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Abstract

Grid adaptation in two-point boundary value problems is usually based on mapping a uniform

auxiliary grid to the desired nonuniform grid. Here we combine this approach with a new

control system for constructing a grid density function φ(x). The local mesh width ∆xj+1/2 =
xj+1 − xj with 0 = x0 < x1 < · · · < xN = 1 is computed as ∆xj+1/2 = ǫN/ϕj+1/2,

where {ϕj+1/2}N−1

0 is a discrete approximation to the continuous density function φ(x),
representing mesh width variation. The parameter ǫN = 1/N controls accuracy via the

choice of N . For any given grid, a solver provides an error estimate. Taking this as its input,

the feedback control law then adjusts the grid, and the interaction continues until the error

has been equidistributed. Digital filters may be employed to process the error estimate as

well as the density to ensure the regularity of the grid. Once φ(x) is determined, another

control law determines N based on the prescribed tolerance tol. The paper focuses on the

interaction between control system and solver, and the controller’s ability to produce a near-

optimal grid in a stable manner as well as correctly predict how many grid points are needed.

Numerical tests demonstrate the advantages of the new control system within the bvpsuite

solver, ceteris paribus, for a selection of problems and over a wide range of tolerances. The

control system is modular and can be adapted to other solvers and error criteria.

1 Introduction

We shall consider automatic grid control for two-point boundary value problems (2p-BVPs) of
the form

y′(x) = F (x, y), x ∈ [0, 1] (1)

and boundary conditions B0y(0) + B1y(1) = β. Most modern adaptive techniques use some
variant of the following idea: we introduce a new auxiliary variable ξ, and a grid deformation
map that maps a uniform grid in ξ to the desired nonuniform grid in the original independent
variable x. In fact, every adaptive technique can be represented in this way, as the nonuniform
grid trivially can be (invertibly) mapped to a uniform grid, by merely using the lexicographic
ordering of the grid points.
In a rigorous mathematical setting one requires the map to be a diffeomorphism. It can be
described in two equivalent ways. The first approach seeks a map x = x(ξ), subject to the
boundary conditions

x(0) = 0, x(1) = 1, (2)

with derivative dx/dξ denoted by xξ. Imposing the condition 0 < xξ < ∞ implies that x is a
monotone, invertible, differentiable function of ξ.
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The second approach expresses ξ as a function of x and hence works with the inverse map ξ(x).
Its derivative dξ/dx is denoted by ξx, and it holds that ξx = 1/xξ. Further, the boundary
conditions of the inverse transformation are

ξ(0) = 0, ξ(1) = 1. (3)

For an arbitrary N > 0, we introduce the grid ΞN = {ξj}Nj=0, with equidistant grid points

ξj = j/N and mesh width ǫN = 1/N . The deformed grid XN = {xj}Nj=0 is the image of the grid
deformation map x : ΞN 7→ XN . For the inverse map ξ : XN 7→ ΞN it holds that

∆ξj+1/2 = ξ(xj+1)− ξ(xj) ≈ ξx(xj+1/2) ·∆xj+1/2, (4)

which is a discrete analogue of the differential relation dξ = ξx dx. We prefer a half-index
notation for the mesh width, so that it is immediately clear what interval the step size refers to.
Using ∆ξj+1/2 = ǫN and introducing the notation φ(x) ≡ ξx(x), [22], we have

∆xj+1/2 ≈
ǫN

φ(xj+1/2)
. (5)

The greater the value of φ(x), the more dense are the grid points near x. The function φ(x)
is therefore referred to as the grid density function. Its primitive function, ξ(x), is the corre-
sponding grid distribution function. Its boundary conditions imply that the density satisfies the
normalization requirement

ξ(1)− ξ(0) =

∫ 1

0
φ(x) dx = 1. (6)

In practice the nonuniform grid is generated by constructing a discrete approximation to φ, in
terms of a positive sequence ΦN = {ϕj+1/2}N−1

j=0 , such that

∆xj+1/2 =
ǫN

ϕj+1/2
. (7)

Here (7) holds exactly, as opposed to (5). The discrete density function ΦN then satisfies the
normalization requirement

N−1
∑

j=0

ǫN
ϕj+1/2

= 1, (8)

which imposes the condition that the step sizes exactly cover the entire interval [0, 1]. It is
important to note that the discrete normalization (8) differs from the continuous normalization
(6).
For two-point boundary value problems, an adaptive algorithm must determine the sequence ΦN

in terms of problem or solution properties. A simple technique is to construct the grid density so
that the solution y of (1) has equal arclength over each subinterval. An arclength estimate can be
obtained by first solving the problem on a coarse grid, after which the arclength of the computed
solution is used to prepare a suitable nonuniform grid for efficient high precision computations.
This approach is common e.g. in moving mesh algorithms for hyperbolic problems where a locally
high grid density is required to resolve a moving shock wave.
Arclength equidistribution does not control errors, however. Instead, true adaptive approaches
equidistribute some residual or error estimate over the interval. As ΦN will depend on the error
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estimates, which in turn depend on the distribution of the grid points, the process of finding the
density becomes iterative. For some error control criteria, however, a local grid change typically
has global effects. The techniques developed here avoid this difficulty by restricting the error
estimators to those having the property that the estimated error on the interval [xj , xj+1] only
depends on the local mesh width, ∆xj+1/2 = ǫN/ϕj+1/2.
We refer to finding a suitable transformation x(ξ) – or the corresponding density function φ – as
mesh generation. Choosing a suitable number of grid points – or equivalently, choosing ǫN – is
referred to as mesh refinement. As φ is found iteratively, we may regard this process as (pseudo)
time-dependent. It is linked to moving mesh algorithms in time-dependent PDEs; this notion
refers to the case when x(ξ) is a time dependent grid deformation but where the number of grid
points is kept constant.
For a given N (corresponding to a fixed computational effort), the density φ affects accuracy;
the goal is to minimize the error by seeking the optimal distribution XN of the N grid points.
Conversely, for a given φ, it is—at least in principle—straightforward to solve the problem to a
desired accuracy by taking a sufficiently large number of interior grid points, N − 1. Thus the
approach outlined above allows both adaptivity, in terms of finding φ, and convergence studies,
by letting N → ∞ (or ǫN → 0). In this setting, a rigorous convergence proof for an adaptive
method is within reach.

