterion to check whether
they commute with the shift operators on the respective spaces. Finally, a theorem due
to Beurling characterising the shift-invariant subspaces of H2(D) is presented.

2.1 The Hardy-Hilbert Space H2(D)

We will start this section with the definition of the object we are interested in and then
explore some of its properties. We make use of [Ale10] and [Wor04] in this section.

DEFINITION 2.1.1. We call the space

H2(D) :=

{
f ∈ CD ∣∣ f(z) =

∞∑
n=0

anz
n on D, (an) ∈ CN0 and

∞∑
n=0

|an|2 <∞

}

of all holomorphic functions on the unit disk that possess a power series expansion with
square-summable complex coefficients the Hardy-Hilbert space.

Take note that we omitted the supplement “on the unit disk” from Definition 2.1.1 as
it would also be possible to define Hardy-Hilbert spaces on other domains G ⊂ C. One
example for such a G is the upper half plane C+. We will mention this only in passing,
however, and cite [RR94], V, where this theory is presented. For the rest of this work
only the disk case will be of importance. Furthermore, up to this point we only have a
linear structure on H2(D) but, as the name suggests, we will introduce an inner product,
indeed turning H2(D) into a Hilbert space.
We first observe why the elements of H2(D) really are holomorphic functions on D.
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LEMMA 2.1.2. The condition
∑∞

n=0 |an|2 <∞ implies that the radius of convergence
ρ of z 7→

∑∞
n=0 anz

n is greater or equal to 1.

Proof. First, (|an|2) and thus (|an|) must both be a null sequences because the series∑∞
n=0 |an|2 converges. Therefore, there exists an N ∈ N such that |an| ≤ 1 for all n ≥ N .

Consequently, the sequence ( n
√
|an|)∞n=N , and, in particular, its limes superior, will also

be bounded from above by 1. We can therefore use the following well known formula to
calculate the radius of convergence

ρ =
1

lim supn→∞
n
√
|an|
≥ 1

and the assertion follows.

Secondly, we argue how an inner product can be defined on H2(D).

LEMMA 2.1.3. The mapping

φ :

{
`2(N0) → H2(D)

(an) 7→ f := (z 7→
∑∞

n=0 anz
n)

(2.1)

is bijective and preserves the linear structures.

Proof. The function φ is well-defined — the holomorphy of φ((an)) on the unit disk
is due to Lemma 2.1.2 — and clearly bijective. In addition, the definitions for + and
multiplication by a scalar in `2(N0), i.e. (an) + (bn) = (an + bn) and λ · (an) = (λ · an),
agree with those for power series, since

∑∞
n=0 anz

n+
∑∞

n=0 bnz
n =

∑∞
n=0(an+bn)zn and

λ · (
∑∞

n=0 anz
n) =

∑∞
n=0(λ · an)zn hold on the disk of convergence. Consequently, φ is

compatible with the linear structures on the two spaces.

COROLLARY 2.1.4. Let φ be the mapping from (2.1). Then

(., .)H2(D) :

{
H2(D)×H2(D) → C[

f, g
]

7→ (φ−1(f), φ−1(g))`2(N0)

is an inner product on H2(D). The mapping φ is then additionally isometric.
If f, g ∈ H2(D) have power series coefficients (an) and (bn), respectively, then it can be
expressed as

(f, g)H2(D) =

∞∑
n=0

anbn.

Moreover, the norm induced by the inner product is

‖f‖H2(D) :=
√

(f, f)H2(D) =

√√√√ ∞∑
n=0

|an|2.
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Proof. It is a well-known fact that the class of all square-summable complex sequences,
`2(N0) =

{
(an) ∈ CN0

∣∣ ∑∞
n=0 |an|2 <∞

}
, is a Hilbert space. Its inner product is given

by
(
(an), (bn)

)
`2(N0)

=
∑∞

n=0 anbn for sequences (an), (bn) ∈ `2(N0). All properties of

(., .)`2(N0) are preserved under φ and hence, (., .)H2(D) must be an inner product on
H2(D). The other claims are obvious.

LEMMA 2.1.5. The polynomial ring C[z] is densely contained in H2(D) with respect
to the norm ‖.‖H2(D).

Proof. Let f ∈ H2(D) with power series f(z) =
∑∞

n=0 anz
n and set pN (z) :=

∑N
n=0 anz

n.
Then ‖f − pN‖2H2(D) = ‖

∑∞
n=N+1 anz

n‖2H2(D) =
∑∞

n=N+1 |an|2 converges to zero as N
approaches infinity.

The following result states that H2(D) is even a reproducing kernel Hilbert space.

LEMMA 2.1.6. Let ιw : H2(D) → C : f 7→ f(w) be the point evaluation functional
at w ∈ D. Then ιw is linear and continuous for every w. Moreover, ιw coincides with
(., kw)H2(D), where kw ∈ H2(D), kw 6= 0 denotes the function z 7→ 1

1−wz .

Proof. The linearity of ιw is clear. First, the series
∑∞

n=0 |wn|2 =
∑∞

n=0(|w|2)n = 1
1−|w|2

converges for every w ∈ D. Hence, by Lemma 2.1.2, the functions z 7→
∑∞

n=0w
nzn

are elements of H2(D). As
∑∞

n=0w
nzn = 1

1−wz , these functions are just kw for w ∈ D.

Moreover, as ‖kw‖2H2(D) = 1
1−|w|2 > 0, all kw are nonzero. Now let f ∈ H2(D) be the

function z 7→
∑∞

n=0 anz
n and w ∈ D. We calculate

f(w) =

∞∑
n=0

anw
n =

( ∞∑
n=0

anz
n,

∞∑
n=0

wnzn

)
=

(
f,

∞∑
n=0

(wz)n

)
=
(
f,

1

1− wz

)
= (f, kw).

This shows that ιw = (., kw)H2(D). By the Cauchy-Schwarz inequality, the latter is
certainly continuous.

We only mention that one can use the set of functions
{
kw ∈ H2(D)

∣∣ w ∈ D
}

to define
K : D× D→ C by setting K(z, w) := (kw, kz)H2(D). This function K is then called the
reproducing kernel for the Hilbert space H2(D).

Next, let us look at one of the classical definitions of Hardy spaces and then derive an
equivalent characterisation of H2(D) from it.

DEFINITION 2.1.7. For 0 < p ≤ ∞, the Hardy class Hp(D) includes all analytic
functions f : D→ C that fulfill

‖f‖Hp :=

 supr∈(0,1)

(
1

2π

∫ 2π
0

∣∣f (reiθ)∣∣p dθ) 1
p
<∞ for p ∈ (0,∞)

supz∈D |f(z)| <∞ for p =∞
.
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Obviously, in the case p =∞ the introduced norm ‖.‖H∞ is the same as the supremum
norm ‖.‖∞ and H∞ contains the bounded analytic functions on D. The space Hp is
linear for p ∈ (0,∞]. In fact, for p ≥ 1 this is clear since ‖.‖Hp is a norm and for p < 1
one proves this using the metric dp(f, g) := ‖f − g‖pHp . Using Hölder’s inequality, it can
also be shown that H∞(D) ⊂ Hq(D) ⊂ Hp(D) for p < q.
We will now show that requiring an analytic function to have square-summable power
series coefficients is equivalent to demanding its mean square value on circles of radius
r stay bounded as r tends to 1 from below.

PROPOSITION 2.1.8. Let f(z) =
∑∞

n=0 anz
n be an analytic function with radius of

convergence ρ ≥ 1. Then

∞∑
n=0

|an|2 = sup
r∈(0,1)

1

2π

∫ 2π

0

∣∣∣f (reiθ)∣∣∣2 dθ = lim
r↗1

1

2π

∫ 2π

0

∣∣∣f (reiθ)∣∣∣2 dθ
as elements of [0,∞]. In particular, the right hand side is finite iff the left hand side is.
Thus, H2(D) = H2(D) and ‖.‖H2(D) = ‖.‖H2(D).

Proof. We first notice that
∑N

n=0 anz
n converges to f uniformly on compact subsets of

D, since f is analytic on D. For a fixed r ∈ (0, 1), we use uniform convergence on the
closed ball centred at zero with radius r to exchange the order of integration and the
limit process and get

1

2π

∫ 2π

0

∣∣∣f (reiθ)∣∣∣2 dθ =
1

2π

∫ 2π

0
lim
N→∞

N∑
n=0

an(reiθ)n
N∑
m=0

am(reiθ)m dθ =

= lim
N→∞

N∑
n,m=0

anam rn+m 1

2π

∫ 2π

0
ei(n−m)θ dθ =

=
∞∑
n=0

|an|2r2n,

since only in the case n = m does 1
2π

∫ 2π
0 ei(n−m)θ dθ not vanish and amount to 1.

Hence, the net
(

1
2π

∫ 2π
0

∣∣f (reiθ)∣∣2 dθ)
r∈(0,1)

=
(∑∞

n=0 |an|2r2n
)
r∈(0,1)

is obviously in-

creasing as r tends to one. Thus, the limit is attained at the supremum. Finally,
limr↗1

∑∞
n=0 |an|2r2n =

∑∞
n=0 |an|2 follows from the monotone convergence theorem

appplied to the counting measure.

As a result we get that it is not necessary to calculate the power series coefficients of
the elements in H2(D) for the inner product and norm. In fact, integration on circles
suffices.

COROLLARY 2.1.9. Let f, g ∈ H2(D). Then the norm and inner product of H2(D)
can be rewritten as

‖f‖2H2(D) = lim
r↗1

1

2π

∫ 2π

0

∣∣∣f (reiθ)∣∣∣2 dθ
16
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and

(f, g)H2(D) = lim
r↗1

1

2π

∫ 2π

0
f
(
reiθ

)
g
(
reiθ

)
dθ,

respectively.

Proof. The claim regarding the norm follows from Proposition 2.1.8. The second identity
is a consequence of the polarisation identity, i.e.

4(f, g)H2(D) = ‖f + g‖2H2(D) − ‖f − g‖
2
H2(D) + i‖f + ig‖2H2(D) − i‖f − ig‖

2
H2(D) =

= lim
r↗1

[
1

2π

∫ 2π

0

∣∣∣(f + g)
(
reiθ

)∣∣∣2 − ∣∣∣(f − g)
(
reiθ

)∣∣∣2
+ i

∣∣∣(f + ig)
(
reiθ

)∣∣∣2 − i ∣∣∣(f − ig)
(
reiθ

)∣∣∣2 dθ] =

= lim
r↗1

[
1

2π

∫ 2π

0

(
|f |2 + fg + fg + |g|2 − |f |2 + fg + fg − |g|2

+ i|f |2 + fg − fg + i|g|2 − i|f |2 + fg − fg − i|g|2
)(

reiθ
)
dθ
]

=

= 4 lim
r↗1

1

2π

∫ 2π

0
f
(
reiθ

)
g
(
reiθ

)
dθ.

We are now able to introduce the theorem, cf. [Neu10], IV, that will be generalised later
on. Let h : D → C be a function, then we define on the Hardy-Hilbert space the linear
relation

Th :=
{

[f, g] ∈ H2(D)×H2(D)
∣∣ g = h · f

}
.

Clearly, mul Th = {0} and Th is an operator. It multiplies every function in its domain
by h, so that we can write

Th :

{
dom Th → H2(D)

f 7→ f · h ,

where dom Th =
{
f ∈ H2(D)

∣∣ f · h ∈ H2(D)
}

.

DEFINITION 2.1.10. We write S := TidD : f 7→ (z 7→ zf(z)) and call it the shift
operator on H2(D) or the operator of multiplication by z.

Obviously, the operator S is defined everywhere. It should however be noted, that in
general dom Th could easily be a proper subspace of H2(D). For example, since all
elements of the Hardy-Hilbert space are continuous, dom Th = {0} for a discontinuous
function h.

LEMMA 2.1.11. Let h : D → C. Then Th is a closed operator and the following
assertions are equivalent:

17
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(i) Th ∈ B(H2(D))

(ii) dom Th = H2(D)

Proof. First, if ([fn, gn]) is a sequence in the graph of Th converging to an element [f, g]
in H2(D) × H2(D), then we have gn = fn · h for every n ∈ N. Additionally, evaluation
at a point is a norm continuous operation in H2(D), cf. Lemma 2.1.6. So for arbitrary
w ∈ D we get

gn(w) = fn(w) · h(w)

↓ ↓
g(w) f(w) · h(w)

This means g = f · h and [f, g] ∈ Th. Hence, we showed that Th is closed.
Secondly, the Closed Graph Theorem 1.2.3 assures us that Th ∈ B(H2(D)) is equivalent
to dom Th = H2(D).

DEFINITION 2.1.12. Let h : D→ C. If Th ∈ B(H2(D)), then we call h a multiplier
(function) and Th a multiplier operator. The set of all multiplier functions is denoted
by M(H2(D)).

It is easy to identify the multipliers for the Hardy-Hilbert space.

LEMMA 2.1.13. The multiplier functions of H2(D) are the bounded analytic functions,
i.e. M(H2(D)) = H∞(D). In this case ‖Th‖ = ‖h‖∞.

Proof. ⊇: Let f ∈ H2(D) and h ∈ H∞(D). Obviously, h · f is holomorphic with radius
of convergence at least 1. We use Proposition 2.1.8 to show

‖h · f‖2H2(D) = lim
r↗1

1

2π

∫ 2π

0

∣∣∣f (reiθ)∣∣∣2 ∣∣∣h(reiθ)∣∣∣2︸ ︷︷ ︸
≤‖h‖2∞

dθ ≤ ‖h‖2∞‖f‖2H2(D) <∞,

which means Th ∈ B(H2(D)) with ‖Th‖ ≤ ‖h‖∞.
⊆: Let h : D → C such that Th ∈ B(H2(D)). Since 1 ∈ H2(D), it immediately follows
that h = Th1 ∈ H2(D) and, therefore, h is analytic on D. To show boundedness, we use
Lemma 2.1.6 and calculate for arbitrary f ∈ H2(D) and w ∈ D

(f, h(w) · kw) = h(w) · (f, kw) = h(w) · f(w) = (Thf)(w) = (Thf, kw) = (f, T ∗hkw).

We conclude that T ∗hkw = h(w) · kw. Taking the norm yields ‖T ∗hkw‖ = |h(w)| · ‖kw‖,
where ‖kw‖2 = 1

1−|w|2 6= 0 as stated before. Thus,

|h(w)| =
‖T ∗hkw‖
‖kw‖

≤ ‖T ∗h‖ = ‖Th‖.

Taking the supremum over all w ∈ D results in ‖h‖∞ ≤ ‖Th‖ and therefore, h ∈ H∞(D).
Altogether, we have shown ‖Th‖ = ‖h‖∞.
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It is obvious that two multiplier operators commute, since for h1, h2 ∈ H∞(D) we have
Th1 ◦ Th2 = Th1h2 = Th2h1 = Th2 ◦ Th1 .

THEOREM 2.1.14. Let T ∈ B(H2(D)). Then T commutes with the shift operator S
if and only if there exists a function h ∈ H∞(D) such that T = Th. In this case, h is
uniquely determined by T .

Proof. As outlined above, the necessity of the condition is clear. For the converse, we
first set h := T1 ∈ H2(D). We begin by showing that T acts like Th on the polynomials.
For p(z) :=

∑N
n=0 bnz

n calculate

Tp =
N∑
n=0

bnT (z 7→ zn) =
N∑
n=0

bnT ◦ Sn1 =
N∑
n=0

bnS
n ◦ T1 =

=
N∑
n=0

bnS
nh =

N∑
n=0

bn(z 7→ znh(z)) = h · p.

Secondly, for an arbitrary function f ∈ H2(D) there exists, courtesy of Lemma 2.1.5, a
sequence of polynomials (pN ) that converges to f in norm and, hence, also pointwise.
Using the continuity of T , we see

Tf = T

(
lim
N→∞

pN

)
= lim

N→∞
TpN = lim

N→∞
h · pN .

Due to Lemma 2.1.6, evaluating a function belonging to H2(D) at w ∈ D is a continuous
operation. Hence, we arrive at(

lim
N→∞

h · pN
)

(w) = lim
N→∞

(h · pN )(w) = h(w) · lim
N→∞

pN (w) = h(w) · f(w).

This shows limN→∞ h · pN = h · f since w ∈ D was arbitrary. Thus, we have proven
T = Th. This means T is a multiplier operator with the corresponding multiplier function
h ∈M(H2(D)) = H∞(D), cf. Lemma 2.1.13.
The uniqueness of h is obvious, since if there were h1, h2 ∈ H∞(D) such that we had
Th1 = T = Th2 we would immediately get h1 = Th11 = T1 = Th21 = h2.

2.2 H2(D) as a Subspace of L2(T)

There is yet another characterisation of H2(D). Let L2(T) denote the space of square-
integrable functions on the unit circle with respect to the normalized Lebesgue measure
on [0, 2π). We identify [0, 2π) with T via t 7→ eit. It is well known that

(f, g)L2(T) :=
1

2π

∫ 2π

0
f
(
eiθ
)
g
(
eiθ
)
dθ

with f, g ∈ L2(T) defines an inner product on L2(T). Let ζn be the trigonometric
monomial eiθ 7→ einθ on T for n ∈ Z. It is a standard result that

{
ζn
∣∣ n ∈ Z

}
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forms an orthonormal basis of L2(T). A function f ∈ L2(T) can hence be expanded
as
∑

n∈Z(f, ζn)ζn. We set an := (f, ζn) for n ∈ Z. By Parseval’s identity the sequence
of Fourier coefficients (an)n∈Z of such a function f ∈ L2(T) is square-summable.

DEFINITION 2.2.1. Let (ζn)n∈Z be the orthonormal basis of L2(T) consisting of
trigonometric monomials. Then we set

L2
+(T) :=

{
f ∈ L2(T)

∣∣ an = (f, ζn) = 0 for all n < 0
}
, (2.2)

i.e. the set of all functions whose Fourier coefficients vanish for negative indices.

LEMMA 2.2.2. The space H2(D) can be embedded in L2(T). More precisely, H2(D)
is isometrically isomorphic to the closed linear subspace L2

+(T) of L2(T) via

ψ :

{
H2(D) → L2

+(T) ⊆ L2(T)
(z 7→

∑∞
n=0 anz

n) 7→ (ζ 7→
∑∞

n=0 anζ
n)

. (2.3)

Proof. As we know, f := (z 7→
∑∞

n=0 anz
n) ∈ H2(D) is equivalent to square-summability

of (an). This in turn is equivalent to f̃ := (ζ 7→
∑∞

n=0 anζ
n) ∈ L2

+(T) due to Parseval’s
identity as mentioned above. Therefore, the mapping ψ is an isomorphism. Because of
‖ψ(f)‖2L2(T) = ‖f̃‖2L2(T) =

∑∞
n=0 |an|2 = ‖f‖2H2(D), it is also isometric.

Since L2
+(T) is the isometric image of the Banach space H2(D), it is necessarily closed.

The relationship between f = (z 7→
∑∞

n=0 anz
n) and f̃ = (ζ 7→

∑∞
n=0 anζ

n) has been
analysed in depth, cf. [RR94], I and IV, or [Ale10]. We cite some fairly standard results
of Hardy space theory in the following proposition, but first we need

DEFINITION 2.2.3.

1. The function P : D× T→ C : (z, ζ) 7→ 1−|z|2
|ζ−z|2 is called the Poisson kernel.

2. For ζ ∈ T and r ∈ (0, 1) let ∆(ζ, r) := (co{Br(0), ζ})◦, i.e. the interior of the
convex hull of the closed ball centred at zero with radius r and the point ζ. For
f : D → C we write n. t. limz→ζ f(z) = A, if for every r ∈ (0, 1) the values f(z)
converge to A as z tends to ζ within ∆(ζ, r). A is then called the nontangential
limit of f at ζ.

3. The limit limr↗1 f(reiθ) = L is called the radial limit of f at ζ = eiθ.

PROPOSITION 2.2.4. Let f ∈ H2(D) and f̃ ∈ L2
+(T) be connected by the mapping

ψ of (2.3). We set fr : T→ C : ζ = eiθ 7→ f(reiθ). Then

1. f̃ is the limit of fr in L2(T) as r tends to 1, i.e. ‖fr − f̃‖L2(T) → 0.

2. f can be recalculated from f̃ by employing the Poisson formula

f(z) =
1

2π

∫ 2π

0
P (z, eiθ)f̃(eiθ) dθ.
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Proof. We follow [MAR07], I, in this proof. For the first claim, calculate using Parseval’s
identity

‖fr − f̃‖2L2(T) =

∥∥∥∥∥
∞∑
n=0

anr
neinθ −

∞∑
n=0

ane
inθ

∥∥∥∥∥
2

L2(T)

=

∥∥∥∥∥
∞∑
n=0

an(rn − 1)einθ

∥∥∥∥∥
2

L2(T)

=

=

∞∑
n=0

|an(rn − 1)|2 =

∞∑
n=0

|an|2(1− rn)2.

For ε > 0 we find N ∈ N such that
∑∞

n=N+1 |an|2 <
ε
2 . Moreover, we also find R ∈ (0, 1)

such that
∑N

n=0 |an|2(1−Rn)2 < ε
2 . Hence, we get for r ∈ (R, 1)

∞∑
n=0

|an|2(1− rn)2 =
N∑
n=0

|an|2(1− rn)2 +
∞∑

n=N+1

|an|2(1− rn)2

≤
N∑
n=0

|an|2(1−Rn)2 +

∞∑
n=N+1

|an|2 <
ε

2
+
ε

2
= ε.

Thus, limr↗1 ‖fr − f̃‖L2(T) = 0.
Regarding the second claim, we take w ∈ D and kw ∈ H2(D) as defined in Lemma 2.1.6.
Furthermore, we set k̃w := (ζ 7→ (1− wζ)−1), which clearly satisfies

ψ(kw) = ψ

(
z 7→ 1

1− wz

)
= ψ

(
z 7→

∞∑
n=0

wnzn

)
=

=

(
ζ 7→

∞∑
n=0

wnζn

)
=

(
ζ 7→ 1

1− wζ

)
= k̃w

Thus, with ζ = eiθ and Lemmata 2.1.6 and 2.2.2 we get

f(w) = (f, kw)H2(D) =
(
ψ(f), ψ(kw)

)
L2(T)

= (f̃ , k̃w)L2(T) =

=
1

2π

∫ 2π

0
f̃(eiθ)

1

1− weiθ
dθ =

1

2π

∫ 2π

0

f̃(eiθ)

1− we−iθ
dθ.

(2.4)

Next, we consider the function

g :=
(
ζ 7→ (1− wζ)−1

)
=

(
ζ 7→

∞∑
n=0

wnζ−n

)
.

Clearly, all power series coefficients of g−1 vanish for nonnegative indices, so this function
is perpendicular to f̃ in L2(T), i.e. with ζ = eiθ

(f̃ , g − 1)L2(T) =
1

2π

∫ 2π

0
f̃(eiθ)

(
1

1− we−iθ
− 1

)
dθ = 0.
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Hence, we can add this harmless term to equation (2.4) and arrive at

f(w) =
1

2π

∫ 2π

0
f̃(eiθ)

(
1

1− weiθ
+

1

1− we−iθ
− 1

)
dθ.

Writing w = reit yields

1

1− weiθ
+

1

1− we−iθ
− 1 =

1− we−iθ + 1− weiθ − (1− weiθ − we−iθ + |w|2)

(1− weiθ)(1− we−iθ)
=

=
1 + |w|2∣∣ 1

eiθ

∣∣2 · |eiθ − w|2 =
1 + |w|2

|eiθ − w|2
,

which, for ζ = eiθ and z = w, is just the Poisson kernel.

It is well known that convergence in L2(T) implies pointwise convergence of a subse-
quence almost everywhere.
The next statement requires a rather extensive proof, making use of a theorem due to
Fatou. We shall omit the proof and cite [MAR07], I.

