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Introduction

In the beginning of the twentieth century, mathematicians such as G. H. Hardy, F. and
M. Riesz and others started working on spaces of holomorphic functions defined on a
fixed domain in the complex plane. These spaces are named Hardy spaces and have a
number of interesting properties. For example, A. Beurling famously proved that Hardy
space functions could be factorised into inner and outer functions. This staple of complex
analysis can be found in most textbooks on the subject, cf. for example [Rud87] for an
overview.

However, Hardy spaces, and especially the Hardy-Hilbert space H?(D), can also be
examined against an operator theoretic background, giving alternative proofs to some
well-known theorems with the help of multiplication operators. The central question of
this Master’s thesis is now whether this approach can be broadened even further to also
work for linear relations.

We start this work with a short overview of the well-known notions we require from
functional analysis and give an introduction to linear relations. These materials were
covered in courses on functional analysis during my Master’s studies and can mostly be
found in [Worll] and [Kall2].

In Chapter 2, we introduce the space H?(ID) and look at some of its properties, linking it
to the Hilbert space of square-integrable functions on the torus in the process. Further-
more, one interesting result that we will generalise for linear relations, namely Theorem
2.1.14, is presented and Beurling’s Theorem on shift-invariant subspaces of H2(D) is
proved. For further reading we suggest [Neul0] as a starting point.

After collecting some facts about complex analysis for Banach-space valued holomor-
phic functions, Chapter 3 expands on the one-dimensional approach from Chapter 2.
Consequently, we find a number of analoguous properties for the Hardy-Hilbert space
H2(D; C™) of vector-valued holomorphic functions. Furthermore, matrix-valued func-
tions are discussed to generalise multiplication operators to higher dimensions and an-
other version of Beurling’s Theorem is given. We recommend the excellent book [Nag10)]
for a comprehensive treatment of this subject.

Finally, Chapter 4 characterises shift-invariant linear relations in Theorem 4.1.6, which
extends Theorem 2.1.14. We also try to recover properties of a linear relation, such
as it being an operator, from this characterisation. The chapter concludes with some
examples.
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Chapter 1

Preliminaries

In this chapter we will collect some of the concepts on which we will build our theory.
These include some well-known facts from functional analysis that are used throughout
this work, as well as an introduction to linear relations, which can be understood as
a way to generalise linear operators. We start with a short explanation of the used
notation.

1.1 Notation

We will understand N as to specifically exclude the number zero and write Ny if we
want to include it. Two subsets of the complex plane C are of special interest to us,
namely the unit disk, D := {z eC ‘ |z| < 1}, and its boundary, the unit circle or torus,
T := {2 €C | |z] =1}. For a complex number z € C, the expressions Re z and Im z
denote the real and imaginary part of z, respectively.

Throughout this work, X, Y, Z will be Banach spaces over C and their norm shall be
denoted by ||.||. We will write X’ to refer to the topological dual of X, containing all
continuous linear mappings 2’ : X — C. For Hilbert spaces, we will generally write
$H or & and (.,.) for their inner product. Elements of Cartesian products, i.e. ordered
pairs, are to be signified by [.,.] and for sequences and nets we use (.). The index set
will mostly be Ng, but we will use subscripts to clarify the notation wherever that is
necessary.

A mapping T : X — Y between Banach spaces X and Y will always be linear and also be
called a linear operator. The space of bounded operators is signified by B(X,Y) — if X
and Y are identical, we write B(X) instead. It is a standard result that B(X,Y) is itself a
Banach space, equipped with the operator norm, ||T|| = sup {||Tz||y | |z)x <1}. Itis
well-known that for linear operators boundedness is the same as continuity. Furthermore,
a linear operator T': dom T' — Y, where dom 7' is a linear subspace of X, is called closed,
if its graph is closed in the product topology in X x Y. The range of T' is denoted by
ran 7'
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1.2 Basic Results from Functional Analysis

We start this section by recalling some fundamental theorems that we use later on. The
proofs of these claims can be found in any basic book on functional analysis, cf. [Heu92],
[Yos80] or [Worll].

THEOREM 1.2.1 (Cauchy-Schwarz inequality). Let $ be a linear space, equipped with
an inner product. Then we have

(@, y)| <]l - Iyl

for x,y € 9, with equality if and only if x and y are linearly dependent.

THEOREM 1.2.2 (Principle of Uniform Boundedness). Let X be a Banach space and
Y be a normed space. Suppose that the family {Tz € B(X,Y) ‘ 1€ I} of bounded linear
operators from X to'Y is pointwise bounded, i.e. for every x € X we have

sup || Tiz|| < oo,
el

then it is uniformly bounded, i.e.

sup | T;|| < oo.
iel

THEOREM 1.2.3 (Closed Graph Theorem). Let X,Y be Banach spaces and suppose
that T : X — Y is linear. If the graph of T is closed in X XY then T must be continuous.

THEOREM 1.2.4 (Bounded Inverse Theorem). Let X,Y be Banach spaces and assume
that T : X — 'Y s a bijective linear operator. If T is continuous, then so is its inverse
T

As a consequence of the theorems of Hahn-Banach we get the following

LEMMA 1.2.5. Let X be a locally convex topological vector space. Then the continuous
dual space X' is separating on X, i.e. for x,y € X with v # y there exists f € X' such

that f(x) # f(y)-

Furthermore, we make use of

LEMMA 1.2.6 (Parseval’s identity). Let ) be a Hilbert space and let {hq € § | o € A}
be an orthonormal basis. Then for every x € $ we have

lzl® = [(z, ha)l*.

acA

The proof of the next lemma can be found in [Kall2], II. Alternatively, Lemma 3.3.5
encompasses it as a special case in dimension one.
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LEMMA 1.2.7. Let (2, A, 1) be a measure space, where p is nonnegative and finite.
Let h : Q — C be measurable. Consider the multiplication operator

f dom My, — L3(p)
Mh.{ Loy

on the linear subspace dom My, := {f € L*(p) | f-heL*(u)} of L*(). Then we have

1. The space dom (My) is densely contained in L?(p) and My, is a closed operator,
i.e. the graph of My, is closed in the product topology on L*(pu) x L*(p).

2. The following statements are equivalent.

(a) The function h belongs to L (), i.e. it is essentially bounded.

(b) My is defined everywhere and bounded.

(c) My, is bounded at least on an L?*(u)-dense linear subspace of its domain.
(d) My, is defined everywhere.

In this case, My, belongs to B(L?*(n)) and |My|| = ||h|| L.
For the next results on shift operators, we follow [Nagl0], I.
DEFINITION 1.2.8. Let $ be a Hilbert space.

1. Consider an isometry V € B($)) on it. We call a subspace £ of ) wandering, if
Vg1 g for all n € N. In this case we define M, (£) := @, , V"L in 9.

2. If U € B($) is unitary and 2 C §) is a wandering subspace, i.e. U212 holds for
n € Z\{0}, we define M (A) :=P,-__ U™
Applying V' to M, (L) gives VM (L) = P,2, V"L = M, (L) © £, i.e. the orthogonal
complement of £ in My (£). Consequently,

Notice that for the two way orthogonal sum M (A) = @, U™ the space 2 is not
uniquely determined.
These considerations lead to the following

DEFINITION 1.2.9. Let £, £,2 and V,U € B($)) be as in Definition 1.2.8.

1. If M (£) = $, we call V a unilateral shift and £ the generating subspace of $ for
V', which is uniquely determined on account of (1.1).

2. If M(A) = $, we call U a bilateral shift and 2 a generating subspace of §) for U.

DEFINITION 1.2.10. Let £ be a closed subspace of a Hilbert space $ and let T" be
a linear operator on $). If we have T'€ = £, we say that £ reduces 7. More generally, if
TEL C £ is satisfied, we call £ invariant under 7" or say that £ is left invariant by 7.
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We point out that considering only closed subspaces is no real restriction, since if £
satisfies T'C C £ for a bounded operator 7', then the closure £ will inherit this property.

THEOREM 1.2.11 (Wold decomposition). Let V' be an arbitrary isometry on the Hil-
bert space $. Then $ decomposes uniquely into an orthogonal sum $H = Hy & H1 such
that $H9 reduces V' and $H1 is left invariant, V' | Ho is unitary and V | H1 is a unilateral
shift. The spaces can even be written down explicitly. In fact, if £:=$H OV, then

Ho=[V"H  and  H =M (L)
n=0

It is possible that one of the subspaces is absent. Consider for example a unitary V,
where the Wold decomposition will be trivial, i.e. £ = $ and $H; = {0}.

Proof of Theorem 1.2.11. By design, the subspace £ of § is orthogonal to V$). Because
of VL C V"H C V§H for n € N, we conclude that V*L£1 £, i.e. £ is a wandering
subspace. Hence, we can form £ := M, (£) and $p := H O H1.

Take an element h of §). If h is orthogonal to @Z:ol Vg for every m € N, then it must
be orthogonal to 1, and therefore A € 9. The converse is clearly true as well. Using
the definition of £, we get

m—1

Pvre=caovep---ovrle=

n=0 (1.2)
=HoVae(VHe Ve e (V' iHormy) =
=He V.

To clarify the last equality, keep in mind that $ D V§ D V29 D ... forma nonincreasing
sequence of closed subspaces of §). For nested closed inner product spaces A D B D C
we can consider the orthogonal projection Pg on B and express every x € A as the direct
sum z = (I — Pg)x + Ppzx. As (I — Pg)z € C*, we see that x € (A © C) is equivalent
to (I —Pg)r € Ao B and Pgz € B&C. Hence, (Ao B)® (Bo (C) = A6 C and the
last identity of (1.2) follows. As a consequence, h € §)g is also equivalent to h € V'
for all m € N, and therefore £y = ﬂflozo V"$. Clearly, we can omit V06 = § from the
intersection, so 9 = (\—; V"$. Hence,

o0 oo oo
VHo=V (V™= V""s= ] V"H ="
n=0 n=0 m=1
proves that £ reduces V and that V' | £ is unitary. Obviously, V$;, = @, , V"L C
91, i.e. H1 is left invariant by V, and V' [ $1 is a unilateral shift. So we have proven
that there exists a decomposition as postulated.
To show uniqueness, we suppose that there is another decomposition $ = &g H & with

the same properties. In particular, there exists a wandering subspace K with respect to
V, such that &; = M, (R®). But with the help of (1.1), we get

L£=9H0VH=(606)0 (VS VB])=(GyDd &) (GydVB)) =
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=($08)) D (B1OVE)=6,0V8; =R
This shows that &y = $H¢ and in turn &, = 9. ]

We also need the following two propositions.

PROPOSITION 1.2.12. Let V be a unilateral shift on a Hilbert space $). Then there
exists a space & containing H and a bilateral shift U on & such that U [ H=V.

Proof. Let £ := $H 6 V$. Clearly, we then have $) = @ZOZO Ve, We form a space R,
which shall contain vectors of the form k& = (¢,,),ez, such that ¢, € £ for every n € Z
and such that

Ikl% = Z 1€ ]IZ < oo

n=—0o0

In this setting, U acting as U(€n)nez = (bn—1)nez is clearly a bilateral shift on 8 and a
generating subspace is given by all vectors (¢,,),ez such that ¢, = 0 for n € Z\{0} and
arbitrary £y € £. We can embed § in & by identifying h = > ° V™, € $ with the
element kp, = (€] )nez € R, where ¢, = ¢,, for n > 0 and ¢/, = 0 for n < 0. Clearly,

enlld =D 14nll2 =D IV alld = 1IR3
n=0 n=0

and the identification preserves the linear and metric structure of §. Additionally, U is
an extension of V' because

Vh=VY V', =) V', 4
n=0 n=1
will be identified with the element (¢,_;) = U(¢,). Because of this identification, we
therefore have R = @, U"L. O

We follow [RR85], I., to prove the next result.

PROPOSITION 1.2.13. Let V € B($) be isometric and assume that £ and K are
wandering subspaces such that M, (£) O M, (R). Furthermore, suppose that £ is finite
dimensional. Then we have dim £ > dim R.

Proof. Let us start by pointing out that if P € B($)) is an orthogonal projection and
{e; € 9 | j € J} is an orthonormal basis for §), then dim P$§) = died | Pe;||?. This is
easy to see: If { fr € PH ‘ ke K } is an orthonormal basis of P$), it then follows by
twice using Parseval’s identity that

ZHP€]‘H2 ZZ’Pegafk ZZ‘ejvpfk Zz‘ejvfk =

jeJ jeJ keK je€J keEK jeJ keK
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= Y | fell* = dim P$

keK

as elements of [0, 00]. In fact, the last equality assumes that § is separable, but this is
automatically satisfied in our case.

Define P as the orthogonal projection from M, (£) onto My (RK). Consequently, V PV*
projects M, (£) onto VM, (R) and @ := (P — VPV™) projects M, (£) onto the orthog-
onal complement of VM4 (RK) in My (RK), which is &.

Now let {eg el } le L} be an orthonormal basis for £, which is finite by assumption.
Therefore, {Vie, € My (£) | j € No, £ € L} is an orthonormal basis for M (£). Due to
our considerations at the beginning, we have

dim & = dim QM () = D> [QV7el* = D> " (QVey, Viey) =

tel j=0 leL j=0

- nh%noloz Z([P - VPV*]V]W? V]ef) =
Lel 3=0

— 1 J J _ *177 *177 —
= nl;n;oZZ[(PV er,Vieg) — (PV*Vie,, V*Viey)

(el j=0
n
S J Je,) — Jj—1 Jj—1 —
= tim Y- [Z[(Pv e, Vie)) — (PVItey, ViTley)] + (Peg, eq) | =
teL =1
S E n n 1 n 2 _
= lim » (PV"e, V') = lim Y [|PV"e|* =
739 el
< 1 n|2 2 _ 2 _
< tim SRV Rled? = 3 [l
el el
=dim £,
where the equality marked with an asterisk follows from £ C ker V*. O

1.3 Linear Relations

Linear relations arise as a possible generalisation of linear operators. They are also useful
tools when investigating multi-valued linear functions, or linear mappings only defined
on a (possibly dense) subspace. We will follow [Kall2] and [Sch1l] in our approach to
the topic and start from a purely algebraic point of view.

DEFINITION 1.3.1. Let X,Y be vector spaces over C. A subset R of the Cartesian
product X x Y is called a linear relation (between X and Y; or on X if X =Y) if it is
a linear subspace of X x Y. We write R < X x Y for short.

A linear operator T': X — Y certainly is a linear relation by identifying it with its graph.
The converse does not hold true, as can be seen from the linear relation R := X x1s{y} for
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y € Y\{0}, which acts as the map that assigns to every x € X the same one-dimensional
subspace Is{y} of Y. Certainly, it is no well-defined function. Therefore, linear relations
are a generalisation of a linear operator. If in the following we call an operator a linear
relation, we always refer to its graph.

DEFINITION 1.3.2. Let R < X X Y be a linear relation. We define
(i) the domain of R as dom R:={z € X |y € Y : [z,y] € R},

)
(i) the range of Rasran R:={y € Y | Iz € X : [z,y] € R},
(iii) the kernel of R as ker R:= {z € X | [#,0] € R}, and

)

i
(i
Obviously, all sets above are linear subspaces of X or Y, respectively. If we take Rx :=
{y ey ‘ [z,y] € R} for any = € X, then we get a set-valued map R : X — P(Y), which

maps all ¢ dom R to () and has range .y Rz = U,cqom g B2 This characterisation
can be further improved upon.

v) the multi-valued part of R asmul R:= {y € Y | [0,4] € R}.

LEMMA 1.3.3. For a linear relation R < X XY and [x,y] € R, we have
Rxr =y + mul R.

Proof. Simply by definition, y + mul R = {y +zeY ! z € mul R}.

C: Choose a € Rz, meaning [z,a] € R. Using linearity in combination with our assump-
tion [z, y] € R, we get [0,a—y] € Ror a—y € mul R. Hence, a = y+(a—y) € y+mul R.
D: Choose a € y+mul R. So there exists b € mul R such that a = y+b. Thus using our
assumption, [0,b], [z,y] € R and, again by linearity, [z,b+ y] € R hold true. Therefore,
a=b+y € Rzx. O

The lemma gives us an idea of how to measure how far a linear relation is away from being
an operator. In fact, a linear operator T is characterised by mul 7" = {0}. Clearly, if we
see T' as a linear relation, its domain, range and kernel as defined above are equivalent
to the corresponding notions in operator theory.

DEFINITION 1.3.4. Let X,Y, Z be vector spaces over C. Let R, S < X xY and
T <Y x Z be linear relations and « € C. We define

(i) R—i—S::{[x,y}eXxY ‘ dr,seY :r+s=uy, [z,r] €R, [x,s]ES},thesumof
R and S,

(ii) RES := {[xT + Zs,yr +ys] €EX XY | [zr,yr] € R, [xs,ys] € S}, the subspace sum
of R and S, and if it is direct, i.e. additionally satisfying RN .S = {[0,0]}, we write
RES,

(ili) aR:= {[z,ay] € X x Y | [z,y] € R}, the scalar multiplication of R with «,

(iv) R :={[y,2] € Y x X | [z,y] € R}, the inverse of R,
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(v) TR:={[z,2] € X xZ | Iy €Y : [z,y] € R, [y,2] € T}, the composition of R and
T.

The class of linear relations is closed under all these operations. Moreover, the sum and
composition are both associative, so

R+(S+Q)=(R+95)+Q and P(TR) = (PT)R

for Q < X xY, P< Zx W, and applying the inverse to a composition reverses the
order of the factors:
(TR)™' = R ‘11,

In the operator case, R + S is a linear operator defined on (dom R) N (dom S) and it
coincides with the pointwise addition; @R is the usual multiplication of an operator with
a scalar; and T'R is a linear operator with domain {x € dom R ‘ Rx € dom T} that acts
exactly like 7o R.

Often, closed linear operators are of special interest in functional analysis. If we have
topologies at our disposal, we arrive at the following definition.

DEFINITION 1.3.5. Let X,Y be topological vector spaces over C. For a linear
relation R < X X Y the closure of R with respect to the product topology on X x Y is
written as R. In case that R = R, we call R closed.

COROLLARY 1.3.6. Let X,Y be topological vector spaces over C. If R< X XY 1is
closed, then ker R is closed in X and mul R is closed in Y .

Proof. Let mx : X XY — X be the projection to the first coordinate. Clearly, mx is
linear. If we restrict mx to X x {0}, it is bijective, continuous and it has a continuous
inverse, i.e. it is a homeomorphism. Since X x {0} is a closed subspace of X x Y, the
intersection RN (X x {0}) is closed in X x Y as well. In particular, it is even a closed
subspace of X x {0}. As the kernel of R satisfies

ker R = (mx [ (X x {0})) (RN (X x {0})),

it must be closed as the homeomorphic image of a closed set. The claim involving the
multi-valued part of R follows analoguously. O

LEMMA 1.3.7. Let X, Y be topological vector spaces. We define

XxY —- XxY

o XxY — YxX
o [x,y] — [x, ay]

and D, : {
[z.y] = v.2]
Then @y, and @, for o € C\{0}, are homeomorphisms.

Proof. The mapping ®;,, clearly is involutary, hence bijective. Furthermore, since it
merely exchanges coordinates, it is continuous, so it is a homeomorphism.
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Similarly, ®,, is bijective with inverse ®1 for « € C\{0}. Writing ®, in block operator

_(Ix 0
Ca = <0 aly>

on X XY, so it is clearly bicontinuous. O

form we have

COROLLARY 1.3.8. Let R < X XY be a linear relation between topological vector

spaces. Then (R)~' = R~! and aR = aR.

Proof. The assertions easily follow from Lemma 1.3.7. First, we have R~1 = ®;,,(R) =
®inp(R) = (R)~! and secondly, we arrive at aR = ®4(R) = ®,(R) = aR. O

In the following, R — A is shorthand for R — AI, where I < X x X is the identity
relation. Regarding the point oo, we set (R — oc0)™! := R with ran (R — c0) = dom R
and ker(R — oco) = mul R.

DEFINITION 1.3.9. Let X be a Banach space and let R < X x X be a linear relation.
Then we call

(i) p(R):=={AeCU{oc} | (R—A)"" € B(X)} the resolvent set,
(ii) o(R) := (CU{oo})\p(R) the spectrum of R, and in particular
(iii) op(R) :={A € o(R) | ker(R — X) 2 {0}} the point spectrum or set of eigenvalues.

LEMMA 1.3.10. Let X be a Banach space and assume that R < X x X is a closed
linear relation. Then X belongs to the resolvent set of R if and only if ker(R — \) = {0}
and ran (R —\) = X.

Proof. Since

mul (R—\)"! = {reX ‘ [0,2] € (R_)‘>_1} =
:{:UGX ‘ [x,O]G(R—)‘)}:
= ker(R — \)

and

dom(R-N"'={zeX |FyeX:[zyeR-N"}=
={zeX|eX: [ya]c(R-N}=
=ran (R — ),

the fact that (R — A)~! is a bounded operator on X is equivalent to ker(R — \) = {0}
and ran (R — A\) = X, the latter of which uses the Closed Graph Theorem 1.2.3. O
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Considering linear operators between Hilbert spaces, one can define adjoint operators.
So, if we look at linear relations in such a setting, a similar concept arises. Given two
Hilbert spaces, $; and $2, their Cartesian product becomes a Hilbert space as well, if
we equip it with the sum scalar product

([%y]’ [u’v])fnxf)z = (xau)ﬁ'n + (y,v)m

and we can set up the decomposition
N1 % H2 = (H1 x {0}) ® ({0} x H2) = H1 © Ho.

DEFINITION 1.3.11. Let 1,2 be Hilbert spaces over C and R < $1 X H2 be a
linear relation. We call

R :={[y,z] € H2 x H1 | (y,v)s, = (x,u)g, for all [u,v] € R}
the adjoint relation of R.
LEMMA 1.3.12. Let R < $1 X H9 be a linear relation between Hilbert spaces. Then
(i) R* is always a closed linear relation.
(ii)) We have R = R**. In particular, R is closed iff R = R**
fiii) (R = (R").

Proof. (i): By definition, an element [y,z] € R* must fulfil (y,v) = (x,u) for every
[u,v] € R. This condition can be rewritten to read ([y,z], [_v’quxm = 0. So R*
contains precisely those elements [y, z] € 9 X 1 that are orthogonal to all [—v, u] where

[u,v] € R. Consequently, we have R* = (®jp, 0 <I>_1(R))Lf°2”’1 and as an orthogonal
complement R* is a closed linear subspace of 5 X $)7.