A brief survey of previous work. In the last decades a large effort has been put into the
efficient numerical solution of ordinary and partial differential equations. The key technique
to saving work and speeding up computations is grid adaptation, which even becomes crucial
when solving problems in 2D and 3D. Although there is a rich literature on adaptivity, the main
principles have not changed over the years and constitute universal techniques which can be
adapted to specific needs. One of these is the equidistribution principle that was studied in two
different contexts in [8, 10] as a technique to solve differential equations, and to minimize the
interpolation error of a known function, respectively, cf. [15, 20, 21]. The concept of grading
functions and the convergence of the remeshing iteration have been discussed in [14] and [27],
respectively. Here, restricting ourselves to boundary value problems in ordinary differential
equations, we shall describe a few well established and interesting adaptive approaches in terms
of the notions and notations introduced above.
In [17], Christara and Ng consider adaptive methods mapping a uniform grid to a nonuniform
one using grading functions

ξ(x) =

∫ x
0 w dx
∫ 1
0 w dx

. (9)

Here w is a monitor function (some measure of the error, involving higher derivatives, e.g.
|y(q)|(1/p), and approximated by a spline). This means that ξ(x) represents the portion of the
error coming from [0, x] and that ξx (hence φ) is proportional to w. The nonuniform grid is
computed by finding points {xj} such that for ǫN fixed, the equidistribution criterion

ξ(xj+1)− ξ(xj) ≈ ǫN (10)

is satisfied. The points are redistributed until the ‘drift’

max
j

∫ xj+1

xj

w dx− ǫN
∫ 1

0
w dx,
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is smaller than a tolerance. Once the nonuniform grid has been generated, the map x(ξ) is
approximated using spline interpolation. This enables a change of the number of grid points
through oversampling.
The approach taken by Auzinger et al. [6] is directly related. Its objective is to obtain a grid
point allocation such that

ξx =
w

∫ 1
0 w dx

,

where the monitor function is w = (|ψ|/tol)1/p and ψ is an estimate of the principal error
function, e.g. ψ = y(p). The quantity ξx equals the density function φ with unit integral. Once
w has been calculated on an actual grid {xk}, a piecewise linear function ξ(x) is constructed by
integration, so that

ξ(xj) =

∫ xj

0
ξx dx.

This corresponds to the grading function (9). The necessary number of grid points to meet the
tolerance is then computed, and a new grid {x̃j} constructed by inverse linear interpolation of
ξ(x) in the same manner as in (10).
In [35], Tang and Tang use calculus of variations and seek ξ(x) such that

E(ξ) =
1

2

∫ 1

0

ξ2x
w

dx

is minimized, subject to ξ(0) = 0 and ξ(1) = 1, for a monitor function w. This leads to ‘Winslow’s
variable diffusion method,’ (w−1ξx)x = 0, or

(wxξ)ξ = 0.

For mesh redistribution, Tang and Tang use a Gauss–Seidel approach to solve this ‘elliptic’
equation. As an alternative, they introduce an additional time variable t is and instead solve the
‘parabolic’ problem

xt = (wxξ)ξ

by using the explicit Euler method. In both cases, the final density φ is proportional to the
monitor function w.
Moving mesh algorithms for hyperbolic problems are also considered by Stockie et al., [34]. They
use a variant of the diffusion approach above. The ξ grid remains uniform and constant, but the
deformed grid in x is time dependent. The moving mesh is governed by

(wẋξ)ξ = −(wxξ)ξ/τ,

where τ is a ‘time constant’ controlling the approach to error equidistribution, and where the dot
denotes differentiation with respect to time. Because the equation is stiff, the authors propose to
solve it by the Crank-Nicolson method; as this method is implicit, the possible monitor functions
are restricted. Spatial smoothing is considered, and temporal smoothing is mentioned as a
possibility. (In a more general setting such operations would be handled by digital filters both
in time and space.) Further work on moving meshes can be found in [9] and [19].
In Section 2 we characterize the optimal grid density function associated with a given monitor
function, using a variation principle. Then in Section 3 we introduce a novel grid generation
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algorithm. Based on a control theoretic approach, the procedure has been implemented in a test
version of a working Matlab code, bvpsuite, everything else equal. The controller has two
stages. In the first the density function is constructed on a coarse grid with the objective of
making the error equidistributed. In the second stage, using the so obtained density, the number
of mesh points necessary to satisfy the tolerance is determined; the final grid has then been
constructed. Finally in Section 4 numerical tests demonstrate the advantages of the new control
system by comparing its performance to that of the conventional approach. Computational
experiments are carried out for a selection of problems and over a wide range of tolerances.

2 Adaptivity as a variational problem

Here we shall be concerned with the problem of finding φ(x), from which the deformation map
can readily be constructed. This approach is essentially the same as that in [6] except in its
discrete implementation, where, instead of working with the independent variable x directly,
the role of the auxiliary variable ξ is emphasized to facilitate a simple computation of the new
grid, including oversampling, in order to determine the locations of grid points for an arbitrary
number of interior points N − 1, possibly determined by a global error criterion.
Assume that some positive monitor function w is given, and consider the problem of finding a
positive function φ ∈ C[0, 1] solving the variational problem

min
φ

∫ 1

0

w(y) dx

φq
subject to

∫ 1

0
φ(x) dx = 1 (11)

for some q 6= −1, to be specified later. The monitor function w must be independent of φ,
and the constraint implies that the map x(ξ) satisfies the proper boundary conditions, with the
positivity of φ guaranteeing that x(ξ) is a bijection.

Theorem 2.1 Given q 6= −1 and a positive monitor function w in the variational problem (11),
the optimal grid density function φ∗ is given by

φ∗(x) =
w1/(q+1)(y)

∫ 1
0 w

1/(q+1)(y) dx
. (12)

Proof We introduce a multiplier λ and the Lagrangian

L(φ, λ) =
w(y)

φq
+ λφ.

At a stationary point the first variation with respect to the control variable φ must vanish. Hence

− qw(y)

φq+1
+ λ = 0, (13)

which implies

φ =

(

qw(y)

λ

)1/(q+1)

. (14)

The constraint determines the multiplier by integrating (14) over [0, 1]; eliminating λ we obtain
the minimizer (12).
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Remarks. The normalization of the minimizer can also be conveniently expressed in terms of

Hölder means. For a positive function u the s-Hölder mean is defined byMs(u) =
(

∫ 1
0 u

s dx
)1/s

,

where one can take −∞ ≤ s ≤ ∞. Thus (12) is equivalent to

φ∗(x) =

(

w(y)

M 1
q+1

(w)

)1/(q+1)

=
w1/(q+1)(y)

M1

(

w1/(q+1)(·)
) . (15)

The choice of monitor function w, as well as the power q, leads to several important cases.

Case 1: Arc length adaptivity. As mentioned above, a simple adaptive technique is to choose
grid point locations so that the solution’s arc length on each subinterval is the same. A similar,
but weaker, criterion is to require that the grid density φ is covariant with the solution’s arc
length. This corresponds to taking

w(y) =
√

1 + |y′|2 and q > −1.

The requirement q > −1 comes from the structure of the minimizer (12) and guarantees covari-
ance. The choice q = 0 implies proportionality and equidistribution of arc length between grid
points.

