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Introduction

A great amount of materials exhibit interesting behaviors, being the result of complex
microstructures, the outcome of involved in-time evolutions, the effect of the action of inter-
nal variables, or the macroscopic counterpart of atomistic interactions. Understanding the
interplay of such different material scales is thus a key problem in materials science. Indeed,
it is crucial for the description of the physics behind phenomena, which are not yet fully
understood, for the development of innovative metamaterials, as well as for the exploration

of their industrial applications.

This habilitation thesis focuses on the analysis of phenomena arising in materials science
and characterized by the presence of multiple scales, with techniques borrowed from the
theory of partial differential equations and from the calculus of variations. The thesis is

subdivided into three chapters, corresponding to three different research directions.

Chapter 1 is concerned with the mathematical description of composite materials, and
with the identification of limiting effective models capturing the macroscopic behavior asso-
ciated with the presence of different kinds of microstructures. I present here a selection of

my papers in this setting.

The first part of Chapter 1 is devoted to a result obtained in [21] in collaboration with
Irene Fonseca (Carnegie Mellon University). Our analysis departs from the observation that
in many applications, in order to establish the macroscopic behavior of a system presenting
a periodic microstructure, we are led to the problem of finding integral representations for

limits as € goes to zero of oscillating integral energies

ugH/ ))dx

where © C RY is a bounded open set, and the fields u. are subjected to z-dependent

differential constraints as

i Oue(x) ) oyl
ZA (gﬁ) oz, — 0 strongly in W™"P(Q;R"), 1 < p < 400, (0.1)

i=1



Introduction

or in divergence form

N
i=1

with A%(x) € M*9 for every 2 € RV, i = 1,--- N, d, ] > 1, and where o, are two

nonnegative parameters.

9 (i(® : -1p(0). R!
oz, (A (E—B)us(x)> — 0 strongly in W™P(;R"), 1 < p < +o0, (0.2)

Oscillating divergence-type constraints as in (0.2) appear in the homogenization theory
of systems of second order elliptic partial differential equations. Indeed, if u. = V., with
ve € WHP(Q) for every ¢ > 0, and A%(x) = A(x) € MV*N for 4 = 1,---, N, then
considering (0.2) reduces to the homogenization problem of finding the effective behavior of

(weak) limits of v., where
div (A(E)VUQ — 0 strongly in W™ ?(Q), 1 < p < +o0.

These problems have been extensively studied in the literature (see, e.g., [2], [9, Chapter 1,

Section 6], [15], and the references therein).

In the first part of Chapter 1 we present an analysis of the limit case in which @ = 0
and 8 > 0, namely the energy density is independent of the first two variables, and the
fields {uc} are subject to (0.2). The opposite limit scenario a > 0,5 = 0 and (0.1) (i.e., the
energy density is oscillating but the differential constraint is fixed and in “non-divergence”
form) is the subject of [22] (see also [23]). In particular, we analize the setting in which the
coefficients A’ are nonconstant L>-maps, A* € L>®(RY;M!*4) for every i = 1,..., N, the

energies under consideration are of the type

u / f(ue () da,

where the energy density f satisfies standard p-growth assumptions, u. — u weakly in
LP(;RY) ) and

N

div o
AV, = E
i=1

0 (A’(E)us(o:)) — 0 strongly in W~17(Q; RY)

0x; €

for all 1 < ¢ < p. Our analysis includes the case when ¢ = p if the coefficients A’
are smooth. However, in the general situation when the maps A’ are only bounded, the
assumption 1 < ¢ < p is required, in order to satisfy some truncation and p-equiintegrability
arguments. Our main results are a characterization of the limiting homogenized energy and
the observation that, as opposed to the case in which the operators A’ are constant, the
homogenized energy F,, might not, in principle, be local, i.e., we can not expect that there
exists from : Q x R4 — [0, +00) such that

For(u) = / From (z,u(z)) dz. (0.3)
Q
We provide, in fact, an explicit example showing that locality in the sense of (0.3) may fail
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even when the function f is convex in its second variable.

The second part of Chapter 1 focuses on the problem of identifying lower dimensional
models describing thin three-dimensional structures. This is a classical question in mechanics
of materials, which, since the early ’90s, has been studied successfully by means of variational
techniques. In particular, starting from the seminal papers [1, 29, 30, 32] hierarchies of
limiting models have been deduced by I'-convergence, depending on the scaling of the elastic

energy with respect to the thickness parameter.

The first homogenization results in nonlinear elasticity have been proved in [10] and [37].
In these two papers, A. Braides and S. Miiller assume p-growth of a stored energy density
W that oscillates periodically in the in-plane direction. They show that, as the periodicity
scale goes to zero, the elastic energy converges to a homogenized integral functional whose

density is obtained by means of an infinite-cell homogenization formula.

In [7, 11] the authors treat simultaneously homogenization and dimension reduction for
thin plates, in the membrane regime and under p-growth assumptions of the stored energy
density. More recently, in [31], [38], and [44] models for homogenized plates have been

derived under physical growth conditions for the energy density.

In the second part of Chapter 1 we present a multiscale version of the results in [31]
and [44]. Let
i x (4,8)

be the reference configuration of a nonlinearly elastic thin plate, where w is a bounded
domain in R?, and h > 0 is the thickness parameter. We assume that the plate undergoes
the action of two in-plane homogeneity scales: a coarser one, henceforth denoted by e(h),
and a finer one, €2(h), where {h} and {e(h)} are monotone decreasing sequences of positive

numbers, h — 0 and £(h) — 0 as h — 0. The rescaled nonlinear elastic energy is given by

T"(v) = fll/szh w (5:(1;;)’ %,Vv(x)) dx

for every deformation v € W12(Qy,; R3), where the stored energy density W is periodic in
its first two arguments and satisfies classical assumptions in nonlinear elasticity, as well as a
nondegeneracy condition in a neighborhood of the set of proper rotations (see [31, 38, 44]).
We focus on the scaling of the energy which corresponds to Kirchhoff’s plate theory, and we

consider sequences of deformations {v"} C W12(Q; R3) verifying

lim sup

< +00. 0.4
h—0 h? ( )

The main result of this section, proved in [12] jointly with Laura Bufford (former PhD-
student at Carnegie Mellon University) and Irene Fonseca, is an identification of the effec-

h h
tive energies arising as limiting descriptions of the rescaled elastic energies {‘7 h(zv )}, and

depending on the interaction of the two homogeneity scales with the thickness parameter.

The main difference with respect to [31] and [44] is in the structure of the homogenized

energy densities, which are obtained by means of a double pointwise minimization, first with
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respect to the faster periodicity scale, and then with respect to the slower one, and to the

x3 variable.

The third and last part of Chapter 1 is devoted to the mathematical modeling of meta-
materials. These are artificially engineered composites whose heterogeneities are optimized
in order to improve structural performances. Due to their special mechanical properties,
arising as a result of complex microstructures, metamaterials play a key role in industrial
applications and are an increasingly active field of research. Two natural questions when
dealing with composite materials are how the effective material response is influenced by
the geometric distribution of its components, and how the mechanical properties of the

components impact the overall macroscopic behavior of the metamaterial.

In the result presented in this last part of Chapter 1 (and obtained jointly with Carolin
Kreisbeck (University of Utrecht) and Rita Ferreira (KAUST) in [20]), we investigate these
questions for a special class of metamaterials with two characteristic features that are of
relevance in a number of applications: (i) the material consists of two components arranged
in a highly anisotropic way into periodically alternating layers, and (ii) the (elasto)plastic
properties of the two components exhibit strong differences, in the sense that one is rigid,

while the other one is considerably softer, thus allowing for large (elasto)plastic deformations.

The analysis of variational models for such layered high-contrast materials was initiated
in [13]. There, the authors derive a macroscopic description for a two-dimensional model
in the context of geometrically nonlinear but rigid elasticity, assuming that the softer com-
ponent can be deformed along a single active slip system with linear self-hardening. These
results have been extended to general dimensions, to energy densities with p-growth for
1 < p < +o0, and to the case with non-trivial elastic energies, which allows treating very
stiff (but not necessarily rigid) layers, see [14].

In the third part of Chapter 1 we carry the ideas of [13] forward to a model for
plastic composites without linear hardening, in the spirit of [18], and we study the effective
behavior of a two-dimensional variational model within finite crystal plasticity for high-
contrast bilayered composites. Precisely, we consider materials arranged into periodically
alternating thin horizontal strips of an elastically rigid component and a softer one with one
active slip system. The energies arising from these modeling assumptions are of integral
form, featuring linear growth and non-convex differential constraints. This change turns the
variational problem in [13], having quadratic growth (cf. also [16, 17]), into one with energy

densities that grow merely linearly.

The main novelty lies in the fact that the homogenization analysis must be performed
in the class BV of functions of bounded variation (see [4]) to account for concentration
phenomena. This gives rise to conceptual mathematical difficulties: on the one hand, the
standard convolution techniques commonly used for density arguments in BV or SBV can-
not be directly applied because they do not preserve the intrinsic constraints of the problem:;
on the other hand, constraint-preserving approximations in this weaker setting of BV are
rather challenging, as one needs to simultaneously regularize the absolutely continuous part
of the distributional derivative of the functions and accommodate their jump sets. A crucial

first step in the asymptotic analysis is the characterization of rigidity properties of limits of
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admissible deformations in the space BV of functions of bounded variation. In particular,
we prove that, under suitable assumptions, the two-dimensional body may split horizontally
into finitely many pieces, each of which undergoes shear deformation and global rotation.
This allows us to identify a potential candidate for the homogenized limit energy, which we
show to be a lower bound on the I'-limit. Our main result is to show, in the framework
of non-simple materials, a complete I'-convergence analysis, including an explicit homoge-
nization formula, for a regularized model with an anisotropic penalization in the in-layer

direction.

Chapter 2 of the thesis focuses on the emergence of Wulff shapes in crystallization
problems. The content of Chapter 2 is the subject of [24] and [25], and is based on a
collaboration with Paolo Piovano (University of Vienna) and Ulisse Stefanelli (University of

Vienna).

In the last decades an increasing interest has arisen for carbon-based materials, such as
carbon nanotubes, fullerenes and ultra-thin graphite films, due to their unexpected electro-
magnetic properties, e.g., superconductivity and anomalous quantum Hall effects. One of
the most promising materials (investigated among others by the Nobel prizes Geim and
Novoselov) is graphene, which can be seen as the basic constituent of more complex carbon-
based structures. This material ideally corresponds to a regular, two-dimensional layer of
carbon atoms. Each atom is covalently bonded to three neighbors. These covalent bonds are
of sp?-hybridized type and ideally form 27/3 angles in a plane, so that graphene patches
can be identified as subsets of an infinite hexagonal lattice.

In order to describe these bonds, some phenomenological interaction energies (including
two- and three-body interaction terms) have been presented and partially validated. The ar-
rangement of carbon atoms in the two-dimensional crystal emerges then as the global effect
of the combination of local atomic interactions, and can be seen as the result of a geometric
optimization process: by identifying the configuration of n carbon atoms with their positions
{x1,...,2,} C R? one minimizes a given configurational energy E : R*" — R U {cc} and
proves that the minimizers are indeed subsets of a regular hexagonal lattice. The configura-
tional energies for carbon feature a decomposition E = FE5 + E3 where Fs corresponds to
an attractive-repulsive two-body interaction, favouring some preferred spacing of the atoms,
and F3 encodes three-body interactions, expressing the specific geometry of sp? covalent

bonding in carbon.

The above variational viewpoint brings the study of graphene geometries into the realm of
the so-called crystallization problems. In the hexagonal setting, the crystallization problem
for a finite number of carbon atoms is studied in [35] where the periodicity of ground states

as well as the exact quantification of the ground-state energy is obtained.

In the first part of Chapter 2 we present an equivalent characterization of graphene
flakes as particle configurations maximizing a discrete “area” and minimizing a discrete
“perimeter”. Our analysis moves from the consideration that, as the configurational energy
favors bonding, ground states are expected to have minimal perimeter, since boundary

atoms have necessarily less neighbors. This heuristics is here made precise by providing a
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new identification of ground states based on a crystalline isoperimetric inequality. Indeed,
we prove that ground states correspond to isoperimetric extremizers and we determine the
exact isoperimetric constant. Analogous results had been obtained in [33, 34] for the square
lattice. As a byproduct of our isoperimetric characterization we are able to investigate the
edge geometry of graphene patches. Graphene atoms tend to naturally arrange themselves
into hexagonal samples whose edges can have, roughly speaking, two shapes: they can
either form zigzag or armchair structures. We prove here that hexagonal configurations
having armchair edges do not satisfy the isoperimetric equality, whereas those with zigzag
edges do.

The minimality of the ground-state perimeter gives rise to the emergence of large poly-
gonal clusters as the number of atoms n increases. Indeed, one is interested in identifying
a so-called Wulff shape to which all properly rescaled ground states converge. This had
been successfully obtained for both the triangular [6, 39] and the square lattice [33, 34]
beforehand, showing that ground states approach a hexagon and a square, respectively, as
n — 00. Quite remarkably, in both the triangular and the square case it has been proved
that ground states differ from the Wulff shape by at most O(n®/*) atoms, this bound being
sharp. This is what is usually referred to as the n3/4-law.

Relying on our novel discrete isoperimetric inequality, our main result is an analysis
of the asymptotic behavior of graphene patches as the number of particles grows, proving
their convergence to a limit macroscopic hexagonal Wulff shape. In particular, ground
states with n atoms in two dimensional graphene sheets are shown to deviate from suitable
hexagonal configurations with zigzag edges and from a limit hexagonal Wulff shape by at
most Kpn3/4+ o(n3/4) particles. The constant K, is explicitly computed and proved to be
sharp.

A parallel analysis in the triangular lattice is presented in [25] and in the second part
of Chapter 2, allowing to provide a characterization of minimizers of the so-called “edge-
isoperimetric” problem, which plays a key role in the variational description of many classi-
fications and clustering tasks. Extremizers of the edge-isoperimetric problem are shown to
deviate from suitable hexagonal configurations in the triangular lattice and from the Wulff
shape by at most K;yn3/* + o(n®/*) particles. Our result provides a new, alternative proof
of the n/*-law in the triangular lattice. As a by-product of our analysis an explicit sharp

value for K; is also identified.

Our estimates in the triangular and hexagonal lattice provide a measure in different
topologies of the fluctuation of the isoperimetric configurations with respect to suitable

hexagonal configurations.

The mathematical modeling of inelastic phenomena is a very active research area, at the
triple point between mathematics, physics, and materials science. Chapter 3 is devoted to

two results related to the modeling of inelastic phenomena in a dynamic setting.

In the first part of Chapter 3 we discuss a new approximation result for solutions to
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the problem of dynamic perfect plasticity for the classical Prandtl-Reuss model

pii— V-0 =0, (0.5)
o =C(Eu— p), (0.6)
O0H(p) 2 0p (0.7)

describing the plastic behavior of metals. In the expression above, u(t) :  — R3 is
the (time-dependent) displacement of a body with reference configuration Q C R? and
density p > 0, and o(t) : @ — M2*} is its stress. Equation (0.5) describes conservation
of momenta. The constitutive relation (0.6) relates the stress o(¢) to the linearized strain
Eu(t) := (Vu()+Vu(t)")/2 : @ — M2%? and the (deviatoric) plastic strain p(t) : Q —
M3® (deviatoric tensors) via the fourth-order elasticity tensor C. Finally, the differential
inclusion (0.7) expresses the plastic-flow rule: H : M?’DXS — [0,+00) is a positively 1-
homogeneous, convex dissipation function, op stands for the deviatoric part of the stress,
and the symbol 9 is the subdifferential in the sense of Convex Analysis. The system is
driven by imposing a nonhomogeneous time-dependent boundary displacement.

Our main result, obtained in [26] jointly with Ulisse Stefanelli, consists in recovering weak
solutions to the dynamic perfect plasticity system (0.5)-(0.7) by minimizing a sequence of
parameter-dependent convex functionals over entire trajectories, and by passing to the limit
as the parameter tends to zero. In particular, we consider the Weighted-Inertia-Dissipation-

Energy (WIDE) functional of the form

I.(u,p) = /OT-/Q exp (—z) (p(;—2|u|2 +eH(p) + %(Eu—p) : (C(Eu—p)) dx dt, (0.8)

defined on suitable admissible classes of entire trajectories ¢t € [0,T] — (u(t),p(t)) : @ —
R3 x M%X3 fulfilling given boundary-displacement and initial conditions (on u and p, re-
spectively). The name of the functional reflects the fact that it is given by the sum of the
inertial term plii|?/2, the dissipative term H(p), and the energy term (Eu—p) : C(Eu—p)/2,
weighted by different powers of ¢, as well as by the function exp(—t/e).

For all € > 0 one can prove that (a suitable relaxation of) the convex functional I. admits
minimizers (u®,p®) which indeed approximate solutions to the dynamic perfect plasticity
system (0.5)-(0.7). In particular, by computing the corresponding Euler-Lagrange equa-

tions one finds that the minimizers (u®,p®) weakly solve the elliptic-in-time approximating

relations
2" — 262 pUc + pii° — V-0° =0, (0.9)
o = C(Eu® —p°), (0.10)
—e(0H(p%))" + 0H(p%) > o, (0.11)

complemented by Neumann conditions at the final time T'.
The dynamic perfect plasticity system (0.5)-(0.7) is formally recovered by taking ¢ — 0
in system (0.9)-(0.11). The main result presented in the first part of Chapter 3 consists in

making this intuition rigorous, resulting in a new approximation theory for dynamic perfect



Introduction

plasticity.

Existence results for (0.5)-(0.7) are indeed quite classical. In the dynamic case p > 0
both the first existence results due to Anzellotti and Luckhaus [5] and their recent revisiting
by Babadjian and Mora [8] are based on viscosity techniques. With respect to the available
existence theories our approach is new, for it does not rely on viscous approximation but
rather on a global variational method.

We briefly outline the main steps of the proof. First, by time discretization we prove a
uniform energy estimate for minimizers of the WIDE functionals selected via time-discrete
to continuum I'-convergence. This uniform upper bound allows to deduce compactness and
convergence of the sequence of e-dependent weak solutions to (0.9)-(0.11) to weak solutions
to (0.5)-(0.7). A key point in our argument is to show that the limit stress and plastic strain
satisfy (0.7). This indeed does not follow directly by the uniform energy estimate but is
rather obtained by proving a delicate e-dependent energy equality. The proof of this last
result follows closely the strategy of [41, Theorem 2.5 (¢)]. The main additional difficulties
in our setting are due to the linear growth of the dissipation function.

The WIDE approach in the dynamic case p > 0 has been the object of a long-standing
conjecture by De Giorgi on semilinear waves [28]. The conjecture was proved in [42] for
finite-time intervals and then by Serra and Tilli in [40] for the whole time semiline, that is
in its original formulation. De Giorgi himself pointed out in [28] the interest of extending
the method to other dynamic problems. The result presented in the first part of Chapter 3

delivers the first realization of De Giorgi’s suggestion in the context of Continuum Mechanics.

The second part of Chapter 3 concerns a system of PDEs and differential inclusions
describing the combination of linearized perfect plasticity and damage effects in a dynamic
setting for viscoelastic media. This analysis has been performed jointly with Ulisse Stefanelli
and Tomd§ Roubicek (Czech Academy of Sciences and Charles University) in [27].

Plasticity and damage are inelastic phenomena providing the macroscopical evidence of
defect formation and evolution at the atomistic level. Plasticity results from the accumula-
tion of slip defects (dislocations), which determine the behavior of a body to change from
elastic and reversible to plastic and irreversible, once the magnitude of the stress reaches a
certain threshold and a plastic flow develops. Damage evolution originates from the forma-
tion of cracks and voids in the microstructure of the material.

A vast literature concerning damage in viscoelastic materials, both in the quasistatic and
the dynamical setting is currently available. We refer, e.g., to [36] and the references therein
for an overview of the main results.

The focus of the second part of Chapter 3 is on providing a rigorous analysis of an
isothermal and isotropic model for viscoelastic media combining both small-strain perfect
plasticity and damage effects in a dynamic setting.

A motivation for tackling the simultaneous occurrence of dynamical perfect plasticity
and damaging is the mathematical modeling of cataclasite zones in geophysics. During
fast slips, lithospheric faults in elastic rocks tend to emit elastic (seismic) waves, which in
turn determine the occurrence of (tectonic) earthquakes, and the local arising of cataclasis.

This latter phenomenon consists in a gradual fracturing of mineral grains into core zones
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of lithospheric faults, which tend to arrange themselves into slip bands, sliding plastically
on each other without further fracturing of the material. On the one hand, cataclasite core
zone are often very narrow (sometimes centimeters wide) in comparison with the surrounding
compact rocks (which typically extend for many kilometers), and can be hence modeled for
rather small time scales (minutes of ongoing earthquakes or years between them, rather
than millions of years) via small-strain perfect (no-gradient) plasticity. On the other hand
the partially damaged area surrounding the thin cataclasite core can be relatively wide, and
thus calls for a modeling via gradient-damage theories).

The novelty of the contribution presented in the second part of Chapter 3 is threefold.
First, we extend the mathematical modeling of damage-evolution effects to an inelastic
setting. Second, we characterize the interaction between damage onset and plastic slips
formation in the framework of perfect plasticity, with no gradient regularization and in
the absence of hardening. Third, we complement the study of dynamic perfect plasticity,
by keeping track of the effects of damage both on the plastic yield surface, and on the
viscoelastic behavior of the material.

The analysis of the model considered in the second part of Chapter 3 presents several
technical challenges. Perfect plasticity allows for plastic strain concentrations along the (pos-
sibly infinitesimally thin) slip-bands and calls for weak formulations in the spaces of bounded
Radon measures for plastic strains and bounded-deformation (BD) for displacements (see,
e.g., [43]). This requires a delicate notion of stress-strain duality. Considering inertia and
the related kinetic energy renders the analysis quite delicate because of the interaction of
possible elastic waves with nonlinearly responding slip bands.

The proof strategy relies on a staggered discretization scheme, in which at each time-step
we first identify the damage variable as a solution to the damage evolution equation, and
we then determine the plastic strain and elastic displacements as minimizer of a damage-
dependent energy inequality. The strong convergence of the time-discrete elastic strains,
needed for the limit passage in the damage flow rule, relies on a non-standard higher order
test. The convergence of the elastic strains is then achieved by means of a delicate limsup

estimate. The flow rule is recovered, in the limit, in the form of an energy balance.

The thesis is organized as follows: Chapter 1 is based on the papers [21, 12, 20]. The
content of Chapter 2 are the two publications [24, 25]. Chapter 3 involves the two works
[26, 27].
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69 Page 2 of 60 E. Davoli, I. Fonseca

where Q C RY is an open bounded domain, ¢ — 0T, and the fields u, € L?(Q; R?) are
subjected to periodically oscillating differential constraints such as

N

; d

Uy 1= ZA’ X ) 9ue ) — 0 strongly in W17 (Q; R, (1.1)
P B ) Ox;

or in divergence form

N

. 9 ,
%dwug = Z —( l(%)ug(x)) — 0 strongly in W17 (Q; R, (1.2)
€

0x;
i=1 !

with 1 < p < 400, A'(x) € Lin (Rd; Rl) = M'*4 for every x € RN, i =1,...,N,
d,l > 1, and where «, 8 are two nonnegative parameters. Here, and in what follows, M xd
stands for the linear space of matrices with / rows and d columns.

Oscillating divergence-type constraints as in (1.2) appear in the homogenization theory
of systems of second order elliptic partial differential equations. Indeed, if u, = Vv,, with
v, € WHP(Q) for every ¢ > 0, and Al (x) = A(x) € MV*N fori = 1,..., N, then
considering (1.2) reduces to the homogenization problem of finding the effective behavior
of (weak) limits of v,, where

div (A(E)va) — 0 strongly in WP (Q), 1 < p < +o0.
€

These problems have been extensively studied in the literature (see e.g. [2], [6, Chapter 1,
Section 6], [10], and the references therein). Similar differential constraints play a key role
also in optimal design and minimum compliance analysis. In factif / = N = 3,d = 9, if
u® = e e L*(Q; M>*3) represent linearized elastic strains associated to €2, and

[A'(x)E]; := [C(x)&];; fori,j=1,...,3,

where C is a positive definite, linearized elasticity tensor associated to €2, then (1.2) leads to
the effective behavior of elastic quasi-equilibria e® satisfying

. X P . —-1,2 3
div ((C(—ﬁ)e (x)) — 0 strongly in W™ 7 (2; R”).
€

We refer to, e.g., [5] for an overview on this kind of problems.

Different regimes are expected to arise depending on the relation between « and . Here
we will consider 8 > 0, and we will assume that the energy density f is constant in the first
two variables but the differential constraint in divergence form (1.2) oscillates periodically.
The limit scenario « > 0, 8 = 0 and (1.1) (treated in [14] for constant coefficients), i.e., the
energy density is oscillating but the differential constraint is fixed is analyzed in [13]. The
situation in which o« > 0 and 8 > 0, will be the subject of forthcoming papers.

The key tool for our analysis is the notion of .7’ -quasiconvexity. Fori = 1..., N, consider
matrix-valued maps Al e C™®(Q; Ml xd ), and define .7 as the differential operator such that

v (x)
ox;

1

N
A(x) = ZA"(x) xeQ,
i=1

forv e Llloc(Q; R?), where % is to be interpreted in the sense of distributions. We require
that the operator <7 satisfies a uniform constant-rank assumption (see [20]) i.e., there exists

r € N such that

@ Springer
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N

rank (ZAi(x)wi) =r foreveryw € sVt (1.3)
i=1

uniformly with respect to x, where S¥~! is the unit sphere in RY. The properties of .7~
quasiconvexity in the case of constant coefficients were first investigated by Dacorogna in
[11], and then studied by Fonseca and Miiller in [16] (see also [12]). In [23] Santos extended
the analysis of [16] to the case in which the coefficients of the differential operator <7 depend
on the space variable.

Definition 1.1 Let f : R? — R be a continuous function, let O be the unit cube in RN
centered at the origin,
0 1 1\"
N 2°2) 7

and denote by C55, (R™; R?) the set of smooth maps which are Q-periodic in R . Consider
the set

N
C, = [w € C®Y;RY) : /Qw(y)dy —0, ZA"(x)aw(y) - 0].
i=1

0y

For a.e. x € Q, the o7-quasiconvex envelope of f in x € Q is defined as

£ O f(x,£) = inf{/Qf(§+w(y))dy: w ecx].

f is said to be .7 -quasiconvex if f(£) = Qo f(x,£) forae x € Qand all £ € R?.

We remark that when .« := curl, i.e., when v = V¢ for some ¢ € WIL’CI(Q; R™), then
d = m x N, then «/-quasiconvexity reduces to Morrey’s notion of quasiconvexity (see
[1,4,18,19]).

The following theorem was proved in [23] in the more general case when f is a
Carathéodory function, generalizing the corresponding results [16, Theorems 3.6 and 3.7] in
the case of constant coefficients (i.e. A’(x) = A € M'*? for everyi =1,...,N).

Theorem 1.2 Let Q be an open bounded domain in RN, let A1 e C>®(Q:; M*?) N
whoo@:M*4), i =1,...,N,d > 1,1 < p < +o00o, and assume that the operator
</ satisfies the constant rank condition (1.3). Let [ : RY — [0, +00) be a continuous
function satisfying

@ 0= f=CU+ v,
(i) [f (1) = f(2)| < CA+ [v1|P~" + [ua| P~ vy = v

for all v, vy, vy € R?, and for some C > 0. Then <f -quasiconvexity is a necessary and
sufficient condition for lower semicontinuity of the functional

vr—>/f(v(x))dx
Q

for sequences ve — v weakly in L?(Q2;R?) and such that /ve — 0 strongly in
Wb (@ RY).
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69 Page 4 of 60 E. Davoli, I. Fonseca

In the case of constant coefficients, Braides et al. [7] provided an integral representation
formula for relaxation problems in the context of .7-quasiconvexity and presented (via I"-
convergence) homogenization results for periodic integrands evaluated along .<7-free fields.
Their homogenization results were later generalized in [14], where Fonseca and Kromer
worked still in the framework of constant coefficients but under weaker assumptions on the
energy density f.

This paper is devoted to extending the previous homogenization results to the case in
which &7 is a differential operator with nonconstant L°°-coefficients, the energies under
consideration are of the type

ug'—>/f(ug(x})dx,
Q

where u, — u weakly in L (£2; R?), and

N

~ 0
Jafedlvug = Z (A’( )ue(x)) — 0 strongly in W~ 19(Q; 1)
&

0Xx;
i=1

forall 1 < g < p.We point out that the result in Theorem 1.2 [23] covers the case ¢ = p. Our
analysis includes the case when ¢ = p if the operator <7 has smooth coefficients. However,
in the general situation when 7 has bounded coefficients, the assumption 1 < g < p
is required, in order to satisfy some truncation and p-equiintegrability arguments (see the
proofs of Theorems 4.2, 5.1).

Our starting point is a characterization of the set C of limits of %di"—vanishing fields
ue. We show in Proposition 3.5 that a function u € L?(Q2; RY) belongs to C*¥ if and only if
there exists a map w € LP(£2; Lper(RN; R?)) such that fQ w(x,y)dy =0 forae. x € Q,

2—s
Ug —> U T W

strongly two-scale in L? (2 x Q; R?) (see Definition 2.1), and u + w satisfies the differential
constraints

d .
2. a_(/ AT () @) + w(x, y))dy) =0 (1.4)
Yi\Jo

i=1 !

in W=LP(Q: R, and

9 .
g(A’(y)(u(X)-Fw(x,y))) =0 (1.5)

\E

l:

in WP(Q; RY) for a.e. x € Q. This generalizes the classical characterization of 2-scale
limits of solutions to linear elliptic partial differential equations in divergence form in [2,
Theorem 2.3] to the case of first order linear systems.

For every u € C¥, we denote by C;ff the class of maps w as above. We then prove that
the homogenized energy is given by the functional

inf, - ¢ inf [ liminf, . 4 oo ]_-";f(n,)(un) s up, — u weaklyin L7 (€2; RY)
T W) = 1ipy e co

+oo otherwise in L?(2; RY),

@ Springer
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where

inf l Jo f@) +wx, y)dydx :w e ™, lwlizr@xo:rdy =7
=t &
F et ny () 1= ifve Cd(n)

+o00 otherwise in L”($2; RY),

the classes Cfff ) are defined analogously to C;‘y by replacing the operators A’ (-) with A’ (n-)
in (1.4) and (1.5), and

CZ ™ = (v e LP(RY) : Jw e ¢ with |l pqxgmey <7}, 7> 0.
Our main result is the following.

Theorem 1.3 Let 1 < p < 4+00. Let AL € L®(Q; M*9), i =1,...,N, andlet f : RY —
[0, +00) be a continuous map satisfying the growth condition

0<fw)y<CcU+|v?”) foreveryveRd, and some C > 0.

Then, for every u € C¥ there holds
inf [ lim 1nf/ fue(x))dx : ug — u weakly in LP($2; RY)
and ,Q/Sdivue — 0 strongly in WH4(Q: RY) forevery 1 < g < p]

= inf [ lim Sup/ fug(x))dx : ug — u weakly in LP (Q; RY)
Q

e—0

and %divug — 0 strongly in wha(Q; ]Rl)for everyl < g < p} = o (u).

Remark 1.4 (i) As aconsequence of Theorem 1.2, we expected the homogenized energy to
be related to the effective energy for an “</-quasiconvex” envelope of the function f,
with the role of the differential constraint .7 to be replaced by the limit constraints (1.4)
and (1.5). We stress the fact that here the oscillatory behavior of the differential constraint
as ¢ — 0 forces the relaxation with respect to (1.4) and (1.5) and the homogenization in
the differential constraint to happen somewhat simultaneously. Indeed, for every n the
functional ]_-';f(n_) is obtained as a truncated version of a relaxation with respect to the
limit differential constraints dilated by a factor n, and is evaluated on a fixed element of
a sequence of maps approaching u, whereas the limit functional .%o (1) is deduced by a
“diagonal” procedure, as n tends to 4o0.

(1) The truncation in the definition of the functionals ]_-“:Zf(n.) plays a key role in the proof
of the limsup inequality

inf [ lim sup/ f(ug(x))dx : ug — u weakly in LP(Q; Rd)
Q

e—0

and szfgdivug — 0 strongly in W~14(Q; R) for every 1 < g < p] < Z ),

because it provides boundedness of the “recovery sequences’ and thus allows us to apply
a diagonalization argument (see Step 3 in the proof of Proposition 4.12).
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(iii) The functional .% . is identified, in general, by means of an asymptotic characterization
(see Theorem 1.3). In Theorem 5.6 we prove that in the case in which f is convex this
reduces to a non-asymptotic cell formula.

(iv) We remark that, as opposed to the case in which the operators A’ are constant, we cannot
expect the homogenized energy to be local, i.e., that there exists from : Q x R —
[0, +00) such that

fﬂ(”):/nghom(xau(x))dx~ (1.6)

We show in Example 5.7 that locality in the sense of (1.6) may fail even when the
function f is convex.

As in [14], the proof of this result is based on the so-called unfolding operator, introduced in
[8,9] (see also [24,25] and Sect. 2.2). A first difference with [14, Theorem 1.1] (i.e., with the
case in which the operators A’ are constant) is the fact that we are unable to work with exact
solutions of the system %divug = 0, but instead we consider sequences of asymptotically
szfgdi"—vanishing fields. As pointed out in [23], in the case of variable coefficients the natural
framework is pseudo-differential operators. In this setting, we do not project directly onto
the kernel of a differential constraint .7, but rather we construct an “approximate” projection
operator P such that for every field v € L?, the W—!-? norm of &7 Pv is controlled by the
W=LP norm of v itself (we refer to [23, Subsection 2.1] for a detailed explanation of this
issue, and to the references therein for a treatment of the main properties of pseudo-differential
operators).

The crucial difference with respect to the case of constant coefficients is the structure of
the set C*“. In the case in which the condition szfsdi"u ¢ — 01is replaced by u, = 0, with
</ being independent of the space variable, (1.4) and (1.5) decouple (see [14, Theorem 1.2])
becoming separate requirements on w and u. However, in our situation they can not be dealt
with separately, and this forces the structure of the homogenized energy to be much more
involved.

The oscillatory behavior of the differential constraint and its e-dependent structure render
this problem quite technical due to the difficulty in obtaining a suitable projection operator
on the limit differential constraint. Moreover, due to the coupling between (1.4) and (1.5)
and the dependence of the operators on ¢, the pseudo-differential operators method cannot
be applied directly here. In order to solve this problem, in Lemma 3.3 we are led to impose
a uniform invertibility requirement on the differential operator. To be precise, we require
[ x N = d and we assume that there exists a positive constant y such that the operator
A(y) € Lin (R?; R?), defined as

(Al &)
A(y)€ == e MV =R for every & € RY,
(ANET
satisfies
(H) Ay)r-r > )/|)\|2 for every A € R and y e RV.

We remark that assumption (H) is quite natural, as it represents a higher-dimensional version
of the classical uniform ellipticity assumption (see e.g. [2, (2.2)]). We refer to Remark 3.1
for a discussion on the relationship between (H) and the constant rank assumption (1.3).
The strategy of our argument consists in first proving Theorem 1.3 in the case in which
the operators A’ are smooth. The general case is then deduced by means of an approximation
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argument of bounded operators by smooth ones, and by an application of Severini—-Egoroff’s
theorem and p-equiintegrability (see Sect. 5).

Our main theorem is consistent with the relaxation results obtained in [7] in the case of
constant coefficients. When the linear operators A’ are constant, we prove in Sect. 5.1 that
the homogenized energy .# ., and Theorem 1.3 reduce to the .o7-quasiconvex envelope of f
and [7, Theorem 1.1], respectively.

This article is organized as follows. In Sect. 2 we introduce notation and recall some
preliminary results on two-scale convergence and on the unfolding operator. In Sect.3 we
provide a characterization of the limits of %di" -vanishing fields (see Proposition 3.5). Section
4 is devoted to the proof of our main result, Theorem 1.3, for smooth operators ,Qfgdi". The
argument is extended to the case in which %div are only bounded in Sect. 5.

2 Preliminary results

Throughout this paper 2 C R" is an open bounded domain and O(S2) is the set of open
subsets of €. Q is the unit cube in RY centered at the origin and with normals to its faces
parallel to the vectors in the standard orthonormal basis of RN, {e1,...,en}, 1.,

_ 1 1\V
Q'_(_E’E)'

Given 1 < p < +00, we denote by p’ its conjugate exponent, that is

1 1
p p

Whenever amap v € L?, C*, ..., is Q-periodic, that is
vix+e)=vx) i=1,...,N

for a.e. x € RV, we write v € Lf,’er, ngr, ..., respectively. We will implicitly identify
the spaces L”(Q) and Lger (RY). We designate the Lebesgue measure of a measurable set
A C RY by |A|. We adopt the convention that C will stand for a generic positive constant,

whose value may change from expression to expression in the same formula.

2.1 Two-scale convergence

We recall the definition and some properties of two-scale convergence which apply to our
framework. For a detailed treatment of the topic we refer to, e.g., [2,17,22]. Throughout this
subsection 1 < p < +o00.

Definition 2.1 Ifv € L7(Q; Ly (RY; RY)) and {u,} € LP(Q; RY), we say that {u, } weakly

. 2—s
two-scale converge to v in LP (2 x Q; Rd), ug — v, if

/ug(x)-go(x, E)a,’x—>// v(x,y) - o(x,y)dydx
Q & QJo

for every ¢ € LP/(Q; Cper(RN; R?)).
_ 2
We say that {u} strongly two-scale converge to vin L? (2 x Q; Rd), Ug 2—>s v, if ug =
and

lim fluell L @:rdy = IV1Lr @ 0:R4)-
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69 Page 8 of 60 E. Davoli, I. Fonseca

Bounded sequences in L”(2; RY) are pre-compact with respect to weak two-scale conver-
gence. To be precise (see [2, Theorem 1.2]),

Proposition 2.2 Let {u.} C LP(L2; R?) be bounded. Then there exists v € LP (S2; Lf;er (RN,

2—
R4)) such that, up to a subsequence, u, Y weakly two-scale, and, in particular,
Ug — U ::/ v(x,y)dy weaklyin L?(S2; R?).
0

The following result will play a key role throughout the paper in the proofs of limsup inequal-
ities (see [2, Lemmal.3], [25, Lemma2.1], and [14, Proposition 2.4, Lemma 2.5 and Remark
2.6)).

Proposition 2.3 Let v € LP(Q; Cper(RY;RY) or v € Lpe(RN; C(2;RY)). Then the
sequence {u.}, defined as
X
Uug(x) := v(x, —)
&

2—
Ug = v strongly two-scale in LP (2; RY).

is p-equiintegrable, and

2.2 The unfolding operator

We collect here the definition and some properties of the unfolding operator (see e.g. [8,9,
24,25)).

Definition 2.4 Let u € LP(Q;R?). For every ¢ > 0 the unfolding operator 7
LP (2 RY) — LP(RN; LE,(RY; RY)) is defined componentwise as

T (u)(x, y) = u<sEJ e(y - |_yj)) forae.x € Qand y € RV, 2.1)

where u is extended by zero outside €2 and | -] denotes the least integer part.
Proposition 2.5 T is a nonsurjective linear isometry from LP ($2; R?) to LP (RN x Q; RY).

The next theorem relates the notion of two-scale convergence to L” convergence of the
unfolding operator (see [25, Proposition 2.5 and Proposition 2.7], [17, Theorem 10]).

Theorem 2.6 Let Q2 be an open bounded domain and let v € LP(2; Lger (RN : RY)). Assume
that v is extended to be 0 outside 2. Then the following conditions are equivalent:

2—
(1) u® y weakly two-scale in LP (2 x Q; RY),
(1) Teuy — v weakly in LP(RN x Q; RY).
Moreover,

u® 25 v strongly two-scale in LY (Q x Q; R%)
if and only if

T.u, — v strongly in LP(RY x Q; R?).

The following proposition is proved in [14, Proposition A.1].
Proposition 2.7 Ifu € LP(Q; RY) (extended by 0 outside 2) then

llu — TS””LP(RNXQ;Rd) — 0

as ¢ — 0.
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3 Characterization of limits of .«7/3"V-vanishing fields

Let 1 < p < +o00, and for every ¢ > 0 denote by ;zfgdi" cLP(Q:RY > WP (Q: RY) the
first order differential operator

AWy = ai(Ai ()—C)u(x)) (3.1)
im1 oY ¢

for u € LP(Q;RY). In this section we focus on the case in which the operators A’ are
smooth and Q-periodic, A* € C5 (RN, M!*4) foralli = 1,..., N. We will also require

M=

per
that N x [ = d, and for every y € RN the operator A(y) € Lin (R?; RY), defined as
(A'me)’
A(y)€ = ( : ) e MV = R4 for every & € R?, (3.2)
(AN (»&)T

satisfies the uniform ellipticity condition
AL - A > )/|)»|2 for every A € RY and y e RN (3.3)
where y > 0 is a positive constant.

Remark 3.1 We observe that if <7 satisfies the uniform constant rank assumption (1.3) with
r = d, then the linear operator A(y) defined in (3.2) is injective (and hence invertible, in
view of the Rank Theorem).

Indeed, for r = d property (1.3) yields

N

> Al(»)wiv =0 ifandonlyifv =0,

i=1
forevery y € Q,and w € SN=1 In particular, choosing w = ¢;,i = 1,..., N, we deduce
that

Al(y)E =0 ifand onlyif & =0,

foreveryi = 1,..., N,and for all y € Q. Thus A(y)é = 0 if and only if £ = 0. However,
the constant rank assumption (1.3) with » = d is not enough to guarantee that the uniform
ellipticity condition (3.3) holds true.

We also notice that the converse implication is false, namely there exist first order operators
satisfying (3.3) and with constant rank strictly less than d. The operator <7 defined in Sect.
5.3 provides an explicit example.

We first state a corollary of [16, Lemma 2.14].

Lemma 3.2 Let 1 < p < +00 and consider the differential operator
div: LP(Q;RY) > w=Lr(Q)

defined as

N

dR;
divR := E 8l ) for every R € LP(Q: RY).
; Vi
i=1
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Then, there exists an operator
T:LP(Q;RY) - LP(Q:RY)
such that

(P1) T is linear and bounded, and vanishes on constant maps,
(P2) ToTR = TR and div (TR) =0 forevery R € LP(Q; RN),
(P3) there exists a constant C = C(p) > 0 such that

IR = TRl Lro:rNy = CIdIVRl -1 (0),

forall R € LP(Q; RN) with Jo R dy =0,
(P4) if {v"} is bounded in LP (2 x Q; RN) and p-equiintegrable in Q2 x Q, then setting
w"(x, ) = Tv" (x ) for a.e. x € 2, the sequence {w"} is p-equiintegrable in Q2 x Q,
(P5) if ¥ € C'(2CL, RN RY) N W2 W[%ﬁ (RN, RN)Y) then setting ¢(x,) =
Ty (x, ) for every x € R, there holds ¢ € C1(Q; Cper (RN RVY).
Using the previous result we can prove the following projection lemma.
Lemma3.3 Let 1 < p < +oo, let A\ € L®(Q; M!*9), i =1,..., N, with A satisfying
the invertibility requirement in (3.3). Let {v"}, v C LP(Q2 x Q; RY) be such that

V" —~ v weakly in LP (2 x Q; RY), (3.4)
N
0 i n . —1 l

Z Fy At (x, y)dy ) — 0 strongly in W~ 2P (Q; R'), (3.5)
—, 0Xi 0

i=1

Ny ‘

Z 8—(A’(y)v"(x, y)) — 0 strongly in LP(Q; WP (0: RY). (3.6)
i=1

Then there exists a subsequence {v"*} and a sequence {w*} C LP(Q x Q; RY) such that

v — wk = 0 strongly in LP (2 x Q; RY), (3.7)
N

2. i(/ Al (w'(r, y)dy) =0 in WP R, (3.8)
o 3X, 0

Noa

ZB_(A (y)w (x, y))—O in W~ 1"’(Q Rl)foraexeﬂ (3.9)

i=1

Proof We first notice that (3.4)—(3.6) imply that

N

Zi(/ Ai(y)v(x,y)dy) =0 in W (R,
= 0% \Jg

N

a—(A (y)v(x, y)) =0 in W LP(Q;RY) forae. x € Q.
i=1

By linearity, it is enough to consider the case in which v = 0. Moreover, up to a translation
and a dilation, we can assume that €2 is compactly contained in Q.
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By the compact embedding of L7 (2; R?) into W—1-7(Q; R?), and by (3.4) and (3.5), for
every ¢ € C2°(2; [0, 1]) there holds

N

9 .
> ;( / AT (M) (x, y) dy)
i=1 S¥i\Jo
N 3(/) ‘
Z} (x)—(/QA(y>v (x, y)dy)+z T (/QA%y)v"(x,y)dy)ao

i i=1

strongly in W17 (Q; RY). On the other hand, by (3.6),

N

0 .
Z — (Al (" (x, y)) H — 0 strongly in L? ().
i i W=Lr(Q:RY)

Therefore, we may consider a sequence {¢x} C C2°(£2; [0, 1]) with ¢ ' 1 and such that,
setting v; := ¢ v" and extending v} by zero to Q\<2 and then periodically, there holds

i —~ 0 weaklyin L”(Q x Q; RY),

N 0 i ~n . —1 l
> — A(y)vk(x,y)dy — 0 strongly in W17 (Q; R,

= ox;
N .
Z — (A’ v (x, y)) H — 0 strongly in L?(Q),
purial WoLP(Q:R)
asn — +o0o,k — +o0.
By a diagonal argument we extract a subsequence 0¥ := 6Z(k) such that
o —~ 0 weakly in LP(Q x Q; R%), (3.10)

1

Zaix(/ AT (y)oF(x, y) dy) — 0 strongly in W17 (0; RY, (3.11)
i \JQ

i=1

N
Zaiy-(f‘i(y)ﬁ"(x,y))“ — 0 stronglyin L7(Q).  (3.12)
i=1 7

W-1r(Q:R)
Define the maps
RN(x,y) := A"(y»)0*(x,y) forae.xe QandyeQ, i=1,...,N,
and let R¥ € LP(Q x Q; R) be given by
Rl == (R));, foralli=1,...,N, j=1...,1
By (3.10)—(3.12),

RF —~ 0 weaklyin L?(Q x Q; RY), (3.13)
A
k . -1, .l
7(/Q R; (x,y) dy) — 0 strongly in W™ "7 (Q; R"), (3.14)

i=1

A

Z — (R (x, y))H — 0 strongly in L”(Q). (3.15)

iy 9 w=lr(Q;R)

@ Springer



69 Page 12 of 60 E. Davoli, I. Fonseca

Using Lemma 3.2, we consider the projection operators T, and T, onto the kernel of the
divergence operator with respect to x and the divergence operator with respect to y in the set

0. We have
‘Tx(/ Rk<x,y>dy—//Rk(w,y)dydw)
0 0Jo
—(/ Rk<x,y)dy—//Rk<w,y>dydw)
0 0JO LP(Q;R4)
N
<C Z—(/ Rf(x,wdy)H : (3.16)
= 0% \Jo W-Lr(Q;R!)
and

’]I‘y(Rk(x,y)—/ Rk(x,z)dz) — (Rk(x,y)—/ Rk(x,z)dz)
0 0

LP(Qx Q:RY)
Yo
< CH Z—(Rm,y))H , (3.17)

i i w-r:rh e o)

which in turn yields

k k
H/ Ty(R (x,y)—/ R (x,z)dz)dy
0 0 LP(Q;R9)

= H/ [TY(Rk(xa y)_/ Rk(X,Z)dZ)—(Rk(x,y)_/ Rk(x,Z)dZ)]d
0 0 0

N
—(RM(x, y)) H
P dyi

LP(Q:RY)

<C

(3.18)

W=lr(Q;R)) L”(Q).

Set

SK(x, y) == Ty(Rk(x,y)—/ Rk(x,z)dz)—/ (Ty(Rk(x,z)—/ Rk(x,g)ds)) dz
0 0 0
Tx(/ Rk(x,z)dz—//Rk(w,z)dzdw)—i-//Rk(w,z)dzdw
0 0Jo 0Jo

for a.e. (x,y) € QO x Q. Combining (3.13)—(3.16), we deduce the inequality

IR* = S¥1l b (g g:me)

’]I‘y(Rk(x,y)—/ Rk(x,z)dz) - (Rk(x,y)—/ Rk(x,z)dz)
0 0

LP(Qx Q;RY)
+ Tx(/ Rk(x,z)dz—//Rk(w,z)dzdw)
)
(/ R¥(x, z)dz—/ / RF(w, z)dzdw)
LP(Q;RY)
H/ (Rk(x 7) — /Rk(x,g)ds)dz —I—‘//Rk(x,y)dydx,
LP(Q;R%)) 0JQ
(3.19)
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whose right-hand-side converges to zero as k — +00. On the other hand, by Lemma 3.2
there holds

N k
0S¥ (x,
> % =0 inW?(Q) forae. x €O, (3.20)
; Yi
i=1
N
Z}—(/Smmw¢0=OinW*%QL (3:21)
—~ 9x; \Jo
i=1
for every k, forallr =1, ..., 1.
Finally, define
St (x, y)
wh(x, y) = A(y)™! forae. x € Qandy € RY
Sh (X, )

(where the components Slk are defined analogously to the maps Rb' Properties (3.8) and (3.9)
follow directly from (3.20) and (3.21). Condition (3.7) is a consequence of the boundedness
of A=1 (due to (3.3)) and (3.19).

Remark 3.4 By property (P4) in Lemma 3.2, the boundedness of the operators A,

i = 1,..., N, and the uniform invertibility condition (3.3), it follows that if {v"} is p-
equiintegrable, then {w¥} is p-equiintegrable as well.
In view of property (P5) in Lemma 3.2 if A’ € ngr(RN cMIxdy, = , N, and

'} C C(Q; C por o (RN : RY)), then the sequence {wX} constructed in the proof of Lemma
3.2 inherits the same regularity.

In order to characterize the limit differential constraint, foru € L?(Q; R4 )andn € N we
introduce the classes

C;ld(n.) = [w € LP(%2; Lper(RNi Rd)) : /Qw(X, y)dy =0 forae.x €,

X Z ail (/ Al(ny)(M(X) + U)()C, y)) dy) =0 in W_l’p(Q; RZ),

N
=1

1

- ﬁ;‘aiyl(A (ny)(u(x) + wx, y))) =0 in W hP(Q:R) forae. x € Q
(3.22)
and
7 = (u e LV RY - ¢7™ #9). (3.23)

For simplicity we will also adopt the notation C,j2¢ = C,‘ff 1) and ¢ := ¢“1). Lemma

3.3 allows us to provide a first characterization of the set C in the case in which A’ €
Coo RN, M>™4), i =1...,N.

Proposition 3.5 Ler | < p < +o0o. Let A" € CooRN;M>™?), i = 1,..., N, with A

satisfying the invertibility requirement in (3.3). Let C “ be the class introduced in (3.23) and
let %dlv be the operator defined in (3.1). Then
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7 = {u € LP(Su RY) : there exists a sequence {ug} C LP (S RY) such that

ue — u weakly in LP(2; R?) and o/ u, — 0 strongly in WP (Q; R L.
(3.24)

Moreover, for every u € C” and w € C,f{ there exists a sequence {u.} C LP(L2; RY) such
that

U S utw strongly two-scale in LP (€2 x Q; RY),
and
AWy — 0 strongly in WP (Q; RY).

Proof Denote by D the set in the right-hand side of (3.24). We divide the proof into two
steps.