(ii): Using the same reasoning, an element [a,b] € R** must fulfil (a,l) = (b, k) for all
[k,1] € R*, which amounts to ([a,b], [, _k])fnxm = 0. So R** contains exactly those
elements of 7 x 2 that are orthogonal to all [I, —k] for [k,l] € R*. This means R** =
(<I>,1 o @inv(R*))J‘y’lx%. Finally, we observe that for S < $5 x 1 and T' < $71 X o we
have B, (S92%91) = (B, (5)) 992 and &y (THo1292) = (& (T))""*"2: For the
former equation, keep in mind that [a,b] € (®j,,(S))-91%92 is equivalent to [a, b] L[y, z]
for all [y, z] € ®iny(S), i.e. [b,a] L]z, y] for all [z,y] € S. In other words, this is equivalent
to [a,b] € @i, (St92%91). For the latter we take into account that for [z,y] € T and
[a,b] € $H1 X Ho the expression [z, y]L[a, —b] is equivalent to (a,z) — (b,y) = 0, which in
turn is the same as [z, —y]L]a,b]. Combining these results, we get

J‘) X9
R — ((1)71 O(I)inv((q)mv ocl)il(R))L;jZml)) 91x%

-\ Lorx
_ ((@_1 O@inv O‘Dinq_} Oq)_l(R))J_ﬁlth) H1X92 _ RJ_L = R.
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(iii): Using the above reasoning we also get

(R*)—l — (I)'LTLU(((I)”W o @_I(R))J-szxfn) — ((I)_I(R))J_;HXY)Q _
- ( - 1551X~"32q)*1(R))J_51Xfj2 = ((I)mv 0P _10®P;,0P 0 <I>71(R))lf)1m2 —

= (Pinw 0 @1 0 @iy (R)) 2% = (@ 0 1 (@i00(R))) — (R,

Loy x9y

Finally, we can transfer some more notions from operator theory to linear relations.

DEFINITION 1.3.13. Let R < $71 X H9 be a linear relation between two Hilbert
spaces. It is called

(i) isometric, if R~ C R,

(ii) unitary, if R~ = R*.
In the case that $H| = o, we call R
(iii) symmetric, if R C R*,

(iv) selfadjoint, if R = R*.

11






Chapter 2

Operators on the Hardy-Hilbert
Space

In this chapter we will explore a certain Hardy space, namely H?(ID), and link it to various
other well-understood Hilbert spaces. First, we will concern ourselves with holomorphic
functions on the disk. Secondly, the boundary values of such functions are briefly ex-
amined and then discussed in the context of square-integrable functions on the torus,
L?(T). Considering operators on H?(D) and L?(T), we find a criterion to check whether
they commute with the shift operators on the respective spaces. Finally, a theorem due
to Beurling characterising the shift-invariant subspaces of H?(D) is presented.

2.1 The Hardy-Hilbert Space #*(D)

We will start this section with the definition of the object we are interested in and then
explore some of its properties. We make use of [Ale10] and [Wor04] in this section.

DEFINITION 2.1.1. We call the space

H?(D) := {f eCP | f(z) = ianzn on D, (a,) € CY and i lan|? < oo}

of all holomorphic functions on the unit disk that possess a power series expansion with
square-summable complex coefficients the Hardy-Hilbert space.

Take note that we omitted the supplement “on the unit disk” from Definition 2.1.1 as
it would also be possible to define Hardy-Hilbert spaces on other domains G C C. One
example for such a G is the upper half plane CT. We will mention this only in passing,
however, and cite [RR94], V, where this theory is presented. For the rest of this work
only the disk case will be of importance. Furthermore, up to this point we only have a
linear structure on #?(ID) but, as the name suggests, we will introduce an inner product,
indeed turning #2(D) into a Hilbert space.

We first observe why the elements of H?(ID) really are holomorphic functions on D.

13



Chapter 2. Operators on the Hardy-Hilbert Space

LEMMA 2.1.2. The condition ;- lan|? < oo implies that the radius of convergence
p of z Y 0 anz" is greater or equal to 1.

Proof. First, (|a,|?) and thus (|a,|) must both be a null sequences because the series
>o° o lan|? converges. Therefore, there exists an N € N such that |a,| < 1 for alln > N.
Consequently, the sequence ({/|a,|)>2 5, and, in particular, its limes superior, will also
be bounded from above by 1. We can therefore use the following well known formula to
calculate the radius of convergence

1

p = X Z 1
lim SUPp— 00 \ |an‘

and the assertion follows. O
Secondly, we argue how an inner product can be defined on H?(DD).
LEMMA 2.1.3. The mapping
2 2
¢ { : ((Ij:; : ?:LD()Z =y g anz") (2.1)
1s bijective and preserves the linear structures.

Proof. The function ¢ is well-defined — the holomorphy of ¢((a,)) on the unit disk
is due to Lemma 2.1.2 — and clearly bijective. In addition, the definitions for + and
multiplication by a scalar in £2(Ng), i.e. (an) + (by) = (an +b,) and X - (an) = (A - an),
agree with those for power series, since > 0" anz™+> o7 g bpz™ = > ((an+by)2" and
A (O ganz™) =Y 07 (A ap)z" hold on the disk of convergence. Consequently, ¢ is
compatible with the linear structures on the two spaces. O

COROLLARY 2.1.4. Let ¢ be the mapping from (2.1). Then

() -{%Q(D)XW(D) - C
5 )H2D) ¢ (£, 9] = (07N 67 (9) o)

is an inner product on H*(D). The mapping ¢ is then additionally isometric.
If f,g € H%(D) have power series coefficients (ay,) and (by,), respectively, then it can be
expressed as

(f, g)HQ(ID)) = Z anbn.
n=0

Moreover, the norm induced by the inner product is

I fll22@y == /(s Przm) =

14



The Hardy-Hilbert Space H?(DD)

Proof. 1t is a well-known fact that the class of all square-summable complex sequences,
2(No) = {(an) € CNo | 300 \aﬂQ < 00}, is a Hilbert space. Its inner product is given
by ((an), (bn))ﬁ(No) = 3%, anby, for sequences (ay), (by) € ¢2(Ny). All properties of
(- )ez(ny) are preserved under ¢ and hence, (.,.)y2p) must be an inner product on
H?(D). The other claims are obvious. O

LEMMA 2.1.5. The polynomial ring C[z] is densely contained in H?(D) with respect
to the norm ||.{|22(my-

Proof. Let f € H*(D) with power series f(z) = > o2 ; an2z™ and set py(2) := ZnNzo anz".
Then | f — pN||?_[2(D) =1 >Nt anz"H%Q(D) =D lan|? converges to zero as N
approaches infinity. ]

The following result states that #2(D) is even a reproducing kernel Hilbert space.

LEMMA 2.1.6. Let 1, : H2(D) — C : f +— f(w) be the point evaluation functional
at w € . Then 1y, is linear and continuous for every w. Moreover, 1, coincides with
(s kw)p2(y, where ky € H2(D), ky # 0 denotes the function z —

1-wz -’

Proof. The linearity of ¢,, is clear. First, the series > 00 [w"|? = Y">° (|w|*)" = ﬁ

converges for every w € D. Hence, by Lemma 2.1.2, the functions z — > 7 jw"z"
are elements of H2(D). As > > jw"z" = 1_—1@2, these functions are just k,, for w € D.
Moreover, as ||k‘w||3{2(m)) = ﬁ > 0, all k,, are nonzero. Now let f € H?(D) be the

function z — >">° janz™ and w € D. We calculate

flw) = Z:Oanw" = (;anz",aw,z") = (f,Z(wz)”) = (f, 1 —lwz) = (f, kuw)-

n=0

This shows that ¢, = (.,kw)y2m). By the Cauchy-Schwarz inequality, the latter is
certainly continuous. O

We only mention that one can use the set of functions {k, € H?*(DD) | w € D} to define
K :D x D — C by setting K(z,w) := (kuw, kz)u2()- This function K is then called the
reproducing kernel for the Hilbert space H?(ID).

Next, let us look at one of the classical definitions of Hardy spaces and then derive an
equivalent characterisation of H2(D) from it.

DEFINITION 2.1.7. For 0 < p < oo, the Hardy class HP(D) includes all analytic
functions f : D — C that fulfill

1
e o SPren (35 71 ()P d0)” < o0 for p € (0,00

sup,ep [ £(2)] < o0 for p = o0

15



Chapter 2. Operators on the Hardy-Hilbert Space

Obviously, in the case p = co the introduced norm ||.|| g is the same as the supremum
norm ||.|[oc and H contains the bounded analytic functions on D. The space HP is
linear for p € (0,00]. In fact, for p > 1 this is clear since ||.|g» is a norm and for p < 1
one proves this using the metric dy,(f, g) := || f — g|%». Using Holder’s inequality, it can
also be shown that H*(D) C HY(D) C HP(D) for p < g.

We will now show that requiring an analytic function to have square-summable power
series coefficients is equivalent to demanding its mean square value on circles of radius
r stay bounded as r tends to 1 from below.

PROPOSITION 2.1.8. Let f(z) = .2 anz" be an analytic function with radius of
convergence p > 1. Then

& 1 2m ) 2 1 2w
g lan|* = sup — ‘f <re’9)‘ df = lim /
= re(0,1) 27 Jo r/12m Jo

as elements of [0,00]. In particular, the right hand side is finite iff the left hand side is.
Thus, #?*(D) = H*(D) and ||.[|z2p) = ||-Il2()-

f@@ﬂfw

Proof. We first notice that Z;V:o an2"™ converges to f uniformly on compact subsets of
D, since f is analytic on D. For a fixed r € (0,1), we use uniform convergence on the
closed ball centred at zero with radius r to exchange the order of integration and the
limit process and get

1 [ ot IR
— D) do = — li )" Wym do =
oy MG R T S z

1 2

= lim A Gy 77T — eln=m) =
N—oo Z nem 271' 0
n,m=0
o0
— Z |an|2,r,2n7
n=0
since only in the case n = m does % fo% e!m=m)0 49 not vanish and amount to 1.
o 12
Hence, the net (i 2m ret? d@) = ( > la 2r2”) is obviously in-
’ 2 Jo 1 (re”)] r€(0,1) 2n=o |an] re(0,1) Y

creasing as r tends to one. Thus, the limit is attained at the supremum. Finally,
lim, 1 >0 o |an|?r?™ = 3 an|* follows from the monotone convergence theorem
appplied to the counting measure. O

As a result we get that it is not necessary to calculate the power series coefficients of
the elements in H?(D) for the inner product and norm. In fact, integration on circles
suffices.

COROLLARY 2.1.9. Let f,g € H*(D). Then the norm and inner product of H*(D)

can be rewritten as
) . 1 2
ey = lim 5 [

r 12T / (mw) ‘2 d0
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The Hardy-Hilbert Space H?(DD)

and

) 1 21 0 -
(fs Do = }1}%%/0 f (7“6 )g(re ) do,
respectively.

Proof. The claim regarding the norm follows from Proposition 2.1.8. The second identity
is a consequence of the polarisation identity, i.e.

4(f, w2y = Hf+9H3{2(D) —If - QH?HZ(D) + il f +ig\\%2(m) —illf — ig”%{?(m) =
- I 0\ |2 0\ |2
— i 5 [T+ 0) ()| = |7 = 0 (re)

+ i‘(f+ig) (rew)r —i‘(f—ig) (rew)fd&] =

. 1 2m 2 — T 2 2 — | F 2
—}1/111 [%/o (!f\ +fg+fag+lgl” —fI"+ fg+ fg—|gl

HilfP 4 fg — Ta o —ilf1*+ fg — Fg —ilgl?) (re”) ab] =

= 4}% % /027r f (rew) g(rew) de.
O]

We are now able to introduce the theorem, cf. [NeulO], IV, that will be generalised later
on. Let h: D — C be a function, then we define on the Hardy-Hilbert space the linear
relation

Ty :={[f.g] € H*(D) x H*(D) | g=h- f}.

Clearly, mul 7T}, = {0} and T}, is an operator. It multiplies every function in its domain
by h, so that we can write

g { dom T — H2(D)
h - f — fh ;

where dom T}, = {f € H*(D) | f-h € H*(D)}.

DEFINITION 2.1.10. We write S := T4, : f — (2 — 2f(2)) and call it the shift
operator on H?(DD) or the operator of multiplication by z.

Obviously, the operator S is defined everywhere. It should however be noted, that in
general dom T}, could easily be a proper subspace of H?(D). For example, since all
elements of the Hardy-Hilbert space are continuous, dom 7j, = {0} for a discontinuous
function h.

LEMMA 2.1.11. Let h : D — C. Then T} is a closed operator and the following
assertions are equivalent:

17



Chapter 2. Operators on the Hardy-Hilbert Space

(i) Ty, € B(H*(D))
(i) dom T, = H*(D)

Proof. First, if ([fn,gn]) is a sequence in the graph of T}, converging to an element [f, g]
in H2(D) x H?(D), then we have g, = f, - h for every n € N. Additionally, evaluation
at a point is a norm continuous operation in H?(D), cf. Lemma 2.1.6. So for arbitrary
w € D we get

gn(w) = fn(w) - h(w)
1
gw)  flw) - h(w)
This means g = f - h and [f, g] € T},. Hence, we showed that T}, is closed.

Secondly, the Closed Graph Theorem 1.2.3 assures us that T}, € B(H?(D)) is equivalent
to dom T}, = H2(DD). O

DEFINITION 2.1.12. Let A : D — C. If T}, € B(H%(D)), then we call h a multiplier
(function) and T}, a multiplier operator. The set of all multiplier functions is denoted
by M(H*(D)).

It is easy to identify the multipliers for the Hardy-Hilbert space.

LEMMA 2.1.13. The multiplier functions of H2(D) are the bounded analytic functions,
i.e. M(H2(D)) = H®(D). In this case ||Th|| = ||hoo-

Proof. D: Let f € H3(D) and h € H*®(D). Obviously, h - f is holomorphic with radius
of convergence at least 1. We use Proposition 2.1.8 to show

1 27
2 T
I+ Fle = i 5= |

N (2 N |2
7 ()| [p (e | d0 < IBIEN 1By < o0
S———
<IIPl3

which means T, € B(H?(D)) with || x| < ||2]|co-

C: Let h : D — C such that Tj, € B(H?(D)). Since 1 € H?(D), it immediately follows
that h = T},1 € H?(D) and, therefore, h is analytic on ID. To show boundedness, we use
Lemma 2.1.6 and calculate for arbitrary f € #?(D) and w € D

(f, h(w) - kw) = h(w) - (f, kw) = h(w) - f(w) = (Thf)(w) = (Thf, kw) = (f, T kw).

We conclude that T}k, = h(w) - ky. Taking the norm yields ||T} k|| = |h(w)| - ||kl
where ||k % = ﬁ # 0 as stated before. Thus,

Ty Kl
|h(w)] =
[[F |

Taking the supremum over all w € D results in ||h||oc < ||T}|| and therefore, h € H*(D).
Altogether, we have shown ||T,|| = ||/ co- O

<Nyl = Tl
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H?*(D) as a Subspace of L*(T)

It is obvious that two multiplier operators commute, since for hy, hy € H*°(D) we have
Th O jjh2 = Th1h2 = Th2h1 = Th2 O Th1~

1

THEOREM 2.1.14. Let T € B(H?*(D)). Then T commutes with the shift operator S
if and only if there exists a function h € H®(D) such that T = Tj. In this case, h is
uniquely determined by T .

Proof. As outlined above, the necessity of the condition is clear. For the converse, we

first set h := T1 € H?(D). We begin by showing that 7" acts like T}, on the polynomials.
N n

For p(z) := ). _,bnz" calculate

N N N
Tp=>Y b T(zr 2") = Z_%bnTosnl = Z_%bnS"oTl =

n=0
N N
= buS"h = bu(z+> 2"h(2)) = h-p.
n=0 n=0

Secondly, for an arbitrary function f € H?(ID) there exists, courtesy of Lemma 2.1.5, a
sequence of polynomials (py) that converges to f in norm and, hence, also pointwise.
Using the continuity of 1", we see

Tf=T/1 1l = lim Tpy = lim h-py.
f <NE>noopN> Ngnoo pN Ngnoo by

Due to Lemma 2.1.6, evaluating a function belonging to H?(D) at w € D is a continuous
operation. Hence, we arrive at

(h-pn)(w) = h(w) - lim py(w) = h(w) - f(w).

lim
N—o0 N—o0

( lim h'pN> (w) =

N—oo

This shows limy o h - py = h - f since w € D was arbitrary. Thus, we have proven
T = Ty. This means T is a multiplier operator with the corresponding multiplier function
h € M(H?(D)) = H*®(D), cf. Lemma 2.1.13.

The uniqueness of h is obvious, since if there were hy, hy € H*(D) such that we had
Th, =T =Ty, we would immediately get hy =T}, 1 =T1 = Tj,1 = ho. O

2.2 H*([D) as a Subspace of L?*(T)

There is yet another characterisation of H?(D). Let L?(T) denote the space of square-
integrable functions on the unit circle with respect to the normalized Lebesgue measure
on [0,27). We identify [0,27) with T via ¢ — e'*. It is well known that

(f:g)L2(’]I‘) = 2177/027rf <ei9> @ db

with f,g € L?(T) defines an inner product on L?*(T). Let ¢" be the trigonometric
monomial € +— ¢ on T for n € Z. It is a standard result that {C” | n e Z}
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Chapter 2. Operators on the Hardy-Hilbert Space

forms an orthonormal basis of L?(T). A function f € L?(T) can hence be expanded
as Y ez (f, (M) We set ay, := (f,¢") for n € Z. By Parseval’s identity the sequence
of Fourier coefficients (a,)nez of such a function f € L?(T) is square-summable.

DEFINITION 2.2.1. Let (¢"),ez be the orthonormal basis of L?(T) consisting of
trigonometric monomials. Then we set

LA(T) == {f € L*(T) | an = (f,¢") =0 for all n < 0}, (2.2)
i.e. the set of all functions whose Fourier coefficients vanish for negative indices.

LEMMA 2.2.2. The space H*(D) can be embedded in L?(T). More precisely, H*(D)

is isometrically isomorphic to the closed linear subspace L% (T) of L*(T) via

o HAD) — LA(T) C IA(T)
e npand™) = (C= X0l and™)

Proof. As we know, f:= (2 Y2 jan2") € H?%(D) is equivalent to square-summability

of (ay). This in turn is equivalent to f := (¢ + Y.0° ;a,¢") € L2(T) due to Parseval’s

identity as mentioned above. Therefore, the mapping 1 is an isomorphism. Because of

Iy = 1F1amy = S0 anf? = £ it i also isometric.

Since Li(']l‘) is the isometric image of the Banach space H2(ID), it is necessarily closed.
O

(2.3)

The relationship between f = (z — 3.2 ja,2") and f = (¢ + Y.0°,a,C") has been
analysed in depth, cf. [RR94], T and IV, or [Alel0]. We cite some fairly standard results
of Hardy space theory in the following proposition, but first we need

DEFINITION 2.2.3.

1. The function P: D x T — C: (2,() — ; is called the Poisson kernel.

2. For ¢ € T and r € (0,1) let A(¢,r) := (co{B,(0),(})°, i.e. the interior of the
convex hull of the closed ball centred at zero with radius r and the point {. For
f:D — C we write n.t.lim,_,¢ f(2) = A, if for every r € (0,1) the values f(2)
converge to A as z tends to ¢ within A({,r). A is then called the nontangential
limit of f at (.

3. The limit lim, ~ f (re??) = L is called the radial limit of f at ¢ = .

PROPOSITION 2.2.4. Let f € H2(D) and f € L%(T) be connected by the mapping
Y of (2.3). Weset f : T — C:¢=e"— f(re?). Then

1. f is the limit of f» in L2(T) as r tends to 1, i.e. ||fr — f”L?(T) —

2. f can be recalculated from f by employing the Poisson formula

2m o
fG) =5 [ PG i) a0
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Proof. We follow [MAROQ7], I, in this proof. For the first claim, calculate using Parseval’s
identity

2 2

Hfr - f”QLZ(

Z an 1n9

n=0

oo
n zn0 Z anean
= L(T)

—Z\anr—l Z]an] 1—r")

For ¢ > 0 we find N € N such that Y 7° \ . |an|* < 5. Moreover, we also find R € (0,1)
such that Egzo lan|*(1 — R™)? < 5. Hence, we get for r € (R, 1)

L2(T)

00 N 00
Y lanP(1 =12 =3 anP 1 =r"2 4+ Y fan (1 —r")?
n=0 n=0 n=N+1
N 00 c c
<D lanPA=R")? 4+ D fan? <545 =¢
n=0 n=N-+1

Thus, lim, ~ || fr — fHLQ(T) =0.
Regarding the second claim, we take w € D and k,, € H?(D) as defined in Lemma, 2.1.6.
Furthermore, we set ky, := ({ — (1 —w¢)~!), which clearly satisfies

k) = ¥ ( = 1wz) —y ( o i::ﬂw) _

_ (CHZU}”Q”) = (C»—> 1—1w§> = ky
n=0

Thus, with ¢ = € and Lemmata 2.1.6 and 2.2.2 we get

f(w) = (f, kw)wzm) = (U)(f)ﬂb(/‘?w)) = (f, kw )L2(T) =
B 1 2m 0 -1 B 1 2w f(eze) (24)
= % 0 f(e )1 — wei? - % 0 1 — we—10 dp.

Next, we consider the function

= (¢ (1w (me )

Clearly, all power series coefficients of g—1 vanish for nonnegative indices, so this function
is perpendicular to f in L%(T), i.e. with ¢ = %

we—10

(ﬁg_l)LQ()_% fle Z")({—l) df = 0.
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Chapter 2. Operators on the Hardy-Hilbert Space

Hence, we can add this harmless term to equation (2.4) and arrive at

fw) = — %Ye”)( L, 1 1> 4.