Case 2: Local error control in Ls[0, 1]. Consider the local error model

|r(x)| = ǫp+1
N |ψ(x)|
φ(x)p+1

, (16)

where p is the order of the method and s ≥ 1 is arbitrary. Let our objective be to minimize
‖r‖sLs[0,1]; the minimization problem is then

min
φ

∫ 1

0
|r(x)|s dx subject to

∫ 1

0
φ(x) dx = 1 (17)

and corresponds to taking w(y) = ǫsp+s
N |ψ|s and q = sp+s. As the optimal solution is independent

of ǫN , we obtain the grid distribution φ∗, which is to be used for any prescribed accuracy
requirement tol in the adaptive method.
The optimal solution (12) is

φ∗(x) =
|ψ(x)|s/(sp+s+1)

∫ 1
0 |ψ(x)|s/(sp+s+1)dx

=
|ψ(x)|s/(sp+s+1)

M1

(

|ψ(·)|s/(sp+s+1)
) , (18)

which says that for local error control, the optimal density φ∗ is covariant with (a fractional
power of) the pointwise norm of the principal error function ψ. By letting s → ∞, the optimal
‘minimax’ grid (corresponding to minimizing ‖r‖∞) results in a pointwise equidistribution of the
local error, see [22]. Thus, by combining (16) and (18), we see that for the minimax density φ∗

it holds that
∀x |r(x)| = ‖r‖∞ = ǫp+1

N M 1
p+1

(|ψ|) = tol, (19)

where the last equality indicates how the necessary number of grid points is determined by tol.
Most implementations of adaptive methods seek such an equidistribution of the local error.
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In [6] the case q = 0 is studied, but as the monitor function is taken to be w ∼ |ψ|1/(p+1), one
obtains φ∗ ∼ |ψ|1/(p+1) directly – this grid is therefore equivalent to the minimax grid, although
no optimality criterion is established. The approach achieves local error equidistribution when
Gaussian points are used.
Because |ψ| is not directly available it must be calculated from a local error estimate of the form
(16), i.e.,

|ψ(x)| = |r(x)|φ(x)p+1

ǫp+1
. (20)

Note that, because of the normalization in (18), it is not necessary to include the constant ǫ.
Hence |ψ| can be estimated from the function |r|φp+1.

Finally, we note that the process of computing φ∗ is iterative. In practice, one takes φ0(x) ≡ 1,
and computes an error estimate r0(x) on this equidistant initial grid. Extracting |ψ(x)| from
the error estimate (20), φ1(x) is then computed by applying (18), to obtain the first nonuniform
grid. A few grid refinement iterations may be needed. This process may or may not converge
to φ∗, depending on how strongly the estimate of |ψ(x)| depends on φ. In view of (20), this
dependence is weak only if the asymptotic local error model accurately reflects the local error,
and a local change of φ only has a local effect on the error.

Case 3: Defect control. A variant of local error control is to control the defect

d(x) = P ′(x)− F (x, P (x)),

which is assumed to have an asymptotic behavior

d(x) ≈ cp
ǫp+1ψ(x)

φ(x)p+1
.

Case 4: Controlling global error on Gaussian points. For Gaussian collocation there is a
strong relation between local and global errors. Assuming that we have a global error estimate

g(x) ≈ Cp
ǫpΨ(x)

φ(x)p
(21)

the control of the global error follows the same lines as above.

3 Grid generation and refinement: the control algorithm

Below we shall describe a modular control algorithm that uses the local error to find φ∗ (grid
generation) and determines the number of steps needed (grid refinement) to solve the boundary
value problem to a prescribed accuracy tol using the minimax grid.
Before the actual algorithm can be described, however, we need to give a detailed description
of the construction, purpose and use of the component modules. Some of them are optional or
could be employed in several different ways, and the modules are in principle independent. Thus,
the final control algorithm offers possibilities for separate modifications of the modules without
harming the overall algorithm.
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Module 0: Initialization. We start with an equidistant grid XN , i.e., initially φ(x) ≡ 1. There
are N − 1 internal grid points, and N ‘steps’ or ‘cells,’ corresponding to the step sizes

∆xj+1/2 = xj+1 − xj =
ǫN

ϕj+1/2
, j = 0, . . . , N − 1, (22)

where ǫN = 1/N, and x0 and xN correspond to the boundary points.
The sequence ΦN = {ϕj+1/2}N−1

j=0 represents a discrete approximation to the continuous function

φ(x). It can be interpreted as approximating N equidistant samples of φ
(

x(ξ)
)

on the staggered

grid ΞN+1/2 = {(j + 1/2) · ǫN}N−1
j=0 ; hence ϕj+1/2 approximates φ

(

x(ξj+1/2)
)

.

At the initialization step we take, by default, ϕj+1/2 = 1 for all j. This initial density is denoted

by Φ
[0]
N , where the superscript is the mesh generation index. However, one can also initialize the

control algorithm with a nonuniform grid, e.g. if a sequence of boundary value problems is to be
solved for a set of different parameter values. Then much work might be saved by starting at an
optimal grid taken from a previous run.

Module 1: Obtaining an error estimate. Given a density ΦN and the corresponding grid
XN the two-point boundary value problem is solved on XN . We assume that the solver also
provides an error estimate, in the form of a staggered sequence R = {rj+1/2}N−1

j=0 , where each
(pointwise) error estimate is directly associated with its own cell [xj , xj+1] and step size. It is
further assumed that some (possibly user-defined) pointwise norm (possibly a mixed absolute–
relative norm) | · | of the error estimate satisfies

rj+1/2 ≈
|ψj+1/2|ǫqN
ϕq

j+1/2

(23)

for some known power q associated with the asymptotic order of the discretization method;
q = p+ 1 for local error, and q = p for global error control. Alternatively, if some other criterion
is used, such as arclength control, one obtains values of the relevant monitor function on the
staggered grid. As this information is going to be used to recompute the density ΦN , which is a
scalar sequence, it is necessary to take the norm of the error estimate at this stage.

Module 2: Regularizing the error estimate. Before using the error estimate it may be
advantageous to apply a low-pass filter to it in order to remove possible noise. In a continuous
setting, a filter is, in principle, a linear transformation

r̂(x) :=

∫ 1

0
K(x, y)r(y)dy. (24)

The kernel often has the form K(x, y) = k(x−y), which corresponds to a convolution filter. After
discretization the filter is ‘digital’ and corresponds to a matrix–vector transformation R̂ = FR,
where R̂ is the filtered estimate. The filters can have dense as well as sparse kernels. A sparse,
near diagonal, kernel appears to be preferable in our case, as this corresponds to a local filtering.
This is usually sufficient in order to remove high frequency noise.
In the K(x, y) = k(x − y) case, F is a Toeplitz matrix. As we want to suppress noise, and in
particular (−1)n oscillations in space, we may use repeated averaging, e.g.,











r̂1/2

r̂3/2
...

r̂N−1/2











=
1

4













2 2 . . . 0

1 2 1
...