PROPOSITION 2.2.5. Let f ∈ H2(D), then it has nontangential limits almost every-
where on the unit circle. If we denote by u(ζ) the nontangential limit of f at ζ — if it
exists; otherwise set for example u(ζ) = 0 — then u = f̃ := ψ(f) in the sense of L2(T).

The above proposition justifies calling f̃ the nontangential boundary function of f .
Clearly, the radial limit limr↗1 f(reit) then also coincides with f̃ almost everywhere
on T.
Given this alternative description of H2(D) as a subspace of L2(T), we will attempt to
recover Theorem 2.1.14 in this larger space, cf. [Neu10], VII. First, we will identify the
multiplier functions of L2

+(T).

DEFINITION 2.2.6. We set L∞+ (T) := L∞(T)∩L2
+(T), i.e. the space of all essentially

bounded functions on T such that (h̃, (ζ 7→ ζn))L2(T) = 0 for all n < 0.

DEFINITION 2.2.7. We will signify by U := MidT : f 7→ (ζ 7→ ζf(ζ)) the multiplica-
tion operator connected to the identity function on T, cf. Lemma 1.2.7, and call it the
shift operator on L2(T).

LEMMA 2.2.8. The shift operator U on L2(T) is unitary.

Proof. As L2(T) is isometrically isomorphic to `2(Z), we can use the scalar product of
`2(Z) to calculate

(Uf, g)L2(T) =

( ∞∑
n=−∞

anζ
n+1,

∞∑
n=−∞

bnζ
n

)
L2(T)

=
(
(an−1), (bn)

)
`2(Z)

=

∞∑
n=−∞

an−1bn =

∞∑
n=−∞

anbn+1 = (f,Mζ 7→ζg)L2(T)
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for two functions f, g ∈ L2(T) with Fourier coefficients (an)n∈Z and (bn)n∈Z. So we have
shown that U∗ = Mζ 7→ζ . For arbitrary f ∈ L2(T) we have

U∗Uf = Mζ 7→ζMζ 7→ζf = Mζ 7→ζζf = Mζ 7→1f = f = UU∗f

and from this U−1 = U∗.

LEMMA 2.2.9. Let ψ be the isometric isomorphism as defined in (2.3). Then

ψ
(
M(H2(D))

)
⊆ L∞+ (T).

Furthermore, ψ preserves the norm, i.e. ‖ψ(.)‖L∞(T) = ‖.‖∞. Additionally, if h be-

longs to M(H2(D)) with h̃ = ψ(h) ∈ L2(T) and if Th and M
h̃

signify the corresponding
multiplier operators, then M

h̃
leaves L2

+(T) invariant and

ψ−1 ◦M
h̃
◦ ψ = Th. (2.5)

Proof. Let h be a multiplier of H2(D) with power series coefficients (an). According to
Lemma 2.1.13, h is bounded and Th ∈ B(H2(D)) with ‖Th‖ = ‖h‖∞. The fact that
M(H2(D)) = H∞(D) ⊂ H2(D) implies that h̃ := ψ(h) = (ζ 7→

∑∞
n=0 anζ

n) belongs

to L2
+(T), and therefore, also to L2(T). Hence, h̃ : T → C is measurable and square-

integrable. We can thus form the multiplication operator M
h̃

: L2(T)→ L2(T), which is
closed and densely defined, cf. Lemma 1.2.7, with

dom M
h̃

=
{
f ∈ L2(T)

∣∣ h̃ · f ∈ L2(T)
}
.

We will show that M
h̃

is bounded on the trigonometric polynomials. From this it then
follows that M

h̃
is bounded everywhere on L2(T).

We begin by collecting some general facts for later use. First, we notice for n ∈ Z

‖UnM
h̃
f‖L2(T) = ‖ζ 7→ ζnh̃(ζ)f(ζ)‖L2(T) = ‖ζ 7→ h̃(ζ)f(ζ)‖L2(T) = ‖M

h̃
f‖L2(T)

as elements of [0,∞]. This implies that we have M
h̃
Un = UnM

h̃
, which means that

Un(dom M
h̃
) = dom M

h̃
and M

h̃
Unf = UnM

h̃
f for all f ∈ dom M

h̃
. Furthermore,

Un ∈ B(L2(T)) is unitary for all n ∈ Z due to Lemma 2.2.8.
For q(z) = zj and j ≥ 0 we have h(z) · q(z) =

∑∞
n=0 anz

n+j =
∑∞

n=j an−jz
n. Applying

ψ gives

ψ(h · q) = ψ

z 7→ ∞∑
n=j

an−jz
n

 =

ζ 7→ ∞∑
n=j

an−jζ
n

 =
(
ζ 7→ ζj · h̃(ζ)

)
.

This result extends, due to linearity, to all polynomials. Therefore, the identity ψ(h·r) =
h̃ · r̃ holds true for all elements r = (z 7→

∑N
n=0 anz

n) in the polynomial ring C[z] and

r̃ = (ζ 7→
∑N

n=0 anζ
n). Thus, ψ

(
C[z]

)
⊆ dom M

h̃
and ψ(h · r) = M

h̃
r̃ for all r ∈ C[z].

In particular, M
h̃
ψ(C[z]) ⊆ L2

+(T).
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As M
h̃
Un = UnM

h̃
and as 1 ∈ dom M

h̃
, the trigonometric monomials (ζn)n∈Z clearly

all belong to dom M
h̃
. Thus, we have

T :=

{
N∑

n=−N
anζ

n
∣∣ N ∈ N0, a−N , . . . , aN ∈ C

}
⊆ dom M

h̃
.

For any p̃ ∈ T with p̃(ζ) =
∑N

n=−N bnζ
n we can define

ζN p̃(ζ) =
N∑

n=−N
bnζ

n+N =
2N∑
n=0

bn−Nζ
n =: q̃(ζ) ∈ L2

+(T)

and q(z) =
∑2N

n=0 bn−Nz
n. This gives

M
h̃
p̃(ζ) = M

h̃
ζ−N q̃(ζ) = M

h̃
U−N q̃(ζ) = U−NM

h̃
q̃(ζ)

= U−Nψ(h(z) · q(z)) = U−Nψ(Thq(z)).
(2.6)

Taking the norm in (2.6) and making use of the isometry of U and ψ leads to∥∥M
h̃
p̃
∥∥
L2(T)

=
∥∥U−Nψ (Thq)

∥∥
L2(T)

= ‖Thq‖H2(D) ≤ ‖h‖∞ · ‖q‖H2(D) =

= ‖h‖∞ ·
∥∥U−Nψ(q)

∥∥
L2(T)

= ‖h‖∞ ·
∥∥U−N q̃∥∥

L2(T)
=

= ‖h‖∞ · ‖p̃‖L2(T).

Since this last expression is finite, M
h̃

must be bounded on T . As T is densely contained
in L2(T) we have boundedness everywhere, i.e. M

h̃
∈ B(L2(T)). Because the polynomials

ψ(C[z]) are dense in L2
+(T) we obtain from M

h̃
ψ(C[z]) ⊆ L2

+(T) and the continuity of
M
h̃

that M
h̃
L2

+(T) ⊆ L2
+(T). At the same time, this shows

‖h̃‖L∞(T) = ‖M
h̃
‖ ≤ ‖h‖∞, (2.7)

where the equality in (2.7) is a well-known fact about multiplication operators, cf.
Lemma 1.2.7.
It is left to show the converse inequality. Given a complex polynomial p ∈ C[z], equation
(2.6) then clearly reads as (ψ ◦ Th)(p) = (M

h̃
◦ ψ)(p). Because C[z] is densely contained

in H2(D) due to Lemma 2.1.5, this identity extends to H2(D), proving

M
h̃
� L2

+(T) = ψ ◦ Th ◦ ψ−1.

Notice that the inverse ψ−1 is only defined on the image φ(H2(D)) = L2
+(T) and that

M
h̃

leaves L2
+(T) invariant. Rewritten, this reads as ψ−1 ◦M

h̃
◦ ψ = Th and using that

ψ is isometric results in

‖h‖∞ = ‖Th‖ = ‖ψ−1 ◦M
h̃
◦ ψ‖ ≤ ‖M

h̃
‖ = ‖h̃‖L∞(T). (2.8)

Together, (2.7) and (2.8) show ‖h‖∞ = ‖h̃‖L∞(T) and ψ(h) = h̃ ∈ L∞(T). Consequently,

h̃ ∈ L∞+ (T).
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COROLLARY 2.2.10. Let ψ be the isometric isomorphisms as defined in (2.3). Then
ψ is multiplicative on H∞(D). Moreover, ψ(h · f) = ψ(h) · ψ(f) even holds for every
h ∈ H∞(D) and f ∈ H2(D).

Proof. Remember that according to Lemma 2.2.9

Mψ(h) ◦ ψ = ψ ◦ Th (2.9)

for any function h ∈ H∞(D). Hence, for h1, h2 ∈ H∞(D)

ψ(h1)ψ(h2) = Mψ(h1)ψ(h2) =
(
Mψ(h1) ◦ ψ

)
(h2) =

(
ψ ◦ Th1

)
h2 = ψ(Th1h2) = ψ(h1h2).

So ψ is multiplicative on H∞(D). Since the operator equation (2.9) holds on H2(D), we
can even choose h2 ∈ H2(D) and the above calculation remains true.

Next, we can formulate a result corresponding in essence to Theorem 2.1.14.

THEOREM 2.2.11. Let M ∈ B(L2(T)). Then M commutes with U and leaves L2
+(T)

invariant if and only if there exists a function h ∈ H∞(D) such that M = M
h̃

for

h̃ = ψ(h). In this case, h is unique.

Proof. The necessity of the condition is clear, since if M = M
h̃

holds for a function

h ∈ H∞(D) with h̃ := ψ(h) ∈ L∞+ (T), we immediately get

UM = UM
h̃

= M
(ζ 7→ζ)·h̃ = M

h̃·(ζ 7→ζ) = M
h̃
U = MU.

Furthermore, M
h̃
L2

+(T) ⊆ L2
+(T) is a consequence of Lemma 2.2.9.

We show sufficiency. Since M leaves L2
+(T) invariant, we can define T := ψ−1◦M ◦ψ and

get T ∈ B(H2(D)). We can also rewrite the shift operator on H2(D) via S = ψ−1 ◦U ◦ψ,
which is well defined as well, since U(L2

+(T)) ⊆ L2
+(T). Hence, using that M commutes

with U , we can calculate

S ◦ T =
(
ψ−1 ◦ U ◦ ψ

)
◦
(
ψ−1 ◦M ◦ ψ

)
= ψ−1 ◦ U ◦M ◦ ψ
= ψ−1 ◦M ◦ U ◦ ψ
=
(
ψ−1 ◦M ◦ ψ

)
◦
(
ψ−1 ◦ U ◦ ψ

)
= T ◦ S.

So T is an operator on the Hardy-Hilbert space that commutes with the the shift operator
S. Courtesy of Theorem 2.1.14, there exists a function h ∈ H∞(D) such that ψ−1 ◦
M ◦ ψ = T = Th. By Lemma 2.2.9 we also have Th = ψ−1 ◦M

h̃
◦ ψ. In particular,

M
h̃
◦ ψ = M ◦ ψ, which means that M

h̃
� L2

+(T) = M � L2
+(T).

The property MU = UM clearly extends to MUn = UnM for n ≥ 1 by induction.
Moreover, since Mζ 7→ζ = U−1, we have M = MUU−1 = UMU−1. Applying U−1 from

the left, we get U−1M = MU−1, i.e. M also commutes with U−1. Again, this property
extends to MU−n = U−nM for n ≥ 1. Similarly, we have M

h̃
Un = UnM

h̃
for all n ∈ Z.
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Consider the ring of trigonometric polynomials

T :=

{
N∑

n=−N
anζ

n
∣∣ N ∈ N, a−N , . . . , aN ∈ C

}

and let p ∈ T . Obviously, UNp ∈ L2
+(T) for sufficiently large N ∈ N. Hence, MUNp =

M
h̃
UNp. Applying U−N gives

M
h̃
p = U−NM

h̃
UNp = U−NMUNp = Mp.

Consequently, M = M
h̃

holds even on T . Since the trigonometric polynomials are
densely contained in L2(T) and since both M and M

h̃
are continuous, this property

extends to L2(T). Thus, M is indeed a multiplier with multiplier function h̃.
The uniqueness of h is guaranteed by the second statement in Theorem 2.1.14 and
Equation (2.5).

LEMMA 2.2.12. For every h̃ ∈ L∞+ (T) there exists h ∈ H∞(D) satisfying ψ(h) = h̃.

Proof. Choose any h̃ ∈ L∞+ (T) and use Lemma 1.2.7 to construct M
h̃
∈ B(L2(T)) with

‖M
h̃
‖ = ‖h̃‖L∞(T). Clearly, this operator M

h̃
commutes with the shift operator U .

Furthermore, suppose that h̃ has Fourier coefficients (an)n∈Z — keep in mind that an = 0
for n < 0 — and take a polynomial p ∈ ψ

(
C[z]

)
⊆ L2

+(T) of the form p(ζ) =
∑N

n=0 bnζ
n.

To avoid technicalities set bn := 0 for n ∈ Z\{0, . . . , N} and get

M
h̃
p = h̃ · p =

(
ζ 7→

( ∞∑
n=0

anζ
n
)
·
( N∑
n=0

bnζ
n
))

=

(
ζ 7→

∞∑
n=0

( n∑
k=0

akbn−k

)
ζn

)
.

Since M
h̃

maps into L2(T), the sequence
(∑n

k=0 akbn−k
)
n∈Z must be square-summable,

so M
h̃

maps the norm dense subset ψ
(
C[z]

)
of L2

+(T) into L2
+(T). For f ∈ L2

+(T) we
find a sequence of polynomials (pN )N∈N ⊆ ψ

(
C[z]

)
converging to f in norm. Using the

continuity of M
h̃

and the fact that L2
+(T) is a closed subspace of L2(T), the calculation

M
h̃
f = M

h̃

(
lim
N→∞

pN

)
= lim

N→∞
M
h̃
pN

shows that M
h̃

leaves L2
+(T) invariant.

So we can use Theorem 2.2.11, which asserts that there exists a function h ∈ H∞(D)
such that ψ(h) = h̃.

By combining the two Lemmata 2.2.9 and 2.2.12 and Corollary 2.2.10 we get the following
result that fully characterises the multipliers of L2(T).

THEOREM 2.2.13. ψ � H∞(D) : H∞(D)→ L∞+ (T) is linear, bijective, multiplicative
and isometric, i.e. ‖ψ(.)‖L∞(T) = ‖.‖∞.

26



H2(D) as a Subspace of L2(T)

LEMMA 2.2.14. Let h ∈ H∞(D) with h̃ = ψ(h). Then the following are equivalent:

(i) We have ess inf |h̃| > 0.

(ii) M
h̃

is bounded from below by a C > 0, i.e. ‖M
h̃
g‖L2(T) ≥ C‖g‖L2(T) for all

g ∈ L2(T).

(iii) Th is bounded from below by a C > 0, i.e. ‖Thf‖H2(D) ≥ C‖f‖H2(D) for every
f ∈ H2(D).

(iv) T−1
h : ThH2(D)→ H2(D) is bounded.

(v) ran Th is closed.

In this case, 1

ess inf |h̃|
= ‖T−1

h ‖ holds and ess inf |h̃| is the largest possible constant C in

(ii) and (iii).

Proof. (i)⇒ (ii): Clearly,

‖M
h̃
g‖2L2(T) =

1

2π

∫ 2π

0

∣∣∣h̃(eiθ) · g(eiθ)
∣∣∣2 dθ ≥

(
ess inf |h̃|

)2‖g‖2L2(T)

holds for g ∈ L2(T).

(ii)⇒ (i): Assume that E :=
{
ζ ∈ T

∣∣ |h̃(ζ)| < C
}

has positive measure. Then g := χE ,

where χ is the indicator function, is not the zero function and belongs to L2(T). This,
however, gives the contradiction

C2‖g‖2L2(T) ≤ ‖Mh̃
g‖2L2(T) =

1

2π

∫ 2π

0
|h̃(eiθ) · χE |2 dθ < C2‖g‖2.

Hence, C is an essential lower bound for |h̃| on T, which means C ≤ ess inf |h̃|. To show
that C is the largest such bound, notice that assuming C < ess inf |h̃| would imply

‖M
h̃
g‖L2(T) ≥

(
ess inf |h̃|

)
‖g‖L2(T) > C‖g‖L2(T)

for any nonzero g ∈ L2(T). This would mean that there was a better lower bound for
M
h̃
, which is a contradiction as well.

(ii) ⇒ (iii): Since Th = ψ−1 ◦M
h̃
◦ ψ due to Lemma 2.2.9 and since ψ is isometric, we

have

‖Thf‖H2(D) = ‖M
h̃
f̃‖L2(T) ≥ C‖f̃‖L2(T) = C‖f‖H2(D)

for f ∈ H2(D) and f̃ = ψ(f).
(iii)⇒ (ii): Again using Lemma 2.2.9, for p̃ = ψ(p) ∈ ψ

(
C[z]

)
we have∥∥M

h̃
U−N p̃

∥∥
L2(T)

= ‖M
h̃
p̃‖L2(T) = ‖Thp‖H2(D) ≥ C‖p‖H2(D) = C

∥∥U−N p̃∥∥
L2(T)

,
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since the shift operator U is isometric and commutes with M
h̃
. Seeing as the set{

U−N p̃ ∈ L2(T)
∣∣ N ∈ N and p̃ ∈ ψ

(
C[z]

)}
is dense in L2(T), the claim follows.
(iii)⇒ (iv): If Th is bounded from below, it must obviously be injective, so the operator
T−1
h : ThH2(D)→ H2(D) is well-defined. Furthermore, calculating

‖f‖H2(D) = ‖Th(T−1
h f)‖H2(D) ≥ C‖T−1

h f‖ (2.10)

for f ∈ ThH2(D) shows that T−1
h is bounded. Since C is the largest possible constant

such that (2.10) is satisfied, 1
C is the smallest possible bound for T−1

h , so ‖T−1
h ‖ ≤

1
C .

(iv)⇒ (iii): If T−1
h is bounded,

‖f‖H2(D) = ‖T−1
h (Thf)‖H2(D) ≤

1

C
‖Thf‖H2(D) (2.11)

clearly holds for f ∈ H2(D), and thus, Th is bounded from below. Because 1
C is the

smallest possible constant such that (2.11) hold, C is the largest possible lower bound
for Th.
(iv)⇔ (v): This is a consequence of the Closed Graph Theorem 1.2.3

Notice that the function h ∈ H∞(D) in Lemma 2.2.14 is not itself required to be bounded
from below, only demanding that its boundary function stays away from zero. This
restriction would be too narrow, because, for example, h(z) := z has a zero at the origin
and Th = S has closed range.

2.3 Characterisation of Shift-Invariant Subspaces of H2(D)

We follow the approach presented in [Neu10], VII.

DEFINITION 2.3.1. We say a function h ∈ H∞(D) is

1. inner if |ψ(h)| = 1 almost everywhere on T, and

2. outer if Th has dense image in H2(D), i.e. if ThH2(D) = H2(D).

Take note that the classical definition of inner and outer functions of Hardy spaces are
different from the one given above. In particular, the requirement that an outer function
belongs to H∞(D) is relaxed in favor of membership of the respective Hardy space, cf.
[Rud87], XVII, or [RR94], IV.

PROPOSITION 2.3.2. Let h belong to H∞(D). Then h is inner iff Th is an isometry.

Proof. By definition, h being inner means that h̃ := ψ(h) has modulus one almost
everywhere on the unit circle. Hence, the operator M

h̃
is clearly isometric. Because of

Th = ψ−1 ◦M
h̃
◦ ψ, cf. Lemma 2.2.9, the same is true for Th.
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Conversely, if Th is an isometry, then so is M
h̃

= ψ◦Th ◦ψ−1 on L2
+(T). Due to Theorem

2.2.11, M
h̃

commutes with the — also isometric — shift U . Hence,

‖M
h̃
U−N p̃‖ = ‖U−NM

h̃
p̃‖ = ‖M

h̃
p̃‖ = ‖p̃‖ = ‖U−N p̃‖

shows that M
h̃

is isometric on the dense subset
{
U−N p̃

∣∣ p ∈ C[z], N ∈ N
}

of L2(T).
Because of continuity, it is isometric on the whole of L2(T). Choosing in particular
χB ∈ L2(T), i.e the characteristic function of a Borel set B ⊆ T, we have

1

2πi

∫
B
|h̃(ζ)|2 dζ = ‖M

h̃
χB‖2L2(T) = ‖χB‖2L2(T) =

1

2πi

∫
B

1 dζ.

Letting B run over all Borel sets of T, this implies |h̃(ζ)|2 = 1 for almost every ζ ∈ T.
Hence, h is inner.

PROPOSITION 2.3.3. Let h ∈ H∞(D) be outer. Then it has no zeros in D. If |h| is
bounded from below by a constant c > 0, then 1

h ∈ H
∞(D) and it is outer as well.

Proof. Assume that h(w) = 0 for w ∈ D and ThH2(D) = H2(D). Since the constant
function with value 1 belongs to H2(D), there must be a sequence (fn) ⊆ H2(D) such
that 1 = limn→∞ h · fn in the norm of H2(D). But because of Lemma 2.1.6, point
evaluation is a norm continuous operation, so we get 1 = limn→∞ h(w) · fn(w) = 0 at
w ∈ D. Thus, h cannot have a zero in D.
For the second claim, 1

h is clearly well-defined and holomorphic. Furthermore, the bound-
edness from below of |h| implies

∥∥ 1
h

∥∥
∞ ≤

1
c . This shows that 1

h belongs to H∞(D).
Therefore, T 1

h
∈ B(H2(D)) and, using that Th is continuous, the calculation

T 1
h
H2(D) = T 1

h
ThH2(D) ⊇ T 1

h
ThH2(D) = H2(D)

proves that 1
h is outer.

THEOREM 2.3.4 (Beurling). Let L 6= {0} be a closed subspace of H2(D). Then L is
left invariant by S if and only if it has the form

L = ThH2(D)

for an inner function h ∈ H∞(D).

Proof. If L can be represented with the help of an inner function h ∈ H∞(D) as ThH2(D),
then due to Theorem 2.1.14 we have SL = SThH2(D) = ThSH2(D) ⊆ ThH2(D) = L.
Conversely, if L 6= {0} is a closed, shift-invariant subspace of H2(D), let us define

n0 := max
{
j ∈ N0

∣∣ (z 7→ f(z)
zj

)
∈ H2(D) for all f ∈ L

}
, i.e. all functions contained in

L have a zero at the origin of order at least n0 and for some function in L the origin
is a zero of order exactly n0. Now let f ∈ L be such that f = (z 7→ zn0

∑∞
n=0 anz

n)
and a0 6= 0. The operator S increases the order of the zero at the origin by one. Thus,
S(g) 6= f for all g ∈ L. Therefore, S : L → L is isometric, but not surjective. Since
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SL is the isometric image of a closed subspace, it is closed as well. So we can form
L	 SL, which is nonzero since L is nontrivial. We therefore find h ∈ L	 SL such that
‖h‖H2(D) = 1. Our aim is to show that h is inner, i.e. that h̃ := ψ(h) has modulus one
almost everywhere on the unit circle.

For n > 0 we clearly have Snh ∈ SL and h⊥SL. Thus, with the help of ψ from (2.3)
and ψ ◦ S = U ◦ ψ we arrive at

0 = (Snh, h)H2(D) =
(
Unψ(h), ψ(h)

)
L2(T)

=
(
Unh̃, h̃

)
L2(T)

=

=
1

2π

∫ 2π

0
einθh̃(eiθ)h̃(eiθ) dθ =

=
1

2π

∫ 2π

0
einθ|h̃(eiθ)|2 dθ.