27 Jo 1—we?  1—we ¥

Writing w = re® yields

1 N 1 L= 1—we ™ +1—we? — (1 —we? —we ™ + |w|?)
1—we? = 1—we B (1 —we?)(1 — we—10) N
1+ |w]? 1+ |wf?
= 2ojeit — )2 [el? —wl?’
which, for ¢ = € and z = w, is just the Poisson kernel. O

It is well known that convergence in L?(T) implies pointwise convergence of a subse-
quence almost everywhere.

The next statement requires a rather extensive proof, making use of a theorem due to
Fatou. We shall omit the proof and cite [MARO7], I.

PROPOSITION 2.2.5. Let f € H?*(D), then it has nontangential limits almost every-
where on the unit circle. If we denote by u(C) the nontangential limit of f at ¢ — if it
exists; otherwise set for example u(¢) =0 — then u = f := 9(f) in the sense of L*(T).

The above proposition justifies calling f the nontangential boundary function of f.
Clearly, the radial limit lim, ; f (re') then also coincides with f almost everywhere
on T.

Given this alternative description of H?(D) as a subspace of L(T), we will attempt to
recover Theorem 2.1.14 in this larger space, cf. [Neul0], VII. First, we will identify the
multiplier functions of L2 (T).

DEFINITION 2.2.6. We set L3°(T) := L>®(T)NL2(T), i.e. the space of all essentially
bounded functions on T such that (h, (¢ = ¢"))z2(r) = 0 for all n <0.
DEFINITION 2.2.7. We will signify by U := M;q, : f — (¢ — ¢f({)) the multiplica-

tion operator connected to the identity function on T, cf. Lemma 1.2.7, and call it the
shift operator on L?(T).

LEMMA 2.2.8. The shift operator U on L*(T) is unitary.

Proof. As L*(T) is isometrically isomorphic to £2(Z), we can use the scalar product of
(%(Z) to calculate

(Uf, g)LQ(']l') = ( Z ancn+17 Z ann> = ((an—l)a(bn))gz(z)
12(T)

n=—0oo n=—oo

o o0

= Y anabp= Y anbur1 = (f, M z9)r2(r)

n=—0oo n=—oo
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for two functions f, g € L?(T) with Fourier coefficients (a,)nez and (b, )nez. So we have

shown that U* = M,z For arbitrary f € L?(T) we have

UUf = My e Mescf = My oo f = Mooif = f = UU*f

and from this U~1 = U*. O

LEMMA 2.2.9. Let ¢ be the isometric isomorphism as defined in (2.3). Then
Y (M(H*(D))) € LT(T).

Furthermore, v preserves the norm, i.e. |[Y(.)|peo(r) = ||.lloc- Additionally, if h be-
longs to M(H2(D)) with h= Y(h) € L3(T) and if T}, and M. signify the corresponding
multiplier operators, then My leaves L%(T) invariant and

¢! o My o) =Ty (2.5)

Proof. Let h be a multiplier of H?(D) with power series coefficients (a,). According to
Lemma 2.1.13, h is bounded and T, € B(H#*(D)) with [|T}|| = ||h[|c. The fact that
M(H2(D)) = H*®(D) C H*(D) implies that h := (h) = (( = Y.o0,an(") belongs
to L%F(T), and therefore, also to L?(T). Hence, h: T — C is measurable and square-
integrable. We can thus form the multiplication operator M; : L*(T) — L*(T), which is
closed and densely defined, cf. Lemma 1.2.7, with

domME:{feLz(T) ]ﬁ-feﬁ(’ﬂ‘)}.

We will show that M is bounded on the trigonometric polynomials. From this it then
follows that M; is bounded everywhere on L*(T).
We begin by collecting some general facts for later use. First, we notice for n € Z

UM fll 2y = 1€ = CRO) F(Ollz2ery = I = RO O L2ery = IIM5 fll 2 my

as elements of [0,00]. This implies that we have M;U™ = U"™M;, which means that
U™(dom M;) = dom M; and M;U"f = U"M; f for all f € dom M;. Furthermore,
U™ € B(L*(T)) is unitary for all n € Z due to Lemma 2.2.8.

For q(z) = 27 and j > 0 we have h(z) - q(z) = Yo% jan2"™ = > mej @n—jz". Applying
1 gives

W) =0 [z anyz | = [ Y anyc" | = (g N .ﬁ(g)) .
n=j n=j

This result extends, due to linearity, to all polynomials. Therefore, the identity ¢(h-r) =
h -7 holds true for all elements r = (z — Zg:o a,z") in the polynomial ring C[z] and
7= (¢ N an¢™). Thus, ¢(Clz]) C dom M; and ¢(h-r) = M;7 for all r € Clz].
In particular, M;4(C[z]) C L3 (T).
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Chapter 2. Operators on the Hardy-Hilbert Space

As MzU™ = U"M; and as 1 € dom M;, the trigonometric monomials (¢")nez clearly
all belong to dom M;. Thus, we have

N
T;:{ Z anC” | N € Np, CLN,...,CLNEC} ngmME
n=—N

For any p € T with p(¢) = 3N N bnC™ we can define

n=—

N
= Y "N = an N¢" =:q(¢) € LA(T)
n=—N

and ¢q(z) = Z?ﬁo bp—n2z". This gives

M5p(Q) = My¢™q(¢) = MpUTNG(Q) = U M5(¢)
=U""y(h(2) - a(2)) = UV (Tia(2)).
Taking the norm in (2.6) and making use of the isometry of U and v leads to

HMgﬁHLQ(T |UN4 (Thq) HLz = 1Thallz2my < 12llc - lgllnzm) =
= ||2llos - [[UN2(q) HLz = ||hllos - HU_N~HL2
= [|Rlloo - [IPIl L2 (T)-

Since this last expression is finite, M; must be bounded on 7. As 7T is densely contained
in L?(T) we have boundedness everywhere, i.e. M; € B(L*(T)). Because the polynomials
¥(C[z]) are dense in L% (T) we obtain from M;¢(C[z]) C L3 (T) and the continuity of
M; that M; L3 (T) C L3 (T). At the same time, this shows

1Pl oo (my = (1M ]| < [[P]loo, (2.7)

where the equality in (2.7) is a well-known fact about multiplication operators, cf.
Lemma 1.2.7.

It is left to show the converse inequality. Given a complex polynomial p € C|z], equation
(2.6) then clearly reads as (¢ o Tj,)(p) = (Mj; 0 9)(p). Because Clz] is densely contained
in H?(D) due to Lemma 2.1.5, this identity extends to H2(DD), proving

M; | L3(T) = ¢ oTpoe

Notice that the inverse ¢! is only defined on the image ¢(H#*(D)) = L2 (T) and that
M; leaves L% (T) invariant. Rewritten, this reads as /=1 o M; o 1p =T}, and using that
1) is isometric results in

olloo = I1Tall = 19" 0 M 0 wb]| < | M5]] = (17| oo - (2.8)

Together, (2.7) and (2.8) show ||hl|c = ”}L/”Loo(’]l‘) and 1(h) = h € L°°(T). Consequently,
h e L2(T). O
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COROLLARY 2.2.10. Let ¢ be the isometric isomorphisms as defined in (2.3). Then
Y is multiplicative on H*(D). Moreover, ¥(h - f) = ¥(h) - ¢¥(f) even holds for every
h € H®(D) and f € H?*(D).

Proof. Remember that according to Lemma 2.2.9

Mw(h) 9] 1/} == 1!1 9 Th (29)
for any function h € H*(D). Hence, for hy,hy € H*®(D)

Y(h1)Y(he) = My, (he) = (Myg,y 0 ) (ha) = (¢ 0 Ty ) ha = (Th, ha) = ¥ (hihs).

So 1 is multiplicative on H>(ID). Since the operator equation (2.9) holds on H?(D), we
can even choose hy € H?(ID) and the above calculation remains true. O

Next, we can formulate a result corresponding in essence to Theorem 2.1.14.

THEOREM 2.2.11. Let M € B(L*(T)). Then M commutes with U and leaves L2 (T)
invariant if and only if there ewists a function h € H*(D) such that M = M; for

h=1(h). In this case, h is unique.

Proof. The necessity of the condition is clear, since if M = M; holds for a function
h € H*(D) with h :=v(h) € LY(T), we immediately get

UM =UM; = M,

os0ri = My o) = MU = MU.

(29
Furthermore, M; L7 (T) C L7 (T) is a consequence of Lemma 2.2.9.

We show sufficiency. Since M leaves Li(T) invariant, we can define T’ := ¢ ~!o M o) and
get T € B(H?(D)). We can also rewrite the shift operator on H?(D) via S = ¢~ 1o U o),
which is well defined as well, since U(L2 (T)) C L%(T). Hence, using that M commutes
with U, we can calculate

SoT

(w_loUo¢)o(¢_loMo¢)
¢710U0Mo¢
*1oMoUo1/;

= (w_loMow)o(q/}_loUovp)
=TofS.

So T'is an operator on the Hardy-Hilbert space that commutes with the the shift operator
S. Courtesy of Theorem 2.1.14, there exists a function h € H*°(D) such that ¢~! o
Mo+ =T = Ty,. By Lemma 2.2.9 we also have T}, = ¢! o M; o 4. In particular,
M; o) = M o1, which means that M; | L3 (T) = M | L% (T).

The property MU = UM clearly extends to MU™ = U"M for n > 1 by induction.
Moreover, since MCHZ =U"!, we have M = MUU~' = UMU~'. Applying U~! from
the left, we get U"'M = MU', i.e. M also commutes with U~!. Again, this property
extends to MU™" = U™"M for n > 1. Similarly, we have M;U" = U"M; for all n € Z.
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Chapter 2. Operators on the Hardy-Hilbert Space

Consider the ring of trigonometric polynomials

N
7'::{ Z anC”|NGN, a_N,...,aNEC}

=—N

and let p € 7. Obviously, UNp € Li(’]I‘) for sufficiently large N € N. Hence, MUNp =
M;U Np. Applying U™V gives

Myp =U"NM;UNp=U"NMUNp = Mp.

Consequently, M = M; holds even on 7. Since the trigonometric polynomials are
densely contained in L*(T) and since both M and M; are continuous, this property

extends to L?(T). Thus, M is indeed a multiplier with multiplier function h.
The uniqueness of h is guaranteed by the second statement in Theorem 2.1.14 and
Equation (2.5). O

LEMMA 2.2.12. For every h € L°(T) there exists h € H>(ID) satisfying 1(h) = h.

Proof. Choose any h € L3°(T) and use Lemma 1.2.7 to construct M; € B(L?*(T)) with
[Mz]| = [|h]|Leo(r). Clearly, this operator M; commutes with the shift operator U.

Furthermore, suppose that h has Fourier coefficients (ay,),cz — keep in mind that a,, = 0
for n < 0 — and take a polynomial p € v(C[z]) C L3 (T) of the form p(¢) = 27]1\[:0 bn (™.
To avoid technicalities set by, := 0 for n € Z\{0,..., N} and get

Myp=h-p= (m (ni]ane*") - (;jv;]bncn)) - (m > (fjakbn_k)@)

n=0 k=0

Since M; maps into L?(T), the sequence (ZZ:O akbn,k)n <7 must be square-summable,

so M; maps the norm dense subset ¢ (C[z]) of L3 (T) into L3 (T). For f € L3(T) we
find a sequence of polynomials (pn)nen C w(C[z]) converging to f in norm. Using the
continuity of M; and the fact that L3 (T) is a closed subspace of L*(T), the calculation

s =0 (Jom o) = Jim o

shows that M; leaves L3 (T) invariant.
So we can use Theorem 2.2.11, which asserts that there exists a function h € H*(D)
such that i (h) = h. O

By combining the two Lemmata 2.2.9 and 2.2.12 and Corollary 2.2.10 we get the following
result that fully characterises the multipliers of L?(T).

THEOREM 2.2.13. ¢ [ H*(D) : H*(D) — L3°(T) is linear, bijective, multiplicative
and isometric, i.e. ||Y(.)[|Loo(r) = [|-[loo-

26



H?*(D) as a Subspace of L*(T)

LEMMA 2.2.14. Let h € H®(D) with h = (k). Then the following are equivalent:
(i) We have essinf |h| > 0.

(i) M; is bounded from below by a C > 0, i.e. |[M;gllr2ry > Cllgllp2er) for all
g € L*(T).

(i4) Ty, is bounded from below by a C > 0, i.e. [[Thfllu2my = Cllfllpezmy for every
f € H3(D).

() T, TyH?(D) — H2(D) is bounded.
(v) ran Ty, is closed.

In this case, m = ||T;, || holds and essinf |h| is the largest possible constant C' in
(1) and (4i7).

Proof. (i) = (it): Clearly,

7 l ] 712
HMEQH%Z('H‘) _ / ’h ) ) ‘ df > (essinf |h|) HgH%z(T)

holds for g € L*(T).
(i) = (i): Assume that F := {C €T | Ih(C)| < C’} has positive measure. Then g := xpg,

where  is the indicator function, is not the zero function and belongs to L?(T). This,
however, gives the contradiction

1

2
CQHQH%?(T) < ”Mﬁgﬂimr) = 27r/0 |h(€w) ) XE|2 df < 02||9||2'

Hence, C is an essential lower bound for ’?L’ on T, which means C' < essinf \E\ To show
that C' is the largest such bound, notice that assuming C' < essinf |h| would imply

| M5l 2y = (essinf [B]) llglz2ay > Clllzacny

for any nonzero g € L*(T). This would mean that there was a better lower bound for
M, which is a contradiction as well.

(i1) = (iii): Since Tj, = 1! o M o4 due to Lemma 2.2.9 and since 1 is isometric, we
have

1Tl @) = 1M5f 1l 2cr) = CllF | 2wy = Cll e )

for f € H2(D) and f = (f).
(i4i) = (i1): Again using Lemma 2.2.9, for p = ¢ (p) € ¢ (C[z]) we have

HMgU_NﬁHLz(T) = [|M58l| 2(r) = | Twpllaz) = Cllplle @y = C U8 1oy

27



Chapter 2. Operators on the Hardy-Hilbert Space

since the shift operator U is isometric and commutes with M;. Seeing as the set
{U""pe L*(T) | N e Nand p € ¢(C[2]) }

is dense in L?(T), the claim follows.
(7i1) = (iv): If T}, is bounded from below, it must obviously be injective, so the operator
T, ' T, H*(D) — H?(D) is well-defined. Furthermore, calculating

1 l720) = 1 T0 (T Py = CIT S (2.10)

for f € T,H?(D) shows that T, ' is bounded. Since C is the largest possible constant
such that (2.10) is satisfied, J is the smallest possible bound for Tt so || T3] < &
(iv) = (i3): If T; ' is bounded,

_ 1
Il = 11T, (Thf)lrem) < 5“Thf“7-t2(ﬂ]>) (2.11)

clearly holds for f € H?*(D), and thus, T}, is bounded from below. Because % is the
smallest possible constant such that (2.11) hold, C' is the largest possible lower bound
for T},

(iv) < (v): This is a consequence of the Closed Graph Theorem 1.2.3 O

Notice that the function h € H*°(ID) in Lemma 2.2.14 is not itself required to be bounded
from below, only demanding that its boundary function stays away from zero. This
restriction would be too narrow, because, for example, h(z) := z has a zero at the origin
and Ty = S has closed range.

2.3 Characterisation of Shift-Invariant Subspaces of H?*(D)

We follow the approach presented in [Neul0], VII.
DEFINITION 2.3.1. We say a function h € H*(D) is

1. inner if [¢(h)| = 1 almost everywhere on T, and

2. outer if T, has dense image in H%(D), i.e. if T, H2(D) = H?(D).

Take note that the classical definition of inner and outer functions of Hardy spaces are
different from the one given above. In particular, the requirement that an outer function
belongs to H>°(D) is relaxed in favor of membership of the respective Hardy space, cf.
[Rud87], XVII, or [RR94], IV.

PROPOSITION 2.3.2. Let h belong to H*(D). Then h is inner iff Ty, is an isometry.

Proof. By definition, h being inner means that h o= 1 (h) has modulus one almost
everywhere on the unit circle. Hence, the operator My is clearly isometric. Because of
T, =v"1o M5 o9, cf. Lemma 2.2.9, the same is true for T},.

28



Characterisation of Shift-Invariant Subspaces of H?(DD)

Conversely, if T}, is an isometry, then so is M; = oTpoyp~! on Li (T). Due to Theorem
2.2.11, M5 commutes with the — also isometric — shift U. Hence,

105Ul = U M55l = ||M5811 = |1B]l = Ul

shows that M5 is isometric on the dense subset {UNp | p € C[z],N € N} of L*(T).
Because of continuity, it is isometric on the whole of L?(T). Choosing in particular
x5 € L?(T), i.e the characteristic function of a Borel set B C T, we have

1 ;i 2 — 2 _ 2 - 1
2m'/B (RO dC = [| My xBllT2(m) = lIxBll72(T) = 2m,/Bl dc.
Letting B run over all Borel sets of T, this implies \Z(C)P =1 for almost every ¢ € T.
Hence, h is inner. -

PROPOSITION 2.3.3. Let h € H*(D) be outer. Then it has no zeros in D. If |h| is
bounded from below by a constant ¢ > 0, then % € H>®(D) and it is outer as well.

Proof. Assume that h(w) = 0 for w € D and T, H2?(D) = H?(D). Since the constant
function with value 1 belongs to H?(ID), there must be a sequence (f,) € H?(D) such
that 1 = lim, s00 h - f, in the norm of H2(D). But because of Lemma 2.1.6, point
evaluation is a norm continuous operation, so we get 1 = lim, o h(w) - fr(w) = 0 at
w € D. Thus, A cannot have a zero in D.

For the second claim, % is clearly well-defined and holomorphic. Furthermore, the bound-
edness from below of |h| implies H%Hoo < 1. This shows that } belongs to H>(D).
Therefore, T% € B(H?(D)) and, using that T}, is continuous, the calculation

T1H2(D) = TL T, H*(D) 2 T2 Ty H (D) = H(D)

proves that % is outer. ]

THEOREM 2.3.4 (Beurling). Let £ # {0} be a closed subspace of H*(D). Then L is
left invariant by S if and only if it has the form

L = TyH?*(D)
for an inner function h € H* (D).

Proof. 1f L can be represented with the help of an inner function h € H> (D) as T, H?(DD),
then due to Theorem 2.1.14 we have SL = ST, H?(D) = T;,SH?(D) C T, H?(D) = L.

Conversely, if £ # {0} is a closed, shift-invariant subspace of H?(DD), let us define
ng := max {j €N | (z — %) € H*(D) for all f € E}, i.e. all functions contained in
L have a zero at the origin of order at least ng and for some function in £ the origin
is a zero of order exactly ng. Now let f € £ be such that f = (z — 2™ > > ja,z")
and ag # 0. The operator S increases the order of the zero at the origin by one. Thus,
S(g) # f for all g € L. Therefore, S : L — L is isometric, but not surjective. Since
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Chapter 2. Operators on the Hardy-Hilbert Space

SL is the isometric image of a closed subspace, it is closed as well. So we can form
L © SL, which is nonzero since L is nontrivial. We therefore find h € £ © SL such that
[All32@) = 1. Our aim is to show that h is inner, i.e. that h := (k) has modulus one
almost everywhere on the unit circle.

For n > 0 we clearly have S"h € SL and hLSL. Thus, with the help of ¢ from (2.3)
and ¥ o S = U o1 we arrive at

0= (k) = (I 0) = (RF) =

L2(T) L2(T)
1 2 =
=5 e h(e®)h(eif) do = (2.12)
0
1 2m

=— [ e™[h(e?)]? db.
2 0

After conjugating the above calculation we get

1 2
— e 1h(e%)|? do = 0
2 Jo
for n # 0. Since the trigonometric polynomials form an orthonormal basis of L?(T), this
forces the Fourier series of the function |h(¢)|? to be a constant in the sense of L2(T).
Because of 1 = ||h|ly2m) = [[¥(h) || 2¢ry this constant must be of modulus one. Hence, h
belongs to H>°(D) and is inner.
Next, we form Tj,. From (z — z"h(z)) = S™h € L we conclude that, due to linearity,
h-p € L for all p € C[z]. Since according to Lemma 2.1.5 the polynomial ring C|[z]
is dense in H2(D), it follows that T),H?(D) C L. Because h is inner, this makes T}, an
isometry according to Proposition 2.3.2 and thus, 7,H?(D) is a closed subspace of L.
To show that T},H?(ID) cannot be a proper subspace of £, we prove that the orthogonal
complement of Tj,H?(D) in £ contains only the zero function. Let g € £L& TpH?(D). On
the one hand, the function S™h belongs to T, H%(D), which means that (S™h, g) = 0 for
n € Ng. On the other hand, S"g € SL for n € N. Since h is orthogonal to SL, we get
(S™g,h) =0 for n € N. Similarly to (2.12), we get

K

2T

1 2 _
0= (S"h,g) = ~ / T (\5(eP) do, n>0
0

— 1 21

0= (S"g,h) = 27?/0 eg(e?)h(e?) do e mn(e)g(ei?) df, n > 0.

Together these equations imply that ¥ (h)y(g) must vanish almost everywhere on T.
Since h is inner, i.e. |1)(h)| = 1 almost everywhere, this forces 1(g) = 0 almost every-
where. Therefore, ¢ = 0 and we are finished. 0

Beurling’s Theorem can be sharpened in the sense that the resulting inner function
satisfies a uniqueness condition of sorts.
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PROPOSITION 2.3.5. Let hi,hy € H®(D) be inner with Ty, H*(D) = Ty, H?*(D).
Then there exists ¢ € T such that ho = ¢ - hy holds.