... 1 2 1
0 . . . 2 2























r1/2

r3/2
...

rN−1/2











, (25)
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where the two deviant matrix elements F1,2 and FN,N−1 represent a possible choice of boundary
corrections which are necessary in order to prevent the error from being reduced, especially if
the filter matrix is applied repeatedly.
By repeated filtering a stronger noise suppression can be achieved, while the error estimate
becomes successively smoother. This is of importance as the error estimate will be used to
construct the next ΦN , which in turn affects the regularity of the nonuniform grid XN . A
simple approach is to apply the filter repeatedly until the signal to noise ratio (S/N ratio) of the
processed error is high enough. The ‘noise’ is the norm of the removed part, ‖R− R̂‖, while the
‘signal’ is ‖R̂‖. Thus no further filtering is necessary when ‖R− R̂‖/‖R̂‖ ≪ 1. A suitable norm
for checking the S/N ratio is the RMS norm (discrete L2 norm).
There are many possible alternatives to the filter suggested above. For instance, the filter could
be based on geometric rather than arithmetic averaging. Thus we could use a filter corresponding
to the coefficients used above, but in the form

r̂j+1/2 =
(

rj−1/2 · r2j+1/2 · rj+3/2

)1/4
, (26)

where appropriate boundary corrections should again be applied.

Module 3: Updating the discrete density ΦN (grid generation). Let Φ
[k]
N denote the kth

grid density and consider the computation of Φ
[k+1]
N , assuming that there is a suitably processed

error estimate R̂[k] available. In the updating process the sequences ΦN and R̂ are interpreted as
representing the density and error on the equidistant staggered grid ΞN+1/2. As these functions
are discrete, no further mapping of the sequences is required.
In view of the model (23) and the equidistribution principle, the density Φ should be pointwise
proportional to R̂1/q. As the simplest possible alternative, we therefore employ the integrating
controller

log Φ
[k+1]
N = log Φ

[k]
N +

kI

q
log λkR̂

[k] (27)

N−1
∑

j=0

ǫN

ϕ
[k+1]
j

= 1, (28)

where the logarithm is understood to be applied componentwise to the vectors R̂[k] (the filtered

error estimate) and Φ
[k]
N . The algebraic constraint implies that each sequence Φ

[k]
N must be

renormalized so that the grid XN exactly matches the interval [0, 1]. The scalar parameter λk is
selected in each update to maintain this normalization.
Because of the equidistribution principle (19) we see that consecutive updates will keep changing

Φ
[k]
N until all components of the error estimate R̂[k] are equal. Then λkr̂

[k]
j+1/2 ≡ 1, implying that

the term added to log Φ
[k]
n is zero. Thus the controller will compensate variation in R̂[k], but

the absolute magnitude of R̂[k] does not matter until we are ready to choose the number of grid
points, N̂ , that is required to meet the tolerance tol.
The controller is a deadbeat controller for the integral gain kI = 1, but may also be used as a
convolution filter (exponential forgetting) by using gains 0 < kI < 1. The role of the gain is to

adjust to what extent variations in R̂[k] are allowed to affect Φ
[k]
N . For kI < 1, less than the full

variation of R̂[k] will be used in the update; such a gain may reduce the risk of instability, but
also makes it take longer for the controller to converge to the optimal density φ∗.
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There are many alternative controllers. One may e.g. use a PI (proportional–integral) controller
or a digital filter for the update, [32]. Note that the update of the density can be viewed as
occurring in ‘pseudo time,’ which implies that a causal filter is needed in this step, as opposed
to the filtering with respect variations (noise) along the x (‘space’) direction.
Finally, in practice the control algorithm does not require that one solves the difference–algebraic

system above; it is sufficient to use componentwise multiplication of Φ
[k]
N and (R̂[k])1/q, followed

by a renormalization of the product, so that the new discrete density Φ
[k]
N satisfies the constraint.

The algorithm is therefore easy to implement.

Module 4: Determination of N (grid refinement). Recalling that the boundary value
problem has to be solved once on each grid, and that the optimal φ∗ is independent of tol, the
cost of finding φ∗ is reduced by running the control algorithm with a fixed, low value of N . The
effort to solve the problem to high precision should be deferred until the optimal φ∗ has been
found; hopefully this can be achieved within a few iterations.
Let N − 1 be the number of interior points used during the determination of φ∗, and let N̂ − 1
be the number of interior points needed to solve the problem to the requested accuracy. Further,

let ‖R̂[k]
N ‖∞ be the error observed when N − 1 interior points were used. By (23),

(

‖R̂[k]
N ‖∞

tol

)1/q

=
N̂

N
, (29)

from which N̂ is directly obtained. However, as we are also going to change the density, we need
to modify this formula. For example, if the error was computed for the initial, uniform grid, then
(29) will be the number of steps needed to solve the problem to accuracy tol on that uniform
grid and not on the next, nonuniform, grid.
To compensate for the new density, we apply a weighted error norm. Thus we compute the
weighted error vector,

E
[k]
N := R̂

[k]
N

(

Φ
[k]
N

Φ
[k+1]
N

)q

, (30)

again using componentwise vector operations. The weighted error replaces R̂
[k]
N in (29). As a

safety measure one would also have to put appropriate upper and lower bounds on N̂ , implying
that N̂ is computed according to the formula

N̂ := min



Nmax, max



Nmin, N ·
(

‖E[k]
N ‖∞
tol

)1/q






 . (31)

Note that the error criterion used to determine N̂ need not be the same as criterion used for
finding φ∗. Thus, when determining φ∗ it is crucial to use a monitor function that only depends
locally on φ∗, such as arclength control or local error control. To determine N̂ , however, we
could use a global error model if desired, provided that a global error estimate is available. This
approach is utilized in the new code bvpsuite.nga that we present in Section 4. Whether such
combinations of different criteria for φ∗ and N̂ are advantageous depends on what the objectives
for using the adaptive algorithm are.