(2.12)

After conjugating the above calculation we get

1

2π

∫ 2π

0
einθ|h̃(eiθ)|2 dθ = 0

for n 6= 0. Since the trigonometric polynomials form an orthonormal basis of L2(T), this
forces the Fourier series of the function |h̃(ζ)|2 to be a constant in the sense of L2(T).
Because of 1 = ‖h‖H2(D) = ‖ψ(h)‖L2(T) this constant must be of modulus one. Hence, h
belongs to H∞(D) and is inner.

Next, we form Th. From (z 7→ znh(z)) = Snh ∈ L we conclude that, due to linearity,
h · p ∈ L for all p ∈ C[z]. Since according to Lemma 2.1.5 the polynomial ring C[z]
is dense in H2(D), it follows that ThH2(D) ⊆ L. Because h is inner, this makes Th an
isometry according to Proposition 2.3.2 and thus, ThH2(D) is a closed subspace of L.

To show that ThH2(D) cannot be a proper subspace of L, we prove that the orthogonal
complement of ThH2(D) in L contains only the zero function. Let g ∈ L	ThH2(D). On
the one hand, the function Snh belongs to ThH2(D), which means that (Snh, g) = 0 for
n ∈ N0. On the other hand, Sng ∈ SL for n ∈ N. Since h is orthogonal to SL, we get
(Sng, h) = 0 for n ∈ N. Similarly to (2.12), we get

0 = (Snh, g) =
1

2π

∫ 2π

0
einθh̃(eiθ)g̃(eiθ) dθ, n ≥ 0

0 = (Sng, h) =
1

2π

∫ 2π

0
einθg̃(eiθ)h̃(eiθ) dθ =

1

2π

∫ 2π

0
e−inθh̃(eiθ)g̃(eiθ) dθ, n > 0.

Together these equations imply that ψ(h)ψ(g) must vanish almost everywhere on T.
Since h is inner, i.e. |ψ(h)| = 1 almost everywhere, this forces ψ(g) = 0 almost every-
where. Therefore, g ≡ 0 and we are finished.

Beurling’s Theorem can be sharpened in the sense that the resulting inner function
satisfies a uniqueness condition of sorts.
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PROPOSITION 2.3.5. Let h1, h2 ∈ H∞(D) be inner with Th1H2(D) = Th2H2(D).
Then there exists c ∈ T such that h2 = c · h1 holds.

Proof. The functions h1 and h2 belong to H2(D) and, thus, also to Th1(H2(D)) =
Th2(H2(D)). Hence, there exists f ∈ H2(D) such that

h1 = h2 · f. (2.13)

We can therefore consider h1
h2

= f . This function is well-defined, because whenever h2

has a root at some point in D, equation (2.13) guarantees that h1 vanishes at there
as well, even respecting the order of the root of h2. Hence, all singularities resulting
from the denominator h2 are removed by the numerator h1. As a Hardy-Hilbert space

function, h1
h2

is mapped into L2
+(T) ⊆ L2(T) by ψ. So all Fourier coefficients of ψ

(
h1
h2

)
vanish for negative indices. This and the same arguments applied to h2

h1
∈ H2(D) show

that for n < 0 we have

1

2π

∫ 2π

0
einθ

[
ψ

(
h1(eiθ)

h2(eiθ)

)
+ ψ

(
h2(eiθ)

h1(eiθ)

)]
dθ = 0. (2.14)

Our aim now is to proof that (2.14) holds even for n 6= 0. To this end, we show that

ψ

(
h1

h2

)
=

1

ψ
(
h2
h1

) (2.15)

holds, which easily follows if we can verify ψ
(
h1
h2

)
= ψ(h1)

ψ(h2) . Using Corollary 2.2.10 with

h2 ∈ H∞(D) and h1
h2
∈ H2(D) yields

ψ(h2) · ψ
(
h1

h2

)
= ψ

(
h2 ·

h1

h2

)
= ψ(h1).

Since h2 is inner, we have |ψ(h2)| ≡ 1 on T, i.e. ψ(h2) is not the zero function. Hence,
we can divide by ψ(h2) and arrive at our desired result. Equation (2.15) now shows that

ψ

(
h1

h2

)
+ ψ

(
h2

h1

)
= ψ

(
h1

h2

)
+

1

ψ
(
h1
h2

) = ψ

(
h1

h2

)
+ ψ

(
h1

h2

)
,

where the last equality is a consequence of ψ(h1)(ζ)
ψ(h2)(ζ) ∈ T for almost every ζ ∈ T. Hence,

this is real and we can conjugate equation (2.14) and extend it to hold for all n 6= 0. So

it follows that ψ
(
h1
h2

)
+ψ

(
h2
h1

)
≡ c′ ∈ C almost everywhere on T, implying h1

h2
+ h2
h1
≡ c′.

Setting H := h2
h1

gets us H + 1
H = c′. This means that we have the quadratic equation

H2 − c′H + 1 = 0 on D and solving for H clearly shows H(z) = c′

2 ±
√

c′2

4 − 1 =: c. As

H is holomorphic, it must be constant and h1 · c = h2. Finally,

|c| = |ψ(c)| = |ψ(H)| =
∣∣∣∣ψ(h2

h1

)∣∣∣∣ =
|ψ(h2)|
|ψ(h1)|

= 1

proves c ∈ T.
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COROLLARY 2.3.6 (Inner-Outer-Factorization of Multiplier Functions). For every
nonzero function h ∈ H∞(D) there exist h1, h2 ∈ H∞(D), with h1 inner and h2 outer,
such that h = h1 · h2. The functions h1 and h2 are uniquely determined by h up to
multiplication by unimodular constants.

Proof. Let Th be the multiplier operator for the multiplier h and set L := ThH2(D). As
we know, the shift operator S is continuous and it commutes with any given multiplier
operator, so

SL = SThH2(D) ⊆ SThH2(D) = ThSH2(D) ⊆ ThH2(D) = L.

Additionally, h = Th1 ∈ L. Therefore, L 6= {0} is a closed, shift-invariant subspace of
H2(D). By Beurling’s Theorem 2.3.4 there exists an inner function h1 ∈ H∞(D) such
that Th1H2(D) = L = ThH2(D). It remains to show how we can find a suitable outer
function h2.
Due to Proposition 2.3.2 we first notice that Th1 : H2(D)→ L bijective. By the Bounded
Inverse Theorem 1.2.4, T−1

h1
: L → H2(D) is continuous and thus, T−1

h1
◦ Th ∈ B

(
H2(D)

)
.

Furthermore, T−1
h1

commutes with S, because we get

S ◦ T−1
h1

= T−1
h1
◦ Th1 ◦ S ◦ T

−1
h1

= T−1
h1
◦ S ◦ Th1 ◦ T

−1
h1

= T−1
h1
◦ S

on L. Hence, we arrive at

S ◦ T−1
h1
◦ Th = T−1

h1
◦ S ◦ Th = T−1

h1
◦ Th ◦ S.

Due to Theorem 2.1.14, T−1
h1
◦ Th must be a multiplier operator, i.e. there exists a

uniquely determined function h2 ∈ H∞(D) such that Th2 = T−1
h1
◦ Th. This is obviously

equivalent to Th1 ◦Th2 = Th. Applying this relation to the constant function with value 1
shows h = h1 · h2. Finally, since Th1 : H2(D)→ L is an isometry, so is T−1

h1
: L → H2(D)

and the calculation

Th2H2(D) = T−1
h1
◦ ThH2(D) = T−1

h1
ThH2(D) = T−1

h1
L = H2(D)

shows that h2 is outer.
Regarding uniqueness, we assume that there are two decompositions h = h1 ·h2 = h′1 ·h′2,
where h1, h

′
1 are inner and h2, h

′
2 are outer. By Proposition 2.3.2, Th1 und Th′1 are

isometric, so

Th1H2(D) = Th1Th2H2(D) = Th1 ◦ Th2H2(D) = ThH2(D) =

= Th′1 ◦ Th′2H
2(D) = Th′1Th′2H

2(D) = Th′1H
2(D)

Proposition 2.3.5 provides us with a constant c ∈ T such that h1 = c · h′1. This implies

h1 · h2 = 1
c · h1 · h̃2. Since h1 is certainly not the zero function, we see that h2 = 1

c · h
′
2.

Hence, the postulated factorization is unique up to unimodular factors.

The classical Hardy space theory greatly extends Corollary 2.3.6 and factorizes not just
the bounded analytic functions into an inner and an outer function, but all Hardy space
functions. These standard results can be found in most books on the topic, cf. for
example [Rud87], XVII, or [RR94], IV.
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Chapter 3

Vector-Valued Analytic Functions
and the Space H2(D;Cn)

Linear relations on the Hardy-Hilbert space are subspaces of the Cartesian product of
H2(D). We will identify this product with another structure and develop our theory in
this new setting. It turns out that the right way to move forward here are vector-valued
analytic functions and we will therefore start this chapter with some results on them.
After this, the one-dimensional theory of the previous chapter will be expanded to the
multi-dimensional case, considering matrix-valued multiplier operators on vector-valued
function spaces. For linear relations, the range of these functions will then be the Hilbert
space C2.

3.1 Holomorphy in a Banach Space Setting

First, some notions from complex analysis are transferred to our setting of vector valued
functions. We cite [HP57], III.10, and [Kle07], II, for the following results on holomorphy.

DEFINITION 3.1.1. Let G be a domain in the complex plane and X,Y be Banach
spaces.

1. A function f : G→ X is said to be holomorphic in G if

lim
z→w

1

z − w
(
f(z)− f(w)

)
=: f ′(w) ∈ X

exists for every w ∈ G with respect to the norm of X. It is called weakly holo-
morphic in G, if x̂ ◦ f : G→ C is holomorphic in G in the classical sense for every
x̂ ∈ X ′.

2. An operator valued function T : G→ B(X,Y ) is said to be holomorphic in G if

lim
z→w

1

z − w
(
T (z)− T (w)

)
=: T ′(w) ∈ B(X,Y )
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exists for every w ∈ G with respect to the operator norm of B(X,Y ). It is called
strongly holomorphic if z 7→ T (z)x is a holomorphic function for every x ∈ X, and
weakly holomorphic if z 7→ ŷ(Tx) is holomorphic in G in the classical sense for
every ŷ ∈ Y ′ and x ∈ X.

In fact, these definitions carry with them a certain redundancy. It can be shown that
the introduced notions are all equivalent, which is the content of the next lemma and
two propositions.

LEMMA 3.1.2. Let f : G→ X and T : G→ B(X,Y ). Then we have

(i) f is holomorphic ⇒ f is weakly holomorphic

(ii) T is holomorphic ⇒ T is strongly holomorphic ⇒ T is weakly holomorphic

Proof. To show (i), let f be holomorphic. Since we have

(x̂ ◦ f)′(w) = lim
z→w

(x̂ ◦ f)(z)− (x̂ ◦ f)(w)

z − w
= x̂

(
lim
z→w

f(z)− f(w)

z − w

)
= x̂(f ′(w))

for every x̂ ∈ X ′, it must clearly be weakly holomorphic.

Regarding (ii): For an operator T , we notice that if limz→w
T (z)−T (w)

z−w exists in the

operator topology, then so will limz→w
T (z)x−T (w)x

z−w for every x ∈ X in the topology on
Y . For the second implication, proceed by applying (i) to the function z 7→ T (z)x for
every x ∈ X.

PROPOSITION 3.1.3 (Cauchy Integral Formula). Let X be a Banach space and
f : G→ X be a holomorphic function defined on a domain G of C. Suppose that w ∈ G
and that the open disk with radius r around w, i.e. Ur(w), is completely contained in G.
Then for every z ∈ Ur(w) the equation

f(z) =
1

2πi

∫
∂Ur(w)

f(ζ)

ζ − z
dζ ∈ X

holds, where the contour integral is taken counter-clockwise. Furthermore, we have

f (n)(z) =
n!

2πi

∫
∂Ur(w)

f(ζ)

(ζ − z)n+1
dζ ∈ X

for every n ∈ N.

Proof. For every x̂ ∈ X ′, the function x̂◦f : G→ C is holomorphic in the classical sense,
so the classical Cauchy integral formula holds. Furthermore, since f is differentiable, it
must also be continuous in G. By using Banach space valued nets it can be shown that
the Riemann integral of continuous Banach space valued functions exists. In fact, this
is a straightforward translation of the proof for the classical, complex valued case. With
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the same argument involving nets it can be shown that a continuous linear functional
can be pulled out of the integral. For every x̂ ∈ X ′ we thus have

x̂(f(z)) = (x̂ ◦ f)(z) =
1

2πi

∫
∂Ur(w)

(x̂ ◦ f)(ζ)

ζ − z
dζ = x̂

(
1

2πi

∫
∂Ur(w)

f(ζ)

ζ − z
dζ

)

and we arrive at

x̂

(
f(z)− 1

2πi

∫
∂Ur(w)

f(ζ)

ζ − z
dζ

)
= 0

for every x̂ ∈ X ′. Since X ′ is separating, the claim follows.

For the second formula, we fix n ∈ N. For every x̂ ∈ X ′ we have the classical result

(x̂ ◦ f)(n)(z) =
n!

2πi

∫
∂Ur(w)

(x̂ ◦ f)(ζ)

(ζ − z)n+1
dζ = x̂

(
n!

2πi

∫
∂Ur(w)

f(ζ)

(ζ − z)n+1
dζ

)
.

Additionally, from

(x̂ ◦ f)′(z) = x̂(f ′(z))

we infer inductively that

(x̂ ◦ f)(n)(z) = x̂(f (n)(z))

holds for every n ∈ N. Since this works for every x̂ ∈ X ′, the claim follows again because
X ′ is separating.

PROPOSITION 3.1.4. Let f : G→ X and T : G→ B(X,Y )

(i) If f is weakly holomorphic, then it is holomorphic.

(ii) If T is weakly holomorphic, then it is holomorphic.

Proof. As a first step, we will show that if T is strongly holomorphic, then it is also
holomorphic. By our additional assumption, z 7→ T (z)x is holomorphic for every x ∈ X.

We need to show that limz→w
T (z)−T (w)

z−w exists with respect to the operator norm in
B(X,Y ). Equivalently, we can verify the Cauchy condition

lim
z1,z2→w

T (z1)− T (w)

z1 − w
− T (z2)− T (w)

z2 − w
= 0. (3.1)

For z1 6= z2, z1 6= w and z2 6= w we define the operator

T (z1, z2) :=
1

z1 − z2

[
T (z1)− T (w)

z1 − w
− T (z2)− T (w)

z2 − w

]
.
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Clearly, since it is made up of linear operators, we have T (z1, z2) ∈ B(X,Y ). Using the
Cauchy Integral Formula

T (z)x =
1

2πi

∫
∂Ur(w)

T (ζ)x

ζ − z
dζ

four times in the definition of T (z1, z2), we get for every x ∈ X

‖T (z1, z2)x‖ =

∥∥∥∥∥ 1

z1 − z2

1

2πi

∫
∂Ur(w)

T (ζ)x

(
1

ζ−z1 −
1

ζ−w
z1 − w

−
1

ζ−z2 −
1

ζ−w
z2 − w

)
dζ

∥∥∥∥∥ =

=

∥∥∥∥∥ 1

2πi

∫
∂Ur(w)

T (ζ)x

(
1

(ζ − z1)(ζ − z2)(ζ − w)

)
dζ

∥∥∥∥∥ ≤
≤ 2πr

2π

4

r3
max

ζ∈∂Ur(w)
‖T (ζ)x‖ =: Cx

if z1, z2 ∈ U r
2
(w). Hence, for all z1, z2 sufficiently close to w, we get ‖T (z1, z2)x‖ ≤ Cx

for every x ∈ X. Due to the principle of uniform boundedness, this implies the existence
of a constant C > 0 such that ‖T (z1, z2)‖ ≤ C holds. This, in turn, implies (3.1).
In order to show (i), we identify X with a closed subspace of its bidual X ′′ = B(X ′,C),
so f : G → X ⊆ B(X ′,C). By our assumption, x̂ ◦ f : G → C is holomorphic for every
x̂ ∈ X ′, i.e. we see f as a strongly holomorphic operator valued function. According to
the first step of the proof, this shows that f is holomorphic.
Finally, (ii) follows: If z 7→ ŷ(T (z)x) is a holomorphic function from G to Y for every
ŷ ∈ Y ′, by (i) it must be holomorphic. This means that z 7→ T (z)x is a holomorphic
operator function for every x ∈ X, i.e. T is strongly holomorphic. As we have seen, this
means that T is holomorphic.

The above proposition provides a convenient way to check holomorphy. In the proof we
used the Cauchy Integral Formula, which in turn relies on the fact that X ′ is a separating
set. A lot of the well-known Cauchy theory in complex analysis can be developed also in
the case of vector valued functions. Usually, one composes a given holomorphic function
f : G → X with continuous linear functionals and uses the classical results for the
functions x̂ ◦ f , which are holomorphic as we have shown. Again, since X ′ is separating,
the functionals are then removed by the same trick.
We formulate one particular result for our convenience.

LEMMA 3.1.5. Let (an)n∈N0 be a sequence in a Banach space X. Consider the power
series z 7→

∑∞
n=0 z

nan and define three subsets M1,M2,M3 of C via

• M1 :=
{
z ∈ C

∣∣ ∑∞
n=0 ‖znan‖X <∞

}
,

• M2 :=
{
z ∈ C

∣∣ ∑∞
n=0 z

nan converges in X
}

, and

• M3 :=
{
z ∈ C

∣∣ supn∈N0
‖znan‖ <∞

}
.

If we set Ri := supMi
|z| for i ∈ {1, 2, 3}, then R1 = R2 = R3.
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Proof. Obviously, we have M1 ⊆M2 ⊆M3 and thus, R1 ≤ R2 ≤ R3.

For |z| < R3 there exists w ∈M3 such that |z| < |w| ≤ R3 and C := supn∈N0
‖wnan‖ is

finite. Because of

‖znan‖ =
∣∣∣ z
w

∣∣∣n ‖wnan‖ ≤ C ∣∣∣ z
w

∣∣∣n
we can use the comparison test to determine

∞∑
n=0

‖znan‖ ≤ C
∞∑
n=0

∣∣∣ z
w

∣∣∣n = C
1

1−
∣∣ z
w

∣∣ <∞.
Hence, z ∈M1 and |z| ≤ R1. This implies R3 ≤ R1 and we are finished.

LEMMA 3.1.6. Let X,Y be Banach spaces and Θ : D → B(X,Y ) an operator valued
function. Then the following are equivalent:

(i) Θ is holomorphic on D.

(ii) Θ has a power series expansion Θ(z) =
∑∞

n=0 z
nΘn on D with Θn : X → Y being

bounded linear operators and where the power series is convergent in the strong,
weak and operator norm topology.

Proof. (i) ⇒ (ii): We take arbitrary x ∈ X and ŷ ∈ Y ′ and consider the function
fx,ŷ :=

(
z 7→ ŷ(Θ(z)x)

)
with domain D and range in C. Due to Lemma 3.1.2, fx,ŷ is

holomorphic in the classical sense. Hence, it is expandable in a power series
∑∞

n=0 α
x,ŷ
n zn

convergent on D and with αx,ŷn ∈ C for all n ∈ N0. Setting w = z = 0 and choosing
r ∈ (0, 1), Proposition 3.1.3 yields

αx,ŷn =
1

n!
f

(n)
x,ŷ (0) =

1

2πi

∫
∂Ur(0)

fx,ŷ(ζ)

ζn+1
dζ =

=
1

2πi

∫
∂Ur(0)

1

ζn+1
ŷ(Θ(ζ)x) dζ =

= ŷ

([ 1

2πi

∫
∂Ur(0)

1

ζn+1
Θ(ζ) dζ

]
︸ ︷︷ ︸

=: Θn∈ B(X,Y )

x

)
= ŷ(Θnx).

Note that Θn is well defined, because Θ is continuous due to it being holomorphic and,
therefore, the B(X,Y )-valued integral inside the square brackets exists. In summary, we
have shown that fx,ŷ(z) =

∑∞
n=0 z

nŷ(Θnx) holds on D for all x ∈ X and ŷ ∈ Y ′, i.e. Θ
has a weakly converging power series expansion Θ(z) =

∑∞
n=0 z

nΘn on the unit disc.

Let ι : X → X ′′ be the canonical embedding of X into its bidual X ′′. For some arbitrary
but fixed z ∈ D we choose any x ∈ X and consider the family of operators{

ι(znΘnx) : Y ′ → C
∣∣ n ∈ N0

}
.
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Because of

|ι(znΘnx)(ŷ)| = |ŷ(znΘnx)| ≤ Cŷ

for n ∈ N0, we see that this family is pointwise bounded. By the Principle of Uniform
Boundedness, Theorem 1.2.2, we get that supn∈N0

‖ι(znΘnx)‖ is finite. Since the map-
ping ι is isometric, we obtain supn∈N0

‖znΘnx‖ < ∞, which is valid for all x ∈ X and
z ∈ D. Due to Lemma 3.1.5, the power series expansion of Θ converges strongly on D.
This in turn implies that

{
znΘn

∣∣ n ∈ N0

}
is a pointwise bounded family of operators

as well. Applying Theorem 1.2.2 a second time yields supn∈N0
‖znΘn‖ <∞. By Lemma

3.1.5, the power series expansion of Θ thus converges in the norm of B(X,Y ).
(ii) ⇒ (i): Let Θ have a power series expansion Θ(z) =

∑∞
n=0 z

nΘn. In particular, this
series converges weakly, i.e. fx,ŷ :=

(
z 7→

∑∞
n=0 z

nŷ(Θnx)
)

is analytic in the classical
sense. Thus, fx,ŷ is holomorphic in the classical sense, which means that Θ is weakly
holomorphic. Due to Proposition 3.1.4 it is therefore holomorphic.

3.2 The Space H2(D;Cn)

We are now ready to introduce the Hardy space H2(D;Cn).

DEFINITION 3.2.1. For n ∈ N we consider Cn and define

H2(D;Cn) :=

{
f ∈ (Cn)D

∣∣ f(z) =
∞∑
k=0

zkak on D, (ak) ∈ (Cn)N0 ,
∞∑
k=0

‖ak‖2Cn <∞

}
to contain all holomorphic and Cn-valued functions on the unit disk. Furthermore, they
are required to possess power series expansions where the coefficients are elements of
Cn and are square-summable. The power series expansion itself is understood to be
convergent with respect to the (usual Euclidean) norm ‖.‖Cn .

Obviously, the case n = 1 is just H2(D) from Definition 2.1.1. It should be noted, that
one could also define H2(D;H) for an an infinite dimensional separable Hilbert space, cf.
[Nag10], V, but we will stick to dealing with finite dimensional Hilbert spaces. In the
next chapter, the case n = 2 will then be important for dealing with linear relations.
The following lemma assures us that a function with a power series expansion that has
square-summable coefficients is automatically holomorphic on the unit disk.

LEMMA 3.2.2. Let (ak) ∈ (Cn)N0. The condition
∑∞

k=0 ‖ak‖2Cn <∞ implies that the
radius of convergence ρ of z 7→

∑∞
k=0 z

kak is greater or equal to 1.

Proof. The sequence (‖ak‖2Cn) must be a null sequence because the series
∑∞

k=0 ‖ak‖2
converges. Thus, (‖ak‖Cn) also tends to zero. Therefore, there exists N ∈ N such
that ‖ak‖Cn ≤ 1 for all k ≥ N . Consequently, the sequence ( k

√
‖ak‖Cn)∞k=N , and, in

particular, its limes superior, will also be bounded from above by 1. We can therefore
use the following well-known formula to calculate the radius of convergence

ρ =
1

lim supk→∞
k
√
‖ak‖Cn

≥ 1
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and the assertion follows.