Proof. The functions h; and hg belong to H?(D) and, thus, also to T}, (H?(D)) =
Th,(H%(D)). Hence, there exists f € H?(D) such that

hi = hy - f. (2.13)

We can therefore consider % = f. This function is well-defined, because whenever ho
has a root at some point in D, equation (2.13) guarantees that h; vanishes at there
as well, even respecting the order of the root of ho. Hence, all singularities resulting
from the denominator he are removed by the numerator h;. As a Hardy-Hilbert space

function, Z—; is mapped into L% (T) C L*(T) by ¢. So all Fourier coefficients of v (%)

vanish for negative indices. This and the same arguments applied to Z—f € H?(D) show
that for n < 0 we have

L p ) e o0 o

Our aim now is to proof that (2.14) holds even for n # 0. To this end, we show that

(0 (Z;) = ’ (1}1? (2.15)

h

N—

holds, which easily follows if we can verify 1 <%) = :ﬁgﬁ;; Using Corollary 2.2.10 with
hy € H*(D) and 12 € H*(D) yields

vl v (1) = (- 2) = vl

2

Since hg is inner, we have [)(ha2)| =1 on T, i.e. ¥ (hz) is not the zero function. Hence,
we can divide by 1(hz2) and arrive at our desired result. Equation (2.15) now shows that

() o (8o () sy = () o ()

P(h1)(C)
¥(h2)(C)
this is real and we can conjugate equation (2.14) and extend it to hold for all n # 0. So

it follows that ¥ <%) +y (Z—f) = ¢/ € C almost everywhere on T, implying Z—; + Z—i =c.

where the last equality is a consequence of € T for almost every ¢ € T. Hence,

Setting H := Z—f gets us H + % = (/. This means that we have the quadratic equation

H? —¢H +1 =0 on D and solving for H clearly shows H(z) = %/ + \/§ —1=:c As
H is holomorphic, it must be constant and h; - ¢ = hy. Finally,

= ot = el = o (32 )] = 1)

proves c € T. [

=1
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Chapter 2. Operators on the Hardy-Hilbert Space

COROLLARY 2.3.6 (Inner-Outer-Factorization of Multiplier Functions). For every
nonzero function h € H>®(D) there exist hi,hy € H®(D), with hy inner and hg outer,
such that h = hy - ho. The functions h1 and hy are uniquely determined by h up to
multiplication by unimodular constants.

Proof. Let Ty, be the multiplier operator for the multiplier h and set £ := T, H?(D). As
we know, the shift operator S is continuous and it commutes with any given multiplier
operator, so

SL = STpyH?(D) C STRH2(D) = Tp,SH?2(D) C TpH?2(D) = L.

Additionally, h = Tp1 € L. Therefore, £ # {0} is a closed, shift-invariant subspace of
#H%(D). By Beurling’s Theorem 2.3.4 there exists an inner function h; € H*(D) such
that T, H?*(D) = £ = T,H2%(D). It remains to show how we can find a suitable outer
function hs.

Due to Proposition 2.3.2 we first notice that T}, : H2(D) — £ bijective. By the Bounded
Inverse Theorem 1.2.4, Th_11 : L — H?(D) is continuous and thus, Th_ll o T}, € B(H*(D)).

Furthermore, T} L commutes with S, because we get
-1 -1 -1 -1 -1 -1
SoTy, =T, oTpoSoT, " =T, " 0oSoTy ol " =T, oS
on L. Hence, we arrive at
SoTh_lloTh:Th_lloSoTh:Th_lloThoS.

Due to Theorem 2.1.14, T,;ll o Ty must be a multiplier operator, i.e. there exists a
uniquely determined function hy € H>(D) such that T, =T} Lo Tj,. This is obviously
equivalent to T, 0T}, = T}. Applying this relation to the constant function with value 1
shows h = hy - hy. Finally, since T}, : H?(D) — L is an isometry, so is T}:ll : L — H*(D)
and the calculation

Ty, H2(D) = T;, ' o THHA(D) = T, T, H2(D) = T; ' £ = H3(D)

shows that hg is outer.

Regarding uniqueness, we assume that there are two decompositions h = hy-hg = h)-hl,
where hi,h] are inner and ho, hy are outer. By Proposition 2.3.2, Th, und Tj, are
isometric, so

Ty, H2(D) = T, Ty, H2(D) = Tj,, 0 Tp, H2(D) = T, H2(D) =
= Ty © Ty H2(D) = Ty Ty, HA(D) = Ty, H*(D)

Proposition 2.3.5 provides us with a constant ¢ € T such that hy = ¢ - h}. This implies
hi-hg = % - hy ;L; Since hq is certainly not the zero function, we see that ho = % - h.
Hence, the postulated factorization is unique up to unimodular factors. ]
The classical Hardy space theory greatly extends Corollary 2.3.6 and factorizes not just
the bounded analytic functions into an inner and an outer function, but all Hardy space
functions. These standard results can be found in most books on the topic, cf. for

example [Rud87], XVII, or [RR94], IV.
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Chapter 3

Vector-Valued Analytic Functions
and the Space H?(D; C")

Linear relations on the Hardy-Hilbert space are subspaces of the Cartesian product of
H2(D). We will identify this product with another structure and develop our theory in
this new setting. It turns out that the right way to move forward here are vector-valued
analytic functions and we will therefore start this chapter with some results on them.
After this, the one-dimensional theory of the previous chapter will be expanded to the
multi-dimensional case, considering matrix-valued multiplier operators on vector-valued
function spaces. For linear relations, the range of these functions will then be the Hilbert
space C2.

3.1 Holomorphy in a Banach Space Setting

First, some notions from complex analysis are transferred to our setting of vector valued
functions. We cite [HP57], I11.10, and [Kle07], II, for the following results on holomorphy.

DEFINITION 3.1.1. Let G be a domain in the complex plane and X,Y be Banach
spaces.

1. A function f: G — X is said to be holomorphic in G if

. 1
lim
=W 2 — W

(f(2) = f(w)) = f'(w) € X

exists for every w € G with respect to the norm of X. It is called weakly holo-
morphic in G, if o f : G — C is holomorphic in G in the classical sense for every
ze X'

2. An operator valued function T': G — B(X,Y) is said to be holomorphic in G if

lim . _1 " (T(z) = T(w)) =: T'(w) € B(X,Y)
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exists for every w € G with respect to the operator norm of B(X,Y). It is called
strongly holomorphic if z — T'(z)x is a holomorphic function for every x € X, and
weakly holomorphic if z +— §(Tx) is holomorphic in G in the classical sense for
every y € Y and x € X.

In fact, these definitions carry with them a certain redundancy. It can be shown that
the introduced notions are all equivalent, which is the content of the next lemma and
two propositions.

LEMMA 3.1.2. Let f : G — X and T : G — B(X,Y). Then we have
(i) f is holomorphic = f is weakly holomorphic
(i) T is holomorphic = T is strongly holomorphic = T is weakly holomorphic

Proof. To show (i), let f be holomorphic. Since we have

(5o fY(w) = lim Z2NE) =@ )W) _ (hm f(2) — f(w)

Z—w Z—w zZ—w zZ —w

) =t w)
for every & € X', it must clearly be weakly holomorphic.

Regarding (ii): For an operator T, we notice that if lim,_,,,
operator topology, then so will lim,_,,, W for every z € X in the topology on
Y. For the second implication, proceed by applying (i) to the function z — T'(z)x for

every z € X. O]

T(z)=T(w)

exists in the
Z—Ww

PROPOSITION 3.1.3 (Cauchy Integral Formula). Let X be a Banach space and
f:G — X be a holomorphic function defined on a domain G of C. Suppose that w € G
and that the open disk with radius r around w, i.e. Up(w), is completely contained in G.
Then for every z € U,(w) the equation

f(z)—l/ D geex

- 271 8U7-(w) C— z
holds, where the contour integral is taken counter-clockwise. Furthermore, we have

FM(z) = ! LdgeX

2w o, (C— 2)n
for every n € N.

Proof. For every & € X', the function Zo f : G — C is holomorphic in the classical sense,
so the classical Cauchy integral formula holds. Furthermore, since f is differentiable, it
must also be continuous in G. By using Banach space valued nets it can be shown that
the Riemann integral of continuous Banach space valued functions exists. In fact, this
is a straightforward translation of the proof for the classical, complex valued case. With
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the same argument involving nets it can be shown that a continuous linear functional
can be pulled out of the integral. For every & € X’ we thus have

@U@»:@on@»:;L@“)@wﬂ@>«:j(1/ f@>a>

¢—z 2mi Jou,(w) € — %

and we arrive at

o L[ 10 )
x<f(z) QTFi/aw(w)CZdC) 0

for every # € X’. Since X’ is separating, the claim follows.
For the second formula, we fix n € N. For every & € X’ we have the classical result

(fof)(n)(z)_n'/a (.’i'of)(C) dC:j<n'/a f(C) dC)

2w Jou,w) (€ — 2)"H! 210 Jou, (w) (¢ — 2)" T

Additionally, from

we infer inductively that

#(fM(2))

holds for every n € N. Since this works for every 2 € X', the claim follows again because
X' is separating. O

(@0 f)™(z)

PROPOSITION 3.1.4. Let f :G— X and T : G — B(X,Y)
(i) If f is weakly holomorphic, then it is holomorphic.
(ii) If T is weakly holomorphic, then it is holomorphic.

Proof. As a first step, we will show that if T is strongly holomorphic, then it is also
holomorphic. By our additional assumption, z — T'(z)z is holomorphic for every = € X.
We need to show that lim,_,, W exists with respect to the operator norm in

B(X,Y). Equivalently, we can verify the Cauchy condition

pn TED=T(w)  T() = T(w

21,22 W 21 —Ww Zo — W

~0. (3.1)

For z1 # 2o, z1 # w and 29 # w we define the operator

1 T(z1) — T(w) B T(z2) — T'(w)

21— 29 Z1 —w 29 — W

T (21, 22) ==
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Clearly, since it is made up of linear operators, we have T (21, 22) € B(X,Y’). Using the
Cauchy Integral Formula

1 T(¢)x
T(e)w = 2mi oU(w) C — %

dg

four times in the definition of T (21, 22), we get for every z € X

1 1 C,I _C% C,I _%
ITGr,za)el = | —— 5 awa(Om( AT Ea ¢ )dC -
1 1
- m/aUAw)T(Ox((c—zo(c—@)(c—w)) | =
< 27r 4

< o x| IT(Q)x]| =: Cu
if 21,22 € Uz(w). Hence, for all 21, 23 sufficiently close to w, we get [T (21, z2)z[| < Cq
for every x € X. Due to the principle of uniform boundedness, this implies the existence
of a constant C' > 0 such that || 7(z1, 22)|| < C holds. This, in turn, implies (3.1).

In order to show (i), we identify X with a closed subspace of its bidual X" = B(X’, C),
so f:G— X C B(X',C). By our assumption, Z o f : G — C is holomorphic for every
7€ X' i.e. we see f as a strongly holomorphic operator valued function. According to
the first step of the proof, this shows that f is holomorphic.

Finally, (ii) follows: If z — ¢(T'(z)z) is a holomorphic function from G to Y for every
g €Y', by (i) it must be holomorphic. This means that z — T'(z)z is a holomorphic
operator function for every x € X, i.e. T is strongly holomorphic. As we have seen, this
means that 7" is holomorphic. O

The above proposition provides a convenient way to check holomorphy. In the proof we
used the Cauchy Integral Formula, which in turn relies on the fact that X' is a separating
set. A lot of the well-known Cauchy theory in complex analysis can be developed also in
the case of vector valued functions. Usually, one composes a given holomorphic function
f + G — X with continuous linear functionals and uses the classical results for the
functions & o f, which are holomorphic as we have shown. Again, since X’ is separating,
the functionals are then removed by the same trick.

We formulate one particular result for our convenience.

LEMMA 3.1.5. Let (an)nen, be a sequence in a Banach space X. Consider the power
series z — 220:0 z"a,, and define three subsets My, Mo, M3 of C via

o My:={ze€C| X2 z"an|x < oo},
o My = {z eC ‘ Yoo 2"Man converges in X}, and
o Ms:={z€C| sup,epy, [[2"an|| < co}.

If we set R; := supyy, || fori € {1,2,3}, then Ry = Ry = R3.
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Proof. Obviously, we have M7 C My C M3 and thus, R1 < Ry < Rj3.
For |z| < R3 there exists w € M3 such that |z| < |w| < R3 and C := sup, ey, [|[w"a,| is
finite. Because of

n n
| anll = | = | llo"an] < €| 2|
w w

we can use the comparison test to determine

n —
Dol <Cy |~ —Cl_|£‘<oo.
n=0 n=0 w
Hence, z € M; and |z| < R;. This implies R3 < R; and we are finished. O

LEMMA 3.1.6. Let X,Y be Banach spaces and © : D — B(X,Y) an operator valued
function. Then the following are equivalent:

(i) © is holomorphic on D.

(ii) © has a power series expansion O(z) =Y o2 2"0, on D with ©, : X — Y being
bounded linear operators and where the power series is convergent in the strong,
weak and operator norm topology.

Proof. (i) = (ii): We take arbitrary x € X and § € Y’ and consider the function
frg = (2 = 9(©(2)z)) with domain D and range in C. Due to Lemma 3.1.2, f, 5 is

holomorphic in the classical sense. Hence, it is expandable in a power series >~ o/ 2"

convergent on D and with o%¥ € C for all n € Np. Setting w = z = 0 and choosing
r € (0,1), Proposition 3.1.3 yields

P 1 / feg(C)
atd = — fM(0) = — 05 e =
n! =i () ou,(0) ¢ ¢

211
1 1
" omi U (0) Wy(@(()x) dC =
. 1 1 A
- y( [% /aw(o) @@(O dg} x) = §(Ona).
= @, B(X,Y)

Note that ©,, is well defined, because © is continuous due to it being holomorphic and,
therefore, the B(X,Y')-valued integral inside the square brackets exists. In summary, we
have shown that f; ;(z) = > 7, 2"9(O,x) holds on D for all z € X and j € Y/, i.e. ©
has a weakly converging power series expansion ©(z) = Y >° 20, on the unit disc.
Let ¢ : X — X" be the canonical embedding of X into its bidual X”. For some arbitrary
but fixed z € D we choose any x € X and consider the family of operators

{1(z"Opz) : Y = C ‘ ne€Np}.
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Because of
L(z"Onz)(9)] = |§(2"Onx)| < Cy

for n € Ny, we see that this family is pointwise bounded. By the Principle of Uniform
Boundedness, Theorem 1.2.2, we get that sup,,c, [|¢(2"On)|| is finite. Since the map-
ping ¢ is isometric, we obtain sup,,cy, [|2"©nz| < oo, which is valid for all z € X and
z € D. Due to Lemma 3.1.5, the power series expansion of © converges strongly on D.
This in turn implies that {z”@n ‘ n e NO} is a pointwise bounded family of operators
as well. Applying Theorem 1.2.2 a second time yields sup,,¢cy, [|2"Ox|| < co. By Lemma
3.1.5, the power series expansion of © thus converges in the norm of B(X,Y).

(ii) = (i): Let © have a power series expansion O(z) = Y 2 2"0,. In particular, this
series converges weakly, i.e. f, 4 = (z =Y z"g)(@nx)) is analytic in the classical
sense. Thus, f, ; is holomorphic in the classical sense, which means that © is weakly
holomorphic. Due to Proposition 3.1.4 it is therefore holomorphic. O

3.2 The Space H?(D;C")

We are now ready to introduce the Hardy space H2(ID; C").
DEFINITION 3.2.1. For n € N we consider C™ and define

[ee] o0

HA(D;C") = {f € (€] f(z) =) _#fapon D, (a) € (C)™, Y agltn < oo}
k=0 k=0

to contain all holomorphic and C™-valued functions on the unit disk. Furthermore, they

are required to possess power series expansions where the coefficients are elements of

C™ and are square-summable. The power series expansion itself is understood to be

convergent with respect to the (usual Euclidean) norm ||.||cn.

Obviously, the case n = 1 is just H?(ID) from Definition 2.1.1. It should be noted, that
one could also define H2(ID; §) for an an infinite dimensional separable Hilbert space, cf.
[Nagl0], V, but we will stick to dealing with finite dimensional Hilbert spaces. In the
next chapter, the case n = 2 will then be important for dealing with linear relations.
The following lemma assures us that a function with a power series expansion that has
square-summable coefficients is automatically holomorphic on the unit disk.

LEMMA 3.2.2. Let (ax) € (C")No. The condition >3 |lak||2. < oo implies that the
radius of convergence p of z — > 72 2Fay is greater or equal to 1.

Proof. The sequence (||a|%,) must be a null sequence because the series Y p g [lax||?
converges. Thus, (|lag|lcr) also tends to zero. Therefore, there exists N € N such
that |lag||cr < 1 for all & > N. Consequently, the sequence (/| ag|cr)3 . and, in
particular, its limes superior, will also be bounded from above by 1. We can therefore
use the following well-known formula to calculate the radius of convergence

B 1

p= > 1
lim supy, o v/ llallcn
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and the assertion follows. O

We recall that ¢2(Ng; C") is the Hilbert space of square-summable sequences where the
elements in each sequence are vectors from C". Furthermore, the space ¢?(Ng;C")
is equipped with the scalar product ((ak), (bk))F(No;(Cn) = > peolak, by)cn, which is
equivalent to the sum scalar product from ¢?(Ng), i.e. for (ax) = (ark,...ank) and
(b)) = b1k, - - - bn,k)T € /2(Np; C*) we take the coordinate sequences, which obviously
all belong to ¢?(Np) and therefore

((ak)keNoa (bk)keNO £2(No;Cn) Z ak, by)cr = Z Z%kbﬁ =
k=0 k=0 j=1 (3.2)

n

Z Z ajvk@ = Z ((a‘j,k)kENo) (bj,k)kGNo)p(No)-

j=1 k=0 j=1

[y

We make use of these well-known facts in the following
PROPOSITION 3.2.3. For every n € N we have

H?(D; C™) = £2(Np; C™).
The mapping

o, - { 2(Ng;C") — HE(D;CP)
" (an) = fr=(2 30 02" an)
is bijective and preserves the linear structure. Moreover,
H?2(D;C") x H2(D;C") — C
G e - { [£.9] = (@ .27 (9) o

is an inner product on H?(D; C") such that ®,, is additionally isometric.

(3.3)

Proof. The function ®,, is well-defined — the holomorphy of ®,,((a,)) on the unit disk is
due to Lemmata 3.2.2 and 3.1.6 — and clearly bijective. In addition, the definitions for
+ and multiplication by a scalar in £2(Ng; C") agree with those for power series. Conse-
quently, ®,, is compatible with the linear structures on the two spaces and (., .)'HQ(D;(Cn)
is indeed an inner product on H?(ID; C*) for which ®,, is isometric. O

PROPOSITION 3.2.4. For each n € N we have
(H*(D))" = H*(D; C").

Furthermore, the scalar product and its induced norm on H?(D; C") are equivalent to the
sum scalar product and the corresponding norm of (H?(D))", i.e. for f,g € H*(D;C")
with coordinate functions fi,..., fa, g1, .-, gn € H2(D), respectively, we have

j=1

n

(f,9r2men = > _(Frgi)wem  and || flsemen =
j=1
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Proof. Let fi1,...,f, € H?(D) with power series coefficients (a1 k) keNgs - - -5 (Qn k) keN,
belonging to CNo, respectively. Combining a1k, ---,anx € Cfor each k € Ny to a vector
cr € C" and defining h := (2 — > 32 2"cx) we first notice that

00 00 atk ZZOZO al,kzk
<2H22k0k>: zHsz : =]z~ : =
h=0 P00 \ank >0 Gn o2

fi(2)
= |z :

Using (3.2) for calculating

0o 0o 0o n n oo
Do llerlEn =D Mars - ang) g =YD agal? =D > lajul® (3.4)
k=0 k=0

k=0 j=1 j=1 k=0

shows that h has square-summable power series coefficients (cx)ren, € ((C”)NO under
our assumptions. Lemma 3.2.2 implies that h is analytic on the unit disk. Furthermore,
(fi,..., fa)T = h is clearly linear and, hence, a vector space homomorphism from
(H2(D))™ to H2(D; C"). Since (H?(D))" is equipped with the sum scalar product, (3.4)
implies

HhH?{-ﬁ(]D);(C”) = Z Hfjugp(u)) = [I(f1, - -yfn)TH%W(D))n-
j=1

Thus, the above assignment is isometric and in turn injective. For surjectivity, we pick
h € H?(D;C") with coefficients (c;). The functions g;j(z) = > 5o, 2¥c;, whereby

Jj € {1,...,n} and c; signifies the j-th coordinate of ¢, are all clearly elements of
ZL-[Q(]D), since ch,ng_tQ(D) < HckH%Q(D;Cn) for all k£ and j. Hence, we found a preimage of
. O

LEMMA 3.2.5. The set

K
Clz;C" = {p:D—HC” ’p(z):szak for K € Ny and a; € C" forOSkSK},
k=0

i.e. the ring of vector-valued polynomials on the unit disk, is densely contained in

H2(D; C™) with respect to the norm |- l2 (scmy -

Proof. Let f € H?(D;C") with power series f(2) = > jo,ar2® for ap € C" and
N

define py(z) := Zk:ozkak- Then || f _pNHip(]D);(Cn) = HZZO:NJA Zk@k”%p(@;(cn) =

> re N1 llakllEn converges to zero as N approaches infinity. O

As we have mentioned earlier, H?(ID) is a reproducing kernel Hilbert space. For higher
dimensions we arrive at the following result.
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LEMMA 3.2.6. Let 4 : H2(D;C") — C" : f +— f(w) be the point evaluation func-
tional at w € D. Then iy, is linear and continuous for every w with ||tp || < 4 /ﬁ.
Moreover, for f € H2(D;C") with coordinate functions f1,..., fn € H?(D) we have

(f1, kw)n2(m)
inw(f) = : eCn,

(fna kw)?-L?(ID))
where the k,, are the reproducing kernel functions defined in Lemma 2.1.6.

Proof. The linearity of ¢y, is clear. By Lemma 2.1.6, the functions k,, are contained in
#H2(D) and are nonzero for every w € D.

Now let f € H2(D;C") be the function z — Y 2o, 2%a; and w € D. We denote the
coordinate functions of f by fi,..., fn € H?(D). Using Lemma 2.1.6 in each component
we calculate

00 k oo k. k
- <Zk:0 a1,62", D g Wz )HQ(D) (f1, kw)wz(m)
flw)=> whay = : = :
k=0 —
(Croanst Sout) ) \Unkudem)
By the Cauchy-Schwarz inequality, we get

(fr ko)re ) ||

. o 2
HLn,w(f)H(%” = : = Z ’(fj, kw)Hz(D)’
(fn» kw)?—ﬂ(ﬂ)) Ccn 7=l

< kaH%%D) Z Hfj”%#(n)) = ka”gp(D)HfH?-ﬂ(D;(cn)
j=1
and thus, ¢y, is bounded with |[tnw | < [|kw|ly2m) = ,/ﬁ. O

LEMMA 3.2.7. Let 4 be the point evaluation functional on H*(D;C") at w € D and
define a function Ky, : C* — H*(D;C") by Kp =t} ,,- Then

(i) For every f € H2(D;C") and o € C"™ we have the relation (f, Kn.w(a)) = ofl f(w)
and we can explicitly calculate K, .,(a) = 3 5oy 2" (@ha).