Module 5: Oversampling the density ΦN . Recalling that the final density ΦN approximates
the continuous density φ∗ on the staggered grid ΞN+1/2, we need to oversample the sequence
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ΦN to N̂ points on a new staggered grid ΞN̂+1/2. This is done using spline interpolation; the

operation is inexpensive as the cost is only O(N) + O(N̂).
Let SN (ξ) be a cubic spline that interpolates ΦN = {ϕj+1/2}N−1

j=0 on the the equidistant staggered

grid ΞN+1/2 = {(j + 1/2) · ǫN}N−1
j=0 . We then generate a new, refined equidistant staggered grid

with N̂ interior points on [0, 1] according to

ΞN̂+1/2 = {ξ̂j+1/2}N̂−1
j=0 , (32)

with ξ̂j+1/2 = (j+1/2)·ǫN̂ = (j+1/2)/N̂ . Evaluating SN (ξ) on ΞN̂+1/2 we obtain the provisional,
high-resolution density

Φ̃N̂ = {SN (ξ̂j+1/2)}N̂−1
j=0 . (33)

This is provisional for several reasons. First, the interpolating oversampling will typically not
preserve the normalization condition (8). Second, interpolation errors could cause some density
values to be negative. Third, even a too small density value is unacceptable, as it would lead to
a very large step size somewhere in the grid. Therefore the oversampling must be equipped with
several safety measures.
The provisional density is processed in the following way. The values generated in (33) are
mapped via a limiter to avoid negative and excessively small values. First all negative values
are replaced by zeros by applying the map ϕ̃j+1/2 7→ max(0, ϕ̃j+1/2). Further, it is reasonable
to impose a maximum on the step size; the mesh width should not exceed (say) one tenth of the
solution interval. This can e.g. be accomplished by the map

ϕ̃j+1/2 7→ ϕ̃j+1/2 +
ǫN̂

ϕ̃j+1/2 + L/10
, (34)

where [0, L] is the solution interval (in our case L = 1). Note that if the density is very high
locally, then the density is unaffected there. However, if the density is low, the limiter makes
sure that no step size exceeds one tenth of the interval.
Once the limiter has been applied, one could opt for applying a digital filter such as those
mentioned in Module 2 above. Whether or not this is applied, a renormalization is still necessary,
implying that the last step of processing the oversampled density is to apply (8) in order to obtain
the final high-resolution density ΦN̂ .

Module 6: Construction of the nonuniform grid. The previous step generated the mesh

widths. Using the notation ΦN̂ = {ϕ̂j+1/2}N̂−1
0 , the new grid points XN̂ = {x̂j}N̂j=0 are generated

by summation of x̂j+1 − x̂j = ǫN̂/ϕ̂j+1/2, i.e., through partial sums

x̂j =

j−1
∑

k=0

ǫN̂
ϕ̂k+1/2

; j = 1, . . . , N̂ − 1,

noting that x0 = 0 and xN̂ = 1.

The control algorithm. Using the modules above, the control algorithm takes the following
form.
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1. Choose a suitable number of points M for the control grid. This remains unchanged until

the final density has been computed. Construct an initial (usually uniform) density Φ
[0]
M

and initialize the grid generation number to k = 0. A nonuniform initial grid can sometimes
be preferable, e.g. if one solves a sequence of parameterized problems, where previous runs

provide the density Φ
[0]
M . (Module 0)

2. Given the density Φ
[k]
M , generate the computational grid X

[k]
M . (Module 6)

3. Solve the boundary value problem on X
[k]
M and compute an error estimate R

[k]
M . Compute

the pointwise norm of the error estimate. Make sure that all error components are nonzero.
(Module 1)

4. (Optional) Regularize the error estimate by applying a suitable spatial digital filter to

compute R̂
[k]
M . (Module 2)

5. If k = 0, compute N̂0 from (29) to find the number of steps that would have been required

to solve the boundary value problem using the initial (uniform) density Φ
[0]
M .

6. Update the density by pointwise multiplication

Φ
[k+1]
M ← Φ

[k]
M .∗ (R̂

[k]
M )

1
q (35)

followed by a renormalization of Φ
[k+1]
M . (Module 3)

7. Compute weighted error E
[k]
M and predict the number of points N̂k+1 required to solve the

problem to accuracy tol using the density Φ
[k+1]
M according to (31). (Module 4)

8. Repeat from Step 2 unless N̂k+1 > (1 − ϑ) · N̂k. This termination criterion implies that
it is not considered worthwhile to solve the problem once more on the control grid and

recompute Φ
[k+1]
M if this would lead to removing less than a prescribed fraction ϑ of the

grid points in the final grid. The fraction could be selected as, say, ϑ = 0.05 or ϑ = 0.1,
depending on whether the accuracy requirement is strict or loose.

9. When the final density profile Φ
[k+1]
M has been found, oversample the density to obtain the

high-resolution density Φ
[k+1]

N̂k+1
, taking care to apply a limiter such as (34) to the oversampled

vector. As an option, the new density could be further processed by filtering. Finally apply
the renormalization (8). (Modules 5 and 2)

10. Construct the corresponding high-resolution grid XN̂k+1
and solve the boundary value

problem on that grid. (Module 6)

11. Use the error estimate to verify that the desired accuracy has been achieved. Evaluate the
efficiency of the adapted grid by computing the ratio N̂0/N̂k+1. As the boundary value
solver typically has an O(N̂k+1) complexity, the computed ratio represents an estimate of
how much more efficient an adaptive method is compared to a nonadaptive one.
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4 Computational experiments

We implemented the new mesh control algorithm within our collocation code bvpsuite, which
is a new version of the general purpose Matlab code sbvp, cf. [5, 4, 23]. Both programs
have already been successfully applied to a variety of regular and singular problems exhibiting
singularities of the first and second kind, see for example [11, 12, 13, 24, 28]. The performance of
the routine sbvp has previously been compared to that of Matlab code bvp4c and the Fortran

code colnew, see [7].
The code bvpsuite is designed to solve systems of differential equations of arbitrary order.
For simplicity of notation we formulate below a problem whose order varies between four and
zero, which means that algebraic constraints that do not involve derivatives are also admitted.
Moreover, the problem can be given in a fully implicit form,

F (x, y(4)(x), y(3)(x), y′′(x), y′(x), y(x)) = 0, x ∈ [0, 1], (36a)

b(y(3)(0), y′′(0), y′(0), y(0), y(3)(1), y′′(1), y′(1), y(1)) = 0. (36b)

The numerical approximation defined by collocation is computed as follows. On a mesh

XN = {xj}Nj=0, 0 = x0 < x1 · · · < xN = 1

we approximate the analytical solution by a collocation polynomial,

PXN
(x) := Pj(x), x ∈ [xj , xj+1], j = 0, . . . , N − 1,

where we require PXN
∈ Cr−1[0, 1] for a differential equation of order r. Here, the functions Pj

are polynomials of maximal degree m− 1 + r which satisfy (36a) at the collocation points

{tj,l = xj + ρl(xj+1 − xj), j = 0, . . . , N − 1; l = 1, . . . ,m}, 0 < ρ1 < · · · < ρm < 1,

and the associated boundary conditions (36b).
We use a classical error estimate based on mesh halving. In this approach, we compute the
collocation solution PXN

on a mesh XN . We then choose a second mesh X2N where in every
interval [xj , xj+1] of XN we insert two subintervals of equal length. On this new mesh, we
compute the numerical solution based on the same collocation scheme to obtain the collocating
function PX2N