We recall that `2(N0;Cn) is the Hilbert space of square-summable sequences where the
elements in each sequence are vectors from Cn. Furthermore, the space `2(N0;Cn)
is equipped with the scalar product

(
(ak), (bk)

)
`2(N0;Cn)

:=
∑∞

k=0(ak, bk)Cn , which is

equivalent to the sum scalar product from `2(N0), i.e. for (ak) = (a1,k, . . . an,k)
> and

(bk) = (b1,k, . . . , bn,k)
> ∈ `2(N0;Cn) we take the coordinate sequences, which obviously

all belong to `2(N0) and therefore(
(ak)k∈N0 , (bk)k∈N0

)
`2(N0;Cn)

:=
∞∑
k=0

(ak, bk)Cn =

∞∑
k=0

n∑
j=1

aj,kbj,k =

=

n∑
j=1

∞∑
k=0

aj,kbj,k =

n∑
j=1

(
(aj,k)k∈N0 , (bj,k)k∈N0

)
`2(N0)

.

(3.2)

We make use of these well-known facts in the following

PROPOSITION 3.2.3. For every n ∈ N we have

H2(D;Cn) ∼= `2(N0;Cn).

The mapping

Φn :

{
`2(N0;Cn) → H2(D;Cn)

(an) 7→ f := (z 7→
∑∞

n=0 z
nan)

(3.3)

is bijective and preserves the linear structure. Moreover,

(., .)H2(D;Cn) :

{
H2(D;Cn)×H2(D;Cn) → C[

f, g
]

7→
(
Φ−1
n (f),Φ−1

n (g)
)
`2(N0;Cn)

is an inner product on H2(D;Cn) such that Φn is additionally isometric.

Proof. The function Φn is well-defined — the holomorphy of Φn((an)) on the unit disk is
due to Lemmata 3.2.2 and 3.1.6 — and clearly bijective. In addition, the definitions for
+ and multiplication by a scalar in `2(N0;Cn) agree with those for power series. Conse-
quently, Φn is compatible with the linear structures on the two spaces and (., .)H2(D;Cn)

is indeed an inner product on H2(D;Cn) for which Φn is isometric.

PROPOSITION 3.2.4. For each n ∈ N we have(
H2(D)

)n ∼= H2(D;Cn).

Furthermore, the scalar product and its induced norm on H2(D;Cn) are equivalent to the
sum scalar product and the corresponding norm of (H2(D))n, i.e. for f, g ∈ H2(D;Cn)
with coordinate functions f1, . . . , fn, g1, . . . , gn ∈ H2(D), respectively, we have

(f, g)H2(D;Cn) =
n∑
j=1

(fj , gj)H2(D) and ‖f‖H2(D;Cn) =

√√√√ n∑
j=1

‖fj‖2H2(D)
.
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Proof. Let f1, . . . , fn ∈ H2(D) with power series coefficients (a1,k)k∈N0 , . . . , (an,k)k∈N0

belonging to CN0 , respectively. Combining a1,k, . . . , an,k ∈ C for each k ∈ N0 to a vector
ck ∈ Cn and defining h := (z 7→

∑∞
k=0 z

kck) we first notice that

(
z 7→

∞∑
k=0

zkck

)
=

z 7→ ∞∑
k=0

zk

a1,k
...

an,k


 =

z 7→

∑∞

k=0 a1,kz
k

...∑∞
k=0 an,kz

k


 =

=

z 7→
f1(z)

...
fn(z)


 .

Using (3.2) for calculating

∞∑
k=0

‖ck‖2Cn =

∞∑
k=0

‖(a1,k, . . . , an,k)
>‖2Cn =

∞∑
k=0

n∑
j=1

|aj,k|2 =

n∑
j=1

∞∑
k=0

|aj,k|2 (3.4)

shows that h has square-summable power series coefficients (ck)k∈N0 ∈
(
Cn
)N0 under

our assumptions. Lemma 3.2.2 implies that h is analytic on the unit disk. Furthermore,
(f1, . . . , fn)> 7→ h is clearly linear and, hence, a vector space homomorphism from
(H2(D))n to H2(D;Cn). Since (H2(D))n is equipped with the sum scalar product, (3.4)
implies

‖h‖2H2(D;Cn) =

n∑
j=1

‖fj‖2H2(D) = ‖(f1, . . . , fn)>‖2(H2(D))n .

Thus, the above assignment is isometric and in turn injective. For surjectivity, we pick
h ∈ H2(D;Cn) with coefficients (ck). The functions gj(z) :=

∑∞
k=0 z

kcj,k, whereby
j ∈ {1, . . . , n} and cj,k signifies the j-th coordinate of ck, are all clearly elements of
H2(D), since ‖cj,k‖2H2(D) ≤ ‖ck‖

2
H2(D;Cn) for all k and j. Hence, we found a preimage of

h.

LEMMA 3.2.5. The set

C[z;Cn] :=

{
p : D→ Cn

∣∣ p(z) =
K∑
k=0

zkak for K ∈ N0 and ak ∈ Cn for 0 ≤ k ≤ K

}
,

i.e. the ring of vector-valued polynomials on the unit disk, is densely contained in
H2(D;Cn) with respect to the norm ‖.‖H2(D;Cn).

Proof. Let f ∈ H2(D;Cn) with power series f(z) =
∑∞

k=0 akz
k for ak ∈ Cn and

define pN (z) :=
∑N

k=0 z
kak. Then ‖f − pN‖2H2(D;Cn) = ‖

∑∞
k=N+1 z

kak‖2H2(D;Cn) =∑∞
k=N+1 ‖ak‖2Cn converges to zero as N approaches infinity.

As we have mentioned earlier, H2(D) is a reproducing kernel Hilbert space. For higher
dimensions we arrive at the following result.
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LEMMA 3.2.6. Let ιn,w : H2(D;Cn) → Cn : f 7→ f(w) be the point evaluation func-

tional at w ∈ D. Then ιn,w is linear and continuous for every w with ‖ιn,w‖ ≤
√

1
1−|w|2 .

Moreover, for f ∈ H2(D;Cn) with coordinate functions f1, . . . , fn ∈ H2(D) we have

ιn,w(f) =

(f1, kw)H2(D)
...

(fn, kw)H2(D)

 ∈ Cn,

where the kw are the reproducing kernel functions defined in Lemma 2.1.6.

Proof. The linearity of ιn,w is clear. By Lemma 2.1.6, the functions kw are contained in
H2(D) and are nonzero for every w ∈ D.

Now let f ∈ H2(D;Cn) be the function z 7→
∑∞

k=0 z
kak and w ∈ D. We denote the

coordinate functions of f by f1, . . . , fn ∈ H2(D). Using Lemma 2.1.6 in each component
we calculate

f(w) =
∞∑
k=0

wkak =


(∑∞

k=0 a1,kz
k,
∑∞

k=0w
kzk
)
H2(D)

...(∑∞
k=0 an,kz

k,
∑∞

k=0w
kzk
)
H2(D)

 =

(f1, kw)H2(D)
...

(fn, kw)H2(D)

 .

By the Cauchy-Schwarz inequality, we get

‖ιn,w(f)‖2Cn =

∥∥∥∥∥∥∥
(f1, kw)H2(D)

...
(fn, kw)H2(D)


∥∥∥∥∥∥∥

2

Cn

=
n∑
j=1

∣∣(fj , kw)H2(D)

∣∣2
≤ ‖kw‖2H2(D)

n∑
j=1

‖fj‖2H2(D) = ‖kw‖2H2(D)‖f‖
2
H2(D;Cn)

and thus, ιn,w is bounded with ‖ιn,w‖ ≤ ‖kw‖H2(D) =
√

1
1−|w|2 .

LEMMA 3.2.7. Let ιn,w be the point evaluation functional on H2(D;Cn) at w ∈ D and
define a function Kn,w : Cn → H2(D;Cn) by Kn,w := ι∗n,w. Then

(i) For every f ∈ H2(D;Cn) and α ∈ Cn we have the relation (f,Kn,w(α)) = αHf(w)
and we can explicitly calculate Kn,w(α) =

∑∞
k=0 z

k(wkα).

(ii) Kn,w, and thus also ιn,w, has operator norm
√

1
1−|w|2 .

(iii)
√

1− |w|2Kn,w : Cn → Kn,w(Cn) is unitary and ‖K−1
n,w‖ =

√
1− |w|2.
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Proof. Take an arbitrary f ∈ H2(D;Cn) with power series coefficients (ak)k∈N0 . Then
clearly

αHf(w) = αHιn,w(f) = (ιn,w(f), α)Cn = (f,Kn,w(α))H2(D;Cn)

and, by the definition of the scalar product on H2(D;Cn) in Proposition 3.2.4,

αHf(w) = αH
∞∑
k=0

wkak =
∞∑
k=0

wkαHak =

( ∞∑
k=0

zkak,
∞∑
k=0

zk(wkα)

)
Moreover,

ιn,wKn,w(α) = ιn,w

( ∞∑
k=0

zk(wkα)

)
=
∞∑
k=0

wkwkα =

( ∞∑
k=0

(|w|2)k

)
α =

1

1− |w|2
α.

This means that

ιn,wKn,w =
1

1− |w|2
ICn ,

or in other words, ιn,wKn,w = K∗n,wKn,w is a diagonal matrix with entry (1 − |w|2)−1.

This certainly implies that
√

1− |w|2Kn,w is isometric. It is therefore unitary as a
mapping from Cn to Kn,w(Cn), and(√

1− |w|2Kn,w

)−1
=
√

1− |w|2K∗n,w � Kn,w(Cn)

Now ‖
√

1− |w|2Kn,w‖ = ‖(
√

1− |w|2Kn,w)−1‖ = 1 implies ‖K−1
n,w‖ =

√
1− |w|2 and

‖ιn,w‖ = ‖Kn,w‖ = (
√

1− |w|2)−1.

We will use the two lemmata above in much the same way as we used the reproducing
kernel of H2(D) in the one-dimensional case. It should be noted that for n = 1 we have
kw = K1,w(1) as 1 generates C.
The scalar product in higher dimensions was defined via summation of power series
coefficients. However, just as in the one-dimensional case, we can alternatively integrate
on circles to achieve the same.

LEMMA 3.2.8. Let f : D→ Cn be holomorphic and have the power series coefficients

(ak)k∈N0 ∈
(
Cn
)N0. Then we have

1

2π

∫ 2π

0

∥∥∥f (reiθ)∥∥∥2

Cn
dθ =

∞∑
k=0

r2k‖ak‖2Cn

as elements of [0,∞]. The condition that f belongs to H2(D;Cn) is satisfied if and only
if this expression stays finite as r tends to one from below. In this case, the norm of
H2(D;Cn) can be calculated via

‖f‖2H2(D;Cn) = lim
r↗1

1

2π

∫ 2π

0

∥∥∥f (reiθ)∥∥∥2

Cn
dθ.
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If additionally g ∈ H2(D;Cn), then the inner product satisfies

(f, g)H2(D;Cn) = lim
r↗1

1

2π

∫ 2π

0

(
f
(
reiθ

)
, g
(
reiθ

))
Cn
dθ.

Proof. Let f ∈ H2(D;Cn) with power series coefficients (ak). First note that
(
z 7→∑N

k=0 z
kak
)
N∈N converges to f uniformly on compact subsets of D, since f is analytic

on D. For a fixed r ∈ (0, 1), we use uniform convergence on the closed ball centred at
zero with radius r to exchange the order of integration and the limit process and get

1

2π

∫ 2π

0

∥∥∥f (reiθ)∥∥∥2
dθ =

1

2π

∫ 2π

0
lim
N→∞

(
N∑
k=0

(reiθ)kak

) N∑
j=0

(reiθ)jaj

 dθ =

= lim
N→∞

N∑
k,j=0

rk+j

(
1

2π

∫ 2π

0
ei(k−j)θ dθ

)
akaj =

=
∞∑
k=0

r2k‖ak‖2Cn ,

since only in the case k = j does 1
2π

∫ 2π
0 ei(k−j)θ dθ not vanish and amount to 1.

Hence, the net
(

1
2π

∫ 2π
0

∥∥f (reiθ)∥∥2
dθ
)
r∈(0,1)

=
(∑∞

k=0 r
2k‖ak‖2Cn

)
r∈(0,1)

is obviously

increasing as r tends to one. Thus, the limit is attained at the supremum. Finally,
limr↗1

∑∞
m=0 r

2k‖ak‖2Cn =
∑∞

k=0 ‖ak‖2Cn follows from the monotone convergence theo-
rem appplied to the counting measure.

To prove the claim regarding the scalar product, we use the polarisation identity as in
Corollary 2.1.9 to show

4(f, g)H2(D;Cn) = ‖f + g‖2H2(D;Cn) − ‖f − g‖
2
H2(D;Cn)

+ i‖f + ig‖2H2(D;Cn) − i‖f − ig‖
2
H2(D;Cn) =

= lim
r↗1

[
1

2π

∫ 2π

0

∥∥∥(f + g)
(
reiθ

)∥∥∥2

Cn
−
∥∥∥(f − g)

(
reiθ

)∥∥∥2

Cn

+ i
∥∥∥(f + ig)

(
reiθ

)∥∥∥2

Cn
− i
∥∥∥(f − ig)

(
reiθ

)∥∥∥2

Cn
dθ

]
=

= lim
r↗1

[
1

2π

∫ 2π

0

(
(f(reiθ), f(reiθ))Cn + (f(reiθ), g(reiθ))Cn

+ (g(reiθ), f(reiθ))Cn + (g(reiθ), g(reiθ))Cn − (f(reiθ), f(reiθ))Cn

+ (f(reiθ), g(reiθ))Cn + (g(reiθ), f(reiθ))Cn − (g(reiθ), g(reiθ))Cn

+ i(f(reiθ), f(reiθ))Cn + (f(reiθ), g(reiθ))Cn − (g(reiθ), f(reiθ))Cn
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+ i(g(reiθ), g(reiθ))Cn − i(f(reiθ), f(reiθ))Cn + (f(reiθ), g(reiθ))Cn

− (g(reiθ), f(reiθ))Cn − i(g(reiθ), g(reiθ))Cn
)
dθ

]
=

= 4 lim
r↗1

1

2π

∫ 2π

0

(
f
(
reiθ

)
, g
(
reiθ

))
Cn

dθ.

Given n,m ∈ N, we can look at what multiplier operators look like in higher dimensions.
Obviously, for a function Θ : D→ Cm×n we can define the linear relation

TΘ :=
{

[f, g] ∈ H2(D;Cn)×H2(D;Cm)
∣∣ g = Θ · f

}
.

The equality g = Θ · f is assumed to hold pointwise. TΘ is an operator, because
mul TΘ = {0}. Hence, it makes sense to write

TΘ :

{
dom TΘ → H2(D;Cm)

f 7→ Θ · f ,

where dom TΘ =
{
f ∈ H2(D;Cn)

∣∣ Θ · f ∈ H2(D;Cm)
}

.

We notice that for f = (z 7→
∑∞

k=0 z
kak) ∈ H2(D;Cn) the function product idD · f =

(z 7→ z · f(z)) =
(
z 7→

∑∞
k=0 z

k+1ak
)

belongs to H2(D;Cn) as well. Consequently, the
following operator is well-defined on H2(D;Cn):

DEFINITION 3.2.9. For n ∈ N, we call

Sn :

{
H2(D;Cn) → H2(D;Cn)

f 7→ (z 7→ z · f(z))

the shift operator, or operator of multiplication by z, on the space H2(D;Cn).

Alternatively, we could write Sn = TΘ for

Θ =


idD

idD
. . .

idD

 : D 7→ Cn×n.

LEMMA 3.2.10. Let Θ : D→ Cm×n. Then TΘ is a closed operator and the following
assertions are equivalent:

(i) TΘ ∈ B(H2(D;Cn),H2(D;Cm))

(ii) dom TΘ = H2(D;Cn)
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Proof. First, if ([fk, gk])k∈N is a sequence in the graph of TΘ converging to an element
[f, g] in the Hilbert space H2(D;Cn) × H2(D;Cm), then we have gk = Θ · fk for every
k ∈ N. Additionally, evaluation at a point is a norm continuous operation in H2(D;Cn)
and H2(D;Cm), cf. Lemma 3.2.6. So for arbitrary w ∈ D we get

gk(w) = Θ(w) · fk(w)

↓ ↓
g(w) Θ(w) · f(w)

Thus, g = Θ · f and [f, g] ∈ TΘ, i.e. TΘ is closed.
Secondly, the condition TΘ ∈ B(H2(D;Cn),H2(D;Cm)) is equivalent to dom TΘ =
H2(D;Cn) because of the Closed Graph Theorem 1.2.3.

DEFINITION 3.2.11. Let Θ : D → Cm×n. If TΘ ∈ B(H2(D;Cn),H2(D;Cm)), then
we call Θ an (m×n)-matrix-valued multiplier function and TΘ an (m×n)-matrix-valued
multiplier operator. The set of all (m×n)-matrix-valued multiplier functions is denoted
by Mm×n(D).

DEFINITION 3.2.12. Consider Θ : D→ Cm×n. Suppose that there is a power series
expansion Θ(z) =

∑∞
k=0 z

kΘk with Θk ∈ Cm×n that is convergent on D. Furthermore,
suppose that there exists a constant C > 0 such that ‖Θ‖∞ := supz∈D ‖Θ(z)‖ ≤ C,
where ‖Θ(z)‖ is the matrix norm of Θ(z) when Cn and Cm are both equipped with the
Euclidean norm. Then Θ is called a bounded analytic function (on D). The set of all
bounded analytic (m× n)-matrix-valued functions is denoted by H∞m×n(D).

As we have seen in Lemma 3.1.6, it does not matter whether we demand strong, weak
or norm convergence for the power series expansion. However, since Cm×n ∼= Cm·n is
finite dimensional, this is not surprising as all norms in this space are equivalent.

LEMMA 3.2.13. The (m×n)-matrix-valued multiplier functions are the bounded ana-
lytic (m× n)-matrix-valued functions, i.e. Mm×n(D) = H∞m×n(D). In this case we have
‖TΘ‖ = ‖Θ‖∞.

Proof. ⊇: Let f ∈ H2(D;Cn) and Θ ∈ H∞m×n(D). If g signifies the product Θ · f , then
we have gi =

∑n
k=1 Θi,k · fk for i = 1, . . . ,m. Since f and Θ are both analytic on D,

the same must be true for their coordinate functions fj and Θi,j for i = 1, . . . ,m and
j = 1, . . . , n. The product and sum of analytic functions is analytic and the radius of
convergence is clearly at least 1 for each gi. Hence, g is analytic as well and has radius
of convergence at least 1. We use Lemma 3.2.8 to show

‖Θ · f‖2H2(D;Cm) = lim
r↗1

1

2π

∫ 2π

0

∥∥∥Θ
(
reiθ

)
· f
(
reiθ

)∥∥∥2

Cm
dθ

≤ lim
r↗1

1

2π

∫ 2π

0
‖Θ‖2∞ ·

∥∥∥f (reiθ)∥∥∥2

Cn
dθ = ‖Θ‖2∞ · ‖f‖2H2(D;Cn).

This means TΘ ∈ B(H2(D;Cn),H2(D;Cm)) with ‖TΘ‖ ≤ ‖Θ‖∞.
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⊆: Let Θ : D → Cm×n such that TΘ ∈ B(H2(D;Cn),H2(D;Cm)). By ej , where j =
1, . . . , n, we denote the functions z 7→ (0, . . . , 1, . . . , 0)> ∈ Cn that have 1 in the j-th
coordinate and zero elsewhere. Clearly, ej belongs to H2(D;Cn). Now set Θj := TΘej
and by our assumptions it follows that Θj ∈ H2(D;Cm). Clearly, we can therefore
write Θ = (Θ1, . . . ,Θn) and each of the Θj is analytic, i.e. Θj(z) =

∑∞
k=0 z

kΘj,k

on D, where (Θj,k)k∈N0 denote the respective power series coefficients. Hence, setting
(Θk)k∈N0 :=

(
(Θ1,k, . . . ,Θn,k)

)
k∈N0

gets us

Θ(z) =

( ∞∑
k=0

zkΘ1,k, . . . ,

∞∑
k=0

zkΘn,k

)
=

∞∑
k=0

zk(Θ1,k, . . . ,Θn,k) =

∞∑
k=0

zkΘk

for every z ∈ D. Therefore, Θ is analytic with power series coefficients (Θk)k∈N0 . To show
boundedness, take an arbitrary α ∈ Cm and f ∈ H2(D;Cn). Let Ki,w for i ∈ {m,n} be
the function defined in Lemma 3.2.7 and calculate for α ∈ Cm(

f, T ∗ΘKm,w(α)
)

=
(
TΘf,Km,w(α)

)
=
(
Θf,Km,w(α)

)
=

= αHΘ(w)f(w) =
(
Θ(w)Hα

)H
f(w) =

=
(
f,Kn,w(Θ(w)Hα)

)
.

Hence, since f was arbitrary, T ∗ΘKm,w(α) = Kn,w(Θ(w)Hα). From this we conclude,
using Lemma 3.2.7,

‖Θ(w)‖ = ‖Θ(w)H‖ = sup
‖α‖Cm=1

‖Θ(w)Hα‖Cn =

= sup
‖α‖Cm=1

‖K−1
n,wKn,wΘ(w)Hα‖Cn =

= sup
‖α‖Cm=1

‖K−1
n,wT

∗
ΘKm,w(α)‖Cn

≤ sup
‖α‖Cm=1

‖K−1
n,w‖‖T ∗Θ‖‖Km,w‖‖α‖Cm =

= ‖K−1
n,w‖ · ‖Km,w‖ · ‖TΘ‖ = ‖TΘ‖.

Since w ∈ D was arbitrary, Θ is bounded and ‖Θ‖∞ = supw∈D ‖Θ(w)‖ ≤ ‖TΘ‖.

THEOREM 3.2.14. Let T ∈ B(H2(D;Cn),H2(D;Cm)). Then TSn = SmT if and only
if there exists a function Θ ∈ H∞m×n(D) such that T = TΘ. In this case, Θ is uniquely
determined by T .

Proof. Concerning the necessity of the statement, let diag(λ, k) signify the k× k-dimen-
sional diagonal matrix with entry λ and let (ai,j) ∈ Cm×n. From

(ai,j) diag(λ, n) = (λai,j) = diag(λ,m)(ai,j)

we get

TSn = TΘTdiag(idD,n) = TΘ diag(idD,n) = Tdiag(idD,m)Θ = Tdiag(idD,m)TΘ = SmT.
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To prove sufficiency, let ej signify the functions z 7→ (0, . . . , 1, . . . , 0)> ∈ Cn for j =
1, . . . , n, belonging to H2(D;Cn). We set Θj := Tej ∈ H2(D;Cm) and collect these func-
tions as Θ := (Θ1, . . . ,Θn) : D → Cm×n. Then Θ is an analytic (m × n)-matrix-valued
function. First, we show that T acts like TΘ on the polynomials. Let p(z) :=

∑N
k=0 z

kbk
be a polynomial belonging to H2(D;Cn). Clearly, we can write p(z) =

∑n
j=1 pj(z) with

pj(z) :=
∑N

k=0 z
kbk,jej , i.e. we decompose a polynomial in such a way that pj is Cn-

valued but only has its j-th coordinate different from zero. Using the linearity of T , we
can calculate Tp for each function pj separately, i.e.

Tpj =
N∑
k=0

T (z 7→ zkbk,jej) =
N∑
k=0

bk,jT (z 7→ zkej) =

=

N∑
k=0

bk,jT ◦ Sknej =

N∑
k=0

bk,jS
k
m ◦ Tej =

=
N∑
k=0

bk,jS
k
mΘj =

N∑
k=0

bk,j(z 7→ zkΘj(z)) = Θjpj .

In total, this means

Tp = T
n∑
j=1

pj =
n∑
j=1

Tpj =
n∑
j=1

Θjpj = Θp.

Due to Lemma 3.2.5, for every function f ∈ H2(D;Cn) there exists a sequence of polyno-
mials (pN )N∈N converging to f in norm and, thus, also pointwise. Since T is continuous,
we get

Tf = T lim
N→∞

pN = lim
N→∞

TpN = lim
N→∞

ΘpN .