(11) Kp ., and thus also iy, has operator norm ﬁ

(iii) /1 — WK : C" = K o(C") is unitary and ||K, || = /1 — [w]?.
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Proof. Take an arbitrary f € H2(D;C") with power series coefficients (a)gen,- Then
clearly

aHf(w) - aHLn,w(f) = (Ln,w(f)u a)(C" = (f7 Kn,w(a))HQ(]D;(Cn)
and, by the definition of the scalar product on H?(ID; C") in Proposition 3.2.4,

oo [e.@] o0 o0
o fw) =¥ Zwkak = ZwkaHak = <Z 2Fay, Z zk(wka)>
k=0 k=0 k=0 k=0

Moreover,
ok ke S (lol2) L
tnwEnw(®) = thw (Zz (w a)) = Zw wra = <Z(|w’ ) ) o= W@.
k=0 k=0 k=0
This means that
bnwBnw = #I(C"
’ ’ 1—jwl2

or in other words, tnwKnw = K ,Knw is a diagonal matrix with entry (1 — Jw[?*)~!.
This certainly implies that /1 — |w|?K,,,, is isometric. It is therefore unitary as a
mapping from C" to K, ,,(C"), and

-1
(VI—ToPEuw) = V1= [0PK; . | Knwl(C")

Now [|\/1— [w|?K,u| = [[(/1— |w]2Ky, )7t || = 1 implies ||K, Ll = /1 — |w|? and

n7
an,w” = HKn,wH = (m)il- O

We will use the two lemmata above in much the same way as we used the reproducing
kernel of H?(D) in the one-dimensional case. It should be noted that for n = 1 we have
kw = K1,4,(1) as 1 generates C.
The scalar product in higher dimensions was defined via summation of power series
coefficients. However, just as in the one-dimensional case, we can alternatively integrate
on circles to achieve the same.

LEMMA 3.2.8. Let f : D — C"™ be holomorphic and have the power series coefficients
(ak)ken, € ((C”)NO. Then we have

9 o0
£ (re)] o, 40 = 3
k=0

as elements of [0,00]. The condition that f belongs to H?*(D; C") is satisfied if and only
if this expression stays finite as v tends to one from below. In this case, the norm of
H2(D; C") can be calculated via

1 21 . 2
9 T 0
||f||7-[2(1D>;<C") = 1ln1m /0 f (Te )ch do.

1 21

2m Jy
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If additionally g € H?(D;C"), then the inner product satisfies

27 ) .
(f, )Hz (DCn) = = lim 1/0 (f(reze),g(rew))(cn dé.

r 12T
Proof. Let f € H*(D;C") with power series coefficients (aj). First note that (z
chvzo zkak) Nen converges to f uniformly on compact subsets of D, since f is analytic
on D. For a fixed r» € (0,1), we use uniform convergence on the closed ball centred at
zero with radius r to exchange the order of integration and the limit process and get

N

1 2w ” ) 1 2w N ok o
% 0 f (7“@Z )H dl = 27r/0 J\}gnoo (;O(rel ) ak,) Z(rezﬁ)Jaj db =

J=0

N /1 o
= lim phti [ — k=00 q0 ) apa; =
N—)OOk 0 21 0 J

7.7:

oo
= ¥ llag]ign,
k=0

since only in the case k¥ = j does 5= f 2T ¢ik=1)0 dh not vanish and amount to 1.
2 ; 2 . .
Hence, the net (% IS (re®)||” do >r€(0 y = (Zk:o 7“2]"’\|ak\|cn)r€(0’1) is obviously

increasing as r tends to one. Thus, the limit is attained at the supremum. Finally,
lim, 1 > oc o % |lagl|E. = D52 llak||A. follows from the monotone convergence theo-
rem appplied to the counting measure.

To prove the claim regarding the scalar product, we use the polarisation identity as in

Corollary 2.1.9 to show

A(f, 9 miem) = I1f + 9l3emeny = I = 9ll32mcn
+ 1| f + 19||H2(D;<cn) —i|lf - ig”ip(m;cn) =

< [ae [ oo ()~ o -0 ()

2

Cn

il () o, o (o) ) =
=i [ [ (e s en + () gtre e

+(g(re”), f(re))en + (g(re®), g(re”))en — (f(re”), f(re”))en
+ (f(re?), g(re”))en + (g(re®), f(re®))en — (g(re”), g(re))cn
+i(f(re”), f(re®))en + (f(re?), g(re?))en — (g(re®), f(re”))en
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+i(g(re”), g(re))en —i(f(re?), f(re®))en + (f(re®), g(re’))en

~ {alre®). F(reen — itg(re ), e )cn) | =

S [ (() ), 0
]

Given n,m € N, we can look at what multiplier operators look like in higher dimensions.
Obviously, for a function © : D — C™*" we can define the linear relation

To = {[f,g] € H*(D;C") x H*(D;C™) | g=© - f}.

The equality ¢ = © - f is assumed to hold pointwise. Tg is an operator, because
mul Te = {0}. Hence, it makes sense to write

T - dom Ty — H2(D;C™)
@' f H (_).f )

where dom Tg = {f € H*(D;C") | © - f € HA(D;C™)}.

We notice that for f = (z = Y 5o, 2%ax) € H*(D;C") the function product idp - f =
(2 2z f(2) = (2 = 252 2" ak) belongs to H?(D;C™) as well. Consequently, the
following operator is well-defined on H?(D; C"):

DEFINITION 3.2.9. For n € N, we call

[ HAD;C)
5, { e

— H2(D;C")
= (22 f(2))
the shift operator, or operator of multiplication by z, on the space H?(ID; C").
Alternatively, we could write S,, = Tg for
idp
idp
0= ) : D CVX
idp

LEMMA 3.2.10. Let © : D — C™*". Then Tg is a closed operator and the following
assertions are equivalent:

(i) To € B(H*(D;C"), H?(D; C™))

(ii) dom Te = H?(D;C")
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Proof. First, if ([fk, gx|)ken is a sequence in the graph of Ty converging to an element
[f,g] in the Hilbert space H?(D;C") x H2(D; C™), then we have g = © - f for every
k € N. Additionally, evaluation at a point is a norm continuous operation in #?(ID; C")
and H2(D; C™), cf. Lemma 3.2.6. So for arbitrary w € D we get

gr(w) = O(w) - fr(w)

Thus, g =0 - f and [f,g] € To, i.e. To is closed.
Secondly, the condition Ty € B(H?(D;C"),H?(D;C™)) is equivalent to dom Ty =
H?2(D; C™) because of the Closed Graph Theorem 1.2.3. O

DEFINITION 3.2.11. Let © : D — C™*". If Tg € B(H?(D;C"), H%(D;C™)), then
we call © an (m X n)-matrix-valued multiplier function and Tg an (m x n)-matrix-valued
multiplier operator. The set of all (m x n)-matrix-valued multiplier functions is denoted
by My xn (D).

DEFINITION 3.2.12. Consider © : D — C™*". Suppose that there is a power series
expansion O(z) = Y 22, 2¥O) with ©; € C™*™ that is convergent on . Furthermore,
suppose that there exists a constant C' > 0 such that ||O]|« = sup,cp [|O(2)] < C,
where [|©(z)|| is the matrix norm of ©(z) when C™ and C™ are both equipped with the
Euclidean norm. Then O is called a bounded analytic function (on D). The set of all

bounded analytic (m x n)-matrix-valued functions is denoted by H>° ., (D).

As we have seen in Lemma 3.1.6, it does not matter whether we demand strong, weak
or norm convergence for the power series expansion. However, since C™*™ = C™" ig
finite dimensional, this is not surprising as all norms in this space are equivalent.

LEMMA 3.2.13. The (m x n)-matriz-valued multiplier functions are the bounded ana-
lytic (m x n)-matriz-valued functions, i.e. My, xn (D) = HS (D). In this case we have
I Toll = 11©]|co-

Proof. 2: Let f € H?(D;C") and © € H,,,(D). If g signifies the product © - f, then
we have g; = > 710, - fr for i = 1,...,m. Since f and © are both analytic on D,
the same must be true for their coordinate functions f; and ©;; for i = 1,...,m and
j =1,...,n. The product and sum of analytic functions is analytic and the radius of
convergence is clearly at least 1 for each g;. Hence, g is analytic as well and has radius
of convergence at least 1. We use Lemma 3.2.8 to show

© (reia) - f (rew) Him do

2m
<tim oo [ el |f (re?)| ., @8 =181 1 epicn
27 Jy o cr > HADCT)

1 2w
) s
10 - fll2 miemy = }I/Hi 21 /0

This means T € B(H2(D;C"), H2(D; C™)) with |Te|| < ||O]|co-
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C: Let © : D — C™" such that To € B(H?*(D;C"), H*(D;C™)). By e;, where j =
1,...,n, we denote the functions z — (0,...,1,...,0)T € C" that have 1 in the j-th
coordinate and zero elsewhere. Clearly, e; belongs to H?(D; C"). Now set 0; = Tee;
and by our assumptions it follows that ©; € H?*(D;C™). Clearly, we can therefore
write © = (01,...,0,) and each of the ©; is analytic, i.e. ©;(z) = >3 ,280,,
on D, where (0, 1)ren, denote the respective power series coefficients. Hence, setting
(Ok)keN, = ((@um .. "@”’k))keNo gets us

0(z) = (Z 014, .. .,Zz’f@n,,g> =Y FO1p...,Onp) =) FOy

k=0 k=0 k=0 k=0
for every z € D. Therefore, © is analytic with power series coefficients (O )ken,. To show
boundedness, take an arbitrary a € C™ and f € H2(ID;C"). Let K;,, for i € {m,n} be
the function defined in Lemma 3.2.7 and calculate for o € C™
(fa TéKm,w(a)) = (T®f7 Km,w(a)) = (va Km,w(a)) =
H
= aO(w) f(w) = (O(w)a)” f(w) =
= (fv me(@(w)HOz)).

Hence, since f was arbitrary, T Ko, (@) = Kpn(O(w)?a). From this we conclude,
using Lemma 3.2.7,

o)l = 0@w)"| = sup [O(w) allcs =
llelem =1

— -1 H —

= sup Ky, KnuwO(w) afen =
lleflem =1

= sup Ko TEKmw(a)cn
lleflem =1

< sup (K TS NIHE mwll e =
lleflcm =1

= 1Kl - [Emwll - | Toll = | Te .

Since w € D was arbitrary, © is bounded and ||©||oc = sup,,ep [|©(w)| < ||To]|- O

THEOREM 3.2.14. Let T € B(H*(D;C"), H?(D; C™)). Then T'S,, = S,,T if and only
if there exists a function © € H°, (D) such that T = Tg. In this case, © is uniquely
determined by T.

Proof. Concerning the necessity of the statement, let diag(A, k) signify the & x k-dimen-
sional diagonal matrix with entry A and let (a; ;) € C™*". From

(a;,;) diag(A,n) = (Aa, ;) = diag(A, m)(a; ;)
we get

TS, = T@Tdiag(idm,n) =To diag(idp,n) — Tdiag(idD,m)G = Tdiag(idD,m)T@ = SpT.
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To prove sufficiency, let e; signify the functions z — (0,...,1,... ,0)T € C" for j =
1,...,n, belonging to H?(D; C"). We set O, := Te; € H*(D;C™) and collect these func-
tions as © := (01,...,0,) : D — C™*™. Then O is an analytic (m x n)-matrix-valued
function. First, we show that T acts like Tg on the polynomials. Let p(z) := Eszo 2Fby,
be a polynomial belonging to H?(D; C"). Clearly, we can write p(z) = > j—1pj(2) with
pi(z) == Zg:o zkbk’jej, i.e. we decompose a polynomial in such a way that p; is C"-
valued but only has its j-th coordinate different from zero. Using the linearity of T', we
can calculate T'p for each function p; separately, i.e.

N

N
Tpj =D T(z 2Mbijes) = Y brjT(z > 2'ej) =
k=0 k=0

N N
= Z bkva o Ssej = Z kaan o Tej =
k=0 k=0
N N
=Y beSnO; =Y bij(z > 26;(2)) = ©;p;.
k=0 k=0
In total, this means

n n n
Tp=T» pj=Y» Tpj=» ©;p; = Op.
j=1 j=1

Jj=1

Due to Lemma 3.2.5, for every function f € H?(ID; C") there exists a sequence of polyno-
mials (pny)yen converging to f in norm and, thus, also pointwise. Since T is continuous,
we get

Tf=T 1 = lim Tpy = li .
f NgnoopN Ngnoo pn Ngnoo@pN

According to Lemma 3.2.6 point evaluation at any point w € I is a continuous operation
on vector-valued Hardy-Hilbert spaces. This together with the fact that ©(w) is bounded
and linear for every w € D implies

(ngnoo @pN) () = ( Jim. @pN) — lim 100 (Opy) =
= lim O(w)py(w) =O(w) lim py(w) =
N—ro0 N—o00

= O(w) f(w).

As w was arbitrary, we see that limy_,. Opy = Of, and since this works for every
f € H*(D;C"), we get T = Tg. In particular, T is an (m x n)-matrix valued multi-
plier function with, according to Lemma 3.2.13, corresponding (m x n)-matrix valued
multiplier function © € My, xpn (D) = HX, (D).

The uniqueness of © is easy to see since if there were 01,02 € H . (D) such that
Te, = T = Te, holds, we can apply these operators to the functions (z — e;), where
the vectors e; € C" form the canonical basis of C", and get that the columns of ©; and

©5 are identical, so ©1 = Os. O]
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3.3 H*(D;C") as a Subspace of L*(T;C")

There is a way to extend a bounded analytic function © to the unit circle at least almost
everywhere. First, we need to introduce an approriate adaption of Definition 2.2.1.

DEFINITION 3.3.1. Let (¢*)rez be the orthonormal basis of L?*(T) consisting of
trigonometric monomials and denote by fi,..., fn : T — C the coordinate functions of
f: T — C" Then we set

L2 (T;C") :== {f € L*(T;C") | aip = (fi,¢")p2ry =0 forall k <0 and 1 <4 < n} ,

i.e. the set of all functions whose Fourier coefficients a; vanish for negative indices.

LEMMA 3.3.2. The space H?(D;C") can be embedded in L?(T;C"). More precisely,
H2(D; C") is isometrically isomorphic to La_('ﬂ‘; C™), which is a closed linear subspace of
L*(T; C") via

\Pn:{ : H?(D;C") — L2(T;C") (3.5)

z Y ey 2hay) - (¢ 2% Cray)

Proof. As we know, the fact that [ := (z =Y o zkak) belongs to H?(ID; C") is equiva-
lent to square-summability of the power series coefficients of f. This in turn is equivalent
to f = (C =Y o Ckak) € L2 (T;C") due to Parseval’s identity. Therefore, the map-
ping W, is an isomorphism. Because of

19 (N Z2(rcmy = ||J7H%2(1r;<cn) = llaxllg. = 1132 iy
k=0

it is also isometric.
Since L2 (T;C") is the isometric image of the Banach space H?(ID; C"), it is necessarily
closed. O

As in the one-dimensional case, V¥,, relates functions connected via nontangential limits.

PROPOSITION 3.3.3. Let f € H2(D;C") and f € L2 (T;C") be such that ¥, (f) = f
is satisfied and set f.: T — C": ¢ = e — f(re®).

1. fr converges to f with respect to the norm ||.||p2(r,cny-

2. Given f, one can recover f via the Poisson formula

1
27

27
/(2) /0 Pz, ¢) f(c?) db,

where we integrate the vector-valued function P(z, )f() component wise.
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Proof. Let f have the power series expansion coefficients (ax)ken,. Parseval’s identity
yields

Hfr - f”%Q(T;(Cn) = Tkeikeak — Z eikeak Z ok, _
k=0 k=0 L2(T;Cn) k=0 L2(T,Cr)
0 00
=3 10F = Daglze = S0 =) |ag 2.
k=0 k=0

For ¢ > 0 we find N € N such that > 72 ., lap[|* < §. We additionally can choose

R € (0,1) such that S5 (1 — R*)?|lax||? < §. Hence, for r € (R, 1) we get

0o N 0o
M= arl® = (0= llarlP+ >0 (1 =) [larl?
k=0 k=0 k=N+1
N 00 c c
kN2 2 2 _
Zl—R ) llaxll” + Z [|a|l <5T5 =
k=0 k=N-+1

and thus, lim, »y || f, — fll2r.cny = 0.

For the second claim we take w € D and remember the function K, ,, : C* — H?(D; C")

from Lemma 3.2.7. In particular, K, (o) = (z — >3, 2"(wFa)) holds for every

a € C". Hence, by setting I?n,w(a) = (¢ = X5y ¢F(w*a)) we define an analoguous
function K, : C" — L2 (T;C"). Obviously ¥, (K, u(a)) = Kpw(a) holds. With
¢ = ¢ as well as Lemma 3.2.7 we arrive at

aHf(w) = (f, Kn,w(a))HQ(D;C”) = (‘I/n(f)a W(Kn,w(a)))p(qy;@n) = (J?a [?n,w(a)) =
1 2 s 0 1 1 27 aHf(eiG)
=5 ) <f(€ )’1_wew“>@d"—zw . T we @
(3.6)

We define a scalar function

= (= (1—w)” (mekc )

which obviously belongs to L?(T). Clearly, all power series coefficients of g —1 vanish for
nonnegative indices, so this function is perpendicular to o f in L?(T) for every a € C™.
Consequently, writing ¢ = €*’ shows that

~ 1 2 ~ . 1
H H i0
0= (@"F.g - Dswen = g [ (@ Fe) (1 1) a8

is harmless and we can add this expression to (3.6), receiving

o f(w) = L /27r ot f(e?) ! ! —1) df
21 Jo [ —we® "1 —we
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As we have already mentioned in the proof of Proposition 2.2.4 the expression under-
neath the conjugation bar is just the Poisson kernel. Finally, we can extract af from
the integral which means integrating the vector valued function ¢ — f(¢)P(z,() com-
ponentwise first and then multiplying it with the vector aff from the left. Since o € C"
was arbitrary, the claim follows. O

We include the next result for the sake of completeness and suggest [Nik02], 1.3.11, for
a proof.

PROPOSITION 3.3.4. Let f € H*(D;C"), then it has nontangential limits almost
everywhere on T and n.t.lim,_,¢ f(z) = f(¢) holds in the sense of L?(T;C").

For the following considerations, we need a vector-valued version of Lemma 1.2.7. The
upcoming proof mostly expands on [Kall2], II., but some ideas are taken from [BH12]
and [Tho03], II.

LEMMA 3.3.5. Let (2, A, ) be a measure space, where p is a finite nonnegative
measure, and let © : Q@ — C™*™ be measurable. Set

)

Mo - dom Mg — L?(Q;C™)
o g — Oy

where
dom Mg := {g € L*(€;C") | ©g € L2 (;C™)}
is a linear subspace of L*(Q;C"). Then we have

1. The space dom Mg is dense in L*(Q;C") and Mg is a closed operator, i.e. the
graph of Mg is closed in L*($;C") x L?(Q;C™), when this Cartesian product is
equipped with the product topology.

2. The following statements are equivalent:

(a) © belongs to L>(; C™*™), i.e. it is essentially bounded.

(b) Mo € B(L*(Q;C"), L?(Q;C™)), i.e. it is defined everywhere and bounded.
(¢) Mg is bounded at least on a dense subspace L of dom Me.

(d) dom Mg = L?(£;C™).

In this case, Mo maps L*(Q; C") into L?(;C™) and | Me|| = O] Lo (@icmxny =
esssup,cq [[O(w)| :=inf {C >0 | p({we Q| [|Ow)] >C}) =0}

Proof. For the first claim, take f € L?(Q;C") and set Ay := {w € Q| [|[O(w)| < k} as
well as fi := xa, - f, where xa, is the indicator function of the set Ay. Since f is square
integrable,

/ 10(w) i () [2n ds = / 10 (@) f(@)[2m dp < / 102+ 11 ()12 dy
Q Ay Ay
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< 2 /Q i)l ds

shows that all functions fi belong to dom Mg. Furthermore,
1f = fll720,cm) = /Q 1£(w) = xa, - F@)|En dp = /QXQ\Ak ALf @)IEn dpe.

Since xo\a, - [|f()||&n converges to zero pointwise, we apply the Dominated Convergence
Theorem with majorant ||f(.)||%., which yields that (fx) converges to f in L?(;C").
Hence, dom Mg is dense in L?(Q, C").

Secondly, we show the closedness of Mg. To this end we identify the operator with
its graph. Let [f;,0f;] € Mg for j € N and suppose that ([f;,©f;]) converges to
[f,g] in L?(Q;C") x L?(2;C™). We need to show that Of = g. It is a well-known
fact that convergence of (f;) in L?(Q;C") implies the existence of a subsequence (fj,)
converging pointwise almost everywhere on €2 to f. The same considerations involving
(©f;,) and L?(£; C™) get us yet another subsequence (f;, ) such that (©f;, ) converges
pointwise almost everywhere to g. Clearly, (f;, ) still éonverges to f and therefore,
(©fj, ) converges to O f. Thus, ©f = g almost e\;erywhere on  and Mg is closed.
Next,l we show the four equivalences of the second claim.

(a) = (b): For f € L?(£;C") we have

/ 10(w) () [[Zm dpt < / 1012+ 1 )2 dis < es5upcq Q@I - 1122y

Hence, ©f € L?(£;C™), meaning f belongs to dom Mg, and ||Mg| < O] oo (@;cmxny,
i.e. Mg € B(L*(;C"), L*(;C™)).