Step 1 We first show the inclusion
Dcc.
Let u € D, and let {u.} C L”(Q2; RY) be such that
ug — u weakly in L? (Q; RY) (3.25)
and
AWy, — 0 strongly in W17 (Q; RY). (3.26)
Consider a test function ¢ € C Ll ($2; RY). We have

(A Mug, ¥) — 0, (3.27)

where (-, -) denotes the duglity product between w1 (Q; R!) and W(}’p /(Q; RY). By defi-
nition of the operators %d“’,

N
(7 ue, v) = ‘/gzzAi(g)”g<x)~ W 4 forevery e > 0.
i=1

ax;

By Proposition 2.2 there exists a map w € L (L; Lper(RN; R?)) with fQ w(x,y)dy =0
such that, up to the extraction of a (not relabeled) subsequence

2—
Ug o weakly two-scale (3.28)

where
vix,y) =ulx)+wx,y)), (3.29)

fora.e. x € Q, y € RY. Hence, by the definition of two-scale convergence,

(A ue, / / ZA(y)v(x v ‘”(’C) x,
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and by (3.27) we have that
N

> i(/ A" (Y (u(x) + wix, y))dy) =0 in W hP(Q; RY. (3.30)
0

0Xx;
i=1 !

Let now ¢ € cl (RN RY, v eC cl (£2), and consider the sequence of test functions

per
@e(x) —8<p( )lﬁ(x) for x € RV,

The sequence {¢;} is uniformly bounded in WOl P /(Q; R?), therefore by (3.26)
(7 Mue, e) — 0, (3.31)

with

v i 8 alﬂ(x)
(7 ue, @) /ZA( )ue<x) (ay,( )w(x)+ (8) " )

for every ¢. Passing to the subsequence of {u, } extracted in (3.28), and applying the definition
of two-scale convergence, we obtain

N
- d
// E A'(yv(x, y) - (g(y)
QJ0 5 Yi

per(]RN R') and ¢ € C (£2). By density, this equality still holds for an
arbitrary ¢ € W0 4 (Q: R, and so

for every ¢ €

>

im0
Combining (3.30) and (3.32), we deduce that u € ce.

Step 2 We claim that C? cD.LetucC?,letw € Cf, and set

(Ai(y)(u(x) + w(x, y))) =0 in W bP(Q:R) forae. x € Q. (3.32)

v(x,y) =ulx)+w(x,y) foraex e Qandy € RV,

Let {v5} C C(Q; C.(RY; RY)) be such that

per
vs — v strongly in L?(Q x Q; RY). (3.33)

The sequence {vs} satisfies both (3.5) and (3 6), hence by Lemma 3.3 and Remark 3.4 we
can construct a sequence {05} C C*®(2; C°.(RY; R?)) such that

per
05 — v strongly in L?(Q x Q; R?), (3.34)
N 5 _
2 —( / A'()Ds(x. y) dy) =0 in W@ R), (3.35)
o 9% \Jo
and
N 9 .
> a—(A’ (Y)0s(x,y)) =0 in W LP(Q; R forae. x € Q. (3.36)
; Vi
i=1
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. . X
us(x) := vs (x, E)

for every x € 2. By Proposition 2.3 we have

Consider now the maps

u ey 05 strongly two-scale in L”(2 x Q; RY)
as ¢ — 0, and hence, by Theorem 2.6
T.u$ — v5 strongly in LP R" x Q; RY) (3.37)
(where T is the unfolding operator defined in (2.1)). We observe that by (3.36),

N

AT (x. X (x\00s [ x
z “)oslx, =)+ A (= x,=) =0 (3.38)
ay; \ & £ e ) dy; £

i=1

for all x € €2, for every ¢ and . Moreover, by Propositions 2.2 and 2.3,

Z. (E) x; (X’ g) i=1 /Q ) dx; oy dy
Ny '
= Z_.(/QA’(y)ﬁs(x,y) dy) =0 (3.39)

as ¢ — 0, weakly in L?(Q; RY), where the last equality follows by (3.35). Finally, since

N
. 3 [ .
A uf (x) = E ﬁ(f‘l (;—C)uﬁ(x))

i=1 !

S5 ) D) ()5 (-)]

by (3.38), (3.39), and the compact embedding of L? into W~LP we conclude that
AIWNyE — 0 strongly in WP (Q; R, (3.40)
as ¢ — 0. Collecting (3.34), (3.37), and (3.40), we deduce that

§—0e—0

lim lim (||Tgu§ — (u+w)|Lr@xo) + ||%divu§||wl,p(Q;R,)) = 0.

By Attouch’s diagonalization lemma [3, Lemma 1.15 and Corollary 1.16], there exists a
subsequence {5 (&)} such that

3% (IITsME(S) — (u + w)”LP(QxQ) + ||, lvug(g)nw—l»p(gz;]}gl)) = 0.
Setting u® := uj_, we finally obtain

szsdivug — 0 strongly in W17 (Q; R
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and
w5y +w strongly two-scale in L”(Q x Q; R%),
and hence, by Proposition 2.2,
u® — u weakly in L?(Q; R?).
This yields that u € D and completes the proof of the proposition. O

Remark 3.6 The regularity of the operators A’ played a key role in Step 2. In the case in

which A’ € ngr (]RN - M xd ),i = 1,..., N,but we have no further smoothness assumptions

on the operators, the argument in Step 1 still guarantees that

[u € LP(Q; Rd) . there exists a sequence {u.} C L?(Q; Rd) such that
u, — u weakly in L?(Q; RY)
and %divug — 0 strongly in w4 R for every 1 < ¢ < p] cc?. 34D
Indeed, arguing as in Step 1 we obtain that there exists w € LP(Q; Ly (RY; RY)) with
fQ w(x, y)dy = 0, such that

2_
Ug utw weakly two-scale in L” (2 x Q; RY),

and

N
2. i(/ AT () +w(x, y))dy) =0 in W (QR)
o 9% \Jo

(A" (M @) +wx, y) =0 in W H9(Q; R forae. x € Q, (3.42)

QJ‘QJ

1)’1‘

1

forall 1 < ¢ < p.Since u +w € LP(Q; L (RY; RY)), it follows that (3.42) holds also for
q = p. Therefore we deduce the inclusion (3.41).

The proof of the opposite inclusion, on the other hand, is not a straightforward conse-
quence of Proposition 3.5. In fact, in the case in which the operators A’ are only bounded, the
second conclusion in Remark 3.4 does not hold anymore, and we are not able to guarantee that
the projection operator provided by Lemma 3.3 preserves the regularity of smooth functions.
Therefore, the measurability of the maps u§ is questionable (see [2, discussion below Defin-
ition 1.4]). This difficulty will be overcome in Lemma 5.3 by means of an approximation of
the operators A’ with C* operators.

4 Homogenization for smooth operators
We recall that

F Ly ) = inf[/g/Qf(u(x)-l—w(x,y))dydx: w € CZ ") wll pax o:rd) §r]

4.1)
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of (n-)
-

forevery u € C and r > 0, where

C;Z{(n) = {U S LP(Q, Rd) cdw e Cff{(n) with ”w”Lp(QXQ;Rd) < r},

r : o (n-)
_ Fro ) ifueC” "7,
F gy @) =1~ <) 4.2
oy () {—i—oo otherwise in L?(Q; RY), 42)
for every r > 0, and
inf, - ¢ inf [ liminf,_, 4+ f;ﬂn_)(un) ‘up, — u weakly in LP(L; Rd)}
Ty (U) = (4.3)

ifu eCc?,
+o00 otherwise in L?($2; RY).

Remark 4.1 We observe that for every u € C* there holds
S = {{un} ©up — u weakly in L?(§; RY), u, € c?™) for every n € N] + ()

and .7/ (u) < +oo. Indeed, let u € C” and w € C;ff . Then a change of variables and the
periodicity of w yield immediately that

/ w(x,ny)dy =0 forae.x € Q
0

and

Zi(/ (A"(ny)(u(x)+w<x,ny>>)dy) =0 in W L@ R).
; 0

X
i=1 !

Proving that

n

2:;%#@ﬁ@&)+w@me:OinW4$@LWHMa&xEQ

i=1 O

is equivalent to showing that

n

Elgﬂmwxmm+wwdm):oinW*wanwﬁmaaer. (4.4)

iz OV

To this purpose, arguing as in Step 2 of the proof of Proposition 3.5, construct {0°} C
C®(Q; CZ.(RN; R?)) such that

per
3® > u+w strongly in L”(Q x Q; R%), 4.5)
n
0 .
> a—( / (A" (ny)d° (x, y))dy) =0 in WP (@R, (4.6)
i=1 oM \JQ
n 9 .
2234N@m%ny»=0inW”WQLanaeer. (4.7)
Yi

i=1
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By the smoothness and the periodicity of {#°} there holds

n

9 )
> B—(A’ MNP, y) =0 in W HP@mQ: R forae. x € Q
Vi

i=1

and (4.4) follows in view of (4.5). By the previous argument, w(x, ny) € C;,d ("'), therefore
the set S contains always the sequence u, := u for every n.

Theorem 4.2 Let 1 < p < 4o00. Let Al e CO(RN; M!*?), i = 1,..., N, assume that the

per :
operator A satisfies the invertibility requirement in (3.3), and let gfsd“’ be the operator defined
in (3.1). Let f : R — [0, +00) be a continuous function satisfying the growth condition

0<f(w) <CA+|v|?) foreveryv e Rd, (4.8)
where C > 0. Then, for every u € LP(2; R?) there holds

inf ’ hf;‘lj{}f/ﬂ fug(x))dx : ug — u weakly in L (Q; Rd)
and 7 ug — 0 strongly in WP (Q; Rl)]
= inf { lim s(l)lp/Q fug(x))dx : ug — u weakly in LP (R; Rd)
e
and %divug — 0 strongly in W~ 1P (Q; Rl)] = Z 7).
Before starting the proof of Theorem 4.2, we first state without proving a corollary of [16,

Lemma 2.15] and one of [14, Lemma 2.8], and we prove an adaptation of [16, Lemma 2.15]
to our framework.

Lemma 4.3 Let | < p < +00. Let {u,} be a bounded sequence in LP (2; RYN) such that
divu, — 0 strongly in WP (Q) (4.9)
and
ug — u weakly in L? (Q; RV).

Then there exists a p-equiintegrable sequence {ui.} such that

divii, =0 in W-LP(Q) foreverye,

iy —uy — 0 strongly in L1(S:; RY) foreveryl < g < p,

iy — u weakly in LP(; RM).

Remark 4.4 A direct adaptation of the proof of [16, Lemma 2.15] yields also that the thesis
of Lemma 4.3 still holds if we replace (4.9) with the condition

divu, — 0 strongly in w—h(Q)
forevery 1 < g < p.

Lemma 4.5 Letl < p < 400, andlet D C Q. Let{u;} C L?(D; RYN) be p-equiintegrable,
with

ug — 0 weakly in L? (D; RV),
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and
divu, — 0 strongly in W~"P(D).
Then there exists a p-equiintegrable sequence {ii;} C LP(Q; RN) such that
iy —upg — 0 strongly in LP(D; RY),
iy — 0 strongly in L (Q\D; RY),
diviie =0 in WP (Q),

||L78||LP(Q;RN) = C”us”LP(D;RN),

/ ug(x)dx =0 foreverye.
o

More generally, we have
Lemma 4.6 Let 1 < p < +o0o, u € LP(Q; RY) and let {u®} C LP(2; R?) be such that

ug — u weakly in L? (Q; RY) (4.10)
AWy, — 0 strongly in WP (Q; RY). (4.11)

Then there exists a p-equiintegrable sequence {ui.} such that

e — u weaklyin L? (; RY),
%divﬁg — 0 strongly in W_l’q(Q; ]Rl) foreveryl <gq < p,
e —ue — 0 strongly in L1(; Rd) foreveryl < q < p.

The following propositions is a corollary of [14, Proposition 3.5 (ii)].

Proposition 4.7 Let f : R? — [0, +00) be a continuous map satisfying (4.8) for some
1 < p < +4o0. Let {uz} C LP(Q; RY) be a bounded sequence and let {ii;} C LP(S2; R?) be
p-equiintegrable and such that

us — e — 0 in measure.

Then
liminf/ fus(x))dx > liminf/ f(ug(x))dx.
e—0 Q e—0 Q

Moreover, if g : RN x R? — [0, 4+00) satisfies

() g(-, &) is measurable and Q-periodic for every & € RY,
(i) g(v,-) is continuous for a.e. y € RV,
(iii) there exists a constant C such that

0<g(y,&) <CU+IEP) forae ycRVand& e R,

liminf/ g()—c,ug(x)) dx > liminf/ g()ﬁ,ag(x)) dx.
£—0 Q & £—0 Q &

The next proposition is another corollary of [14, Proposition 3.5 (ii)].

then

Proposition 4.8 Let 1 < p < +ooand » € (0,1]. Let g : RN x R? — [0, +00) be such
that
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() g(-, &) is measurable and Q-periodic for every & € RY,
(i1) g(y,-) is continuous for a.e. y € RV,
(iii) there exists a constant C such that

0<g( & <CU+IE|P) forae yecR ands e RY,

and let V be a p-equiintegrable subset of L? (Q x Q: R?). Then there exists a constant C
such that

Hg(%, vy (x, y)) — g(%, v (x, y))

for every vy, vy € V.

< Clv — v2||LP(Q><Q;]Rd)
LY(QxQ)

We now start the proof of Theorem 4.2. First we prove the liminf inequality. The argument
relies on the use of the unfolding operator (see Sect. 2.2 and [14, Appendix A] and the
references therein).

Proposition 4.9 Under the assumptions of Theorem 4.2 for every u € LP(Q;RY) there
holds

inf [ lim inf/ fug(x))dx : ug — u weakly in LP (Q; ]Rd)
e—0 Q

and 7 ug — 0 strongly in WP (Q; R > Z . (u). (4.12)

Proof Let C¥ be the class introduced in (3.23). We first notice that, by Proposition 3.5, if
u € LP(2; RH\C? then

[{ug} CLP(QRY : up — u weakly in L7 (Q; RY)
and ./ u, — 0 strongly in W17 (Q; RN} } =0,

hence (4.12) follows trivially.
Define g : RN x R? — [0, +00) as

gy, &) = f(A(y)_lé) forevery y € RN, and & € RY,

By the continuity of f, g is measurable with respect to the first variable (it is the composition
of a continuous function with a measurable one), and continuous with respect to the second
variable. By (4.8), there holds

0<g(y, & <CU+]AY ") < CU + g7, (4.13)

where the last inequality follows by the uniform invertibility assumption (3.3). We divide the
proof of the proposition into five steps.
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Step 1 We first show that for every u € C* there holds
inf[ lim 1nf/ fue(x))dx : ug — u weakly in L”(Q2; RY)
and /™u, — 0 strongly in W17(Q; RZ)]
. ) X
> inf inf [ lim 1nf/ ( , Vg, (x)) dx
weCH n—>+00 JQ &n
Ve, — / Ay)(u(x) + w(x, y))dy weakly in L”(; ]Rd),
0

divv,, — 0 strongly in WP (Q: R,

-1
and A(i) ve, — u weakly in L”(2; ]Rd)].
En

(4.14)

Indeed let u € C* and let {uc} be asin (4.14). Up to the extraction of a subsequence {¢,},

hmmf/ f(ug(x))dx— hm /f(ugn(x))dx

and by Proposition 2.2 there exists w € lef such that

2—s

ug,, — u—+w weakly two-scale in L” (2 x Q; RY).

n

By the definition of g it is straightforward to see that

hm /f(uen(x))dx— hm/ ((9 ( )usn(x))

(4.15)

Setting v,, 1= A(%)uen, in view of the assumptions on {u.} in (4.14), it follows that

N

, 0
div v, =

(A’( )ue (x)) — 0 strongly in W17 (Q; R,
0x; &n

i :
and

x\ 7! . d
Al — ve, — u weakly in L7 (Q; RY).
&n

Finally, by (4.15) for every ¢ € L? (Q; RY) there holds

T

lim [ ve, (x)-@(x)dx = lim /ugn(x)-A(i) o (x) dx

n—+o0o [ n—+00 Jo &n
=/Q/Q<u(x>+w<x,y>>-A(y)%(x)dydx.

This completes the proof of (4.14).
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Step 2 We claim that

X
inf inf § lim inf —, dx :
it timin (v 0
Ve, A/ A (W(x) +w(x, y))dy weaklyin LP(Q; R?),
Q

divv,, — 0 strongly in WP (Q: RY),
X

—1
) ve, — u weakly in L”(2; Rd)]
&n

and A(
> wieré% inf { gglfg/ﬂg(;—n,/QA(y)(u(x) +wx, y) dy + f)en(x)) dx -

{vg, } is p-equiintegrable,

e, — 0 weakly in L?(; RY),

divi,, =0 in W™ 'P(Q:R)), and

—1
A(i) Vg, — u(x) — (/ A(z)_ldz)/ A ((x) + w(x, y)) dy

€n 0 0
weakly in L” (2; ]Rd)]. (4.17)

Let {ve,} be asin (4.17). By Lemma 4.3, we construct a p-equiintegrable sequence {v, } such
that

divie, =0 in W LP(Q; R, (4.18)

Vg, — Vg, — 0 strongly in L9 (; R?) for every 1 <g < p, (4.19)

Vg, — / A u(x) + w(x, y))dy weakly in LP(S2; RY). (4.20)
0

Moreover, by Proposition 4.7,

lim g(ﬁ,ven(x)) dx > liminf/ g(i,ﬁgn(x)) dx.
n— —+o00 Q &n n——400o Q En

By (4.20) and by the uniform invertibility assumption (3.3), there exists a constant C such

that
X —1
)
En

Therefore, there existsamap ¢ € LP(2; R?) such that, up to the extraction of a (not relabeled)
subsequence,

< C for every n.

LP(S;RY)

-1
A(i) B, — ¢ weakly in L7 (Q; RY). 4.21)
&n

By the properties of {vg, } in (4.17) and (4.19), the convergence in (4.21) holds for the entire
sequence {v, } and

¢ =u.
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Claim (4.17) follows by setting
Vg, (X) i= Vg, —/ A)(u(x) + w(x,y))dy forae. x € Q.
0

Indeed, by (4.20) we have

De, — 0 weakly in L?(; RY),
and since w € Cff{, by (4.18)

divie, =0 in W 1P(Q; RY).

Finally,

-1 —1 —1
A(i) B, (X) = A(i) B, () —A(i) / A @) + wix, ) dy
En &n €n 0

for a.e. x € Q, therefore by (4.21) and Riemann-Lebesgue lemma (see e.g. [15]),

—1
) o= ([ 1 49) [ st
n 0 0

weakly in L?(Q; R?).
Step 3 We show that for every w € le{ and every p-equiintegrable sequence {v,, } satisfying

e, — 0 weakly in L”(€; RY), (4.22)
divi,, =0 in W IP(Q: R, (4.23)

-1
A(ﬁ) Vg, — u(x) — (/ .A(z)_1 dz)/ A)(m(x) +w(x,y)dy (4.24)
0 0

En

weakly in L (Q; RY), there exists a p-equiintegrable family {vy.n 1 v €N, n € N}such that

divv,, =0 in W LP(Q; R, (4.25)
vy, — 0 weakly in LP(; RY) asn — 400, (4.26)
1 —1
A(VL Jx) Vyn(X) = u — (/ A(Z)_ldz)/ A (u(x) +w(x, y)) dy
V& 10) 0
(4.27)

weakly in L?(Q; RY), as n — 400 and

n——+o0o

liminf/ g(ﬁ,/ A (u(x) +w(x, y)dy + 5en(X)) dx
Q &n JoQ

Zsupliminf/ g(v{ ! Jx,/ A(y)(u(x)+w(x,y))dy+vv,n(x)) dx. (4.28)
Q 0

peN > 100 VEy

To prove the claim we argue as in [14, Proposition 3.8]. Fix v € N, let

1
Ovn = vsnL J e [0, 1]
Vép
and set
kyn = nr Np.
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‘We notice that
Ovn — 1 asn — +4o0. (4.29)

Without loss of generality, we can assume that 2 CC Q. By Lemma 4.5 we extend every
map v, to a map v, € LP(Q; R4) such that {vg, )} 1s p-equiintegrable, and satisfies the
following properties

U, — Vg, — 0 strongly in L?(2; RY),
58,1 — 0 strongly in L”(Q\$2:; RY),
divig, =0 in W P(Q; R!). (4.30)
In particular, by (4.24) and (4.30) it follows that
-1
X ~ _
““(g_) Fiy (1) — () — ( [ 4@ ldz) | A @@ +wendy @30
n o )

weakly in LP(L2; Rd). By Proposition 4.7 and the definition of 6, , and k,, ,,

liminf/ g(i,/ A)(ux) +w(x,y)dy + vg, (x)) dx
Q &n JQ

n——4o00o

> liminf/ g(v

For Q' CC  fixed, there holds 6, , Q" C Q for n large enough. Since g is nonnegative (see
(4.13)), by (4.32) we have

z“’"x, / A (u(x) + w(x, y)) dy + U, (x)) dx. (4.32)
v,n )

lim inf / g(ﬁ, / AW @) + w(x, ) dy + 5, (x)) dx
Q &n JQ

n— 400

> lim inf/ g(vkv’nx, / A)(u(x) +w(x, y)dy + 58,, (x)) dx
Oy n 2 0

n——+o0o Qv’n

= lim inf(ev,n)N 8(Vkv,nxa / A (u(Oynx) + w(By nx, y)) dy + 58,, (Qv,nx)) dx
n——+o0o Q/ 0

> lim inf/ g(vkv,nx, / Ay)(u(x) +w(x,y))dy + 58,, (QV,nx)) dx (4.33)
! o

n—-+0o0o
where the last inequality follows by (4.29), and since
U@y px) +w@, ,x,y) —u(x) —wlx,y) — 0 strongly in LP(Q x Q; Rd).

Letting Q' tend to €2, by the p-equiintegrability of {l:)gn }, there holds

n—-400

lim inf/ g(i,/ A)(u(x) +w(x, y))dy + v, (x)) dx
Q &n [0

> lim inf/ g(vku,nx, / Ay)(u(x) + w(x, y))dy + t:)gn (Qv,nx)) dx. (4.34)
Y )

n——400
Set

Uy n(x) = ﬁgn (By.nx) forae.x € 2, veNandn > no(v),
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where ng(v) is big enough so that 6, ,2 C Q for n > ng(v). Inequality (4.28) is a direct
consequence of (4.34). The p-equiintegrability of {v, ,}, (4.25), and (4.26) follow in view of
(4.29) and (4.30).
To conclude the proof of the claim it remains to establish (4.27). We first remark that,
-1
by (3.3) and (4.26), the sequence {A(v {LJx) Uy,n (x)] is uniformly bounded in

Ve,

LP(Q; Rd). Therefore, there exists a map L € LP(L; ]Rd) such that, up to the extraction
of a (not relabeled) subsequence, there holds

1 -1
A(VL Jx) Uy (x) = L(x) weakly in L”(Q2; RY). (4.35)
Let ¢ € C2°(R2; R?). Then,

~1
/A(V\\ ! Jx) v,,,n(x)-ga(x)dx—>/L(x)-q)(x)dx. (4.36)
Q Vé&y Q

For n big enough, 6, , supp ¢ C 2. Hence,

-1
/ A(VLLJX) vv,n(x) ~p(x)dx
Q Vép

1 Y -l y
= «4(—) vn(y)-w( )dy
Oy, )N Oy SUPp @ &n ’ Ov.n

1 y\ s y
= GV /QA(E) Ven 07) (“’(9) e )) @

1 y _1:
" (6y,)N /9“4(5) Ve, (¥) - @(y) dy. (4.37)

By (3.3) the first term in the right-hand side of (4.37) is bounded by

1 y\ = y
‘(ev,n)N /QA(E) Ven () (W(ev,n) - ¢(y>) dy‘
y

-y

< CllVg, Il Lr(@:rd) I V@l Loo (2 pa <Ny SUP
ye2

’

v,n

which is infinitesimal as n — 400 due to (4.29). By (4.29) and (4.31), the second term in
the right-hand side of (4.37) satisfies

. 1 y _1:
n—>1+oo (Qv,n)N /QA(Sn) v n()’) (p(y) dy

_ /Q [u(x)— /Q AR dz /Q A<y><u<x>+w<x,y>>dy]-go(x)dx.

Arguing by density, we conclude that

L(x) =u(x) — (/ A()~! dz)/ A)((x) +w(x, y))dy forae.x € Q
0 0

and (4.35) holds for the entire sequence. This completes the proof of (4.27).
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Step 4 We claim that forevery w € ij{ ,and every p-equiintegrable family {v, , : v € N, n €
N} satisfying (4.25)—(4.27), there exists a p-equiintegrable family {w, , : v € N, n € N}
such that

N

d
divy wy n (x, y) = D Oon e y) =0 inWP(Q; R forae. x € Q,  (4.38)
; Vi
i=1
» — 0 weakly in L”(Q x Q; ]Rd), asn — +00, (4.39)
/ wy (x,y)dy =0 forae.x € Q, (4.40)
0

1 -1
A(L—Jy) Wy, (X, y) = u(x) — (/ A(Z)_le)/ A (u(x) +w(x, y))dy
Ve, 0 0

(4.41)

weakly in LP(2; R?) asn — +oo and v — 400, in this order,
and

lim inf / ({ J / A @) + wix, y))dy+vvn<x>) dx
> hmlnf// (L
n——+o0o

where 0, — 0 as v — 4o00. Let {v, ,} be as above. We argue similarly to [14, Proof of
Proposition 3.9]. We extend u, w, and {v, ,} to O outside €2, and define

11 N
QU,Z = _Z+_Q9 ZEZ b
Vv Vv

Jy,/ A@) (u(x) +wx, 2)) dz + wyu(x, y)) dydx + o,
0
(4.42)

={zeZV: 0,.NQ#0#,

Ly -
Iv,n ::/ g(v\‘ J / .A(y)(u(x) + w(x, y)) dy + vy n(x)) dx.
Q Vép

By a change of variables, since g(-, 0) = 0 by (4.13), and by the periodicity of g in its first
variable, we obtain the following chain of equalities

o= 2 Ll G2 Lo (e ) oo (e )

ZE€ZLy
+Uvn( ))dndx
v v
= E / /Qg(L)gJ /A(y)(u(x)—i-w(x M) dy + T1vyu(x, n))dndx—kav
Z€Zy v,z n
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where T is the unfolding operator defined in (2.1), and

= 2Ly ol o

2€7y

Vv

ey

Ve,

1
+T1vv,n(x,n))—gq Jn/ A(y)(u(x)+w(x,y))dy+T1vu,n(x,n))] dndx.
v Q v
By Proposition 2.7,

— 0
LP(Q2x Q;RY)

H/QA(y)(u(wa(x,y))dy—/QA(y)(Téu(x,n)+Tiw((x,n),y))dy

as v — 4-00. Moreover, by Proposition 2.7, the sequence

{/QA(y)(u(x)er(x,y))dy—/QA(y)(Tiu(x,n)+Tiw((x,n),y))dy]

is p-equiintegrable and

H/QA(y)(u(X)-I-w(x,y))dy

—/QA(y)(Tiu(x,n)+Tiw((x,n),y)) dy

-0
Lr ((UzeZU QU,Z\Q) X Q?Rd)

as v — +o00. Hence, by Proposition 4.8, 0y, = 0,,(2) = 0 as v — +o0.
We set

n Z
Uy zn(y) = Tlvv,n(—, y) forae.y € Q, forevery z € Z,.
v v

For fixed v and z € Z,, the sequence {0, ; »} is p-equiintegrable. Moreover,
divy Dy =0 in WP (Q; R)
and
Oy.zn — 0 weakly in L (Q; RY), asn — +oo.

Setting wy ;. = Vyzn — fQ Uy z.n(y)dy, the sequence {w, ;,} C LP(Q;RY) is p-
equiintegrable and such that

divy wy;, =0 in w—lr0; R,

wy ,n — 0 weakly in L?(Q; RY), asn — +0oo
/ Wy zn(y)dy =0,
0

and

Wy zn — Opzn — 0 strongly in LP(Q; R%), asn — +oo0. (4.43)
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By applying again Proposition 4.8 we obtain

1
/ / g(L Jy,/ A(S)(u(x)-l—w(x,é))dé+T1vv,n(£,y)) dydx
v,z Q Vép Q v 1%
fo o
= 8
V.2 Q Ven

Jy’ /Q AE)(u(x) +w(x, §))dé + wv,z,n(y)) dydx + Tz,v.n

with
T;on — 0 asn — 4o0.
Therefore, by (4.13) and since
QCU,n0y 7,

we deduce (4.42) with

Wy (x.Y) = D xg,.ne®wy - a(y) forae.xeQ, ye Q.

ZELy

We observe that for v fixed only a finite number of terms in the sum above are different from
zero, hence properties (4.38), (4.39) and (4.40) follow immediately.

To prove (4.41), we notice that the sequence {A(Lﬁjy)_]wv,n(x, y)} is uniformly

bounded in L”(Q x Q;RY) by (3.3) and (4.39), therefore it is enough to work with
a convergent subsequence and check that the limit is uniquely determined. Fix ¢ €
C(Q; C.(Q; RY)) and set

per

W) = ulr) — ( /Q A dz) /Q A @) + wix, ) dy
for a.e. x € @, ¥ := 0 outside €2, and

Zy ={z € Z" : (Qy: x Q) N suppy # B}.

-1
// (L J) Wy n(x,y) - @x,y)dydx
Ve

) Z:/Q 0) (L}g J ) Wy, z.n(¥) - @(x, y)dydx
v,z X Q)N supp ¢ n

Then

ZELy,
1
= Z/ / (LUS Jy) (Wy,z.n(¥) — vv,z,n()’))'gﬁ(x,y)dydx
ZEZV n
1
2 [ fo A ) e s
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By (3.3), we have

1
Z// (\\ve J)’) (Wy,zn(Y) = Dy zn(¥)) - @(x, y)dy dx

zeZ”

< C O Mwozn ) = Doz oM 191l Lo x 0:r4)

v
zeZw

which by (4.43) converges to zero as n — +00 (here we used the fact that the previous series
is actually a finite sum for every v € N fixed). On the other hand,

-1
Z// (L y) U,z (¥) - @(x, y)dydx
Ve, |

ZEZV

—Z// [ (_%J)’)_lTivu,n(g,)’)—Til//(g,y)]%p(x,y)dydx

ZEZV

+Z// Ty ( )-(p(x,y)dydx. (4.44)

zeZ”

By the periodicity of A, the first term in the right-hand side of (4.44) satisfies

—1
S D) o) )] o

() L) o) o)
(o2 )

:nEIEOOZ/ /[ (LSnJ )_lvv,nm—w(x)]

EZ”

1 1
. <p(— {va + —n, vx) dndx
v v
1 —1
= lim [A(\\ va) Vyp(x) — w(x)]
n— 400 U 7V Qv . U{;‘n
Z€E 7 s
1 1
. (/ (p(— vaJ + —n, vx) dn) dx.
0 V V
By (4.27), and recalling that v and {v, ,} have been extended to O outside €2, we conclude

that
—1
lim // Q J) Wy (X, y) - 9(x, y) dy dx
n——+00 Véy
—Z// Ty ( )-q)(x,y)dxdy,

€7,

| <
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and so

1 —1
A(LVEnJy) wv,n(x, y) - Z XQ\,,ZHQ(X)le(%’ y)

Z€Zy
weakly in L?(Q x Q; R?), as n — 4-o0. Finally, we claim that
z
Z XQU,ZHQ(X)TW(;, y) — Y (x) (4.45)
€7y

strongly in L?(2; R?) as v — +00.
Indeed, let ¢ € L? (Q x Q; RY). Then by Holder’s inequality

/ / (Z XQu,zﬁsz(X)TH/f(Ea y) - x/r(x)) cp(x,y)dydx
QJo v v

ZE€EZy
— Z/ /(Tnp(f,y)—W(x))-w(x,y)dydx
ez, /N2 Jo N VY
= Z/ /(w(iﬂ)—w(x))-go(x,y)dydx
vz, ) Qvn2 /0 vov
1
— Z/ /(w(—LuxJ+X)—W(x))wo(x,y)dydx
ez, ) @v:n2J 0 v Y
=\ [ [ @wen = v ot dvax
QJo VY

= ||T%W(X, y) — W(X)HLP(QXQ;W)||§0||Lp/(QXQ;Rd)-

Property (4.45), and thus (4.41), follow in view of Proposition 2.7.
Step 5 By Steps 14 it follows that

inf [ lim i(1)1f/ fue(x))dx : ueg = u weakly in L?($; Rd)
E—> Q
and /WVu, — 0 strongly in W=17(Q; Rl)]

1
inf inf[liminfliminf/ / g(L—Jy,/ A(2)(u(x)
weCy v—>toon—>+00 Jo Jo VEy 0

+w(x, 2))dz + wya(x, y)) dydx :

v

divy wy ,(x,y) =0 in WP (Q; R) forae. x € Q,

wy, — 0 weakly in L (2 x Q; Rd) asn — 400,

1 —1
A(L Jy) Wy n(x, y) = u(x) — (/ A(z)_ldz)/ A (u(x) +w(x, y))dy
Ve, 0 o

weakly in L7 (; Rd) asn — 4ooand v — +oo, and

/ Wy a(x,y)dy = 0}. (4.46)
0
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By a diagonalization argument, given {w, ,} as above we can construct {n(v)} such that,
setting

Ey = Epy) Wy(X,Y) = Wy n),

we obtain the following inequality

inf [ lim 1nf/ f(ug(x))dx : ug =~ u weakly in L?(; Rd)

and szgdivug — 0 strongly in W17 (Q; Rl)]

1
> inf inf[liminf/ / g(\‘
weCy v—>+00 Jo Jo VEy
divy wy(x,y) =0 in WP (Q; R!) forae. x € Q,
w, = 0 weaklyin L?(Q2 x Q; RY) as v — 400,

1 —1
A(L Jy) wy(x, y) = ux) — (/ A(Z)_ldz)/ A (u(x) + w(x, y)dy
VEy 0 0

weakly in L? (Q; ]Rd) as v — +o0, and / wy(x,y)dy = O]. (4.47)
0

Associating to every sequence {w,} as in (4.47) the maps

J)’»/ A@)(w(x)4+w(x, z)) dz+w, (x, y)) dydx :
(@)

dv(x,y) :=/ A2 (u(x) + w(x, z))dz + wy(x,y) forae.x € Qandy € Q,
0
inequality (4.47) can be rewritten as

inf [ lim 1nf/ fug(x))dx : ug — u weakly in L?(L; Rd)
and %divug — 0 strongly in W~ 1P (Q; Rl)]

-1
> inf inf{liminf// f(.A(L ! Jy) ¢v(x,y))dydx:
weCy v—>+oo Jo Jo VEy

divy ¢y (x,y) =0 in W P(Q; R') forace. x € Q,

¢, — / A()(u(x) +w(x, z))dz weakly in LP(Q x Q; Rd) as v — 400,
0

-1
A(\;Ljy) $v(x,y) — u(x) weakly in L?(S: RY) asv — +o0, and

/ ¢y(x,2)dz =/ A (u(x) + w(x,z))dz]. (4.48)
0 0

Finally, for {¢, } as above, considering the maps

1 —1
vy(x,y) = A(L Jy) ¢y(x,y) forae.x e Qandy € Q,

we deduce that

inf ( lim 1nf/ f(ug(x))dx : ug — u weakly in L?(; Rd)
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and @fgdivug — 0 strongly in W17 (Q; Rl)}

> inf inf[liminf//f(v,,(x,y))dydx:
o

weCH v—>+00 o

1
divy, (AQ Jy)vv(x, y)) =0 in W "P(Q;R) forae.x € Q,

1
A(L—Jy) vy(x,y) — / A(z) (u(x)
VEy 0

+ w(x, z))dz weakly in L? (2 x Q; RY) as v — +o0,
vy(x,y) = u(x) weaklyin L?(Q2 x Q; ]Rd) as v — +oo, and

/A({ ! J )vv(x z)dz—/ A)(u(x) + w(x,z))dz
0 VEy

Zinf[hmmf// fux)+w,(x,y))dydx :

V—>—400

div,, (A(L}i Jy)(u(x) + wv(x,y))) =0 in W LP(Q;R) forae. x e,

divx/ (A(Li Jy)(u(x) —|—wv(x,y)) dy=0 in W P(Q;R), and
(0] v

wy(x,y) = 0 weakly in L”(Q x Q; Rd)}. (4.49)

By (4.49) it follows, in particular, that

inf { lim mf/ f(ug(x))dx : ug — u weakly in L?(Q; ]Rd)
and /™u, — 0 strongly in W=1-7(Q; ]Rl)]

> inf [ liminf/ / fuy(x) +wy(x,y))dydx :
o

vV—>—+00 Q

(| +])
u, — u weakly in L?(Q; RY), w, € C,v

wy(x,y) = 0 weaklyin LP(Q2 x Q; Rd)}. (4.50)

Fix {u,} and {w,} as in (4.50). Then there exists a constant r such that

sup [wullr(@x g:rdy =7 (4.51)

veN
nv = - |»
VEy

u, ifn=n,,
un :: .
u otherwise,

Therefore, setting

and
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we have

liminf/ / f(uy(x) +wy(x, y))dydx > liminf F" (uy)
v—>400 QJo v——+00 W(L 1 J)

vey |

of

(1))

> inf [ lim inf]_-";%(n,)(un) : u, — u weakly in L (Q; Rd)]. (4.52)
n—400

The thesis follows by taking the infimum with respect to r in the right-hand side of (4.52)
and by invoking (4.50). O

Remark 4.10 We point out that the truncation by r in (4.51) and (4.52) will be used in a
fundamental way. Infact it guarantees that the sequences constructed in the proof of the
limsup inequality (see Proposition 4.12) are uniformly bounded in L?, and hence it allows
us to apply Attouch’s diagonalization lemma (see [3, Lemma 1.15 and Corollary 1.16]) in
Step 3 of the proof of Proposition 4.12.

Remark 4.11 1In the case in which A’ € L®(RY; Mle), i =1,..., N, the previous proof
yields the inequality

inf [ limi(r)lf/ f(ug(x))dx : ug — u weakly in L?(; Rd)
E—> Q

and &/ u, — 0 strongly in W19 (Q; R!) forevery 1 < g < p]
> Fog ().
To see that, arguing as in Step 1 we get

inf[ lim i(I)lf/ fug(x))dx : ug — u weakly in L?(Q; Rd)
E—> Q

and %divug — 0 strongly in wh4(Q; RY for every 1 <g < p}

> inf inf [ liminf/ g(i, Ve, (x)) dx :
weCH n—+00 Jq &n
Vg, —‘/ A(y) (@) +w(x, y))dy weakly in L”(Q; RY),
Q
divvg, — 0 strongly in w9 R!) forevery 1 < g < p,

X

~1
andA( ) Ve, — U weaklyinLP(Q;Rd)].

En

By Lemma 4.3 and Remark 4.4, inequality (4.17) is replaced by

inf inf [ lim inf/ g(i, Vs, (x)) dx :
weCH n—>+00 Jo  \én

vsn—‘//A(y)(u(x)+w(x,y))dy weakly in L? (2; RY),
0J0
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divv,, — 0 strongly in w9 R for every 1 < g < p,

X

-1
and.A( ) Ve, — U weaklyinLP(Q;Rd)]

€n

> inf inf[liminf/ g(gi/ A(y)(u(x)+w(x,y))dy+178n(x)) dx :
Q n (0]

weCH n—+00
{58,1} is p-equiintegrable, 55;1 -0 weakly in LP(Q; ]Rd),
divd,, = 0in W~ 17(Q: R'), and

-1
A(i) 5o — u(x) — ( / A(z)_ldz) / A~ () + wx, y) dy
En 0 0

weakly in L” (Q2; RY) ] )

The result now follows by arguing exactly as in the proof of Proposition 4.9.
We finally prove the limsup inequality in Theorem 4.2.

Proposition 4.12 Under the assumptions of Theorem 4.2, for every u € C¥ there exists a
sequence {ug} C L?(2; RY) such that

ug — u weakly in L (S; RY), (4.53)

AWu, — 0 strongly in WP (Q; R, (4.54)

lim sup/ fug(x))dx < For(u). (4.55)
e—0 Q

Proof We subdivide the proof into three steps.
Step 1 Fix n € N. We first show that for every u € c’m) N CHQ:RY) and w €

cZ ™) A cl(Q; Cl (RN ; RY)) there exists a sequence {1z} C L”($2; RY) and a constant C

per
independent of n and ¢ such that

Ug 2—_>S u+ w strongly two-scale in L” (2 x Q; ]Rd), (4.56)
%divug — 0 strongly in W17 (Q; R, (4.57)
[ rueydx > [ ] aco+we oy, (4.58)
Q QJQ
as & — 0, and
su%) “uS”LP(Q;Rd) = C(“u”LP(Q;Rd) + ||w||Lp(Q><Q;Rd))- (4.59)
E>

Define
ug(x) == u(x) + w(x, i) fora.e. x € Q.
ne
By Proposition 2.3 we have

U — / (u(x) + w(x, y))dy = u(x) weakly in L?(2; R?),
0

Ug 2—_>S u + w strongly two-scale in L” (2 x Q; Rd),

flug) — / fu@x) +w(x, y)dy weaklyin L'(),
0
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as ¢ — 0. In particular, we obtain immediately (4.56) and (4.58). Property (4.59) follows by
(4.56), Proposition 2.5 and Theorem 2.6. To prove (4.57), we notice that

div i du(x) i
=3 () (505 ()
1 ( 0A! x A x 0w pt
e () (50) 2 ()5 ()
ne ay; ne e ) dy; ne
al d
S ()

(RV; RY)). Applying

where in the last equality we used the fact that w € C, ialoti(e} Cper
Proposition 2.3 we obtain

N

. . 0 0

%dwus_\/Q E:Al(ny)< g)(CX) +8—;U_(x,y)) dy weakly in L?(S2; R?Y), (4.61)
i=1 ! !

and hence strongly in W17 (Q; R?) by the compact embedding L? < W17 On the
other hand, since w € leg (n'), there holds

0 0 .
/ZA(n ( 2 ax’,(m))dy=Za—x(/QA’(nyxu(x)+w(x,y)>dy)

i=1 !

0. (4.62)

Combining (4.61) with (4.62) we deduce (4).
Step 2 We will now extend the construction in Step 1 to the general case where u € ¢ )
and w € C,f{ ™) Extend u and w by setting them equal to zero outside €2 and Q2 x Q,

respectively We claim that we can find sequences {u¥} and {w*} such that uf € C*°(Q: RY),
wk e C%°(Q; CS5(RY; RY)), and

per
uk = u strongly in L? (Q; RY), (4.63)
wk — w strongly in L (2 x Q; RY), (4.64)
Ny .
> a_(/ Al (ny) (u* (x) + w¥(x, y))dy) — 0 strongly in W P(Q; R,  (4.65)
, xXi \Jo
i=1

and

> ai (A"(ny)(u"(x) + wh(x, y))) — 0 strongly in L”(Q; W7 (0Q: RY)).(4.66)

i=1 7!
Indeed, by first regularizing u and w with respect to the variable x, we construct two
sequences {#*} and {W*} such that u* € C>®(Q; RY), w* e C>®(Q; Lper(RN; R4)), and
uk — u strongly in L”(Q; RY),
Wk — w strongly in LP(€2 x Q; RY),

N
Z %(/ A" (ny) (¥ (x) + @ (x, y)) dy) — 0 strongly in W17 (Q; RY).
i 0
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In addition,

N

> aiy(A%ny)(uk(x) + ik (x, y>>) =0 in W '"P(Q;R) forae. x € Q. (4.67)
i=1 7!

Now, by regularizing with respect to y we construct {w*}, such that wk € C®(; ngr (RN
R?)). It is immediate to see that {¥¥} and {w*} satisfy (4.63)—(4.65), and in particular

wk —wk =0 strongly in L? (Q; Lger(Q; RY)). (4.68)
To prove (4.'66), consider maps ¢ € L”/(Q) and ¢ € WO1 P /(Q; RY). By the regularity of the
operators A' and by (4.67) there holds

N

9 .
/ <§ 8—(A’(ny)(uk(x) + wk(x, y))), w(y)></>(X)dx
Q Yi

i=1 7!

N
. 0
_ §//A'(ny)(uk(x)+wk(x,y>>-sa(x) ‘g(y)dydx‘
i—1 /970 Vi

Y (y)
ayi

dydx

N
=12 /Q /Q A (ny) * () + w (x, y) — @h ) + D (x, ) - o(x)
i=1

kK o~k
<Clw" —w ”LP(QXQ;]Rd)”Vf”W(},p’(Q;Rd)”@”[J)’(Q)'

Property (4.66) follows now by (4.68).
Apply Lemma 3.3 and Remark 3.4 to the sequence {u* + w*} to construct a sequence
(k) c Ccl(Q; CL.(RY; RY)) such that

per
vF — uF 4+ w*) - 0 strongly in L?(2 x Q; RY), (4.69)
N
J i k . —1 1
— Al(ny)v*(x, y)dy ) =0 in W hP(: R (4.70)
i 0% \Jo
and
N 9 .
> B—(A’(ny)vk(x, y) =0 in W LP(Q; R forae. x € Q. (4.71)

i=1 7!
Consider now the maps
vif(x) =k (x, i) for a.e. x € Q.
ne
By Proposition 2.3, arguing as in the proof of (4.59), we observe that
k k o Po. wd
vy — / v (x,y)dy weaklyin L7 (2; RY),
0

vlg‘ s ok strongly two-scale in L (2 x Q; RY),

/f(Uif(x))dx%//f(vk(x,y))dydx.
Q QJo
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as ¢ — 0, and there exists a constant C independent of ¢ and k such that

||U§||LP(Q;Rd) < C”vk”LP(QxQ;Rd)
for every ¢ and k. Hence, by (4.63), (4.64), and (4.69), there exists a constant C independent
of ¢ and k such that
el (@rey < CUlll Lo gsrdy + Wl Lo (@x g;re))

for every ¢ and k. In addition, again by Proposition 2.3, proceeding as in the proof of we can
establish the analogues of (4.60)—(4.62) and we conclude that

N N

Ik = Z%(Ai(g)vlg(x)) — Z%(/QAi(ny)vk(x,y)dy) =0 (4.72)
i i=1 !

i=1
strongly in W—17(Q; RY), as ¢ — 0. Now, by (4.63), (4.64) and (4.69),

vlg 2—_>s u+ w strongly two-scale in L” (2 x Q; Rd) 4.73)

as € = 0 and k — 400, in this order. Hence, by Theorem 2.6, (4.8), (4.63), (4.64), (4.69),
(4.72) and (4.73),

lim sup lim sup{ ||T8vf — U+ Wl Lr@xo:rd) + “%divvlguw_LP(Q;RZ)
k—>+o00 e—0

|0

By Attouch’s diagonalization lemma [3, Lemma 1.15 and Corollary 1.16] we can extract a
sequence {k(¢)} such that, setting

+'/ f(v’g(x))dx—// fx) +wx,y)dydx
Q QJO

e .__ k(o)
vtoi=u,

the sequence {v®} satisfies (4.56)—(4.59).
Step 3 Letu € ¢ and n > 0. Then .Z . (u) < 400 and there exists r,, > 0 such that

Foy(u) +n > inf lnii“f;g]_:g(n-)(”") D u, — u weakly in L?(; R L.

In particular, there exists a sequence {u)} ¢ LP(Q; RY) with u,, € Cc7m) for every n € N,
such that

u) — u weakly in L? (; R%) (4.74)
asn — +o00o, and
o . _ry] ny _ . rn n
Fog(u) +1n > ngf}rloo F ot ny(Up) = ngf}rloo F ot (ny (Un)-
By the definition of F” (n» Tor every n € N there exists w;, € Cﬁ("') such that

lwall Lrx 0:rd) =< Tn> (4.75)

and

1
Fl) = [ /Q P00+ wlx, y) dydy < FL3, () +
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Applying Steps 1 and 2 we construct sequences {v, .} C L?( x Q; R4) such that

Sug i elLr@xo:rey < Cllug +will Lr@x o:re)s
&>

vl o —u) weakly in L”(Q x Q; RY),
di - w—1Lpo. ol
gVl — 0 strongly in WP (Q; RY),

/ f@) . (x))dx — / / f@)) +w)l(x, y))dydx, (4.76)
Q QJQ

as ¢ — 0. In addition, by (4.74)—(4.76), the sequence {U,Z,g} is uniformly bounded in
LP (2 x Q:R?). Therefore, by the metrizability of bounded sets in the weak L topol-
ogy and Attouch’s diagonalization lemma [3, Lemma 1.15 and Corollary 1.16] there exists
a sequence {n(¢e)} such that, setting

n

n .__
U = V) g

properties (4.53) and (4.54) are fulfilled, with

lim sup/ fWl!(x))dx < For(u) + 1.
Q

e—0

The thesis follows now by the arbitrariness of 7. O

5 Homogenization for measurable operators

Here we prove the main result of this paper, concerning the case in which A’ €
N. prlxdy

Lo RY; M7, i =1,..., N.

Theorem 5.1 Let 1 < p < +o0. Let Al e L (RN M!>*4) i = 1,..., N, assume that

per .
the operator A satisfies the invertibility requirement in (3.3), and let szgd“’ be the operator
defined in (3.1). Let f : RY — [0, +00) be a continuous function satisfying the growth
condition (4.8). Then, for every u € LP(L2; R?) there holds

inf { lim i(I)lf/ f(ug(x))dx : ug — u weakly in L? (Q2; ]Rd),
E—> Q
and 7 ug — 0 strongly in W19(Q; RY) for every 1 < q < p]

= inf [ lim sup/ Fue(x))dx : ug — u weakly in LP(Q; RY),
Q

e—0
and ,Qfgdivug — 0 strongly in wha(Q; Rl)for everyl < g < p] = F o (u).

The strategy of the proof consists in constructing a sequence of operators .27 with smooth
coefficients which approximate the operator <7, so that Theorem 4.2 can be applied to each
7. Let { px } be a sequence of mollifiers and consider the operators

o o LP(Q;RY) — W HP(Q; R)
defined as
v (x)

0x;

N
Av(x) == D Ajp(x) : (5.1)
i=1
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where A;; = Al x pi foreveryi = 1,..., N, and for every k. Then Afc € CS&(]RN; Mle),
i=1,...,N,forevery k,
Ai — A" strongly in L™ (Q; M x4y (5.2)
forl <m<+4+o0, i=1,...,N,
||A;'(||LOO(Q;MZXd) < ”Al “Loo(Q;Mlxd) fori = 1,..., N, (53)
and the operators .o satisfy the uniform ellipticity condition
A (COA - A > alr> for every A € RY, for every k. (5.4)
We first prove two preliminary lemmas. The first one will allow us to approximate every
element u € C by sequences {u*} C LP(Q; RY) with u* € ¢ for every k.

Lemma 5.2 Let 1 < p < +00. Let o7 be as in Theorem 5.1 and let {7} } be the sequence of
operators with smooth coefficients constructed as above. Let C be the class introduced in
(3.23) and let u € C¥. Then there exists a sequence (k) ¢ LP(Q; RY) such that u* € Ck

for every k, and

uk > u strongly in L? (S2; RY).

Moreover, for every w € C,jy there exists a sequence {wk} C LP(Q x Q; R?) such that
wk e C;{" for every k and

wk — w strongly in LP(Q x Q; RY).