According to Lemma 3.2.6 point evaluation at any point w ∈ D is a continuous operation
on vector-valued Hardy-Hilbert spaces. This together with the fact that Θ(w) is bounded
and linear for every w ∈ D implies(

lim
N→∞

ΘpN

)
(w) = ιm,w

(
lim
N→∞

ΘpN

)
= lim

N→∞
ιm,w (ΘpN ) =

= lim
N→∞

Θ(w)pN (w) = Θ(w) lim
N→∞

pN (w) =

= Θ(w)f(w).

As w was arbitrary, we see that limN→∞ΘpN = Θf , and since this works for every
f ∈ H2(D;Cn), we get T = TΘ. In particular, T is an (m × n)-matrix valued multi-
plier function with, according to Lemma 3.2.13, corresponding (m × n)-matrix valued
multiplier function Θ ∈Mm×n(D) = H∞m×n(D).
The uniqueness of Θ is easy to see since if there were Θ1,Θ2 ∈ H∞m×n(D) such that
TΘ1 = T = TΘ2 holds, we can apply these operators to the functions (z 7→ ej), where
the vectors ej ∈ Cn form the canonical basis of Cn, and get that the columns of Θ1 and
Θ2 are identical, so Θ1 = Θ2.
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3.3 H2(D;Cn) as a Subspace of L2(T;Cn)

There is a way to extend a bounded analytic function Θ to the unit circle at least almost
everywhere. First, we need to introduce an approriate adaption of Definition 2.2.1.

DEFINITION 3.3.1. Let (ζk)k∈Z be the orthonormal basis of L2(T) consisting of
trigonometric monomials and denote by f1, . . . , fn : T → C the coordinate functions of
f : T→ Cn. Then we set

L2
+(T;Cn) :=

{
f ∈ L2(T;Cn)

∣∣ ai,k = (fi, ζ
k)L2(T) = 0 for all k < 0 and 1 ≤ i ≤ n

}
,

i.e. the set of all functions whose Fourier coefficients ak vanish for negative indices.

LEMMA 3.3.2. The space H2(D;Cn) can be embedded in L2(T;Cn). More precisely,
H2(D;Cn) is isometrically isomorphic to L2

+(T;Cn), which is a closed linear subspace of
L2(T;Cn) via

Ψn :

{
H2(D;Cn) → L2

+(T;Cn)(
z 7→

∑∞
k=0 z

kak
)
7→

(
ζ 7→

∑∞
k=0 ζ

kak
) . (3.5)

Proof. As we know, the fact that f :=
(
z 7→

∑∞
k=0 z

kak
)

belongs to H2(D;Cn) is equiva-
lent to square-summability of the power series coefficients of f . This in turn is equivalent
to f̃ :=

(
ζ 7→

∑∞
k=0 ζ

kak
)
∈ L2

+(T;Cn) due to Parseval’s identity. Therefore, the map-
ping Ψn is an isomorphism. Because of

‖Ψn(f)‖2L2(T;Cn) = ‖f̃‖2L2(T;Cn) =
∞∑
k=0

‖ak‖2Cn = ‖f‖2H2(D;Cn),

it is also isometric.

Since L2
+(T;Cn) is the isometric image of the Banach space H2(D;Cn), it is necessarily

closed.

As in the one-dimensional case, Ψn relates functions connected via nontangential limits.

PROPOSITION 3.3.3. Let f ∈ H2(D;Cn) and f̃ ∈ L2
+(T;Cn) be such that Ψn(f) = f̃

is satisfied and set fr : T→ Cn : ζ = eiθ 7→ f(reiθ).

1. fr converges to f with respect to the norm ‖.‖L2(T;Cn).

2. Given f̃ , one can recover f via the Poisson formula

f(z) =
1

2π

∫ 2π

0
P (z, eiθ)f̃(eiθ) dθ,

where we integrate the vector-valued function P (z, .)f̃(.) component wise.
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Proof. Let f have the power series expansion coefficients (ak)k∈N0 . Parseval’s identity
yields

‖fr − f̃‖2L2(T;Cn) =

∥∥∥∥∥
∞∑
k=0

rkeikθak −
∞∑
k=0

eikθak

∥∥∥∥∥
2

L2(T;Cn)

=

∥∥∥∥∥
∞∑
k=0

(rk − 1)eikθak

∥∥∥∥∥
2

L2(T;Cn)

=

=

∞∑
k=0

‖(rk − 1)ak‖2Cn =

∞∑
k=0

(1− rk)2‖ak‖2Cn .

For ε > 0 we find N ∈ N such that
∑∞

k=N+1 ‖ak‖2 <
ε
2 . We additionally can choose

R ∈ (0, 1) such that
∑N

k=0(1−Rk)2‖ak‖2 < ε
2 . Hence, for r ∈ (R, 1) we get

∞∑
k=0

(1− rk)2‖ak‖2 =

N∑
k=0

(1− rk)2‖ak‖2 +

∞∑
k=N+1

(1− rk)2‖ak‖2

≤
N∑
k=0

(1−Rk)2‖ak‖2 +
∞∑

k=N+1

‖ak‖2 <
ε

2
+
ε

2
= ε

and thus, limr↗1 ‖fr − f̃‖L2(T;Cn) = 0.
For the second claim we take w ∈ D and remember the function Kn,w : Cn → H2(D;Cn)
from Lemma 3.2.7. In particular, Kn,w(α) =

(
z 7→

∑∞
k=0 z

k(wkα)
)

holds for every

α ∈ Cn. Hence, by setting K̃n,w(α) =
(
ζ 7→

∑∞
k=0 ζ

k(wkα)
)

we define an analoguous

function K̃n,w : Cn → L2
+(T;Cn). Obviously Ψn(Kn,w(α)) = K̃n,w(α) holds. With

ζ = eiθ as well as Lemma 3.2.7 we arrive at

αHf(w) = (f,Kn,w(α))H2(D;Cn) =
(
Ψn(f),Ψ(Kn,w(α))

)
L2(T;Cn)

=
(
f̃ , K̃n,w(α)

)
=

=
1

2π

∫ 2π

0

(
f̃(eiθ),

1

1− weiθ
α

)
Cn
dθ =

1

2π

∫ 2π

0

αH f̃(eiθ)

1− we−iθ
dθ.

(3.6)

We define a scalar function

g := (ζ 7→ (1− wζ)−1) =

(
ζ 7→

∞∑
k=0

wkζ−k

)
,

which obviously belongs to L2(T). Clearly, all power series coefficients of g−1 vanish for
nonnegative indices, so this function is perpendicular to αH f̃ in L2(T) for every α ∈ Cn.
Consequently, writing ζ = eiθ shows that

0 = (αH f̃ , g − 1)L2(T;Cn) =
1

2π

∫ 2π

0
(αH f̃(eiθ))

(
1

1− we−iθ
− 1

)
dθ

is harmless and we can add this expression to (3.6), receiving

αHf(w) =
1

2π

∫ 2π

0
αH f̃(eiθ)

(
1

1− weiθ
+

1

1− we−iθ
− 1

)
dθ
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As we have already mentioned in the proof of Proposition 2.2.4 the expression under-
neath the conjugation bar is just the Poisson kernel. Finally, we can extract αH from
the integral which means integrating the vector valued function ζ 7→ f(ζ)P (z, ζ) com-
ponentwise first and then multiplying it with the vector αH from the left. Since α ∈ Cn
was arbitrary, the claim follows.

We include the next result for the sake of completeness and suggest [Nik02], I.3.11, for
a proof.

PROPOSITION 3.3.4. Let f ∈ H2(D;Cn), then it has nontangential limits almost
everywhere on T and n. t. limz→ζ f(z) = f̃(ζ) holds in the sense of L2(T;Cn).

For the following considerations, we need a vector-valued version of Lemma 1.2.7. The
upcoming proof mostly expands on [Kal12], II., but some ideas are taken from [BH12]
and [Tho03], II.

LEMMA 3.3.5. Let (Ω,A, µ) be a measure space, where µ is a finite nonnegative
measure, and let Θ : Ω→ Cm×n be measurable. Set

MΘ :

{
dom MΘ → L2(Ω;Cm)

g 7→ Θg
,

where

dom MΘ :=
{
g ∈ L2(Ω;Cn)

∣∣ Θg ∈ L2(Ω;Cm)
}

is a linear subspace of L2(Ω;Cn). Then we have

1. The space dom MΘ is dense in L2(Ω;Cn) and MΘ is a closed operator, i.e. the
graph of MΘ is closed in L2(Ω;Cn) × L2(Ω;Cm), when this Cartesian product is
equipped with the product topology.

2. The following statements are equivalent:

(a) Θ belongs to L∞(Ω;Cm×n), i.e. it is essentially bounded.

(b) MΘ ∈ B
(
L2(Ω;Cn), L2(Ω;Cm)

)
, i.e. it is defined everywhere and bounded.

(c) MΘ is bounded at least on a dense subspace L of dom MΘ.

(d) dom MΘ = L2(Ω;Cn).

In this case, MΘ maps L2(Ω;Cn) into L2(Ω;Cm) and ‖MΘ‖ = ‖Θ‖L∞(Ω;Cm×n) :=

ess supω∈Ω ‖Θ(ω)‖ := inf
{
C ≥ 0

∣∣ µ( {ω ∈ Ω
∣∣ ‖Θ(ω)‖ > C

} )
= 0
}

.

Proof. For the first claim, take f ∈ L2(Ω;Cn) and set ∆k :=
{
ω ∈ Ω

∣∣ ‖Θ(ω)‖ ≤ k
}

as
well as fk := χ∆k

·f , where χ∆k
is the indicator function of the set ∆k. Since f is square

integrable,∫
Ω
‖Θ(ω)fk(ω)‖2Cm dµ =

∫
∆k

‖Θ(ω)f(ω)‖2Cm dµ ≤
∫

∆k

‖Θ(ω)‖2 · ‖f(ω)‖2Cn dµ
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≤ k2

∫
Ω
‖fk(ω)‖2Cn dµ

shows that all functions fk belong to dom MΘ. Furthermore,

‖f − fk‖2L2(Ω;Cn) =

∫
Ω
‖f(ω)− χ∆k

· f(ω)‖2Cn dµ =

∫
Ω
χΩ\∆k

· ‖f(ω)‖2Cn dµ.

Since χΩ\∆k
·‖f(.)‖2Cn converges to zero pointwise, we apply the Dominated Convergence

Theorem with majorant ‖f(.)‖2Cn , which yields that (fk) converges to f in L2(Ω;Cn).
Hence, dom MΘ is dense in L2(Ω,Cn).
Secondly, we show the closedness of MΘ. To this end we identify the operator with
its graph. Let [fj ,Θfj ] ∈ MΘ for j ∈ N and suppose that ([fj ,Θfj ]) converges to
[f, g] in L2(Ω;Cn) × L2(Ω;Cm). We need to show that Θf = g. It is a well-known
fact that convergence of (fj) in L2(Ω;Cn) implies the existence of a subsequence (fjk)
converging pointwise almost everywhere on Ω to f . The same considerations involving
(Θfjk) and L2(Ω;Cm) get us yet another subsequence (fjki ) such that (Θfjki ) converges
pointwise almost everywhere to g. Clearly, (fjki ) still converges to f and therefore,
(Θfjki ) converges to Θf . Thus, Θf = g almost everywhere on Ω and MΘ is closed.
Next, we show the four equivalences of the second claim.
(a) ⇒ (b): For f ∈ L2(Ω;Cn) we have∫

Ω
‖Θ(ω)f(ω)‖2Cm dµ ≤

∫
Ω
‖Θ(ω)‖2 · ‖f(ω)‖2Cn dµ ≤ ess supω∈Ω ‖Θ(ω)‖2 · ‖f‖2L2(Ω;Cn).

Hence, Θf ∈ L2(Ω;Cm), meaning f belongs to dom MΘ, and ‖MΘ‖ ≤ ‖Θ‖L∞(Ω;Cm×n),

i.e. MΘ ∈ B
(
L2(Ω;Cn), L2(Ω;Cm)

)
.

(b) ⇒ (a): Let C ∈ [0,∞) be arbitrary with C < ‖Θ‖L∞(Ω;Cm×n), where ‖Θ‖L∞(Ω;Cm×n)

is at first understood to be infinite if Θ is not essentially bounded. The set

N :=
{
ω ∈ Ω

∣∣ ‖Θ(ω)‖ > C
}
⊆ Ω

has positive measure by the definition of the essential supremum. Let A :=
{
xk
∣∣ k ∈ N

}
be a countable dense subset of the unit sphere in Cn. For every ω ∈ N there must be
an xk ∈ A such that ‖Θ(ω)xk‖ > C by the definition of the operator norm. If we set

Nk :=
{
ω ∈ Ω

∣∣ ‖Θ(ω)xk‖Cm > C
}

for k ∈ N, we get N =
⋃
k∈NNk. Since Θ is measurable, the function (ω 7→ Θ(ω)xk) is

measurable, too, for any k ∈ N. Because the norm is continuous, (ω 7→ ‖Θ(ω)xk‖Cm) is
measurable as well. Therefore, every Nk belongs to the σ-algebra A. As µ(N) > 0, there
exists a K ∈ N such that NK has positive measure. Now define f := χNKxK : Ω→ Cn,
where χNK is the characteristic function of the set NK and xK ∈ Cn is the corresponding
unit vector. It follows from the above considerations that f is measurable. Because of∫

Ω
‖f(ω)‖2Cn dµ =

∫
NK

‖xK‖2Cn dµ =

∫
NK

1 dµ = µ(NK) > 0

51



Chapter 3. Vector-Valued Analytic Functions and the Space H2(D;Cn)

and the fact that µ is a finite measure, we get f ∈ L2(Ω;Cn) and that it is not the zero
function. Consequently,

‖MΘ‖2 · ‖f‖2L2(Ω;Cn) ≥ ‖MΘf‖2L2(Ω;Cm) =

∫
Ω
‖Θ(ω)f(ω)‖2Cm dµ =

=

∫
NK

‖Θ(ω)xK‖2Cm dµ ≥ C2

∫
NK

1 dµ =

= C2µ(NK) = C2‖f‖2L2(Ω;Cn).

From ‖f‖L2(Ω;Cn) > 0 we conclude C ≤ ‖MΘ‖ < ∞. Since C < ‖Θ‖L∞(Ω;Cm×n) was
arbitrary, we finally get ‖Θ‖L∞(Ω;Cm×n) ≤ ‖MΘ‖ <∞.
(b) ⇔ (d): This is a consequence of the Closed Graph Theorem 1.2.3.
(b) ⇒ (c): This is trivially true.
(c) ⇒ (d): Since MΘ � L is bounded on the dense subspace L, it has a continuous
extension C ∈ B

(
L2(Ω;Cn), L2(Ω;Cm)

)
. If a net ([fi, Cfi])i∈I in C converges to [f, g] ∈

L2(Ω;Cn)×L2(Ω;Cm), then f belongs to L2(Ω;Cn) = dom C and since C is continous,
fi → f implies Cfi → Cf . The uniqueness of limits shows that Cf = g, i.e. [f, g] ∈ C,
making C a closed operator. Therefore, MΘ � L ⊆ C = C.
On the other hand, take f ∈ L2(Ω;Cn) and a net (fi)i∈I belonging to L such that
fi → f . Clearly, this implies that the net

(
(MΘ � L)fi

)
i∈I = (Cfi)i∈I has the limit

Cf ∈ L2(Ω;Cm) by the definition of C. Hence, the net
(
[fi, (MΘ � L)fi]

)
i∈I converges

to [f, Cf ]. This limit must belong to MΘ � L. Therefore, C ⊆MΘ � L.
So we have shown MΘ � L = C. As we know from the first claim, MΘ is closed and
hence, MΘ = MΘ ⊇MΘ � L = C. Therefore, dom MΘ ⊇ dom C = L2(Ω;Cn).

DEFINITION 3.3.6. We set L∞+ (T;Cm×n) := L∞(T;Cm×n) ∩ L2
+(T;Cm×n), i.e. the

space of all essentially bounded (m × n)-matrix valued functions such that all their
negative Fourier coefficients vanish.

DEFINITION 3.3.7. Similarly to Ψn in (3.5) we define for n,m ∈ N

Ψm×n :

{
H2(D;Cm×n) → L2

+(T;Cm×n)
(z 7→

∑∞
k=0 z

kΘk) 7→ (ζ 7→
∑∞

k=0 ζ
kΘk)

, (3.7)

which is also an isometric isomorphism, when L2(T;Cm×n) is provided with the norm
‖.‖L2(T;Cm×n) =̂ ‖.‖L2(T;Cm·n).

DEFINITION 3.3.8. For n ∈ N we write

Un :

{
L2(T;Cn) → L2(T;Cn)

f 7→ (ζ 7→ ζf(ζ))

for the shift operator on L2(T;Cn).

Clearly, we have Un = Mdiag(ζ 7→ζ,n) = Mdiag(idT,n).

LEMMA 3.3.9. The shift operator Un on L2(T;Cn) is unitary for every n ∈ N .
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Proof. Since L2(T;Cn) is isometrically isomorphic to `2(Z;Cn), we can calculate

(Unf, g)L2(T;Cn) =

( ∞∑
k=−∞

ζk+1ak,
∞∑

k=−∞
ζkbk

)
=
(
(ak−1), (bk)

)
`2(Z;Cn)

=

=
∞∑

k=−∞
bHk ak−1 =

∞∑
k=−∞

bHk+1ak = (f,Mdiag(ζ 7→ζ,n)g)L2(T;Cn)

for f, g ∈ L2(T;Cn) with Fourier coefficients (ak)k∈Z and (bk)k∈Z. Hence, we have shown
that U∗n = Mdiag(ζ 7→ζ,n). This implies for every f ∈ L2(T;Cn) that

U∗nUnf = Mdiag(ζ 7→ζ,n)Mdiag(ζ 7→ζ,n)f = Mdiag(ζ 7→ζζ,n)f = MInf = Inf = f = UnU
∗
nf,

i.e. U−1
n = U∗n.

These concepts open up a way to recover the (m×n)-matrix valued multiplier functions
in this higher dimensional setting just as in the one dimensional case.

LEMMA 3.3.10. Let Ψm×n be the isometric isomorphism from (3.7). Then

Ψm×n
(
Mm×n(D)

)
⊆ L∞+ (T;Cm×n).

Furthermore, Ψm×n preserves the norm, i.e. ‖Ψm×n(.)‖L∞(T;Cm×n) = ‖.‖∞. Addi-
tionally, if Θ ∈ Mm×n(D), or equivalently Θ ∈ H∞m×n(D) due to Lemma 3.2.13, with

Θ̃ = Ψm×n(Θ) and if TΘ and M
Θ̃

signify the corresponding (m× n)-matrix valued mul-
tiplier operators, mapping H2(D;Cn) into H2(D;Cm) and L2(T;Cn) into L2(T;Cm), we
have that M

Θ̃
maps L2

+(T;Cn) into L2
+(T;Cm) as well as

Ψ−1
m ◦MΘ̃

◦Ψn = TΘ. (3.8)

Proof. Let Θ ∈ Mm×n(D) = H∞m×n(D) and notice that Θ is bounded and has a power
series expansion with power series coefficients (Θk) with Θk ∈ Cm×n for k ∈ N0. Fur-
thermore, TΘ ∈ B

(
H2(D;Cn),H2(D;Cm)

)
with ‖TΘ‖ = ‖Θ‖∞, all according to Lemma

3.2.13.
The fact that Θ belongs to H∞m×n(D) ⊆ H2(D;Cm×n) means that Θ̃ := Ψm×n(Θ) =
(ζ 7→

∑∞
k=0 ζ

kΘk) belongs to L2
+(T;Cm×n) ⊆ L2(T;Cm×n). Hence, we can form M

Θ̃
,

which maps L2(T;Cn) into L2(T;Cm). Furthermore, it is a closed and densely defined
operator due to Lemma 3.3.5 and its domain is

dom M
Θ̃

=
{
f ∈ L2(T;Cn)

∣∣ Θ̃f ∈ L2(T;Cm)
}
.

Our next aim is to show that M
Θ̃

is bounded on the Cn-valued polynomials C[z;Cn] and
then infer boundedness everywhere on L2(T;Cn).
First, we know that Uki ∈ B(L2(T;Ci)) is unitary for all k ∈ Z and every dimension i ∈ N
due to Lemma 3.3.9. Furthermore, ‖UkmMΘ̃

f‖L2(T;Cm) = ‖M
Θ̃
f‖L2(T;Cm), as elements of
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[0,∞], implies M
Θ̃
Uknf = UkmMΘ̃

f for all f ∈ dom M
Θ̃

and Ukndom M
Θ̃

= dom M
Θ̃

, i.e.
M

Θ̃
Ukn = UkmMΘ̃

.

Let B =
{
ei ∈ Cn

∣∣ i = 1, . . . , n
}

be the canonical basis of Cn. Now define for j ≥ 0
and x ∈ B the function q := z 7→ zjx, which clearly belongs to H2(D;Cn). Applying TΘ

gives Θ(z)q(z) =
∑∞

k=0 z
k+jΘkx =

∑∞
k=j z

kΘk−jx. Using Ψm gives

Ψm(TΘq) = Ψm

(
Θq
)

= Ψm

(
z 7→

∞∑
k=j

zkΘk−jx

)
=

(
ζ 7→

∞∑
k=j

ζkΘk−jx

)
=

=
(
ζ 7→ ζjΘ̃(ζ)x

)
=
(
ζ 7→ Θ̃(ζ)q̃(ζ)

)
with q̃ = Ψn(q). Because of linearity, we get Ψm(TΘr) = Θ̃·r̃ for all elements r of the ring
of Cn-valued polynomials. Therefore Ψn

(
C[z;Cn]

)
⊆ dom M

Θ̃
and Ψm(TΘr) = M

Θ̃
r̃ for

all r ∈ C[z;Cn]. In particular, M
Θ̃

Ψn(C[z;Cn]) ⊆ L2
+(T;Cm).

The trigonometric polynomials (ζkx) for k ∈ Z and x ∈ B all belong to dom M
Θ̃

. Hence,
we can look at the set

Tn :=

{
N∑

k=−N
ζkak

∣∣ N ∈ N0, a−N , . . . , aN ∈ Cn
}
⊆ dom M

Θ̃
.

For p̃ = (ζ 7→
∑N

k=−N ζ
kbk) ∈ Tn define q̃ via

UNn p̃ =

(
ζ 7→

N∑
k=−N

ζk+Nbk

)
=

(
ζ 7→

2N∑
k=0

ζkbk−N

)
=: q̃ ∈ L2

+(T;Cn).

Hence,

M
Θ̃
p̃ = M

Θ̃
U−Nn q̃ = U−Nm M

Θ̃
q̃ = U−Nm Ψm(TΘq). (3.9)

Taking the norm of (3.9) and using that Ui and Ψi are isometric for all i ∈ N, we arrive
at

‖M
Θ̃
p̃‖L2(T;Cm) = ‖U−Nm Ψm(TΘq)‖L2(T;Cm) = ‖TΘq‖H2(D;Cm) ≤ ‖TΘ‖ · ‖q‖H2(D;Cn) =

= ‖Θ‖∞ · ‖U−Nn Ψn(q)‖L2(T;Cn) = ‖Θ‖∞ · ‖U−Nn q̃‖L2(T;Cn) =

= ‖Θ‖∞ · ‖p̃‖L2(T;Cn)

Since the last expression on the right is finite, the operator M
Θ̃

is bounded on Tn.
As Tn is densely contained in L2(T;Cn), this means that M

Θ̃
is bounded everywhere,

i.e. M
Θ̃
∈ B(L2(T;Cn), L2(T;Cm)). As the polynomials Ψn(C[z;Cn]) are dense in

L2
+(T;Cn) we obtain from M

Θ̃
Ψn(C[z;Cn]) ⊆ L2

+(T;Cm) and the continuity of M
Θ̃

that
M

Θ̃
L2

+(T;Cn) ⊆ L2
+(T;Cm). Additionally, we have proved that

‖Θ̃‖L∞(T;Cm×n) = ‖M
Θ̃
‖ ≤ ‖Θ‖∞. (3.10)
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To show the converse of (3.10), notice from (3.9) we get Ψm ◦ TΘ = M
Θ̃
◦Ψn on the set

of Cn-valued polynomials contained in H2(D;Cn). Since this set is a dense subset, this
identity is even valid on the whole of H2(D;Cn), showing

M
Θ̃
� L2

+(T;Cn) = Ψm ◦ TΘ ◦Ψ−1
n .