(b) = (a): Let C' € [0,00) be arbitrary with C' < ||©|| oo (,cmxny, Where [|O|| oo (q,cmxn)
is at first understood to be infinite if © is not essentially bounded. The set

N:={weQ||OWw)]>C}CQ

has positive measure by the definition of the essential supremum. Let A := {xk ‘ ke N}
be a countable dense subset of the unit sphere in C". For every w € N there must be
an z, € A such that ||©(w)zk|| > C by the definition of the operator norm. If we set

Ni = {w € Q| [|Ow)zillcm > C}

for k € N, we get N = [,y Nk- Since © is measurable, the function (w — O(w)xy) is
measurable, too, for any k € N. Because the norm is continuous, (w +— [|©(w)xg||cm) is
measurable as well. Therefore, every Nj belongs to the o-algebra A. As u(N) > 0, there
exists a K € N such that Ng has positive measure. Now define f := xn,2x : @ = C",
where x v, is the characteristic function of the set N and xx € C" is the corresponding
unit vector. It follows from the above considerations that f is measurable. Because of

/ 1 (@) dpe = / ol du = / 1 dji = p(N) > 0
Q Ng Ny
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and the fact that y is a finite measure, we get f € L?(£2;C") and that it is not the zero
function. Consequently,

IMoll* - 111 Z2(cny 2 1Mo fllZ2em) = /Q 1©(w) f(w)[|Em du =

:/ H@(w)xK”%m dp > CQ/ 1dp=
Ng Ng
= C?u(Nk) = C*| f1I72(ucmy-

From || f||z2(q,cry > 0 we conclude C' < |[Mgl| < oo. Since C' < ||O][ o (qsomxn) Was
arbitrary, we finally get |||z (qcmxn) < || Mel| < oco.

(b) < (d): This is a consequence of the Closed Graph Theorem 1.2.3.

(b) = (c): This is trivially true.

(¢c) = (d): Since Mg | L is bounded on the dense subspace £, it has a continuous
extension C' € B(L?(€;C"), L*(€;C™)). If a net ([f;, C fi])icr in C converges to [f, g] €
L2(2;C") x L?(2;C™), then f belongs to L?(€; C*) = dom C and since C is continous,
fi = f implies C'f; — C'f. The uniqueness of limits shows that C'f = g, i.e. [f,g] € C
making C a closed operator. Therefore, Mg | L C C = C.

On the other hand, take f € L?(Q;C") and a net (fi)ier belonging to £ such that
fi = f. Clearly, this implies that the net ((Me )f’b)zel (Cfi)ier has the limit
Cf € L*(2;C™) by the definition of C. Hence, the net ([fl, (Mg | [')fi])iel converges

to [f, C'f]. This limit must belong to Mg [ £. Therefore, C C Mg | L.
So we have shown Mg [ £L = C. As we know from the first claim, Mg is closed and
hence, Mg = Mg O Mg | L = C. Therefore, dom Mg O dom C = L2(Q cm™). O

DEFINITION 3.3.6. We set L(T; C™*") := L>(T; C™*") N L% (T; C™ "), i.e. the
space of all essentially bounded (m X m)-matrix valued functions such that all their
negative Fourier coefficients vanish.

DEFINITION 3.3.7. Similarly to ¥,, in (3.5) we define for n,m € N

o { HAD;C™*my L2 (T;Cm)
e (ZHZ?;OZk@k) = (C%Ziogk@k) 7

which is also an isometric isomorphism, when L?(T;C™*") is provided with the norm

(3.7)

H'”LQ(T;Can) = ||-HL2(T;(an~n).
DEFINITION 3.3.8. For n € N we write

U { LX(T;C") — L*(T;C")
v fo= (C=Cf(Q)

for the shift operator on L?(T;C").
Clearly, we have Un = Mdiag(@—)(,n) = Mdiag(id'ﬂ*,n)'
LEMMA 3.3.9. The shift operator U,, on L?*(T;C") is unitary for every n € N.
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Proof. Since L%(T;C") is isometrically isomorphic to £2(Z;C"), we can calculate

(Unf, 9)r2(reny = ( > Ftag, Y Ckbk) = ((ak-1), (0r)) o ey =

k=—o00 k=—o00

= Z kaak—l = Z ka+1ak:(f’ Mdiag(@—)z,n)g)LQ(T?Cn)

k=—00 k=—o0

for f,g € L*(T;C") with Fourier coefficients (ay)rez and (by)rez. Hence, we have shown
that Uy = M;ae(cs¢,ny- This implies for every f e L?(T;C") that

U;Unf = Mdiag(@_)an)Mdiag(Q—)C,n)f = Mdiag(g._,@,n)f = Mlnf = Inf = f = UnU;:f,
ie. Uyl =U;. =

These concepts open up a way to recover the (m X n)-matrix valued multiplier functions
in this higher dimensional setting just as in the one dimensional case.

LEMMA 3.3.10. Let V,,xy, be the isometric isomorphism from (3.7). Then
Urnsen (Mnxn (D)) © LP(T; C™).

Furthermore, Wy,xn preserves the norm, d.e. |[Wysn(.)|poo(momxny = [|lloo- Addi-
tionally, if © € My xn(D), or equivalently © € HX, (D) due to Lemma 3.2.13, with
O = Vyxn(0) and if To and Mg signify the corresponding (m x n)-matriz valued mul-
tiplier operators, mapping H?(D; C") into H?(D; C™) and L*(T;C") into L?(T;C™), we
have that Mg maps L3 (T;C") into L% (T;C™) as well as

U

m

Yo MgoW¥, =Te. (3.8)

Proof. Let © € My xn(D) = HX, (D) and notice that © is bounded and has a power
series expansion with power series coefficients (©y) with ©; € C™*" for k € Ny. Fur-
thermore, To € B(H?*(D;C"), H*(D; C™)) with [|Te| = ||©]|s, all according to Lemma
3.2.13.

The fact that © belongs to H®,, (D) C H2(D;C™*") means that © = ¥,,,,(0) =
(C—= >0 ¢*Oy) belongs to L%(T;C™*") C L*(T; C™ ™). Hence, we can form Mg,
which maps L?(T;C") into L?(T;C™). Furthermore, it is a closed and densely defined

operator due to Lemma 3.3.5 and its domain is
dom Mg = {f € L(T;C") | &f € L2(T;<Cm)}.

Our next aim is to show that Mg is bounded on the C"-valued polynomials C[z; C"] and
then infer boundedness everywhere on L?(T;C").

First, we know that UF € B(L?(T; C?)) is unitary for all k € Z and every dimension i € N
due to Lemma 3.3.9. Furthermore, HUTerMéfHLQ(T;(Cm) = ||Mgfllz2(r,cm), as elements of
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[0, oo], implies M@Uﬁf = U,’flM(:)f for all f € dom Mg and Ukdom Mg = dom Mg, i.e
MgU) = Uk Mg,

Let B = {ei eCn ‘ 1=1,.. .,n} be the canonical basis of C". Now define for j > 0
and r € B the function q := z — 27z, which clearly belongs to #2(ID; C"). Applying Te
gives O(2)q(2) = > 70 2" Ok = D ke 2kOy_jx. Using U,, gives

U (Toq) = ¥, (0q) = ¥y, <z =) zk@k_jx> = <c — ng@k_jx> =
k=3

k=j

= (¢~ FO()x) = (¢ = B(0)F(0))

with ¢ = ¥,,(¢). Because of linearity, we get ¥,,,(Tor) = O-7 for all elements 7 of the ring
of C"-valued polynomials. T herefore v, ((C[z (C”]) C dom Mg and V., (Ter) = Mgr for
all r € C[z;C"]. In particular, Mz¥, (C[z;C"]) C L% (T; (Cm)

The trigonometric polynomials ( C(z for k € Z and = € B all belong to dom Mg. Hence,
we can look at the set

N
7;1;:{ Z Ckak | NEN(),(I_N,...,(INE(Cn} QdomMé
k=—N

For p = (¢ — Zg:_N ¢kby) € Ty, define ¢ via

N 2N
UG = (c S c“%) - << - chbk_N) — e I2(T,Ch).
k=—N k=0
Hence,
Mgp = MgU, Vg = U, N Mgq = U,," ¥, (Toq). (3.9)

Taking the norm of (3.9) and using that U; and ¥, are isometric for all i € N, we arrive
at

Mgl 2y = 1Un N Uin(Toq) | z2r,emy = 1Todll22m.cmy < 1 Toll - /2 meny =
=[18llso - 1Un N ¥n(@) |l 2(rscny = 1O lloe - 1U; NGl r2m,cny =
= [Olleo - [IPll L2 (Ts0m)

Since the last expression on the right is finite, the operator Mg is bounded on 7p.
As T, is densely contained in L?(T;C"), this means that Mg is bounded everywhere,
ie. Mg € B(L*(T;C"),L*(T;C™)). As the polynomials ¥, (C[z;C"]) are dense in
L3 (T; C") we obtain from MgW,(C[z;C"]) C L% (T;C™) and the continuity of Mg that
MgLA (T;C") C L% (T;C™). Additionally, we have proved that

18] oo (ricmxny = | M| < [[©]]oo- (3.10)

54



H2(D; C") as a Subspace of L?(T;C")

To show the converse of (3.10), notice from (3.9) we get ¥, o Tg = Mg o ¥,, on the set
of C"-valued polynomials contained in H?(ID; C"). Since this set is a dense subset, this
identity is even valid on the whole of #?(ID; C"), showing

Mg | LA(T;C") = ¥ 0 To 0 U}

We make a note of the facts that W ! is only defined on ¥,,(H?(ID; C")), which equals
L3 (T;C"), and that Mg maps L3 (T;C") into L (T;C™). This implies

To =V, ' o MgoW,
and
1©lloc = [ Toll = [1¥7," 0 Mg 0 Wyl < | Mgl = O] oo (zicmony- (3.11)
Combining (3.10) and (3.11) gives HéHLoo(’]I‘;(Can) = ||®||o. Furthermore, this also shows
that U,,,x,(0) = © € L*(T;C"). Therefore, © € L3°(T; C™*"). O

LEMMA 3.3.11. Consider the mappings V; and ¥;y; defined in (3.5) and (3.7). Let
01 € HZ,,,(D) and ©y € HY, (D). Furthermore, let h € H*(D; C"). Then we have the
two identities

Uisn(0201) = Wism(02) Vinxn(01)
U, (©1h) = U0 in(01) Uy (h)

Proof. We remind ourselves of the mapping ¢ = ¥; as defined in (2.3). Let
{ei ’ 1= 1,...,n}, {f] ‘jzl,...,m} and {gg ’ Ezl,...,k‘}

be the respective canonical bases of C*, C™ and CF. Clearly, f]H O16;, gf ©2f; and
gf®2®gei all belong to H*°(D). So according to Corollary 2.2.10 we have

P

9 Upn(0201)e; = (C = g7 (0201)(Q)es) = ¥(g;70201€;) =

ng@gfjff@lei) =S (g1, [ 0rei]) =

7=1

U(9i'Oaf;) (] Ores) =

M =

J=1

1

<.
I

(¢ a'0:(0) 1) (¢ f101(Q)es) =

<
Il
—

[ I
(= 1]

[géqukxm«a?)fj] [f]H\Iijn(@ﬁez] -

<.
Il
-

= 91 Uhem(©2) [ D [if] Vnscn(©O1)es =
j=1
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= .gg{\I’ka(@Z)\Ijmxn(@l)ei

Take note that Z;ﬂ:l fi fJH is the identity matrix on C™. The above calculation works
for ¢ =1,...,k and ¢ = 1,...,n and because of the basis property, the first claim is
proved.

For the second claim, notice that fJH@lei belongs to H*°(D) and that eZ»Hh belongs to
#H2(D). Thus, again with Corollary 2.2.10, we conclude that

0, (01h) = (¢ = fH(O10)(Q) = w(ff@l ) =
= Z fT01eiel n) = Zq/; flle1ei] [ef'n]) =

—Z¢ f; @162) (ef{h):

[ n(©1)ei] [el W, (R)] =

I
,_\

@
I
—

n

= f]H\I’an(Gl)[ZEZ ezH]\I/n(h) =

=1
= fflqjmxn(@l)\pn(h)'

Again, Y 1", e;ell is the identity matrix on C". As before, this works for j = 1,...m
and because of the basis property, the second claim follows as well. ]

THEOREM 3.3.12. Let M € B(L*(T;C"),L*(T;C™)). Then UnM = MU, and
M mapping L% (T;C") into L2 (T;C™) both hold if and only if there exists a function
© € Hpy.,(D) such that M = Mg for O := U,in(©). In this case © is uniquely
determined by M .

Proof. The necessity of the conditon follows from Lemma 3.3.10 and

UnM = Magiag(idy,m) M,

6~ Mdiag(idqr,m)@ = Mg diag(idr,n) Mg Maiag(idyny = MUn

if M = Mg for a function © 1= Wy, (0) € L(T; C™*™).
Regarding sufficiency, we define 7' := W ! o M o W,,. The operator T is well defined
since M maps L? (T;C") into L (T;C™), so T € B(”HQ(]D); C"), H*(D; (Cm)) Obviously,
S; = \Ill._1 oU; o ¥;. Hence, using U,,M = MU, yields
SmoT = (V' oUnpoWy,)o (Vo MoW,) =

:\IlglloUmoMo\I/n—

:\Il;lloMoUno\Iln:

= (U oMoW,)o (¥, oU,00,) =

=ToS,.
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Therefore, T" satisfies all conditions of Theorem 3.2.14. Thus, there exists a function © €
HX, (D) such that U, )to M oW, =T = Tg. We set © := U,,,,(0) € LL(T; C™*").By
Lemma 3.3.10 we also have T' = Ty = \II,;Ll oMgoW,. In particular, MgoV,, =MoV,,
which means that Mg | Li(']['; C"=M]| L%_(']I‘; Cm). ‘ ‘

The property MU,, = U,,M obviously extends to MU;, = U}, M for j > 1 by induction.

Because of U, ' = My sz, it follows that M = MUU, " = U, MU, '. Applying
U, from the left gets us U,,'M = MU, ! and this again extends to UM = MU,
for j > 1. Similarly, Uy, Mg = MgU;, for j € Z.

Consider the ring of trigonometric polynomials

N
T = { > Fap | NeNpay,...ay € @n} C L*(T;C")
j—

and let p € T,,. Obviously, UNp € Li(’]l’;(C”) for sufficiently large N € Ny. Hence,
MUNp = M(:)Uflvp. Applying U,V gives

Mgp = U,,NMgUNp = U, N MU} p = Mp.
Thus, M = Mg holds on T,,. Since T, is densely contained in L*(T;C") and because M

and Mg are both continuous, we conclude that M is an (m x n)-matrix valued multiplier

operator with (m X n)-matrix valued multiplier function © € L2 (T; C™™) on the whole
space L?(T;C"), i.e. M = Mg everywhere.
The uniqueness of © is a consequence of Theorem 3.2.14 and Equation (3.8). O

LEMMA 3.3.13. For every O € L3(T; C™*™) there exists a function © € Hys, (D)
satisfying VU, xn(©) = ©.

Proof. Due to Lemma 3.3.5 there exists Mg € B(L*(T;C"), L*(T;C™)) connected to
© € L(T;C™*") and with ||O]| oo (mcmxny = [[Mg]|. Clearly, Uy, Mg = MgU, holds.

Furthermore, let © have Fourier coefficients (Ok)rez — take into account that for
negative indices k we have that O is the zero-operator — and take a polynomial
p € ¥, (C[2;C"]) € LA(T;C") of the form p(¢) = ngvzo ¢Fby. For technical reasons, we
set by := 0 for k € Z\{0,...,N}. Then

Mgp=©-p= (m (gc’“@k) - (kzj;ckbk» = méc’f(;@jbw)

Since M; maps into L?(T;C™), the sequence (E?:o Gjbk—f')kez must be square-sum-
mable. Therefore, Mg maps the norm dense subset ¥, (C[z;C"]) of L% (T;C") into
L%(T;C™). For f € L2(T;C") choose a sequence of polynomials (pn)nen from the
space ¥, (C[z; (C"]) such that (py)nen converges to f in norm. Since Mg is continuous
and because L2 (T; C™) is closed, the calculation

M = Mg (Jim o) = Jim Moo

o7



Chapter 3. Vector-Valued Analytic Functions and the Space H2(ID; C?)

shows that Mg maps L3 (T;C") into L3 (T; C™).
Hence, Theorem 3.3.12 is applicable and there exists a function © € H>?, (D) such that
Vpxn(©) = 6. O

We collect the statements of Lemmata 3.3.10, 3.3.11 and 3.3.13 in the following
THEOREM 3.3.14. The mapping

mXxn mXxn

is linear, bijective and isometric, i.e. ||[Wisn(.)|roo(m,omxny = ||.|loo- Furthermore, if
01 € HY,,,(D), ©2 € HS, (D) and h € H?(D;C"), we have the following multiplicativ-
1ty property:
qlkxn(®2®1) = \I/kxm(GQ)\I/mxn(@l)
U (O1h) = Uhsn(01) U, (h)

3.4 The Structure of Higher-Dimensional Multipliers

We follow [Nagl10], V, in this section. In our source the following results are proved in the
more general case of analytic functions that take values in arbitrary separable Hilbert
spaces §) or &. This also involves working with H?(ID; ) and considering operator valued
functions mapping D to B($), &). However, we restrict ourselves to the finite dimensional
case.

DEFINITION 3.4.1. Let © € H ., (D) be a bounded analytic function. Then we

mXn
define ©7 : D — C™™, where O7(z) := O(z)! = @(E)T, and call it the pointwise
conjugate adjoint of ©.

Note that ©% is NOT the adjoint of ©, i.e. in general we have
(@f7 g)H2(D;(Cm) 7& (f7 @#g)'HQ(ID);(C")
for f € H*(D;C") and g € H2(D;C™).
LEMMA 3.4.2. Let © € H,, (D) be a bounded analytic function. Then ©% is analytic

mxn

and bounded as well, i.e. ©% ¢ HX,, (D). Furthermore, we have ||O| s = |07 ]|co-
Proof. Because of
o H oo oo
o#(z) =0(z)" = (Z z”@n> => (e, =) "0
n=0 n=0 n=0

it easily follows that the pointwise conjugate adjoint of a bounded analytic function, i.e.
(2 Y00, 2"OH), is analytic in D as well. Furthermore, we have

sup |07 (2)|| = sup [©(2)7|| = sup |©(2)|| = sup |O()].
zeD zeD zeD zeD

So it is bounded by the same bound as © . 0
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DEFINITION 3.4.3. Let © € H>, (D) be a bounded analytic function. If ||O|. < 1,

then it is called a contractive analytic function. If © additionally satisfies ||©(0)z|| < ||z]|
for all z € C™"\{0}, then it is called a purely contractive analytic function.

A direct consequence of Lemmata 3.2.13 and 3.3.10 is the following
COROLLARY 3.4.4. If © is contractive, then so are To and Mg.
DEFINITION 3.4.5. If © € H,, (D) satisfies that ©(0) is a unitary operator, i.e.

nxn

0(0)~! = ©(0)#, it is called a unitary constant.

The next proposition casts some light on the nomenclature of this definition. Note that
for n = 1 this is just the maximum modulus principle in complex analysis.

LEMMA 3.4.6. Let © € H> (D) be a contractive analytic function. If ©(0) € C**"

nxn

is a unitary operator, then O(z) = ©(0) for all z € D. Hence, O is a unitary constant.

Proof. Take z € C" and define f, := (z — ©O(2)z). Clearly, (z — x) € H2(D;C").
By Lemma 3.2.13 we have f, = To(z + x) € H?(D;C"), and by the Cauchy Integral
Formula we have

T 2mi

1 fe(Q) .1 [ 0
f=(0) /8Ur(0) c d¢ = 27r/0 fu (re ) do

for 0 < r < 1. Additionally, since ||©(z)|| < 1 on D, Lemma 3.2.13 yields

I fzllrzicny = 1To(z = @) lizmeny < | Tell - 12 = 2|z mcny < llzllcn-
Clearly, the constant function (z + f,(0)) is an element of H?(ID; C") as well. Thus,

1

2 .
(o e Ohioieny = lim e [ (50 £:0))

. 1 if
= hm ( fx(re ) deafx(0)>

r /1 2 0 cn
= (0(0)z, 0(0)z)cn = [|z[|En = [lz]lcn - [©(0)z|cn
> || fallwz ey - 1f2(0) 72 :cn)-

The Cauchy-Schwarz inequality assures us of the opposite estimate. Hence, f, and
(z — f2(0)) are linearly dependent, meaning O(z)x = k- O(0)x for every z € D. Setting
in particular z = 0 shows that the scalar £ must be 1. Therefore, O(z)x = ©(0)x for
every x € C". Hence, the range of © in C™*" consists of one single unitary operator. [J

Contractive analytic functions can be decomposed in a particular way.

PROPOSITION 3.4.7. Let © € HX,, (D) be a contractive analytic function. Then

mxn

there exist unique decompositions C" = A- & A— and C™ = B. @ B_ with
k:=dim(A-) = dim(B=) < min(n,m),

such that for every fived z € D:

29
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e The range of O (z) := O(z) | A< is contained in B., and
o The range of O—(z) := O(z) | A= is contained in B—.
Hereby,
e O, : D — B(A., B.) is a purely contractive analytic function, and
e O_:D — B(A_, B-) is a unitary constant.

We can therefore write © as a block operator

O, 0 Ao B.
0= :D— B e |, @
0 ©O- A_ B_

with purely contractive part O, € H(Oﬁ%k)x(nfk) (D) and unitary part ©— € HX,, (D).
Proof. To start, we define
A ={zeC" |z = @(O)H@(O)x} and B_:={y e C™ |y = @(O)G(O)Hy} .

Evidently, A— and B- are linear subspaces. For O- = (z — O(z) [ A=) we will
show that ©—(0) maps A— onto B—. First, take x € A_, apply ©(0) and remember
that we have ©(0)z = ©(0)0(0)70(0)z, hence ©(0)x € B—. For the other inclusion,
the same argument for y € B— and ©(0)” shows that ©(0)” maps B— into A—, i.e.
0(0)B= C A_. Applying ©(0) to this relation and using that it is the inverse of ©(0)
on B- yields the desired result.

Moreover, ©-(0) : A— — B_ is an isometry, since for x € A— we have

|O-(0)a]2 = (0-(0)2,0-(0)a)cn = (O-(0)7O-(0)z,2) _ = (@,2)en = |22

Thus, it is also injective and therefore a unitary operator. In particular, the two spaces
A_ and B_ have the same dimension k. Applying Lemma 3.4.6 to z — P_©_(z), where
P_ is the orthogonal projection onto B—, shows that P_O_(z) = ©-(0) for all z € D.