Proof Letu € C¥ and let w € C;ff. We first construct a sequence {v"} C L?(Q x Q; R?),
defined as

V' (x) == (u(x) + w(x, y)¢"(x) forae.xeQ,yeQ,

where {¢,} € C°(2; [0, 1]) with ¢, ' 1. Without loss of generality, up to a dilation and
a translation we can assume that 2 C Q. Extending each map v” by zero in Q\€2 and then
periodically, and arguing as in the proof of Lemma 3.3, it is easy to see that

v" — u+w strongly in L (Q x Q; RY),

N d i n . —1 l
z . At (y)v"(x,y)dy ) — 0 strongly in W~ "7(Q; R'),
—~ dx; \Jo
i=1
N 3 '
8—(A’(y)v"<x, y)) =0 in LP(Q: W 1P(Q; R)). (5.5)
, Yi
i=1
By (5.2), (5.3) and the dominated convergence theorem, we also have
A};(y)v"(x, y) = Ai(y)v” (x,y) stronglyin L?(Q x Q; RY)
as k — —+o0, for every n. Therefore,
N 9 '
2 a—( [ Ao dy) 0 strongly in W="7(Q; R),
; Xi 0
1

1=
N .
a—(A;((y)v”(x, y)) — 0 strongly in L?(Q; W™1P(Q; RY))
; Yi
1

1=
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as k — +oo and n — 400, in this order. In particular,

: : N
nEToo kEToo [IIv @+ wlLrxo:rd)
N

Zi A ()" (x, y)d
or KO (x, y)dy
i=1 P NJQ W=Lr(Q;RY)

N

+ D ALV (., y) = AT () + i, Yl Le(ox i)
i=1

‘] |-
L7(Q)

hence by Attouch’s diagonalization lemma [3, Lemma 1.15 and Corollary 1.16], we can
extract a subsequence {n(k)} such that

+

N

d
> — ™ (Ak<y)v (x, y)) H

P W1 (Q:R))

v"® oy 4+ w strongly in LP(Q x Q; RY), (5.6)

AL (" P (x, y) = AT(y)(u(x) +w(x, y)) strongly in LP(Q x Q; R)),

N

9 .
> a_(/ A}C(y)v"(k)(x,y)dy)—>0 strongly in W17 (Q; RY),
—~ dxi \Jo

i=1

N
Z %(Aﬁ;(y)v"(“(x, y)) — 0 strongly in L”(Q; W™ 1?(Q; RY)) (5.7)
i=1 7t

as k — 4o00. Setting

Ri(x,y) := AL(m)v"®(x,y) forae. (x,y)e Q x Q,

and defining the mappings R¥ € LP(Q; Lper(]RN :R%)) as

R = (RD);, foralli=1,....N, j=1...1
we have that

Ri(x,y) = A" (u@x) +w(x,y), i=1,..
N

Z —(/ R,i(x, y) dy) — 0 strongly in W17 (Q; R,
i 9% \Jo

., N strongly in L?(Q x Q; R%),

N
9 .
Z 8_ (R, (x,y)) — 0 strongly in L”(Q; wLP(0: RY)).

Therefore, using Lemma 3.2 we argue as in Lemma 3.3 and construct a sequence sk
Lp(Q Lper (RN; Rd)), Satisfying

@ Springer



69 Page 42 of 60 E. Davoli, I. Fonseca

sk—RF 50 strongly in L?(Q x Q; RY), (5.8)

N
Z ’ (/ S;i(x,y)dy>=0 in WP(Q; R, (5.9)
ax, 0

l:

ai(s;;(x, ) =0 in W h?(Q; R, forae.x e Q. (5.10)

Pﬂz

[:

Finally, setting

u®(x) ::/ Ak(y)_lSk(x, y)dy fora.e. x € Q
0o
and
wk(x, y) = Ak(y)_lSk(x, y) — uk(x) forae.x e Qandy € Q,

by (5.9) and (5.10) we deduce that wk e C;ka, i.e. uk e ¢ for every k. Moreover, by (3.3),
(5.6) and (5.8),

lu* = ull Lo (i pa) = H /Q W () + w*(r, y) = @) +wx, ) dy

LP(2RY)

< C||Ltk + wk — (u + w)“LP(QxQ;Rd)

< u* + w* =" Ol pauoirey + V'O = @ + Wl Lo @x 0:ra)

= A~ (S () = RE )o@ 0:e)
+ "0 — (u + Wl @xo:rdy = 0.

The convergence of w* to w follows in a similar way. O

In view of Lemma 5.2 we can prove the analog of Proposition 3.5 in the case in which
Cwvilxdy

Al e LG RN M), i =1,..., N.

Lemma 5.3 Under the assumptions of Theorem 5.1, there holds

C? =1u e LP(Q:RY) : there exists a sequence {vg} C LP(S: RY) such that

ve — u weakly in L?($2; RY)
and %divvg — 0 strongly in W H(Q; RY), forall1 < g < p}. (5.11)

Proof Let D be the set in the right-hand side of (5.11). The inclusion
Dcc?

follows by Remark 3.6. To prove the opposite inclusion, let u € C and let w € Cff{ . By
Lemma 5.2 we construct sequences {u¥} c L?(€; R?) and {w¥} ¢ LP(Q x Q;R?) such
that u* € C% for every k, w* € C;z,fk for every k,

uk¥ — u strongly in L”($2; RY)

and

wk — w strongly in L?(€2 x Q; RY),
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where {.o7; } is the sequence of operators with smooth coefficients defined in (5.1). By Propo-
sition 3.5, for every k there exists a sequence {v’g} C LP(Q; R?) such that

vk 255k 4k strongly 2-scale in LP(Q x Q; RY),
. Yo
A e = Z o (Ak( )v (x)) — 0 strongly in W7 (2 R)

as ¢ — 0. Hence, in particular, by Theorem 2.6,

kgl-?ooelgn ITvf — (u + W)l r@xo:rd) + ||$27kgvg lw-1.r @y = 0.

By Attouch’s diagonalization lemma ([3, Lemma 1.15 and Corollary 1.16]), we can extract
a subsequence {k(¢)} such that

k(s) g u+ w strongly 2-scale in L” (Q x Q; RY),
%@),gd”v’g(s) — 0 strongly in W7 (Q; RY)

as ¢ — 0. A truncation argument analogous to [16, Lemma 2.15] yields a p-equiintegrable
sequence {v.} satisfying

ve — u weakly in L?(Q; RY),
tfsz(g),gdivvg — 0 strongly in w4 (2; Rl), (5.12)

forevery 1 < g < p.
To complete the proof, it remains to prove that

AWy, — 0 strongly in W™19(Q; R!) forevery 1 < ¢ < p. (5.13)

To this purpose, we first notice that, by (5.2) and by Severini—Egoroff’s theorem, there exists
a sequence of measurable sets {E,} C Q such that |E,| < % and

A};(S) — Al uniformly on Q\ E, (5.14)
foreveryn =1,...,400.Letn > 0and 1 < g < p be fixed, and for z € ZN | set
Qe =¢ez+¢Q and Z, :={z € VAR Qe NQ # P

By the p-equiintegrability of {v.} and hence of {7 v.} (see Proposition 2.7), and by (5.3),
we can assume that

I Tevell L ((Uzez, Qe \Rx Q:iRE) =15 (5.15)

and 7 is such that
Z / / A} ) () — AT Teve (x, y)| dydax

<C Z(IlAk(S) 19 s gty + IATTY o oo I Te0e 0o DTy 0 oy < 1 (5.16)
i=1
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We first notice that, by (3.1), there holds

q i q
‘ ﬂ{k(s),e WUS
W—La(Q;R!) W—La(;R!)
ol . X x\ ¢
+ Al — ) - A" - ve(x)|? dx
30 e (2) = () o
e N Cx x\ |4
e(ey.e Y v + / A;(e)(—) — A (—) v (x)]9 dx.
W_l’q(QERI) i=1 UzEZg(Qs,zﬂQ) € €
Therefore, by (5.12) we deduce
. q
lim sup ‘%dwvg
e—>0 W—La(Q;R!)
ol . X (x\ |4
< lim sup / Al (—) — Al (—) |7dx. (5.17)
e—>0 Z Uzeze (Qe,N2) ke € €

i=1
Changing variables, using the periodicity of the operators, and extending v, to zero outside
Q, the right-hand side of (5.17) can be estimated as

X Ai X
Z/Uzeza(Q“ﬂQ) ke )(E) N (;)
N
<> Z/ Al ey () = A1 ve (2 + e)|? dy
N
ZZ/ /|Ak<g)<y> Al () vg(eEJHy)
1 zeZ;

N
> / . / AL ) () — AT (I Teve (x, )17 dydx. (5.18)

By Proposition 2.5, (5.15), and by (5.16), the right-hand side of (5.18) is bounded from above
as follows

q
|ve ()7 dx

q
dydx

/ ) / Aoy () — AT ()19 Tove (x, )17 dydx

7€l Yo,z
< Aoy () — AT I Teve (x, )17 dydx
Z/UZEZg Qe Z\Q/ k(S) o
+Z// Ay ) — AT Teve (x, )19 dydx

+Z// 14 (0) = A Teve . )1 dyd

l
<n+C Z<||Ak(€)||LOO(Q viedy H AN e o NTeVe L0 (G 0.\ 0
i=1
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N
2 ) 14 q

+ ”A;((g) — A ||LOO(Q\En;Mle) ”UE,‘ ”Lq(Q;Rd)
i=1

N
< Cn+C O Al — Alll Lok, mixdy- (5.19)

i=1

Finally, by (5.14) and collecting (5.17)—(5.19), we obtain

e oo .
lim sup ‘ AWy, < Cn+lim C D~ [[Ay,) — Alll oo\ gy waixdy = €
e—0 W14 (QR) £>0 = ’
for every n > 0. By the arbitrariness of n we conclude (5.13). O

Proof of Theorem 4.2 We first notice that by Remark 3.6 the thesis is trivial if u ¢ C¥. By
Proposition 4.9 and Remark 4.11, for every u € C there holds

inf [ lim i(I)lf/ fug(x))dx : ug — u weakly in LP(Q; Rd),
E—> Q

and Mgdivug — 0 strongly in w—h4(Q: RY) for every 1 < g < p] > For(u).
To complete the proof of the theorem, since

inf [ lim sup/ fug(x))dx : ug —~u weakly in L? (Q; Rd),
Q

e—0
and Z%Vu, — 0 strongly in W=19(Q; RY) forevery 1 < g < p]
< inf [ lim sup/ fug(x))dx : ug — u weakly in L?(Q; ]Rd), {ue} p-equiintegrable,
g—0 Q

and /™ u, — 0 strongly in W=19(Q; R) forevery 1 < ¢ < p],
it suffices to show that

inf { lim sup/ fug(x))dx : ug — u weakly in L?($; Rd), {us} p-equiintegrable,
Q

e—>0
and %divug — 0 strongly in W_l’q(Q; Rl) forevery 1 < g < p] < Z(u).
(5.20)

To prove (5.20), we argue by approximation. Let {7} be the sequence of operators
constructed in (5.1) and satisfying (5.2)—(5.4). We first prove that for n, u, € C¥") and
w, € Cffj(n') fixed,

20wl p oo
inf [ lim inf J-"J:H.H)U @ 0RD L) g — 0 strongly in LP (92 RY),

k— 400

u, + ¢r € C ) for every k]

5// Jun(x) + wy(x, y)dydx. (5.21)
QJ/Q
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Indeed, by Lemma 5.2 there exist sequences {u*} ¢ L?(2; R?) and {w*} ¢ LP(Qx Q; RY),
such that u* € %)k ¢ C’f,fk("') for every k,

u* — u, strongly in L”(Q; RY),

and
wk — w, strongly in L?(Q x Q; RY). (5.22)

For k big enough,
2|l wn
f;t‘(’n.'iw(gxg D + @F = up)) < / / F*(x) + w(x, y))dydx forevery k,

and

. 2wl p g
limsup 7., 7O 1y + (uF () = up (1)) 5// f@n(x) + wy(x, y) dydx,
k—+o00 @JQ

which in turn implies (5.21).
Let now u € C< and n > 0 be fixed. Then, there exist r, > 0 such that

F o7 (u) +n > inf { liminf]_-';';(n.)(un) Cu, — u weakly in L7 (Q; ]Rd)},
n——+00

and sequences {u,} € L? (2 R?), {w,} € LP (2 x Q; R?) satisfying
u] — u weakly in L?(£2; RY),

w, € Cﬂ( n)

for every n,
lw) lLr@xo:rdy <1y foreveryn, (5.23)

and
Foy(w) +2n > lim //f(uZ(X)erZ(x,y))dde-

In particular, by (5.21),
Fo(u) +2n

> lim supinf { lim 1nf.7-"g£ (,: l)le(QXQ Rd)( "4 ) ¢ — 0 strongly in LP(2; RY),

n— 400 k—+o00

u'l + ¢ € %) for every k].

For every n, k, let wn © € Cdk (n) be such that

lwy lr@xo:rdy < 21wl Lr@x 0:rd) (5.24)
and

2|wy

P Izp @xo: Rd)( T4+ ) < / / ] (x) + ¢ (x) + wZ,k(x’ y)) dy dx
QJQ

2[|wy

|| < O:RA 1
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Arguing as in Steps 1 and 2 of Proposition 4.12, for every n, k we construct a sequence
{v;”mk(x)} C LP(Q; R?) such that

||Ug,n,k||Lp(Q;]Rd) < Cllu) + ¢r + wz’k”LP(QX 0:R7)»
v . — ul + ¢, weakly in LP(; RY),

e,n,k

%divvﬂ — 0 strongly in W_l’p(Q; Rl),

€ Ye,nk

/Q FQI, @) dx — /Q /Q Fl () + ¢ex) +w! (x, ) dy dx, (5.25)

as ¢ — 0, where the constant C is independent of ¢, n and k. In particular, (5.23) and
(5.24) yield that the sequence {vg’ny i)} 18 uniformly bounded in L?(£2; RY). By (5.25) the
metrizability of bounded sets in the weak L” topology and Attouch’s diagonalization lemma
([3, Lemma 1.15 and Corollary 1.16]), we can extract subsequences {n(¢)} and {k(e)} such
that, setting

e =V ) ke
there holds
i, — u weaklyin L?(; Rd),
%Cl(i;)ﬁg — 0 strongly in W_l’p(Q; ]Rl),

lim sup/ fliie(x))dx < For(u) + 2.
Q

e—0

In view of Lemma 4.6 and Proposition 4.7, we can construct a further sequence {u.} C
LP(2; RY), p-equiintegrable and satisfying

ug — u weakly in L (S; RY),

,g{kd(;v)ug — 0 strongly in wba(; RY for every 1 <g¢q < p,

limsup [ f(us(x))dx <lim sup/ fug(x))dx < For(u) + 2n.
Q

e—0 Q e—0

Property (5.20) follows now by noticing that exactly the same argument as in the proof of
(5.13) yields

%divug — 0 strongly in w9 R for every 1 < g < p,
and by the arbitrariness of . O

5.1 The case of constant coefficients
In this subsection we show that the homogenized energy obtained in Theorem 4.2 reduces
to the one identified by Braides, Fonseca and Leoni in [7], in the case in which the operators

Al i = 1,..., N, are constant, and the constant rank condition (1.3) is satisfied by the
differential operator o7 : L (L2; RY) — W—LP(Q; R!) defined as

N
. 0
AU = ZA’ a for every u € LP(Q; RY).
P 0x;
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In this case the classes C;f{ and C¥ defined in (3.22) and (3.23) become, respectively

ceomst = Tw e LP(Q; Lger(RN; RY)) : /Q w(x,y)dy = 0and ﬁ:Aig—:(x, y) = O]
i=1
and
ceonst .— [u e LP(;RY) : o/u = o}.
Recall that
Foy () = inf inf [ Liinirg?;{(un) ©u, — u weakly in LP(; Rd)].

By definition of .o7-quasiconvex envelope, for every u € C°°™' and r > 0 we have

]:;{(”)Z/QQdf(u(x))dx.

By [16, Theorem3.7], the «7-quasiconvex envelope is lower semicontinuous with respect to
the weak L? convergence of .<7-vanishing maps, hence

inf { lim inf]_-";{(u,,) ©u, — u weakly in L?(; Rd)} > / O f(u(x))dx
for every r > 0, which yields

F o () Z/Qme(u(X))dX- (5.26)

Conversely, since o7 is a differential operator with constant coefficients, for every u €
Co™t the null map belongs to CS°™t. Hence,

/Q fx)dx > F(u) = F., ).

By taking the lower semicontinuous envelope of both sides with respect to the weak L”
convergence of .o/ -vanishing maps we obtain (see [7, Theorem1.1])

/ Qo (f(u(x)))dx > inf [ lim inf?;{(un) : u, — u weakly in L (Q; Rd)
Q n—+00
> Fog(u). (5.27)
Combining (5.26) and (5.27) we deduce that
F o) = / Qo f(u(x))dx.
Q
5.2 The case of a convex energy density

In this subsection we show that if f is convex then the definition of .% . (see (4.3)) simplifies
and reduces to a single cell formula.
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For u € LP(2; RY) we introduce the set
Cf’i = [n € LP(Q; Lper(RN x RV: RY)) / / n(x,y,z)dzdy =0forae. x € Q,
0JQ

0
0x;

™=

(/ /A%wwu»+mLyx»duw)=0mW””«xR%
0J0

i=1

™M=

;(Ai(z)(u(x) +n(x,y, z))) =0in W LP2(Q: RY) forae. x € Q and y € Q].
Zi

i=1

(5.28)

Remark 5.4 In view of the second differential constraint in (5.28), if n € CE% there holds

N

. d
Z///A’(Z)(M(X)+n(x,y,z))<01(xwz(y)- 23@ dzdydx =0
S /e/o/o 2

for every @1 € C2°(R2), 92 € C2°(Q), and @3 € Wol’p/(Q; RY). A density argument yields

N

. 0
S [ Aoww ey aew- 22 azayar o
=1 /RJ/0J0 g

for every ¢1 € C2°(R2) and ¢3 € Wol’p/(Q; RY), namely

N

Z i(/ AL (@) u(x) + n(x, y, z))dy) =0in WP (Q: R)) forae. x € Q.
0

a .
iy 0%

We recall the notion of “r-two-scale convergence” (reduced two-scale convergence) intro-
duced by Neukamm in the framework of dimension reduction problems (see [21]).

Definition 5.5 Let 1 < p < 4o0.Let¢p € LP(Q2 x Q x Q) and {¢,} C LP (2 x Q). We
i,
say that {¢, } converges weakly r-two-scale to ¢ in L? (2 x Q x Q), ¢nr — SQS, if

//¢n(x,y)<p(x,y,ny)dydx—>///¢(x,y,z)<p(x,y,z)dzdydx
Q QJOJO

for every ¢ € C2°(2 x Q; Cper(Q)).

We point out that “r-two-scale convergence” is just a particular case of classical two-scale
convergence, and that the standard properties of two-scale convergence are still valid in this
framework (see [21, Proposition 6.2.5]).

The following characterization holds true.

Theorem 5.6 Let 1 < p < +o00. Let A € L®(Q; M>*4), i =1,...,N, andlet f : R —
[0, +00) be convex and satisfying the growth condition

0< f(v) <C( +|v|P) foreveryv € R andsome C > 0.
Then for every u € C¥ there holds

F oy = inf ///f(u(x)—i—n(xyz))dzdydx

necd
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Proof Letu € C. We subdivide the proof into two steps.
Step 1 We claim that

Foy(u) > inf ///f(u(x)+n(x,y,z))dzdydx. (5.29)
QJQOJQ

neCfﬁ

Indeed, in view of (4.1)-(4.3) fix r > 0 and {u,} € LP(2; R?) with u,, — u weakly in
LP(Q;RY), and u, € C;Q{("') for every n € N. Let {w,} C L?(Q x Q;R?) be such that
w, € Cff(”') forevery n € N, sup,, e llwnll Lr(@x 0:re) < 1. and

1
// f(un(x)—l-wn(x,y))dydxSf;(n.)(un)ﬁL; for every n € N.
QJQ

By the uniform bound on the L? norm of {w,} there exist wy € LP(2 x Q; R?) and
Yo e LP(2 x Q x Q; R?) such that, up to the extraction of (not relabeled) subsequences,
there holds (see Proposition 2.2)

w, — wo weakly in L”(Q x Q; RY),

and

r—2—s

wy, — Yo weakly two-scale in L”(Q x QO x Q; RY), (5.30)

with fQ Yo(x,y,z)dz = wo(x, y)fora.e.x € Qandy € Q.Inparticular, since w, € C;ff("')

for every n € N, we have fQ wy(x, y)dy = 0fora.e. x € , and for every n € N, which in
turn yields

/wo(x,y)dyz//WO(x,y,z)dzdy:O fora.e. x € Q.
0 0J0

Analogously, by the weak L? convergence of {u,} there exists ¢g € L?(Q x QO x Q) such
that, up to the extraction of a (not relabeled) subsequence, there holds

' = u + o (5.31)

with fQ fQ ¢o(x,y,z) =0forae. x € Q.
Setting 1o := Yo + ¢o, an adaptation of the argument in Step 1 of Proposition 3.5 and

Remark 3.6, together with the periodicity of the operators A’,i = 1,..., N, allows to pass
to the limit as n — +o00 in the differential constraints defining the classes lef () , and to

deduce that g € Cfi,. Indeed, let ¢ € W(;’p/(Q; RZ). Since w,, € C;ff("’), we have

N
9 ,
<Za_(/ A" (ny) (un (x) + wa(x, y)) a’y), 90>
Xi 0

i=1

S ‘ dg(x)
=—Z//Awwwm+w@wya dydx =0
i=179270Q Xi
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for every n € N. In view of (5.30) and (5.31) we obtain

N
tim > [ [ A + - D dydy
i=17870Q

n—+00 0x;

al . 3 (x)
=Z///A’<z><u<x>+no<x,y,z>>-‘”—dzdydx.
i=17/%/070 0xi

1

Thus, by the arbitrariness of ¢,

N
Z:i(//Ai(Z)(”(X)+no(x,y,z))dydz)=0 in WhP(Q; RY).
i 0% \JoJo

The second differential constraint in (5.28) follows by a similar argument.
By the convexity of f we use its two-scale L? lower-semicontinuity (see [26, Proposi-
tion1.3]) to deduce that

lim inf 7/, () = lim /Q /Q F () + wn(x, ) dy dx

z///f<u<x>+no<x,y,z>>dzdydx
QJOJO

> inf ///f(u(x)+77(x,y,z))dzdydx. (5.32)
QJOJQ

neC’Z{Zﬁ

Since the same procedure applies to every sequence {u,} as above and to every r > 0, we
obtain (5.29).
Step 2 We show that for every A > 0 the following inequality holds true

For () < inf ///f(u(x)+17(x,y,z))dzdydx+)». (5.33)
QJQOJQ

UGC%

Indeed, let n; € Cﬁ be such that

///f(”(x)-l—m(x,y,z))dzdydx
QJOJO

< inf ///f(u(x)+n(x,y,z))dzdydx—|—A, (5.34)
QJ0J0

neC%

and set

wy(x, y) :=/ m.(x,z,ny)dz foreveryx € Qandy € Q.
0
The fact that n; € Cffd yields

/ wp(x,y)dy =0 forae.x € 2, (5.35)
0
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for every n € N. By the periodicity of 7; and of the operators A’,i = 1, ..., N, there holds
| A + oy = [ [ A+ st zon) dzdy
0 0J0
1 . )
= _N/ / A" () (ux)+mu(x, z, y)) dz dy=/ / A" () (u(x) + mlx, z, y)) dzdy,
nQJQ 0J0

for a.e. x € Q. Since n,, € CW we obtain

9 .
Z g(/Q A'(ny)(u(x) + w,(x, y)) dy)

i=1 '
N o .

=Z—( / / A’(y)(u(X)+m(x,z,y))dzdy)=0 (5.36)
o 0% \JoJo

in W=LP(Q: R.
As a consequence of Remark 5.4 we deduce that

Z — (A (ny) (u(x) + wp (x, y))

9 .
= Z Fi / (A’(ny)(u(x) .z, ny))) dz =0 (5.37)
'y Jo
in W=L2(Q; R!), for a.e. x € Q. By Jensen’s inequality we have

lim inf / / FU) + wax, ¥)) dy dx

< lim ///f(u(x)+m(x,z,ny))dzdydx
0Jo

:///f(u(x)+m(x,z,y))dzdydx,
QJoJo

where in the last equality we used the Riemann Lebesgue Lemma with respect to the vari-
able y, and Lebesgue Dominated convergence Theorem, taking into account that, due to
periodicity
7 (x, z, ny)”LP(QX OxQ;Rd) = l75.(x, 2, y)”LP(QxQxQ;]Rd)
for all n € N. Now (5.34) yields
Fog(u) < inf | liminf 51 (u,) : u, — u weakly in L?(Q; RY)
n— 400 ()

K
< Fm 0
< £1mJ1rnf}"d( .)(u)

<11m1nf// fu(x) + wy(x,y))dydx

n— 400

5///f(u(X)+m(x,z,y))dzdydx
eJoJo
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< inf ///f(u(x)-l—n(x,y,z))dzdya’x—l—k,
QJOJO

neCfﬁ

which in turn implies (5.33). The thesis follows by combining (5.29) and (5.33), and by the
arbitrariness of A. O

5.3 Nonlocality of the operator

We end this section with an example that illustrates that, in general, when the operators A’ are
not constant then the functional .% ., in (4.3) can be nonlocal, even when the energy density
f 1s convex.

Example 5.7 Let N =d = p =2 and [ = 1, and choose
Q=(0,1) x (0, 1).

Leta € C2.(R), with period (—%, %), a > —1, and satisfying

per
1 1
2 2,
/ ) a(s)ds =0 and / @ (s)ds =1, (5.38)
2 )

and consider the operators A!, A% : R> — R? defined as
Al(x) = (1 4+a(xp) 0) and Az(x) =0 1
for x € RZ. We have that

A = (11507 D)

for£ € R? and y € Q, therefore the operator A satisfies the uniform invertibility assumption
(3.3).

Consider the function f : R*> — [0, +00), defined as f(£) := |£|? for every & € R2. By
(5.38), for n fixed, u, € ¢ if and only if there exists w, € L*(Q x Q; R?) such that
f 0 Wn (x, y)dy = 0, and the following two conditions are satisfied

i(/ a(ny))wi (x,y) dy) +divu,(x) =0 in W H2(Q), (5.39)
8)61 19)

w],}’l(-xa )’) + aw2,n(X, )’)
ay1 dy2

Moreover, for every it € L?(€2; R?) and & € L*(Q x Q; R?) with fQ w(x,y)dy =0,
there holds

//f(ﬁ(x)+u?(x,y))dy=/|L7(x)|2dx+// |zb(x,y)|2dydx. (5.41)
QJo Q QJQ

In view of (5.41), forevery r > 0,n € N, and u,, € C¥ ™),

(1 +a(ny2))8 =0 in W %(Q) forae. x € Q. (5.40)

?—:zf(n-)(u") = / | ()| dx,
Q
hence by classical lower-semicontinuity results (see,e.g.,[15, Theorem 5.14]),

%f(u)z/ lu(x)|>dx forevery u € C¥. (5.42)
Q
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Ifoe le{, i.e., divu = 0 (and hence 0 € C;f{("') for every n), then

Ty ) = /Q Ju(x) Pdx

for every n and r, and choosing u,, = u for every n in (4.3), we deduce that (5.42) holds with
equality.

Strict inequality holds in (5.42) if u € C but divu # 0. Such fields exist, consider for
example,

u(x) := (_gl) for x € Q.

Note that the map
wx,y) = (a(y(z))m) for every (x,y) € 2 x Q

satisfies w € C7 by (5.38)
Assume by contradiction that there exists u € C , with div u # 0, such that

F oy (1) :/ lu(x)|* dx. (5.43)
Q

By the definition of .% ., there exists a sequence {r,,} of real numbers such that

Ty () = m1—1>I—|I—loo inf [ L’gig?;;”(n,)(un) tup — u weakly in L?(; Rd) .
For every m € N, let {u]'} C L?(€2; RY) be such that

u™ — u weakly in L*(Q; RY)
as n — 400, and
inf { Liﬂ‘;;f?gw(”") ©up — u weakly in L2(S2; ]Rd)] + nlq > ngirg?g(n,)(unm).
Then

o . . . . o—=Im m
Fort) = i F ).

and by a diagonal argument we can extract a subsequence {n(m)} such that, setting u" :=
m

un(m)’
. —Im
: o (n(m)-)
By (5.41), for every m there exists wy, € C,n such that ||w,, l22@x 0:rY) < T'm and

F ot nimyy ™) + % > /Q/Qf(um(x)wme(x,y)) dy dx

=/ |um(x)|2dx+// lw (x, y)|* dy dx. (5.45)
Q QJo
Hence, in view of (5.43), (5.44) and (5.45),

/lu(x)|2dx: lim (/ |um(x)|2dx+// |wm(x,y)|2dydx),
Q m—+00 \ JQ QJo
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and so
u™ — u strongly in L2(Q; R, (5.46)
and
wy — 0 strongly in LZ(Q x Q; Rd). (5.47)
By (5.39) and the boundedness of the function a, properties (5.46) and (5.47) yield
divu™ — 0 strongly in W~ 12(Q)

which in turn implies that div # = 0, contradicting the assumptions on u.
We conclude that if u € C¥ satisfies div u = 0, then

Fog () = / (o dx, (5.48)
Q
whereas if u € C7 satisfies div u # 0, then

Fog(U) > / lu(x)|>dx. (5.49)
Q

We now provide an explicit expression for the functional .%,,. We claim that for every
u € C7 there holds

F o (1) = / u(x) > dx + / |95 (x)|* dx, (5.50)
Q Q

where qb,? € LZ(Q) is the unique function satisfying fol ¢l§2 (x1,x2)dx; = 0 forae. xp €

Q
(0, 1), and 25 = —div u(x) in W2(R).

To prove (5.50) we first establish a preliminary lemma.

Lemma 5.8 Letn € N, and let v € CZ "), Then

inf [/ |v(x)|2dx—|—// |w(x,y)|2dxdy]
WEC oz (ny(v) LJQ QJo

=/ |v(x)|2dx—|—/ 95 (x)|* dx, (5.51)
Q Q

Q
where [ ¢ (x1, x2) dx = 0 for a.e. x € (0, 1), and *%2 = —div(x) in W=12(R).

Proof We recall that by (5.39) and (5.40), w € Cu(,.)(v) if and only if

/ w(x,y)dy =0, forae.x € Q,
0

0
dx1

(/ a(ny)wi(x,y) dy) +divv(x) =0 in W_l’z(Q),
0

owy(x,y) owa(x, y)
_|_
ay1 dy2

(1 + a(ny,)) =0 inW '2(Q) forae.xeQ. (552

By (5.52), the map qbf)z defined in the statement of Lemma 5.8 satisfies

1
(,2552()6) =/Qa(ny2)w1(x,y) dy —/0 (/Qa(nyz)wl(x,y) dy) dx; fora.e.x € Q.
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Rewriting wy as
wi(x, y) := a(nyz)/Qa(nyz)w1 (x, y)dy 4 nw(x, y),
we have
/Qa(nyz)nw(x, y)dy =0,

and hence

// wix, y)| dxdy—// w1 (x, 9)| dxdy+// war, )P dx dy
Z/Q(/Qa(nyz)wl(x y)dy) dx+// 7w (x, )|? dx dy
1 2
z/ |¢>f}(x>|2dx+/ (/ (/ a(nyz)w1<x,y)dy) dxl) dx
Q Q 0 0

Z/ |¢52(x)|2dx for every w € Cor(ny (V).
Q

In particular, we obtain the lower bound

inf [/ |v(x)|2dx+// Iw(x,y)lzdxdy]z/ |v(x)|2dx+/ 1652 (x)| dx.
WEC ez (ny(v) L JQ QJo Q Q

Property (5.51) follows by observing that (5.38) yields

(a(nyzwf? (x), 0) € Cor(n) (V).
O

Let u € C¥. Arguing as in the proof of (5.49) there exist a sequence {n,,} C N, with
nm — 400 as m — 400, and sequences {u”} C L*(; R?) and {w™} C L*(Q x Q; R?),
such that

u™ — u weakly in L?*(Q: R?),
w" e ¢t (5.53)

and

Fyw) = lim {/lum(x)lza’x—l-// Iwm(x,y)lzdxdy].
m—+00 Q QJo

In view of Lemma 5.8,

F oy (u) > lim sup {/ lu”™ (x)|? dx +/ |¢m(x)|2dx], (5.54)
m—+00 Q Q
where
1
/ @™ (x1,x2)dx; =0, forae.x; € (0,1), (5.55)
0
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and

d¢™ (x)

= —divu)'(x) in wL2(Q). (5.56)
dx1

Since u € C¥, there holds .Z ., (1) < 400, and the sequence {¢™} is uniformly bounded in
L?(Q). Therefore there exists ¢L§2 € L?(Q) such that, up to the extraction of a (not relabeled)
subsequence,

" — ¢ weakly in L*(Q2), (5.57)
where, by (5.53), (5.55) and (5.56),

1

2
/lqsf}(xl,xz)dxl =0 forae. x; € (0, 1)
—2

and

Q
0™ _ _Givuge) in wl2(Q).
dx1

In particular, by (5.53) and the lower semicontinuity of the L?-norm,

%(um/ |u<x>|2dx+/ 162002 dx.
Q Q

To prove the opposite inequality, choose u,, := u, w, := (a (ny2)¢l§2 (x), O) foreveryn € N.
By Lemma 5.8, for r big enough there holds

oy ) = /Q uoP dx + /Q 6200 dx.

The characterization (5.50) follows now by the definition of .% ;.

We conclude this example by showing that the functional .% ., is nonlocal. Indeed, assume
by contradiction that .% is local. Then for every u € C we can associate to .%,, an additive
set function .% ./ (u, -) on the class O(£2) of open subsets of 2. In particular, for every pair
Qq, Q2 C Q, with 2 CC Qy CC €2, and for every u € C? in Q, there holds

Frog (U, Q) < Fog(u, Q\Q1) + Foy (1, Q). (5.58)

Let&r, & € R, with &) #£ &, and let ¢, § > 0 be such that ¢ < % and § < % — ¢&. Define

Q= (%—e,%-l—s) X (%—&%—I—s) and
Q = (%—8—8,%—|—8—|—5)X(%—8—5,%4‘8—{‘5)-

Consider the function

uog(x) :=

( _52 ) otherwise in €2.

@ Springer
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We observe ug belongs to C, since the map

(“(yé)gl) ifxeQ, yeo,

(a(yé)sz) otherwise in 2 x O,

wo(x, y) =

satisfies wq € c . By (5.48), since divug = 0 in SZ\S_ZI, there holds
uo

F o (uo; Q\Q) = / Juo(x)[Fdx = (1 — 4e?)E7. (5.59)
QR

A direct computation yields

(I =2e)(§1 — &) iny

b = | 26(62 — &1) in[(O,%—s)U(%Jre,l)]x(%—8,%+8)
0 otherwise in €2,
and
8(?—:8&2) in Ql
¢,%2: % in[(%—8—8,%—8)U(%—|—8,%—|—8—|—5)]X(%—8,%4—8)
0 otherwise in 2,.
Therefore,
Fortun, @ = [ wocoldx -+ [ 108007 dx (5.60)
= 48282 + (1 — 4e2)E3 + 46> (1 — 26) (&) — £2)°, (5.61)
and
For (10, ) = / o2 dx + / 62 (1) dx (5.62)
192) Q2
4 23 . 2
= 4622 + 45(5 + 2e)E2 + — (i 5 52y (5.63)
&

Now (5.58) becomes

4628(&1 — &)?
e+6

42 (1 —2e) (&1 — £2)° < 48(8 +26)&; +

for every ¢ < % and § < % — ¢. Letting 6 — 0 we get
4e(1 = 20)(51 — £)* < 0.

Since & # &, this contradicts the subadditivity of .% ., (ug, -) and yields the nonlocality of
Gt .
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The interplay between multiscale homogenization and dimension reduction for nonlinear
elastic thin plates is analyzed in the case in which the scaling of the energy corresponds
to Kirchhoff’s nonlinear bending theory for plates. Different limit models are deduced
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1. Introduction

The search for lower dimensional models describing thin three-dimensional struc-
tures is a classical problem in mechanics of materials. Since the early 1990s it has
been tackled successfully by means of variational techniques, and starting from the
seminal papers in Refs. 1, 11, 12 and 17, hierarchies of limit models have been
deduced by I'-convergence, depending on the scaling of the elastic energy with
respect to the thickness parameter.

The first homogenization results in nonlinear elasticity have been proved in
Refs. 6 and 19. In these two papers, Braides and Miiller assume p-growth of a stored
energy density W that oscillates periodically. They show that as the periodicity
scale goes to zero, the elastic energy W converges to a homogenized energy, whose
density is obtained by means of an infinite-cell homogenization formula.

fCorresponding author
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1766 L. Bufford, E. Davoli & I. Fonseca

In Refs. 4 and 7 the authors treat simultaneously homogenization and dimension
reduction for thin plates, in the membrane regime and under p-growth assumptions
of the stored energy density. More recently, in Refs. 16, 22 and 26 models for
homogenized plates have been derived under physical growth conditions for the
energy density. We briefly describe these results.

Let
h h
Qh =w X (—5, E)

be the reference configuration of a nonlinearly elastic thin plate, where w is a
bounded domain in R?, and h > 0 is the thickness parameter. Assume that the
physical structure of the plate is such that an in-plane homogeneity scale £(h) arises,
where {h} and {e(h)} are monotone decreasing sequences of positive numbers,
h — 0, and e(h) — 0 as h — 0. In Refs. 16, 22 and 26, the rescaled nonlinear elastic
energy associated to a deformation v € W12(Qy,; R?) is given by

z%o:%l%w(%ﬁvu@»m

where ' := (21,22) € w, and the stored energy density W is periodic in its first
argument and satisfies the commonly adopted assumptions in nonlinear elasticity, as
well as a nondegeneracy condition in a neighborhood of the set of proper rotations.

In Ref. 22 the authors focus on the scaling of the energy corresponding to Von
Kérman plate theory, that is they consider deformations v € W12(€,; R?) such
that

T (M)

h4

lim sup < +00.

h—0

Under the assumption that the limit

= lim ——
I e(h)
exists, different homogenized limit models are identified, depending on the value of
" € [07 +OO]
A parallel analysis is carried in Ref. 16, where the scaling of the energy associated
to Kirchhoff’s plate theory is studied, i.e. the deformations under consideration
satisfy

Ih (Uh)
lim sup
h—0 h?

< +o00.

In this situation a lack of compactness occurs when 73 = 0 (the periodicity scale
tends to zero much more slowly than the thickness parameter). A partial solution
to this problem, in the case in which

Yo := lim = 400

n0 22(R)
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is proposed in Ref. 26, by means of a careful application of Friesecke, James and
Miiller’s quantitative rigidity estimate, and a construction of piecewise constant
rotations (see Theorem 4.1 in Ref. 11, Theorem 6 in Ref. 12, and Lemma 3.11 in
Ref. 26). The analysis of simultaneous homogenization and dimension reduction for
Kirchhoff’s plate theory in the remaining regimes is still an open problem.

In this paper we deduce a multiscale version of the results in Refs. 16 and 26.
We focus on the scaling of the energy which corresponds to Kirchhoft’s plate theory,
and we assume that the plate undergoes the action of two homogeneity scales — a
coarser one and a finer one — i.e. the rescaled nonlinear elastic energy is given by

70 = [ W (s V@) de

for every deformation v € WH2(£2),;R3), where the stored energy density W is

periodic in its first two arguments and, again, satisfies the usual assumptions in
nonlinear elasticity, as well as the nondegeneracy condition (see Sec. 2) adopted in
Refs. 16, 22 and 26. We consider sequences of deformations {v"} C W12(Q;;R?)
verifying

R (yh
limsupj ©?)

< 400, 1.1
h—0 h? (1.1)

and we seek to identify the effective energy associated to the rescaled elastic energies
h(, h
{%} for different values of 71 and 72, i.e. depending on the interaction of the
homogeneity scales with the thickness parameter.
As in Ref. 16, a sequence of deformations satisfying (1.1) converges, up to the

extraction of a subsequence, to a limit deformation u € W12(w;R3) satisfying
the isometric constraint

Op u(a’) - Oy u(a’) = b, forae. o’ cw, o, f e {1,2}. (1.2)

We will prove that the effective energy is given by

I [ —m
—/ 2, (%(2)))dx'  if u satisfies (1.2),
EM(u) := 12 J,,

+o0

otherwise,

—1

where IT* is the second fundamental form associated to u (see (4.4)), and 2y,

is a quadratic form dependent on the value of 71, with explicit characterization
provided in (5.2)—(5.4). To be precise, our main result is the following.

Theorem 1.1. Let v1 € [0, +00] and let 42 = +oo. Let {v"} € WH2(Qy;R3) be a
sequence of deformations satisfying the uniform energy estimate (1.1). There exists
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a map u € W22(w;R3) verifying (1.2) such that, up to the extraction of a (not
relabeled) subsequence, there holds

o™ (2!, has) — ][ o™ (2’ has)de — u  strongly in L*(Qq;R?),
0

Vo' (2, has) — (V'ulny)  strongly in L*(Qq; M3*3),
with
Ny (2') = O, u(x’) A Opu(x’)  for a.e. 2’ € w,

and

h(,h
lim inf J h(; ) > enu). (1.3)
Moreover, for every u € W22(w; R3) satisfying (1.2), there exists a sequence {v"} C

W12(Qp; R3) such that

lim sup M < EM(u). (1.4)
hoo D

We remark that our main theorem is consistent with the results proved in
Refs. 16 and 26. Indeed, in the presence of a single homogeneity scale, it follows
directly from (5.2)—(5.4) that 2,.  reduces to the effective energy identified in
Refs. 16 and 26 for v; € (0, +o00] and 7, = 0, respectively. The main difference with
respect to Refs. 16 and 26 is in the structure of the homogenized energy density
@g;m, which is obtained by means of a double pointwise minimization, first with
respect to the faster periodicity scale, and then with respect to the slower one and
the xg variable (see (5.2)-(5.4)).

The quadratic behavior of the energy density around the set of proper rotations
together with the linearization occurring due to the high scalings of the elastic
energy yield a convex behavior for the homogenization problem, so that, despite
the nonlinearity of the three-dimensional energies, the effective energy does not
have an infinite-cell structure, in contrast with Ref. 19. The main techniques for
the proof of the liminf inequality (1.3) are the notion of multiscale convergence
introduced in Ref. 3, and its adaptation to dimension reduction (see Ref. 20). The
proof of the limsup inequality (1.4) follows that of Theorem 2.4 in Ref. 16.

The crucial part of the paper is the characterization of the three-scale limit of
the sequence of linearized elastic stresses (see Sec. 4). We deal with sequences hav-

ing unbounded L2-norms but whose oscillations on the scale € or 2

are uniformly
controlled. As in Lemmas 3.6-3.8 in Ref. 16, to enhance their multiple-scales oscil-
latory behavior we work with suitable oscillatory test functions having vanishing
average in their periodicity cell.

The presence of three scales increases the technicality of the problem in all
scaling regimes. For 77 € (0, +0o0], Friesecke, James and Miiller’s rigidity estimate
(Theorem 4.1 in Ref. 11) leads us to work with sequences of rotations that are piece-

wise constant on cubes of size e(h) with centers in £(h)Z?. However, in order to
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identify the three-scale limit of the linearized stresses, we must consider sequences
oscillating on a scale £2(h). This problem is solved in Step 1 of the proof of Theo-
rem 4.1, by subdividing the cubes of size £2(h), with centers in £2(h)Z?, into “good
cubes” lying completely within a bigger cube of size e(h) and center in e(h)Z?
and “bad cubes”, and by showing that the measure of the intersection between w
and the set of “bad cubes” converges to zero faster than or comparable to £(h), as
h — 0.

The opposite problem arises in the case in which v; = 0. By Friesecke, James
and Miiller’s rigidity estimate (Theorem 4.1 in Ref. 11), it is natural to work with
sequences of piecewise constant rotations which are constant on cubes of size £2(h)
having centers in the grid ¢2(h)Z?, whereas in order to identify the limit multiscale
stress we need to deal with oscillating test functions with vanishing averages on
a scale e(h). The identification of “good cubes” and “bad cubes” of size £2(h) is
thus not helpful in this latter framework as the contribution of the oscillating test
functions on cubes of size £2(h) is not negligible anymore. Therefore, we are only
able to perform an identification of the multiscale limit in the case v = 400,
extending to the multiscale setting the results in Ref. 26. The identification of the
effective energy in the case in which v = 0 and 75 € [0,+00) remains an open
question.

The paper is organized as follows: in Sec. 2 we set the problem and introduce
the assumptions on the energy density. In Sec. 3 we recall a few compactness results
and the definition and some properties of multiscale convergence. Sections 4 and 5
are devoted to the identification of the limit linearized stress and to the proof of
the liminf inequality (1.3). In Sec. 6 we show the optimality of the lower bound
deduced in Sec. 5, and we exhibit a recovery sequence satisfying (1.4).

1.1. Notation

In what follows, @ := (—%, %)2 denotes the unit cube in R? centered at the origin
and with sides parallel to the coordinate axes. We will write a point = € R? as

= (2',23), where 2’ € R? and 23 € R,

and we will use the notation V’ to denote the gradient with respect to x’. For every
r € R, [r] is its greatest integer part. With a slight abuse of notation, for every
' € R% [2'] and |2’] are the points in R? whose coordinates are given by the

greatest and least integer parts of the coordinates of z’, respectively. Given a map
¢ € WH2(R?), (y - V')¢(z') stands for

(y-VNo(2') = 4104, 0(2') + y200,0(z") for ae. 2’ € R? and y € Q.
We write (V)1 ¢ to indicate the map

(V) p(2') == (—0pyp, 0, @) for ace. 2’ € R2.
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We denote by M"*™ the set of matrices with n rows and m columns and by
SO(3) the set of proper rotations, that is
SO(3) := {Re M**3: RTR = 1d and det R = 1}.

Given a matrix M € M3*3, M’ stands for the 3 x 2 submatrix of M given by its
first two columns. For every M € M"*" sym M is the n X n symmetrized matrix
defined as

M+ MT
sym M = L
2
Whenever a map v € L2, C, ..., is Q-periodic, that is

vz +e)=v(x), i=1,2,

for a.e. x € R?, where {e1, e2} is the orthonormal canonical basis of R?, we write v €
L2, C3,, .. ., respectively. We implicitly identify the spaces L*(Q) and L2, (R?).
We denote the Lebesgue measure of a measurable set A C RY by |A].

We adopt the convention that C' designates a generic constant, whose value may

change from expression to expression in the same formula.

2. Setting of the Problem

Let w C R? be a bounded Lipschitz domain whose boundary is piecewise C!. This
regularity assumption is only needed in Sec. 6, while the results in Secs. 3-5 continue
to hold for every bounded Lipschitz domain w C R?. We assume that the set

h h
Qh =w X (—5,5)

is the reference configuration of a nonlinearly elastic thin plate. In the sequel, {h}
and {e(h)} are monotone decreasing sequences of positive numbers, h — 0, (h) — 0
as h — 0, such that the following limits exist

v1 = lim L and g = lim
h—0¢e(h) h—0¢e2(h)’
with 71, v2 € [0,+00]. There are five possible regimes: 71,72 = +00; 0 < 11 < 400
and 5 = +00;v1 =0 and y2 = 400; 73 =0 and 0 < 2 < +00; 71 = 0 and v, = 0.
We focus here on the first three regimes, that is on the cases in which vy = +o00.
For every deformation v € W2(Qy,; R3), we consider its rescaled elastic energy

jh(v) = %/Qh w (sff;) , gf(;b),Vv(a:)) dx,

where W :R? x R? x M*3 — [0, +00) represents the stored energy density of the
plate, and (y,z, F) — W (y, 2, F) is measurable and @-periodic in its first two

variables, i.e. with respect to y and z. We also assume that for a.e. y and z, the
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map W (y, z,-) is continuous and satisfies the following assumptions:

(H1) W(y,z, RF) = W(y, z, F) for every F € M3*3 and for all R € SO(3) (frame
indifference),

(H2) W (y,z, F) > Cy dist*(F;SO(3)) for every F € M>*? (nondegeneracy),

(H3) there exists § > 0 such that W (y, z, F) < Cydist?(F;SO(3)) for every F €
M3*3 with dist(F;SO(3)) < 4,

(H4) lim|gj—0 W(y’z’ldﬁg‘)gg(y’z’(;) = 0, where 2(y, z,-) is a quadratic form on
MBXS.

By assumptions (H1)-(H4) we obtain the following lemma, which guarantees
the continuity of the quadratic map 2 introduced in (H4).

Lemma 2.1. Let W:R? x R? x M3*3 — [0, +00) satisfy (H1)-(H4) and let 2 :
R? x R? x M3*3 — [0, +00) be defined as in (H4). Then,

(i) 2(y, z,) is continuous for a.e. y,z € R?,
(i) 2(-,-, F) is Q x Q-periodic and measurable for every F € M>3*3,
(iii) for a.e. y,z € R2, the map 2(y, z,-) is quadratic on M3X3, and satisfies

sym

1

GloymFP® < 2(y, 2, F) = 2(y, 2, symF) < Clsym F[?
for all F € M?*3, and some C >0. In addition, there exists a monotone func-
tion

r: [0, 400) — [0, 400],
such that r(§) — 0 as 6 — 0, and
(W (y,z,1d + F) — 2(y, 2, F)| < [F[r(|F])

for all F € M3*3, for a.e. y,z € R2.

We refer to Lemma 2.7 in Ref. 21 and to Lemma 4.1 in Ref. 22 for a proof of
Lemma 2.1 in the case in which 2 is independent of z. The proof in our setting is
a straightforward adaptation.

As it is usual in dimension reduction analysis, we perform a change of variables in
order to reformulate the problem on a domain independent of the varying thickness

parameter. We set
11
V= Ql =w X (-5,5),

and we consider the change of variables ¥ : Q — Q" defined as
Y (x) = (a', has) for every z € Q.

To every deformation v € W12(Q,;R3) we associate a function u € W12(Q;R3),
defined as u := v o 9", whose elastic energy is given by

e = T"w) = |

Q

W ( iy 2oy Vvl )
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where
Ozzu()

Vau(z) = (V’u(az) :

) for a.e. x € Q).

In this paper we focus on the asymptotic behavior of sequences of deformations
{u"} € W2(Qy,; R?) satisfying the uniform energy estimate

/ /
EMuhy = /QW (%, %,V;ﬂﬁ(@) dx < Ch* for every h > 0. (2.1)

We remark that in the case in which W is independent of y and z, such scalings of

the energy lead to Kirchhoft’s nonlinear plate theory, which was rigorously justified
by means of I'-convergence techniques in the seminal paper Ref. 11.

3. Compactness Results and Multiscale Convergence

In this section we present a few preliminary results which will allow us to deduce
compactness for sequences of deformations satisfying the uniform energy esti-
mate (2.1).

We first recall Theorem 4.1 in Ref. 11, which provides a characterization of
limits of deformations whose scaled gradients are uniformly close in the L2-norm
to the set of proper rotations.

Theorem 3.1. Let {u"} C WH2(Q;R3) be such that

1
lim sup ﬁ/ dist®(Vu' (), S0(3))dz < +o0. (3.1)
h—0 Q

Then, there exists a map u € W?2(w;R3) such that, up to the extraction of a (not
relabeled) subsequence,

ul — ][ u(x)dx — u  strongly in L*(;R3),
Q

Viu" — (V'ulny)  strongly in L (Q; M3*3),
with
Oz u(z’) - Oy u(x’) = dap  for ae a’ cw, o,fe{1,2} (3.2)
and
Ny (2') := Oy u(x') A Opyu(x’)  for a.e. 2’ € w. (3.3)

A crucial point in the proof of the liminf inequality (1.3) (see Secs. 4 and 5) is to
approximate the scaled gradients of deformations with uniformly small energies, by
sequences of maps which are either piecewise constant on cubes of size comparable
to the homogenization parameters with values in the set of proper rotations, or
have Sobolev regularity and are close in the L?-norm to piecewise constant rota-
tions. The following lemma has been stated in Lemma 3.3 in Ref. 26, and its proof
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follows by combining Theorem 6 in Ref. 12 with the argument in the proof of Theo-
rem 4.1 and Sec. 3 in Ref. 11. We remark that the additional regularity of the limit
deformation u in Theorem 3.1 is a consequence of Lemma 3.1, and in particular of
the approximation of scaled gradients by W2 maps.