We make a note of the facts that Ψ−1
n is only defined on Ψn(H2(D;Cn)), which equals

L2
+(T;Cn), and that M

Θ̃
maps L2

+(T;Cn) into L2
+(T;Cm). This implies

TΘ = Ψ−1
m ◦MΘ̃

◦Ψn

and

‖Θ‖∞ = ‖TΘ‖ = ‖Ψ−1
m ◦MΘ̃

◦Ψn‖ ≤ ‖MΘ̃
‖ = ‖Θ̃‖L∞(T;Cm×n). (3.11)

Combining (3.10) and (3.11) gives ‖Θ̃‖L∞(T;Cm×n) = ‖Θ‖∞. Furthermore, this also shows

that Ψm×n(Θ) = Θ̃ ∈ L∞(T;Cn). Therefore, Θ̃ ∈ L∞+ (T;Cm×n).

LEMMA 3.3.11. Consider the mappings Ψi and Ψi×j defined in (3.5) and (3.7). Let
Θ1 ∈ H∞m×n(D) and Θ2 ∈ H∞k×m(D). Furthermore, let h ∈ H2(D;Cn). Then we have the
two identities

Ψk×n(Θ2Θ1) = Ψk×m(Θ2)Ψm×n(Θ1)

Ψm(Θ1h) = Ψm×n(Θ1)Ψn(h)
.

Proof. We remind ourselves of the mapping ψ = Ψ1 as defined in (2.3). Let{
ei
∣∣ i = 1, . . . , n

}
,
{
fj
∣∣ j = 1, . . . ,m

}
and

{
g`
∣∣ ` = 1, . . . , k

}
be the respective canonical bases of Cn, Cm and Ck. Clearly, fHj Θ1ei, g

H
` Θ2fj and

gH` Θ2Θ2ei all belong to H∞(D). So according to Corollary 2.2.10 we have

gH` Ψk×n(Θ2Θ1)ei =
(
ζ 7→ gH` (Θ̃2Θ1)(ζ)ei

)
= ψ

(
gH` Θ2Θ1ei

)
=

= ψ

( m∑
j=1

gH` Θ2fjf
H
j Θ1ei

)
=

m∑
j=1

ψ
([
gH` Θ2fj

] [
fHj Θ1ei

])
=

=
m∑
j=1

ψ
(
gH` Θ2fj

)
ψ
(
fHj Θ1ei

)
=

=

m∑
j=1

(
ζ 7→ gH` Θ̃2(ζ)fj

) (
ζ 7→ fHj Θ̃1(ζ)ei

)
=

=

m∑
j=1

[
gH` Ψk×m(Θ2)fj

] [
fHj Ψm×n(Θ1)ei

]
=

= gH` Ψk×m(Θ2)
[ m∑
j=1

fjf
H
j

]
Ψm×n(Θ1)ei =
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= gH` Ψk×m(Θ2)Ψm×n(Θ1)ei.

Take note that
∑m

j=1 fjf
H
j is the identity matrix on Cm. The above calculation works

for ` = 1, . . . , k and i = 1, . . . , n and because of the basis property, the first claim is
proved.
For the second claim, notice that fHj Θ1ei belongs to H∞(D) and that eHi h belongs to

H2(D). Thus, again with Corollary 2.2.10, we conclude that

fHj Ψm(Θ1h) =
(
ζ 7→ fHj (Θ̃1h)(ζ)

)
= ψ(fHj Θ1h) =

= ψ
( n∑
i=1

fHj Θ1eie
H
i h
)

=
n∑
i=1

ψ
([
fHj Θ1ei

] [
eHi h

])
=

=
n∑
i=1

ψ
(
fHj Θ1ei

)
ψ
(
eHi h

)
=

=
n∑
i=1

[
fHj Ψm×n(Θ1)ei

] [
eHi Ψn(h)

]
=

= fHj Ψm×n(Θ1)
[ n∑
i=1

ei e
H
i

]
Ψn(h) =

= fHj Ψm×n(Θ1)Ψn(h).

Again,
∑n

i=1 eie
H
i is the identity matrix on Cn. As before, this works for j = 1, . . .m

and because of the basis property, the second claim follows as well.

THEOREM 3.3.12. Let M ∈ B
(
L2(T;Cn), L2(T;Cm)

)
. Then UmM = MUn and

M mapping L2
+(T;Cn) into L2

+(T;Cm) both hold if and only if there exists a function

Θ ∈ H∞m×n(D) such that M = M
Θ̃

for Θ̃ := Ψm×n(Θ). In this case Θ is uniquely
determined by M .

Proof. The necessity of the conditon follows from Lemma 3.3.10 and

UmM = Mdiag(idT,m)MΘ̃
= M

diag(idT,m)Θ̃
= M

Θ̃ diag(idT,n)
= M

Θ̃
Mdiag(idT,n) = MUn

if M = M
Θ̃

for a function Θ̃ := Ψm×n(Θ) ∈ L∞+ (T;Cm×n).
Regarding sufficiency, we define T := Ψ−1

m ◦M ◦ Ψn. The operator T is well defined
since M maps L2

+(T;Cn) into L2
+(T;Cm), so T ∈ B

(
H2(D;Cn),H2(D;Cm)

)
. Obviously,

Si = Ψ−1
i ◦ Ui ◦Ψi. Hence, using UmM = MUn yields

Sm ◦ T =
(
Ψ−1
m ◦ Um ◦Ψm

)
◦
(
Ψ−1
m ◦M ◦Ψn

)
=

= Ψ−1
m ◦ Um ◦M ◦Ψn =

= Ψ−1
m ◦M ◦ Un ◦Ψn =

=
(
Ψ−1
m ◦M ◦Ψn

)
◦
(
Ψ−1
n ◦ Un ◦Ψn

)
=

= T ◦ Sn.
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Therefore, T satisfies all conditions of Theorem 3.2.14. Thus, there exists a function Θ ∈
H∞m×n(D) such that Ψ−1

m ◦M ◦Ψn = T = TΘ. We set Θ̃ := Ψm×n(Θ) ∈ L∞+ (T;Cm×n).By
Lemma 3.3.10 we also have T = TΘ = Ψ−1

m ◦MΘ̃
◦Ψn. In particular, M

Θ̃
◦Ψn = M ◦Ψn,

which means that M
Θ̃
� L2

+(T;Cn) = M � L2
+(T;Cn).

The property MUn = UmM obviously extends to MU jn = U jmM for j ≥ 1 by induction.
Because of U−1

n = Mdiag(ζ 7→ζ,n) it follows that M = MUnU
−1
n = UmMU−1

n . Applying

U−1
m from the left gets us U−1

m M = MU−1
n and this again extends to U−jm M = MU−jn

for j ≥ 1. Similarly, U jmMΘ̃
= M

Θ̃
U jn for j ∈ Z.

Consider the ring of trigonometric polynomials

Tn :=

{
N∑

k=−N
ζkak

∣∣ N ∈ N0, a−N , . . . , aN ∈ Cn
}
⊆ L2(T;Cn)

and let p ∈ Tn. Obviously, UNp ∈ L2
+(T;Cn) for sufficiently large N ∈ N0. Hence,

MUNn p = M
Θ̃
UNn p. Applying U−Nm gives

M
Θ̃
p = U−Nm M

Θ̃
UNn p = U−Nm MUNn p = Mp.

Thus, M = M
Θ̃

holds on Tn. Since Tn is densely contained in L2(T;Cn) and because M
and M

Θ̃
are both continuous, we conclude that M is an (m×n)-matrix valued multiplier

operator with (m×n)-matrix valued multiplier function Θ̃ ∈ L2
+(T;Cm×n) on the whole

space L2(T;Cn), i.e. M = M
Θ̃

everywhere.
The uniqueness of Θ is a consequence of Theorem 3.2.14 and Equation (3.8).

LEMMA 3.3.13. For every Θ̃ ∈ L∞+ (T;Cm×n) there exists a function Θ ∈ H∞m×n(D)

satisfying Ψm×n(Θ) = Θ̃.

Proof. Due to Lemma 3.3.5 there exists M
Θ̃
∈ B

(
L2(T;Cn), L2(T;Cm)

)
connected to

Θ̃ ∈ L∞+ (T;Cm×n) and with ‖Θ̃‖L∞(T;Cm×n) = ‖M
Θ̃
‖. Clearly, UmMΘ̃

= M
Θ̃
Un holds.

Furthermore, let Θ̃ have Fourier coefficients (Θk)k∈Z — take into account that for
negative indices k we have that Θk is the zero-operator — and take a polynomial
p ∈ Ψn

(
C[z;Cn]

)
⊆ L2

+(T;Cn) of the form p(ζ) =
∑N

k=0 ζ
kbk. For technical reasons, we

set bk := 0 for k ∈ Z\{0, . . . , N}. Then

M
Θ̃
p = Θ̃ · p =

(
ζ 7→

( ∞∑
k=0

ζkΘk

)
·
( N∑
k=0

ζkbk

))
=

ζ 7→ ∞∑
k=0

ζk
( k∑
j=0

Θjbk−j

) .

Since M
h̃

maps into L2(T;Cm), the sequence
(∑k

j=0 Θjbk−j
)
k∈Z must be square-sum-

mable. Therefore, M
Θ̃

maps the norm dense subset Ψn

(
C[z;Cn]

)
of L2

+(T;Cn) into
L2

+(T;Cm). For f ∈ L2
+(T;Cn) choose a sequence of polynomials (pN )N∈N from the

space Ψn

(
C[z;Cn]

)
such that (pN )N∈N converges to f in norm. Since M

Θ̃
is continuous

and because L2
+(T;Cm) is closed, the calculation

M
Θ̃
f = M

Θ̃

(
lim
N→∞

pN

)
= lim

N→∞
M

Θ̃
pN
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shows that M
Θ̃

maps L2
+(T;Cn) into L2

+(T;Cm).
Hence, Theorem 3.3.12 is applicable and there exists a function Θ ∈ H∞m×n(D) such that

Ψm×n(Θ) = Θ̃.

We collect the statements of Lemmata 3.3.10, 3.3.11 and 3.3.13 in the following

THEOREM 3.3.14. The mapping

Ψm×n � H
∞
m×n(D) : H∞m×n(D)→ L∞+ (T;Cm×n)

is linear, bijective and isometric, i.e. ‖Ψm×n(.)‖L∞(T;Cm×n) = ‖.‖∞. Furthermore, if
Θ1 ∈ H∞m×n(D), Θ2 ∈ H∞k×m(D) and h ∈ H2(D;Cn), we have the following multiplicativ-
ity property:

Ψk×n(Θ2Θ1) = Ψk×m(Θ2)Ψm×n(Θ1)

Ψm(Θ1h) = Ψm×n(Θ1)Ψn(h)
.

3.4 The Structure of Higher-Dimensional Multipliers

We follow [Nag10], V, in this section. In our source the following results are proved in the
more general case of analytic functions that take values in arbitrary separable Hilbert
spaces H or G. This also involves working withH2(D;H) and considering operator valued
functions mapping D to B(H,G). However, we restrict ourselves to the finite dimensional
case.

DEFINITION 3.4.1. Let Θ ∈ H∞m×n(D) be a bounded analytic function. Then we

define Θ# : D → Cn×m, where Θ#(z) := Θ(z)H = Θ(z)
T

, and call it the pointwise
conjugate adjoint of Θ.

Note that Θ# is not the adjoint of Θ, i.e. in general we have(
Θf, g

)
H2(D;Cm)

6=
(
f,Θ#g

)
H2(D;Cn)

for f ∈ H2(D;Cn) and g ∈ H2(D;Cm).

LEMMA 3.4.2. Let Θ ∈ H∞m×n(D) be a bounded analytic function. Then Θ# is analytic
and bounded as well, i.e. Θ# ∈ H∞n×m(D). Furthermore, we have ‖Θ‖∞ = ‖Θ#‖∞.

Proof. Because of

Θ#(z) = Θ(z)H =

( ∞∑
n=0

znΘn

)H
=
∞∑
n=0

(znΘn)H =
∞∑
n=0

znΘH
n

it easily follows that the pointwise conjugate adjoint of a bounded analytic function, i.e.
(z 7→

∑∞
n=0 z

nΘH
n ), is analytic in D as well. Furthermore, we have

sup
z∈D
‖Θ#(z)‖ = sup

z∈D
‖Θ(z)H‖ = sup

z∈D
‖Θ(z)‖ = sup

z∈D
‖Θ(z)‖.

So it is bounded by the same bound as Θ .
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DEFINITION 3.4.3. Let Θ ∈ H∞m×n(D) be a bounded analytic function. If ‖Θ‖∞ ≤ 1,
then it is called a contractive analytic function. If Θ additionally satisfies ‖Θ(0)x‖ < ‖x‖
for all x ∈ Cn\{0}, then it is called a purely contractive analytic function.

A direct consequence of Lemmata 3.2.13 and 3.3.10 is the following

COROLLARY 3.4.4. If Θ is contractive, then so are TΘ and M
Θ̃

.

DEFINITION 3.4.5. If Θ ∈ H∞n×n(D) satisfies that Θ(0) is a unitary operator, i.e.
Θ(0)−1 = Θ(0)H , it is called a unitary constant.

The next proposition casts some light on the nomenclature of this definition. Note that
for n = 1 this is just the maximum modulus principle in complex analysis.

LEMMA 3.4.6. Let Θ ∈ H∞n×n(D) be a contractive analytic function. If Θ(0) ∈ Cn×n
is a unitary operator, then Θ(z) = Θ(0) for all z ∈ D. Hence, Θ is a unitary constant.

Proof. Take x ∈ Cn and define fx := (z 7→ Θ(z)x). Clearly, (z 7→ x) ∈ H2(D;Cn).
By Lemma 3.2.13 we have fx = TΘ(z 7→ x) ∈ H2(D;Cn), and by the Cauchy Integral
Formula we have

fx(0) =
1

2πi

∫
∂Ur(0)

fx(ζ)

ζ
dζ =

1

2π

∫ 2π

0
fx
(
reiθ

)
dθ

for 0 < r < 1. Additionally, since ‖Θ(z)‖ ≤ 1 on D, Lemma 3.2.13 yields

‖fx‖H2(D;Cn) = ‖TΘ(z 7→ x)‖H2(D;Cn) ≤ ‖TΘ‖ · ‖z 7→ x‖H2(D;Cn) ≤ ‖x‖Cn .

Clearly, the constant function (z 7→ fx(0)) is an element of H2(D;Cn) as well. Thus,

(fx, fx(0))H2(D;Cn) = lim
r↗1

1

2π

∫ 2π

0

(
fx(reiθ), fx(0)

)
Cn

dθ

= lim
r↗1

(
1

2π

∫ 2π

0
fx(reiθ) dθ, fx(0)

)
Cn

= (Θ(0)x,Θ(0)x)Cn = ‖x‖2Cn = ‖x‖Cn · ‖Θ(0)x‖Cn
≥ ‖fx‖H2(D;Cn) · ‖fx(0)‖H2(D;Cn).

The Cauchy-Schwarz inequality assures us of the opposite estimate. Hence, fx and
(z 7→ fx(0)) are linearly dependent, meaning Θ(z)x = κ ·Θ(0)x for every z ∈ D. Setting
in particular z = 0 shows that the scalar κ must be 1. Therefore, Θ(z)x = Θ(0)x for
every x ∈ Cn. Hence, the range of Θ in Cn×n consists of one single unitary operator.

Contractive analytic functions can be decomposed in a particular way.

PROPOSITION 3.4.7. Let Θ ∈ H∞m×n(D) be a contractive analytic function. Then
there exist unique decompositions Cn = A< ⊕A= and Cm = B< ⊕B= with

k := dim(A=) = dim(B=) ≤ min(n,m),

such that for every fixed z ∈ D:
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• The range of Θ<(z) := Θ(z) � A< is contained in B<, and

• The range of Θ=(z) := Θ(z) � A= is contained in B=.

Hereby,

• Θ< : D→ B(A<, B<) is a purely contractive analytic function, and

• Θ= : D→ B(A=, B=) is a unitary constant.

We can therefore write Θ as a block operator

Θ =

 Θ< 0

0 Θ=

 : D→ B

A<⊕
A=

 ,

B<⊕
B=


with purely contractive part Θ< ∈ H∞(m−k)×(n−k)(D) and unitary part Θ= ∈ H∞k×k(D).

Proof. To start, we define

A= :=
{
x ∈ Cn

∣∣ x = Θ(0)HΘ(0)x
}

and B= :=
{
y ∈ Cm

∣∣ y = Θ(0)Θ(0)Hy
}
.

Evidently, A= and B= are linear subspaces. For Θ= := (z 7→ Θ(z) � A=) we will
show that Θ=(0) maps A= onto B=. First, take x ∈ A=, apply Θ(0) and remember
that we have Θ(0)x = Θ(0)Θ(0)HΘ(0)x, hence Θ(0)x ∈ B=. For the other inclusion,
the same argument for y ∈ B= and Θ(0)H shows that Θ(0)H maps B= into A=, i.e.
Θ(0)HB= ⊆ A=. Applying Θ(0) to this relation and using that it is the inverse of Θ(0)H

on B= yields the desired result.
Moreover, Θ=(0) : A= → B= is an isometry, since for x ∈ A= we have

‖Θ=(0)x‖2Cm = (Θ=(0)x,Θ=(0)x)Cm =
(

Θ=(0)HΘ=(0)x, x
)
Cn

= (x, x)Cn = ‖x‖2Cn .

Thus, it is also injective and therefore a unitary operator. In particular, the two spaces
A= and B= have the same dimension k. Applying Lemma 3.4.6 to z 7→ P=Θ=(z), where
P= is the orthogonal projection onto B=, shows that P=Θ=(z) = Θ=(0) for all z ∈ D.
From

‖x‖2 ≥ ‖Θ=(z)x‖2 = ‖P=Θ=(z)x‖2 + ‖(I − P=)Θ=(z)‖2 = ‖x‖2 + ‖(I − P=)Θ=(z)‖2

for all x ∈ A= we infer that P=Θ=(z) = Θ=(z) on D. Hence, Θ=(z) = Θ=(0) for every
z ∈ D.
Next, we rewrite A= and B= as

A= =
{
x ∈ Cn

∣∣ x = Θ#(0)Θ#(0)Hx
}

and B= =
{
y ∈ Cm

∣∣ y = Θ#(0)HΘ#(0)y
}

and repeat the same arguments with Θ# instead of Θ. Then we get Θ#(z)(B=) =
Θ#(0)(B=) = A=.
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Let us now define A< := Cn 	 A= and B< := Cm 	 B=. For x ∈ A< and y ∈ B=, we
have Θ#(z)y ∈ A= and, therefore,

(Θ(z)x, y)Cm = (x,Θ(z)Hy)Cn = (x,Θ#(z)y)Cn = 0.

Thus, the range of Θ<(z) is contained in B<.
Finally, we show that Θ< : A< → B< is purely contractive. If there existed an x ∈ A<
such that ‖Θ<(0)x‖Cm = ‖x‖Cn , then we would have

0 = ‖x‖2Cn − ‖Θ<(0)x‖2Cm = (x, x)Cn − (Θ(0)x,Θ(0)x)Cm

=
(
(I −Θ(0)HΘ(0))x, x

)
Cn ,

and in turn x = Θ(0)HΘ(0)x, i.e. x ∈ A=. Since the constructed decomposition of Cn
is orthogonal, this forces x = 0.
So we have shown that there are in fact decompositions as postulated in the proposition.
To show uniqueness suppose that there is another pair of decompositions with the same
properties, that is Cn = C< ⊕ C= and Cm = D< ⊕ D=. Since Θ(0) : C= → D= is
a unitary transformation, we have ‖c‖Cn = ‖Θ(0)c‖Cm for every c ∈ C=, which infers
C= ⊆ A=. The inclusion cannot be proper, though, since if it were, there would be a
nonzero element c ∈ A= ∩ C< satisfying simultaneously ‖Θ(0)c‖Cm = ‖c‖Cn because of
c ∈ A= and ‖Θ(0)c‖Cm < ‖c‖Cn because of c ∈ C<. Hence, C= = A= and this implies

D= = Θ(0)C= = Θ(0)A= = B=

as well as

C< = Cn 	 C= = Cn 	A= = A<

and

D< = Cm 	D= = Cm 	B= = B<.

The operator TΘ connected to a contractive analytic function Θ affords us a way to
generalise some notions from Hardy space theory to our setting of vector valued analytic
functions.

DEFINITION 3.4.8. A contractive analytic function Θ is said to be

1. inner, if TΘ is an isometry from H2(D;Cn) into H2(D;Cm).

2. outer, if TΘH2(D;Cn) = H2(D;Cm).

There is an alternative characterisation available for inner functions.

PROPOSITION 3.4.9. A contractive analytic function Θ ∈ H∞m×n(D) is inner if

and only if Θ̃(ζ) is an isometry from Cn into Cm for almost every ζ ∈ T, where Θ̃ =
Ψm×n(Θ).
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Proof. Suppose that Θ̃(ζ) is an isometry almost everywhere on T. This clearly makes
M

Θ̃
an isometry from L2(T;Cn) into L2(T;Cm). Take any f ∈ H2(D;Cn), then Lemma

3.3.10 assures us of

‖TΘf‖H2(D;Cm) =
∥∥∥(Ψ−1

m ◦MΘ̃
◦Ψn

)
f
∥∥∥
H2(D;Cm)

=
∥∥∥(MΘ̃

◦Ψn

)
f
∥∥∥
L2(T;Cm)

=

= ‖Ψnf‖L2(T;Cn) = ‖f‖H2(D;Cn),

so TΘ is an isometry, i.e. Θ is inner.
Conversely, suppose that ‖TΘf‖H2(D;Cm) = ‖f‖H2(D;Cn) for all f ∈ H2(D;Cn). Since the
shift operators Um and Un are unitary transformations, we use Theorem 3.3.12 to show∥∥∥(MΘ̃

◦ U−kn ◦Ψn

)
f
∥∥∥
L2(T;Cm)

=
∥∥∥(U−km ◦M

Θ̃
◦Ψn

)
f
∥∥∥
L2(T;Cm)

=

=
∥∥∥(Ψm ◦ TΘ

)
f
∥∥∥
L2(T;Cm)

= ‖TΘf‖H2(D;Cm) =

= ‖f‖H2(D;Cn) = ‖Ψnf‖L2(T;Cn) =

=
∥∥∥(U−kn ◦Ψn

)
f
∥∥∥
L2(T;Cn)

for f ∈ H2(D;Cn) and k ∈ N0. Since
{(
U−kn ◦Ψn

)
f
∣∣ f ∈ H2(D;Cn), k ∈ N0

}
is dense

in L2(T;Cn), this implies that M
Θ̃

is an isometry, i.e. M∗
Θ̃
M

Θ̃
= M

Ĩ
, where I ∈ Cn×n

is the identity matrix, obviously satisfying Ĩ = Ψn×n(I) = I. As a result, we get for all
g, h ∈ L2(T;Cn) that

(
[M

Ĩ
−M∗

Θ̃
M

Θ̃
]g, h

)
L2(T;Cn)

= 0. As M∗
Θ̃

= M
Θ̃∗ , we get

1

2π

∫ 2π

0

([
I − Θ̃(eiθ)∗Θ̃(eiθ)

]
g(eiθ), h(eiθ)

)
Cn
dθ = 0.