From
[2]* > |0=(2)z[* = || P=0=(2)z|* + (I — P=)O=(2)|* = |lz|* + |(I — P=)©O=(2)|?

for all z € A— we infer that P_©_(z) = ©-(z) on D. Hence, ©_(2) = ©-(0) for every
z € D.
Next, we rewrite A— and B_ as

A = {x eC |a= @#(o)@#(o)H:c} and B_ = {y eC™|y= 9#(0)H@#(0)y}

and repeat the same arguments with ©#% instead of ©. Then we get O7(z)(B=) =
07 (0)(B=) = A_.
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Let us now define A. :=C" 6 A_ and B :=C™ & B_. For x € A. and y € B_, we
have ©%(Z)y € A— and, therefore,

(O()a,y)en = (2,0(2)"y)en = (2,07 (2)y)cn = 0.

Thus, the range of ©(z) is contained in B..
Finally, we show that ©. : A. — B, is purely contractive. If there existed an x € A~
such that [|©<(0)x|/cm = ||z|/cn, then we would have

0= [|z[|En — 10<(0)z[Zm = (z,2)cn — (O(0)z, O(0)z)cm

and in turn z = ©(0)#©(0)x, i.e. z € A_. Since the constructed decomposition of C"
is orthogonal, this forces © = 0.

So we have shown that there are in fact decompositions as postulated in the proposition.
To show uniqueness suppose that there is another pair of decompositions with the same
properties, that is C" = C. @ C= and C™ = D. @ D—. Since ©(0) : C— — D_ is
a unitary transformation, we have ||c[|[cn = [|©(0)c||cm for every ¢ € C—, which infers
C— C A_. The inclusion cannot be proper, though, since if it were, there would be a
nonzero element ¢ € A— N C< satisfying simultaneously ||©(0)c||cm = ||¢||cn because of
c € A= and ||©(0)c||cm < ||¢|]|cn because of ¢ € C. Hence, C— = A_ and this implies

D_- =0(0)C= =06(0)A= = B
as well as
Co=C"e(C_=C"0A- = Ac
and
D.=C"eD_-=C"oB- =B-.
O]

The operator Tg connected to a contractive analytic function © affords us a way to
generalise some notions from Hardy space theory to our setting of vector valued analytic
functions.

DEFINITION 3.4.8. A contractive analytic function © is said to be
1. inner, if Tp is an isometry from H?(D; C") into H2(D; C™).
2. outer, if ToH2(ID; Cn) = H2(D; C™).

There is an alternative characterisation available for inner functions.

PROPOSITION 3.4.9. A contractive analytic function © € HX . (D) is inner if

and only if é(() is an isometry from C" into C™ for almost every ( € T, where © =
Upxn(0©).
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Proof. Suppose that é(() is an isometry almost everywhere on T. This clearly makes
Mg an isometry from L?(T;C") into L*(T; C™). Take any f € H?*(D;C"), then Lemma
3.3.10 assures us of

IToflhemem = || (w0 o Mg 0 . f]

L2(T;C™)

= || (v w.)]

H2(D;C™)

= ¥nfll2(ricny = I fllrzmicny,

so Tg is an isometry, i.e. © is inner.
Conversely, suppose that ||Te f|ly2mcm) = || fllnzmcny for all f € H%(D; C"). Since the
shift operators U,, and U, are unitary transformations, we use Theorem 3.3.12 to show

(o0t o)

= (U o Mx o\I/)f‘

L2(T;C™) L2(T; (Cm)

= (\Ilm o T@) = ‘|T9fHH2(D;(C’") -

L2(T;C™)

fllremeny = 1¥nfllp2reny =

_ (U oW >f‘

L2(T;Cn)

for f € H?(D;C") and k € Ny. Since {(Un*k o \I/n>f ‘ feH*(D;C"), ke NO} is dense
in L?(T;C"), this implies that Mg is an is?vmetry, ie. MgMé = M7, where I € C™"
is the identity matrix, obviously satisfying I = U,,»,(I) = I. As a result, we get for all
g.h € L*(T;C") that ([M7— MEMglg. h) = 0. As M} = Mg., we get

L2(T;Cn) o*’

1 2

o ([1 — ()" O(e?)] g (™), h(ew)) 9 = 0.

Cn

Taking in particular ¢ = x4z and h = x4y, where z,y runs over the canonical basis of

C" and A runs over the Borel sets of T, we conclude that I — O(e?)*0 () = 0 almost
everywhere. Hence, O(() is an isometry almost everywhere on T. O

COROLLARY 3.4.10. Let © € HX, (D) be a contractive analytic function. If it is
inner, then n < m.

Proof. By Proposition 3.4.9, (:)(C ) is an isometry from C" into C™ almost everywhere
on T. We fix one such ¢’ € T and get that @(C) is injective. Thus, @(C )C™ is an
n-dimensional subspace of C™. Consequently, we have n < m. O

For outer functions it is possible to make a statement about the dimensions of the
involved spaces, too.

PROPOSITION 3.4.11. Let © € H®,, (D) be an outer function and © = U, (0).
Then m <n and

(i) dimran O(z) = m for every z € D and
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(ii) dimran ©(C) = m for almost every ¢ € T.

Proof. As © is outer, we know that Tg has dense range in H?(ID; C™). Regarding (i), it
therefore follows that the orthogonal complement of ToH?(ID; C") in H2(ID; C™) contains
only the zero function. We remember the function K, : C™ — H?(D; C™) as defined
in Lemma 3.2.7, which satisfies (T@f, Kmvw(a))HQ(D;(Cm) = (@(w)f(w),a)(cm for any
f € H2(D;C™).

We proceed indirectly. If there existed w € D such that dimran ©(w) < m, then
O(w)C™ C C™. Hence, there would be a nonzero element o € C™ orthogonal to ©(w)C".
But then the nonzero element K, ,() is perpendicular to Tg f for every f € H?(D;C")
and this is a contradiction. Consequently, we also get m < n.

Concerning (i), let B = {ei ’ i=1,.. .,m} be the canonical basis of C™ and take
r € B. We notice that T having dense image in H2(ID; C™) means that for every
constant function g, := (z — x) there exists a sequence of functions (f) C H?(D;C")
such that Tg f converges to g, in H?(D;C™). By way of the mapping ¥,, from (3.5)
we have the identiy W, (#*(D;C™)) = L2 (T;C™) and this implies

1 2
lim /
k—oo 27 0

Convergence in the space Li (T; C™) implies the existence of a subsequence (@fkj) that

&(c™) () — Gule™)||

H d6 = 0.
Cm

converges pointwise almost everywhere on T, i.e. é(ew)ﬁj(ew) — g on T with the
exception of a set F, of zero measure. Letting x run over the set B and taking the union
of all the respective exceptional subsets of T, we end up with £ C T of zero measure.
For ( ¢ E, we get B C (:)(C )C™, which must therefore coincide with the whole space C™,
i.e. dimran ©(¢) = m almost everywhere on T. O

PROPOSITION 3.4.12. Let © € H, (D) be a contractive analytic function. Then
for © to be simultaneously inner and outer it is necessary and sufficient that it is a

unitary constant. In particular, m = n.

Proof. If we assume O to be a unitary constant, then m = n must hold and ©(0) € C**"
is a unitary matrix. By Lemma 3.4.6 we have ©(z) = ©(0) as a function on D. Hence
Te is a unitary transformation on H?(ID; C"). In particular, it is an isometry, i.e. © has
the property inner. As Ty is also a bijection, it trivially has dense range, so it is outer
as well.

To show sufficiency, we notice that © being simultaneously inner and outer infers n < m
and m < n due to Corollary 3.4.10 and Proposition 3.4.11. Moreover, Tg is a unitary
transformation of H2(ID; C"), because on the one hand © being inner means that Tg
is isometric and on the other hand © being outer means that ToH?(ID; C") is dense in
H2(D; C™). Since the isometric image of the Banach space H?(ID; C") must be closed,
this can only be true if Ty is bijective. Thus, it is unitary. Due to Theorem 3.2.14 we
have TS, H?(D; C") = S, ToH?(D; C") = S, H?(D; C"), where S, is the shift operator
on H?(D;C"). Therefore,

To[H?(D;C") © S, H*(D;C")] = H*(D;C") & S, H*(D; C"). (3.12)
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But the right hand side of (3.12) contains precisely the constant functions on D, because
S, H*(D;C") = {(ar) € /%(No; C™) ‘ ap =0}
and consequently
H*(D; C") & S, H*(D; C*) = {(ay) € £*(Nop; C") | a, = 0 for all k> 0} .

Thus, (z — ©(z)h(z)) is constant for all constant functions h € H?(ID;C"). Hence, ©
is a constant function itself. Equation (3.12) furthermore assures us of the validity of
ran ©(z) = C" for z € D, so O(z) is a bijective operator on C" for every z € D. Finally,
since ©(() is an isometry for almost every ¢ € T, this means that the constant value of
© must have this property as well. In particular, ©(0) € C™*™ is a unitary operator, so
O is indeed a unitary constant. O

We will conclude this section with some simple examples.

Example 3.4.13. Let the range of the following bounded analytic functions always be
(C2><2.

1. It is clear that ©1 = [ is a unitary constant and therefore both inner and outer.

oo (3 9)++( 9= (2 )

Clearly, the functions A\1(z) = 1 and A2(z) = z describe the eigenvalues of Oq. It
is also not difficult to see, that ©9 can be extended onto T and that

I~ 10
©9 is also contractive, although not purely contractive, because ©3(0) = I on

C x {0}. Since dimran ©3(0) = 1 < 2, it cannot be outer due to Proposition
3.4.11. However, since

2. Consider

6:(062(0) = 82080 = (3 | ) = 1.

it is inner as per Proposition 3.4.9.

3. Define

1—-2 0
@3(2).—I—SQ—I—ZI—< 0 1—Z>.
It can, just like O, be extended onto T by changing z to . This, however, implies
03(0)"05(Q) =1 —(’I = (2 —2Re ()] # I
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on T with the exception of the points (12 = % + gz’, so O3 is not inner.

We will now, however, show that ©g3 is outer. As per definition, T@SHZ(D; C?) must
have dense image in H2(ID; C2?), so we will proof that the orthogonal complement
of

To, H(D; C?) = {(g ~ gg) € H*(ID;C?) | (g) € H*(D; «:2)}

contains only the zero function. We proceed indirectly and suppose that there is
a nonzero function g = (g1,92) " € H?(D;C2) such that

(fi = Sfi, 91)m2m) + (f2 = Sf2,92)32m) = 0

for all (f1,f2)" € HZ(D;C?). Let us only consider the case where g; # 0 as
the second coordinate can be dealt with analoguously, and keep in mind that
fi—Sfi = ap + (a1 — ag)z + (ag — a1)z?> + .... Then we have the following
distinction of cases:

Case 1l If g1 = (z > ZnN:() bnz”) with by # 0 then f1 := (z — zN) and fo ;=0

produces f; — Sf1 = (z = 2N — zNH) and by the original definition of the
scalar product we get

(fi = Sf1,91) + (f2 — Sf2, 92) = (f1 — Sf1.91) = by # 0.

Case 2 If g = (z D bnz”) and there exists a pair of coefficients by, # br11 then
fi:= (2 2%) and fo :=0yields fi — Sfi = (2 2F — 2F*1) and

(fr=Sf1,01) + (f2— Sf2,92) = (f1 — Sf1,91) = bk — b1 # 0.

Case 3 If g; is as in the second case but all b, are the same, then g; ¢ H?*(D) or
g1 =0

Either way we get a contradiction, so g = (g1,92) " = 0. Thus, O3 is outer.

3.5 A Theorem of Beurling for Higher Dimensions

THEOREM 3.5.1 (Beurling). Let £ < H?(D;C™) be a closed subspace with £ # {0}.
Then L is Sm-tnvariant if and only if it can be represented as

L = ToH*(D;C"),

where n < m and Te € B(H*(D; C™), H*(D; C™)) is the (m x n)-matriz valued multiplier
operator connected to an inner (m x n)-matriz valued multiplier function © € HX, . (D).
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Proof. Regarding necessity, we note that by definition the operator Tg is an isometry if
© € H®,,, (D) is inner. Hence, £ := ToH?(D;C") is a closed subspace of H?(D;C™).

mxXn

With the help of Theorem 3.2.14 we easily see that
Sl = SpToH?(D;C") = To S, H2(D; C") C ToH?*(D;C") = L.

So L is necessarily left invariant by .S,,.

Conversely, we need to show that if S;,£L C L, then £ can be represented with the
help of an inner function. First, by identifying z € C™ with the constant function
(z = z) € H?(D;C™) we can embed C™ in H?(ID;C™) as a subspace. Clearly, S, is
isometric and S,,]?n(cm_LHZ(D;(Cm)Cm for every k € N. So C™ is wandering with respect to
Sm. Since the monomials form an orthonormal basis of the Hardy-Hilbert space, we can
write

H(D;C™) = My (C™) = P Sk.C™.
k=0

Hence, Sy, is a unilateral shift with generating subspace C™ in the space H?(D;C™).
Now set V := S, | L. Of course, V is isometric. Since the subspace L is closed, it is
a Hilbert space and Theorem 1.2.11 on the Wold decomposition is applicable. But the
calculation

(Ve () SkH(D;Cm™) = {0}
k=0 k=0

shows that V lacks a unitary part. Setting £ := L&V L, the Wold decomposition reduces
to L = Pre, VFL. Notice that n := dim £ < dim C™ = m due to Proposition 1.2.13.
Let B={e; € C" | j=1,...,n} be the canonical basis of C" in #?(D;C") and let

E:={0; e LCH*D;C™) |j=1,...,n}

be an orthonormal basis of £ in H?(ID;C™). We define a function © : D — C™*" by
setting © := (01,...,0,). Clearly,

G = {s’;ej | keNo,jzl,...,n} and  H = {V’f@j | keNg,jzl,...,n}

are then orthonormal bases of H?(ID; C") and L, respectively. If we define a mapping

T G — H
' Sfej — -Vij

we can extend T uniquely to a unitary transformation, also called T, with domain
H2(D; C") and range £ C H?(D;C™), i.e. TH?(D;C") = L.

We need to show that © € H®,, (D) and T' = T and that © is inner. The operator T’
clearly satisfies

TS,Ske; = TS* e, = V1O, = VV*Q; = VT SFe; = S, TSke;
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for arbitrary j € {1,...,n} and k € Ny, i.e. we have T'S,, = S,,,T. According to Theorem
3.2.14 there exists a uniquely determined ©" € HS°, , (D) such that T = Tes. Because of

mXxXn
(z—=0'(2)ej) =To(ze;) =T(z — €;) = (2 = 0;)
we conclude that © = ©’. Since T is isometric, this means that © must be inner. O

As in the one-dimensional case, the inner function © in the multi-dimensional Beurling
Theorem is unique up to multiplication with a unitary matrix.

PROPOSITION 3.5.2. Let ©1,02 € HX (D) be inner functions and suppose that
To,H?*(D;C") = T, H2(D; C™). Then there exists a unitary matriz C € U(n) such that
0, =0,C.

Proof. We set L := To, H*(D;C") = Te,H*(D;C"). By definition, Tg, and Te, are
isometric due to ©1 and Oy being inner. As the isometric image of a Banach space,
L is closed. Furthermore, Tp, : H?(D;C") — L is bijective and bounded. By the
Bounded Inverse Theorem 1.2.4, the operator Téll : L — H?(D;C") is bounded, too.

Consequently, we have T®_11 oTe, € B(?—[Q(ID); (C"))
Now we infer from S,,Te, = Te,S, that

Sy 0 Tgll = Téll oTg, 08,0 Tgll = T(gll oSnoTg, o Tgll = T(gll oS,
holds on £. This implies that T®_11 o T, commutes with S,, because
Sy 0 Téll oTe, = Téll oSmoTe, = Téll oTo, 0 Sy

holds on H2(ID; C"*). So all requirements of Theorem 3.2.14 are satisfied for Téll oTo,.
Thus, there exists a function O3 € H2S,, (D) such that T(gll oTe, = To,, or alternatively

nxn
To, = To, 0 To,. As Te, : H*(D;C") — L is an isometry, so is Téll : L — H2(D;CM).
Therefore, since T, is a composition of isometric operators, it is itself isometric. By
Lemma 3.2.13 we have [|©3]|c = [|To4]| = 1, so O3 is a contractive analytic function
and, furthermore, it is inner. Moreover,

To, H2(D;C") = Ty ! 0 To, H2(D) = Tg ' To, H2(D; C) = Tg ' £ = H*(D; C)

proves that ©g is also outer. According to Proposition 3.4.12, ©3 is a unitary constant.
Therefore, ©9 = ©:1C is fulfilled for C' := ©3(0) € U(n). O
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Chapter 4

Generalisation to Linear
Relations

Since linear relations expand on the consept of linear operators, it seems natural to
ask whether a version of Theorem 2.1.14 can be formulated to hold also in this more
comprehensive case. We have already shown that subsets of H%(D) x H?(D) can be
understood as subsets of H2(ID; C?). Therefore, it is possible to employ the theory of
vector-valued functions developed in the previous chapter. It remains to find a suitable
notion to replace the condition of commutating with the shift operator.

4.1 Shift-Invariant Linear Relations
We begin with the following conception.

DEFINITION 4.1.1. Let R < H?(D) x H?(D) be a closed linear relation. Then we
call it So-stable, if R, considered as a linear subspace of H?(D;C?), is invariant unter
So € B(HQ(D; (CQ)).

Since we are going to deal with the interplay of the operators S and S, we formulate
the next result for our convenience.

LEMMA 4.1.2. Consider the shift operators S € B(’HQ ) and Sy € B(H2 D; (CQ))
Let 7 be the mapping that identifies the Cartesian product H?(D) x H2(D) with H?(D; C?)
from Proposition 3.2.4. Then the diagram

HA(D) x H2(D) —— H2(D; C?)

s Js.

H2(D) x H*(D) —— H2(D;C?)
commutes.
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Proof. By definition, an ordered pair [f, g] € H?(D) x H?(D) is mapped to the vector-
valued function h := (f,g)" € H%(D;C?) by 7. Since Sy does nothing else but

2 g) =5 (- GO)) = (== () = (- (56)) - (0)
the assertion follows. O

Some operators and linear relations inherit being Ss-stable through another of their
properties.

LEMMA 4.1.3. Consider the operators S € B(H?*(D)) and So € B(H*(D;C?)) and
let R < H2(D) x H2(D) be a closed linear relation with dom R = H2(D). If S and R
commute as linear relations, then R is Sa-stable.

Proof. Assume that SR = RS as linear relations. If we apply S~! from the right, we get
SRS~ = RSS™!, which is well-defined on dom S~! =ran S = {f € H*(D) ‘ f(0) =0}.
On the one hand, it is easy to check that SS™' = I gxrans. Consequently, the
condition [f, g| € Rl an Sxran s 18 equivalent to [f,g] € R and f(0) = 0. We therefore get
SRS~' = RSS! CR.

On the other hand, we notice that [f,g] € SRS~ is equivalent to [f,p] € S~!, that is
[p, f1 €S, [p,q] € R and [q, g] € S, for some p,q € H?(D). Using that S is an operator,
we conclude f = Sp and g = Sq. In essence this shows that [p,q] € R if and only if
[Sp, Sq] € SRS™!. By Lemma 4.1.2, [Sp, Sq] = S2([p, q]). Hence,

SRS™! = {[Sp, Sq] € H*(D) x H*(D) | [p, q] € R} = S2(R).
Therefore, we have So(R) C R. O

COROLLARY 4.1.4. If an operator T € B(H*(D)) commutes with the shift operator
S, then its graph is Sa-stable.

LEMMA 4.1.5. Let R, T < H%(D) x H?(D) be two Sa-stable linear relations. Then we
have:

(i) dom R, ran R, ker R and mul R are all invariant under S.
(ii) The sets
dom R x {0}, kerRx {0}, {0}xranR and {0} xmul R
are all Ss-stable linear relations.
(iii) R~ is Sy-stable.
(iv) aR is Sa-stable for o € C\{0}.

(v) R+ T is Sy-stable.
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Proof. Suppose that [f, g] € R, then Lemma 4.1.2 assures us of Sy = S x S and we have
[Sf.Sqg] = S2([f,9]) € S2(R) C R (4.1)

Regarding (i): for f € dom R there exists g € H?(D) such that [f,g] € R. By (4.1), we
have [Sf, Sg] € R, and thus, Sf € dom R. This shows S(dom R) C dom R. The cases
for the range, kernel and multi-valued part are completely analoguous.

Concerning (ii), we notice that the linear subspaces dom R x {0} and {0} x ran R are
both clearly closed. The continuity of S then shows that

S(dom R) C S(dom R) C dom R.

Obviously, we have S{0} = {0}, so dom R x {0} is Se-stable. For {0} xran R we proceed
analoguously. Furthermore, ker R and mul R are both closed, due to Corollary 1.3.6, and
invariant under S, so ker R x {0} and {0} x mul R are Ss-stable as well.

For (iii), we remember Corollary 1.3.8 and see that R~lis closed. Since by definition
[f,g] € R7! if and only if [g, f] € R, equation (4.1) shows that [Sf,Sg] € R™! if and
only if [Sg, Sf] € R, so R~ is Sy-stable.

In (iv), we also use Corollary 1.3.8 to convince ourselves that aR is closed for a € C\{0}.
Again by definition, [f, g] € aR if and only if [f, é g] € R. Equation (4.1) combined with
the fact that Ség = éSg proves that [Sf,Sg] also belongs to aR, and thus, aR is
Sa-stable.

Finally, to show (v) we notice that [f,g] € R+ T is equivalent to there being functions
h,k € H?(D) such that g = h+ k with [f,h] € R and [f, k] € T. Clearly, if we have such
a decomposition of g then due to linearity of S we get a decomposition of Sg, namely
Sg = Sh+ Sk, with [Sf,Sh] € Sa(R) and [Sf, Sk] € So(T). Hence, we have shown the

inclusion marked with an asterisk in

S(B+T)C SR+ 1) C S3(R) + S(T) CR+T

and the first inclusion is due to S2 being continuous. Thus, R + T is Ss-stable. O

We remember Theorem 2.1.14, which stated that a continuous operator 7" on the Hardy-
Hilbert space commutes with the shift operator .S if and only if T" is a multiplier operator.
We can formulate a similar result for linear relations, using the property of So-stability.