Lemma 3.1. Let vy € (0,1] and let h,§ > 0 be such that

1
< —
’Yo

SIS

Yo <

There exists a constant C, depending only on w and 7y, such that for every u €
Wh2(w;R3) there exists a map R : w — SO(3) piecewise constant on each cube
r + 6Q, with x € 72, and there exists R € W12(w; M3*3) such that

¥t = RlZaqgupereay + IR = Rlagunase + RI7 Rl unmsomocs
< C||dist(Vau; SO(3)) | L2 (-
Moreover, for every & € R? satisfying
[€loo == max{[¢ - e1],[€ - e2]} <,
and for every w' C w, with dist(w’, dw) > Ch, there holds
IR(2") = R(z" + &)l 12 (wruazxsy < C|ldist(Vius SO(3))[|72(q)-

We now recall the definitions of “2-scale convergence” and “3-scale convergence”.
For a detailed treatment of 2-scale convergence we refer to, e.g. Refs. 2, 18 and 23.
The main results on multiscale convergence may be found in Refs. 3, 5, 8 and 9.

Definition 3.1. Let D be an open set in RY and let Y~ be the unit cube in RY,

v (CL 1Y
' 272
Let u € L?(D x YY) and {u"} € L?(D). We say that {u"} converges weakly 2-scale

2
towin L?(D x YY), and we write u" it

[ e (6 )de = [ ] uemete.manas

for every ¢ € C°(D; Cper(YY)).
Let w € L?(D x YN x Y¥) and {u"} € L?*(D). We say that {u”"} converges

weakly 3-scale to u in L?(D x YN x YV), and we write u” B u, if

[ @0 (65 o) 5%//YN/YN (e, (€. ) iy d
N

for every ¢ € C°(D; Cper (YN x Y
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We say that {u"} converges strongly 3-scale to v in L?(D x Y x YV), and we
3-s
write u — u, if

h 3—s
u" — u weakly 3-scale

and

[ 20y = l1ull L2(Dxy ™ xy -

In order to simplify the statement of Theorem 4.1 and its proof, we introduce the
definition of “dr-3-scale convergence” (dimension reduction 3-scale convergence),
i.e. 3-scale convergence adapted to dimension reduction, inspired by Neukamm’s
2-scale convergence adapted to dimension reduction (see Ref. 20).

Definition 3.2. Let u € L?(Q x Q x Q) and {u"} € L?*(Q). We say that {u"}
dr-3-s
converges weakly dr-3-scale to u in L?(Q x Q x Q), and we write u" —— w, if

/Quh(x)go (a:, %,%) dx — /Q/Q/Qu(x,y, 2)p(x,y, z)dz dy dz

for every ¢ € C°(Q; Cper(Q X Q)).

Remark 3.1. We point out that “dr-3-scale convergence” is just a particular case
of classical 3-scale convergence. Indeed, what sets apart “dr-3-scale convergence”
from the classical 3-scale convergence is solely the fact that the test functions in

Definition 3.2 depend on x3 but oscillate only in the cross-section w. In particular,
if {uh} € L?(Q) and

h dr-3-s
u" ——u weakly dr-3-scale
then {u"} is bounded in L?(Q2). Therefore, by Theorem 1.1 in Ref. 3 there exists
e L% (Qx%(—1,3)) x(Qx(—3,3))) such that, up to the extraction of a (not
relabeled) subsequence,

h 3-s
u' — ¢ weakly 3-scale,

that is u" weakly 3-scale converge to £ in L?(Q x (Q x (—3,3)) X (Q x (—3,3)))

(in the sense of classical 3-scale convergence). Hence, the “dr-3-scale limit” u and
the “classical 3-scale limit” £ are related by

= [ [

We now state a theorem regarding the characterization of limits of scaled gra-

f:c y,z,m,7)dndr for a.e. z € wand y,z € Q.
1

1
2 2

dients in the multiscale setting adapted to dimension reduction. We omit its proof
as it is a simple generalization of the arguments in Theorem 6.3.3 in Ref. 20.
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Theorem 3.2. Let u, {u"} C W12(Q) be such that
ul —u weakly in WH%(Q)
and

limsup/ IVyu ()| dz < oo.
h—0 Ja

Then u is independent of x3. Moreover, there exist uy € L?*(Q;W2(Q)), uy €

per

L2(Q x Q;W2(Q)), and u € L*(w x Q@ x Q;Wh2(—3,3)) such that, up to the

extraction of a (not relabeled) subsequence,

dr-3-s
Viu —— (V'u+ Vyui + V.ug|0g,u)  weakly dr-3-scale.

Moreover,

(1) if y1 = v2 = o0 (i.e. €(h) < h), then 0y,u = 0,,u =0, fori=1,2;
(ii) if 0 <1 < 400 and y2 = 400 (i.e. €(h) ~ h), then
_ Ui
u=—;
g

(i) if 71 =0 and y2 = +00 (i.e. h < e(h) < h2), then
Ozsu1 =0 and 0, u=0,i=1,2.

In the last part of this section we collect some properties of sequences having
unbounded L2-norms but whose oscillations on the scale ¢ or 2 are uniformly
controlled. Arguing as in Lemmas 3.6-3.8 in Ref. 16, we highlight the multi-scale
oscillatory behavior of our sequences by testing them against products of maps
with compact support and oscillatory functions with vanishing average in their
periodicity cell. In the proof of Theorem 4.1 we refer to Proposition 3.2 in Ref. 16
and Proposition 3.2 in Ref. 26, so for simplicity we introduce the notation needed

in those papers.

Definition 3.3. Let f € L?(w x Q) be such that
/ fC,y)dy =0 ae. inw.
Q

We write

osc,Y -

if

i [ e () o' = [ [ Pl mete oty s

for every € C2°(w) and g € CF.(Q), with [, g(y)dy = 0.

per
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Let {f"} C L*(w) and let fG L*(w x @ x Q) be such that
/ f:(',',Z)dZ =0 a.e. inwxQ.
Q

We write

if

p, [ 16 (o5 ) o (i ) o
=Aééﬂ%%mmwwww@w

for every 1 € C2°(w; C5e:(Q)) and ¢ € Cpe(Q), with [, ¢(2)dz = 0.

per

Remark 3.2. As a direct consequence of the definition of multiscale convergence
and density arguments, if { "} C L?(w), then

n
f f weakly 2-scale

if and only if
h osc,Y
£y =2 /fxy

Analogously,

=y _
f f  weakly 3-scale

if and only if

M) ——F— | fla,y,2)dz.
Q

We recall finally Lemmas 3.7 and 3.8 in Ref. 16.

Lemma 3.2. Let {f"} C L*>®(w) and f° € L>™(w) be such that
5% weakly-* in L (w).

Assume that f" are constant on each cube Q(e(h)z,e(h)), with z € Z2. If f° ¢
Wh2(w), then

fh osc,Y N 20

O (y- V)"

Lemma 3.3. Let {f"} c Wh2(w), fO € W'2(w), and ¢ € L?(w; Wi(Q)) be such
that

= O weakly in Wh2(w),
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and
2—s
AVAR LR v Vy¢ weakly 2-scale,
with fQ o(x',y)dy =0 for a.e. 2’ € w. Then,

fh osc,Y
o

4. Identification of the Limit Stresses

Due to the linearized behavior of the nonlinear elastic energy around the set of
proper rotations, a key point in the proof of the liminf inequality (1.3) is to establish
a characterization of the weak limit, in the sense of 3-scale-dr convergence, of the
sequence of linearized elastic stresses

Eh L \/(thh)thuh —1Id
= A .

We introduce the following classes of functions:

Cyy 4o 1= {U € L*(Q x Q x Q;M>*3):

11
there exist ¢; € L? (w; w2 ((—5, 5) W;ef(Q;R?’)))
and ¢y € L*( x Q; W)2(Q; R?))
$3¢1

such that U = sym ( y D1

) +sym<vz¢zro>}, (4.1)

Ciootoo = {U € L*( x Q x Q; M**3):
there exist d € L*(Q;R?), ¢1 € L*(Q; W):2(Q; R?))
and ¢ € L*(Q x Q; Wi (Q:R?))
such that U = sym (Vy¢1|d) + sym (V. ¢2|0)}, (4.2)

and

Cotoo = U € L*(2 x Q x Q; M>*3):

there exist £ € L*(Q; WL2(Q;R?)), n € L*(w; W22(Q)),

per

g € L2(QxY),i=1,2,3, and ¢ € L*(Q x Q; W2(Q;R?)) such that

per

V€ + $3v12ﬂ7 g1
U =sym g2 | +sym(V.¢[0) 3. (4.3)
gi 92 93
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We now state the main result of this section.

Theorem 4.1. Let 1 € [0,4+00] and 42 = +oo. Let {u"} € WH2(Q;R3) be a
sequence of deformations satisfying (3.1) and converging to a deformation u in the
sense of Theorem 3.1. Then there exist E € L*(Qx Qx Q;M3X3), B € L?(w; M?*2),

sym
and U € C, to0, such that, up to the extraction of a (not relabeled) subsequence,

h dr-3-s
E" —— F  weakly dr-3-scale,

where

E(z,y,z) = <x3Hu($,) + sym B(z')

0
+Um7 7’2?
0 o) (7,9, 2)

for almost every (z,y,z) € Q x Q X Q, with

ape) =— Zﬁu(m’) ‘ny(x')  fora,B=1,2, (4.4)
and nq, (x') := dhu(z') A dau(z’) for every z' € w.
Proof. Let {u"} be as in the statement of the theorem. By Theorem 3.1 the map
u € W22%(w; R3) is an isometry, and

Viu = (V'uln,) strongly in L?(Q; M3*3). (4.5)

For simplicity, we subdivide the proof into three cases, corresponding to the three
regimes 0 < 1 < 400, 71 = 400, and 71 = 0. Each case will be treated in multiple
steps.

Case 1: 0 < 71 < +00 and 75 = +00.

Applying Lemma 3.1 with §(h) = &(h), we construct two sequences {R"} C
L*(w;SO(3)) and {R"'} € W12(w; M3*3) such that R" is piecewise constant on
every cube of the form Q(e(h)z,e(h)), with z € Z?, and

IVhu = RM|72qpgaxay + 1 B" = BP (|32 (g xay
+ 2V B L2 s s s sy < Clldist(Vau'; SOB)) 2y (4:6)
By (3.1) and (4.6), there holds
Viu" — R" — 0 strongly in L?(Q; M3*3),
R" —R" - 0 strongly in L?(Q; M3*3),
and {R"} is bounded in W2 (w; M?*3). Therefore, by (4.5) and the uniform bound-
edness of the sequence {R"} in L>°(w;M3*?), and in particular in L?(w; M?>*3),

R" = R strongly in L?(w; M3*3),  RM =* R weakly™ in L™ (w; M3*3), (4.7

and

R" = R weakly in W52 (w; M>*3), (4.8)
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where
R := (V'u|n,). (4.9)

In order to identify the multiscale limit of the linearized stresses, we argue as
in the proof of Proposition 3.2 in Ref. 16, and we introduce the scaled linearized
strains
(RMTVuh —1d

3 :
By (3.1) and (4.6) the sequence {G"} is uniformly bounded in L?(Q;M3*3). By
standard properties of 3-scale convergence (see Theorem 2.4 in Ref. 3) there exists
G € L*(Q x Q x Q;M3*3) such that, up to the extraction of a (not relabeled)
subsequence,

Gh .=

(4.10)

3-s
G" —~ G weakly 3-scale. (4.11)

By the identity

VAd + hF)T(Id + hF) = Id + hsym F + O(h?),
and observing that

V)TVl —1d - /(1d + hGF)T(Id + hG?) — 1d
h a h ’

Eh =

there holds
E =symG. (4.12)

By (4.11), it follows that
h 2-5
G" — [ G(x,y,z)dz weakly 2-scale.
Q
Therefore, by Proposition 3.2 in Ref. 16 there exist B € L?(w;M?*?) and ¢; €

L%(w; Wl’Q((—%, %)7 WSé?(Q;R3))) such that

sym /Q Gz, y, €)de

8m3 ¢1 (.I', y)
4!

) (4.13)

 [xsII*(2’) + sym B(2')
B 0

0
0) + sym (Vy¢1($, y)

for a.e. x € Q and y € Y. Thus, by (4.12) and (4.13) to complete the proof we only
need to prove that

sym Gz, y, =) — sym /Q Gy, €)dE = sym(V.ba(z, y, 2)|0) (4.14)

for some ¢o € L2(Q x Q; W12(Q;R3)).

per



1780 L. Bufford, E. Davoli & I. Fonseca

Set

h *oh
u (') : / u" (2, 23)drs for a.e. 2’ € w,

SIS

(4.15)
and define 7" € WH2(Q;R3) as
ul(z) =: a"(2") + hasR" (2 )es + hr (2’ z3) for a.e. z € Q (4.16)
We remark that
/2 (2, 23)dxs =0 (4.17)
and

Rh . Rh
- = %@,) + V. (4.18)

h _ ph I=h _ (Dh\! .
Vouh — R _(VU h(R) eV R

We first notice that by (3

1), (4.6), (4.8), and (4.17), the sequence {r"}
is uniformly bounded in W12(Q;R3). Hence, by Theorem 3.2(ii) there exist
P e WE2(wiRY), 61 € 2w WHR((—3, i WEA(QiR®) and dy € L3(Q x Q
W32(Q;R?)) such that, up to the extraction of a (not relabeled) subsequence

dr-3-s

VhTh E—

(V/T + Vy¢1 + V ¢2

Ory 1 ) weakly dr-3-scale. (4.19)
"

By (3.1) and (4.6), and since R" does not depend on x3, {w} is bounded
in L?(w;

M3*2). Therefore by Theorem 2.4 in Ref. 3 there exists V € L?(w x Q x
Q; M3*2) such that, up to the extraction of a (not relabeled) subsequence

v/—h_ Rh I 3.
h h( ) V' weakly 3-scale.

(4.20)
Case 1, Step 1: Characterization of V

In view of (4.14), we provide a characterization of

V($/,y,2)—LV($/,y,£)d£.

We claim that there exists v € L?(w x Q; Wgef (Q;R?)) such that

V(' y,z) —/ V(' y,&)dE = V,u(r,y,z) forae o’ €w, andy,z€ Q. (4.21)
Q
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Arguing as in the proof of Proposition 3.2 in Ref. 16, we first notice that by
Lemma 3.7 in Ref. 3 to prove (4.21) it is enough to show that

/ / / ( 2y, 2 /Q V(fﬂ/,yaf)%)1(V')LSO(ZW(:IJ’,y)dzdyda:’:0

(4.22)

for every ¢ € C}.(Q;R?) and ¢ € C2°(w; C2.(Q)). Fix ¢ € Ol .(Q;R?) and ¢ €
C(w; C2.(Q)). We set

per

/
e x

5 (a') = e2(h)p <52(h)> for every o’ € w.

[ (am) () o
- [T @y e (v )
= /w w (V) [@“f(w’)w (xf—h))} da'

)

The first term on the right-hand side of (4.23) is equal to zero, due to the definition
of (V’)*. Therefore we obtain

BTN
=20 [ g [o () o ot ()]

8 oo () o (vp)) o

By (4.6), the regularity of the test functions, and since 5 = +o0, we get

6
2 o o) i (o o

while by (4.5), (4.9), and the regularity of the test functions,

i 4 0 [ ) (o)

1 "(2) : (p(z Niap(z! 2 ' =
- /M/Q/QR( ) ((2) ® (V)Eua',y))dz dyda’ = 0, (4.26)

Then,
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where the latter equality is due to the periodicity of ¢ with respect to the y variable.
Combining (4.23), (4.24), (4.25) and (4.26), we conclude that

i [ Y (V') ty (62‘7&0 W (x’, %)) dz’ = 0. (4.27)

h—0 /., h

In view of (4.20), and since

/// (/Vx yfdg) (V') ()0 (', y)dz dy da’ = 0

by the periodicity of ¢, (4.22) will be established once we show that

Jim | (Rh)# (V) e <€;’E/h)) " (:13 %) dz' = 0. (4.28)

In order to prove (4.28), we adapt Lemma 3.8 in Ref. 16 to our framework.

Since ¢ € Cg°(w; Cge,(Q)) and b — 0, we can assume, without loss of generality,

that for h small enough

dist(supp ¢; 0w x Q) > <1 + 3) h.
71
We define

Z° = {2 € 2% : Q(e(h)z,e(h)) x Q Nsupp ¥ # 0}

and

— | QEmz=m)).

zZ€L*E

Since 0 < 71 < 400, for h small enough we have v/2¢(h) < i—?, so that

dist(Q.; Ow) > (1 + %) h—2e(h) > (1 + %) h.
We subdivide
Q.: := {Q(* (M)A, €%(h)) : A € Z* and Q(e*(h)A,%(h)) N Q- # 0}
into two subsets:

(a) “good cubes of size £2(h)”, i.e. those which are entirely contained in a cube of
size £(h) belonging to Q., and where (R")’ is hence constant,
(b) “bad cubes of size €2(h)”, i.e. those intersecting more than one element of Q..
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We observe that, as y2 = +o0,

dist(Q.2; dw) > dist(Qe; dw) — V2e2(h) > h (4.29)
for h small enough, and
e W]
< . .
#1° < 052(}1) (4.30)

Moreover, if z € Z¢, A\ € Z?2, and

e?(h)A € Q(e(h)z,e(h) — €*(h)),

then Q(g2(h)\, e2(h)) is a “good cube”, therefore the boundary layer of
Q(e(h)z,e(h)), that could possibly intersect “bad cubes” has measure given by

Q(e(h)z,e(h))| = 1Q(e(h)z,e(h) — *(R))|
=¢(h)? — (e(h) — e(h)*)? = 2¢(h)® — e(h)*.

By (4.30) we conclude that the sum of all areas of “bad cubes” intersecting Q.
is bounded from above by

W]

“2m

(263(h) — e*(h)) < Ce(h). (4.31)

We define the sets
€ . 2. € 2 2
Ly ={N€Z*:3z € Z° st. Q(e"(h)A,e°(h)) C Q(e(h)z,e(h))}
and
Zy ={r€ Z%: Q(e(h)’X,e*(h)) N Q- # 0 and X ¢ Z7}
(where “g” and “b” stand for “good” and “bad”, respectively). We rewrite (4.28) as

[ (i) )

B Z /Q(a?(h))\,EQ(h)) &h/(x/) (V) (5;(;0) v (3;’, %) o

\EZE
(Rh)’(x') L < ! ) ( - > /
+ Z / —(V)7p V| x', —= | dz'.
AEZE Q(e2(h)A,e2(h)) h V) e2(h) e(h)

Since the maps {(R")'} are piecewise constant on “good cubes”, by the period-
icity of ¢ we have

[ e () () o

-y / Rh)h( ')

AEZE Q(e2(h)A,e2(h))
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(V)L (62"2/}1» (w (x ex—}U) - w(sQ(h))\,s(h))\)> da’

(R")' (")
ey [
Q(e2(h)A.e2(h))

AEZ;

(V)L (52”(}1» <¢ (33 ;h ) - w(&(h)x,s(h)x)) da’

(RM) (2" o 2 P ) y
i ZZE /62(52(h))\752(h)) h (V) ¢<52(h))¢( (h)A, e(h)\)dx'.

We claim that

. BYE) | ot (7Y it el
iy 5 Loy TR (775 g ) w0 (0

h—0
AE

Indeed, by the periodicity of ¢,

s
(V) ( ) di’ =0 for every \ € Z?,
/Q(EQ(h)A,EQ(h)) e2(h)

and we have

gzzg /Q<82<h>w<h>> h

/ (R") (') — (R")'(e2(h)\)
(2(M)Ae2(R)) h

rezg '@
/

. L x 2 g
(V) <€2(h)) Y(e*(h)A, e(h)N)da'| .

Therefore, by Holder’s inequality,

/

> / (9’/) (V') (g;’éh)) DE(W, e(W)N)da’

AEZE Q(e2(h)\e2(h))

<< (RM) (") = (R")'(*(h))| da’
I JU, ezs @2 e2 ()

N

I(RM) (z")— (Rh>/(52(h)A)||L2(UAeZE Q2 (M2 ()

(4.34)

UQ (h))

AEZF
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Every cube Q(e%(h)A,&2(h)) in the previous sum intersects at most four elements
of Q.. For every A € Zj, let Q((h)z,¢),i =1,...,4, be such cubes, where
H{z)i=1,...,4} <4

Without loss of generality, for every A € Z; we can assume that

2 (M)A € Q(e(h)zy, (h)),

so that
(BMY(2) — (R")Y (2()N)] =0 ae. in Q(e(h)2, (k).
Hence,
Rh'x’ . Rh/ Qh)\ de/
éﬂwww V(@) — (RMY(€2(h)N)

—ZZ/ (RMY (') — (RM) (2(h)N) P

rezg i=17 QEF (WA (h)NQ(e(h)= e(h))
Since the maps {R"} are piecewise constant on each set
QE* (M)A, €% (h) N Q(e(h)z}, e(h)),
there holds
(RM) (2') = (R") (2 (h)N)] = [(R")' () — (R")' (2" + €)|
for some & € {£e?(h)er, £e2(h)ea, £e2(h)e; £ 2(h)es}.
Therefore, by (4.29) and Lemma 3.1, and since 71 € (0, +00), we have

/ (R (') — (R") (2(h)\)*de’
a2y
b

< C||dist(Viu'; SO(3))[172(q)- (4.35)
Combining (3.1), (4.31), (4.34) and (4.35), we finally get the inequality

(R")'(z") o o P i y
AGZg/Q(EQ(h)NEQ(h)) TR gO(st(h))W (R)A,e(h)A)d

=

U QXM 2(h))| ||dist(Vhu"; SO@3))|l L2

NEZE

<C|J QA (h)| <CVeh),

NEZLy

and this concludes the proof of (4.33).
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Estimates (4.32) and (4.33) yield

jmy | (haz/(x/) e () v ()

= lim (Rh)’(x’
h—0 AG(Z lyJQEmnemy) R

(V)L (;‘@) (1/1 (.q:’, 62";)) - 1/1(52(h)>\,5(h))\)) da’

h\! (!
= lim (r")' (")
h0 /\e(Z uze) Q(e2(h),e2(h)) h

a;,/

(Ve <€2<h)> (/01 %%(52(}1))\ +t(z' — 52(h))\))dt> dx’,

where ¢.(z') := (2’

S Er <><—>

(R")(a") = (V') e

) for every ' € w. Therefore, by the periodicity of ¢:

-
Lq h Q(e?(h)x 2(h)

x (ﬁ#) (/O V¢ (e2(MA + t(z' —2(h)N)) - %dt) dm’].

Changing coordinates in (4.36) we get

1
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DY #L(Rhy(e%mwﬂhm

AE(Z5UZE)
V) Re(2)(V/ge (e ()N) - z)dz] : (4.37)

We notice that

lim [ YL }(L’“ /Q (RM)(£2(h)z + €2(h)N)

h—0 -
AE(ZZUZE)

S~

(V) o(2) ( (V¢ (e (h)A + te?(h)z) — v’¢5(52(h)x))dt) -zdz} = 0.

(4.38)

Indeed, since [[(V)?¢c|| oo (wx @imzxs) < 62—%), we have

R e RGO O

AE(ZFUZE)

(V) e(2) ( /0 (V' (e2(R)XN +te?(h)z) — Vg (€2 (h)N))dt - z) dz

eS(h
= ( 2> / [(R") (€2 ()2 + N[V el L= (x| ()2 d=
NE(ZZUZE)
=C n Z /‘R h)z +¢e“(h)\)|dz
AE(ZFUZE)
82 h 82 h
=C }(L ) / |(Rh)/(.rl)|d:ﬂ/ < C#H(Rh)'llp(w;wxa)
Q(e?(h)A,e2(h))

AE(ZFUZE)

which converges to zero by (4.7) and because v2 = +00.
By (4.38), estimate (4.37) simplifies as

p [ S () ¢ ()

= lim Z e (h) /Q(Rh)'(az(h)eraz(h))\)

h—0 - h
AE(ZFUZE)

(V) o(2) (V' 6e(e2(R)A) - 2)dz
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h—0
AE(ZFUZLE)

6
hm{ I /Q (RM)((h)z + (W) - (RMY (€ (W)N))

(V) 0(2) (Ve (€2 (R)A) - 2)dz

AE(ZFUZLE)
(4.39)
We observe that
. 56(h) 172 2 1022
lim L(Z%SZE) - /Q((Rh) (€%(h)z +£2(h)A) — (R") (€*(h)N))
(V) o(2) (Ve (2 (h)N) -z)dz] = 0. (4.40)

Indeed, since ¢ € Cpo, (R* M**?) and [|(V')éel| oo (wx@) < 2y, recalling the defini-

tion of the sets Zj and Z;, and applying Holder’s inequality, (3.1), (4.31), and (4.35),
we obtain

@ h/2hz Qh)\_Rh/Qh)\
S S LRz SN (R @ 0)

AE(ZZUZLE)

(V)P o(2) (V' 6e(e2()A) - 2)dz

g% (h) , , s Z
- h AE(;JZ )/ ) h)z +e"(h)A) — (R) (" (M)A)|d
— (R") (£2(h)A\)|da’
A%Z: /(EQ(h))\Ez(h)) (&) = (B)' (7 (R)A)]

[SIE

< Ce(h)

- |dist(Vau; SO(3))| 20y < Ce(h)?.

U QWA (h)

AEZE

Collecting (4.39) and (4.40), we deduce that
. (R")' (@) one, (2 ) @ :
%lﬂ%/w o Vel am )Y\ o)

im{ > =n [ B2 (7)) (70l - )|

|
h—0
AE(ZFUZE)

(4.41)



Kirchhoff’s nonlinear plate theory 1789

Since 0 < 71 < 400 and 2 = 400, by (4.7) we have

(R (2 (V) ro(2) (V' ge () - 2)da’ dz

AE(Z bze) Q2 (M)Ae2(h)

L (V) o(2) K 2 ( ;];)> + 6(1]1) Vi <x" %)) Z} do da’
// / R'(z o(2) (Vb y) - 2)dz dy da’ = 0,

by the periodicity of ¢ with respect to y. We observe that if A € Zg, then

f B (@) < (V) o) (V' (o) - 2}’
Q(e2(h)X,e2(h))

= (R")'(*(h)A) - ][ (V) o(2)(V'¢e(2') - 2)da,

Q(e2(h)A,e2(h))

and we obtain

h—0
NE(ZFUZE)

lim [ > < }(lh) /Q (R™) (£2(h)A) : (V') o(2) (Ve (€2 (R)A) - 2)dz

Rh/ /)

)\E(Z UZg) Q(e?(h)A.e%(h))

: / (V) p(2) [(v’@(e?(hm - ][ V'gbe(x')dx’) z] dz
Q Q(e2(h)A,e2(h))

+ Z cf}(l—h) /Q(Rh)/(g2(h>)\> : (V/)L¢(Z)(V/¢g(€2(h))\) ) Z)dZ

Y (2') - (V) o(2)(V e (2) - z)dx’dz] :

/\eZ Q(e2(h)A, 82(h))
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By the regularity of ¢ and 1, and the boundedness of {R"} in L% (w;M?3*3),

6
> Sy

AELS
: / (V) e(2) [(V’¢E(€2(h)A) —][ V'pe(2") da;’) -z] dz
Q Q(e2(h)Ae2(h))

V¢ (e2(h)N) — V¢ (2))|dx’

AEZ Q(e2(h)A\,e2(h))

e*(h)
h

<0 e (h )||V2¢e||L°°(w><Q msxsy < C (4.42)

which converges to zero, because 75 = +00. On the other hand,

Z 56}(Lh) /Q

(R")'(€2(h)A) = (V) 0(2) (Ve (2 (R)A) - 2)dz

AEZE
-f (R @)+ (V') () (V' (o) z)dx'] d
Q(e2(h)X,e2(h))
- Y (0
2R

(V) o(2) [(V'@(&(h)x) —][ V’qbe(q:')dx’) z] iz
Qe (2 ()

(R")'(€2(h)A) = (R")'(a"))

AEZE Q2 (h)A, 62(h))

(V) Eo(2)(V e (2)) - 2)da’ dz. (4.43)

Therefore, arguing as in (4.42), the first term on the right-hand side of (4.43)

is bounded by Cg%, whereas by (4.31) and the boundedness of {R"} in
LOO(W;MSX3),

(R") (2(h)A) = (R")'(a"))

Q(e2(h)A, EZ(h))

AEZE

(V) e(2)(V e (2) - 2)da’ dz
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h
<ty | (RYY (o) = (RY) (2 () M)]de’
rezg Y Q2 (M)A (h)
2
<0: ;(Lh)’ (4.44)
which converges to zero as v5 = +00.
Combining (4.41)—(4.44) we conclude that
: (Rh)/(x/) AN ' ! ! /
1 — — — | dx’ = 0. 4.45

By (4.20), (4. 27) and (4.45), we obtain

/ / / ( vy /Zv(x/7y7§)d§>3(V')LSO(Z)w(x',y)dzdyd:p’:0,

for all ¢ € per(Q,R?’) and ¥ € C2°(w; Cpe,(Q)).
This completes the proof of (4.21).

Case 1, Step 2: Characterization of the limit linearized strain G.

In order to identify the multiscale limit of the sequence of linearized strains G",
by (4.12), (4.14), (4.18)—(4.20) we now characterize the weak 3-scale limits of the
sequences {z3V'R"e3} and {%(Rheg — Rle3)}.

By (4.8) and Theorem 1.2 in Ref. 3 there exist S € L?(w; W2 (Q; M**%)) and
T € L*(w x Q; WL2(Q;M3*3)) such that

per
VE" CNV'R4V,S + V.T  weakly 3-scale, 4.46
Yy

where fQ S(z',y)dy = 0 for a.e. 2’ € w, and fQ T(z',y,z)dz = 0 for a.e. 2’ € w,
and y € Y. By (3.1) and (4.6), there exists w € L?(w x Q x Q;R?) such that

1 ~, h 3-s
E(R es — R"e3) — w weakly 3-scale
and hence,
%(Rheg — R"e3) = wy weakly in L?(w;R?),
where

= / / w(a',y, z)dy dz,
QJIQ
for a.e. ¥’ € w. We claim that

1 = 3-s 1 , -VR(2'
LRy~ Rles) " (@) + L 5(a ey + LS g
Y1 Y1

weakly 3-scale. We first remark that the same argument as in the proof of (4.28)
yields

Rheg 0sc,Z
. —0
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Moreover, since 1 € (0,+00), by (4.7), Lemmas 3.2 and 3.3, there holds
Rhes osc,y _(y-V')Res
h 71

and
Rheg osc,Y 563

h ’)/1’

where in the latter property we used the fact that fQ V. T(x',y,z)dz = 0 for a.e.
2’ € wand y € Y by periodicity, and fQ S(2',y)dy = 0 for a.e. ' € w. Therefore,
by Remark 3.2, to prove (4.47) we only need to show that

Rh’eg osc,Z
SN

4.4
- (4.48)
To this purpose, fix ¢ € C3,(Q), with [, ¢(2)dz = 0, and ¥ € C°(Q; C32.(Q)),
and let g € C?(Q) be the unique periodic solution to
Ag(z) = ¢(2),
/ g(2)dz = 0.
Q
Set
!/
g°(z') :=e*(h)g (ezazh)) for every 7’ € w, (4.49)
so that
Agf(2') = ! v for every 2’ € w (4.50)
T = 2m v\ 2m) v | '

By (4.49) and (4.50), and for i € {1,2, 3}, we obtain

[H5e (am) o (= ) o
hh [UR?3($/>A95(w’)¢ (m’, %)) dz’.

Integrating by parts, we have

[ e
22 e (oo
) (295 @) (7o) (o, )

) 80) (o ) ) o
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S [ R [ v (s

1 ~ N ool ) 2 /
=D /wR?s(fE )9° (") Ayt (ac ,%> dx’. (4.51)

Since v/(ge()w(v E(h))) € LOO(M;R2),
fmg = ;(lh) Avlﬁ?s(x’) -V (gs(x’)w (x’, %)) da’ =0, (4.52)

where we used the fact that 72 = 400, and similarly,

lim gzlgh) /w Ry () (QVIQE@I)'(V”‘/‘/W (f%)

h—0

+ 05 (@) (A ) (:c %)) dz’ = 0. (4.53)

Regarding the third term on the right-hand side of (4.51), we write

[ R |29 9 (o,

By the regularity of g and 1,

! ! 3-s
V' (5232}1)) Vyi <:c’7 ;—h)) ’ Vg(z)Vy¢(x’7 y) strongly 3-scale.

Therefore, by (4.
: 5( ph (.. - OWAN / !
}{g%[ h /wRig(x)[?Vg (@) - Vyi (x’e(h>>

+2¢°(2")(divy Vart)) (x', ;;L) )] d:e’]

= %/OJ/Q/QRis(x/)Vg(z) . Vyw(a:’,y)dz dydz’ =0, (4.55)

, and since 0 < vy; < 400 and 5 = 400, we obtain

where the last equality is due to the periodicity of ¢ in the y variable.



1794 L. Bufford, E. Davoli & I. Fonseca

Again by the regularity of g and 1,

g <€2gzh)> Ay <x/, %) & g(2)Ayp(z’,y) strongly 3-scale,

hence, by (4.8), and since 0 < 1 < +o00 and ¥ € C°(w; Cpe,(Q)), the fourth term
on the right-hand side of (4.51) satisfies

h'—>0 ha h) /w VoY ( f;))dx
:i/// 3(2)9(2) Dy (a', y)dz dy da’ = 0. (4.56)

Claim (4.48), and thus (4.47), follow now by combining (4.51) with (4.52)—(4.56).
Case 1, Step 3: Characterization of F.
By (4.7), and by collecting (4.18), (4.19), (4.20), (4.46), and (4.47), we deduce the

characterization

R(2")G(x,y,2) = <V’r<x’) + Vydi(z,y) + Vada(z,y, 2) %

axgczi(x,y))

+ (V(x’,y, z) W%)

+x5(V'R(2")es + V,S(2',y)es + V. T(2,y, 2)es|0)
for a.e. x € Q and y,z € Q, where r € Wh2(w;R3), b1 € L2(w;W1’2((—%,%);
WI(QRY), oy € L*wiBY), § € L2(wi WIH(Q:MP), V € 12w x Q x
Q; M3*2), ¢y € L?(Qx Q; Wple%(Q;RB)), and T € L?(wxQ; W;ef(Q;M3X3)). There-
fore, by (4.21):

symG(z,y, 7) - / sym Gz, y, €)dé
Q

1
wo(z") + W—S(x’, y)es +
1

- [R(W ( V(g 2) - /Q V(' y,2) + Vadal(a,y,2)

)
R (V.1 2)esl)

= sym [R(x’)T(Vzv(x', Y, 2) + Vada(z,y, 2) + 23V, T (', y, 2)63”0)] ,
where Tes, 0 € L?*(w x Q; W;2(Q;R?)). The thesis follows now by (4.12), (4.13),
and by setting
¢2 = R" (v + ¢o + z3Te3),
for a.e. x € 2, and y, z € Q.
Case 2: y; = 400 and vy = +o0.

The proof is very similar to the first case where 0 < y; < +00. We only outline the
main modifications.
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Arguing as in the proof of Proposition 3.2 in Ref. 16, in order to construct the
sequence {R"}, we apply Lemma 3.1 with

o= (2| s | +1) e

i 1
o0 6(h) 2

This way,

and the maps R" are piecewise constant on cubes of the form Q(5(h)z,5(h)), with

z € Z2. In particular, since {%} is a sequence of odd integers, by Lemma A.1 the

maps R" are piecewise constant on cubes of the form Q(e(h)z,e(h)) with z € Z2,
and (4.6) holds true. Defining {r"} as in (4.16), we obtain equality (4.18). By
Theorem 3.2(i), there exist r € Wh2(w; R3), ¢1 € L?(Q; WL2(Q;R3)), ¢ € L?( x

_ per
Qs WL2(Q:R?)), and ¢ € L2(w; WH2((—L, 1);R?)) such that
dr-3-s ~ A _
Vir" —— (V'r + V1 + V.02|0s,¢) weakly dr-3-scale. (4.57)

Moreover, (4.13) now becomes
xz3IT*(2') + sym B(z') 0 _

for a.e. # € Q and y € Q, where B € L?(w;M?*2). Arguing as in Steps 1-3 of
Case 1, we obtain the characterization

B(x,y,2) = (35311“(93 ) J;symB(w ) 8)
+sym(Vyo1(z,y)|d(z)) + sym(V.d2(z, y, 2)|0),

with d := 0,,0 € L*(Q;R3), ¢1 € L2(Q; W2 (Q; R?)), and ¢2 € L?(Q x Q; W2
(Q;R?)).

Case 3: v = 0 and vy = +00.

The structure of the proof is similar to that of Cases 1 and 2, therefore we only
outline the main steps and key points, leaving the details to the reader.
We first apply Lemma 3.1 with

5(h) := (2 L?f(Lh) + 1D 2(h),

and by Lemma A.1 we construct

{RM c L*®(w;S0(3)) and {R"} c W2 (w; M3*3),

satisfying (4.6), and with R" piecewise constant on every cube of the form

Q(e*(h)z,%(h)), with z € Z*,
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Arguing as in Case 1, we obtain the convergence properties in (4.7) and (4.8),
and the identification of F reduces to establishing a characterization of the weak
3-scale limit G of the sequence {G"} defined in (4.10). In view of Proposition 3.2
in Ref. 26, there exist B € L?(w;M?*?), ¢ € L*(; WL2(Q;R?)), n € L?(w; W22 x

per per
(Q;R?)), and g; € L?(Q x Y), i = 1,2, 3, such that
/ E(x,y,2z)dz = sym / G(z,y,z)dz
Q Q
_ (zsI(@") +sym B(z") 0
a 0 0
sym Vy&(x,y) +23Von(@',y)  g1(z,y)

+ g2(z,y) | (4.58)

g1(x,y)  g2(,y) 93(7, )

for a.e. * € Q and y € Y. We consider the maps {@"} and {r"} defined in (4.15)
and (4.16), and we perform the decomposition in (4.18). By Theorem 3.2(iii) there
exist maps r € Wh?(w; R?), ¢1 € L?(w; W2 (Q;R?)), 2 € L2 (QxQ; W, i2(Q; R?)),

per per

and ¢ € L*(w x Q; WH2((—3, 3); R?)) such that

dr-3-s ~ ~ _
Vpr —— (V'r 4+ Vyd1 + Vo2|0,,0) weakly dr-3-scale.

Defining V' as in (4.20), we first need to show that
V(Z’l,y,Z) - / V(ﬂ?l,y,Z)dZ = VZU<.I‘/,y, Z) (459)
Q

for a.e. 2’ € w, and y, 2z € Q, for some v € L?(w x Q; W1L2(Q;R?)).

per

As in Case 1-Step 1, by Lemma 3.7 in Ref. 3 and by a density argument, to
prove (4.59) it is enough to show that

/ / / ( v /Qvawz):<V’>lw<z>¢<y>¢<x’>dzdydw/=o

(4.60)

for every ¢ € C5e,(Q;R?), ¢ € C55.(Q) and ¥ € C°(w).
Fix ¢ € C2(Q;R?), ¢ € C2.(Q), ¥ € C°(w), and set

¢ (z') == *(h)g (%h» © (852—/m) for every ' € R

Integrating by parts and applying Riemann—Lebesgue lemma (see Ref. 10) we
deduce

ﬂh o h\/
lim/ Vi - (R) (V) ® (2 )p(2)

h—0 J

:///V(x’,y,z):Vﬂa(z)qﬁ(y)w(a:')dzdydx’. (4.61)
wsQJQ
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In view of (4.61), (4.60) reduces to showing that

h\/ x/
EXD) (9t ywiat)da’ = 0. (4.62)

lim
h—0 J,, h

The key idea to prove (4.62) is to work on cubes Q(g2?(h)z,e2(h)), with z € Z2.
Exploiting the periodicity of ¢ and the fact that {R"} is piecewise constant on such
cubes, we add and subtract the values of ¢ and 1 in £2(h)z, and use the smoothness
of the maps to control their oscillations on each cube Q(g?(h)z,e2(h)), for z € Z2.
Defining

25 :={z € 2% : Q(e*(h)z,€*(h)) Nsupp ¢ # 0},
a crucial point is to prove the equivalent of (4.41), that is to show that

() ][ / { h
lim (R )/(:E/)
h—0 h Z Q(e2(h)Xe2(h)) JQ

AEZLE

x/

L (V) e(2) [v%b <8(h)) z] ¢(x’)} dzdx' = 0. (4.63)

This is achieved by adding and subtracting in (4.63) the function %, ie.

/

- > F oo VG (90 5002) [V (5 ) -2 ez

55(h) R () — phy\/ z
wy /Q fQ (52(’1)%62(}1)){((1% V(') — (R (o))

NSV

H(V) L o(2) [V’gb (;l;)> z] z@(ﬁ)} dz dz’

@ phy/ '
T Z é(a?(h)x,e%h))/cg(R &)

AEZE

x/

(V) e(2) lv’qs (8(h)) z] V() dz dx'.

By (3.1), (4.6) and by the regularity of the test functions ¢, ¢, and 1, we have

55(h) hy/ 7 — phy/ z
{ Zéw»,g(h» | {ya) - @y

ANEZE

< Ce(h). (4.64)

LZ(W;MSXZ)
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Finally, by (4.8) and Theorem 1.2 in Ref. 3, there exist S € L?(w; W22 (Q; M?*%)),
and T € L?(w x Q; WL2(Q;M3*3)) such that

per

V’Rh SV'R+ VyS+ V. T weakly 3-scale, (4.65)

where fQ S(z',y)dy = 0 for a.e. 2’ € w, and fQT 2 y,z)dz = 0 for ae. 2/ € w
and y € ). By Lemma 3.3,

Rh osc,Y
e(h) ’
and hence
: (Rh)/(aj/) / ':U/ / ! / / / / /
g%w—am—v¢(dm)wme—Lﬁfwmmvmwwxmx@.

(4.66)
Since y2 = 400, (4.66) yields

h._>0 Z ]{2(62(@)\ e2(h)) /Q {(Rh)/(iﬁl)

N/

oreales ) e

{ ;L()x/ (V)L o(2) [V’qs (g(x};)> z] 1/}(:L")} dz dz

1 1yt . L . / . Ndz do' —
:%Lésww4w¢uwmnw«wd 0

which, together with (4.64), implies (4.63).

Once the proof of (4.59) is completed, to identify E we need to characterize the
weak 3-scale limit of the scaled linearized strains G” (see (4.10), (4.11) and (4.12)).
By (4.18) this reduces to study the weak 3-scale limit of the sequence

Rh€3 - Rheg
n .

By (3.1) and (4.6), there exists w € L?(w x Q x Q;R?) such that

(Rh — RM) 3-s
h

()

h—0

w(x',y,z) weakly 3-scale.

We claim that
w(r',y, z) — / w(x',y,2)dz =0 (4.67)
Q

for a.e. 2’ € w, and y, z € Q. To prove (4.67), by Remark 3.2, we have to show that

Rres — Rhes osc.z
h
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A direct application of the argument in the proof of (4.62) yields

Rheg osc,Z 0,
h
therefore (4.67) is equivalent to proving that

Rhes osc,Z
-
h

which follows arguing similarly to Case 1, Step 2, proof of (4.48).

Finally, with an argument similar to that of Case 1, Step 3, and combining (4.59)
with (4.65), and (4.67), we obtain

R()G(z.5.2) ~ | R(a)Gla.y.2)ds
Q
= (VZU<ZUI, Y, Z) + VZQEQ(Q% Y, Z) + SCgVZT(IE/, Y, 2)63‘0)

for a.e. 2 € Q, and y,z € Q, where v,Tez € L*(w x Q; W:2(Q;R?)), and bo €
LX(Q x Q; Wy2(Q;RY)).

per

By (4.12),
E(xayvz) _/ E(.I,y,Z)dZ = sym(Vqu(ac,y, Z)|0)
Q

for a.e. z € Q, and y, z € Q, where ¢ := RT (v + ¢y + x3Tes). In view of (4.58) we
conclude that

E(z,y,2) = <x3Hu(x/)+SymB($') 0)

0 0

sym Vy&(z, y) +2sVeon(a',y)  g1(x,y)

+ gg(l’,y) + Sym(vqu(xaya Z)|O)
gi(z,y)  g2(x,y) 93(%,y)
for a.e. € Q, and y,z € Q, where B € L?(w;M?*?), ¢ € Lz(Q;Wplé%(Q;RZ)),
ne LXw;W2iQ)), gi € L*(QxY),i=1,2,3, and ¢ € L*(Q x Q; W)2(Q; R?)).
The thesis follows now by (4.3). O

5. The I'-Liminf Inequality

With the identification of the limit linearized stress obtained in Sec. 4, we now find
a lower bound for the effective limit energy associated to sequences of deformations
with uniformly small three-dimensional elastic energies, satisfying (1.3).

Theorem 5.1. Let 1 € [0,+00] and let vo = +oo. Let {ul} C Wh2(Q;R3?)
be a sequence of deformations satisfying the uniform energy estimate (2.1) and
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converging to u € W22(w;R3) as in Theorem 3.1. Then,

s gh(uh) 1 oL ’ /
> _ u
hzn_}glf 2 12/w£hom(n (z"))dx’,

where 11" is the map defined in (4.4), and:

(a) if y1 = 0, for every A € M2X2:

sym*

. z3A+B 0
2, (A) := inf / 7 T
(—1,5)%xQ 0 0

sym Vy&(w3,y) +23Vin(y)  g1(x3,y)

+sym 92(x3,y)
gl(x?ny) 92(1'373/) 93(x37y)

11
ce” ((~503) s WHEQED ) e WEHQ)

11
gieL2((—§,§)xQ),¢:1,2,3,BeM§;§ : (5.1)

(b) if 0 < v1 < +oo, for every A € M2X2:

sym*

_ A+B 0
7 (A) = inf / N P
(_%v%)XQ 0 0

awacmv(lxs, y) )) |

11
o1 € WH? ((—5, 5) ;W;é%<@;R3>>, B e Miﬁi} : (52)

(c) if y1 = +oo, for every A € M2X2:

sym*

(_%7%)XQ O 0

Fsvm(Tyin o) ) sae 22 (<55 ) o).

+sym <Vy¢1(9€3, Y)

oer?((~53) WAQE), e M%ﬁ} (5.3)
where
Dhom(y, C) := inf {/Q Q(y,z,C 4+ sym(Vp2(2)]0)) : ¢2 € Wplé%(Q;]Ri‘)} (5.4)

for a.e. y € Q, and for every C € M3X3

sym *
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Proof. The proof is an adaptation of the proof of Theorem 2.4 in Ref. 16. For the
convenience of the reader, we briefly sketch it in the case 0 < v; < 400. The proof
in the cases v; = 400 and v; = 0 is analogous.

Without loss of generality, we can assume that f, u”(x)dx = 0. By assumption
(H2) and by Theorem 3.1, u € W?2(w;R3) is an isometry, with

u = strongly in L? (Q; RB)
and
Viu = (V'ulny,) strongly in L2(Q; M>*3),

where the vector n,, is defined according to (3.2) and (3.3). By Theorem 4.1 there
exists £ € L*(2 x Q x Q; M3*3) such that, up to the extraction of a (not relabeled)
subsequence,

\/(thh)thuh —1Id dr-3-s

Eh .=
h

E  weakly dr-3-scale,
with

Bn,y, 2) = (%nn30ﬂ>gwmrwcv> 3)

a$3¢1 (I‘, Yy

+w{wmmw ,h)>Hmem%M%(M)

for a.e. 2’ € w, and y,2 € Q, where B € L?(w;M?*?%), ¢y € L?(w; WH2((-1L,1);

202
W2(Q;R3)), and ¢o € L?*(w x Q; WL2(Q;R3)). Arguing as in the proof of The-

per per
orem 6.1(i) in Ref. 11, by performing a Taylor expansion around the identity, and

by Lemma A.2 we deduce that

lim inf

L EM ) x’ !
> - —
h—0  h? hiniélf/ 2 (5(h)’ e2(h)’ B )) d

///Qy,zExy, 2))dz dy dzx.

By (5.2), (5.4), and (5.5), we finally conclude that

EM(uM) sym B(z') + x3II*(z') 0
o S
lninf == = /Q /Q Zhom (y’ ( 0 0)

(9$3¢1(56,y) )) dydI

71
/Qmwm @i = [ D, (1)) da

gﬁlm(ﬂu( ))da’. O

+ sym <Vy¢1(x, Y)

12
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6. The I'-Limsup Inequality: Construction of the

Recovery Sequence
Let W57 (w; R3) be the set of all u € W22(w; R3) satisfying (3.2). Let A(w) be the
set of all u € W (w;R?) N O (w; R%) such that, for all B € C*°(w; M2%2) with
B =0 in a neighborhood of

{2/ e w:II"(z') =0}
(where IT* is the map defined in (4.4)), there exist a € C°(@) and g € C*°(&w; R?)
such that

B =symV'g + oll". (6.1)

Remark 6.1. Note that for u € W2*(w;R?) N C*°(w;R?), condition (6.1) (sce
Lemmas 4.3 and 4.4 in Ref. 16), is equivalent to writing

B = sym((V'u)TV'V) (6.2)

for some V € C*°(w;R?) (see Lemmas 4.3 and 4.4 in Ref. 26).
Indeed, (6.2) follows from (6.1) setting

V= (V'u)g + any,

and in view of the cancellations due to (3.2). Conversely, (6.1) is obtained from (6.2)
defining g := (V'u)TV and a :=V - n,,.

A key tool in the proof of the limsup inequality (1.4) is the following lemma,
which has been proved in Lemma 4.3 in Ref. 16 (see also Refs. 13-15, 24 and 25).
Again, the arguments in the previous sections of this paper continue to hold if w
is a bounded Lipschitz domain. The piecewise C'-regularity of Ow is necessary for
the proof of the limsup inequality (1.4) (although it can be slightly relaxed as in
Ref. 14), since it is required in order to obtain the following density result.

Lemma 6.1. The set A(w) is dense in Wé’2(w; R3) in the strong W22 topology.

Before we prove the limsup inequality (1.4), we state a lemma and a corol-
lary that guarantee the continuity of the relaxations (defined in (5.2)—(5.4)) of the
quadratic map £ introduced in (H4). The proof of Lemma 6.2 is a combination
of the proof of Lemma 4.2 in Ref. 16, the proof of Lemma 2.10 in Ref. 22 and
Lemma 4.2 in Ref. 26. Corollary 6.1 is a direct consequence of Lemma 6.2.

Lemma 6.2. Let 2, and Qypom be the maps defined in (5.1)~(5.4), and let o =
+00.

(i) Let 0 <1 < +o0o. Then for every A € M2X2 there exists a unique pair

sym

11
(B,é1) € M22 x W2 ((——, —) ;W;£<Q;R3>)
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with
/ Qsl (%3, y)dy dl’g - 07
(_

— x3A+B 0
ngm(A) = / Qhom Y, ’
-1, 1%Q 0 0
Oy $1(73,Y) )
ga!
The induced mapping

A€ ME2 o (B(A), 61(A)) € MEX2 x W2 ((-1 1) ;ng(Q;R?'))

such that

+ sym (Vy<b1(év3, Y)

sym 272

15 bounded and linear.
(i) Let v1 = 400. Then for every A € MZ52 there exists a unique triple

11 11
(B, d, ¢1) € Mii x L? ((—5, 5) ;R3> x L* ((—5, 5) ;W;.;?(Q;R3>>

with
/ (bl (3737 y)dy d(l?g — 07
(_é7%)XQ
such that
— 0 $3A +B 0
"@hom(A) :/ Qhom Yy,
(-3:2)xQ 0 0

+sym(Vy¢i(23,9) |d(flfs))> :

The induced mapping A € Mg;rﬁ — (B(A),d(A),p1(A)) € ngxn% X LQ((—%, %),

R?) x L*((—3, 3); W;éf(Q;R?’)) is bounded and linear.