Taking in particular g = χAx and h = χAy, where x, y runs over the canonical basis of
Cn and A runs over the Borel sets of T, we conclude that I − Θ̃(eiθ)∗Θ̃(eiθ) = 0 almost
everywhere. Hence, Θ̃(ζ) is an isometry almost everywhere on T.

COROLLARY 3.4.10. Let Θ ∈ H∞m×n(D) be a contractive analytic function. If it is
inner, then n ≤ m.

Proof. By Proposition 3.4.9, Θ̃(ζ) is an isometry from Cn into Cm almost everywhere
on T. We fix one such ζ ′ ∈ T and get that Θ̃(ζ ′) is injective. Thus, Θ̃(ζ ′)Cn is an
n-dimensional subspace of Cm. Consequently, we have n ≤ m.

For outer functions it is possible to make a statement about the dimensions of the
involved spaces, too.

PROPOSITION 3.4.11. Let Θ ∈ H∞m×n(D) be an outer function and Θ̃ = Ψm×n(Θ).
Then m ≤ n and

(i) dim ran Θ(z) = m for every z ∈ D and
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(ii) dim ran Θ̃(ζ) = m for almost every ζ ∈ T.

Proof. As Θ is outer, we know that TΘ has dense range in H2(D;Cm). Regarding (i), it
therefore follows that the orthogonal complement of TΘH2(D;Cn) in H2(D;Cm) contains
only the zero function. We remember the function Km,w : Cm → H2(D;Cm) as defined
in Lemma 3.2.7, which satisfies

(
TΘf,Km,w(α)

)
H2(D;Cm)

=
(
Θ(w)f(w), α

)
Cm for any

f ∈ H2(D;Cn).
We proceed indirectly. If there existed w ∈ D such that dim ran Θ(w) < m, then
Θ(w)Cn ( Cm. Hence, there would be a nonzero element α ∈ Cm orthogonal to Θ(w)Cn.
But then the nonzero element Km,w(α) is perpendicular to TΘf for every f ∈ H2(D;Cn)
and this is a contradiction. Consequently, we also get m ≤ n.
Concerning (ii), let B =

{
ei
∣∣ i = 1, . . . ,m

}
be the canonical basis of Cm and take

x ∈ B. We notice that TΘ having dense image in H2(D;Cm) means that for every
constant function gx := (z 7→ x) there exists a sequence of functions (fk) ⊂ H2(D;Cn)
such that TΘfk converges to gx in H2(D;Cm). By way of the mapping Ψm from (3.5)
we have the identiy Ψm

(
H2(D;Cm)

)
= L2

+(T;Cm) and this implies

lim
k→∞

1

2π

∫ 2π

0

∥∥∥Θ̃(eiθ)f̃k(e
iθ)− g̃x(eiθ)

∥∥∥2

Cm
dθ = 0.

Convergence in the space L2
+(T;Cm) implies the existence of a subsequence (Θ̃f̃kj ) that

converges pointwise almost everywhere on T, i.e. Θ̃(eiθ)f̃kj (e
iθ) → g̃x on T with the

exception of a set Ex of zero measure. Letting x run over the set B and taking the union
of all the respective exceptional subsets of T, we end up with E ⊂ T of zero measure.
For ζ /∈ E, we get B ⊆ Θ̃(ζ)Cn, which must therefore coincide with the whole space Cm,
i.e. dim ran Θ̃(ζ) = m almost everywhere on T.

PROPOSITION 3.4.12. Let Θ ∈ H∞m×n(D) be a contractive analytic function. Then
for Θ to be simultaneously inner and outer it is necessary and sufficient that it is a
unitary constant. In particular, m = n.

Proof. If we assume Θ to be a unitary constant, then m = n must hold and Θ(0) ∈ Cn×n
is a unitary matrix. By Lemma 3.4.6 we have Θ(z) ≡ Θ(0) as a function on D. Hence
TΘ is a unitary transformation on H2(D;Cn). In particular, it is an isometry, i.e. Θ has
the property inner. As TΘ is also a bijection, it trivially has dense range, so it is outer
as well.
To show sufficiency, we notice that Θ being simultaneously inner and outer infers n ≤ m
and m ≤ n due to Corollary 3.4.10 and Proposition 3.4.11. Moreover, TΘ is a unitary
transformation of H2(D;Cn), because on the one hand Θ being inner means that TΘ

is isometric and on the other hand Θ being outer means that TΘH2(D;Cn) is dense in
H2(D;Cm). Since the isometric image of the Banach space H2(D;Cn) must be closed,
this can only be true if TΘ is bijective. Thus, it is unitary. Due to Theorem 3.2.14 we
have TΘSnH2(D;Cn) = SnTΘH2(D;Cn) = SnH2(D;Cn), where Sn is the shift operator
on H2(D;Cn). Therefore,

TΘ[H2(D;Cn)	 SnH2(D;Cn)] = H2(D;Cn)	 SnH2(D;Cn). (3.12)
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But the right hand side of (3.12) contains precisely the constant functions on D, because

SnH2(D;Cn) ∼=
{

(ak) ∈ `2(N0;Cn)
∣∣ a0 = 0

}
and consequently

H2(D;Cn)	 SnH2(D;Cn) ∼=
{

(ak) ∈ `2(N0;Cn)
∣∣ ak = 0 for all k > 0

}
.

Thus,
(
z 7→ Θ(z)h(z)

)
is constant for all constant functions h ∈ H2(D;Cn). Hence, Θ

is a constant function itself. Equation (3.12) furthermore assures us of the validity of
ran Θ(z) = Cn for z ∈ D, so Θ(z) is a bijective operator on Cn for every z ∈ D. Finally,
since Θ̃(ζ) is an isometry for almost every ζ ∈ T, this means that the constant value of
Θ must have this property as well. In particular, Θ(0) ∈ Cn×n is a unitary operator, so
Θ is indeed a unitary constant.

We will conclude this section with some simple examples.

Example 3.4.13. Let the range of the following bounded analytic functions always be
C2×2.

1. It is clear that Θ1 ≡ I is a unitary constant and therefore both inner and outer.

2. Consider

Θ2(z) :=

(
1 0
0 0

)
+ z

(
0 0
0 1

)
=

(
1 0
0 z

)
.

Clearly, the functions λ1(z) ≡ 1 and λ2(z) = z describe the eigenvalues of Θ2. It
is also not difficult to see, that Θ2 can be extended onto T and that

Θ̃2(ζ) =

(
1 0
0 ζ

)
.

Θ2 is also contractive, although not purely contractive, because Θ2(0) = I on
C × {0}. Since dim ran Θ2(0) = 1 < 2, it cannot be outer due to Proposition
3.4.11. However, since

Θ̃2(ζ)HΘ̃2(ζ) = Θ̃2(ζ)Θ̃2(ζ)H =

(
1 0
0 |ζ|2

)
= I,

it is inner as per Proposition 3.4.9.

3. Define

Θ3(z) := I − S2 = I − zI =

(
1− z 0

0 1− z

)
.

It can, just like Θ2, be extended onto T by changing z to ζ. This, however, implies

Θ̃3(ζ)HΘ̃3(ζ) = |1− ζ|2I = (2− 2 Re ζ)I 6= I
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on T with the exception of the points ζ1,2 = 1
2 ±

√
3

2 i, so Θ3 is not inner.

We will now, however, show that Θ3 is outer. As per definition, TΘ3H2(D;C2) must
have dense image in H2(D;C2), so we will proof that the orthogonal complement
of

TΘ3H2(D;C2) =

{(
f1 − Sf1

f2 − Sf2

)
∈ H2(D;C2)

∣∣ (f1

f2

)
∈ H2(D;C2)

}
contains only the zero function. We proceed indirectly and suppose that there is
a nonzero function g = (g1, g2)> ∈ H2(D;C2) such that

(f1 − Sf1, g1)H2(D) + (f2 − Sf2, g2)H2(D) = 0

for all (f1, f2)> ∈ H2(D;C2). Let us only consider the case where g1 6≡ 0 as
the second coordinate can be dealt with analoguously, and keep in mind that
f1 − Sf1 = a0 + (a1 − a0)z + (a2 − a1)z2 + . . . . Then we have the following
distinction of cases:

Case 1 If g1 =
(
z 7→

∑N
n=0 bnz

n
)

with bN 6= 0 then f1 :=
(
z 7→ zN

)
and f2 := 0

produces f1 − Sf1 =
(
z 7→ zN − zN+1

)
and by the original definition of the

scalar product we get

(f1 − Sf1, g1) + (f2 − Sf2, g2) = (f1 − Sf1, g1) = bN 6= 0.

Case 2 If g1 =
(
z 7→

∑∞
n=0 bnz

n
)

and there exists a pair of coefficients bk 6= bk+1 then
f1 :=

(
z 7→ zk

)
and f2 := 0 yields f1 − Sf1 =

(
z 7→ zk − zk+1

)
and

(f1 − Sf1, g1) + (f2 − Sf2, g2) = (f1 − Sf1, g1) = bk − bk+1 6= 0.

Case 3 If g1 is as in the second case but all bn are the same, then g1 /∈ H2(D) or
g1 ≡ 0

Either way we get a contradiction, so g = (g1, g2)> ≡ 0. Thus, Θ3 is outer.

3.5 A Theorem of Beurling for Higher Dimensions

THEOREM 3.5.1 (Beurling). Let L ≤ H2(D;Cm) be a closed subspace with L 6= {0}.
Then L is Sm-invariant if and only if it can be represented as

L = TΘH2(D;Cn),

where n ≤ m and TΘ ∈ B
(
H2(D;Cn),H2(D;Cm)

)
is the (m×n)-matrix valued multiplier

operator connected to an inner (m×n)-matrix valued multiplier function Θ ∈ H∞m×n(D).
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Proof. Regarding necessity, we note that by definition the operator TΘ is an isometry if
Θ ∈ H∞m×n(D) is inner. Hence, L := TΘH2(D;Cn) is a closed subspace of H2(D;Cm).
With the help of Theorem 3.2.14 we easily see that

SmL = SmTΘH2(D;Cn) = TΘSnH2(D;Cn) ⊆ TΘH2(D;Cn) = L.

So L is necessarily left invariant by Sm.
Conversely, we need to show that if SmL ⊆ L, then L can be represented with the
help of an inner function. First, by identifying x ∈ Cm with the constant function
(z 7→ x) ∈ H2(D;Cm) we can embed Cm in H2(D;Cm) as a subspace. Clearly, Sm is
isometric and SkmCm⊥H2(D;Cm)Cm for every k ∈ N. So Cm is wandering with respect to
Sm. Since the monomials form an orthonormal basis of the Hardy-Hilbert space, we can
write

H2(D;Cm) = M+(Cm) =

∞⊕
k=0

SkmCm.

Hence, Sm is a unilateral shift with generating subspace Cm in the space H2(D;Cm).
Now set V := Sm � L. Of course, V is isometric. Since the subspace L is closed, it is
a Hilbert space and Theorem 1.2.11 on the Wold decomposition is applicable. But the
calculation

∞⋂
k=0

V kL ⊆
∞⋂
k=0

SkmH2(D;Cm) = {0}

shows that V lacks a unitary part. Setting L := L	V L, the Wold decomposition reduces
to L =

⊕∞
k=0 V

kL. Notice that n := dimL ≤ dimCm = m due to Proposition 1.2.13.
Let B =

{
ej ∈ Cn

∣∣ j = 1, . . . , n
}

be the canonical basis of Cn in H2(D;Cn) and let

E :=
{

Θj ∈ L ⊆ H2(D;Cm)
∣∣ j = 1, . . . , n

}
be an orthonormal basis of L in H2(D;Cm). We define a function Θ : D → Cm×n by
setting Θ := (Θ1, . . . ,Θn). Clearly,

G :=
{
Sknej

∣∣ k ∈ N0, j = 1, . . . , n
}

and H :=
{
V kΘj

∣∣ k ∈ N0, j = 1, . . . , n
}

are then orthonormal bases of H2(D;Cn) and L, respectively. If we define a mapping

T :

{
G → H

Sknej 7→ V kΘj

we can extend T uniquely to a unitary transformation, also called T , with domain
H2(D;Cn) and range L ⊆ H2(D;Cm), i.e. TH2(D;Cn) = L.
We need to show that Θ ∈ H∞m×n(D) and T = TΘ and that Θ is inner. The operator T
clearly satisfies

TSnS
k
nej = TSk+1

n ej = V k+1Θj = V V kΘj = V TSknej = SmTS
k
nej
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for arbitrary j ∈ {1, . . . , n} and k ∈ N0, i.e. we have TSn = SmT . According to Theorem
3.2.14 there exists a uniquely determined Θ′ ∈ H∞m×n(D) such that T = TΘ′ . Because of

(z 7→ Θ′(z)ej) = TΘ′(z 7→ ej) = T (z 7→ ej) = (z 7→ Θj)

we conclude that Θ = Θ′. Since T is isometric, this means that Θ must be inner.

As in the one-dimensional case, the inner function Θ in the multi-dimensional Beurling
Theorem is unique up to multiplication with a unitary matrix.

PROPOSITION 3.5.2. Let Θ1,Θ2 ∈ H∞m×n(D) be inner functions and suppose that
TΘ1H2(D;Cn) = TΘ2H2(D;Cn). Then there exists a unitary matrix C ∈ U(n) such that
Θ2 = Θ1C.

Proof. We set L := TΘ1H2(D;Cn) = TΘ2H2(D;Cn). By definition, TΘ1 and TΘ2 are
isometric due to Θ1 and Θ2 being inner. As the isometric image of a Banach space,
L is closed. Furthermore, TΘ1 : H2(D;Cn) → L is bijective and bounded. By the
Bounded Inverse Theorem 1.2.4, the operator T−1

Θ1
: L → H2(D;Cn) is bounded, too.

Consequently, we have T−1
Θ1
◦ TΘ2 ∈ B

(
H2(D;Cn)

)
.

Now we infer from SmTΘ1 = TΘ1Sn that

Sn ◦ T−1
Θ1

= T−1
Θ1
◦ TΘ1 ◦ Sn ◦ T−1

Θ1
= T−1

Θ1
◦ Sm ◦ TΘ1 ◦ T−1

Θ1
= T−1

Θ1
◦ Sm

holds on L. This implies that T−1
Θ1
◦ TΘ2 commutes with Sn because

Sn ◦ T−1
Θ1
◦ TΘ2 = T−1

Θ1
◦ Sm ◦ TΘ2 = T−1

Θ1
◦ TΘ2 ◦ Sn

holds on H2(D;Cn). So all requirements of Theorem 3.2.14 are satisfied for T−1
Θ1
◦ TΘ2 .

Thus, there exists a function Θ3 ∈ H∞n×n(D) such that T−1
Θ1
◦TΘ2 = TΘ3 , or alternatively

TΘ2 = TΘ1 ◦ TΘ3 . As TΘ1 : H2(D;Cn) → L is an isometry, so is T−1
Θ1

: L → H2(D;Cn).
Therefore, since TΘ3 is a composition of isometric operators, it is itself isometric. By
Lemma 3.2.13 we have ‖Θ3‖∞ = ‖TΘ3‖ = 1, so Θ3 is a contractive analytic function
and, furthermore, it is inner. Moreover,

TΘ3H2(D;Cn) = T−1
Θ1
◦ TΘ2H2(D) = T−1

Θ1
TΘ2H2(D;Cn) = T−1

Θ1
L = H2(D;Cn)

proves that Θ3 is also outer. According to Proposition 3.4.12, Θ3 is a unitary constant.
Therefore, Θ2 = Θ1C is fulfilled for C := Θ3(0) ∈ U(n).
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Chapter 4

Generalisation to Linear
Relations

Since linear relations expand on the consept of linear operators, it seems natural to
ask whether a version of Theorem 2.1.14 can be formulated to hold also in this more
comprehensive case. We have already shown that subsets of H2(D) × H2(D) can be
understood as subsets of H2(D;C2). Therefore, it is possible to employ the theory of
vector-valued functions developed in the previous chapter. It remains to find a suitable
notion to replace the condition of commutating with the shift operator.

4.1 Shift-Invariant Linear Relations

We begin with the following conception.

DEFINITION 4.1.1. Let R ≤ H2(D) × H2(D) be a closed linear relation. Then we
call it S2-stable, if R, considered as a linear subspace of H2(D;C2), is invariant unter
S2 ∈ B

(
H2(D;C2)

)
.

Since we are going to deal with the interplay of the operators S and S2, we formulate
the next result for our convenience.

LEMMA 4.1.2. Consider the shift operators S ∈ B
(
H2(D)

)
and S2 ∈ B

(
H2(D;C2)

)
.

Let τ be the mapping that identifies the Cartesian product H2(D)×H2(D) with H2(D;C2)
from Proposition 3.2.4. Then the diagram

H2(D)×H2(D)
τ−−−−→ H2(D;C2)

S×S
y yS2

H2(D)×H2(D)
τ−−−−→ H2(D;C2)

commutes.
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Proof. By definition, an ordered pair [f, g] ∈ H2(D) × H2(D) is mapped to the vector-
valued function h := (f, g)> ∈ H2(D;C2) by τ . Since S2 does nothing else but

S2

(
f
g

)
= S2

(
z 7→

(
f(z)
g(z)

))
=

(
z 7→ z

(
f(z)
g(z)

))
=

(
z 7→

(
zf(z)
zg(z)

))
=

(
Sf
Sg

)
,

the assertion follows.

Some operators and linear relations inherit being S2-stable through another of their
properties.

LEMMA 4.1.3. Consider the operators S ∈ B
(
H2(D)

)
and S2 ∈ B

(
H2(D;C2)

)
and

let R ≤ H2(D) × H2(D) be a closed linear relation with dom R = H2(D). If S and R
commute as linear relations, then R is S2-stable.

Proof. Assume that SR = RS as linear relations. If we apply S−1 from the right, we get
SRS−1 = RSS−1, which is well-defined on dom S−1 = ran S =

{
f ∈ H2(D)

∣∣ f(0) = 0
}

.
On the one hand, it is easy to check that SS−1 = Iran S×ran S . Consequently, the
condition [f, g] ∈ RIran S×ran S is equivalent to [f, g] ∈ R and f(0) = 0. We therefore get
SRS−1 = RSS−1 ⊆ R.
On the other hand, we notice that [f, g] ∈ SRS−1 is equivalent to [f, p] ∈ S−1, that is
[p, f ] ∈ S, [p, q] ∈ R and [q, g] ∈ S, for some p, q ∈ H2(D). Using that S is an operator,
we conclude f = Sp and g = Sq. In essence this shows that [p, q] ∈ R if and only if
[Sp, Sq] ∈ SRS−1. By Lemma 4.1.2, [Sp, Sq] = S2([p, q]). Hence,

SRS−1 =
{

[Sp, Sq] ∈ H2(D)×H2(D)
∣∣ [p, q] ∈ R

}
= S2(R).

Therefore, we have S2(R) ⊆ R.

COROLLARY 4.1.4. If an operator T ∈ B(H2(D)) commutes with the shift operator
S, then its graph is S2-stable.

LEMMA 4.1.5. Let R, T ≤ H2(D)×H2(D) be two S2-stable linear relations. Then we
have:

(i) dom R, ran R, kerR and mul R are all invariant under S.

(ii) The sets

dom R× {0}, kerR× {0}, {0} × ran R and {0} ×mul R

are all S2-stable linear relations.

(iii) R−1 is S2-stable.

(iv) αR is S2-stable for α ∈ C\{0}.

(v) R+ T is S2-stable.
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Proof. Suppose that [f, g] ∈ R, then Lemma 4.1.2 assures us of S2 = S×S and we have

[Sf, Sg] = S2

(
[f, g]

)
∈ S2(R) ⊆ R (4.1)

Regarding (i): for f ∈ dom R there exists g ∈ H2(D) such that [f, g] ∈ R. By (4.1), we
have [Sf, Sg] ∈ R, and thus, Sf ∈ dom R. This shows S(dom R) ⊆ dom R. The cases
for the range, kernel and multi-valued part are completely analoguous.
Concerning (ii), we notice that the linear subspaces dom R × {0} and {0} × ran R are
both clearly closed. The continuity of S then shows that

S(dom R) ⊆ S(dom R) ⊆ dom R.

Obviously, we have S{0} = {0}, so dom R×{0} is S2-stable. For {0}×ran R we proceed
analoguously. Furthermore, kerR and mul R are both closed, due to Corollary 1.3.6, and
invariant under S, so kerR× {0} and {0} ×mul R are S2-stable as well.
For (iii), we remember Corollary 1.3.8 and see that R−1is closed. Since by definition
[f, g] ∈ R−1 if and only if [g, f ] ∈ R, equation (4.1) shows that [Sf, Sg] ∈ R−1 if and
only if [Sg, Sf ] ∈ R, so R−1 is S2-stable.
In (iv), we also use Corollary 1.3.8 to convince ourselves that αR is closed for α ∈ C\{0}.
Again by definition, [f, g] ∈ αR if and only if [f, 1

αg] ∈ R. Equation (4.1) combined with
the fact that S 1

αg = 1
αSg proves that [Sf, Sg] also belongs to αR, and thus, αR is

S2-stable.
Finally, to show (v) we notice that [f, g] ∈ R + T is equivalent to there being functions
h, k ∈ H2(D) such that g = h+ k with [f, h] ∈ R and [f, k] ∈ T . Clearly, if we have such
a decomposition of g then due to linearity of S we get a decomposition of Sg, namely
Sg = Sh+ Sk, with [Sf, Sh] ∈ S2(R) and [Sf, Sk] ∈ S2(T ). Hence, we have shown the
inclusion marked with an asterisk in

S2(R+ T ) ⊆ S2(R+ T )
∗
⊆ S2(R) + S2(T ) ⊆ R+ T

and the first inclusion is due to S2 being continuous. Thus, R+ T is S2-stable.

We remember Theorem 2.1.14, which stated that a continuous operator T on the Hardy-
Hilbert space commutes with the shift operator S if and only if T is a multiplier operator.
We can formulate a similar result for linear relations, using the property of S2-stability.

THEOREM 4.1.6. Let R ≤ H2(D)×H2(D) be a closed linear relation with R ) {[0, 0]}.
Then R is S2-stable if and only if there exists an inner function Θ ∈ H∞2×n(D) such that

R = TΘH2(D;Cn)

with n ≤ 2.

Proof. By Proposition 3.2.4, we can consider R ≤ H2(D)×H2(D) as a closed linear sub-
space of H2(D;C2). Due to Theorem 3.5.1 there exists an inner function Θ ∈ H∞2×n(D),
where n ≤ 2, such that R = TΘH2(D;Cn) if and only if S2(R) ⊆ R.
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We direct our attention to the fact that Theorem 4.1.6 permits two cases, i.e. an S2-
stable linear relation can either be described as the transform of the Hardy-space H2(D)
or of the vector-valued function space H2(D;C2).

The reason for this differentiation stems from Beurling’s Theorem 3.5.1. Setting, as in
its proof, V := S2 � R and L := R	V R, we have a Wold decomposition of R of the form
R =

⊕∞
k=0 V

kL and because of Proposition 1.2.13 we know that dimL ≤ 2. In other
words, the number n takes the value 2 if and only if we can find two linearly independent
functions belonging to R, i.e. two vector-valued functions, that span L. The fact that
L is spanned by a single function is therefore equivalent to n being equal to 1. We have
therefore proven

PROPOSITION 4.1.7 (Dimensional Condition). Let R ≤ H2(D)×H2(D) be a non-
trivial S2-stable linear relation. Then R is the transform of

• H2(D) if and only if R	 S2(R) is one-dimensional.

• H2(D;C2) if and only if R	 S2(R) is two-dimensional.

We will now discuss the two cases separately.