(x). Using these two quantities, we define

g(x) :=
2m

1− 2m
(PX2N

(x)− PXN
(x)) (37)

as an error estimate for the approximation PXN
(x). Expressing the global error of the collocation

solution, δ(x) := PXN
(x)− y(x), in terms of the principal error function e(x), we obtain

δ(x) = e(x)|xj+1 − xj |m + O(|xj+1 − xj |m+1), x ∈ [xj , xj+1], (38)

where e(x) is independent of XN . Then the error of the error estimate shows the following
asymptotic behavior, g(x)− δ(x) = O(|xj+1 − xj |m+1), and the error estimate is asymptotically
correct.
Numerical experiments have been carried out for five test problems, cf. Appendix 5. We have
chosen to use mainly singularly perturbed boundary value problems to be able to increase the
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difficulty of the problem arbitrarily by the adjustment of a single parameter. One of the models
is a singular boundary value problem with a singularity of the first kind. We implemented the
new grid adaptation algorithm and the standard strategy within bvpsuite and refer to the two
variants as bvpsuite.nga and bvpsuite.sga, respectively. In all other respects the two codes
are identical. We stress that our present aim is not to compare bvpsuite.nga with other existing
codes, but to show its advantages compared to standard adaptation techniques. We will return
to comparisons with other codes in near future.

4.1 Description of bvpsuite.nga adaptivity

In order to illustrate how bvpsuite.nga behaves in the solution process we apply it to the test
problem T5, see (44) in the appendix. We give a comprehensive record of this test, in order to
demonstrate how to interpret subsequent comparisons. Here we use collocation at four Gaussian
points and set the absolute tolerance requirement to tol = 10−8.
In this first demonstration, we run bvpsuite.nga without restrictions on the number of generated
grids. First, bvpsuite.nga iteratively computes the density on a coarse mesh with M = 50
points. Then, for each density function the number of mesh points necessary to solve the problem
to the desired accuracy is predicted. This process is continued until the density function stabilizes
in the sense that the number of mesh points does not change. Theoretically, the final density
function is associated with a mesh containing the minimal number of points necessary to satisfy
the tolerance requirement. Next, we let the program solve the problem on this final mesh to see
if the tolerance requirement has indeed been satisfied. Figure 1 shows the quick convergence of
the mesh density function.
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Figure 1: Problem T5 (44). Evolution of the density function Φ (left) and estimated number
of mesh points N (right) needed to satisfy the tolerance requirement. Note that the density
function stabilizes after a few steps. Solving the problem on a control grid with M = 50 points
is inexpensive, implying very short run-times.

We see that by changing the density function, it is possible to significantly decrease the number
of points in the final mesh.
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A working code would not keep refining the density once it is stabilizing. As a termination
criterion for bvpsuite.nga we have chosen to stop the iteration if the next step would save less
than 10 % of the mesh points when compared to the previous step. Above, we see that after
step four, bvpsuite.nga suggests to use N = 275 and in the fifth step N = 265. The gain is
only 4% and the procedure stops. The final numerical solution is calculated using the density
Φ[5] and N = 265. Naturally, a quickly converging procedure for the adaptation Φ is vital for
this approach.
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Figure 2: Problem T5 (44). Evolution of the density function Φ (left) and estimated number
of mesh points N (right) needed to satisfy the tolerance requirement. In bvpsuite.sga the
number of points is adjusted in every step. Although the number of iterations is smaller than
for bvpsuite.nga, total computational cost is higher as the density is far from optimal, forcing
the number of grid points to increase.

In contrast to bvpsuite.nga, the bvpsuite.sga program adjusts both grid density and the
number of mesh points simultaneously. Consequently, one has to face the risk of solving the
problem using a density that is not yet optimal, thus resulting in using too many points. This
is seen in Figure 2, where in the third iteration N = 437 points are required to satisfy the
tolerance. Thus bvpsuite.sga solved the problem three times, on grids with N = 50, N = 291,
and N = 437 points, while bvpsuite.nga solved the problem four times on the initial control
grid with M = 50 points, and once on the final grid with N = 265 points.
The difference in the number of points necessary to satisfy the tolerance on the final grid is
explained by the quality of the density function associated with the final mesh, cf. Figure 3.
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Figure 3: Problem T5 (44). Final density functions Φ for bvpsuite.nga run without restrictions
on the number of generated grids (solid line), bvpsuite.nga with proper stopping criterion
(dotted line), and bvpsuite.sga (dash-dotted line).

In order to generate the mesh, the residual r(x) := d(x) is used as monitor function. The values
of r(x) are available from the substitution of the collocation solution PXN

(x) into the system of
ODEs (36a). We first compute

R̄(xj+1/2) =

xj+1
∫

xj

r(x) dx ≈ r(xj) + r(xj+1)

2
(xj+1 − xj),

for j = 0, . . . , N−1. As a monitor function we use the pointwise Euclidean norm R(x) := |R̄(x)|2.
Figure 4 shows the evolution of R(x).
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Figure 4: Problem T5 (44). Plot of R(x) for all five iterations (left), and for iteration 2 through
5 (right). Along with the changing grid density, R(x) eventually becomes equidistributed.

The number of grid points is determined by requiring that the absolute global error satisfies the
tolerance. Let Xcoll denote a grid consisting of the mesh points xj from the coarser grid XN and
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its collocation points tj,l. Then we compute GXcoll
:= max

x
|g(x)|∞ for x ∈ Xcoll, see (30). The

number of points for the next iteration is predicted according to

N̂k = M

(

GXcoll

tol

)1/(m+1)

. (39)

Figure 5 shows the evolution of the global error estimate |g(x)|∞.
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Figure 5: Problem T5 (44). Global error |g(x)|∞ for all five iteration (left), and for iteration
steps 3 through 5 (right). When, in iteration 5, the final grid is employed instead of the 50-point
control grid, the error drops to the tolerance level.

4.2 Comparison of the code variants bvpsuite.nga and bvpsuite.sga

The same Gaussian collocation is used both in bvpsuite.nga and bvpsuite.sga. In the latter,
the global error estimate is used both for grid generation and refinement, while bvpsuite.nga

uses the residual to update the mesh density and the global error to refine the mesh. In both
codes the tolerance controls the absolute global error.