(iii) Let v1 = 0. Then for every A € Mﬁ;j there exists a unique 6-tuple
(375777791792793)

with B € M2, € € L*((—3,3); Wpa(@R?), n € Wi2(Q), gi € L*((—3,
%); xQ),i=1,2,3, such that

Qhom(A) :/ Qhom Y, ’
—1 1y%Q 0 0

272

sym Vy&(x3,y) + 23Von(y)  gi(xs,y)
+ sym g2(x3,y)
g1(z3,y)  g2(x3,y) g3(z3,y)
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The induced mapping

A= (B(A),£(A),n(A), 91(A), g2(A), g3(A))
from MZ2 to M2 x L2((~4, 1)) x WEA(Q) x L(~1,3) x Q:R?) is
bounded and linear.

For a.e. y € Q and for every C € M3X3 there exists a unique ¢o € W12 x

sym per

(Q; R?), with fQ ¢2(2)dz =0, such that

Bram(y:€) = [ (0.2, C + sym(V6x(2)]0))
Q
The induced mapping
O € MBS > 62(C) € W2 (s RY)

per

18 bounded and linear. Furthermore, the induced operator

P:L? ((—%%) x Q;MBX?’) — L? ((—%%) X Q; Wgef(Q;RS)),

defined as

P(C) = ¢2(C)  for every C € L? (<_%, %) . Q;M3X3)

18 bounded and linear.

Corollary 6.1. Let vy, € [0,4+00]. The map @Z;m s continuous, and there exists
c1(m) € (0,400) such that

1 _
PP < Do () < el
for every F € M2X2.

sym

(i) If 0 < 1 < +oo, then for every A € L?(w;M2X2) there exists a unique triple

sym
(B,¢1,¢2) € L*(w;MER) x LA (w; WH((—5, 3) W (@ R?))) x L2(Q x Q;
Wple% (Q;R3)) such that

/"@hom dl‘ _/"@hom {L'3A ))

B z3A(x')+ B(z") 0

a QxQQhom (y, ( 0 O)

a5133¢1 (.T, y) ) dy dx
71

Lo ()

+sym (vy¢1($> y) —6w3¢;fx, v) )

+sym (Vy(bl ({L‘, y)

+sym(V.¢a(z,y, Z)IO)) dz dy dz.
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(ii) If y1 = +oo, then for every A € L?*(w;M2X2) there ewists a unique 4-tuple

sym
(B,d, ¢1,¢2) € L*(w; MZ5Y) x L2(QR?) x L2(Q; Wi (Q; R?)) x L*(Q x Q;
W,2(Q;R?)) such that

5 [ T = [ @A)

x3A(x")+ B(z') 0
= o@hom Y,
QAxQ 0 0

+Sym(Vy¢1(w,y)|d(x))> dy da

] N
OxQxQ 0 0

+sym(Vyo1(z, y)|d(x))
+sym<vz¢>2(cc,y,z)|0)> dz dy da.

(iii) If v1 = 0, then for every A € L*(w;M2X2) there exists a unique T-tuple (B, ¢,

sym
10,91, 92,93, ¢) € L?(w; M252) x L2 (Q; W2(Q; R?)) x L2 (Q; W22(Q)) x L (02 x
Q;R?) x L*(Q x Q; W) 2(Q: R?)), such that

5 [ Brona@as’ = [ B

- Qhom Y, <

r3A(x’) + B(a') O)
OxQ

0 0

symvyf(:c,y) +x3v72;n(x/7y) gl(xay)
+ sym 92
g1(z,y)  ga(w,y) g3(w,y)

— / 2 (y,z, <x3A(x’) + B(z') 0)
OxQxQ 0 0

sym V,&(z, y) + 2sVin(2',y)  g1(z,y)
+sym g2z

~—~

,y)

—

Y

g1(w,y)  g2(w,y) g3(7,y)

+sym(V.p2(z, v, z)]O)) dz dydz.

We now prove that the lower bound obtained in Sec. 5 is optimal.
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Theorem 6.1. Let v, € [0,400]. Let 2]t and Dyom be the maps defined in (5.1)—
(5.4), let u € Wé’2(w;R3) and let TI* be the map introduced in (4.4). Then there
exists a sequence {u"} C WH2(Q;R3) such that

Eh(uh)
lim su
h—>0p h?

< / 20 (I (2 )da. (6.3)

Proof. The proof is an adaptation of the proof of Theorem 2.4 in Ref. 16 and the
proof of Theorem 2.4 in Ref. 26. We outline the main steps in the cases 0 < v; < 400
and v; = 0 for the convenience of the reader. The proof in the case y; = 400 is
analogous.

Case 1: 0 < 71 < +00 and 79 = +00.

By Lemma 6.1 and Corollary 6.1 it is enough to prove the theorem for u €
A(w). By Corollary 6.1 there exist B € L*(w;M?*?), ¢; € L*(w; WH2((—3, 2);
Wo2(Q:R?)), and ¢ € L*(Q x Q; W:2(Q;R?)) such that

per

i N w0 /
5 [ P @)y

Lo ()

a963 ¢1 (l‘ ) y)
4!
Since B depends linearly on II* by Lemma 6.2, in particular there holds

+sym <Vy¢1 (z,9) ) +sym(V.d2(z,y, Z)I0)> dz dy dz.

{o' : TI"(2") =0} C {2’ : B(z) =0}.
By Lemma 6.2, we can argue by density and we can assume that B € C(w;
M?*?), B = 0 in a neighborhood of {z’ : II“(z) = 0}, ¢1 € C°(w; C>=((—1,3);

C>(Q;R3)), and ¢ € C°(wx Q; C°(Q;R3)). In addition, since u € A(w), by (6.1)
there exist a € C*°(w), and g € C*°(w;R?) such that

B =symV'g + oll".

Set
v (@) = u(@’) + h((x3 + ala))na(2') + (g(2") - V)y(a")),
R(2') == (V'u(z")|nu(2")),
A CIRCO
o) = (&;Za(x’)) )
and let
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for a.e. x € (), where

- b -
¢1:=R <¢1 + 7123 (O)) and @2 1= Roo.

Arguing similarly to the proof of Theorem 2.4 (upper bound) in Ref. 16, it can be
shown that (6.3) holds.

Case 2: v = 0 and 2 = +00.

By Lemma 6.1 and Corollary 6.1 it is enough to prove the theorem for u € A(w)

By Corollary 6.1 there exist B € L*(w;MZ52), £ € L*(W,2(Q;R?)), n €
2(0). TI/2:2 ‘ 2 L 2 I L2(0)- 3
LA W22(Q)), g € L*(Q x Y), i = 1,2,3, and ¢ € L*(Q x Q;WLA(Q;R?))

such that

1 o u (. /
5 [ Fonlr@)aa

x3lI*(2') + B(z') 0
=/ 2|y, z,
AxXQxQ 0 0

sym V,&(z, y) + 2sVin(a',y)  g1(x,y)
+ Sym g2 (33, y)
g1(z,y)  g2(z,y) 93(z,y)

+sym(V.¢2(z,y,2)|0) | dzdy dx.

By the linear dependence of B on II", in particular there holds
{' . 1"(2") =0} Cc {a’: B(z") =0}.

By density, we can assume that B € C°°(0;M**?), £ € C°(w; C3%,(Q;R?)), n €
C(w; C22(Q)), and g; € CF(w; CX((—3.3) X Q)), i = 1,2,3. Since u € A(w),

per per

by (6.2) there exists a displacement V' € C°(iw; R?) such that
B = sym((V'u)TV'V).

Set

S
>
—~
8
N—
|

= u(z") + hasn, (') = h(V(2") + hasp(z')),
p(z") == (Id — ny (") @ ny () (01 V (2") A dau(x’) + dru(x’) A 2V (2')),
(Vu(z")Inu(z)),

)
—~~
8
—
Il
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and let

+ h? /gﬁ3 R(2')g (:c/,t, 52)) dt + he*(h)R(z')¢ (x, %};), %)»

_1
2

for a.e. x € Q. The proof of (6.3) is a straightforward adaptation of the proof of

Theorem 2.4 (upper bound) in Ref. 26. O

Proof of Theorem 1.1. Theorem 1.1 follows now by Theorems 5.1 and 6.1. O

7. Concluding Remarks

The rigorous identification of two-dimensional models for thin three-dimensional
structures is a classical question in mechanics of materials. Recently, in Refs. 16, 22
and 26, simultaneous homogenization and dimension reduction for thin plates has
been studied, under physical growth conditions for the energy density, and in the
situation in which one periodic in-plane homogeneity scale arises.

In this paper we deduced a multiscale version of Refs. 16 and 26, extending the
analysis to the case in which two periodic in-plane homogeneity scale are present,
in the framework of Kirchhoff’s nonlinear plate theory. Denoting by A the thick-
ness of the plate, and by £(h) and £2(h) the two periodicity scales, we provided a
characterization of the effective energy in the regimes

lim R =7 €[0,400] and lim S Y2 = F00.

h—0 E(h) ’ h—0 62(h) '
The analysis relies on multiscale convergence methods and on a careful study of
the multiscale limit of the sequence of linearized three-dimensional stresses, based
on Friesecke, James and Miiller’s rigidity estimate (see Theorem 4.1 in Ref. 11).

The identification of the reduced models for v; = 0 and 7, € [0, +00) remains
an open problem.

Appendix

In this section we collect a few results which played an important role in the proof of
Theorem 1.1. We recall that in Case 2, we claimed that the maps R" are piecewise
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constant on cubes of the form Q(e(h)z,e(h)), z € Z2. Indeed, this holds if we show
that for every z € Z? there exists 2’ € Z? such that

Q(e(h)z,e(h)) € Q(3(h)2",6(h))

or, equivalently, with m := % e N,
1 1 1 1
<z—§,z—|—§>Cm<z'—§,z'—|—§>. (A.1)

The next lemma attests that this holds provided m is odd.

Lemma A.1. Let a € Ng. Then for every z € Z there exists z' € 7 such that (A.1)
holds with m = 2a + 1.

Proof. Without loss of generality we may assume that z € Ny (the case in which
z < 0 is analogous). Solving (A.1) is equivalent to finding 2z’ € Z such that

1 2 1
3 > (2a+1)z’—%,
(A.2)
1 2 1
24 =< (2a+1)2/+w7
2 2
that is
2> 2a+1)z —a,
( ) (A.3)
2<(2a+1)z' +a
Let n,l € Ny be such that z =n(2a + 1) + 1 and
[ <2a+1. (A4)
Then (A.3) is equivalent to
n2a+1)+1l+a> (2a+ 1), (A5)
n2a+1)+1—a<(2a+ 1)z '

Now, if 0 < I < a it is enough to choose 2z’ = n. If | > a, the result follows
setting 2z’ := n + 1. Indeed, with a +1 > r > 1 € N such that [ = a + r, (A.5)
simplifies as

n(2a+1)+2a+7r>(2a+1)(n+1),
n2a+1)+r < (2a+1)(n+1),
that is
2a +1 > 2a + 1,
r<2a+1,

which is trivially satisfied. O
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Remark A.1. By Lemma A.1 it follows that, setting p := 662((};3) and provided p is

odd, for every z € Z? there exists 2z’ € Z? such that

Q(e*(h)z,€%(h)) € Q(5(h)z,6(h)).

This observation allowed us to construct the sequence { R"} in Case 3 of the proof
of Theorem 1.1.

Remark A.2. We point out that if m is even there may be z € Z such that (A.1)
fails to be true for every 2’ € Z, i.e.

1 +1 Z( ,  m ,+m>
Z2——=,z+ = mz — —.,mz — ).
2’ 2 2’ 2

Indeed, if m is even, then z = %m € N and (A.2) becomes

which in turn is equivalent to
Ze|l+ ! 2 !
2m’ 2m |
This last condition leads to a contradiction as

1 1
1+ —,2——|NZ=10 forevery meN.
2m 2m

We conclude the Appendix with a result that played a key role in the identifi-
cation of the limit elastic stress, and in the proof of the liminf and limsup inequal-
ities (1.3) and (1.4). We omit its proof, as it follows by Lemma 4.3 in Ref. 22.

Lemma A.2. Let 2 :R? x R? x M3*3 — [0, +00) be such that:
(i) 2(y,z,-) is continuous for a.e. y,z € R,

(i) 2(,-, F) is Q x Q-periodic and measurable for every F € M3*3,
iii) for a.e. y,z € R%, the map 2(y, z,-) is quadratic on M3X3, and satisfies
sym

1
GlsymFI* < 2(y, 2, F) = 2(y, z,sym F) < Clsym F|?

for all F € M?*3, and some C > 0.
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Let {EM} C L2(;M3*3) and E € L*(Q x Q x Q; M?*3) be such that

h dr-3-s
E" —— F  weakly dr-3-scale.

Then

o 2 2 .
> .
llgljglf Qg(s(h)’a“?(h)’E (:r)) d:v_/Q/Q/Qo@(y,z,E(x,y,z))dzdydaz

If in addition

h dr-3-s
EY —— E  strongly dr-3-scale,

then

]’lLi—)IrlO QQ<%’5;&I}1)’E}L($)) d:c:/Q/Q/QQ(y,Z,E(:U,y,z))dzdydx.
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HOMOGENIZATION IN BV OF A MODEL FOR LAYERED COMPOSITES IN
FINITE CRYSTAL PLASTICITY

ELISA DAVOLI, RITA FERREIRA, AND CAROLIN KREISBECK

ABSTRACT. In this work, we study the effective behavior of a two-dimensional variational model within
finite crystal plasticity for high-contrast bilayered composites. Precisely, we consider materials arranged
into periodically alternating thin horizontal strips of an elastically rigid component and a softer one
with one active slip system. The energies arising from these modeling assumptions are of integral
form, featuring linear growth and non-convex differential constraints. We approach this non-standard
homogenization problem via Gamma-convergence. A crucial first step in the asymptotic analysis is the
characterization of rigidity properties of limits of admissible deformations in the space BV of functions
of bounded variation. In particular, we prove that, under suitable assumptions, the two-dimensional
body may split horizontally into finitely many pieces, each of which undergoes shear deformation and
global rotation. This allows us to identify a potential candidate for the homogenized limit energy, which
we show to be a lower bound on the Gamma-limit. In the framework of non-simple materials, we present
a complete Gamma-convergence result, including an explicit homogenization formula, for a regularized
model with an anisotropic penalization in the layer direction.

MSC (2010): 49J45 (primary); 74Q05, 74C15, 26B30

KEYWORDS: homogenization, I'-convergence, linear growth, composites, finite crystal plasticity, non-
simple materials.
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1. INTRODUCTION

Metamaterials are artificially engineered composites whose heterogeneities are optimized to improve
structural performances. Due to their special mechanical properties, arising as a result of complex
microstructures, metamaterials play a key role in industrial applications and are an increasingly active
field of research. Two natural questions when dealing with composite materials are how the effective
material response is influenced by the geometric distribution of its components, and how the mechanical
properties of the components impact the overall macroscopic behavior of the metamaterial.

In what follows, we investigate these questions for a special class of metamaterials with two character-
istic features that are of relevance in a number of applications: (i) the material consists of two components
arranged in a highly anisotropic way into periodically alternating layers, and (ii) the (elasto)plastic prop-
erties of the two components exhibit strong differences, in the sense that one is rigid, while the other one
is considerably softer, allowing for large (elasto)plastic deformations. The analysis of variational models
for such layered high-contrast materials was initiated in [13]. There, the authors derive a macroscopic
description for a two-dimensional model in the context of geometrically nonlinear but rigid elasticity,
assuming that the softer component can be deformed along a single active slip system with linear self-
hardening.

These results have been extended to general dimensions, to energy densities with p-growth for 1 < p <
+00, and to the case with non-trivial elastic energies, which allows treating very stiff (but not necessarily
rigid) layers, see [14, 12].

In this paper, we carry the ideas of [13] forward to a model for plastic composites without linear
hardening, in the spirit of [18]. This change turns the variational problem in [13], having quadratic
growth (cf. also [15, 16]), into one with energy densities that grow merely linearly.

The main novelty lies in the fact that the homogenization analysis must be performed in the class BV
of functions of bounded variation (see [2]) to account for concentration phenomena. This gives rise to
conceptual mathematical difficulties: on the one hand, the standard convolution techniques commonly
used for density arguments in BV or SBV cannot be directly applied because they do not preserve
the intrinsic constraints of the problem; on the other hand, constraint-preserving approximations in this
weaker setting of BV are rather challenging, as one needs to simultaneously regularize the absolutely
continuous part of the distributional derivative of the functions and accommodate their jump sets.
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To state our results precisely, we first introduce the relevant model with its main modeling hypotheses.
Throughout the article, we analyze two versions of the model, namely with and without regularization.

Let e; and e; be the standard unit vectors in R?, and let « = (21, x2) denote a generic point in R2.
Unless specified otherwise, ) C R? is an x;-connected, bounded domain with Lipschitz boundary, that
is, an open set whose slices in the zq-direction are (possibly empty) open intervals (see Subsection 2.4
for the precise definition). For such a domain Q, we set

aq = inf x and bo 1= sup xa, (1.1)
z€Q EASY)
as well as
cq = inf a1 and dq := sup 1. (1.2)
z€eQ z€N

Assume that € is the reference configuration of a body with heterogeneities in the form of periodically
alternating thin horizontal layers. To describe the bilayered structure mathematically, consider the peri-
odicity cell Y := [0,1)?, which we subdivide into ¥ = Yot U Y3ig with Yeoge := [0,1) x [0, A) for A € (0,1)
and Yiig :=Y \ Yiore. All sets are extended by periodicity to R%. The (small) parameter ¢ > 0 describes
the thickness of a pair (one rigid, one softer) of fine layers, and can be viewed as the intrinsic length scale
of the system. The collections of all rigid and soft layers in {2 can be expressed as €Y}i; N2 and €Yoz N2,
respectively. For an illustration of the geometrical assumptions, see Figure 1.

QC R2 i€

}/}ig
s=ey i/\

Y =[0,1)? reference cell

Y;‘oft

FIGURE 1. A bilayered x1-connected domain £

Following the classical theory of elastoplasticity at finite strains (see, e.g., [31] for an overview), we
assume that the gradient of any deformation u :  — R? decomposes into the product of an elastic strain,
F, and a plastic one, Fy;. In the literature, different models of finite plasticity have been proposed (see,
e.g., [3, 22, 29, 30, 37]), as well as alternative descriptions via the theory of structured deformations (see
[10, 11, 24, 6] and the references therein). Here, we adopt the classical model by Lee on finite crystal
plasticity introduced in [33, 35, 34], according to which the deformation gradients satisfy

Vu = FgFp. (1.3)
In addition, we suppose that the elastic behavior of the body is purely rigid, meaning that
Fy € SO(2) almost everywhere in €, (1.4)
and that the plastic part satisfies
Fa=I+vys®@m, (1.5)

where s € R? with |s| = 1 is the slip direction of the slip system, m = s* is the normal to the slip plane,
and the map v measures the amount of slip. Denoting by M the set

M :={F €R?**?:det F =1 and |Fs| = 1},
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the multiplicative decomposition (1.3) (under assumptions (1.4) and (1.5)) is equivalent to Vu € M
almost everywhere in 2. Whereas the material is free to glide along the slip system in the softer phase,
it is required that  vanishes on the layers consisting of a rigid material, i.e., v = 0 in €Y, N €2

Collecting the previous modeling assumptions, we define, for € > 0, the class A, of admissible layered
deformations by

Ae = {u e WHHQR?) : Vu € My ae. in Q, Vu € SO(2) a.e. in eYyi, N Q}
={u e W R?) : Vu = R(I+vs®m) ae. in Q, (1.6)
R € L™(Q;S0O(2)) and v € L*(Q) with v = 0 a.e. in Yy, N Q}.
The elastoplastic energy of a deformation u € L§(€;R?) := {u € L' (;R?) : [, u do = 0}, given by

vl dz for u € A,
E.(u) = /Q| | ) (L.7)
00 otherwise in L{(Q; R?),

represents the internal energy contribution of the system during a single incremental step in a time-
discrete variational description. This way of modeling excludes preexistent plastic distortions, and can
be considered a reasonable assumption for the first time step of a deformation process. The elastoplastic
energy can be complemented with terms modeling the work done by external body or surface forces.

The limit behavior of sequences (u.). of low energy states for (E.). gives information about the
macroscopic material response of the layered composites. In the following, we focus the analysis of this
asymptotic behavior on the s = e; case, when the slip direction is parallel to the orientation of the
layers, cf. also Figure 1. Note that different slip directions can be treated similarly, but the arguments
are technically more involved. In fact, for s ¢ {e1, ea}, small-scale laminate microstructures on the softer
layers need to be taken into account, which requires an extra relaxation step. We refer to [18] for the
relaxation mechanism and to [13] for the strategy of how to apply it to layered structures.

An important first step towards identifying the limit behavior of the energies (E.). (in the sense of
I'-convergence) is the proof of a general statement of asymptotic rigidity for layered structures in the
context of functions of bounded variation. The following result characterizes the weak™ limits in BV of
deformations whose gradients coincide pointwise with rotations on the rigid layers of the material. Note
that no additional constraints are imposed on the softer components at this point.

Theorem 1.1 (Asymptotic rigidity of layered structures in BV). Let Q C R? be an z1-connected
domain. Assume that (u.). C WH1(Q;R?) is a sequence satisfying

Vue € SO(2) a.e. in €Yy NQ for all e, (1.8)

and that u. — u in BV (Q;R?) for some u € BV (Q;R?) as € — 0. Then,
u(z) = R(zo)x + Y(x2) for L*- ae. €, (1.9)

where R € BV (ag,bq; SO(2)) and ¢ € BV (ag, ba; R?) (cf. (1.1)).
Conversely, any function u € BV (;R?) as in (1.9) can be attained as weak*-limit in BV (2;R?) of a
sequence (uz)e C WHL(Q;R?) satisfying (1.8).

To prove the first part of Theorem 1.1, we adapt the arguments in [13] to the BV-setting. The
second assertion follows from a tailored one-dimensional density result in BV, which involves approxi-
mating functions that are constant on the rigid layers (see Lemma 3.3 below). Up to minor adaptations,
analogous statements hold in higher dimensions. We refer to Remark 3.4 for the specific assumptions
on the geometry of the set Q2 under which a higher-dimensional counterpart of Theorem 1.1 can be proved.

A natural potential candidate for the limiting behavior of (E.). in the sense of I'-convergence (see
[8, 20] for an introduction, as well as the references therein) is the functional E : L{(;R?) — [0, 0],
given by

Blu) = /Q [ - Rey| do + |D%u|(R2) if u € A,

00 otherwise,

(1.10)
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where
A= {u € BV(Q;R?): u(z) = R(xa)x + ¥(xs) for a.e. z € Q with

1.11
R € BV (agq, ba; SO(2)), ¥ € BV (ag, bo; R?), and det Vu = 1 a.e. in Q}. (L11)

We refer to Remark 5.1 for an alternative representation of the functional E.
The next theorem states that E provides indeed a lower bound for our homogenization problem.

Theorem 1.2 (Lower bound on the I'-limit of (E.)c). Let Q C R? be an x1-connected domain,
and let E. and E be the functionals introduced in (1.7) and (1.10), respectively. Then, every sequence
(ue)e C L{(R?) with uniformly bounded energies, sup, E.(u:) < 0o, has a subsequence that converges
weakly* in BV (Q;R?) to some u € AN L§(Q;R?). Additionally,

D)-limi > E. .
(L) hgn_gleE >F (1.12)

The proof of the first assertion is given in Proposition 4.3. It relies on Theorem 1.1 in combination with
a technical argument about the weak continuity properties of Jacobian determinants (see Lemma 4.2).
In Section 5, we exhibit two different proofs of (1.12): A first one relying on a Reshetnyak’s lower
semicontinuity theorem (see, e.g., [2, Theorem 2.38]), and an alternative one exploiting the properties of
the admissible layered deformations. The identification of E as the I'-limit of the sequence (E.)., though,
remains an open problem. Indeed, verifying the optimality of the lower bound in Theorem 1.2 is rather
challenging, as it requires to approximate elements of A by means of sequences in A, at least in the sense
of the strict convergence in BV. We refer to Remark 5.2 for a detailed discussion of the main difficulties.
Even if the requirement on the convergence of the energies is dropped, recovering the jumps of maps in
the effective domain of F under consideration of the non-standard differential inclusions in A, is by itself
another challenging problem. Solving this problem requires delicate geometrical constructions, which are
currently not available for all elements in A.

Yet, there are two subclasses of physically relevant deformations in A for which we can find suitable
approximations by sequences of admissible layered deformations. The precise statement is given in
Theorem 1.3 below.

The first of these two subclasses is A N SBV4(Q;R?) (we refer to Subsection 2.3 for the definition of
the set SBV,,) whose jump sets are given by a union of finitely many lines. Heuristically, this subclass
describes deformations that break {2 horizontally into a finite number of pieces, which may get sheared
and rotated individually.

The second subclass is

Al .= {ue BV(Q;R?): u(x) = Rz +J(x2)Re1 + ¢ for a.e. x € Q with

(1.13)
R e SO(Q), UES BV(aQ,bQ), and c € RQ}

In comparison with A, functions in Al satisfy two additional constraints, namely the fact that the
rotation R is constant and that the jumps of functions in All are parallel to Re;. With the notation Al
we intend to highlight the second feature. The intuition behind maps in Al are non-trivial macroscopic
deformations that (up to a global rotation) may make the material break along finite or infinitely many
horizontal lines, induce sliding of the pieces relative to each other, and cause horizontal shearing within
each individual piece. For an illustration of the two subclasses, see Figure 2.

Theorem 1.3 (Approximation of maps in (AN SBV,) U All). Let Q C R? be an x1-connected
domain and u € (AN SBV,(Q;R?)) U All. Then, there exists a sequence (uc). C WH(Q;R?) such that
ue € Ac for every e, and u. = u in BV (Q;R?).

As a first step towards proving Theorem 1.3, we establish an admissible piecewise affine approximation
for limiting deformations with a single jump line (see Lemma 4.5). The construction relies on the char-
acterization of rank-one connections in M., proved in [13, Lemma 3.1], with transition lines stretching
over the full width of  to avoid triple junctions (see Remark 4.6). In Propositions 4.7 and 4.9, we extend
the arguments to A N SBV4 (% R?) and All, respectively.



HOMOGENIZATION PROBLEMS IN BV 5

N &
(a) oo € AN SBVao(Q;R?) | 0, | (b) ull € Al
1 Qs ! }
e -all(Qy)- -~ o
e 4 < T @y

FIGURE 2. A typical deformation of a reference configuration Q2 = €7 U U Q3 through
maps in (a) AN SBV4 (2 R?) and (b) Al

Problems in finite crystal plasticity without additional regularizations are generally known to be chal-
lenging because of the oscillations of minimizing sequences arising as a byproduct of relaxation mecha-
nisms in the slip systems. This phenomenon is one of the main reasons why a full relaxation theory in
finite crystal plasticity is still missing (see [17, Remark 3.2]). In our setting, it hampers the full character-
ization of weak limits of sequences with uniformly bounded energies. The observation that regularizations
can help overcome the above compensated-compactness issue (see also Remark 6.2) motivates the intro-
duction of a penalized version of our problem. After a higher-order penalization of the energy in the layer
directio”n, we obtain the following I'-convergence result. The attained limit deformations are given by the
class Al

Theorem 1.4 (I'-convergence of the regularized energies). Let Q C R? be an x1-connected domain
and A. the set introduced in (1.6). Fizp > 2 and § > 0. For each ¢ > 0, let E? : L} (Q;R?) — [0, 00] be
the functional defined by

P
iy = { Jy 19+ 1Oz Sor e e (1.14)
00 otherwise.
Then, the family (E?). T-converges with respect to the strong L' -topology to the functional E? : L} (€; R?) —
[0, 0] given by
| / ' (22)] Az + | D] () + 89 foru e Al
u) = Q

00 otherwise,

E%(

where 9" denotes the approzimate differential of ¥ (cf. Section 2.2).

The penalization in (1.14) can be viewed in the spirit of non-simple materials [39, 40]. Working with
stored energy densities that depend on the Hessian of the deformations has proved successful in overcom-
ing lack of compactness in a variety of applications; see, e.g., [5, 21, 27, 36, 38]. Very recently, there has
been an effort towards weakening higher-order regularizations: It is shown in [7] that the full norm of
the Hessian can be replaced by a control of its minors (gradient polyconvexity) in the context of locking
materials; for solid-solid phase transitions, an anisotropic second-order penalization is considered in [23].
Along these lines, we introduce the regularized energies in (1.13) that penalize the variation of deforma-
tions only in the layer direction. This is enough to deduce that the limiting rotation (as e — 0) is global
and that it determines the direction of the limiting jump. In Section 6, we provide two alternative proofs

of this result: A first one relying on Alberti’s rank one theorem (see Section 2.1) in combination with the
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approximation result in Theorem 1.3, and a second one based on separate regularizations of the regular
and the singular part of the limiting maps, and inspired by [19, Lemma 3.2].

This paper is organized as follows. In Section 2.1, we collect a few preliminaries, including some
background on (special) functions of bounded variation. Section 3 is devoted to the analysis of asymptotic
rigidity for layered structures in the setting of BV -functions. A characterization of limits of admissible
layered deformations is provided in Section 4. Eventually, Sections 5 and 6 contain the proof of a lower
bound for the homogenization problem without regularization (Theorem 1.2) and the full T'-convergence
analysis of the regularized problem (Theorem 1.4), respectively.

2. PRELIMINARIES

2.1. Notation. In this section, unless mentioned otherwise,  is a bounded domain in RY with N € N.
Throughout the rest of the paper, we assume mostly that N = 2.

We represent by £V the N-dimensional Lebesgue measure and by H¥~! the (N — 1)-dimensional
Hausdorff measure. Whenever we write “a.e. in 7, we mean “almost everywhere in 27 with respect
to LN Q. To simplify the notation, we often omit the expression “a.e. in " in mathematical relations
involving Lebesgue measurable functions. Given a Lebesgue measurable set B C RY, we also use the
shorter notation |B| = £V (B) for the Lebesgue measure of B, while the characteristic function of B in
R¥ is denoted by 1 and takes values 0 and 1.

The set SO(N) := {R € RN . RRT =1, det R = 1}, where I is the identity matrix in RV*V,
consists of all proper rotations. We recall that for N = 2, R € SO(2) if and only if there is 6 € [—7,7)
such that

cosf) —sinf
R_[sinG cos@}

For two vectors a,b € R%, a ® b := ab” stands for their tensor product. If a = (a1, a2)? € R?, we set
at = (—az,a1)7T.

We use the standard notation for spaces of vector-valued functions; namely, L (€2; RY) with p € [1, o0]
and a positive measure u for LP-spaces, WP (Q;R?) with p € [1,00] for Sobolev spaces, C(£2;R?) for
the space of continuous functions, C>(€; R?) and C°(€2; R?) for the spaces of smooth functions without
and with compact support, and C%(Q; R?) with a € [0, 1] for Holder spaces. We denote by Cy(€2; R%)
the space of continuous functions that vanish on the boundary of Q2. Moreover, M(£2;R¢) is the space of
finite vector-valued Radon measures. In the case of scalar-valued functions and measures, we omit the
codomain; for instance, we write L(£2) instead of L'(Q;R).

The duality pairing between Cy(€2;R?) and M (§; R?) is represented by (u, () := fQ ¢du, and p Q@ v
denotes the product measure of two measures p and v.

Throughout this manuscript, & stands for a small (positive) parameter, and is usually thought of as
taking values on a positive sequence converging to zero.

2.2. Functions of bounded variation. We adopt the standard notations for the space BV (Q; R?) of
vector-valued functions of bounded variation, and refer the reader to [2] for a thorough treatment of this
space. Here, we only recall some of its basic properties.

A function v € L'(;RY) is called a function of bounded variation, written u € BV (Q;R?), if its
distributional derivative Du satisfies Du € M(Q;R4*YN). The space BV (Q;R?) is a Banach space when
endowed with the norm [|ul| gy (o;re) := [|ull L1(q;re) + [Dul(Q), where |Du| € M(Q) is the total variation
of Du.

Let D% and D®u denote the absolutely continuous and the singular part of the Radon—Nikodym
decomposition of Du with respect to £V |2, and let D/u and D°u be the jump and Cantor parts of Du.
The following chain of equalities holds:

Du = D% + D*u = Vul™ |Q + D*u = Vul™ |Q + D/u + D
=VulM|Q+ (v —u") @ v HN T T, + Du, (2.1)
where Vu is the approximate differential of u (that is, the density of D%u), u* and u~ are the approximate
one-sided limits at the jump points, J,, is the jump set of u, and v, is the normal to J,, (cf. [2, Chapter 3]).

Following [2, p. 186], we can exploit the polar decomposition of a measure and the fact that all parts of
the derivative of u in (2.1) are mutually singular to write Du = g,,|Du| with a map g, € L|1Du\ (Q; RIXN)
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satisfying |g,| = 1 for |Dul-a.e. x € ©Q and

D% = g,|D%|, D*u = g,|D%u|, D'u=g,/D'u|, D = g,|Dul.

Note that
Vu(z) N
gu(x) = for L% -a.e. x € Q such that |Vu(z)| # 0,
[Vu(z)]
u(z™

gu(x) = M ® vy (x) for HY tae. x € J, (2.2)
Gu(z) ®

9u () = Gu(x) @ ny(z) for |[DCul-a.e. € Q with suitable Borel maps g, : @ — R%, n, : Q@ — RY. (2.3)

The last equality relies on Alberti’s rank-one theorem (see [1]).

Let u € BV (;R?) and (u;)jen C BV (€2;R?) be a sequence. One says that (u;);en weakly™ converges
to w in BV (Q; R?), written u; = u in BV (Q;R?), if u; — win L'(Q; R?) and Du; = Du in M(Q; RP>N).
The sequence (u;);ey is said to converge strictly to u in BV (Q;R?), written u; - u in BV (Q;R?), if
u; — uin LY RY) and [Du;|(Q2) — |Dul(2). We recall that strict convergence in BV (Q;R?) implies
weak* convergence in BV (£; R?). Moreover, from every bounded sequence in BV (Q; R?) one can extract
a weakly™* convergent subsequence (see [2, Theorem 3.23]).

In the one-dimensional setting, i.e., for ¢ € BV(a,b;R?%) with Q = (a,b) C RN and N = 1, we
write ¢’ in place of Vi to denote the approximate differential of ¢. Accordingly, we use the notation
Du = ¢/ L'+ D% for the decomposition of the distributional derivative of ¢ with respect to the Lebesgue
measure.

A function ¢ € BV(a,b;R?) is called a jump or Cantor function if Dy = Dip or Dy = DCp,
respectively. We denote the sets of all jump and Cantor functions by BV7(a,b;R?) and BV¢(a,b; R%),
respectively. As shown in [2, Corollary 3.33], it is a special property of the one-dimensional setting that

V(a,b;RY) = Whi(a, b;R?) + BV (a, b; R?) + BV¢(a, b; R?). (2.4)

Throughout this paper, two-dimensional functions of the form
u(@) = R(xa)x + (22) (2.5)
with = (z1,22) € Q = Q := (¢,d) x (a,b) C R?, where R € BV (a,b; SO(2)) and v € BV (a,b;R?),

play a fundamental role. Maps u as in (2.5) satisfy u € BV (£2;R?). Denoting by Dyu := Du ® e; and
Dou := Du ® eg, the first and second columns of Du, respectively, we have for all { € Cy(Q2) that

Dlu C / C .’L‘Q €1 d.’l?ld.’lﬁg,
(D21.0) = [ (C@)R@z)er+ R (a)a +/(22) darday
—l—/ C(z)zy dxlstR(xg)el+/ ¢(z)xs dxldDSR(x2)62+/ ¢(z) dz1d D9 (x2).
Q Q Q

Hence, Du = D%u + D®u with

Du= (R+ (R'z+1) ®es)L?| L,

Dy = ((xTﬁl L(c, d)@DSRT) + LY (e, d)®DS¢) ® g, (2.6)

where L£1[(c,d)@D*RT and L!|(c,d)®@D?*1 denote the restrictions to the Borel o-algebra on Q = Q of
the product measures between £![(c,d) and D*RT and D*1, respectively.
We observe further that there exists § € BV (a, b; [—m, 7]) such that

__|cosf —sinf ;o |—sinf —cosf
k= {sin@ cos@} and R =46 |:COSQ —sinf)}’ (2.7)

where the representation of R’ follows from the chain rule in BV; see, e.g., [2, Theorem 3.96].
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2.3. Special functions of bounded variation. A function v € BV(Q;R?) is said to be a special
function of bounded variation, written u € SBV (Q; R?), if the Cantor part of its distributional derivative
satisfies
Dfu = 0.
In particular, it holds for every v € SBV (2;R?) that
Du=VulM|Q+ ut —u ) @uv,HY .

The space SBV (€2;RY) is a proper subspace of BV (Q; R?)(c.f. [2, Corollary 4.3]).

Next, we recall the definition of the space SBV,,(Q; R?) of special functions of bounded variation with
bounded gradient and jump length, which is given by

SBVy (4 RY) == {u € SBV (4 RY): Vu € L®(Q RN and HY1(J,) < 400}

It is shown in [J] that the distributional curl of Vu for u € SBV,.(Q;RY) is a measure concentrated on
Ty
Finally, we introduce the space

PC(a,b;R?) = SBV,o(a,b;RY) N {u € BV (a,b;RY): D = 0}, (2.8)
which contains piecewise constant one-dimensional functions with values in R¢.

2.4. Geometry of the domain. In this section, we specify our main assumptions on the geometry of
Q, which, as mentioned in the Introduction, will mostly be a bounded Lipschitz domain in R2. Let us
first recall from [14, Section 3] the definitions of locally one-dimensional and one-dimensional functions.

Definition 2.1 (Locally one-dimensional functions in the es-direction). Let Q C R? be open.
A function f : Q — R? is locally one-dimensional in the es-direction if for every x € Q, there exists an
open cuboid Q. C 2, containing x and with sides parallel to the standard coordinate axes, such that for

all Yy = (y1,y2),2 = (21722) S Qam
fy)=f)  ify2=2. (2.9)
We say that f is (globally) one-dimensional in the ey-direction if (2.9) holds for every y,z € Q.

Analogous arguments to those in [14, Section 3] show that a function f € BV (Q;R) satisfying Dy f = 0
is locally one-dimensional in the es-direction. The following geometrical requirement is the counterpart
of [14, Definitions 3.6 and 3.7] in our setting.

Definition 2.2 (z;-connectedness). We say that an open set Q C R? is xi-connected if for every
t € R, the set {xg =t} NQ is a (possibly empty) interval.

In what follows, we always assume that the set  C R? is an z;-connected domain. Under this
geometrical assumption, the notions of locally and globally one-dimensional functions in the es-direction
coincide. We refer to [14, Section 3] for an extended discussion on the topic, as well as for some explicit
geometrical examples.

3. ASYMPTOTIC RIGIDITY OF LAYERED STRUCTURES IN BV

In this section, we prove Theorem 1.1, which characterizes the asymptotic behavior of deformations of
bilayered materials that correspond to rigid body motions on the stiff layers, but do not experience any
further structural constraints on the softer layers. This qualitative result is not just limited to applications
in crystal plasticity, but can be useful for a larger class of layered composites where fracture may occur.

We start by introducing some notation. Assume that 2 C R? is an x;-connected domain. For £ > 0,
let

B. := {u € WH(Q;R?) : Vu € SO(2) in Yy, N Q} (3.1)
represent the class of layered deformations with rigid components, and let
By := {u € BV(Q;R?) : there exists (uc). € W (Q;R?) with u. € B, for all (3.2)
such that u. = u in BV (;R?)}

be the associated set of asymptotically attainable deformations.
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We aim at proving that By coincides with the set of asymptotically rigid deformations given by
B:={u € BV(%R?): u(z) = R(zs)z + ¢(z2) for ae. z € Q
with R € BV (aq, bo; SO(2)) and ¢ € BV (aq,ba; R*)}, (3.3)

cf. (1.1). This identity will be a consequence of Propositions 3.1 and 3.2 below.
Proposition 3.1 (Limiting behavior of maps in B.). Let Q= (0,1) x (=1,1). Then,

By C B, (3.4)
where By and B are the sets introduced in (3.2) and (3.3), respectively.

Proof. The proof is inspired by and generalizes ideas from [13, Proposition 2.1]. Let u € By. Then, there
exists a sequence (uc). C W1 (Q;R?) satisfying Vu. € SO(2) ae. in £Y;i, N for all €, and ue = u in
BV ($;R?).
FixO0<e<l,andlet I. :={i € Z: (R x e(i — 1,4)) N Q # 0}. For each i € I., we define a strip, P,
by setting
Pli= R xeli—1,4)NQ.
Note that if ¢ € Z is such that |i| > 1+ EL then i ¢ I.. Moreover, defining i := max I, and i_ := min I,
then
i) for iy < i < if, P! is the union of two neighboring connected components of €Yy, N and
e¥0tt M €Y
i— i+
ii) we may have eYsop N P2 = or eYyiq N Ps = 0.
From Reshetnyak’s theorem, we infer that on each nonempty rigid layer €Yy, N P! with i € I, the
gradient Vu, is constant and coincides with a rotation R: € SO(2). Moreover, there exists b2 € R? such
that u.(x) = Riz + bl in €Yy N PL
Using these rotations R%, we define a piecewise constant function, 3. : (=1,1) — R?*2, by setting
) + 4 i+ .
Se(t) =Y. Rileim1,1)(t) for t € (—1,1), where R := R " if £y, N P = 0. We claim that there
exist a subsequence of (X.)., which we do not relabel, and a function R € BV (—1,1; SO(2)) such that

Y. = R in LY(—1,1;R?*?). (3.5)

To prove (3.5), we first observe that the total variation of the one-dimensional function ¥, coincides
with its pointwise variation, and can be calculated to be

IDE|(-1,1)= > |[RL-RI'=V2 Y |Rles— Rl 'e. (3.6)
i€l \{ic } i€l \{ic }
Next, we show that the right-hand side of (3.6) is uniformly bounded. By linear interpolation in the
xo-direction on the softer layers, it follows for all i € I.\{i_ } if €Yz N PEZ';r # (0 and i € I\{i} if
£Yiig NP =0 that

1 pe(i—14X)
/ |[Vuces| dz = / / |Ooue (21, 22)| dzo dzq
eYsort NP2 0 Je(i—1)
1

> / e (21,20 — 14 A)) — e (w1, 26 — 1))] das
0
1 . , , . 1 . ,
= / |(Rle; — R Yey)ay 4+ bl — b7t day > Z|R;e1 — Ri7ley). (3.7)
0

The first estimate is a consequence of Jensen’s inequality, and optimization over translations yields the
second one. To be more precise, the last estimate in (3.7) is based on the observation that for any given
a € R*\{0},

1 1 1
min/ [ta + b| dt = min / \(t+a)a+ﬁal|dt:|a|min/ |t+o¢|dt:@.
beR? J a, BER [ aeR Jy 4
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From (3.6) and (3.7), since (uc). C WH(Q;R?) as a weakly* converging sequence is uniformly bounded
it it—1. it
in BV (Q;R?), and recalling that Re® = R Uit eYsig NP5 = (), we conclude that

DEJ1,D) <4V [ Vo< (3.8)
Q

The convergence in (3.5) follows now from the weak* relative compactness of bounded sequences in
BV (—1,1;R?*2) (see Section 2.2), together with the fact that strong L'-convergence is length and angle
preserving. The latter guarantees that the limit function R € BV(—1,1;R?*2) takes values only in
SO(2).
Next, we show that there is ¢» € BV (—1,1;R?) such that
u(x) = R(za)z + (x2) (3.9)

for a.e. z € £, which implies that ©v € B and concludes the proof. To this end, we define auxiliary
functions o, b. € L°°(Q;R?) for € > 0 by setting
o(x) = Z(Réx)llp;- (z) and be(z) = Z belpi(z)
icl. icl.
it if—1 it if—1. it
for x € Q, where R := RS and b = bs if eYyg NP = 0. Further, let w, := 0. + b..
By Poincaré’s inequality applied in the zo-direction, we obtain

1 prmin{e(i—1+X),1}
/ |ue — we| dz = Z / |ue — we| dzg day
Q

€101 Yior NP0 0 Jmax{e(s—1),—1}

<el Z/ |Ooute — Ries| dz < eA([Jucllwi@ume) + Q) < Ce.
iel, Y €YsortNP!

Consequently,

we — u in L'(Q;R?). (3.10)
Moreover, for x € 2,

|o=(2) = R(z2)z| < ’ > (RL— R(z2))1p: () |l2] < V2[Eo(w) — R(x2)],
i€l

which, together with (3.5), proves that

0. — 0 in L' (Q;R?), (3.11)
where o(z) := R(z2)z € BV (Q;R?).

Finally, exploiting (3.10) and (3.11), we conclude that there exists b € BV (2;R?) such that b. — b in
L'(Q;R?). In view of the one-dimensional character of the stripes P!, we infer that 9;b = 0. Eventually,
identifying b with a function ¢ € BV (—1,1;R?) yields (3.9).

(|

Next, we prove that the converse inclusion of (3.4) holds. In the following, let Iz be the projection
of Yiig onto the second component; that is, I;i; corresponds to the 1-periodic extension of the interval
[A,1). Analogously, we write I5.g for the 1-periodic extension of [0, ).

Proposition 3.2 (Approximation of maps in B). Let Q= (0,1) x (=1,1). Then,
By D B. (3.12)

Here, By and B are the sets from (3.2) and (3.3), respectively.

Proof. Let u € B, and let R € BV (—1,1; SO(2)) and v € BV (—1,1;R?) be such that
u(z) = R(x2)w + ¥ (x2)

for a.e. x € Q. Using Lemma 3.3 below, as well as the fact that strict convergence implies weak*
convergence in BV, we construct sequences (R.). C W1>°(—1,1;S0(2)) and (¢.). C W (—1,1;R?)
such that

R.=0 and ¢.=0 oneliN(-1,1), (3.13)
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R. 5 Rin BV(—1,1;R**?) and 4. > in BV(-1,1;R?). (3.14)
Define u.(x) := R.(w2)x + - (x2) for & € Q. Then, u. € WH%°(Q;R?) for every e, with
Vue(z) = Re(w2) + RL(22)x ® ez + YL (22) @ ea

for a.e. x € Q. In particular, Vu, = R. € SO(2) a.e. in €Y,z N Q by (3.13); hence, u. € B.. Moreover,

sup, || Vuel|p1 @rex2) < 0o and ue — u in L'(Q;R?) by (3.14), from which we conclude that u. = u in
BV (Q;R?). This completes the proof. O

The next lemma states a one-dimensional approximation result of BV-maps by Lipschitz functions
that are constant on €liy, which was an important ingredient in the previous proof.

Lemma 3.3 (1D-approximation by maps constant on el.g). Let I = (a,b) C R and w €
BV (I;R%). Then, there exists a sequence (we). C WL (I;RY) with the following three properties:

(1) we — w in LY(I;RY);

(i) [ futldt = |Dul(1);
I
(193) w. =0 onelyg NI.
Moreover, if w takes values in SO(2) and w € BV (I; SO(2)), then each w. may be taken in W1>°(I; SO(2)).

Proof. Let w € BV (I;R%). By_[2, Theorem 3.9, Remark 3.22], w can be approximated by a sequence of
smooth functions (vs)s C C°°(I;RY) in the sense of strict convergence in BV; that is,

vs — w in LY(I;RY) and /|v(’;\ dt — |Dw|(I) (3.15)
I

as 6 — 0. To obtain property (ii¢), we will reparametrize vs so that it is stopped on the set el,;; and
accelerated otherwise, and eventually apply a diagonalization argument.
We start by introducing for every € > 0 a Lipschitz function ¢, : R — R defined by

0o(t) = {i(t—iﬁ)—i-ie if ie <t <ie+ e,
e =

i+ 1) if ie + de <t <e(i+1),
for each i € Z and ¢ € eli,i +1). For all t € R, we have t < .(t) < ¢t +¢e(1 — A) and @L(t) = (L),
where 1 is the 1-periodic function such that 1(t) = + if 0 < ¢ < X, and ¥(t) = 0if A < ¢ < 1. By
the Riemann—Lebesgue lemma on weak convergence of periodically oscillating sequences, it follows that
¥(2) S 1in L®(R). Thus, p. — ¢ in I/Vllofo (R), where ¢(t) := t. In particular, ¢, converges uniformly
to ¢ on every compact set K C R.

Next, we define for € > 0 a Lipschitz function @, : I — I by setting

. @ (t) ifa<t<be,
c(t) =
Pe(t) {b b, <t<b

where b. € (a,b] is such that ¢.(b.) = b. Note that by definition of ¢., there exists at least one such b..
We claim that b. — b as € — 0. In fact, extracting a subsequence if necessary, we have b. — ¢ for some
¢ € la,b]. Then,

b — | = | (be) — @(c)| < = (be) — @ ()] + |@e(e) — @(e)] < 1= — ¢ + |we(c) — @(c),

from which we infer that b = ¢ by letting € — 0. Because the limit does not depend on the subsequence,
the whole sequence (b:). converges to b. Consequently, p.(t) — (t) =t for all ¢ € I, and since also
|@ellwr(ry = O(1) as € = 0, we deduce that

P = pin WI’OO(I) and  |[|@e — @[l g1y = 0. (3.16)

Finally, we set we 5 := v5 0 ¢, € Who(I; R?), and observe that

|we,s — wll g1 ey < |lvs 0 @e — vsllprrrey + lvs — wllprrey and / lw 5| dt = / |us o e pr dt.
I I
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Hence, by (3.15), (3.16), the boundedness of each vs and vj§, and a weak-strong convergence argument,
it follows that

lim lim [we,s = wllp1(zrey =0, (3.17)
. . ’ T / / 1 / _
tim iy [ Jut st =t [ o561t = tim [ Jug] at = D). (3.18)

In view of (3.17) and (3.18), we apply Attouch’s diagonalization lemma [4] to find a sequence (w.). C
WL R?) with w. := w, 5 satisfying (i) and (ii). We observe further that each w. satisfies (iii) by
construction.

To conclude, we address the issue of constraint-preserving approximations for w € BV (I; SO(2)). In
this case, we argue as above, but replace the density argument leading to (3.15) by its analogue for
BV functions with values on manifolds, see [28, Theorem 1.2]. This allows us to assume that vs €
C>(I;SO(2)), and eventually yields w. € W (I; SO(2)). O

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. In view of the discussion on locally and globally one-dimensional functions in
Section 2.4, it suffices to prove the statement on rectangles with sides parallel to the axes. A simple
modification of the proofs of Propositions 3.1 and 3.2 shows that these results hold for any such rectangle.
Then, Theorem 1.1 follows by extension and exhaustion arguments in the spirit of [14, Lemma A.2]. O

Remark 3.4 (The higher dimensional setting). We point out that the results of Theorem 1.1
continue to hold for domains Q € R, N € N, satisfying the flatness and cross-connectedness assumptions
in [14, Definitions 3.6 and 3.7]. We omit the proof here as it follows from that of Theorem 1.1 up to minor
adaptations. Notice in particular that [13, Lemma Al] provides a higher-dimensional version of (3.7).

We conclude this section by characterizing two special subsets of B (see (3.3)), which will be useful in
the following. Using (2.6), it can be checked that
BAWHHR?) = {u e WH (4 R?): u(z) = R(za)z + ¢(x2) for ae. z € Q, (3.19)
with R € W' (aq, bo; SO(2)) and ¢ € W' (aq, bo; R?)}
and
BN SBV (4 R?) = {u € SBV(4R?): u(x) = R(z2)x + 1p(x2) for ae. z € €, (3.20)
with R € SBV (aq,bo; SO(2)) and ¢ € SBV (aq, bo; R?)}.

By definition, and accounting for the fact that R takes values in SO(2), the jump set of u € BN
SBV (Q;R?) is related to the jump sets of R and 1 via

Ju = [(ca,da) X (JrU Jy)] NQ,
cf. (1.2).