THEOREM 4.1.6. Let R < H%(D)xH?(D) be a closed linear relation with R 2 {[0,0]}.
Then R is Sa-stable if and only if there exists an inner function © € HSS, (D) such that

R =ToH*(D;C")
with n < 2.

Proof. By Proposition 3.2.4, we can consider R < H%(D) x H?(D) as a closed linear sub-
space of H?(ID; C?). Due to Theorem 3.5.1 there exists an inner function © € HSS, (D),
where n < 2, such that R = ToH?(D; C") if and only if S2(R) C R. O
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We direct our attention to the fact that Theorem 4.1.6 permits two cases, i.e. an Sa-
stable linear relation can either be described as the transform of the Hardy-space H?(D)
or of the vector-valued function space H?(ID; C2).

The reason for this differentiation stems from Beurling’s Theorem 3.5.1. Setting, as in
its proof, V := S5 | Rand £ := ROV R, we have a Wold decomposition of R of the form
R = @72, V*e and because of Proposition 1.2.13 we know that dim £ < 2. In other
words, the number n takes the value 2 if and only if we can find two linearly independent
functions belonging to R, i.e. two vector-valued functions, that span £. The fact that
£ is spanned by a single function is therefore equivalent to n being equal to 1. We have
therefore proven

PROPOSITION 4.1.7 (Dimensional Condition). Let R < H?(D) x H*(D) be a non-
trivial Sa-stable linear relation. Then R is the transform of

e 12(D) if and only if RS Sa2(R) is one-dimensional.
o H2(D;C?) if and only if R© Sa2(R) is two-dimensional.

We will now discuss the two cases separately.

The case n =1

Let R < H%(D) x H?(D) be an Sp-stable linear relation. In this section, suppose that
the orthogonal complement of So(R) in R is one-dimensional. By Theorem 4.1.6 and the
Dimensional Condition, Proposition 4.1.7, there exists © € HS2, (D) with R = ToH?*(D).
Therefore, © has the form
a
°=(;)

for a,b € H*(D). Notice that due to Proposition 3.5.2 © is uniquely determined up
to multiplication by a unimodular constant. The functions a and b therefore share this
uniqueness property.

PROPOSITION 4.1.8. Let R = ToH?*(D) and © = (a,b)" € H (D) with the
coordinate functions a,b € H>*(D). Then

R={[a-f,b-fl€ H*(D) x H*(D) | f € H*(D)} (4.2)
with
dom R = T, H*(D) and ran R = TyH?*(D).

Furthermore, [a(¢)|2 + [b(C)[2 = 1 must hold almost everywhere on T. In particular, a
and b cannot both be the zero function.
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Proof. First, we notice that
{6f € HX(D;C?) | f € HX(D)} = {(Z ;) € HA(D;C?) | f € HA(D )}
So with the help of Proposition 3.2.4 we see that R has the form given in Equation (4.2).
Secondly, we obtain from (4.2)
dom R = {g € H*(D \aheHQ( ) : g,
={a- fG%2 D) | f e HX(D)} =
= T, H*(D).

hl e R} =

A symmetric argument yields ran R = T, H? (D).

Finally, since © must be inner, ©(¢) is an isometric mapping from C into C? for almost
all ¢ € T as by Proposition 3.4.9. This directly implies that [@(¢)]? + [b(¢)]? = 1 must
hold almost everywhere on T and that a and b cannot both vanish. O

A direct consequence of Proposition 4.1.8 is the following
COROLLARY 4.1.9. Let R and © be as above. Then:
(i) R is densely defined if and only if the coordinate function a € H*(D) is outer.

(ii) R has dense range if and only if the coordinate function b € H*(D) is outer.
PROPOSITION 4.1.10. Let R and © be as above. Then:

(i) R is an operator if and only if the coordinate function a € H*(D) is not the zero
function.

(ii) R is a continuous linear operator R : dom R — H?(D) if and only if T,H*(D) is
nontrivial and closed, i.e. if and only if essinf |a] > 0.

(iii) R has trivial kernel if and only if the coordinate function b € H*> (D) is not the
zero function.

Proof. A linear relation is an operator if and only if its multi-valued part only contains
the element zero. In particular, by (4.2) we have

mul R = {g € H*D) | [0,g] € R} = {b- f e H*D) | a- f =0} .

Whenever a # 0 the first coordinate only vanishes for f = 0, in which case the second
coordinate automatically amounts to zero as well. Only for a = 0 can — and will —
mul R contain elements different from zero. This proves the first claim.

The second claim is a consequence of the first claim and Lemma 2.2.14.

Finally, since

ker R={g € H*(D) | [9,0] € R} = {a- f € H*(D) | b- f =0},

the third claim is symmetric to the first one. O
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COROLLARY 4.1.11. Let R and © be as above and suppose that R is an operator.
In this case we have in fact

R= (T, | TLHAD)), (4.3)
where

R: { TGHZ(].D}

—
— L

a

TyH?(D) o - dom Ty — H?*(D) |
b f foe by

with dom Ty = {f € H*(D) ‘ 2 - f € H*(D)} as the domain of the multiplication oper-
ator T . ’

Proof. Clearly, every function g = a - f € T,H?(D) = dom R satisfies 3 cg = % ca-f

b f e H2(D). -

In general, dom T, might very well be a proper superset of T,H?(D). So T% could

potentially be a pr%per extension of the operator R. We give an example to show how
this can happen.

Example 4.1.12. Let

on D. Clearly, © belongs to H5S, (D) and it is inner. Now set R := ToH?(D). Since we
have that a(z) = b(z) = %z for z € D we get

T, H*(D) =ran S = {f € H*(D) | f(0) =0} C H*(D).
However,

Ty =Ty = idyz ),

which is obviously defined everywhere. Hence, dom T, = H2(D) 2 T,H?*(D). Conse-
quently, T is a multiplier operator with multiplier function 1 whereas R is an operator

that is onlgf defined on a closed proper subspace of H?(ID).

We also remark that we find ourselves in a similar situation whenever b is a multiple of
a, ie. 2 € H*®(D), implying that T is a multiplier, and T, H?(D) C H?(D).

The following result is an obvious consequence of Equation (4.2).

COROLLARY 4.1.13. Let R and © be as above. Then:

(i) If a =0, then R = {0} x TyH?(D) and mul R = TyH?(D).
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(ii) If b =0, then R =T,H?*(D) x {0} and ker R = T,H?*(D).
PROPOSITION 4.1.14. Let R and © be as above. Then:
(i) The inverse R~ can be represented as R™! = T@iHQ(}D)).

(it) For o € T we have aR = TgH* (D).

0 = (2) and ~ Ola] = <(jb> .

Proof. According to Lemma 4.1.5 (4i) and (iv), R~! and aR are both Sy-stable if R has
this property. It is clear that the Dimensional Condition, Proposition 4.1.7, is unaffected
by forming R~! or aR. Furthermore, ©1 and Ola] are both inner. So a short calculation
involving the mappings ®;,,, and ®, from Lemma 1.3.7 yields

Thereby we set

Rilzq)inv(R)
= @y ({la- 1.5~ 1] € H2D) < H2D) | € HD)})
={[b- f.a- f] € H*(D) x H(D) | f € H2(D)}
= To, H*(D)

and

aR = @,(R)
= o {la- £,b- ] € HAD) x HA(D) | f € HAD)} )
={la- f,ab- f] € H*(D) x H*(D) | f € H*(D)}
— T H2(D).
O

Notice that it would be possible to define ©[a] also for complex numbers of modulus
different from 1. However, this then creates the problem of assuring that O[a] is inner,
which can very quickly become too complicated to solve, at least if we have to rely on
the tools we have developed in this work. A similar problem is discussed in Example
4.2.3.

The case n =2

Let R < H?(D) x H?(D) again be Sa-stable, but now suppose that there exist two linearly
independet functions spanning the orthogonal complement of Sy(R) in R. Then there
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exists a representation such that R = TeH?(D;C?) with © € HSS,(D) and © can be
represented by
a b
on (0 ) »
for functions a, b, c,d € H>*(D).

PROPOSITION 4.1.15. Let R = ToH?*(D) and © € HS,(D) of the form (4.4) with
the coordinate functions a,b,c,d € H*(D). Then

R= {[a-f1+b-f2,c-f1+d-f2] EH* D) x H*(D) | f = (}2) estz?(ﬂ);cz)} (4.5)

with
dom R = T, H*(D) + T, H*(D) and ran R = T.H2(D) + T;#*(D).

Furthermore, ©(C) must belong to the unitary group U(2) for almost every ¢ € T. In
particular, there cannot be a row or column in © made up entirely of zero functions.
Finally,

D — C
det@.{ z — detO(z)

belongs to H*° (D) and is not the zero function on D.

Proof. Since

of = (a b) <f1) _ (a'f1+b‘f2>

c d) \f2 c-fitd-fo

for any f € H?(ID; C?) with coordinate functions fi, fo € H?(DD), the representation (4.5)
follows with the help of Proposition 3.2.4.
It is clear that dom R is contained in T,H?*(D) + TyH?(D), so we need to show the
opposite inclusion. By the definition of the domain of a linear relation, we must find for
every f € T,H?(D) + TyH?*(D) a function g € H?(D) such that [f,g] € R. Due to our
choice of f there exist functions k& € T,H?(D) and ¢ € T,H?*(D) such that f =k + £. If
we set f1:= % and fo := %, then they are both clearly well-defined and belong to H?(ID).
Furthermore, f = a - f1 + b - fo is obviously satisfied. With g := ¢ f1 + d - fo we get
g € H%(D) and [f, g] € R due to (4.5). A symmetric argument for ran R runs completely
analoguously. N
Since © is guaranteed to be inner by Theorem 4.1.6, ©(¢) must be a unitary matrix
almost everywhere on T, which would be impossible to achieve if a column or row were
to consist just of zero functions. To prove the second claim regarding det ©, we proceed
indirectly. Assume that det ©® = 0, then

o ()= (“ ) = (ame) = (6)
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shows that
—b 21, (2
ker To D Is .)€ H*(D;C*) p 2 {0}.

Thus, Te € B(H?*(D;C?)) cannot be an isometry and © is not inner. We arrive at a
contradiction. Finally, we also see det® =a-d —b-c € H*®(D) since H>*(D) is closed
under addition and multiplication. O

We can immediately derive the following

COROLLARY 4.1.16. Let R and © be as above. Then:
(i) R is densely defined if and only if T,H?*(D) + TyH?(D) is dense in H2(D).
(ii) R has dense range if and only if T.H?*(D) + TyH%(D) is dense in H*(D).

In the previous section, where n = 1, we have seen that R is always an operator,
disregarding one pathological case. The behaviour of R for n = 2 is quite different,
however.

To explain this properly, we remember a certain concept of classical Hardy space theory:
Let g,h € H*°(D) and suppose that h is inner. Then we call g divisible by h if there
exists a function f € H*°(D) such that h - f = g holds. Furthermore, given any two
functions a,b € H>*(D), there exists a unique — within multiplication by unimodular
constant — inner function k£ € H*°(ID) such that both a and b are divisble by k and k is
maximal in the sense that any other inner function ¥ € H*°(ID) that is a divisor of both
a and b is also a divisor of k. This particular function k is the greatest common divisor
of a and b, denoted by ged(a, b).

PROPOSITION 4.1.17. Let R and © be as above. Then R is never an operator. In
fact,

T.H?*(D) for a=0,b#0

mul R = T H?*(D) for a#0,b=0
T aeco H2(D) for a,b#0
ged(a,b)

and each of the three spaces is a proper superset of {0}.

Proof. Since mul R is defined as the set of all functions g € H?(ID) such that [0, g] belongs
to the linear relation, we are faced with solving

a-fi+b-fa=0 (4.6)
c-fitd-fa=yg (4.7)

for fi, fo € H?(D). We proceed by distinguishing four cases.

Case 1 a =0b = 0. This is impossible due to Proposition 4.1.15.
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Case 2

Case 3

Case 4

78

a = 0,b# 0. We first notice that (4.6) implies fo = 0. Accordingly, (4.7) now
reads as ¢- fi1 = g and ¢ # 0 due to Proposition 4.1.15. In fact, if @ vanishes, the
coordinate function ¢ of © must have modulus 1 almost everywhere on T or else 5)
would not belong to the unitary group almost everywhere. This means that c is an
inner function. Consequently, 7, is an isometry and isometries automatically have
closed range. The above problem is therefore solvable if and only if g € T.H?(D)
because then fi := ¢ will belong to #*(ID). This shows mul R = T,H*(D) 2 {0}.

a # 0,b = 0. This case can be dealt with analoguously to Case 2 and yields
mul R = T,;H*(D) 2 {0}.

a,b # 0. We will first look at the operator T, : H*(D;C?) — H?*(D) and
determine ker T{, 3 to solve condition (4.6).

Lemma 4.1.5 implies that ker T{, ) is invariant under S. Furthermore, it contains
at least the vector function (—b,a), so it is not just the space {0}. Since the kernel
is always closed, all requirements of Theorem 3.5.1 are satisfied. Consequently, we
have one of the representations

ker T(, ) = TorH*(D; C?) or ker T, ) = T 7 H* (D),

where ©' € HSS, (D) and p, ¢ € H*(D) and both © and (p,q) " are inner. However,
if ker T}, p) were the transform of H?(ID; C?), this would imply (5((),5({)) ©'(¢)=0
for almost every ¢ € T. But as ©’ is unitary almost everywhere on T, its kernel

must be trivial, so we have a contridiction. Consequently, ker T, p) = T(, o) H?(D)
holds.

Next, notice that
T(_b,CL)T/)L[2(D) g ker T((Z,b) = T(p,q)THz(D)

holds. Therefore, we can define the operator @) := T_l)T 0 T(_p,q)7, which maps

(p.a
H?(D) into itself and is bounded. Because of
-1 _ g1 -1 _
So T(p,tz)T - T(JD,Q)T °Tpgr oS50 T(M)T -
_ -1 -1 _
o T(M)T 080 Tpg o T(m)T -

- T(;}q)T © 52

we arrive at
QoS =T, T paroS =

= Ty © 520 TbayT =

_ -1 _
=50 Tpgr o lcba =

=So0Q
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i.e. @ commutes with S. By Theorem 2.1.14 there exists a function k € H*(D)
such that Q = Ty. Hence, we get T pa)t = Tip,q7 © Th- Applying this operator
equality to the constant function with value 1 we get

) (5) = ()

for z € D and a similar relation for the boundary functions on T. We remember
that the vector (—b, a)' is in essence the first row of the inner function O, satisfying
[a(¢)|? 4+ |6(¢)|? = 1 almost everywhere on T. Consequently, the calculation

R(Q)IP = Q) - (B +1a(OF) = BOF + [a())” = 1
shows that k is inner. Additionally, we have that k is a divisor of both a and b.

We will show that k is in fact the greatest common divisor. Suppose that the
inner function k € H*(D) also divides both a and b, i.e. there exist functions
fas fo € H>®(D) such that a = k- f, and b = k- f,. We immediately get that
(—fo, fa) T € HSS,(D) is inner. Because of

k-(—a fo+b-fo)=—-a-b+b-a=0
we get that —a - f + b f, =0, implying
T(—fb,fa)T,H2(]D)) Q ker T(a,b)-

We follow the arguments already used for the operator ) above to conclude that
there exists a function A € H>(D) such that

-1
T(p,q)T © T(—fbyfa)T =T

Applying T(p,q)7 from the left and looking at the image of the constant function
with value 1 lets us conclude that A is inner and that we have

(k- A)p=-b=k-p

At least one line is nontrivial and allows us to cancel either p or ¢q. This shows
k- X =k, and thus, x is a divisor of k. We have therefore proven k = gecd(a, b).
Furthermore, the kernel of T{, p) satisfies ker T(, 3) = T( )T H2(D).

For (4.6) to be satisfied, we consequently have to set f; := —h - % and fo:=h- ¢

with some nonzero function h € H?(D). However, this transforms Equation (4.7)
into ¢+ (—h - %) +d-h-¢=h- de,tcg = g, inferring mul R = T _aec0 H?*(D) 2 {0}.

>

_b
%

ged(a,b)
Clearly, ggg(tacj)b) # 0, so the last inclusion is due to Proposition 4.1.15. Additionally,
we notice that ggg(ta@b) belongs to H>°(ID) and that it is inner, since the determinant

of a unitary matrix has modulus 1 and because ged(a,b) was defined to be inner.

Consequently, T qeto  is an isometry and ran T aeto  is automatically closed.
ged(a,b) ged(a,b)

79
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This shows that the multi-valued part of R is never trivial and therefore, R cannot be
an operator for any choice of coordinate functions. O

By a symmetric argument we easily get the next

COROLLARY 4.1.18. Let R and © be as above. Then R never has trivial kernel. In
fact,
T, H*(D) for ¢=0,d#0
ker R = TyH*(D)  for c¢#0,d=0
T det © H2 (]D)) fOT‘ C, d 75 0

ged(c,d)
and each of these three spaces is a proper superset of {0}.

Furthermore, with the help of Equation (4.5) the next result is immediate. We remind
ourselves of the fact that there can only be one zero function per column and row due
to Proposition 4.1.15.

COROLLARY 4.1.19. Let R and © be as above. Then:

(i) Ifa=d =0 then R = ({0} x T,H2(D))B(T.H2(D) x {0}).

(i) Ifb=c=0 then R = (T,H2(D) x {0})B({0} x T,H2(D)).

Some easy operations that we can perform on linear relations are again reflected in the
structure of the inner function ©.

PROPOSITION 4.1.20. Let R and © be as above. Then:
(i) The inverse R™1 can be represented as R™! = T@¢H2(]D)).
(ii) For a € T we have aR = TgH?*(D).

Thereby we set

@$:<2 Z) and ~ Ola] = (jc Ofd).

Proof. Both R™! and aR are Ss-stable if R has this property due to to Lemma 4.1.5 (44i)
and (iv). Furthermore, the Dimensional Condition, Proposition 4.1.7, is invariant with
respect to forming R~! or aR and ©4 and O[a] are both inner. As in the case where
n = 1 we can make use of the mappings ®;,,, and ®, from Lemma 1.3.7 to calculate

R~ =®;,,(R)

= Bine ({[a.f1+b-f2,c-f1+d-f2] € H* (D) x H*(D) | f = (ﬁ) e’HZ(IDD})
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- {[c-f1+d-f2,a-f1~|—b-f2] eH*D)x H*D) | f = <f1> e?—ﬂ(]D))}

f2
= To, H*(D)
and
aR = ®,(R)
— 3, <{[a-f1 +b- fase- fi+d- fo] € HXD) x HAD) | f = @) c 7—[2(ID>)})
_ {[a-f1 +b- fo,ac fi+ad- fo] € H* (D) x H*D) | f = (ﬁ) € 7—[2(]1]))}
= To "’ (D).

4.2 Some Examples
Example 4.2.1. We will look at some simple linear relations and determine how they
can represented in the spirit of Theorem 4.1.6.

1. The linear relation R = H?(D) x H%(D) is obviously equal to #?(ID; C?) and thus
So-stable. It can therefore be represented using the function ® = I, where [ is the
(2 x 2)-identity matrix, i.e.

R = ToH*(D; C?).

It goes without saying that © is inner. It should be noted that this choice is not
unique since for any a € T we could also use © = al to represent R.

2. Consider the linear relation R = {[0,0]} < H*(D) x H?(D). Setting

0 0 0
@1 = <O> and @2 = <O 0) y

we can clearly write R in two different ways, namely
R=Te,H*(D) and R =Te,H*(D;C?).

Although R is So-stable, neither of these representations arise from Theorem 4.1.6.
The reason for this is that Beurling’s Theorem 3.5.1 excludes trivial subspaces
and, by extension, so does Theorem 4.1.6. Additionally, ©1 and ©- both lack the
property inner.

3. Both the spaces Ry = H2(D) x {0} and Ry = {0} x H?(D) satisfy the requirements
of Theorem 4.1.6. It is immediately clear that

() ()
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Chapter 4. Generalisation to Linear Relations

are both inner and fulfil

Ry =To,H*(D) and Ry = Te,H*(D).
As in the first case, using a©®; for o« € T yields the same linear relations R; for
ie{1,2}.

The above examples are straightforward since the linear relations in questions are rather
easy to describe. The situation gets a more interesting, albeit more difficult, if the linear
relations arise from the graph of an operator.

Example 4.2.2. Let us first discuss two special classes of operators. As usual, the
choices we make for inner functions are unique up to multiplication by a constant 5 € T.

1. The operator

H2(D) — H*D)
T, :
feoaf
i.e. multiplication by a scalar «. # 0, clearly satisfies T, = ol as a linear relation,
where I < H?(D) x H?(D) is the identity relation. Take note that o = 0 describes

the linear relation R; in Example 4.2.1.3. It is easy to see that T}, is So-stable and
thus we have Ty, = Tg[oH?(D). The function O[] can be chosen as

1
V14 o \@
and therefore is clearly inner.

2. The shift operator S is trivially Ss-stable. By induction, the same is then true for
S* as k runs over N. The representation S* = T@[kﬂ-ﬂ(D) can then be achieved
through

o= 5()
for k € N.

Finally, let us examine how Theorems 2.1.14 and 4.1.6 interact.

Example 4.2.3. Suppose that T € B(H?(D)) commutes with the shift operator S. On
the one hand, there must exist a function h € H*(D) such that T" = T}, as we have
shown at the very beginning of this work in Theorem 2.1.14.

On the other hand, by identifying T" with its graph and considering it as a linear relation,
it is closed, according to Lemma 2.1.11, and Se-stable, due to Corollary 4.1.4. Hence,
Theorem 4.1.6 is applicable, so there exists © € HSS; (D) such that T = ToH?*(D).
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In the light of the previous examples it seems natural to suspect that up to multiplication
by a unimodular constant we will arrive at

1/1
o=" (h) |
The difficulty now lies in the fact of finding a suitable function x such that % and % both
belong to H*°(ID) and such that on T we have

ol lrgl =

almost everywhere. Unless / is the scalar multiple of an inner function, which implies
that |h| = ¢ € C on T and enables k := /1 + |c|?, we cannot make any more refined
statements about the particular appearance of ©. In fact, we would need other tools
from classical Hardy space theory to advance this further.
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