4.2.1 Accuracy versus tolerance and convergence orders

In order to show how numerical accuracy is related to the tolerance, we solve all test problems
for 21 logarithmically distributed values of tol. We also record the final number of mesh points,
N , necessary to satisfy tol.
The accuracy versus tolerance graphs in Figures 6 to 9 show the reference line where the error
equals the tolerance. We see that bvpsuite.sga usually computes solutions that are far more
accurate than requested. In the case of bvpsuite.nga there is a much better agreement between
the error and the tolerance, although a discrepancy remains, due to a safety factor.
In the graphs of the number of grid points versus tolerance in Figures 6 to 9, we also indicate
the convergence order, represented by the slope of a triangle. Here it is worthwhile to note
that in all four cases we observe a faster convergence than the stage order m, viz. the uniform
superconvergence order m+ 1, due to the use of Gaussian points in the collocation. In spite of
the grids being nonuniform, this superconvergence is observed over a wide range of tolerances,
showing that the adaptivity and implementation reliably produces results in full agreement with
the well-known theoretical convergence order on uniform grids.
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Figure 6: Problem T1 with collocation degree 6. Maximal error on Xcoll vs. tol (left), and mesh
points N vs. tol (right). For bvpsuite.nga accuracy is more closely related to tol than for
bvpsuite.sga. The number of mesh points required for bvpsuite.nga is significantly smaller,
especially for strict tolerances. Further, for bvpsuite.nga the Gaussian superconvergence order
of m + 1 = 7 is clearly observed throughout the entire range of tolerances, in spite of the
nonuniform grids.

1e−011 1e−010 1e−009 1e−008 1e−007 1e−006

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

Tolerance

G

1e−011 1e−010 1e−009 1e−008 1e−007 1e−006

10
2

10
3

5

1

Tolerance

N

Figure 7: Problem T2 with collocation degree 4. Maximal error on Xcoll vs. tol (left), and mesh
points N vs. tol (right). Again bvpsuite.nga shows better results. The effort of computing
the proper density results in a comparably small number of mesh points in the final grid. Again
superconvergence is observed.
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For bvpsuite.sga the accuracy reaches roundoff level at tol ≤ 10−11; the code overachieves by
using a too fine mesh for the task.
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Figure 9: Problem T4 with collocation degree 8. Maximal error on Xcoll vs. tol (left), and mesh
points N vs. tol (right). Down to tol = 10−11 bvpsuite.nga satisfies the tolerance already
on the 50-point control grid.

4.2.2 Comparing the performance of the two codes

We outline the basic steps, safety measures and termination criteria of bvpsuite.nga.

1. Grid generation is separated from grid refinement. We adjust Φ on a coarse mesh with a
fixed number of points M = 50, in order to equidistribute the residual.

2. For each density profile in the above iteration, we estimate the number of mesh points
necessary to reach the tolerance, according to (39).
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3. The calculation of the density function is terminated when N̂k+1 > 0.9N̂k. Clearly, it
can be expected that in course of the optimization of the density function the number of
associated mesh points will decrease monotonically. This process is stopped when the next
density profile Φ[k+1] would result in saving less than 10% of the mesh points compared to
the current density profile Φ[k].

4. Since the calculation of a residual is not too expensive we nevertheless update the density
profile to make use of the most recent available information on the numerical solution
associated with Φ[k].

5. We finally solve the problem on the mesh based on Φ[k+1] and N̂k+1 points, and estimate
the global error of the approximation. If the tolerance requirement is satisfied, we stop,
otherwise we refine again.

Tables 1 to 4 collect statistics on the number of points in the final grids and the run times for
different values of tol and orders m of the collocation method. Problems T1 and T2 are linear
and singularly perturbed, whereas Problems T3 and T4 are nonlinear and singularly perturbed.
We have chosen this class because it offers problems of varying difficulty, which can easily be
controlled via a single parameter.

m tol ε N̂
bvpsuite.sga

time
bvpsuite.sga

N̂
bvpsuite.nga

time
bvpsuite.nga

4 10−8 10−3 518 4.59 181 2.69
4 10−9 10−3 921 8.11 386 3.41
4 10−10 10−3 1636 19.48 452 4.66
4 10−11 10−3 2908 52.31 715 7.16

6 10−10 10−3 234 4.88 134 3.72
6 10−11 10−3 343 8.16 185 4.25
6 10−12 10−3 502 14.56 256 4.98
6 10−13 10−3 491 5.98 355 6.20

8 10−10 3 · 10−4 241 7.20 102 5.70
8 10−11 3 · 10−4 322 10.56 131 6.13
8 10−12 3 · 10−4 429 16.52 168 6.66
8 10−13 3 · 10−4 571 26.06 216 7.39

Table 1: Problem T1. Performance data for different orders m, tolerances and values of ε. One
can see that bvpsuite.nga is superior to bvpsuite.sga. Run times are short and in most cases
bvpsuite.sga is slower than bvpsuite.nga.

The code bvpsuite.nga solves on courser meshes than bvpsuite.sga. Also the run times of
bvpsuite.nga are more favorable. Only for one test, collocation order 6 and tol = 10−13,
is bvpsuite.sga faster. This is due to the fact that the number of points was predicted very
precisely and no further mesh refinement was necessary. Concerning the final number of mesh
points bvpsuite.nga is very competitive due to a better density function.
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m tol ε N
bvpsuite.sga

time
bvpsuite.sga

N
bvpsuite.nga

time
bvpsuite.nga

4 10−10 10−4 359 2.67 92 2.53
4 10−11 10−4 637 5.02 144 2.86
4 10−12 10−4 1131 10.88 227 3.36
4 10−13 10−4 2010 26.78 358 4.28

6 10−10 10−5 591 7.42 50 2.48
6 10−11 10−5 866 12.33 60 4.23
6 10−12 10−5 1271 22.25 83 4.42
6 10−13 10−5 1865 40.14 114 4.64

8 10−10 10−6 969 21.81 50 4.33
8 10−11 10−6 1292 33.78 50 4.34
8 10−12 10−6 1722 55.16 50 5.19
8 10−13 10−6 2296 90.27 73 6.17

Table 2: Problem T2. Performance data for different orders m, tolerances and values of ε. In
every test setting bvpsuite.nga requires fewer mesh points to find the numerical solution. Its
run times are considerably shorter for stricter tolerances.