4. ASYMPTOTIC BEHAVIOR OF ADMISSIBLE LAYERED DEFORMATIONS

In this section, we prove Theorem 1.3, which characterizes the asymptotic behavior of deformations
of bilayered materials that coincide with rigid body rotations on the stiffer layers, and are subject to a
single slip constraint on the softer layers. The latter is described with the help of the set

M, ={FeR?**?: det F =1 and |Fe;| = 1}
={F e R*?: F = R(I +ve; ® ey) with R € SO(2) and v € R}.

As in the previous section, we consider 2 = (0,1) x (—1,1) for simplicity. The results for general x;-
connected domains follow as in the proof of Theorem 1.1.

Using the representations of M., in (4.1) and recalling the sets B, introduced in (3.1), the sets of
admissible layered deformations defined in (1.6) admit the equivalent representations

A.=B.n{uec WHH(Q;R?) : Vu € M, ae. in Q}
={u e W R?) : Vu = R(I + ve; ® e2) with R € L>(Q; SO(2)) and
v € L'(Q) such that v = 0 in £Y;i, N Q}. (4.2)

(4.1)
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In the sequel, according to the context, we will always adopt the most convenient representation.
In analogy with By defined in (3.2), we introduce the set

Ao := {u € BV(Q;R?) : there exists (u.). C W"(Q;R?) with u. € A, for all & (4.3)
such that u. — u in BV (;R?)}

of asymptotically admissible deformations. We aim at characterizing Ag, or suitable subclasses thereof,
in terms of the set A4 introduced in (1.11). Note that

A=Bn{uc BV(Q;R?) :det Vu = 1 a.e. in Q}, (4.4)

where B is given by (3.3). Moreover, recalling the notation for the distributional derivative of one-
dimensional BV -functions discussed in Section 2.2, we can equivalently express A as follows.

Proposition 4.1. Let Q = (0,1) x (—=1,1). Then, A from (1.11) admits these two alternative represen-
tations:
A= {u e BV(Q;R?): Vu(z) = R(z2)(I + v(x2)e1 ® ez) for a.e. x € Q, with
R € BV(~1,1;80(2)), v € L*(~1,1), and (D*u)e; = 0} (4.5)
and

A= {u e BV(Q;R?): u(x) = R(zz)x + 1p(x2) for a.e. x € Q, with R € BV(—1,1;50(2))
and 1 € BV (—1,1;R?) such that ¢’ - Rea = 0 and R’ = 0 a.e.in (—1,1)}. (4.6)

Proof. Let A and A denote the sets on the right-hand side of (4.5) and (4.6), respectively. We will show
that AC ANA, AC A, and A C A, from which (4.5) and (4.6) follow.
We start by proving that A C AN A. Fix u € A. Due to (2.6), we have (D%u)e; = 0 and

Vu=R+ (Rz+1)@e = RI+RT(Rz+1)@e). (4.7)

We first observe that the condition det Vu = 1 becomes 1 + RT(R'z + ¢') - ea = 1 or, equivalently,
(R'z + ') - Res = 0. This condition, together with the independence of R, R’, and ¢’ on z1, yields

R'ei-Res =0 and (roR'eq + ') - Rea = 0. (4.8)

Let § € BV (—1,1;[—m,x]) be as in (2.7). Then, the first condition in (4.8) gives 6’ = 0; consequently,
also R' = 0. Thus, the second equation in (4.8) becomes v’ - Res = 0, which shows that u € A. Moreover,
¢’ - Res = 0 is equivalent to RT%) - e5 = 0; hence, u € A with v := Re; - ¢'. Thus, A C AN A.

Next, we observe that if u € A, then, using (4.7), we have

detVu=1+RT'(Rz+1')-ea=1+R") -ea =1+ Rey = 1.

Hence, u € A, which shows thatAA cA
Finally, we prove that A C A. Let u € A. Then, (Du)e; = (Vu)e1 £L2|Q + (D%u)e; = Re1L?|). By
this identity and the Du Bois-Reymond lemma (see [32], for instance), we can find ¢ € BV (—1,1;R?)
such that
u(z) = R(ze)xie1 + ¢(x2).

In particular, Vu(z) = R(xz2)e; ® e1 + (R/(z2)z1€1 + ¢'(22)) ® ea. Consequently, using the expression
for Vu given by the definition of A, together with the independence of R, R', 7, and ¢’ on x1, we conclude
that

R =0 and ¢ = Res + vRe;.
Finally, set ¢(z2) := ¢(x2) — R(w2)w2es for x5 € (—1,1). Then, we have ¢» € BV (—1,1;R?), which
satisfies 1)’ - Rea = yRe; - Rea = 0, because R € SO(2) in (—1,1), and also u(z) = R(z2)x + ¢ (x2). Thus,
u € A, which implies A C A. O

The following lemma on weak continuity of Jacobian determinants for gradients in W11 (Q; R?) with
suitable additional properties will be instrumental in the proof of the inclusion Ay C A.
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Lemma 4.2 (Weak continuity properties of Jacobian determinants). Let Q C R? be a bounded
Lipschitz domain, and let (u:). C WH(Q;R?) be a uniformly bounded sequence satisfying det Vu. = 1
a.e. in  for all € and

Hal’usHLoo(Q;Hp) S O, (49)

where C' is a positive constant independent of €. If uc — u in L*(;R?) for some u € BV (;R?), then
det Vu =1 a.e.in Q.

Proof. The claim in Lemma 4.2 would be an immediate consequence of [26, Theorem 2] if in place of
(4.9), we required

(adj Vue). C L*(Q;R?**?), (4.10)
which, because of the structure of the adjoint matrix in this two-dimensional setting, is equivalent to
Vu. € L?(2;R?*2) for all . Even though we are not assuming this here, it is still possible to validate
the arguments of [26, Proof of Theorem 2] in our context, as we detail next.

Since | adj Vue| = |Vue|, it can be checked that in order to mimic the proof of [26, Theorem 2] with
N = 2, we are only left to prove the following: If (¢;),en is a sequence of standard mollifiers and € is
an arbitrary open set compactly contained in €, then (det Vu. ;)jen converges to det Vu. in L'(€') as
Jj — oo for all €, where u. ; 1= @; * u..

In Step 4 of the proof of [26, Theorem 2], this convergence is a consequence of the Vitali-Lebesgue
lemma using (4.10), the bound |det A] < |adjA|? for all A € R?**? (see [26, (7)]), and well-known
properties of mollifiers.

Here, similar arguments can be invoked, but instead of the estimate |det A| < |adj AJ? for A € R?*2,
we use the fact that (4.9) yields

|det Vuw-| = |(81’U457j)L . 32uw-| S C|82’U,5’j| S C|Vuw-|

a.e. in . Hence, since u.; — u. in WH(€;R?) and pointwise a.e.in  as j — oo, we conclude that
(det Vue ;)jen converges to det Vu, in L'(Q') as j — oo for all € by the Vitali-Lebesgue lemma. O

We obtain from the following proposition that weak* limits of sequences in A, belong to A.

Proposition 4.3 (Asymptotic behavior of sequences in A.). Let Q= (0,1) x (—1,1). Then,
Ap C A, (4.11)
where Ay and A are the sets introduced in (4.3) and (1.11), respectively.

Proof. The statement follows from the inclusion A, C B. (see (4.2)) and the identity (4.4) in conjunction
with Proposition 3.1 and Lemma 4.2, observing that the condition Vu. € M., a.e. in Q guarantees
|01u| = |[Vucer| = 1 a.e. in ©, and hence ||01uc|| L (q;r2) = 1 for any e. O

The question whether the set A can be further identified as limiting set for sequences in A., namely,
whether the equality Ag = A is true, cannot be answered at this point. However, as stated in Theorem 1.3,
the inclusions Ag D AN SBV,(2;R?) and Ay D Al hold. Before proving these inclusions, we discuss a
further characterization of some special subsets of A.

Remark 4.4 (Structure of subsets of A). Similarly to (3.19) and (3.20), using fine properties of
one-dimensional BV functions, the sets AN WH1(Q;R?), AN SBV(;R?), and A N SBV,.(£;R?) can
be characterized as follows.

(a) In view of (2.6) and (4.6), one observes that
ANWEHQ;R?) = {u e WHH(Q;R?): u(z) = R + 0(xs)Rey + ¢ for ae. x € Q,
with R € SO(2), 6 € Wh1(=1,1), c € R?}
= {u e WHY(QR?): Vu(z) = R(I+ y(x2)e; ® e3) for ae. 2 € Q,
with R € SO(2), v € L'(~1,1)}.

Additionally, as a consequence of the construction of the recovery sequence in the I'-convergence
homogenisation result [13, Theorem 1.1], we also know that

ANWEHQ;R?) = {u € WHH(Q;R?): there exists (u:). € WHH(Q;R?) with u. € A, for all
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such that u. — u in W1 (Q;R?)}.

(b) Using (2.6) and (4.6) once more, we have

ANSBV(Q;R?) = {u € SBV(;R?): u(x) = R(xs)x + b(x3) for ae. x € Q,
with R € SBV(—1,1;S0(2)) and v € SBV(—1,1;R?)
such that R =0 and ¢’ - Res = 0 a.e. in (—1,1)}.

Note that both Jr and Jy, are given by an at most countable union of points in (—1,1), which implies
that J, consists of at most countably many segments parallel to e;. It is not possible to conclude that
the functions R are piecewise constant according to [2, Definition 4.21], as we have, a priori, no control
on H°(Jg) (cf. [2, Example 4.24]).

(¢) With (b) and [2, Theorem 4.23], and recalling (2.8), it follows that

AN SBV,o(R?) = {u € SBV,.(%R?): u(x) = R(x2)x + 1(x2) for ae. x € Q,
with R € PC(—1,1;50(2)) and ¢ € SBV(—1,1;R?)
such that ¢’ - Res = 0 a.e. in (—1,1)}.

Here, both Jg and Jy, are finite sets of points in (—1,1), and J, is given by a finite union of segments
parallel to e;. Alternatively, one can express A N SBV,,(£;R?) with the help of a Caccioppoli partition
of € into finitely many horizontal strips; precisely,

AN SBV,(R?) = {u € SBV,.(%R?): Vulg, = Ri(T+ vie1 ® ea), with {E;}7, a partition of 2
such that E; = (R x ) N Q with I; C (-=1,1) for i =1,...,n,
R; € SO(2) and ; € L*(E;) with 817 =0 for i = 1,...,n}.

In the following lemma, we construct an admissible piecewise affine approximation for basic limit
deformations in AN SBV,,(Q; R?) with a non-trivial jump along the horizontal line at 3 = 0. Based on
this construction, we will then establish the inclusion Ay D AN SBV(Q;R?) in Proposition 4.7 below.

Lemma 4.5 (Approximation of maps in ANSBV,, with a single jump). LetQ = (0,1)x(-1,1),
and let uw € AN SBVy (4 R?) be such that u(z) = R(xs)x + (x2) for a.e. x € Q, where

Rt iftelo,n) _ Jot iftelo ) rte(—
R(t) := {R_ ift e (~1.0) and P(t) = {Z/J_ ift e (~1,0) forte (—1,1),

with some R* € SO(2) and * € R?. Then, there exists a sequence (uc). C W (4 R?) with [, u. dz =
fQ wdz and u. € A, for all e, and such that u. — u in BV (;R?).

Proof. We start by observing that for v as in the statement of the lemma, there holds
Du=RL*[Q+ [(R" — R ez + (T — ¢ )] ®@eaH'[((0,1) x {0}). (4.12)

Let S € SO(2) be such that (i) S # R*; (i) Se; and RTe; are linearly independent; (iii) 6% €
(—m,m) \ {0} is the rotation angle of ST R*, cf. (2.7). Due to (i), there exist a, 3 € R such that

¢t =9~ = aR"e; + fSe. (4.13)
For each € > 0, set

4o 4B +

4 0 4
+. =2 - — 4 4t (—) i = ¢ (—) 4.14
e SN oa He e +tan 9 ) He o ’ (4.14)
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and let V. € L*(£;R?*2) be the function defined by

R* if x € (0,1) x (e, 1),
RT(I+~tei®ey) if € (0,1) x (32,eN),
RY(I+ pter ®es) ifaq € (0,1) and a5 € (—Say + 32, 322)
~ . A _ed A
V(2) = S(]IJru;:el@eg) ?f:clé(O,l) ancixg)\e(%,—%ler%), (4.15)
S(]I+’)/E€1®62) 1f.’£€(0,1)><(%,%)’
SO+ fzer®es) if 2y € (0,1) and a5 € (221, ),
R (I+pse1®ez) ifz€(0,1) and 3 € (0, S xy),
R if 2 € (0,1) x (~1,0),
see Figure 3.
| R* i
EN | :
| R+(H+’7;'_61®62) |
4 “~»~~\_‘__»» +(1 + :
S+ e @ey) | TTmmm--o BTIHpie®es),
e\ TilTTaaad
2 :
| SI+ve1 ®ez) !
e\ Lo . !
it - STToIInzzess
S(]H_'UEe}’(g??%)__———""4__ R I+ pze1 ®ez)
0 booo-n

Ficure 3. Construction of V..

By construction, each function V; takes values only in M., , and its piecewise definition is chosen such
that neighboring matrices in Figure 3 are rank-one-connected along their separating lines according to
[13, Lemma 3.1]. Hence, there exists a Lipschitz function u. € W1°°(£2;R?) such that Vu. = V.. By
adding a suitable constant, we may assume that fQ ue do = fQ u dz. In view of the Poincaré~Wirtinger
inequality and (4.15), (u.). is a uniformly bounded sequence in W11(Q; R?) satisfying u. € A. for all €
(cf. (4.2)).

To prove that u. — u in BV (€;R?), it suffices to show that
Du. = Du in M(Q; R?*?), (4.16)
or, equivalently, in view of (4.12), that for every ¢ € Co(2;R?),

e—0

Jim /Q V. (2)¢(z) dz = /Q Rlzs)p() dz + /O (R — R )erms + (0F — )] @ eaplas, 0) dar. (4.17)
Clearly,

lim Vue(z)p(z) de = lim R(z2)p(z) dz
€20 J(0,1)x[(—1,0)U(eA,1)] €0 J(0,1)x[(—1,0)U(eA,1)]

:/R(xQ)cp(x) dz. (4.18)
Q

Moreover, using (4.14), a change of variables, and Lebegue’s dominated convergence theorem together
with the continuity and boundedness of ¢, we have

lim Vue(z)p(x) dz
€20 .J(0,1)x (0,22 z1) :
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I _
= lim/ / R™ (]I + tan (%)61 ® eg — %61 ® eg)gp(x) dzodz;

e—0

= lim// EAH—i—E)‘ tan (%)61 ®62—e1®62)g0(x1,— ) dzdaxy

e—0

1
7/ / R7e1 ® eap(x1,0) dzday = 7/ x1R™e1 ® eap(x1,0) day.
0Jo 0

Similarly,
iig% o Vus(x)ap(x) dz
_ilﬁ%// 21— 2 tan (4 )er @ e2 — €1 ® e2) (1, D 2) deday
= /o (z1 —1)Se1 ® eap(21,0) day,
lim Vue(z)p(z) de
=0 J0,1)x(22,2)
— &11_%/ / EA]H_ Ber ® 62) (ml, £22)dzday = / BSe; ® eap(x1,0) daq,
[ sy T 0
gg%//?’ " 5)‘1[— T tan (%)61®e2+61®62)gp(x1, £ z) dzdry
= /0 (1 —z1)Se; ® eap(x1,0) day,
lim Vue(z)p(x) dz
£0./(0,1) x (— 2wy 4 322 322
= &11_%/ /3 N R+ E)‘]I—i— E)‘ tan (%)el Res+e; R eg)tp(xl, £2) dzday
:/0 1R e; ® eap(x1,0) day,
and
lim Vue(x)p(x) de

e70J(0,1)% (352 ex)

14 1
= lim / / RT (21 + aer ® e2)p(x1, £2) dzday = / aR"e; ® exp(1,0) day.
3 0

e—0 0

Combining (41.18)—(4.24) and (4.13), we finally obtain (4.17).

17

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

O

Remark 4.6 (On the construction in Lemma 4.5). Notice that the main idea of the construction
in the proof of Lemma 4.5 for dealing with jumps is to use piecewise affine functions that are as simple
as possible to accommodate them. Since triple junctions where two of the three angles add up to w are
not compatible (compare with [13, Lemma 3.1]), we work with inclined interfaces that stretch over the

full width of Q.

Let u € AN SBV, (9 R?) be as in Lemma 4.5, and assume that either Rt # +R~ or RT = R~. In
these cases, we can simplify the construction of (u.). in the previous proof. We focus here on stating the
counterparts of Figure 3 and (4.14), and omit the detailed calculations, which are very similar to (4.18)—
(4.24). Note further that these constructions are not just simpler, but also energetically more favorable,

see Remark 5.2 below for more details.

(i) If RT # +R~, we may replace the construction depicted in Figure 3 by:
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ox i 1 Ut =T =aRer+ R e
e )\: RY(I+75e1 ®e2) | 0 € (—m,m) \ {0} rotation angle of (R™)TR™
EtpeEAf=co s 0 eA—pe
LT R*(I+1te1®er) | p€(0,1), ht:= 2=
| \\\\ |
-~ + . 1 [4 -1 _ 23
| R (I+77e1 ®ea) Tl i Ve = gex Ttan(z), e = gy — tan(3)

At satisfies a = lime—0 72 (X — h2 — ped)

. 7. satisfies f — 1 = lim.—,0 9. h?

FIGURE 4. Alternative construction of V. if R* # £R~.

(ii) If R is constant, i.e., R = R™, and 9" — '~ is not parallel to Rey, the construction in Figure 3
can be replaced by:

s)\; R ! S € SO(2): Re1 and Se; are linearly independent
A m: R(I+9-e1@ e2) l Yt — ¢~ = aRei + BSer, B#0, v:=sign(B)
EA — hg ‘ el ittt it T
i T~ R(I+~Fe1 ®ea) | 0 € (—m,m) \ {0} rotation angle of R* S
T-- |
EA‘ ~ \\‘~~\ I — P eX—peA
P St @) Tl Pi=mn €O b=
T e +._, 1 6 -1 6
! R ‘ Ve =t +tan(3), 7. =t —tan(g)
L R(I+~fe1®er) BT ! ped : X 2
0 e, e satisfies a — ¢ = lim._,0 Ych?
| R |
0 1

FIGURE 5. Alternative construction of V; if R is constant and i+ — 1)~ is not parallel to Re;.

(iii) If R is constant, i.e., RY = R™, and ¢ — ¢~ is parallel to Re;, then we can use the following
construction in place of Figure 3:

i R |
5/\3 :

i i YT — 1~ = aRe;

| R(I+ &e1 ®e) | L . L

| | a=pT —y7|, v:=sign((¢" —¥7) Rer)
0| :

| R |

0 1

FIGURE 6. Alternative construction of V. if R is constant and ™ — 1)~ is parallel to Re;.

Note that in case (i), the slope p of the interfaces can attain any value between 0 and 1, while in (ii), p is
determined by the value of 3. In terms of the energies, the construction in case (iii) provides an optimal
approximation, which will be detailed in Section 6.

We proceed by extending Lemma 4.5 to arbitrary functions u € AN SBV,,(£;R?).
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Proposition 4.7. Let Q = (0,1) x (=1,1). Then, for every u € AN SBV,(;R?), there exists a
sequence (u:). C WHH(Q; R?) with fQ ue dr = fQu dz and u. € A, for all £, and such that u. = u in
BV (;R?) or, in other words,

AN SBV, (4 R?) C Ay,

cf (4.3).
Proof. In view of Remark 4.4 (¢), it holds that J, = Ule((), 1) x {a;} for some ¢ € N and a; € (—1,1)
with a; < as < --- < ag, and setting ag := —1 and apy1 := 1, gives
0
Du=Y" Ri(I+7ye1 ®e2)L?[((0,1) X (ai, ai41))
i=0
¢
+ Z[(RZ — Ri_l)xlel + (Riaieg + Iﬁj_ — R;_1a;e0 — ¢;)] X 627'[1 I_((O, 1) X {ai}), (425)
i=1

where v € L'(—1,1), and R; € SO(2) and ¢; € R? for i =0, ..., £.

We now perform a similar construction as in Lemma 4.5 in a convenient softer layer near each a;,
accounting for the possibility that one or more of the jump lines may not intersect Yo N €2, and
replacing R* by R;, R~ by R;_1, ¥+ by Riaies + 17", and ¥~ by R;_ja,es + ;.

To be precise, fix € > 0 and 7 € {1,...,¢}. Let S; € SO(2) be such that (i) S; &€ {R;_1, R;}; (i) S;e1
and Rje; are linearly independent; (iii) 6;, 6] € (—m,m) \ {0} are the rotation angles of ST R;_; and
ST'R;, respectively. By (ii), there exist a;, 8; € R such that

R;a;es + 1,[1;'_ — R;_1a,e0 — 1/}1_ =q;R;e1 + BiSiel. (426)

Moreover, we set

4o 45; 4 o+ 4 o+
+ 7 % + 7 ~+ [
== E = g (—) = —t (—)
esi eA e, ) He,i A +tan 2 He,i ) a 2

and let k. € Z be the unique integer such that a; € [k%, k.+1). Observing that a; # a; fori,j € {1,..., ¢}
with i # j and a; € (—1,1) for all i € {1,...,¢}, we may assume that the sets {e[x%, . + 1)},—1 . ¢ are
pairwise disjoint, and that Ule e[kl kt +1] € (—1,1) (this is true for sufficiently small £ > 0). Finally,

with 50 := =X — L and k71 := 1, let V. € L' (Q; R?*?) be the function defined by

Ri(I+ I1l.y, 61 ®ez) if € (0,1) x (eX+ ekl exlt) for some i € {0, .., £},
Ri(I+~F,e1 @ e3) if v € (0,1) x (32 + ekl, e +ekl) for some i € {1,..,0},
R;(I+ M;—@l ® e2) if 21 € (0,1) and @5 € (—Say + 32 +exl, 32 +exl)
for some ¢ € {1,..,¢},
V() := § Si(I+ il e1 @ e3) if 21 € (0,1) and x5 € (£ +erl, —SLaqg + 32 4 exl)
for some ¢ € {1, .., ¢},
Si(I+ 7z 61 ® e2) if 2 € (0,1) x (5 +erl, 2 +exl) for some i € {1,..,0},
Si(I+ fi_e1 ® ez) if 21 € (0,1) and 25 € (a1 +ekl, 2 +ekl) for some i € {1,..,0},
Ri_1(IT+ pfoie1® €2) if 21 € (0,1) and x5 € (ekl, %xl + ¢ekt) for some i € {1,..,(}.

As in the proof of Lemma 4.5, invoking [13, Lemma 3.1] on rank-one connections in M., , we find that
V. is a gradient field, meaning that there is u. € W1°°(;R?) such that Vu. = V.. Adding a suitable
constant allows us to assume that fQ U do = fQ u dx. By construction, (u.). is a uniformly bounded
sequence in W11 (Q;R?) such that u. € A, for all £ (see (4.2)). To prove that u. — u in BV (Q;R?), it
suffices to show that

Du, = Du in M(
The proof of (4.27) follows along the lines of (4.16)

differences. First, note that the conditions sng =—eA—1=—cX+ag, €K
e(kL +1) yield

Q; R?¥2), (4.27)
. For this reason, we only highlight the main

1 =1 =aqp 1, and exl < a; <

lim ex’ = a; for alli € {0,...,0+1}.

e—0
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HEI’ICG, ]]‘(0,1)><(6/\+5/€§,£/<;2+1) - ]]-(0,1)><(ai,ai+1) and 71(0,1)X(6A+5n§,5n2+1) - ’7]]-(071)><(ai,ai+1) in LI(Q) for
i €{0,..., + 1}. On the other hand, by the Riemann-Lebesgue lemma, we have 1.y, — X in L>®(R?);

thus,

oft
;li% (0.1) x (At ent enit) Vue(z)p(z) doe = gg% 0 Ri(I+ %]]"Eysoftel ® 62)]1(0,1)><(5A+sx§,sni+1)(p(x) dz

= / Ri(I+ v(z2)e1 ® e2)p(x) dz
(0,1)x(ai,ait1)

for all i € {0,...,£} and ¢ € Co(R). Arguing as in (1.19) with the change of variables z = % (z2 — ekl),
leads to

lim Vue(x)p(x) de

€20 J(0,1)x (en? , L2 w1 +er?)

1 %xl—i-ani -
= lim / / Ri,l(]l + tan( 5 )61 ® eg — ;%\el ® eg)go(x) dzodz;
0 Jerl

e—0

e—0

1 1 — .
— lim/ / Ri,l(%ﬂ—&— %tan (%)el ®eqy — e ®62>@($1,%Z+8/€2) dzdx,
0Jo

1 Xy 1
= —/ / Ri_1e1 ® eap(x1,a;) dzdxy = */ Ri 11161 ® eap(w1, a;) day
0 Jo 0

for all i € {1,...,£} and ¢ € Cy(Q2). Similarly, one can calculate the counterparts to (4.20)—(4.24) in the
7

present setting. In view of (4.25) and (4.26), we deduce (4.27), which ends the proof. O

Remark 4.8 (On the construction in Proposition 4.7). 'We observe that the sequence of Lipschitz
functions (u.). constructed in Proposition 4.7 to approximate a given u € AN SBV4 (;R?) is such that

1im/ [Vue| dz ~ |Du|(£2) + 2¢.
e=0 Jo

In other words, the asymptotic behavior of the total variation of (u.). incorporates a positive term that
is proportional to the number of jumps of the limit function. This fact prevents us from bootstrapping
the argument in Proposition 4.7 to generalize it to an arbitrary function in AN SBV (Q;R?).

An analogous statement to Proposition 4.7 holds in Al

Proposition 4.9. Let Q = (0,1) x (—1,1). Ifu € Al, then there exists a sequence (u.). C W' (Q;R?)
such that u. € A. for all e and ue = u in BV (Q;R?); that is,

A” C .Ao.

Proof. Let u € Al. Based on (1.13) and (2.4), we can split « into u = v + w, where
v(z) := R + Y,(x2)Re; + ¢ and  w(x) := 94(x2)Rey for z € Q, (4.28)

with R € SO(2), c € R?, 9, € Wh1(=1,1), and 95 € BV (—1,1) such that ¥, = 0. By construction, we
have that v € WH(Q; R?) with Vo(x) = R(I+ 9, (z2)e1 ® e2).
For every £ > 0, let v. € W1(Q;R?) be the function satisfying [, v- dz = [, v dz and

19/
Vo.(z) = R(]I + a(;’?) Ly, (z)e; ® 62). (4.29)
By the Riemann-Lebesgue lemma,
ve — v in WHH(Q;R?*?), (4.30)

On the other hand, applying Lemma 3.3 to 95, we can find a sequence (9.). C W1>(—1,1) such
that 9. = ¥, in BV(—1,1) and 9. = 0 on el;;; N (—1,1). Then, setting w.(z) := . (z2)Res + [, (w —
Je(x2)Req) da yields

ng(;v) = 19/5(.%'2)1%61 X eqg = 19/6(1.2)]]'5}/30& Re; ® es (4.31)
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and
w. = w in BV(Q;R?). (4.32)

We define the maps . := v, +w. in WH(Q; R?) for every e,
and infer from (4.29) and (4.31) that

Vue = R(I+ .61 ® e2),

where . (z) = (M + U.(22)) 1oy, (%) is a function in L'(Q) satisfying 7. = 0 in Yy, N Q. In
particular, u. € A, for all .
Combining (4.30) and (4.32) shows that u. — v +w = u in BV(Q;R?), which finishes the proof. [

Finally, we prove Theorem 1.3.

Proof of Theorem 1.3. In view of the discussion in Section 2.4, it suffices to prove the statement on a
rectangle of the form (cq,dq) X (aq,bq), where we recall (1.1) and (1.2). A simple modification of the
proofs of Propositions 4.3, 4.7, and 4.9 shows that these results hold for any such rectangles, from which
Theorem 1.3 follows. O

5. A LOWER BOUND ON THE HOMOGENIZED ENERGY

In this section, we present partial results for the homogenization problem for layered composites with
rigid components discussed in the Introduction. More precisely, we establish a lower bound estimate on
the asymptotic behavior of the sequence of energies (E;). (see (1.7)), and highlight the main difficulties
in the construction of matching upper bounds. Note that the following analysis is restricted to the case
S =e1.

As a start, we first give alternative representations for the involved energies, which will be useful in
the sequel.

Remark 5.1 (Equivalent formulations for E. and E). In view of the definition of A, (see (1.6)),
it is straightforward to check that the functional E. in (1.7) satisfies

/ V0|dul2 —1dx ifue A, / VIVu2 —2det Vu dz if u € A,
E.(u) =14 Jo =4Jo

00 otherwise, %) otherwise,

for u € LE(Q;R?). Similarly, according to Proposition 4.1, the functional E from (1.10) can be expressed
as

/ |v| dz + |D%u|(©2) ifu e A,
u) = [¢)

o0 otherwise,

E(

for u € L§(Q;R?).
We can now provide a bound from below on I'-liminf._,q F. and prove Theorem 1.2.

Proof of Theorem 1.2. For clarity, we subdivide the proof into two steps. In the first one, we establish the
compactness property. In the second step, we provide two alternative proofs of (1.12). The first proof is
based on a Reshetnyak’s lower semicontinuity result, while the second version is more elementary, relying
on the weak™* lower semicontinuity of the total variation of a measure. Either of the arguments highlights
a different feature of the representation of A.

Step 1: Compactness. Assume that (u.). C L(€2;R?) is such that sup, E.(u.) < co. Then, u. € A, and
sup, || Vue|| Li(o;r2x2) < oo. Hence, using the Poincaré-Wirtinger inequality, there exist a subsequence
(uc,)jen and u € L§(R?) N BV (4 R?) such that u., — u in BV(Q;R?). By Proposition 4.3, we
conclude that u € L} (2;R?) N A.

Step 2: Lower bound. Let (u:)e C L{(;R?) and u € L§(;R?) be such that u. — u in L'(Q;R?). We
want to show that
liminf E. (u:) > E(u). (5.1)

e—0
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To prove (5.1), one may assume without loss of generality that the limit inferior on the right-hand side
of (5.1) is actually a limit and that this limit is finite. Then, u. € A; and E.(u.) < C for all ¢, where
C > 0 is a constant independent of €. Hence, by Step 1, u. — v in BV (€;R?) and u € A.

Step 2a: Version I. We observe that the map R?*2 5 F s /|F|2 — 2det F is convex (see [18]) and one-
homogeneous. Consequently, it follows from Remark 5.1 and Reshetnyak’s lower semicontinuity theorem
(see [2, Theorem 2.38]), under consideration of our notation for the polar decomposition Du = g, |Dul|
introduced in Section 2.2, that

liminf B, (u;) = liminf/ V| Vue|? — 2det Vu, dz > / vV |gu)? — 2det g,, d|Dul. (5.2)
e—0 e—0 Q Q

Since Vu = R(I + ve1 ® e2) with R € BV (£;SO(2)) and (D*u)e; = 0 (see (4.5)), we have |Vu|? —
2det Vu = |y|? for £%-a.e. in Q and det g, = 0 for |D*ul-a.e. in 2. Thus,

/ vV |gu|? — 2det g, d|Du
Q
= / VIVul2 —2det Vu da +/ V|gul? — 2det g, d|D%u| (5.3)
Q Q

= [ 1l dz+ 1Dul(®) = B,
where we also used that the relation |g,| = 1 holds |D?ul-a.e. in .
From (5.2) and (5.3), we deduce (5.1).
Step 2b: Version II. By the definition of A, and (4.1),
V’U/g — RE + ’YEREel ® eg

with R. € L>(£;S0(2)) and 7. € L'(Q). Since |y.R.e1 ® ea] = |7e| due to |R.e1| = 1, the estimate
E.(uc) = [, 7| dz < C implies that (y:R.e1 @ ez). is uniformly bounded in L'(€; R?*?). Hence, after
extracting a subsequence if necessary (not relabeled),

(v-Ree1 ®e2) L2|Q = v in M(Q;R?*?)

for some v € M(;R?**?). Note further that the convergence Vu.£?|Q = Du in M(Q;R?>*2) along
with (4.5) yields also R. = R in L>®(Q;R?>*?), where R € L*°(Q;SO(2)) satisfies in particular that
(Vu)e; = Rey. Hence, we have

v=Du— RL*|Q = (yRe; ® e3)L?|Q + D*u,

where the last equality follows again from (4.5), and by the lower semicontinuity of the total variation,
liminf B, (u:) = hminf/ |7e| dz = liminf/ |[veR-e1 ® ea| dx
e—0 e—0 Q e—0 Q
> |v|(Q) = / |YRe1 ® ea| dz + | D u|(Q2) = / |v| dz + | D%u|(R2) = E(u). O
Q Q

Remark 5.2 (Discussion regarding optimality of the lower bound). (a) The lower bound (1.12)
is optimal in A N WH(Q;R?) N L(;R?) and, more generally (cf. also Remark 4.4), in the set Al N
L (Q;R?) introduced in (1.13). Precisely, we have
L(LY)-lim E.(u) = E(u) (5.4)
e—0
for all u € Al N Ly R?). In view of (1.12), the proof of (5.4) is directly related to the ability to
construct a recovery sequence. We detail two alternative constructions for u € Al in Section 6 below.
For illustration, we treat here the simpler special case where u € AN WH(Q; R?) N L(Q;R?).

If u € ANWEHQ;R?) N L{(Q;R?), then Vu = R(I + ve; ® e3) for some R € SO(2) and v € L1(Q)
such that 91y = 0 (see Remark 4.4 (a)). As in the proof of Proposition 4.9, we take (u:). C WH1(Q;R?)N
L§($%;R?) such that Vue = R(I + $ 1.y, €1 ® e2) for all e. Then, by the Riemann-Lebesgue lemma,
Ue = win BV (;R?) and lim._,¢ E.(u:) = E(u).

(b) The question whether (5.4) holds for a larger class than Al is open at this point. We observe
that the gradient-based constructions in Lemma 4.5, Remark 4.6 (i)—(ii), and Proposition 4.7 yield upper
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bounds on the I'-lim sup, which, however, do not match the lower bound of Theorem 1.2. This indicates
that, in general, a more tailored approach will be necessary.

(c) The upper bounds on the I'-limsup of (E.). resulting from Lemma 4.5, Remark 4.6 (i)—(ii),
and Proposition 4.7 can be quantified. As previously mentioned, the constructions in Remark 4.6 (iii)
and Proposition 4.9 are even recovery sequences. This is not the case for the general construction in
Lemma 4.5 and for those highlighted in Remark 4.6 (i)—(ii). In the following, we suppose that u €
AN SBVL(Q;R?) N L{(Q; R?) has a single jump as in the statement of Lemma 4.5; i.e.,

w() = Lo,1)x(0,1) (@) (BT (22)2 + 97 (22)) + L(0,1)x(~1,0) (2) (R™ (x2)x + ¢~ (22))

with R* € SO(2) and 1* € R2. Then,
1
B = [ (R = R )ewn + (6 —47)| dav

0
which can be estimated from above by

1

E(u) <|Rte; — Rfel\/ xyday + [t — | < T4t =), (5.5)
0

For the sequence (u.). constructed in Lemma 4.5 (and Lemma 4.7), we obtain, recalling (4.13), that
lim B.(u:) = fal +18 +2 > lal + |8 + 1 > E(u).
€

Regarding the construction of (u.). in Remark 4.6 (i), it follows that
lim E.(u:) = o + |8 — 1] + 1.
e—0

This limit is strictly greater than E(u) as we will show next. If |3 — 1| > || (i.e., if 8 < $), this is an
immediate consequence of (5.5). For % < B <1, we use that T — ¢~ = aRte; + SR e; yields
1

1 B
E(u)g/o |x1+a\dx1+/0 (ﬁ—xl)dxl—l—/ﬁ(xl—ﬁ)d;vl<1+|a|+ﬁ(ﬂ—l)<1—|—|a|+|ﬁ—1|.

If 8 > 1, we note that lim._,o E-(us) = |a| + 3, and subdivide the estimate of E(u) into three cases.
Recalling the assumption RT # +R~, we set ¢ := RTe; - R7e; € (—1,1) to obtain

E(u):/O \/(331 +a)2+ (8 —m21)2+2c(z1 +a)(B — 1) dr;.

Then, we have for @ > 0 that

1
E(u) < / V(@ +a)2+ (B —21)>+2(x1 + o) (B — 1) doy = |+ 8] < |af + 5,
0
for « < —1 that
1 1
E(u) < / \/(zl +a)Pl+B—-—21)2 2@+ a)(f—x1)dx, = / (—2x1 — a+ B) dzy
0 0

=—-l—-a+f<—-a+p=|a+5,
and for —1 < o < 0 that

—« 1
E(u)</0 (—2x1—a+ﬁ)dx1+/ o+ Bl dzy =a+B+a? < —a+B=]|al+ B

Summing up, we have shown that in the context of Remark 4.6 (i),
lim F.(u:) > E(u).
e—0

Finally, we consider the sequence (u¢). constructed in Remark 4.6 (ii). Then,
lim B, (ue) = o — o] 48] + 1.

and since R* = R~ in this case,

E(u) = v/a? + 2 + 2afRe, - Se,.
Using the fact that Re; - Se; € (—1,1), it can be checked that, also here, we have
;1_1)% E.(uc) > E(u).
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6. HOMOGENIZATION OF THE REGULARIZED PROBLEM

This section is devoted to the proof of our main I'-convergence result, Theorem 1.4. We first provide an
alternative characterization of the class Al of restricted asymptotically admissible deformations introduced
in (1.13).

Lemma 6.1. Let Q = (0,1) x (=1,1). Then, Al as in (1.13) admits the representation
Al = {u e BV(;R?): Vu = R(I + ve; ® e3) with R € SO(2), v € L*(Q) such that &, = 0,
D?u = (o ® e2)|D*u| with o € L‘leul(Q;RQ) such that (6.1)
lo| =1 and g||Rey for |D?ul-a.e. in Q}.
Proof. Let Al denote the set on the right-hand side of (6.1). Arguing as in the beginning of the proof
of Proposition 4.9 (precisely, with the notation of (1.13), we set y(x) = ¢, (x2) for € Q, and observe
that (D%u)es = £1](0,1) ® D*J,Re;) and exploiting the polar decomposition of measures (cf. (2.2) and

(2.3)) gives rise to All ¢ Al Conversely, the inclusion Al c A, which follows from (4.5), along with (4.6)
yields that Al c Al 4

We are now in a position to prove the I'-convergence of the energies (E5). in (1.14) as ¢ — 0.

Proof of Theorem 1./. As before in the proofs of Theorems 1.1 and 1.3, one may assume without loss of
generality that Q = (0,1) x (—1,1). We proceed in three steps.

Step 1: Compactness. Let (u.). C WHH(Q;R?) N L{(Q;R?) be a sequence such that FS(u.) < C for all
€ > 0. Then, because u. € A, for all ¢,

Vue = R.(I+ .61 ® eg) € L (Q; R**?), (6.2)

and |[ve||z1(q) < C for every € > 0. Additionally, since each map R. takes value in the set of proper
rotations, it holds that ||R5||2L°°(Q-]R2><2) = 2 for all ¢ > 0. Consequently, along with the Poincaré-Wirtinger

inequality,
[uellwiire) < C.
We further know that H@wﬂ@vlmm&% = ||R561||€V1,p(Q;R2) < C/§ for any e. Thus, after extracting
subsequences if necessary, one can find u € BV (;R?), v € M(Q2), and R € W1P(Q; R?*2) such that
u. —u  in BV(Q;R?), (6.3)
VL 2y in M(Q),
R. —~ R in WHP(Q;R>*?). (6.4)

Recalling the compact embedding WP (Q) << C%%(Q) for some 0 < a < 1 — %, it follows even that
R € WhP(Q; S0(2)) N €O (0 R2¥?) and
R. — R in L*™(Q;R**?), (6.5)

As a consequence of Proposition 4.3, it holds that u € A. From Proposition 4.1 and Alberti’s rank
one theorem (cf. Section 2.1), we can further infer that R € SO(2), v € L'(Q) with 81y = 0, and that
Du satisfies

Vu=RI+ve; ®ez) and Du= (0®e3)|D’ul, (6.6)

where o € L|Dsu‘(Q;R2) with |g| = 1 for |D*ul-a.e. in Q. To conclude that u € All, in view of Lemma 6.1,
it remains to show that

o||Re1 |D?ul-a.e. in Q. (6.7)

To prove (6.7), we first observe that for every e, the identity (Vu.)es = Rees + v Rce1, which follows
from u. € A., yields

/Q[(Vus)ez “Reeg —1]pdz =0 (6.8)
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for all p € C*(2). Thus, by (6.3) and (6.5) in combination with a weak-strong convergence argument,
taking the limit ¢ — 0 in (6.8) leads to

/Qap dzr = /ngReg- d((Du)es) = /QapReg (Vu)eg dx+/ﬂ<pReg- d((D%u)eq)

for every ¢ € C2°(Q2). Next, we plug in the identities (Vu)es = Reg + yRey and (D*u)es = p|D*u| (see
(6.6)) to derive that

0= / @Res - d((D%u)eq) = / wRes - 0 d|D%u|
Q Q

for every ¢ € C°(Q)), which completes the proof of (6.7).

Step 2: Lower bound. Let (u.) C L{(;R?) and u € Ly(Q;R?) be such that u. — u in L*(;R?). We
want to show that s s
E°(u) < ligri)iélf E? (ue). (6.9)
To prove (6.9), we proceed as in the proof of (5.1), observing in addition that

hmlnfSHé)lusHWl P(QR2) = liIErljélféHRselel p(QR2) = S||Re1||hyrp (QR?) = = 0|9

due to (6.2) and (6.4) with R € SO(2).
Step 3: Upper bound. Let u € L§(Q;R?)NAll. We want to show that there is a sequence (u.) C L§(Q; R?)
such that u. — u in L'(Q;R?), and

E(u) > limsup E° (u.). (6.10)

e—0
Let (ue)e € WHL(Q;R?) N LE(Q; R?) be the sequence constructed in the proof of Proposition 4.9, that
is, u. € A, for every ¢ with

Ve () = R(H + (19;(;2) n ﬁ;(xz))ngym (z)e1 ® ez),

where (9.). C Wh°(—1,1) satisfies

lim |19 | dze = |D*Y|(—1,1) = |D*u|(Q),

e—0

and u. = u in BV (Q;R?). Recalling that ¢ = ¢/, + 9, = 9", we have

EAC)] '
s £2uc) < lig ([ 12020 ) ot [ joGaa)l ot S1R N
- / [0/ (x2)] do + [ D*u () + 62| = E°(u),
Q
which proves (6.10) and completes the proof of the theorem. (]

Remark 6.2 (On compensated compacteness). We point out that if u. € A., with Vu, = R.(I+
Yeer @ ez) for R. € L®(Q;80(2)) and 7. € LY(Q) with 7. = 0 on €Yy N, is such that u. = u in
BV(Q;R?), and if in addition,
R. = R in C(§;R**?),
then a weak-strong convergence argument implies that
LA = [(Vu5)62 . R€€1]£2 kY X (Du)es - Rey in M(Q).

However, if continuity and uniform convergence of R, fail, the limit representation above may no
longer be true in general, even if R € C(Q; SO(2)). To see this, let us consider the basic construction in
Remark 4.6 (ii). In this case,

VLD (a+ B)H((0,1) x {0})  in M(Q), (6.11)
whereas
(Du)es - Rey = [(¢p" —¢7) - RedJH | ((0,1) x {0}). (6.12)

Recalling that ¢+ — ¢~ = aRe; + $Sey, the quantities in (6.11) and (6.12) can only match if Re1||Seq,
which contradicts the assumption that Re; and Se; are linearly independent.
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The role of the higher-order regularization in (1.14) is exactly that it helps overcome the issue discussed
above. In fact, it guarantees the desired compactness properties for sequences of deformations with
equibounded energies.

To conclude, we present an alternative construction for the recovery sequence in Step 3 of the proof
of Theorem 1.4.

Alternative proof of Theorem 1./. As before, we may assume without loss of generality that Q = (0,1) x
(—1,1). Moreover, the compactness property and lower bound can be studied exactly as in the proof of
Theorem 1.4 above.

We are then left to show that given u € L}(€;R?) N Al there exists a sequence (u.). C L}(;R?)
satisfying u. — u in L'(Q;R?) and (6.10). We will proceed in three steps, building up complexity.

Step 1. We assume first that u € L3(;R?) N Al is an SBV-function with a single, constant jump line
at 9 = 0.

This case can be treated as highlighted in Remark 4.6 (iii). Let R € SO(2), v € L*(Q2) with ;v = 0,
and ¢+, = € R? with (p* —+7)||Re; be such that

Du=R(I+ve; ® 62)£2 [+ ('¢+ —P7)® 62,7"'[1 L((0,1) x {0}).
Note that setting ¢ := sign((¢yT — ¢ 7) - Req) € {£1}, we have ¢+ — ¢~ = 1|y — ¢~ |Re; and

| Dul(Q) = [Dul ()] + [D*ul(Q)| = [D*ul () + |D?ul( / [R(I+ ve1 ® e2)| dw + [p — 7.
For each € > 0, set 7. := LIDjuEI(Q) = quﬁ;fi‘
we can find u. € L}(Q;R?) N A, such that

i, = | B+ Tee1 ®e2) if 2 € (0,1) x (0, Ae),
o R(I+ 1.y, ,noe1 ®ez) otherwise,

. Arguing as, for instance, in the proof of Lemma 4.5,

and u. — u in BV (€;R?). Next, we show that this construction yields convergence of energies. Indeed,
we have

lim E°(u.) = lim (/ |7.| d +/
e—0 =0\ J(0,1)x (0,)¢) Q\(0,1)x (0,\e)

=0 =+ [l de+a10] = 1D7ul@)+ [ bl de+al0] = B (w).

7
A

]IEY:;oft dz + 5||R€1 |€V1,p(Q;R2)>

Step 2. We assume next that u € L(Q;R?) N Al is an SBV-function with a finite number of horizontal
jump lines and with constant upper and lower approximate limits on each jump line.

In this setting, Vu = R(I+ve, @ e2) with R € SO(2) and v € L'(Q) with 8y = 0, J, = J:_,(0,1) x
{a;} with/ e Nand -1 <a; <ap < -+ <ay <1, Diu= Zle(t/ij — 7)) ®@eaH[((0,1) x {a;}) with
YE € R? satisfying (¢ —4;)||Rey for all i € {1,...,£}, and Du = 0. Hence,

£
Du=R(I+ve1 @ e2)L?[Q+ Y (&7 —17) @ eaH'[((0,1) x {a;}) (6.13)

i=1

and
| D*ul(Q Z liF — 7).

As in the proof of Proposition 4.7, the idea is to perform a construction similar to that in Step 1
around each jump line but accounting for the possibility that one or more of the jump lines may not
intersect eYgor N €.

Fix i € {1,...,0} and £ > 0, and let k% € Z be the integer such that a; € e[xl,xL + 1). Since a; # a; if
i # j, we may assume that the sets {s[ns, k% +1)}; are pairwise disjoint for all € > 0 (this is true for all
¢ > 0 sufficiently small). Then, we take u. € L}(Q;R?) N A. such that

v R(I+ 7le; ® eq) in (0,1) x e(k%, kL + N),
U- =
) R(I+ Y 1.y, noe1 ®ez) otherwise,
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. +
where 7! = Ll% with ¢; := sign(();” — ;) - Re1) € {£1}. As in the proof of Proposition 4.7, we
obtain that

e—0

4 1
lim/ Vuep doz = Z/ il — 7 |(Rer ® ea)p(w1,a;) day +/ R(I+ve1 ®@ez)p dz (6.14)
@ =170 Q

for all ¢ € Cp(£2). Recalling (6.13) and the equalities ;" — ;= ;|1 — 9 |Rey for i € {1,..., ¢}, (6.14)
shows that Du. = Du in M(; R?*?). Hence, u. — u in BV (Q;R?).

Finally, proceeding exactly as in Step 1, we conclude that this construction also yields convergence of
the energies. This ends Step 2.

Step 3. We consider now the general case u € L§(Q;R?) N Al

Similarly to the beginning of the proof of Proposition 4.9 (see (4.28)), we can write

u(r) = z1Rey + do(x2) + ds(12), T € Q,

where ¢, (22) := z2Rea + V4(x2)Rer + ¢ and ¢4(w2) := J4(x2) Rer. Note that ¢, € Wh(—1,1;R?) and
¢s € BV (—1,1;R?) is the sum of a jump function and a Cantor function; in particular, ¥ = 9/, and
D¢ = D3¢ (see (2.4)). Moreover,

Vu=Re; ®e1+ Vo, @ex = R(I+ 31 @ez) = RI+9e; @ ey),
D*u = L£'](0,1)®D¢s,, (6.15)
|D*ul| 2 = Lt [(0,1)®|Dgs.

By Lemma, 6.1, there exists o € L|1D5u\(7]" 1;R?) with |g| = 1 such that

D*u = (p®e)|D’u|l and o= (o Re1)Re;. (6.16)
Let g, € C*°([—1,1]) be such that
lim / lon(z2) — o(z2)| d|D%u|(z) = 0. (6.17)
h—o0 0

Since |g| = 1, we can choose such a sequence so that |op| < 1.
Due to the properties of good representatives (see [2, (3.24)]) and [19, Lemma 3.2], for each n € N,
there exists a piecewise constant function ¢,, € BV (—1,1;R?), of the form

2%
On = Z b?XA;H
=0

where £, € N, (b)), C R?, and (A7)~ is a partition of (—1,1) into intervals with sup A? = inf APy,
satisfying
L
Jp, = U{a?} with a}' :=sup A} 4,

=1
nh_?;o ||¢n - ¢S||L1(71,1;]R2) =0, (6'18)
lim [Dg,|(~1,1) = lim [D7¢,[(=1,1) = [Dey|(~1,1) = | D*u/(). (6.19)

Indeed, (6.18) and (6.19) mean that (¢, )n,en converges strictly to ¢, in BV (—1,1;R?), which implies
that

Dl = Doy in M(~1,1), (6.20)
see [2, Proposition 3.5].
Finally, for n € N, we define
’Ufn(x) =z Rey + (ba(xQ) + (bn(xZ) +cn, TE Q7

where ¢, € R? are constants chosen so that fQ u, dz = 0. Note that ¢, — 0 as n — oo by (6.18).
Moreover, for each n € N, the map u,, € L}(£2;R?) has the same structure as in Step 2 apart from the
condition (u;} — u,,)||Re1 on J,,, which a priori is not satisfied. Choosing (' := gp(al') - Rey, we can

n?
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invoke Step 2 up to, and including, (6.14) to construct a sequence (u™"). C L}(€;R?)NnW11(Q;R?) that
satisfies for all ¢ € Cy(£2),

glﬁ}) Vulo dz = Z/ on(al) - Rey)|by — bi 1|(Re1 ® e2)p(x1,al) day
(6.21)

R(I+ 9/ (z2)e1 ® e2)p d.
Q

We conclude from (6.15), (6.16), (6.17), (6.18), (6.20), and the Lebesgue dominated convergence theorem
that

Tim_im. Z / on(al) - Rey)[bl — b7, |(Rey @ e2)g(wr, a?) day

= lim lim / / (on(s) - Rex)(Rer @ ea)p(ar, 22) d| Db () ey
h—oon—o0 Jq 1

(6.22)
1
= lim / / (onla2) - Rea)(Res @ ea)p(o2) 4| Do ()

h—o0 Jo

- /Q (0(x2) - Rex)(Rer ® e)p d| Dol = /Q (0(z2) ® e2)p d|D*u| = / o dD*w.