The case n = 1

Let R ≤ H2(D) × H2(D) be an S2-stable linear relation. In this section, suppose that
the orthogonal complement of S2(R) in R is one-dimensional. By Theorem 4.1.6 and the
Dimensional Condition, Proposition 4.1.7, there exists Θ ∈ H∞2×1(D) with R = TΘH2(D).
Therefore, Θ has the form

Θ =

(
a
b

)
for a, b ∈ H∞(D). Notice that due to Proposition 3.5.2 Θ is uniquely determined up
to multiplication by a unimodular constant. The functions a and b therefore share this
uniqueness property.

PROPOSITION 4.1.8. Let R = TΘH2(D) and Θ = (a, b)> ∈ H∞2×1(D) with the
coordinate functions a, b ∈ H∞(D). Then

R =
{

[a · f, b · f ] ∈ H2(D)×H2(D)
∣∣ f ∈ H2(D)

}
(4.2)

with

dom R = TaH2(D) and ran R = TbH2(D).

Furthermore, |ã(ζ)|2 + |̃b(ζ)|2 = 1 must hold almost everywhere on T. In particular, a
and b cannot both be the zero function.
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Proof. First, we notice that{
Θf ∈ H2(D;C2)

∣∣ f ∈ H2(D)
}

=

{(
a · f
b · f

)
∈ H2(D;C2)

∣∣ f ∈ H2(D)

}
.

So with the help of Proposition 3.2.4 we see that R has the form given in Equation (4.2).
Secondly, we obtain from (4.2)

dom R =
{
g ∈ H2(D)

∣∣ ∃h ∈ H2(D) : [g, h] ∈ R
}

=

=
{
a · f ∈ H2(D)

∣∣ f ∈ H2(D)
}

=

= TaH2(D).

A symmetric argument yields ran R = TbH2(D).
Finally, since Θ must be inner, Θ̃(ζ) is an isometric mapping from C into C2 for almost
all ζ ∈ T as by Proposition 3.4.9. This directly implies that |ã(ζ)|2 + |̃b(ζ)|2 = 1 must
hold almost everywhere on T and that a and b cannot both vanish.

A direct consequence of Proposition 4.1.8 is the following

COROLLARY 4.1.9. Let R and Θ be as above. Then:

(i) R is densely defined if and only if the coordinate function a ∈ H∞(D) is outer.

(ii) R has dense range if and only if the coordinate function b ∈ H∞(D) is outer.

PROPOSITION 4.1.10. Let R and Θ be as above. Then:

(i) R is an operator if and only if the coordinate function a ∈ H∞(D) is not the zero
function.

(ii) R is a continuous linear operator R : dom R → H2(D) if and only if TaH2(D) is
nontrivial and closed, i.e. if and only if ess inf |ã| > 0.

(iii) R has trivial kernel if and only if the coordinate function b ∈ H∞(D) is not the
zero function.

Proof. A linear relation is an operator if and only if its multi-valued part only contains
the element zero. In particular, by (4.2) we have

mul R =
{
g ∈ H2(D)

∣∣ [0, g] ∈ R
}

=
{
b · f ∈ H2(D)

∣∣ a · f = 0
}
.

Whenever a 6≡ 0 the first coordinate only vanishes for f ≡ 0, in which case the second
coordinate automatically amounts to zero as well. Only for a ≡ 0 can — and will —
mul R contain elements different from zero. This proves the first claim.
The second claim is a consequence of the first claim and Lemma 2.2.14.
Finally, since

kerR =
{
g ∈ H2(D)

∣∣ [g, 0] ∈ R
}

=
{
a · f ∈ H2(D)

∣∣ b · f = 0
}
,

the third claim is symmetric to the first one.
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COROLLARY 4.1.11. Let R and Θ be as above and suppose that R is an operator.
In this case we have in fact

R =
(
T b
a
� TaH2(D)

)
, (4.3)

where

R :

{
TaH2(D) → TbH2(D)

a · f 7→ b · f and T b
a

:

{
dom T b

a
→ H2(D)

f 7→ b
a · f

,

with dom T b
a

=
{
f ∈ H2(D)

∣∣ b
a · f ∈ H

2(D)
}

as the domain of the multiplication oper-

ator T b
a

.

Proof. Clearly, every function g = a · f ∈ TaH2(D) = dom R satisfies b
a · g = b

a · a · f =
b · f ∈ H2(D).

In general, dom T b
a

might very well be a proper superset of TaH2(D). So T b
a

could

potentially be a proper extension of the operator R. We give an example to show how
this can happen.

Example 4.1.12. Let

Θ(z) :=
1√
2

(
z
z

)
on D. Clearly, Θ belongs to H∞2×1(D) and it is inner. Now set R := TΘH2(D). Since we
have that a(z) = b(z) = 1√

2
z for z ∈ D we get

TaH2(D) = ran S =
{
f ∈ H2(D)

∣∣ f(0) = 0
}
( H2(D).

However,

T b
a

= T1 = idH2(D),

which is obviously defined everywhere. Hence, dom T b
a

= H2(D) ) TaH2(D). Conse-

quently, T b
a

is a multiplier operator with multiplier function 1 whereas R is an operator

that is only defined on a closed proper subspace of H2(D).

We also remark that we find ourselves in a similar situation whenever b is a multiple of
a, i.e. b

a ∈ H
∞(D), implying that T b

a
is a multiplier, and TaH2(D) ( H2(D).

The following result is an obvious consequence of Equation (4.2).

COROLLARY 4.1.13. Let R and Θ be as above. Then:

(i) If a ≡ 0, then R = {0} × TbH2(D) and mul R = TbH2(D).
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(ii) If b ≡ 0, then R = TaH2(D)× {0} and kerR = TaH2(D).

PROPOSITION 4.1.14. Let R and Θ be as above. Then:

(i) The inverse R−1 can be represented as R−1 = TΘlH2(D).

(ii) For α ∈ T we have αR = TΘ[α]H2(D).

Thereby we set

Θl =

(
b
a

)
and Θ[α] =

(
a
αb

)
.

Proof. According to Lemma 4.1.5 (iii) and (iv), R−1 and αR are both S2-stable if R has
this property. It is clear that the Dimensional Condition, Proposition 4.1.7, is unaffected
by forming R−1 or αR. Furthermore, Θl and Θ[α] are both inner. So a short calculation
involving the mappings Φinv and Φα from Lemma 1.3.7 yields

R−1 = Φinv(R)

= Φinv

({
[a · f, b · f ] ∈ H2(D)×H2(D)

∣∣ f ∈ H2(D)
})

=
{

[b · f, a · f ] ∈ H2(D)×H2(D)
∣∣ f ∈ H2(D)

}
= TΘlH

2(D)

and

αR = Φα(R)

= Φα

({
[a · f, b · f ] ∈ H2(D)×H2(D)

∣∣ f ∈ H2(D)
})

=
{

[a · f, αb · f ] ∈ H2(D)×H2(D)
∣∣ f ∈ H2(D)

}
= TΘ[α]H2(D).

Notice that it would be possible to define Θ[α] also for complex numbers of modulus
different from 1. However, this then creates the problem of assuring that Θ[α] is inner,
which can very quickly become too complicated to solve, at least if we have to rely on
the tools we have developed in this work. A similar problem is discussed in Example
4.2.3.

The case n = 2

Let R ≤ H2(D)×H2(D) again be S2-stable, but now suppose that there exist two linearly
independet functions spanning the orthogonal complement of S2(R) in R. Then there
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exists a representation such that R = TΘH2(D;C2) with Θ ∈ H∞2×2(D) and Θ can be
represented by

Θ =

(
a b
c d

)
(4.4)

for functions a, b, c, d ∈ H∞(D).

PROPOSITION 4.1.15. Let R = TΘH2(D) and Θ ∈ H∞2×2(D) of the form (4.4) with
the coordinate functions a, b, c, d ∈ H∞(D). Then

R =

{
[a · f1 + b · f2, c · f1 + d · f2] ∈ H2(D)×H2(D)

∣∣ f =

(
f1

f2

)
∈ H2(D;C2)

}
(4.5)

with

dom R = TaH2(D) + TbH2(D) and ran R = TcH2(D) + TdH2(D).

Furthermore, Θ̃(ζ) must belong to the unitary group U(2) for almost every ζ ∈ T. In
particular, there cannot be a row or column in Θ made up entirely of zero functions.
Finally,

det Θ :

{
D → C
z 7→ det Θ(z)

belongs to H∞(D) and is not the zero function on D.

Proof. Since

Θf =

(
a b
c d

)(
f1

f2

)
=

(
a · f1 + b · f2

c · f1 + d · f2

)
for any f ∈ H2(D;C2) with coordinate functions f1, f2 ∈ H2(D), the representation (4.5)
follows with the help of Proposition 3.2.4.
It is clear that dom R is contained in TaH2(D) + TbH2(D), so we need to show the
opposite inclusion. By the definition of the domain of a linear relation, we must find for
every f ∈ TaH2(D) + TbH2(D) a function g ∈ H2(D) such that [f, g] ∈ R. Due to our
choice of f there exist functions k ∈ TaH2(D) and ` ∈ TbH2(D) such that f = k + `. If
we set f1 := k

a and f2 := `
b , then they are both clearly well-defined and belong to H2(D).

Furthermore, f = a · f1 + b · f2 is obviously satisfied. With g := c · f1 + d · f2 we get
g ∈ H2(D) and [f, g] ∈ R due to (4.5). A symmetric argument for ran R runs completely
analoguously.
Since Θ is guaranteed to be inner by Theorem 4.1.6, Θ̃(ζ) must be a unitary matrix
almost everywhere on T, which would be impossible to achieve if a column or row were
to consist just of zero functions. To prove the second claim regarding det Θ, we proceed
indirectly. Assume that det Θ ≡ 0, then

Θ

(
−b
a

)
=

(
a · (−b) + b · a
c · (−b) + d · a

)
=

(
0

det Θ

)
=

(
0
0

)
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shows that

kerTΘ ⊇ ls

{(
−b
a

)
∈ H2(D;C2)

}
) {0}.

Thus, TΘ ∈ B
(
H2(D;C2)

)
cannot be an isometry and Θ is not inner. We arrive at a

contradiction. Finally, we also see det Θ = a · d− b · c ∈ H∞(D) since H∞(D) is closed
under addition and multiplication.

We can immediately derive the following

COROLLARY 4.1.16. Let R and Θ be as above. Then:

(i) R is densely defined if and only if TaH2(D) + TbH2(D) is dense in H2(D).

(ii) R has dense range if and only if TcH2(D) + TdH2(D) is dense in H2(D).

In the previous section, where n = 1, we have seen that R is always an operator,
disregarding one pathological case. The behaviour of R for n = 2 is quite different,
however.
To explain this properly, we remember a certain concept of classical Hardy space theory:
Let g, h ∈ H∞(D) and suppose that h is inner. Then we call g divisible by h if there
exists a function f ∈ H∞(D) such that h · f = g holds. Furthermore, given any two
functions a, b ∈ H∞(D), there exists a unique — within multiplication by unimodular
constant — inner function k ∈ H∞(D) such that both a and b are divisble by k and k is
maximal in the sense that any other inner function k′ ∈ H∞(D) that is a divisor of both
a and b is also a divisor of k. This particular function k is the greatest common divisor
of a and b, denoted by gcd(a, b).

PROPOSITION 4.1.17. Let R and Θ be as above. Then R is never an operator. In
fact,

mul R =


TcH2(D) for a = 0, b 6= 0

TdH2(D) for a 6= 0, b = 0

T det Θ
gcd(a,b)

H2(D) for a, b 6= 0

and each of the three spaces is a proper superset of {0}.

Proof. Since mul R is defined as the set of all functions g ∈ H2(D) such that [0, g] belongs
to the linear relation, we are faced with solving

a · f1 + b · f2 = 0 (4.6)

c · f1 + d · f2 = g (4.7)

for f1, f2 ∈ H2(D). We proceed by distinguishing four cases.

Case 1 a = b = 0. This is impossible due to Proposition 4.1.15.
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Case 2 a = 0, b 6= 0. We first notice that (4.6) implies f2 ≡ 0. Accordingly, (4.7) now
reads as c · f1 = g and c 6≡ 0 due to Proposition 4.1.15. In fact, if a vanishes, the
coordinate function c̃ of Θ̃ must have modulus 1 almost everywhere on T or else Θ̃
would not belong to the unitary group almost everywhere. This means that c is an
inner function. Consequently, Tc is an isometry and isometries automatically have
closed range. The above problem is therefore solvable if and only if g ∈ TcH2(D)
because then f1 := g

c will belong to H2(D). This shows mul R = TcH2(D) ) {0}.

Case 3 a 6= 0, b = 0. This case can be dealt with analoguously to Case 2 and yields
mul R = TdH2(D) ) {0}.

Case 4 a, b 6= 0. We will first look at the operator T(a,b) : H2(D;C2) → H2(D) and
determine kerT(a,b) to solve condition (4.6).

Lemma 4.1.5 implies that kerT(a,b) is invariant under S. Furthermore, it contains
at least the vector function (−b, a), so it is not just the space {0}. Since the kernel
is always closed, all requirements of Theorem 3.5.1 are satisfied. Consequently, we
have one of the representations

kerT(a,b) = TΘ′H2(D;C2) or kerT(a,b) = T(p,q)>H2(D),

where Θ′ ∈ H∞2×2(D) and p, q ∈ H∞(D) and both Θ′ and (p, q)> are inner. However,

if kerT(a,b) were the transform ofH2(D;C2), this would imply
(
ã(ζ), b̃(ζ)

)
·Θ̃′(ζ) = 0

for almost every ζ ∈ T. But as Θ̃′ is unitary almost everywhere on T, its kernel
must be trivial, so we have a contridiction. Consequently, kerT(a,b) = T(p,q)>H2(D)
holds.

Next, notice that

T(−b,a)>H2(D) ⊆ kerT(a,b) = T(p,q)>H2(D)

holds. Therefore, we can define the operator Q := T−1
(p,q)>

◦ T(−b,a)> , which maps

H2(D) into itself and is bounded. Because of

S ◦ T−1
(p,q)>

= T−1
(p,q)>

◦ T(p,q)> ◦ S ◦ T−1
(p,q)>

=

= T−1
(p,q)>

◦ S2 ◦ T(p,q)> ◦ T−1
(p,q)>

=

= T−1
(p,q)>

◦ S2

we arrive at

Q ◦ S = T−1
(p,q)>

◦ T(−b,a)> ◦ S =

= T−1
(p,q)>

◦ S2 ◦ T(−b,a)> =

= S ◦ T−1
(p,q)>

◦ T(−b,a)> =

= S ◦Q
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i.e. Q commutes with S. By Theorem 2.1.14 there exists a function k ∈ H∞(D)
such that Q = Tk. Hence, we get T(−b,a)> = T(p,q)> ◦ Tk. Applying this operator
equality to the constant function with value 1 we get

k(z)

(
p(z)
q(z)

)
=

(
−b(z)
a(z)

)
for z ∈ D and a similar relation for the boundary functions on T. We remember
that the vector (−b, a)> is in essence the first row of the inner function Θ, satisfying
|ã(ζ)|2 + |̃b(ζ)|2 = 1 almost everywhere on T. Consequently, the calculation

|k̃(ζ)|2 = |k̃(ζ)|2 ·
(
|p̃(ζ)|2 + |q̃(ζ)|2

)
= |̃b(ζ)|2 + |ã(ζ)|2 = 1

shows that k is inner. Additionally, we have that k is a divisor of both a and b.

We will show that k is in fact the greatest common divisor. Suppose that the
inner function κ ∈ H∞(D) also divides both a and b, i.e. there exist functions
fa, fb ∈ H∞(D) such that a = κ · fa and b = κ · fb. We immediately get that
(−fb, fa)> ∈ H∞2×1(D) is inner. Because of

κ ·
(
− a · fb + b · fa

)
= −a · b+ b · a ≡ 0

we get that −a · fb + b · fa ≡ 0, implying

T(−fb,fa)>H2(D) ⊆ kerT(a,b).

We follow the arguments already used for the operator Q above to conclude that
there exists a function λ ∈ H∞(D) such that

T−1
(p,q)>

◦ T(−fb,fa)> = Tλ.

Applying T(p,q)> from the left and looking at the image of the constant function
with value 1 lets us conclude that λ is inner and that we have

(κ · λ) · p = −b = k · p
(κ · λ) · q = a = k · q

.

At least one line is nontrivial and allows us to cancel either p or q. This shows
κ · λ = k, and thus, κ is a divisor of k. We have therefore proven k = gcd(a, b).
Furthermore, the kernel of T(a,b) satisfies kerT(a,b) = T(− b

k
, a
k

)>H
2(D).

For (4.6) to be satisfied, we consequently have to set f1 := −h · bk and f2 := h · ak
with some nonzero function h ∈ H2(D). However, this transforms Equation (4.7)
into c · (−h · bk ) + d · h · ak = h · det Θ

k = g, inferring mul R = T det Θ
gcd(a,b)

H2(D) ) {0}.

Clearly, det Θ
gcd(a,b) 6≡ 0, so the last inclusion is due to Proposition 4.1.15. Additionally,

we notice that det Θ
gcd(a,b) belongs to H∞(D) and that it is inner, since the determinant

of a unitary matrix has modulus 1 and because gcd(a, b) was defined to be inner.
Consequently, T det Θ

gcd(a,b)
is an isometry and ran T det Θ

gcd(a,b)
is automatically closed.
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This shows that the multi-valued part of R is never trivial and therefore, R cannot be
an operator for any choice of coordinate functions.

By a symmetric argument we easily get the next

COROLLARY 4.1.18. Let R and Θ be as above. Then R never has trivial kernel. In
fact,

kerR =


TaH2(D) for c = 0, d 6= 0

TbH2(D) for c 6= 0, d = 0

T det Θ
gcd(c,d)

H2(D) for c, d 6= 0

and each of these three spaces is a proper superset of {0}.

Furthermore, with the help of Equation (4.5) the next result is immediate. We remind
ourselves of the fact that there can only be one zero function per column and row due
to Proposition 4.1.15.

COROLLARY 4.1.19. Let R and Θ be as above. Then:

(i) If a = d ≡ 0 then R =
(
{0} × TbH2(D)

)
�̇
(
TcH2(D)× {0}

)
.

(ii) If b = c ≡ 0 then R =
(
TaH2(D)× {0}

)
�̇
(
{0} × TdH2(D)

)
.

Some easy operations that we can perform on linear relations are again reflected in the
structure of the inner function Θ.

PROPOSITION 4.1.20. Let R and Θ be as above. Then:

(i) The inverse R−1 can be represented as R−1 = TΘlH2(D).

(ii) For α ∈ T we have αR = TΘ[α]H2(D).

Thereby we set

Θl =

(
c d
a b

)
and Θ[α] =

(
a b
αc αd

)
.

Proof. Both R−1 and αR are S2-stable if R has this property due to to Lemma 4.1.5 (iii)
and (iv). Furthermore, the Dimensional Condition, Proposition 4.1.7, is invariant with
respect to forming R−1 or αR and Θl and Θ[α] are both inner. As in the case where
n = 1 we can make use of the mappings Φinv and Φα from Lemma 1.3.7 to calculate

R−1 = Φinv(R)

= Φinv

({
[a · f1 + b · f2, c · f1 + d · f2] ∈ H2(D)×H2(D)

∣∣ f =

(
f1

f2

)
∈ H2(D)

})
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=

{
[c · f1 + d · f2, a · f1 + b · f2] ∈ H2(D)×H2(D)

∣∣ f =

(
f1

f2

)
∈ H2(D)

}
= TΘlH

2(D)

and

αR = Φα(R)

= Φα

({
[a · f1 + b · f2, c · f1 + d · f2] ∈ H2(D)×H2(D)

∣∣ f =

(
f1

f2

)
∈ H2(D)

})
=

{
[a · f1 + b · f2, αc · f1 + αd · f2] ∈ H2(D)×H2(D)

∣∣ f =

(
f1

f2

)
∈ H2(D)

}
= TΘ[α]H2(D).

4.2 Some Examples

Example 4.2.1. We will look at some simple linear relations and determine how they
can represented in the spirit of Theorem 4.1.6.

1. The linear relation R = H2(D)×H2(D) is obviously equal to H2(D;C2) and thus
S2-stable. It can therefore be represented using the function Θ ≡ I, where I is the
(2× 2)-identity matrix, i.e.

R = TΘH2(D;C2).

It goes without saying that Θ is inner. It should be noted that this choice is not
unique since for any α ∈ T we could also use Θ ≡ αI to represent R.

2. Consider the linear relation R = {[0, 0]} ≤ H2(D)×H2(D). Setting

Θ1 =

(
0
0

)
and Θ2 =

(
0 0
0 0

)
,

we can clearly write R in two different ways, namely

R = TΘ1H2(D) and R = TΘ2H2(D;C2).

Although R is S2-stable, neither of these representations arise from Theorem 4.1.6.
The reason for this is that Beurling’s Theorem 3.5.1 excludes trivial subspaces
and, by extension, so does Theorem 4.1.6. Additionally, Θ1 and Θ2 both lack the
property inner.

3. Both the spaces R1 = H2(D)×{0} and R2 = {0}×H2(D) satisfy the requirements
of Theorem 4.1.6. It is immediately clear that

Θ1 =

(
1
0

)
and Θ2 =

(
1
0

)
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are both inner and fulfil

R1 = TΘ1H2(D) and R2 = TΘ2H2(D).

As in the first case, using αΘi for α ∈ T yields the same linear relations Ri for
i ∈ {1, 2}.

The above examples are straightforward since the linear relations in questions are rather
easy to describe. The situation gets a more interesting, albeit more difficult, if the linear
relations arise from the graph of an operator.

Example 4.2.2. Let us first discuss two special classes of operators. As usual, the
choices we make for inner functions are unique up to multiplication by a constant β ∈ T.

1. The operator

Tα :

{
H2(D) → H2(D)

f 7→ αf

i.e. multiplication by a scalar α 6= 0, clearly satisfies Tα = αI as a linear relation,
where I ≤ H2(D)×H2(D) is the identity relation. Take note that α = 0 describes
the linear relation R1 in Example 4.2.1.3. It is easy to see that Tα is S2-stable and
thus we have Tα = TΘ[α]H2(D). The function Θ[α] can be chosen as

Θ[α] =
1√

1 + |α|2

(
1
α

)
and therefore is clearly inner.

2. The shift operator S is trivially S2-stable. By induction, the same is then true for
Sk as k runs over N. The representation Sk = TΘ[k]H2(D) can then be achieved
through

Θ[k] =
1√
2

(
1
zk

)
for k ∈ N.

Finally, let us examine how Theorems 2.1.14 and 4.1.6 interact.

Example 4.2.3. Suppose that T ∈ B(H2(D)) commutes with the shift operator S. On
the one hand, there must exist a function h ∈ H∞(D) such that T = Th as we have
shown at the very beginning of this work in Theorem 2.1.14.

On the other hand, by identifying T with its graph and considering it as a linear relation,
it is closed, according to Lemma 2.1.11, and S2-stable, due to Corollary 4.1.4. Hence,
Theorem 4.1.6 is applicable, so there exists Θ ∈ H∞2×1(D) such that T = TΘH2(D).
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In the light of the previous examples it seems natural to suspect that up to multiplication
by a unimodular constant we will arrive at

Θ =
1

κ

(
1
h

)
.

The difficulty now lies in the fact of finding a suitable function κ such that 1
κ and h

κ both
belong to H∞(D) and such that on T we have∣∣∣ 1

κ̃(ζ)

∣∣∣2 +
∣∣∣ h̃(ζ)

κ̃(ζ)

∣∣∣2 = 1

almost everywhere. Unless h is the scalar multiple of an inner function, which implies
that |h̃| ≡ c ∈ C on T and enables κ :=

√
1 + |c|2, we cannot make any more refined

statements about the particular appearance of Θ. In fact, we would need other tools
from classical Hardy space theory to advance this further.
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