The second linear example shows the robustness of the approach implemented in bvpsuite.nga.
For coarse meshes bvpsuite.sga is performing well. However, in more difficult settings, the bet-
ter density function of bvpsuite.nga becomes a great advantage. For example, for the method of
order 8, bvpsuite.nga satisfies the tolerance on the starting mesh, while bvpsuite.sga requires
around 30 times more points, cf. tol = 10−12. This is due to an inaccurate prediction of the
necessary number of points, causing the code to overachieve. The run time is larger by a factor
of 11. For tol = 10−13 this factor becomes 15. This test shows how important it is to obtain a
good mesh density function.
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m tol ε N
bvpsuite.sga

time
bvpsuite.sga

N
bvpsuite.nga

time
bvpsuite.nga

4 10−8 10−3 366 12.67 120 7.69
4 10−9 10−3 648 24.72 185 9.31
4 10−10 10−3 1150 67.89 291 10.81
4 10−11 10−3 2044 258.84 460 13.39

6 10−10 10−3 252 12.09 80 10.17
6 10−11 10−3 369 17.68 110 10.67
6 10−12 10−3 540 27.66 153 11.44
6 10−13 10−3 792 52.34 211 12.45

8 10−10 5 · 10−4 157 11.94 50 12.47
8 10−11 5 · 10−4 208 14.70 105 16.81
8 10−12 5 · 10−4 277 18.56 135 18.14
8 10−13 5 · 10−4 370 25.52 180 20.05

Table 3: Problem T3. Performance data for different orders m, tolerances and values of ε. The
new code is more efficient, as run times can sometimes be substantially decreased.

m tol ε N
bvpsuite.sga

time
bvpsuite.sga

N
bvpsuite.nga

time
bvpsuite.nga

4 10−10 100 524 16.14 77 8.84
4 10−11 100 931 27.17 120 9.64
4 10−12 100 1655 51.95 189 10.98
4 10−13 100 2941 112.45 298 13.23

6 10−10 500 502 27.98 50 12.84
6 10−11 500 736 39.55 50 14.86
6 10−12 500 1080 51.17 75 19.25
6 10−13 500 1584 82.66 104 20.05

8 10−10 1300 510 106.34 50 15.75
8 10−11 1300 691 140.63 50 15.69
8 10−12 1300 586 97.55 50 22.22
8 10−13 1300 1267 329.80 73 26.14

Table 4: Problem T4. Performance data for different orders m, tolerances and values of ε. For
this test problem, the advantage of bvpsuite.nga is even more apparent. Both run time and
points are occasionally reduced by up to one order of magnitude.

The two nonlinear examples support the previous observations. In the final example for high
convergence order 8 and the tolerances tol = 10−10, tol = 10−11 and tol = 10−12, the grid
with 50 points is fine enough for bvpsuite.nga to successfully solve the problem. In comparison,
the meshes provided by bvpsuite.sga contained 510, 691 and 586 points, respectively. The tests
show that the new algorithm is more efficient than the one implemented in bvpsuite.sga.
Finally in Table 5 we show the benefits of the new control algorithms by comparing the two
codes to using a uniform mesh. But there are also pitfalls. While it is trivial that more accuracy
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can be delivered at a higher cost, the real challenge is to obtain high accuracy at low cost. Thus
the main objective of adaptivity is to save work. As the tests demonstrate, a control algorithm
cannot afford being overly conservative or ambitious as the price for overachieving (whether by
mistake or by design) can entirely eliminate the benefits of adaptivity. The cost of adaptation
must also be accommodated; this is the main reason for constructing the bvpsuite.nga control
algorithms to find the grid density only on a control grid, before the final number of grid points
can be calculated and employed.

BVP m tol ε N̂
bvpsuite.sga

N̂
bvpsuite.nga

N̂ equidistant

T1 6 10−10 10−3 234 134 2383
T2 6 10−10 10−5 591 50 242
T3 4 10−8 10−3 366 120 2927
T4 8 10−10 1300 510 50 579
T5 4 10−8 - 439 265 526

Table 5: Number of points for both mesh adaptation strategies of bvpsuite. The importance of
a good grid distribution is revealed by comparing with the number of points required had the
mesh been uniform. In T2, bvpsuite.sga inserts far too many points too early in the solution
process. As a consequence, it overachieves and produces a solution of much higher accuracy than
requested; the tolerance requirement could have been met on a uniform grid with fewer points.
The grid control of bvpsuite.nga overcomes such pitfalls.

4.3 Conclusions

Results shown in Tables 1 to 4 suggest that the procedure implemented in bvpsuite.nga gener-
ates excellent density profiles. Moreover, it turns out that the final, almost optimal Φ is obtained
in a relatively small number of iterations. The grid adaptation strategy proposed in this paper
is especially favorable for strict tolerance requirements. The performance of the two programs
is comparable for less strict tolerances. The new control strategies will be available in the next
version of bvpsuite, following further devolvement and verification.

5 Appendix: Model problems

Here, we present the test problems used for the numerical tests. We have chosen Problems T1
to T4 from the test set which can be found on http://www.ma.ic.ac.uk/˜jcash/.

Problem T1 is a linear singularly perturbed boundary value problem,

εy′′(x) + y′(x)− (1 + ε)y(x) = 0, (40a)

y(−1) = 1 + e−2, y(1) = 1 + e
−2(1+ε)

ε , (40b)

whose solutions for different values of ε are depicted in Figure 10.
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Figure 10: Solutions of Problem T1 for ε = 1 (solid line), ε = 0.3 (dotted line), ε = 0.09
(dash-dotted line) and ε = 10−4 (dashed line).

For the numerical experiments we used ε = 10−3 and ε = 3 · 10−4.

Problem T2 reads

y′′(x) =
−3εy(x)

(ε+ x2)2
, (41a)

y(−0.1) = − 0.1√
ε+ 0.01

, y(0.1) =
0.1√

ε+ 0.01
. (41b)

Its solutions can be found in Figure 11. For this problem, we used ε = 10−4, ε = 10−5 and
ε = 10−6.
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Figure 11: Solutions of Problem T2 for ε = 1 (solid line), ε = 0.08 (dotted line), ε = 0.006
(dash-dotted line) and ε = 10−6 (dashed line).

Problem T3 is nonlinear and given by

εy′′(x) + y(x)y′(x)− y(x) = 0, (42a)

y(0) = −1

3
, y(1) =

1

3
. (42b)

For the solutions of T3 see Figure 12. The problem was solved for ε = 10−3 and ε = 5 · 10−4.
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Figure 12: Solutions of T3 for ε = 1 (solid line), ε = 0.1 (dotted line), ε = 10−2 (dash-dotted
line) and ε = 5 10−4 (dashed line).

Problem T4 is also nonlinear,

y(4)(x)− ε(y′(x)y′′(x)− y(x)y′′′(x)) = 0, (43a)

y(0) = 0, y′(0) = 0, y(1) = 1, y′(1) = 0, (43b)
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with solutions shown in Figure 13. Here, ε is a ‘large’ parameter, and we selected the value
ε = 100 for collocation orders 4 and 6, and ε = 1000 for collocation order 8.
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Figure 13: First solution derivative of Problem T4 for ε = 1 (solid line), ε = 5 (dotted line),
ε = 20 (dash-dotted line) and ε = 1300 (dashed line).

Problem T5 is singular and has been discussed in [26]. It has the form

y′(x) =
1

x

(

0 1
2 6

)

y(x)−
(

0
4k4x5 sin(k2x2) + 10x sin(k2x2)

)

, (44a)

(

0 1
0 0

)

y(0) +

(

0 0
1 0

)

y(1) =

(

0
sin(k2)

)

, (44b)

with k = 5.
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Figure 14: Solution of Problem T5.
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