Recalling that |gp(al') - Re1| < 1, we can further argue as in Steps 1 and 2 regarding the convergence
of the energies to get

e—0

lim sup BS (") < B (u,) /w’ 22)| dz + | D6, (—1,1) + 8]0 (6.23)

:/ 19 (22)] dz + [ DI | (=1, 1) + 519, (6.24)

Letting n — oo and h — oo in (6.21) and (6.23), from (6.22), (6.19), and (6.15), we conclude that for
all p € Co( ),

lim lim lim [ Vu™"p dz = / ¢ dDu, (6.25)

h—oon—o00e—0 Jq Q

lim sup lim sup hmE‘s( nhy < / [0 (2)| dz + |D*u|(Q) + 6|Q| = E°(u). (6.26)
h—o0 n—oo &7 o)

Owing to the separability of Cy(2) and (6.25)—(6.26), we can use a diagonalization argument as that
in [25, proof of Proposition 1.11 (p.449)] to find sequences (h.). and (n.). such that k., n. — coase — 0
and 1, = ul=te € LE(Q;R?) N W1(Q;R?) has all the desired properties. O
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Graphene samples are identified as minimizers of configurational energies featuring both
two- and three-body atomic-interaction terms. This variational viewpoint allows for a
detailed description of ground-state geometries as connected subsets of a regular hexa-
gonal lattice. We investigate here how these geometries evolve as the number n of carbon
atoms in the graphene sample increases. By means of an equivalent characterization of
minimality via a discrete isoperimetric inequality, we prove that ground states converge
to the ideal hexagonal Wulff shape as n — co. Precisely, ground states deviate from such
hexagonal Wulff shape by at most Kn3/4 + o(n3/*) atoms, where both the constant K
and the rate n3/4 are sharp.
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1. Introduction

The recent realization of high crystalline quality graphene samples at room tem-
perature can be regarded as a breakthrough in materials science and has led to
the attribution of the 2010 Nobel Prize in physics to Geim and Novoselov. The
fascinating electronic and mechanical properties of single-atom-thick carbon sur-
faces are believed to offer unprecedented opportunities for innovative applications,

2277



2278 E. Davoli, P. Piovano & U. Stefanelli

ranging from next-generation electronics to pharmacology, and including batteries
and solar cells. New findings are emerging at an always increasing pace and involve
thousands of researchers worldwide cutting across materials science, physics, and
chemistry, extending from fundamental science to novel applications.

The stand of the mathematical understanding of graphene is comparably less
developed. All available results are extremely recent and concern the modeling
of transport properties of electrons in graphene sheets,?%11:14.23,33.34 homogeniza-

732 atomistic-to-continuum passage for nanotubes,'? geometry of monolayers

tion,
under Gaussian perturbations,'® external charges?® or magnetic fields,? combina-
torial description of graphene patches,?? and numerical simulation of dynamics
via nonlocal elasticity theory.*3 Remarkably, the determination of the equilibrium
shapes and the Wulff shapes of graphene samples and graphene nanostructures is
still a challenging problem.5:17

Graphene ideally corresponds to a regular, two-dimensional, hexagonal arrange-
ment of carbon atoms. In the bulk of a graphene sample each carbon atom is cova-
lently bonded to three neighbors. These covalent bonds are of sp?-hybridized type
and ideally form 27/3 angles in a plane. In order to describe these bonds, some
phenomenological interaction energies, including two- and three-body interaction
terms, have been presented and partially validated.?”38 The arrangement of car-
bon atoms in the two-dimensional crystal emerges then as the global effect of the
combination of local atomic interactions, and can be seen as the result of a geome-
tric optimization process: by identifying the configuration of n carbon atoms with
their positions {z1,...,2,} C R?, one minimizes a given configurational energy
E :R* — RU {oo} and proves that the minimizers are indeed subsets of a regular
hexagonal lattice. The configurational energies for carbon feature a decomposition
E = E5 + FE3 where E5 corresponds to an attractive-repulsive two-body interac-
tion, favoring some preferred spacing of the atoms, and Fs encodes three-body
interactions, expressing the specific geometry of sp?-covalent bonding in carbon.

The above-variational viewpoint brings the study of graphene geometries into
the realm of the so-called crystallization problems. A first analysis in this direction is
in Ref. 24, where Fj5 is assumed to be of Lennard-Jones type and E3 favors 27/3 and
47 /3 bond angles. The focus of Ref. 24 is on the thermodynamic limit: as n — oo the
minimal energy density is proven to converge to a finite value, corresponding indeed
to the configuration in which the atoms arrange themselves in a suitably stretched
hexagonal lattice. Analogous thermodynamic-limit results are obtained in Ref. 13,
where nonetheless the term FEs favors m bond angles. The crystallization problem
for a finite number of carbon atoms is studied in Ref. 31 where the periodicity
of ground states as well as the exact quantification of the ground-state energy is
obtained, together with the discussion of carbon nanostructures such as fullerenes
and nanotubes, see also Refs. 27, 28, 31. The reader is referred to Refs. 18, 40
and 41 for one-dimensional crystallization results, to Refs. 22, 35, 39 and 42 for
the two-dimensional case either in the finite and in the thermodynamic-limit case,
and to Refs. 29 and 30 for crystallization in the square lattice. Results on the
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three-dimensional thermodynamic limit are available in Refs. 15 and 16, and a
recent review on the crystallization problem can be found in Ref. 4.

Our analysis moves from the consideration that, as the configurational energy
favors bonding, ground states are expected to have minimal perimeter, since bound-
ary atoms have necessarily less neighbors. These heuristics are here made precise
by providing a new characterization of ground states based on a crystalline isoperi-
metric inequality. Indeed, we prove in Proposition 3.4 below that ground states
correspond to isoperimetric extremizers and we determine the exact isoperimetric
constant. Analogous results are obtained in Refs. 29 and 30 for the square lattice,
and in Ref. 8 for the triangular lattice.

The minimality of the ground-state perimeter gives rise to the emergence of
large polygonal clusters as the number of atoms n increases. Indeed, one is inter-
ested in identifying a so-called Wulff shape to which all properly-rescaled ground
states converge. This has been successfully obtained for both the triangular?8:36
and the square lattice,2?3% where ground states approach a hexagon and a square,
respectively, as n — o0o. Quite remarkably, in both the triangular and the square
case it has been proved that ground states differ from the Wulff shape by at most
O(n3/ 4) atoms, this bound being sharp. This is what it is usually referred to as the
n3/*law.

The central aim of this paper is to establish the Wulff shape emergence for

3/4_law in this setting. Precisely, we pro-

graphene samples and to investigate the n
vide sharp quantitative convergence results for ground states GG, to the correspond-
ingly rescaled Wulff shape, in terms both of the Hausdorff distance and of the flat
distance of the empirical measures ug, , to the measure with density %XWa ie.
the rescaled characteristic function of the (rescaled) hexagonal Wulff shape.

With respect to previous contributions to this subject the novelty of our paper
is three-fold. First, we provide a complete characterization of ground states, for all
numbers of atoms, as well as a detailed description of their geometry. In particular,
as a byproduct of our isoperimetric characterization we are able to investigate the
edge geometry of graphene patches. Graphene atoms tend to naturally arrange
themselves into hexagonal samples whose edges can have, roughly speaking, two
shapes: they can either form zigzag or armchair structures (see Refs. 5, 19, 26 and
below).

We prove here that hexagonal configurations having armchair edges do not
satisfy the isoperimetric equality, whereas those with zigzag edges do (see Defi-
nition 4.1). Namely, we have the following.

Theorem 1.1. (Zigzag-edge selectivity) Zigzag hexagons are ground states, arm-
chair hexagons are not.

This provides an analytical counterpart to the experimental results in Ref. 26,
confirming the zigzag-edge selectivity in the growth process of graphene samples.

The second main result of the paper is the discussion of the Wulff shape emer-
gence in the hexagonal system, which is not a simple Bravais lattice but rather a
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so-called multilattice. We relate the Wulff shape emergence with the isoperimetric
nature of ground states. Our result reads as follows.

Theorem 1.2. (Emergence of the Wulff shape) Let G,, be a sequence of ground
states in the hexagonal lattice. Let W, be the zigzag hexagon centered in the origin
and with side 7, (see (1.6) below). Then, there exists a suitable translation G|, of
G,, such that

GAW,| < Kn®/* +o(n®/*), (1.1)
where |- | is the cardinality of the set, and
27/4

In addition, there holds:
dy (G, Wa) < O(n'/Y),
lpcy, — pw,l| < Kn='* +o(n™1/*), (1.3)
Gy, — pw,llp < Kn=V* +o(n=1/4), (1.4)

*—

Hay, /3

xw weakly® in the sense of measures,

and
‘ par — iXW < 2Kn V4 4 o(n=1/4) (1.5)
n \/g - — ’
where dy is the Hausdorff distance, || - || is the total variation, and || - || is the flat

norm (see (2.4)).

Our third main result concerns the sharpness of the n3/4-law (1.1). We show
not only the sharpness of the convergence ratio, but also of the constant K in front
of the leading term. We have the following.

Theorem 1.3. (Sharpness of the n3/4-law) There exists a sequence of integers n;
such that for every sequence of ground states {G,,,} properties (1.1), (1.3) and (1.4)
hold with equalities.

Our proof strategy differs from that of Refs. 29 and 36, as it is not based on
configuration rearrangements. The argument here moves from the control of the
radius rg, of the maximal hexagon Hg, contained in a ground state G,, with n
atoms. In particular, we define

rn = min{rg, :G, is a ground state with n atoms}, (1.6)

and we show that every ground state (up to translation) consists of the n-Wulff
shape W,, with comparably few extra atoms, see Sec. 6. Precisely, we prove a delicate
estimate of the form r,, ~ n'/2 which entails that the atoms of G,, which do not
belong to W, are at most O(n3/4). An outcome of our proof is that the convergence
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rates and the constants above are sharp. Indeed, we explicitly construct a sequence
of integers such that every corresponding sequence of ground states attains the
right-hand sides of (1.1), (1.3) and (1.4).

In the triangular lattice, the existence of a sequence of ground states whose
deviation from the Wulff shape is exactly of order n®/* was exhibited in Ref. 36 with
no specific control on the convergence constants. With a different implementation
of the method discussed here, we revisited the triangular-lattice case in Ref. 8§,
obtaining explicit, sharp convergence constants.

The paper is organized as follows. In Sec. 2, we introduce some notation and a
few definitions. In Sec. 3, we highlight the isoperimetric nature of ground states.
Section 4 contains a discussion of the equilibrium shapes of graphene samples, and
a proof of the fact that armchair hexagons are not ground states. In particular, we
prove there Theorem 1.1. In Sec. 5, we provide delicate lower and upper bounds for
ryn. Section 6 is eventually devoted to the proofs of Theorems 1.2 and 1.3.

2. Notation and Setting of the Problem
Let the hezxagonal lattice be given by
L:={mt; +nty +cw:m,n € Z, c € {0,1}},

s ()

Note that the minimal distance between points in £ is 1 (see Fig. 1).
We denote a configuration of n atoms by C,, := {x1,...,2,} € R?" the distance
between two atoms, x; and x;, by ¢;;, and the counterclockwise-oriented angle

with

between the two segments x; —x; and z —x; by 0;;,. The energy of a configuration
C), is defined as

E(Cn) = EQ(Cn) + E3(Cn) = % ZUZ(gij) + Z v3(0ijk), (21)

17 ] (i,5,k)EA
where v : [0,00) — [—1,00] and vz : [0,27] — [0,00) are the two-body and the
three-body interaction potentials. We notice that the energy is invariant under
rotations and translations. Two atoms z; and x; are said to be bonded, or there
is an (active) bond between z; and z;, if 1 < £;; < /2. The index set A in (2.1)

Fig. 1. An example of a subset of L.
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is defined as the set of all triples (i, 7, k) for which the angle 6;;; separates two
active bonds. We will always assume that v2(1) = —1 and that vy (¢) vanishes for
¢ > /2 (see below). We work under the assumption that vz reaches its minimum
value only at the angles 7/3 and 27/3, and that ground states are subsets of the
hexagonal lattice. We use the standard notation for the right- and left-continuous
integer-parts: |z|:=max{z € Z: z<z} and [z]:=min{z € Z : © <z}, respectively.

Under suitable assumptions on the potentials vy and wvs, it was established in
Ref. 31 that all ground-state configurations are (isometric to) subsets of the hexa-
gonal lattice £ and that the value of the energy for every ground state with n

e {37" : \@J | (2.2

From this point on all configurations are hence seen as subsets of L.

atoms is given by

The bond graph of a configuration (), is the graph consisting of all its vertices
and active bonds. For every atom x; € C),, we indicate by b(z;) the number of
active bonds of C,, with an endpoint in z;. Denoting by B(C),) the total number
of bonds in C,,, there holds

1 n
B(Cn) =5 > b(wi).
i=1

A configuration C,, is said to be connected if for every two atoms y1,y2 € Cp,
there exists a collection of atoms x1,...,x; € C, such that y; is bonded to =1, x;
is bonded to y2, and every atom x;, with 2 < 5 <4 —1 is bonded both to z;_; and
to zj4+1. We call minimal simple cycles of a configuration all the simple cycles in
the graph that are hexagons of side 1.

The area A(C,,) of a configuration C,, is given by the number of minimal simple
cycles of C,. Denoting by F(C,) C R? the closure of the union of the regions
enclosed by the minimal simple cycles of C,,, and by G(C,,) C R? the union of all
bonds which are not included in F'(C,,), the perimeter P of a configuration C,, is
defined as

P(C,) :=HYOF(Cy)) + 2H (G(C)),

where H! is the one-dimensional Hausdorff measure. As already observed in Ref. 29,
there holds

P(Cn) = limy H(O(OF(Cp) UG(Cr) + Be)),
where B, = {y € R?||y| < e}.
With a slight abuse of notation, the symbol || will denote, according to the
context, both the absolute value of a real number and the cardinality of a set.
We will often use the notion of edge boundary © of a configuration with respect
to a reference lattice: this is the union of unit segments in the reference lattice that
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are not included in the graph of C,, but share one and only one endpoint with C,,,
O(Cy) = {(z,y) € (L)*:2 € Cp,y ¢ Cp }.

The edge perimeter of a configuration €, will be defined as the number of segments
belonging to its edge boundary.

For every configuration C), := {x1,...,x,} in L, we denote by uc, the empirical
measure associated to the rescaled configuration {x1/\/n,...,x,/\/n}, that is,
1
Hey =~ > 00y (2.3)
i

Given a Lebesgue measurable set A C R?, we will designate by £2(A4) its two-
dimensional Lebesgue measure. For any bounded Radon measure p, the symbol
|| || will represent its total variation in R?, whereas ||u||r will be the flat norm of
1, defined as

|| pt]| p := sup {/ wdu:  is Lipschitz with ||g0||W1,oo(R2) < 1}. (2.4)
RQ

The set of bounded Radon measures on R? will be denoted by M (R?).

3. Discrete Isoperimetric Inequality

In this section, we prove that connected configurations satisfy a discrete isoperi-
metric inequality, and we characterize ground states as configurations realizing the
isoperimetric equality. We first deduce some preliminary relations between the area,
the perimeter, the edge perimeter, and the energy of configurations. Let C), be a
configuration. Then
1 n
E(Cn) = =B(Cp) = —35 > b(x).

=1

Since every atom in £ has exactly three bonds, we have

n

O(C) = (3 = b)), (3.1)

i=1
and the energy and the edge perimeter of configurations are related by

E(C,) = —gn + %|@(Cn)|. (3.2)

Recalling that every minimal simple cycle of (), consists of six bonds, we have
6A(Cy,) =2B(C,NF(C,)) — B(C, NOF(Cy))
= —2B(C,NF(C,)) —HYOF(C,)).
On the other hand,
HY(G(Ch)) = B(C, NG(Cy)) = —E(C, NG(Cy)).
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Hence, we obtain
P(C,) = H'(OF(Cy)) + 2H (G(C,))
— —2B(C, N F(C,)) — 6A(C,,) — 2E(C,, N G(C,,))
= —2B(C,,) — 6A(Cy),
that is
B(Cy) = —3A(Cy) — %P(Cn). (3.3)

In conclusion, we can express the energy of a hexagonal configuration C),, as a
linear combination of its area and its perimeter. Likewise, in view of (3.2), the edge
perimeter satisfies

|®(Cn)| =3n— 6A(Cn) - P(Cn)
The following result is a direct corollary of Theorem 7.3 (p. 142) in Ref. 21.

Proposition 3.1. There exists a total order 7 : N — L such that for all n €
N the configuration Dy, defined by D, = {x,(1),...,Z;(n)} (which we call daisy)
minimizes E over all configurations with n atoms, i.e.

E(D,) = min E(C,) = e, (3.4)

C,CL

where e, is the quantity defined in (2.2).

The total order in Proposition 3.1 is nonunique. For the sake of definiteness we
fix here our attention on a specific order 7, as described in Ref. 31. For n = 6k?2,
k € N, the sequence { Dg2} is defined inductively as follows: Dg is a minimal simple
cycle in £, and D4 is obtained by externally attaching to all bonds of Dg another
hexagon. Dgy2 is then defined recursively (see Fig. 2).

® ]
[ ] o L]
® ] ] | ) ] |
5 4 5 4
( [§ 3@ o @6 3@ L]
1 2 1 2
® @ ] | ] |
11
® o7 10@ L ]
8 9
® L ]

Fig. 2. The daisies Dg and D24 and the total order 7.
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For k,m € Ny and 0 < m < 12k(k+1), Dgg2.,, is constructed as in the proof of
Proposition 5.1 (Step 1) in Ref. 31. In view of Proposition 3.1, it is always possible
to add one atom to a daisy D,, so that the new configuration with n + 1 points is
still a ground state.

To every configuration C),, C L, we associate a weight function

Ag, : Cp, — {0,1,2},
defined as
Ac, () ={ye Cn:(x,y) € C,, x Cp, y <; x},

for every x € C,,, and we rewrite (), as the union

2
c.=Jck,
k=0
where
Ck.={zxecC,:A¢g, (z) =k}
for k = 0,...,2. In particular, |C?| corresponds to the number of connected compo-

nents of C,.

The next proposition allows us to express the energy, the perimeter, the edge
perimeter, and the area of a configuration C), as a function of the cardinality of the
sets CF.

Proposition 3.2. Let C,, be a configuration in L. Then,

E(Cp) = —|Cy| = 2ICnl, (3.5)
A(Cn) = |Crl, (3.6)
P(Cy) = 2|Cy| - 2|Ch], (3.7)
0(Cn)| = 3|Cp| + |Ch| — 1G] (3.8)
for every n > 1. Moreowver,
E(C,) = —3A(C,) — |6(Cy)| + 3|CY). (3.9)

Proof. We first observe that

n

E(Cy) ==Y _Ac, ().

i=1
For i = 0,...,n — 1, let C; be the subset of (', containing its first ¢ points
according to the total order 7. If z,(; € C, then

A(C;) = A(Ci—1) =0, P(Cy) — P(Ci—1) =0, [0(Ci)| = [0(Ci—1)| =3;  (3.10)
if Tr(i) € C71w then
A(Cl) — A(Cz—l) - O, P(CZ) — P(Cz_l) = 2, |@(Cz)| - |@(CZ_1)| = 1; (311)
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whereas, if z,;) € C, we have

A(C;) —A(Ci—1) =1, P(C;)—P(Cim1)= =2, [6(C;)|—10(Ci—1)|= — 1.

(3.12)
Properties (3.5)—(3.8) follow from (3.10)—(3.12). Claim (3.9) is a direct conse-
quence of (3.3), (3.7) and (3.8). O

In view of Proposition 3.2 we obtain the following.

Proposition 3.3. The following assertions are equivalent and hold true for every
connected hexagonal configuration C,:

(i) [©(Dn)| < |0(Cy)l;
(i) P(Dn) < P(Cp);
(iii) A(D,) > A(Cy).

Proof. The first assertion is a direct consequence of (3.2) and (3.4), and is equiva-
lent to (ii) by (3.7) and (3.8). The equivalence between (ii) and (iii) follows by (3.3)
and (3.4). O

We are now in a position to characterize connected ground states as extremizers
of a discrete isoperimetric problem.

Proposition 3.4. FEvery connected configuration C,, satisfies
A(Cn) < knP(Ch), (3.13)

where

Vilan)? —an] —n+1

5= Han)? — 4[(n)? —an] — 6

(3.14)

and o, 1= +/3n/2.

Moreover, connected ground states correspond to those configurations for which
(3.13) holds with equality, and, equivalently, to those configurations that attain the
mazrimum areaq

Qy = —n + L(Ozn)2 —ap] + 1,
and the minimum perimeter

P = 4(an)? — 4| (an)? — an| — 6.

Proof. We claim that
VA(D,) = k,P(D,). (3.15)
In fact, in view of (3.5) and Theorem 3.1, there holds
en = E(Dn) = —|D,| - 2|D5],
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whereas by (3.2) and (3.8),
3n +2en = |0(Dy)| = 3+ Dy | - | D7,

where e, is the ground-state energy defined in (2.2). Solving the previous system
of equations we deduce

DL =2n+e, — 2, (3.16)
and
|D?| = —n — e, + 1. (3.17)
Claim (3.15) follows from (3.6), (3.7), (3.16) and (3.17), by observing that
VA(D) = V12 = V== en 1
= k(60 +4e, — 6) = k,(2|D}| — 2|D2|) = k, P(D,,).

Inequality (3.13) is a direct consequence of (3.15) and Proposition 3.3. By Propo-
sition 3.3 and (3.2), connected ground states G,, satisfy

3
O(G)| = en + En

and attain the maximum area and the minimum perimeter. The values of a,, and
pr, follow from (3.8), (3.7) and (3.9). O

4. Equilibrium Shapes of Graphene Samples

In this section, we characterize the edge geometry of graphene samples. We first
introduce a few definitions.

Definition 4.1. For every s € N we define the set HZ of zigzag hewagons of side
s as

HZ .= {Dge> +q:q € L}

(for all s € N, the configuration Dg,2 is a complete hexagon of hexagons). For s € N,
s > 3, the set HA of armchair hezagons of side s is defined as

HA = {A, +q:q€ L}

In the expression above, A3 is given by the union of Dy with six extra minimal
simple cycles, glued externally to the center of each side of Day (see Fig. 3). For
s > 3, A is defined recursively by adding an extra armchair layer of minimal simple
cycles to As_1. We point out that the construction is different for s even and s odd
(see Fig. 3).
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Fig. 3. (Color online) The armchair hexagons A3, A4 and As. Each armchair hexagon As for
s > 3 is obtained by adding a layer of extra minimal simple cycles (in blue) to the corresponding
armchair hexagon As_1 (in yellow). Notice the different structure for s even and for s odd.

4.1. Proof of Theorem 1.1

The optimality of zigzag hexagons follows in view of Definition 4.1 and Proposi-
tion 3.1.
We claim that for every s € N, s > 3, there holds

P(A) > pa,. (4.1
Indeed, by the definition of A; we have |A3| = 42, and for s > 3:

6(2s —1) if sis even,

| As| = [As—1] +
6s if s is odd,
that is
9 3s if s is even,
|As| = Ss% + 3
2 ) if s is odd.
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On the other hand, the perimeter of each armchair hexagon A, is given by

P(A,) =125 — 6. (4.2)

SI4L 3 T
A, = 5 258 3+8—2.

9
ofa, = 735" +1) €N,

3 1

In view of Proposition 3.4 there holds

For s odd, we have

Hence,

and

pla, =40ty | —4laty | —oa, ] —6 (4.3)
3 1
<4 (55\/3+8—2> _9 (4.4)
6
= 6v/3s + —2 (4.5)

(e )

<6\/§s+£—2<123—6 (4.6)
S

for s > 3.

By combining (4.2) and (4.6) we obtain claim (4.1) for s odd. The result for
s even, s > 4 follows via analogous computations. In view of Proposition 3.4 and
(4.1) armchair hexagons are not extremizers of the isoperimetric inequality, and
hence are not ground states.

5. The Radius of the n-Wulff Shape

For simplicity in what follows we will refer to the elements of HZ as hexagons of
side s, omitting the word zigzag. We first introduce the notion of maximal hexagon
associated to a ground state.

Let G,, be a ground state in the hexagonal lattice L. Let

ra, = max{s € N:there exists a point ¢ € £ such that Dg,2 + q¢ C G, }.
For every ¢ € L such that De,2 +q C G, we will refer to the set

HGn = DGT’é + Q7
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as a maximal hexagon associated to G,,. We recall that

2
Gn=|]JGr,
k=0
where
GF.={zxe€G,:Ag, (z) =k}

Let us preliminary check that maximal hexagons are non-degenerate for n > 6.
We recall that the n-Wulff shape W, is the zigzag hexagon centered in the origin
with side 7, (see (1.6)), i.e.

Wn = D6’r% .

Proposition 5.1. The radius r,, of the n-Wulff shape W,, (see (1.6) and Theorem
1.2) with n > 6, satisfies r, > 1.

Proof. Let n € N be such that there exists a ground state GG,, with rg, = 0. Then

G, does not contain any set of the form Dg + g with ¢ € L, that is, for every
x € G, there holds (see (3.12)):

T ¢ G2 (5.1)

By (3.11) and (3.12), property (5.1) is equivalent to the claim that every element
of G,\GY contributes to the overall perimeter of G,,, and the contribution of each
element is exactly 2. Since we are assuming that G, is connected (i.e. |G2| = 1),
this implies that

P(Gp) >2(n—1).
By Proposition 3.4 it follows that
4(an)? = 4l(on)* — an] = 6 = P(Dy) = pp > 2(n — 1),
which in turn implies
n—=12|(an)’ = an] > (an)” - an,

and finally yields n — v/6n < 0, that is 0 < n <6. O

Fix n € N and let GG,, be a connected ground state. We aim at proving an
estimate from below on the radius rqg, of Hg, in terms of the number n of atoms.
We first introduce some definitions.

Definition 5.1. (Zigzag path) Let ¢ be a line orthogonal to one of the three dia-
meters of a minimal simple cycle of the lattice and intersecting £. The zigzag path
identified by /¢ is the union of points p € £ such that either p € ¢ or there exists
a minimal simple cycle H of £ such that p belongs to H, and the two atoms in
H bonded to P are in £. Note that each point of a zigzag path divides it into two
half-zigzag paths (see Fig. 5).
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Fig. 4. On the left, the points Py, ..., P4+ belong to a side of Cj,, on the right the segment joining
P> and Ps is a corner edge of Cy,.

Let Py,...,Py € LNOF(C,) be such that P; is bonded to P», and for i = 2,3
the point P; is bonded both to P;—; and P;4;. If there exists a unique zigzag path
passing through all the points P, ..., P, we will say that this zigzag path is a side
of C,. If two different (nonparallel) zigzag paths intersect in the unitary segment
joining P, and Ps; we will refer to this segment as a corner edge of Cy, (see Fig. 4).

We will say that C,, has an angle « in a corner edge v (or in a point P) if the
two lines £, and ¢2, identifying the sides of C,, and passing through v (respectively,
P), intersect forming an angle of width «. The choice of « or 27 — o will be clear

Fig. 5. (Color online) On the left, the zigzag path sy originated by the line £. On the right, the
two zigzag paths o1 and o2 intersect in the corner edge v, forming an angle 27 /3. The associated
angular sector S is marked in yellow.
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from the context. Alternatively, we will say that the zigzag paths associated to £}
and 2 form an angle o with (or in) v (respectively, P).

Finally, if S C £ is such that O(F'(S)) N L (see Sec. 2) is the union of two zigzag
paths forming an angle o, we will call S an angular sector of width «, see Fig. 5.

By Proposition 5.1 we can assume that rg, > 1. Let vg,...,vs be the corner
edges of Hg,, where vy is assumed to be lying on the z-axis (without loss of
generality), and vy,...,v5 are numbered counterclockwise starting from wvy. For

k=0,...,4, let s be the zigzag path joining vy and viy1, and let s5 be the zigzag
path joining vs and vg. Let [ be the line identifying the path s, and denote by vy
the unit normal to [;, pointing toward the exterior of Hg, . We define

Ak = max{j € N:s] NG, # 0}, (5.2)
where
3‘,1 = Sk + JUk

for j € N. Let 7, be also the subset of £ such that OF () = s, and F(mz)NHe, = 0.
We show now that ground states satisfy a connectedness property with respect
to zigzag paths.

Definition 5.2. (Hex-connectedness) Let S be a subset of £ and let P € £. We
say that P disconnects a zigzag path in S if P ¢ S and there exist P,, P, € S such
that P, and P, are joined by a zigzag path passing through P.

Let S be a subset of L. We say that S is hex-connected if every P € L disconnects
at most one zigzag path in S.

Notice that from every point P € L there are exactly three nonparallel lines
which depart from P and identify a zigzag path (see Definition 5.1).

Proposition 5.2. Ground states are hex-connected.

Proof. For the sake of contradiction assume that there exists a ground state G,
which is not hex-connected. Then there exists a point P € £ which disconnects two
zigzag paths in G,,. In particular, there exists a line ¢y orthogonal to one of the
diameters of a minimal simple cycle of the lattice, and intersecting £, such that
the two half-zigzag paths starting from P and identified by ¢y are both intersecting
G,. Let l1,...,¢,, be the lines parallel to ¢y, intersecting G,,, and such that for
every ¢ = 1,...,m, the distance between ¢; and /¢y is given by 3n;/2, where n; € N.
For¢=20,...,m, let ¢; be the number of points of G,, contained in the zigzag path
identified by /;.

We first rearrange the set {¢;} in a decreasing order, constructing another set
{d;} with the property that dy > dy > -+ > d,,. Then, we separate the elements
of {d;} having odd indexes from those having even indexes and we consider a new
family {f;} obtained by first taking into account the elements of {d;} with even
indexes, in decreasing order with respect to their indexes, and then the elements
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of {d;} having odd indexes, with increasing order with respect to their indexes. In
particular we define:

(o 71:0,...,%
fi = if m is even, and
do: =
\Qz—m—l 7'—2+ yeeey MM
( -1
Ay —1-2; 7::07"'7%
fi =1 if m is odd.
. (m+1)
\dgi_m =0 .m

The set {f;} constructed above has the property that its central elements have
the maximum value, and the values of the elements decrease in an alternated way
by moving from the center of {f;} toward i = 0 and i = m. Let ¢ and i + 1 be the
indexes corresponding to the two central elements of the set {f;}, if m is odd, and
to the central element of {f;} and the maximum between its two neighbors, if m
is even. As an example, if we start with a set {¢;} = {3,4,7,8,2,2,8}, the family
{d;} is given by {8,8,7,4,3,2,2} and the set {f;} by {2,3,7,8,8,4,2}. Here i = 4.

Fix two points P;, P;, 1 € Ly such that the segment P;P; ; has length one and
is orthogonal to ¢y. Let o1 and o2 be two half-zigzag paths, starting from P; and
P;. q, respectively, forming an angle 27 /3 with P;P;,, and such that there exists
a convex region S of the plane whose boundary is given by o1, 02, and P;P;, ;.

Consider the points Py, ..., P;_; € 01, defined as

|P; — Pj|=(i—j)V3, j=0,...,i—1.
Analogously, consider the points P; o, ..., P, € 02, satisfying
|Piyi—Pjl=(G—9)V3, j=i+2,...,m.
For 7 = 0,...,m, let le be the line parallel to ¢y and passing through P;. To
construct the set G, we consider f; consecutive points in S on the zigzag path
identified by each line ¢, starting from P; (see Figs. 5 and 6). The set G,, is clearly
hex-connected, the number of bonds in the zigzag paths identified by the lines

parallel to ¢y has increased, and the number of bonds between parallel zigzag paths
has not decreased. Hence

E(G,) < E(Gy),
providing a contradiction to the optimality of the ground state G,. O
As a corollary of Proposition 5.2 it follows that ground states have no vacancies.

Proposition 5.3. Let G,, be a ground state. Then F(G,) is simply connected.

Proof. By contradiction, if F'(G),) is not simply connected then there exists a point
in £ that disconnects three zigzag paths in G,,. Therefore GG, is not hex-connected.
O
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[ ® o o L { L o L
{ ® ® o ® L ® ® ® ® ® o ® o
Fig. 6. (Color online) A configuration C, before (in black) and after (in red) the rearrangement
described in Proposition 5.2.

We conclude this overview on connectedness properties of ground states with
the following proposition.

Proposition 5.4. Ground states are connected.

We omit the proof of this result as it follows by adapting the proof of Proposi-
tion 5.2.

In view of Propositions 5.2-5.4, the quantity A defined in (5.2) provides the
number of nonempty parallel zigzag paths of atoms in G,, N m,. By the definition
of 7, each partially full level of atoms around H¢, is characterized by the fact that
the difference between the number of points on the level having weight one and
those having weight two is strictly positive. To be precise,

5
S < IGL\Ha, | - G2\ Ha, |
k=0

On the other hand, by (3.11) and (3.12),

P(G,)— P(H, n
GA\He, |~ |63\ He, | = DO Z PG _Po g g

thus yielding

5

Y < % —6rg, + 3. (5.3)

k=0
Given a ground state (G,, and its maximal hexagon Hg, = Dﬁrzc . + q, denote
by Hgn and Hg:“ the sets Hén = Dg(re, +1)2 + ¢, and Hg: = Dg(rg, +2)2 T G,
respectively. Denote by v} and v, i = 0,...,5, the corner edges of Hérn and Hé’j,
respectively, with the convention that both v; and v} are parallel to v;. For i =
0,...,5, let VZ-1 and Vf be the two extrema of v;, numbered counterclockwise. Let

(V)L (V)2 (VDY (V)2 s and s be defined accordingly.
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In the remaining part of this subsection we provide a characterization of the
geometry of G\ H gn, by subdividing this set into good polygons Py and bad poly-
gons Ty, and by showing that the cardinality of G,\ H &Ln is, roughly speaking, the
same as the one of the union of good polygons.

We first prove that, by the optimality of H¢, , there exists a corner edge of H g:
which does not intersect G,,.

Proposition 5.5. Let G,, be a ground state, and Hg, be its mazimal hexagon.
Then there exists a corner edge v;’ of Hzgj, j = 0,...,5, which does not inter-
sect Gy, .

Proof. By the maximality of Hg,  , there exists a point P € OF (Hzgn) such that
P ¢ G,.

If P does not disconnect s; then either v; or vj,; do not intersect G,. By the
hex-connectedness of G, (see Proposition 5.2) then also the corresponding corner
edge of H 8;: does not intersect GG,,, and we obtain the thesis.

Assume now that P disconnects s;. Since G, is hex-connected, the point P does
not disconnect any other zigzag path. Therefore there exists an angular sector S
centered in P and of width 7/3 such that

SNG, =0. (5.4)

Assume by contradiction that all corner edges of H, é“: intersect Gy,. In view of (5.4),
the set (G,\Hg, ) Nm; is subdivided into two components. Denoting them by I'; and
['2, we have that I';Ns} # 0 and [';Ns? # 0, for j = 1,2. Without loss of generality
we can assume that Iy N s} # §. Consider now the set M := T'; N (s} U s} ).
We claim that we can construct a new set G,,, by rearranging the atoms of M and
by leaving the other elements of GG, fixed, such that

E(G,) < E(Gy). (5.5)
There are three possible scenarios.

Case 1: I'; contains at least two points P, and P, with the property that for each
of them there is no minimal cycle passing through it and entirely contained in G,,.
We proceed by moving the two points to s} N (£\G,,) in such a way that P, is
bonded to T'y. If possible, we move also P, to s} N (£\G,) so that P, and P, are
bonded. If this is not possible because s; N (£L\G,,) contains only one element, then
we already created an extra bond. With this procedure we lose two bonds when
removing P, and P, from I';, but we gain at least three bonds when we attach
them to I's, therefore the total energy strictly decreases.

Case 2: In I'y there exists exactly one point P, with the property that there is
no minimal cycle containing it and entirely contained in G,,. We argue moving this
single point to s} N (£\G,) in such a way that P, is bonded to I's. Afterward, we
move iteratively all the (remaining) points in 5" NI} to st N (£\G,) (in the same
way as described in Case 1 for Py). If after moving P, there are no remaining points
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n sf‘i NI'y, we apply the same rearrangement to sg\i_l NI'; (note that A; > 2 because
all corner edges of H, Zg: intersect G,). As a result of the procedure described above,
the energy is strictly decreased. If at any moment during the process of attaching
points to I's we create a bond between I'y and I's, we stop the rearrangement as
the number of bonds has strictly increased.

Case 3: Every point of I'; belongs to a minimal cycle entirely contained in GG,,. In
this case we first move all points in sz’\ N1T'1 but one, in the same way as described
in Cases 1 and 2. As a result of this procedure, either we already created an extra
bond (and hence there is nothing left to prove) or we are now in the same situation
described in Case 2. The thesis follows then arguing exactly as in Case 2. O

We proceed by showing that for every hexagon of side rg, + 2 there exists an
angular sector of width 7 /3, and centered in one of its corner edges, which does not
intersect G,,.

Proposition 5.6. Let G,, be a ground state, and Hg, be its mazimal hexagon.
Then:

(i) There exists a corner edge v)' of H&L:, i=0,...,5, and an angular sector S of

width /3, centered in (V/')* or (V!")?, and such that SN G, = 0.
(ii) Every hexagon in L with side rg, + 2 has a corner edge and a corresponding
angular sector of width w/3 which do not intersect G, .

Proof. By Proposition 5.5 we can assume that v does not intersect G,,. Assume
first that both (Vg')! and (V7’)? do not disconnect any zigzag path. Consider the
two half-zigzag paths in which v{ divides s{j. Then at least one of them does not
intersect G,. Analogously, at least one of the two half-zigzag paths in which v
divides s; does not intersect G,,. Finally, the two half-zigzag paths, departing from
(Vg) and (V{)?, not parallel to so and s5, and in the opposite direction with respect
to the center of Hg,,, do not intersect GG,,. According to the geometric position of the
four half-zigzag paths identified beforehand, and using again the hex-connectedness
of G,, we obtain (i), the sector S being of width 27/3. The case in which at least one
between (V') and (Vj")? disconnects one zigzag path (see Proposition 5.2) follows
accordingly, yielding a sector S of width 7/3. The proof of (ii) is an adaptation of
the proof of (i). O

Without loss of generality, in view of Proposition 5.6 we can assume that v(
Gp. For k =2,3,4,5, let m;, be the subset of £ such that

. = F(m,)NL,
OF(m)) N L = st

HGn C 7T;€.

Consider the set R := (ﬂi:o 7r§€>\H+n.
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By construction, G,, C Hérn U R, and for every x € R and kK = 0,...,5 there
exists

Jk € [_)\(%—L%J) - 2rg, —Q,Ak],

such that = € sf;’“. In particular, every x € R is uniquely determined by a pair of
indexes (jk, jx’ ), with & # k + 3 in Zsg.
We subdivide the region R into disjoint polygons as

5 5

R=|UJP|ulUT (5.6)

=0 =0

For a € [-2(r¢g, +1),2(rg, + 1)], denote by P!(a) the subset of £ enclosed by s,

¢, Shi1s Spia™s and by PZ(a) the set delimited by sf, sp*, sgﬁ_ll_mn, 32'“:11. For
k=0,...,5, the sets Py in (5.6) are defined as follows:
b P!Ox)NR if Ay < Ag—1 +1,
k pr—

(Pkl()\k — M1 +F1)NR)U sz()\k — M1+ 1) i A > A1 + 1,

with the convention that A_; := A5. Note that |Px| = 2(rg, + 1)(A\x — 1) for every
k=0,...,5.

The sets T}, are given, roughly speaking, by the “portions of £” between Pj_1
and Pi. To be precise,

Ty = {x €R:zes) ) Nsl, with 2< ji_1 <A1, 2 <k < Ay Jho1 = Jk

and, if Ag_1 > Ap—o + 1, o1 < jk + Moot — Ak_z}, (5.7)

see Fig. 7.
We have that

n<|HE |+ |R| = |R\Ghl,
where |H§n| = 6(rg, +1)°. We observe that

5 5 5 5
(R = P+ > ITj| =2(rc, + DY (N =D+ [T - 1.
§j=0 =0 §=0 §j=0

We proceed now in counting the points in R which do not belong to the ground
state GG,,. In particular, we prove a lower bound for such number in terms of the
cardinality of

H:={HCLN (Hgn U R): H is a hexagon of side rqg, + 2}.
Proposition 5.7.
|R\Gn| > 2|H|.

Proof. Set M := |H|. We show by induction on m = 1,..., M that for every
family H,, C H with |H,,| = m, there exists a collection of pairs of bonded atoms
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Fig. 7. The structure of a ground state G,. In the figure above, rg, = 3, A\g = 6, A\1 = 6, A2 =4,
A3 =7, A4 = 6, and A5 = 5. The blue shapes outlined in black, the yellow shapes outlined in black,
and the green shapes outlined in black correspond to the closed subsets of the plane associated to
H érn, to the parallelograms P;, and to the triangles T, respectively.

Vi, € R\G,, with |V, | = m satisfying the following property: identifying each
segment with its extrema, the correspondence associating to each pair (v1,12) €
V... a hexagon H € H,, having a corner edge in (v1,1v2) is a bijection.

We remark that the thesis will follow once we prove the assertion for m = M. For
m = 1 the claim holds by Proposition 5.6. Assume now that the claim is satisfied for
m=m. Consider a family Hg41={H1,..., Hn+1} C H, and the polygon Py, 41 :=
UZ? H; C R. We subdivide the remaining part of the proof into four steps.

Step 1: There exists a corner edge (01, 72) of P41 such that ; € Paq1\Gy, for
i=1,2.
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Indeed, assume by contradiction that every corner edge of P41 belongs to G,,.
Then every corner edge of Hy, 11 in F(Py41) would belong to G,, by Proposition 5.3.
Thus all corner edges of Hs+1 would belong to G,,, contradicting Proposition 5.5.

Step 2: By Proposition 5.6(ii) there exists an angular sector S of width at least
7/3, centered in 7y, U, or in (I1, ), and such that S NG, = (). Denote by o1 and
o9 the two zigzag paths forming its boundary.

Step 3: We claim that there exists a corner edge (v1,v2) of Pami1 such that
(r1,v2) C Pmt+1\Gn, and (11, 12) is associated to an angle 27/3 of Ppy1.

Observe that Pg11 can have corner edges with angles 27/3, 47 /3 or 57/3. If
the corner edge (71,72) found in Step 2 is associated to an angle 27/3, there is
nothing to prove. If (71, 7%) corresponds to an angle 47 /3 or 57/3, then there are
two possible cases:

Case 1: F(S) N Pim+1 = 0. Then, for every j = 1,2, there exists 7; € o; such
that 7; is one of the two extrema of a corner edge of Py 11 entirely contained in
S, and at least one among the zigzag paths from 77 to 77 and from 7, to s is
contained in OF (Py+1). In addition, the corner edge associated to such 7; does not
intersect G, (because it is a subset of S), and is associated to an angle 27/3 (since
F(S) N Pms1 = 0). The proof follows by considering the corner edge associated
to Z)j.
Case 2: F(S) NPma1 # 0. Let £1 and /5 be the lines generating o1 and o5, and let
n1 and no be the unit normal vectors to £ and /5, respectively, pointing outside S.
Define
3 3
a’f =01 — §kn1 and a§ = 09 — §kn2,

for k € N. Since Py, +1 NS is bounded, we can find

ki = max{k € N:o¥ NP1 NS #0)
and

ko := max{k € N:aé€ NP1 NS £ 0}

For 7 = 1, 2, the intersection afj NOF (Pm+1)NS is either a corner edge of P11
associated to an angle 27/3, or a zigzag path forming an angle 27 /3 with a corner
edge of Pr1.

Step 4: Let (v1,v2) be the corner edge provided by Step 3. Then, there exists
a unique H; € Hpq1 having a corner edge identified by (v1,v2). Thus, by the
induction hypothesis on {Hy, ..., Hy 1} \{H;}, there exists a family of corner edges

{(Viv V%)}jzl,...,m—l—l,j#i C R\Gn
such that, for every j, (V{, V%) is a corner edge of Hj, arid f9r every i # j (1/{, y%) is
not a corner edge of H;. The thesis follows by setting (v,13) = (v1,v2), and taking
V'Hm+1 :{(Vllay21)7'-'7(1/?_'_171/;714_1)}' ([
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The next step consists in estimating |#| from below, in terms of the cardinality
of the sets T; and the number of levels A;.

Proposition 5.8.

5
M| =) 5| — 2M — 4Xg — 4X3 — 40y — 25 + 18,
j=0

Proof. For k=2, 3, 4, 5, let Uy, be the region of £ containing H&Ln and delimited

by the zigzag paths s, s; , and s 5 (with s§ := sg, 57 := s, and sg = s3).

Let Hy :={H € H: H C Uy, and has a vertex in Ty}, k = 2, 3,4, 5.
We claim that

Tk| — 2(Ak + A1 — 3)
5 :

M| > (5.8)

Jk1 sz

Indeed, let (m %) € Ty and consider (jk,jk 1 Jhe o) such that € s ﬁsk AL
and & € si’“ N s?f TN sfg’“ o ' We identify # and 4 with the triple of indexes

(ks Jr—1sJk—2) and (Jr, Jk—1, Je—2 — 1), and we write & = (ji, Jx—1,jrk—2) and & =
(JkyJk—1,Jk—2 — 1). Let Hz ; be the hexagon with corner edges identified by the
pairs (Z, ), and the pairs:
wy = [k — (ra, +2): jr—1.Jk—2 + (ra, + 1)), Gr—(ra,+1),
k=1, Jk—2 + (TG, +1))],
= [(r — (2re, +3),Jk—1 — (ra, +2),jk—2 + (ra, + 1)),
Uk — 2ra, +3),dk—1 — (ra, + 1), k-2 + (ra, + 1)),
w3 = [(Jr — 2ra, +3),7k—1 — (2rq, +3), Ju—2 — 1),
Uk — (2ra, +3), k-1 — (2ra, +3), je-2)];
wy = [(jr — (ra, +1), jrk—1 — 2ra, +3),Jk—2 — (ra, +2)),
(
(ks i1 — (ra, +2), k2 — (ra, +2)),
(ks Ji—1 = (rG, + 1), jr—2 — (ra, +2))].

jk — (ra, +2),jk-1 — (2ra, +3),jk—2 — (ra, +2))],
Wy ‘=

We observe that Hjz ; is contained in Uj and has a corner edge in T}, if the
following inequalities are satisfied:

jk — (27"@ + 3) > —2rg
Jeo1 — (2rg, +3) > —2r¢
Jhe2— (ra, +2) > —2rg, —1, jr2+rg, +1< Ao
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Hence, if (jk,jk_l,jk_g) is such that:
2 < ji < A,
2 < jr-1 < A1,
—rg, + 1< jrea < Moz — g, — 1,

then Hz ; C Uy and has a corner edge in T}. By the definition of the sets T}
(see (5.7)), the previous properties are fulfilled by every x € Ty, apart from those
points belonging to the portion of F(T}) which is adjacent either to Py_1 or to Pj.

Denoting by T}, this latter set, claim (5.8) follows once we observe that
Tk| — 2(Ak + Ap—1 — 3)

T.| = . O
| T | 5

Combining Propositions 5.7 and 5.8 we estimate from above and from below
the radius r¢,, of the maximal hexagon Hg,, .

Proposition 5.9.

pn < 70 < B < pu+ 5 v/ [@0)F — @) — an P — (@) 139,

where 1, is the quantity defined in (1.6), R, := max{rg, : G, is a ground state
with n atoms}, and

() [(on)? —an] 1 2 2 2 2
o Lol o] g @ e e @ 1, (5.9)

with o, = /3n/2.

Pn =

Proof. By Propositions 5.7 and 5.8, we have

5
[R\Gn| > |Tj| = 2X\1 — 4Xy — 4Xg — 4Mg — 2)5 + 18,
j=0
Therefore, by (5.3) we obtain

n < |HE, | +|R|— |R\Gyl

5 5 5
<6(re, + 12D P+ (T = D |T5] + 200 + 4Xa + 4Xs + 4 + 2X5 — 18
j=0 j=0 J=0

< 6(rq, +1)*+ (2rg, +6) (Z)\k—1>+2

=6(rg, + 1)*>+ (rq, +3)(pn — 12rg, —6) +2
= —6(rg, + 1)+ (pn — 18)(ra, + 1) + 2p, + 14.

The thesis follows by solving the inequality with respect to ra, +1 and using the
definitions of ry, pn and o, (see Proposition 3.4). O
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We conclude this section with a refinement of the estimate from above on 7,,.

Proposition 5.10.

T < pn+ O(1).

Proof. For every n € N, n > 6, let

= [(“g) V(I <an>ﬂ. (5.10)

Let Hp, := Dgpz, and

_pn—P(Hp)  pn—62pn—1) pn .. 3
i = 4 - 4 =7 Oty

Consider the hexagonal configurations C. given by the union of the hexagons Hj
with the “parallelograms” of height h,, constructed on two consecutive sides of Hj; .
To be precise, denoting by s, ..., si the zigzag paths passing through the sides of
Hj, , and setting

n,J

5,7 =5, +jex, k=0,...,5,

for every n € N, define the set C. to be the portion of L enclosed by the zigzag

hn
paths s{, 77", 557", 8%, 8T, sD.

Fig. 8. (Color online) In the figure above, n = 120, pn, = 4 and h, = 2. The configuration
C¢ is defined as the union of Hj;, with the two yellow parallelograms of height h;, constructed
on the sides of H; . The ground state G, (given by the collection of the blue atoms) satisfies
Hj, C Gn CCe, and [Cc\Gn| < 2pn — 1.
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By construction, the perimeter of C. satisfies
P(C.) = pn.

We claim that for n big enough there exists a ground state G,, such that H; C
G, C C., and |C\G,| < 2p,, — 1. Indeed,

(Cel = |Hp,| + 4nhn = 632 + pulpn — 6250 — 1)
= —6/,, + (pn + 6)pn. (5.11)
A direct computation shows that
65 — (pn +6)s +n <0

for every s satisfying

(0n)?  [(om)?—an] 1

s € 3 3 3 \/[(@n)2 — [(an)? — an]]? — (an)?,
(O‘n)Q L(O‘n)Q —an) 1 2 2 2 2
el 3 + g\/[(&n) = [(an)? —an]]? = (an)?|,  (5.12)
whereas

65> — (4+pn)s+n—1>0

for every s € R such that

< _Z _
ST T3 3
1 2 2 2 o 1
3 [(an)? = [(an)? — an|]? — (an)? — 1 — Dn
or
2 2
s> _l n (O‘n) _ L(O‘n) anJ
6 3 3
1 2 2 2 o 1
+ 3 [(@n)? = [(an)? — an]* — (an)? — 1 — Pn- (5.13)
In particular, (5.12) and (5.13) hold for s = p,, yielding
0<[Cul =1 < 25, — 1. (5.14)

The claim follows by (5.14), and by observing that by the definition of C. it is
possible to remove up to 2p,, — 1 points from C.\Hp, without changing the perime-

ter of the configuration. In particular, Hg, = Hp,. The thesis is thus a direct
consequence of (1.6), (5.9) and (5.10). O
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6. Sharp Convergence to the Wulff Shape

In this section we prove that as the number n of atoms tends to infinity, ground
states differ from a hexagonal Wulff shape by at most O(n?/4) points and we show
that this estimate is sharp. The proof strategy consists in exploiting Proposition
5.9 to deduce an upper bound on the number of points belonging to G,, but not to
the n-Wulff shape W,,.

Let W be the regular hexagon defined as the convex hull of the vectors

S e s Rl

and let xyw be its characteristic function. Denote by p the measure
4
= —=XWw.
M \/§X

6.1. Proof of Theorem 1.2
We subdivide the proof into two steps.

Step 1: Let GG, be a ground state. Without loss of generality, assume that n > 6,
and hence, by Proposition 5.1, that the maximal hexagon Hg, is not degenerate
and 7, > 1. Let ¢, € £ be such that Hg,, = D6Té + qp. We claim that

du (G, W) < O(n'/?), (6.1)
and
|GI\W,| = Kn®/* 4 o(n®/%), (6.2)
where
G =G, —qn
and

4oy,

Ko = o (@) = L(@n)? = an)° = (an)2, (6.3)

with a,, = 1/3n/2.
Indeed, we first observe that

dH(GTMHGn) S ~max )\z

1=0,...,5
In view of (5.3) and of Proposition 5.9, we obtain the upper bounds
dn(Gn, He,) < 2(ap) = 2[(an)? — an] — 6py
<18+ 2y/[(an)? — [(an)? — an ]]2 — (an)? + 39,
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and

d(He, W) < 16, o < 2v/[@n)? — [@n)? — an P~ (@n)? 1 39.
On the other hand, Propositions 5.9 and 5.10 yield the equality
|GI\W,| =n — 602
=n—6p;, = 6(rn + pn)(rn — pn)
= n — 6p2 + O(n'/?)

o an () —an  [(an)® — an)

V@ (@ —anJP—(an)2+39> Fo(n¥/4)

=6 (2l 2 T T = F (@39 + o)

_ 4%% ()2 = [(n)? = ] = () + o(n®/*). (6-4)

Claims (6.1) and (6.2) follow now by the definition of «,, and by the observation
that

Vian)? = [(an)? = an]? = (an)? = V2nnan + 12 < 1+ /@, = O(n'/Y),

where 1, := (a,)? — an — |(n)? — an|.

Step 2: Step 1 yields the equality
GLAW,|

= K,n~ Y4 4 o(n=1%), (6.5)
n

|G — pw, |l =

where p1g, and pyy, are the empirical measures associated to Gj, and W,,, respec-
tively (see (2.3)). Let uy, := pw, -

For every x; € W, denote by (2; its Voronoi cell in £, that is the equilateral
triangle centered in z;, of side v/3 and with edges orthogonal to the three lattice
directions. Finally, define QI as the set

QO .= {x/vn:z € Q;}.
Let o € WH°(R?). We observe that

€T; < 3
— X < -,
Vi ey TV
and by (6.4),
67”721 2 9
e (Uar)aw _|3v3 (V3 _3\/§:3¢§6rn_1
. 2 Vn 4 4 |'n
_ 3\/5 n — Knn3/4 1l = 3\/§K —1/4
4 n 4




2306 E. Davoli, P. Piovano & U. Stefanelli

Thus, we obtain

1 <& T 4
dn—/ d‘:— ()—— dz
/R2s0 po = | edn niZso N RN

[/\
w
<=
w
S5~
3
VN
RS
VN
3 ]
3 -~
N——
|
S}
=
N——
QL
=

\/—||90HL°°(R2)£ HQIL AW

IN

612
4 n
— |V oo (R2-R2 E /
3\/§H Pl e me) — Jor

4 67’721
+— oo (r2) L2 Qr
3\/§||90HL (R2) H

IA

4 2 "
mHV@HLw(R?;Rz)ﬁ U Q)

2
677

\/—HQOHLOO(R?)E Jaor | aw

1=1
= H(p”vvl,oo(RZ)O(n_l/Ll) -+ HQOHLoo(Rz)Knn_l/4. (6.6)

Denoting by G, the set G}, := G, — g, and by ug: its associated empirical
measure, inequalities (6.5) and (6.6) yield

[,y —* @, weakly* in M,(R?), (6.7)

and
i,y — plle < 2Kun™ /% 4 o(n™/4). (6.8)
We notice that K,, = 0 for every n € N such that n = 6k? for some k € N. This

reflects the fact that for those n the daisy D,, is the unique ground state, whose
maximal hexagon is the daisy itself.
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In view of the definition of «,, a direct computation shows that

27/4 3n 3n 3n 3n
o CRORCREIR

Hence, in particular,

27/4
: L2
b = g

This completes the proof of Theorem 1.2.

6.2. Proof of Theorem 1.3
The proof consists in finding a sequence {n;}, i € N, such that
K, - K (6.9)

as i — +oo. Indeed, in view of (6.2), (6.5), (6.8), (6.9), for every {n;} verifying (6.9),
and for every sequence of ground states {G,,}, there exist suitable translations
{G?, .} such that:

GI AW, = Kn?'* 4 o(n?'™),

(2

luc,, = nw, | = Kn; /" 4 o(n; /"),
and
lncr, — nw, | r = Kn; " +o(n 1Y),
A possible choice is to consider
n; == 2+ 6i°.
In fact we have
3n; 3n; : : : . 1
’; - g =92 +3-92+3=9+3—3i - :
i(14+ 1+ 5%)

and hence

> Va2 ) |\2 Vo )|t 1
i(1+ 1+ )
as i — 400, which in turn yields (6.9). This completes the proof of Theorem 1.3.
Before closing this section let us comment on the fact that, as a byproduct of our

construction, we also obtain sharp estimates on the distance of any sequence {G,,}
of (translated) ground states from the n-Wulff shape, in terms of the constant K,
defined in (6.3) (see (6.2), (6.5) and (6.8)). Let us finally stress the nonuniqueness
of the n-dimensional Wulff shape W,,: any zigzag hexagon Dgz2, with radius 7y, =
rn + O(1) (e.g. 7y, = ppn) would in fact lead to the same sharp results.
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1 Introduction

This paper is concerned with the edge-isoperimetric problem (EIP) in the triangular
lattice
1 /3
Ly ={mty+nty : m,neZ} forty:=(1,0) and t; := (5, g)
Let C, be the family of sets C, containing n distinct elements xy, ..., x, in £;. The

edge perimeter |®(C,)| of aset C,, € C, is the cardinality of the edge boundary ® of
C, defined by

@(Cn) = {(x,-,xj) . |x,- —xj| = 1,x,- € Cn andxj € Et \ Cn}. (1)

Note that, with a slight abuse of notation, the symbol | - | denotes, according to the
context, both the cardinality of a set and the euclidean norm in R?. The EIP over the
family C, consists in characterizing the solutions to the minimum problem:

0, := min [O(Cp)|. (2)

i’leﬂ

Our main aim is to provide a characterization of the minimizers M, of (2) as
extremizers of a suitable isoperimetric inequality (see Theorem 1.1) and to show that
there exists a hexagonal Wulff shape in L; from which M,, differs by at most

K, n3/* 4+ o(n’/%) (3)

points (see Theorem 1.2). A crucial issue of our analysis is that both the exponent and
the constant in front of the leading term in (3) are explicitly determined and optimal
(see Theorem 1.4).

The EIP is a classical combinatorial problem. We refer to Bezrukov (1999), Harper
(2004) for the description of this problem in various settings and for a review of the
corresponding results available in the literature. The importance of the EIP is however
not only theoretical, since the edge perimeter (and similar notions) bears relevance in
problems from machine learning, such as classification and clustering (see Trillos and
Slepcev 2016 and references therein). Note, however, that in this other more statistical
setting the edge perimeter is not defined for configurations contained in a specific
lattice, but for point clouds obtained as random samples.

We shall emphasize the link between the EIP and the Crystallization Problem (CP).
For this reason, we will often refer to the sets C,, € C, as configurations of particles
in £; and to minimal configurations as ground states. The CP consists in analytically
explaining why particles at low temperature arrange in periodic lattices by proving
that the minima of a suitable configurational energy are subsets of a regular lattice. At
low temperatures, particle interactions are expected to be essentially determined by
particle positions. In this classical setting, all available CP results in the literature with
respect to a finite number n of particles are in two dimensions for a phenomenological

@ Springer
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energy E defined from R?", the set of possible particle positions, to R U {+00}. In
Heitmann and Radin (1980), Radin (1981) the energy E takes the form

1
E(yr oo ynh) = 5 2 vallyi = i) 4)
i#]

for specific potentials v : [0, 0c0) — R U {400} representing two-body interactions.
Additional three-body interaction terms have been included in the energy in Mainini
and Stefanelli (2014), Mainini et al. (2014a,b). We also refer the reader to E and Li
(2009), Flatley and Theil (2015), Theil (2006) for results in the thermodynamic limit
with a Lennard-Jones-like potential v, not vanishing at a certain distance and to Blanc
and Lewin (2015) for a general review on the CP.

The link between the EIP on £; and the CP resides on the fact that when only two-
body and short-ranged interactions are considered, the minima of E are expected to
be subsets of a triangular lattice. The fact that ground states are subsets of £; has been
analytically shown in Heitmann and Radin (1980) and Radin (1981), respectively, with
V2 1= Usticky, Where vggicky 18 the sticky-disk potential, i.e.,

+oo if £ e[0,1)
Usticky () := 1 =1 if£ =1 (5)
0 ifes1,

and vy 1= vgoft, Where vt 15 the soft-disk potential, i.e.,

400 if¢e0,1)
Usoft (£) 1= 124¢ — 25 if £ € [1,25/24] (6)
0 if £ > 25/24.
In particular with both the choices (5) and (6) for v, we have that
E(Cy) = —[B(Cy)| (7)
for every C,, € C,. Here, the set

B(Cp) :={(xi, xj) + [xi —xjl=1,i < j, andx;, xj € Cp} ®)

represents the bonds of C,, € C,. Note that the definition of B(C,) in (8) is independent
of the order in which the elements of C,, are labeled. The number of bonds of C,, with
an endpoint in x; will be instead denoted by

b(xj) =H{je{l,....,n} : (xi,xj) € B(Cy) or (x}, x;) € B(Cy)}| 9)

@ Springer
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for every x; € C,. The link between the EIP and the CP consists in the fact that by
(1), (7), and (9) we have that

O(C)l =D (6= b(x) =6n— > b(xi)
i=1 i=1

—6n — 2|B(Cy)| = 6n + 2E(C,) (10)

for every C,, € C,, since the degree of L; is 6.

In view of (10) minimizing £ among configurations in C, is equivalent to the EIP
(2), and since for both the choices (5) and (6) for v, by Heitmann and Radin (1980),
Radin (1981) ground states belong to C,, the ground states of the CP correspond to the
minimizers of the EIP. Furthermore, in Heitmann and Radin (1980), Radin (1981) the
energy of ground states with n particles has been also explicitly quantified in terms of
n to be equal to

e, .= —[3n —+/12n —3] = —3n+ [V 12n — 3] (11)

where |x|:=max{z € Z : z<x} and [x]:=min{z € Z : x <z} denote the standard
right- and left-continuous functions, respectively. Therefore, (10) and (11) entails also
a characterization of 6,, in terms of n, i.e.,

0, = 6n + 2e, = 2[/12n — 3]. (12)

A first property of the minimizers of (2) has been provided in Harper (2004),
Theorem 7.2 where it is shown that the EIP has the nested-solution property, i.e., there
exists a total order t : N — £; such that for all n € N the configuration

Dy = {xc1), - Xem))

is a solution of (2) (see Proposition 2.1 and the discussion below for the definition
of 7). Given the symmetry of the configurations D,,, we will refer to them as daisies
in the following. Since solutions of the EIP are in general nonunique, the aim of this
paper is to characterize them all.

In this paper, we provide a first characterization of the minimizers M, of the EIP
by introducing an isoperimetric inequality in terms of suitable notions of area and
perimeter of configurations in C, and by showing that the connected minimizers M,
of the EIP are optimal with respect to it. We refer here the reader to (25) and (26) for
the definition of the area A(C,) and the perimeter P(C,) of a configuration C,, € C,,.
Note also that we say that a configuration C, is connected if given any two points

x;,xj € C, then there exists a sequence y; of points in C, with k = 1, ..., K for
some K € N such that y; = x;, yx = xj, and either (yx, yx+1) or (yx41, yk) 18 in
B(Cy) forevery k =1, ..., K — 1. It easily follows that minimizers of the EIP need

to be connected. Our isoperimetric characterization reads as follows.

@ Springer
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Theorem 1.1 (Isoperimetric characterization) Every connected configuration C, €
C, satisfies

VA(C) = ky P(Cy), (13)

where

20, +8n+4

k, :
" 0, — 6

(14)

Moreover, connected minimizers M, € C, of the EIP correspond to those config-
urations for which (13) holds with the equality. Finally, connected minimizers attain
the maximal area a, == —6,,/2 + 2n + 1 and the minimal perimeter p, := 6, /2 — 3.

Notice that a similar isoperimetric result has been already achieved in the square
lattice in Mainini et al. (2014a) with a different method, based on introducing a
rearrangement of the configurations. Theorem 1.1 is instead proved by assigning to
each element x of a configuration C,, € C, a weight wc, (x) that depends on C, and
on the above-mentioned order 7 [see (32)].

Furthermore, we observe that the isoperimetric constant k,, given by (14) satisfies

k, < forevery n € N,

Sl -

with k, = 1/+/6 if and only if n = 1 + 3s + 35> for some s € N. Note that
for n = 1 + 3s + 3s2, as already observed in Harper (2004), the hexagonal daisy
D 3352 1s the unique minimizer of the EIP.

In the following, we will often refer to lattice translations of D 3, 3,2 as hexagonal
configurations with radius s € N since each configuration D, 3,32 can be seen as
the intersection of £; and a regular hexagon with side s. In order to further characterize
the solutions of the EIP, we associate to every minimizer M, a maximal hexagonal
configuration Hy,, that is contained in M,, and we evaluate how much M,, differs
from H,, (see Sect.3).

In view of the isoperimetric characterization of the ground states provided by The-
orem 1.1, we are able to sharply estimate the distance of M), to Hy,, both in terms
of the cardinality of M), \ H,, and by making use of empirical measures. We asso-
ciate to every configuration C,, = {x1, ..., x,} the empirical measure denoted by
we. € Mp(R?) (where My (R?) is the set of bounded Radon measures in R?) of the

n

rescaled configuration {x;/\/n, ..., x,//n}, i.e.,

1
Ke, == ;Zaxz‘/«/ﬁ’
i

and we denote by || - || and || - || the total variation norm and the flat norm, respectively
(see Whitney 1957 and (72) for the definition of flat norm). Our second main result is
the following.
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Theorem 1.2 (Convergence to the Wulff shape). For every sequence of minimizers
M, in L, there exists a sequence of suitable translations M,, such that

K —F ﬁ Xw weakly* in the sense of measures,

where xw is the characteristic function of the regular hexagon W defined as the convex
hull of the vectors

|It1, [tz, faz—tl)]

Furthermore, the following assertions hold true:

| My \ Hy,,, | < Kind/* 4 o™/, (15)
iom, =, | = Kon V4 o1, (16)
[y = wm,, | = Ken ™ o1, (17)
and
2 —1/4 —1/4
HMM,; - ﬁXW ; <2Kn +o(n "), (18)

where Hy,, is the maximal hexagon associated to My, and

K= —. (19)

The proof of Theorem 1.2 is based on the isoperimetric characterization of the min-
imizers provided by Theorem 1.1 and relies in a fundamental way on the maximality
of the radius ry, of the maximal hexagonal configuration H,,, . The latter is essential
to carefully estimate the number of particles of M, that reside outside H,,, in terms
of rp, itself and the minimal perimeter p,. Thanks to this fine estimate we are able
to find a lower bound on ry;, in terms of n only [see (69)]. In particular, the method
provides a lower bound for the radius ry,, that allows us also to estimate from above
the discrepancy between the sets M, and H;,, in the Hausdorff distance that is defined
by

d1 (81, $2) = max{ sup inf |x — y|, sup inf |x — y] }

xes; YEN2 yes, X€S1
for nonempty sets Si, S» C R?.
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Corollary 1.3 (Hausdorff distance) For any minimizer M,, and its associated maximal
hexagon H,,, there holds

dy (My, Hy,, ) <2-3Y401% 1 0(D). (20)

We observe that in view also of Theorem 1.1 estimates (15)—(18) and (20) provide
a measure in different topologies of the fluctuation of the isoperimetric configurations
in £; with respect to corresponding maximal hexagons. Similar estimates have been
studied in the context of isoperimetric Borel sets with finite Lebesgue measure in
R4, d > 2. We refer the reader to Fusco et al. (2008) for the first complete proof of
the quantitative isoperimetric inequality in such setting, and to Cicalese and Leonardi
(2012), Figalli et al. (2010) for subsequent proofs employing different techniques.

Moreover, Theorem 1.2 appears to be an extension of analogous results obtained
in Au Yeung et al. (2012), Schmidt (2013) by using a completely different method
hinged on I'-convergence. In that context, the set W is the asymptotic Wulff shape and
we will also often refer to W in this way. More precisely the minimization problem
(4) is reformulated in Au Yeung et al. (2012), Schmidt (2013) in terms of empirical
measures by introducing the energy functional

/ﬁ EWW@M—ﬂMW®dM/M=M%bmman€Q,
En(p) = 1 /R>\diag 2

00 otherwise
(21)

defined on the set of nonnegative Radon measures in R? with mass 1, where v, is (a
quantified small perturbation of) the sticky-disk potential (Heitmann and Radin 1980).
In Au Yeung et al. (2012), Schmidt (2013) it is proved that the rescaled sequence of
functionals n~1/2(2&, + 6n) I'-converges with respect to the weak™ convergence of
measures to the anisotropic perimeter

2
/ o(vs) dH' if u = —= xs for some set S of finite perimeter
a*S V3

P(p) = and such that £2(S) := v/3/2, 22)

00 otherwise

where 9*S is the reduced boundary of S, vg is the outward-pointing normal vector to
S, L£2(S) is the two-dimensional Lebesgue measure of S, ! is the one-dimensional
measure, and the anisotropic density ¢ is defined by

for every v = (v, v2) with vy = —sin« and v, = cos o for o € [0, 71/6].
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Let us note here that the I'-convergence result provided in Au Yeung et al. (2012)
can be restated as a I'-convergence result for the edge perimeter. In fact, since the
energy functional &, is such that

Enluc,) = E(Cy) (23)

for every C,, € Cy, by (10) we have that the functional 7,, := &, (u) + 6n is such that

To(pc,) = 10(Cp)]

and n~1/27,, I'-converges with respect to the weak™ convergence of measures to the
anisotropic perimeter P(u).

Besides the completely independent method, the main achievement of this paper
with respect to Au Yeung et al. (2012), Schmidt (2013) is that of sharply estimating
the constant K; in formulas (15), (16), and (17). The deviation of the minimizers from
the Wulff shape of order n3/* was exhibited in Schmidt (2013) and referred to as the
n3/*_law. Here we sharpen the result from Schmidt (2013) by determining the optimal
constant in estimates (15), (16), and (17). We have the following.

Theorem 1.4 (Sharpness of the estimates) A sequence of minimizers M, satisfying
(15)—(17) with equalities can be explicitly constructed for n; == 2 + 3i + 3i2 with
i eN.

The proof of Theorem 1.4 is based on the estimate:
My \ Hyy, | < Kun®'* 4 00 (24)

which holds true for the explicitly determined constant K, introduced in (73). Estimate
(24) is a consequence of the lower bound for the radius ry;, established in the proof
of Theorem 1.2, see (69). In fact, a sequence of minimizers M, satisfying (24) with
equality can be explicitly constructed. Note that such configurations M, are singled
out among configurations that present extra elements outside their maximal hexagon
Hy; 1in correspondence of only two consecutive faces of Hy; (see Fig. 6). Therefore,
to establish Theorem 1.4 is enough to show that

limsup K, = K;

n—o0

and to exhibit a subsequence n; that realizes the limit.

Finally, we notice that our method appears to be implementable in other settings
possibly including three-body interactions. This is done for the crystallization problem
in the hexagonal lattice £, in a companion paper (Davoli et al. 2016). Furthermore,
we observe that analogous results to Theorem 1.2 were obtained in the context of the
crystallization problem in the square lattice in Mainini et al. (2014a, b) with a substan-
tially different method (even though also based on an isoperimetric characterization
of the minimizers) resulting only in suboptimal estimates.
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The paper is organized as follows. In Sect. 2, we introduce the notions of area A
and perimeter P of configurations C, € C,, we define the order t in £;, and we
introduce the notion of weight wc, . Furthermore, in Sect. 2.1 we provide the proof of
Theorem 1.1. In Sect. 3, we introduce the notion of maximal hexagons H, My associated
to minimizers M, of (2) and we carefully estimate s, from below in terms of n. In
Sect. 4, we use the latter lower bound in order to study the convergence to the Wulff
shape by providing the proof of Theorems 1.2 and 1.4 in Sects. 4.1 and 4.2, respectively.

2 Isoperimetric Inequality

In this section, we introduce the notion of area and perimeter of a configuration in
C, and we deduce various relations between its area, perimeter, energy and its edge
boundary including a isoperimetric inequality.

We define the area A of a configuration C,, € C, by

A(Cy) = |T(Cn)l (25)

where T (Cy,) is the family of ordered triples of elements in C,, forming triangles with
unitary edges, i.e.,

T(Cn) :={(xiy, Xiy, Xi3) © Xiy, Xiy, Xis € Cp, i1 <iz <i3, and |x;;—x;, | =1 for j #k}.
The definition of A(C,,) is invariant with respect to any relabeling of the particles of
Cn .

In order to introduce the perimeter of a configuration in C, let us denote by F (C,) C
RR? the closure of the union of the regions enclosed by the triangles with vertices in
T(C,), and by G(C,) C R? the union of all bonds which are not included in F(C,,).
The perimeter P of a regular configuration C,, € C,, is defined as

P(Cy) :=H"'(3F(Cw)) + 2H (G(Cp)) . (26)

where ! is the one-dimensional Hausdorff measure. Note in particular that

— T 1
P(Cy) = lim M (93(0F (U GC) + B.))

where B, = {y e R? : |y| < ¢}.
Since every triangle with vertices in 7 (C,,) contributes with 3 bonds to B(C,,), by
(7) and (25) we have that

3A(Cy) =2|B(C, NF(Cp))| — [B(C, NOF(Cy))|
= 2 E(C,NF(Cy) —H (BF(C,)). (27)

Thus, by recalling (26) and (27) the equality

H'(G(Cp)) = |B(C, N G(Cy))| = —E(C, NG(Cp))
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yields

P(Cy) = =2E(C, N F(Cp)) — 3A(Cp) —2E(C, N G(Cy))
= —2E(Cn) — 3A(Cy),

and we conclude that
3 1
E(Cy) = _EA(Cn) — EP(Cn)- (28)

Notice that (28) allows to express the energy of a configuration C,, as a linear com-
binations of its area and its perimeter, and that by (10) an analogous relation can be
deduced for the edge boundary, namely

|©(Cn)| = 6n —3A(Cy) — P(Cy). (29)

As already discussed in the introduction, in view of (10) we are able to combine the
exact quantification of the ground-state energy E established in Heitmann and Radin
(1980), Radin (1981) with the nested-solution property provided by Harper (2004),
Theorem 7.2. We record this fact in the following result that we state here without
proof.

Proposition 2.1 There exists a total order t : N — L, such that for all n € N the
configuration D, defined by D), := {x¢(1), ..., X¢(n)} which we refer to as daisy with
n points is a solution of (2), i.e.,

|©(Dy)| = min |O(Cy)| = by, (30)
Cuel

n €kt
where 0, is given by (12).

We remark that the sequence of daisy ground states { D,,} satisfies the property that

Dyy1 =Dy U {xr(t1)}-

In particular, within the class of daisy configurations one can pass from a ground state
to another by properly adding atoms at the right place, determined by the order 7.
The total order provided by Theorem 2.1 is not unique. We will consider here the
total order T on L; defined by moving clockwise on concentric daisies centered at a
fixed point, as the radius of the daisies increases. To be precise, let x. (1) be the origin
(0, 0) and let x.(2) be a point in £; such that there is an active bond between x; ()
and x(1). Fori = 3,...,7, we define the points x;;) € £, as the vertices of the
hexagon Hy with center x.(j) and radius 1, numbered clockwise starting from x;(2).
We then consider the regular hexagons Hj that are centered at x (1), and have radius
k and one side parallel to the vector x;(2) — x¢(1), and proceed by induction on the
radius k € N. To this aim, notice that the number of points of £; contained in Hj
is ngy = 1 + 3k + 3k%. Assume that all the points x;(;), with i < ny, have been
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Fig. 1 The total order 7 is
defined by considering the
concentric hexagons centered in
Xz (1) With increasing radii, and

by ordering the points clockwise
within each hexagon a a a

L7(6) N\gF7(5)

identified. We define x¢(1y,,) as the point p € £; N £y such that [p — x;(,,)| = 1 and
D # Xt(n,—1), where £; denotes the line parallel to the vector x;(2) — x(1), and passing
through the point x;(,,). For i € (nx + 1, ng41], we then define x;(;) by clockwise
numbering the points of £; on the boundary of Hj (see Fig. 1).

We will write x <; y referring to the total order t described above. A weight
function w is defined on £; by the following

ox):={yel; : [x—yl=1landy <; x}|,

for every x € L£;. We observe that w assumes value O at the point x,(1), value 1 at
X¢(2) (that is a point bonded to x(1)), and values 2 or 3 at all the other points in £,
(see Fig. 2). Furthermore, we have that

n
E(Dy) = = ) w(x) foreveryn € N. (31)

i=1
and that £; = {x;(1), xr2)} U 22 U Q3 with
Q:={xel;:wkx)=2} and Q3:={x € L, : w(x) =3}.

Moreover, for every configuration C,, we introduce a weight function wc, defined
by

wc,(x) :={y e Cy : [x —y|=Tandy <¢ x}|, (32)

for every x € C, (and thus depending on C,). In this way C,, can be rewritten as the
union
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Fig. 2 The first elements of £;
with respect to the order 7 are
shown with their weight
assigned by the value of the
function w appearing below

them
where

Ch=(xeC, : wc,(x)=k) (33)
fork =0, ...,3. Wenotice that wc, (x) < w(x) for every x € C, and that |C,?| is the

number of connected components of C,,.

In order to prove the isoperimetric inequality (13), we first express the energy, the
perimeter, the edge perimeter, and the area of a regular configuration C,, as a function
of the cardinality of the sets CX.

Proposition 2.2 Let C,, be a regular configuration in L;. Then

E(Cy) = —|Cp| —2|CF = 3]C, (34)
A(Cy) = |Ca1 +2IC, 1, (35)
P(Cy) =2|Cl| +|C?, (36)
1©(C)| = 6]Ch| +4|Ch| +2|Ca, 37)

for everyn € N.

Proof Fix n € N, and let C,, be a regular configuration in £;. In analogy to (31) there
holds

E(Cy) == wc,(x).
i=1

Fori = 0,...,n — 1, denote by C; the subset of C,, containing the first i points of
C, according to the total order 7. If x;(;y € C 2 , then

A(C) —A(Ci—) =0, P(C) = P(Ci—1) =0 and [O(C)|—[O(C;-1)] =6;
(38)
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ifxf(i) € C%, then

A(C) = A(Ci—) =0, P(C) —P(Ci—1) =2 and |O(C)| = |O(Ci-)] =4
(39)

if x;(;) € C2, then

AC) —ACi— =1, P(C)—P(Ci—1) =1 and [0(C)|—|0(Ci-)| =2
(40)

whereas, if x; () € C,f , we have

A(C) — A(Ci—1) =2, P(C) —P(Ci—1) =0 and |6(C)|—10(Ci-1)|=0.
(41)

In view of (38)—(41), we obtain (34)—(37). O

We notice that from (34),(35), and (36) we also recover (28), which in turn, together
with (37), yields

3 1 3
E(Cy) = =5 A(Cn) — 210G + §|C,9| (42)

for every configuration C,,. Moreover, from the equality

3
> ICh =n,
i=0

(35), and (36) it follows that
A(Cy) =21 —2|CJ] — P(Cy). (43)

Note thatin particularif C,, = D, thenwc, (x) = @ (x). Furthermore, D,? = {x:}s
D) = {x;0)}, D> = Q, N D,, and D} = Q3 N D,,. Therefore, (34)—(42) yield

E(Dy) = —1 = 2|2 N Dy| — 3|23 N Dy, (44)
A(Dn) = |22 0 Dp| +2[€23 N Dy, (45)
P(Dy) =2+ (22 N Dyl, (46)

|©(Dp)| = 10 +2[Q2 N Dyl (47)

and by (42) and (43) we obtain

3 1 3
E(Dn) = _EA(Dn) - Z|®(Dn)| + 5,
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and
A(D,) =2n—-2— P(Dy)

for every n > 1.

Proposition 2.3 The following assertions are equivalent and hold true for every con-
nected configuration C,:

(i) 1©(Dn)| = [6(Co)l;
(it) P(Dyn) = P(Cp);
(it) A(Dp) = A(Cp).

Proof The first assertion follows directly from (30) and is equivalent to the second by
(36) and (37). The second assertion is equivalent to the third by (29) and (30). O

2.1 Proof of Theorem 1.1
In this subsection, we prove Theorem 1.1 by characterizing the minimizers of EIP as

the solutions of a discrete isoperimetric problem. We proceed in two steps.
Step 1 We claim that

VA(Dy) = kn P(Dy). (48)
Indeed, by (11), (12), (30), (44), there holds

0
%—371:6":E(Dn):—1—2|§22ﬂDn|—3|Q3ﬂDn|. (49)

Equalities (12) and (47) yield
O = |©(Dy)| = 10 + 2[Q22 N Dy|. (50)
Theorefore, by (49) and (50), we have
On
|920Dn|:?_5, (51)
and
On
|Q30Dn|=—3—|—n—|—3. (52)

Claim (48) follows now by (45), (46), (51) and (52), and by observing that

VAD,) =S N D, +2|Q3 N Dyl =/6,/2 —54+2(—6,/2 +n +3)
=V=0,/24+2n+1 =k, (0,/2 —3) = k(|12 N Dy| +2) =k, P(D,,).
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Inequality (13) is a direct consequence of (48) and Proposition 2.3. By Propo-
sition 2.3 we also deduce that the maximal area and the minimal perimeter among
connected configurations are realized by A(D,) = —6,/2 + 2n + 1 and P(D,) =
0, /2 — 3, respectively.

Step 2 We prove the characterization statement of Theorem 1.1. Let C,, be a connected
configuration satisfying

VA(C,) =k, P(Cp). (53)
We claim that C,, is a minimizer. In fact, the claim follows from

1©(D,)| < |©(Cy)| = 6n —3A(Cy) — P(Cy)
= 6n — 3(ky)>(P(Cn))* — P(Cy)
< 6n — 3(ky)*(P(Dy))* — P(Dy)

= 6n — 3A(D,) — P(Dy) = |©(D,)|

where we used (30) in the first inequality, (29) in the first and last equality, (28) in the
second, (53) in the third, Proposition 2.3 in the second inequality, and (48) in the third
equality.

Viceversa, let M,, be a connected minimizer. By (10), (36), and (37), P(M,) =
P(Dy,); by (28), A(M,) = A(D,). Thus (13) holds with the equality by (48). This
concludes the proof of the theorem.

3 Maximal Hexagons Associated to EIP Minimizers

In this section, we introduce the notion of maximal hexagons Hy,, associated to
minimizers M, and we provide a uniform lower estimate of ry;, in terms of n [see
(69)].

Fix a minimizer M,. Let Hﬁw” be the family of the configurations contained in
M, that can be seen as translations in £; of daisy configurations D 3, 3.2 for some
s e NU {0}, 1e.,

Hﬁw” ={H; CL; : Hy:= Dy 55,32 +qTforsomeqg € L; and H; C M,}, (54)
and choose H,,, to be a configuration in H%’; where
ry, = max{s € NU {0} : HM £ ¢). (55)

We will refer to H,,, as the maximal hexagon associated to M. Notice that the
number of atoms of M,, contained in Hy,, is

n(ray) = 143ru, +3 (rm,)” (56)
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Fig. 3 A minimizer M, is e 0o 0 0 0 o
represented by the set of dots © o o 0o 0 0 0 0 o o
and its maximal hexagon Hy,, ® o 0o 0 0 0 0 0 0 0 o

is given by the intersection of
M, with the regular hexagon
ﬁr M, which is drawn in dark
color (blue) (Color figure online)

In the following, we will often denote the minimal regular hexagon containing H,,,
by PAIrMn (see Fig. 3), i.e.,

FI,Mn = F(H,,,)

Following the notation introduced in Sect. 2 in (33), we decompose M,, as
3
M, =) M},
k=0

In the following proposition, we observe that if n > 6, then there exists a non-
degenerate maximal hexagon for every minimizer.

Proposition 3.1 For n < 6, then the maximal hexagon H,, is degenerate for every
minimizer M,, of (2). If n > 6, then the maximal radius ry, of every minimizer M,, of
(2) satisfies ry, > 1.

Proof It is immediate to check that for n = 1, |M,}| = 0,and forn =2 orn = 3,
|M,%| = 1. A direct analysis of the cases in whichn = 4, 5, 6, shows that 2 > |M,}| >
1. It is also straightforward to observe that forn = 0, ..., 6, there holds r = 0.

We claim that for n > 7 the radius ry, satisfies ry;, > 1. Indeed, assume that M,
is such that ry;, = 0. Then M,, does not contain any hexagon with radius 1 and hence,
for every x € M, we have that

b(x) <5. (57)

Property (57) is equivalent to claiming that every element of M, contributes to the
overall perimeter of M,,, and the contribution of each element is at least 1. Therefore,
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By Theorem 1.1, it follows that
— —3>n, (58)
which in turn by (12) implies
VI12n =3 —-2> [/12n =31 =3 > n,
that is
n*—8n+7<0,

which finally yields 1 < n < 7. To conclude, it is enough to notice that forn = 7,

6,/2 — 3 = 6, thus contradicting (58). O

In view of Proposition 3.1 for every minimizer M,, withn > 6, we can fix a vertex
Vo of its (non-degenerate) hexagon H,,, and denote by Vi, ..., Vs the other vertices
of I:IrMn numbered counterclockwise starting from V. For k = 0, ..., 4, let us also

denote by si the line passing through the side of ﬁ,M” with endpoints Vi and Vi1,
and let s5 be the line passing through Vs and Vj.

In the following we will need to consider the number of levels of atoms in £; around
H,, containing at least one element of M, . Denote by e the outer unit normal to the

side s of I:I,Mn and define
ac=max{j € N : s/ N M, # ) (59)

where s,i are the lines of the lattice £, parallel to s; and not intersecting H,, ,namely

V3
Sp =Sk + 7 J€k
for j € Z. Let also m; be the open half-plane with boundary s; and not intersecting
the interior of ﬁrM,, .

We first show that M, satisfies a connectedness property with respect to the
directions determined by the lattice £;. To this purpose, we introduce the notion
of 3-convexity with respect to L;.

Definition 3.2 We recall that
t (1,0), t (1 ! ) d define ¢ ty —t
=(1,0), tr:=(=,——= ), anddefine t3:=1¢, — ;.
1 223 1

We say that a set S C L; is 3-convex if for every p,q € S such that g := mt; + p
for some m € Nandi € {1, 2, 3} one has that ¢’ := m't; + p € S for every integer
m’ € (0, m). Furthermore, we refer to the lines
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={q €R?: g =rt; + pforsomer e R}

as the lines of the lattice L; at p.

Note that by Definition 3.2 a set § is 3-convex if there is no line EZP of the lattice £; at
apoint p € L; \ S that is separated by p in two half-lines both containing points of
the set S.

Proposition 3.3 Let M,, be a minimizer. Then M,, is 3-convex.

Proof For the sake of contradiction assume that the minimizer M, is a not 3-convex.
Then there exist a point p € £, \ M, and i € {1, 2, 3} such that the line Ef (see
Definition 3.2) is divided by p in two half-lines both containing points of M,. We
claim that we can rearrange the n points of M), in a new 3-convex configuration M,
such that |®(Mn)| < |®(M,)| thus contradicting optimality.

Denote for simplicity £ := Zf andlet 4y, ..., £, be all the other lines parallel to £
that intersect M,,. Furthermore, let ¢,y = |M,, "€ | fork =1, ..., m. Starting from the
elements of the sequence {cx}, we rearrange them in a decreasing order, constructing
another set {d;} with the property that dy > d; > --- > d,,. Finally, we separate the
elements of {d}} having odd indexes from those having even indexes and we rearrange
them in a new set { fx} obtained by first considering the elements of {d;} with even
indexes, in decreasing order with respect to their indexes, and then the elements of {dy }
having odd indexes, with increasing order with respect to their indexes. The set { fi}
constructed as above has the property that the two central elements have the maximal
value, and the values of the elements decrease in an alternated way by moving toward
the sides of the ordered set. Let k be the index corresponding to the central element
of the set { fi}, if m is even, and to the maximum between the two central elements of
{fx}, if m is odd.

As an example, if we start with a set {cx} = {9, 4, 2, 5, 3, 1, 17}, the sequence {dy}
is given by {17,9, 5,4, 3,2, 1} and the sequence { f;} by {1, 3,5,17,9, 4, 2}. Here
k =4.

Fix a point P; € £; and an angular sector S of amplitude 257 /3, with vertex in P,
whose sides o1 and o7 lay on the two lines departing from P; which are not parallel
to £y. Consider the points Py, ..., P;_; € o1 N M,, such that

|Py — Pfl =k —k fork=0,...k—1.
Analogously, consider the points Py, ..., Py € 0o N M,, satisfying

Py — Pfl=k—k fork=k+1,....m

Fork =0, ..., m,let ¢ be the line parallel to £y and passing through Py. To construct
the set M, 1, WE con51der [k consecutive points on each line l k- starting from Py. We note
that |M, | = |M,| = n, the number of bonds in each line parallel to £( has increased.

On the other hand, the number of bonds between different lines has not decreased.
Indeed, given two parallel lines with a and b points, respectively, the maximal number
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of bonds between these two lines is either 2a if a < b, or 2a — 1 if a = b. This
maximal value is achieved by construction by the modified configuration. Hence,

1©(M,)| < |©(M,)],

providing a contradiction to the optimality of M,,. O

Since every minimizer M, is 3-convex, the quantity A; introduced in (59) for
k =0, ..., 5provides the number of non-empty levels of atoms in M,, Ny forn > 6.
In fact, by the definition of 7 each partially full level contains at least one point in
(M} U M2)\ H,, .Hence,

5

> < Mg\ Hyy |+ IM;\ Hyy, . (60)
k=0

On the other hand,
2IM}\ Hyy, |+ M2\ Hy,y | = P(My) — P(Hyy ) = pp— 67u,.  (61)

Therefore, by (60) and (61),

5

D M= pu—6ru,. (62)
k=0

In the remaining part of this section, we provide a characterization of the geometry
of My \ Hy, forn > 6, by subdividing this set into good polygons Py and bad
polygons T, and by showing that the cardinality of M, \ H,,, is, roughly speaking,
of the same order of magnitude as the one of the union of good polygons.

Given a minimizer M, and its maximal hexagon Hy,, ., we denote by Hyyy 11 the
hexagon with side ryy, + 1 and having the same center as H,,, . In the following, we
denote the hexagon containing H,,, +1 by

A

HrMn~|—1 = F(HrMn—l—l)-

We first show that, by the optimality of H,,, , there exists an angular sector of 27/3,
and centered in one of the vertices of ﬁrMnJr], which does not intersect M,,. To this

end, we denote by Vl.’ ,1 = 0,...,5 the vertices of the hexagon ﬁrM,,"'l’ with the
convention that V/ lies on the half-line starting from the center of H,, and passing
through V;.

Lemma 3.4 Let M, be a minimizer with ry;, > 0. Then

(i) The hexagon ﬁ,Mn+1 presents at least a vertex, say V; with j € {0, ..., 5}, that
does not belong to M.
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(ii) There exists k € {0, ..., 5} such that the open angular sector Sy of amplitude
2w /3, centered in Vk/, and with sides s,l and s,i_l (with the convention that

Sll = S51) is such that Sy N M, = 0.

(iii) Every translation H OfI:IrMn+1 by avectort := nt1+mty withn, m € Z that has
avertexv ¢ My admits a vertex w ¢ M, (possibly different from v) and an open
angular sector S of amplitude 21 /3 and centered in w such that S N M,, = (.

Proof We begin by showing assertion (i). In view of the maximality of H,, there
exists a point p € L; on the boundary of I'AlrMn +1 such that p ¢ M, Either p is already

a vertex of ﬁrMnH or p is an internal point on the side of I:IrM”H parallel to s; for
some j. In this latter case, by the 3-convexity of M,,, either V]f or ij 1 does not belong
to M, and hence, also in this case assertion (i) holds true.

We now denote by VJf the missing vertex of the hexagon H, u, +1 and prove assertion

(ii). Let us consider the two half-lines in which V! divides the line s Jl By the 3-
convexity of M,, at least one of them does not intersect M,. Analogously, if we
consider the two half-lines in which ij divides the line sjl._l, by the 3-convexity of
M,, at least one of them does not intersect M,,. Finally, if we consider the line s” passing
through the center of H,,, and V]f, the 3-convexity of M,, implies that the points of s’
whose distance from the center of H,,, is bigger than ry, + 1 do not belong to M,,.
In view of the geometric position of such three half-lines departing from V]f , We can
conclude that the claim holds true by using once again the 3-convexity of M,,.

Let us conclude by observing that assertion (iii) follows by a similar argument to
the one employed to prove assertion (ii). If the center of H is in M, then the same
argument works and we can chose w = v. If the center of H is not in M,, then the
line passing through the missing vertex v and the center of H does not intersect M,
outside H either for v or for the opposite vertex w with respect to the center of H.oO

In the following, we assume without loss of generality that the vertex Vj has been
chosen so that the index k in assertion (ii) of Lemma 3.4 is 0. Therefore, by assertion
(ii) of Lemma 3.4 we obtain that the open angular sector Sy of 277 /3, centered in Vé ,

and with sides so1 and s51 is such that So N M,, = 9.

Let us use the definition of the levels Ay for k = 0, ..., 5 introduced in (59) to
define a region R that contains all extra points of M, i.e., points of M, not contained
in Hy, . We already know that we can take RC (R2 \ FIrMn) N (R? \ So). We define

the region R as follows (see Fig. 4):
é;:(Uﬁj)U(Ufj) (63)
j=0 j=1

The set Py in (63) is the polygon delimited by the lines ss, sé, séo, 55" *1 and the sets
Py in (63) is defined by

5. | Bl if A < Aeor + 1
Pl — dt + DU P2k — hie—t + 1) if dge > dgmt + 1,
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Fig. 4 Representation of the -
region R given by the union of Tl
the polygons ﬁj with
j=0,...,5drawn in the

lightest color (yellow) and the

polygons f"j withj=1,...,5 ~
drawn in the middle color TZ
(green). Note that this picture

has a mere illustrative purpose

(the configuration is not a EIP

minimizer) (Color figure online)

My,

V.

T N o
Ty
forevery k =1, ..., 5, where for every a € [-2ry,, 27y, ] we denote by ﬁkl (a) the

polygon contained between s,i, SE s Sk415 5) J:le , and by FA’kz (a) the set delimited by s}/,

s,é", s,é"_‘ll_rH, s,i"‘_‘ll. Finally the sets 7 are the region between Py_; and P or, more
precisely,
Ty =(xeR: x¢ S,{k__f ﬂS,{k, withl < jiro1 < A1, 1< jie < Ak, Jo—1 = Jk
and, if A1 > Ak + 1, jk—1 < jk +Ax—1 — Ak—2}. (64)

Note that T} by definition (64) reduces to a segment contained in the line s, "M such
that

|T1] = min{Aq, A1}. (65)

Furtllermore, we consider the conﬁguratipns P, = ﬁk NL; fork =0,...,5,
Ty =Ty N Ly fork =1,...,5 and R :== RN L;. We notice that M, C H,,, UR
and that

n=|Hy, |+ IRl — R\ Myl
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where |H,), | =1+3ry, +3 (VM,,)z, and

5 5 5 5
IRl =D 1P+ D 1Tkl = ra, D he+ 21Tkl
k=0 k=1 k=0 k=1

where in the last equality we used that | Py| = rpy, Ak for k =0, ..., 5. Furthermore,
for every x € R and every k = 0,...,5 there exists Jk € [—Ap — 2r, Ax] with
k' == (k + 3)mod6 and kK’ € {0, ..., 5} such that x € s,{". Hence, in particular, every

X € R is uniquely determined by a pair of indexes (jk, ji'), with k&’ # k + 3 in Zg.

Proposition 3.5 Let 'H be the family of the configurations that can be seen as trans-
lations in L; of the daisy configuration Dy 5,32 for s := ry, + 1 and that are
contained in Hy, UR, ie,

H:={H C Hy,, UR : H = D 35,30 +q fors :=ruy, +1andsomeq € L,}.
Then there holds
R\ My| = |H]|.

Proof Let h := |'H|. We show by induction on m = 1, ..., h that for every family
H,, C 'H with |H,,| = m, there exists a set Vy, C R\ M, with |V}, | = m, such
that the correspondence that associates to each v € V3, ahexagon H € H,, if vis a
vertex of H = F(H), is a bijection.

We remark that the thesis will follow once we prove the assertion for m = h.
The claim holds for m = 1 by reasoning in the same way as in the first assertion of
Lemma 3.4. Assume now that the claim is satisfied for m = m. Consider a family
Hiut1 ={H1, ..., Hy+1} C 'H, and the polygon

m+1
Pit1 = U H; C Hy,, UR.
i=1

Furthermore, let us define

A

Piv1 = F(Pat1).

We subdivide the remaining part of the proof into 4 steps.

Step I There exists a vertex v of 75,1-1“ that is not in M,,. Indeed, if all vertices of 75n-1+1
belong to M,,, by 3-convexityP;+1 C M,, and hence H;+1 C Pj+1 C My, which
would contradict the maximality of ryy, .

Step 2 By assertion (iii) of Lemma 3.4 there exists a vertex w of 75,;1“ not in M,, and
an open angular sector S centered in w, amplitude 277/3, and sides o1, 02 C L, such
that SN M,, = 0.
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Step 3 There exists a vertex v of Pm+1 that is not in M, and that corresponds to an
interior angle of Pm+1 of 2 /3. In fact, Pm+1 can have vertices with angles of 2 /3,
47 /3, and 57 /3 only. If the vertex w detected in Step 2 corresponds to an angle of
2m /3, there is nothing to prove. If w corresponds to an angle of 47r/3 or 57/3, then
we have two cases.

Case 1 The intersection between S and the closure of 75,7-1+ 1 is empty. Then, for
every j = 1,2, there exists v; € o; such that the segment with endpoints w and

v; denoted by wv; is contained in 875,,-1“ and v; is a vertex of 75,;1+ 1. Furthermore,
v; ¢ M, becausev; € §,andv; is associated to an angle of 27 /3, since SNPy 11 = .
The proof follows by taking v = vy.

Case 2 The intersection between S and the closure of 73,7-1+1 is nonempty. Without
loss of generality, we can assume that the two sides of the angular sector S are given
by

:[(a,ﬂ)eRz: ,B:ozt1+w,a>0}
and
O‘z:{(Ot,,B)ERZZ ﬂ:—at2+w,a>0}.

Define

3 k

a{‘ = 0'1—7]((0, 1) and o) :=o0p +kty,

for k € N. Since Pj; 41 N S is bounded, we can find
ki := max{k € N : alkﬂPn-,H NS # ¢}
and

ky :=max{k € N: of N Ps 1 NS # B).

. . . kj A . . .
For j =1, 2, the intersection o j "N OPm41 NS is a segment with at least one endpoint

v € S corresponding to a vertex of 873,1-1“ associated to an angle of 2 /3.

Step 4 Let v be the vertex provided by Step 3. Then, there exists a unique H S Hin+1

having v among its vertices. By the induction hypothesis on {I-Ah, ce I:I,;,+1} \ {ﬁ Jv}
there exists a family of vertices {v ]} L ] ;i C R\ M, such that v; is a vertex

of H and for every i # j, v; is not a vertex of H;. The thesis follows then by setting

v; = v, and by taking V.., = {v1, ..., vat1}- O

In view of Proposition 3.5 in order to estimate from below the cardinality of R\ M,,,
it suffices to estimate the cardinality of H. To this end, we denote in the following by

@ Springer



J Nonlinear Sci

Uy the closure of the region in R? containing H,, and delimited, respectively, by s3,
s4, and s5 for k = 2, s4, 5, andAso for k = 3, ss, 59, and s for kK = 4, and 50, 51, and
s> for k = 5. Notice that Ty C Uy (see Fig. 5).

Lemma 3.6 There holds

5
[H| = D Tl = A1 — 20 — 23 — 204 — As + 4. (66)
j=2

Proof For notational simplicity we will omit in the rest of this proof the dependence
of the radius rys, on the minimizer M,,. We begin by noticing that

5
LIED NN (67)

where
={HeH: HC U, and has a vertex in Tr}
fork =2, 3,4,5. We claim that
[ Hil = 1Tkl — Ak — =1 + 1 (68)

and we observe that (66) directly follows from (67) and (68).
The rest of the proof is devoted to show (68). Let x € T; and consider

(jks jk—1, jk—2) such that x € s,ﬁk N s,i" 0N s,ik . In the following, we identify x
with the triple of indexes (jk, jx—1, jk—2), and we write x = (jx, jk—1, jk—2). Let Hy
be the hexagon with vertices x,

v1 = (Jk — (r + 1), jk—1, jk—2 + (r + 1)),

v 1=k =200 + 1), jie1 — (r + 1), jx2 + (r + 1)),
v3 = Gk — 200 + 1. jie1 — 207 + 1), ji—a).

V4= Gk — (r + 1), jio1 =2 + 1), jk—o — (r + 1)),
vs i= (jk, k=1 — r + 1), jkeo — (r + 1))

(see Fig. 5 for an example of an hexagon Hy € Hs with x € 77).
H, is contained in Uy if for every j = 0,...,5 there holds v; € Uy. This latter
condition is equivalent to checking that the followmg inequalities are satisfied

Jk—=2(r+1) > =2r, ji <M,
Jk—1 —2(r+1) > =2r,  jik—1 < Ak—1,
Jk—2—(r+1)>==2r, jro+@+1)=<Iio.
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Fig. 5 The region U is shown
and the boundary 0 F(Hy) of a
hexagon Hy € Hj with vertex
x € Ty is represented by a
continuous (red) line. Note that
this picture has a mere
illustrative purpose (the
configuration is not a EIP
minimizer) (Color figure online)

Hence, if x = (j;, jk—1, jk—2) € Ty 1s such that

2 < jk < Ak,
2 < jk—1 < Ak—1.,
—r+1=<jicr A2 — (r+1),

then H, C 0k By the definition of the sets 7} [see (64)], the previous properties
are fulfilled by every x € Ty, apart from those points belonging to the portion of the
boundary of f"k which is adjacent either to 13/(_1 or to ISk. Denoting by T this latter
set, claim (68) follows once we observe that

| Te| = Tk — Ak — Ag—1 + 1.

O

Moving from Proposition 3.5 and Lemma 3.6, we deduce the lower estimate on the
maximal radii ry, of the minimizers M, of (2).

Proposition 3.7 Let M, be a minimizer of (2) with maximal radius ry,. Then

[o ]
™, = 6

2~ T — (@n? +75 (69)
with
a, = ~/12n — 3. (70)

Proof For the sake of notational simplicity, we will omit in the rest of this proof the
dependence of the maximal radius ry,, from M,,. By Proposition 3.5 and Lemma 3.6
we have
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5
[R\ Myl = D 1Tjl = A1 = 2ha = 223 = 244 — A5 + 4,
j=2

and so, by (62) and (65), we obtain

n=|[Hy, |+|R|—|R\ M,|
5 5 5
< T4+3r7 430+ D P+ D ITj = D | Tj 441 +2ha + 223 + 204 + A5 — 4
j=0 j=1 j=2
5
<T343 7 D A+ |Til 4+ 21 4+ 220 4+ 223+ 204 + A5 — 4
Jj=0
5
<1437 43r+(r+2) D hj—4
j=0

<1432 43r+ 0 +2)(pn —6r) —4 = =3r% + (pp — 7 + 2pn.
Thus, the maximal radius satisfies the following inequality:
3r2 — (pp —r +n—2p, <0. (71)

Estimate (69) follows from (71) by solving (71) with respect to r and recalling that
Pn = 6,/2 — 3 by Theorem 1.1 and 6,, = 2w, | by (12). O

A direct consequence of (69) is the upper bound on the Hausdorff distance between
the sets M, and H,,, introduced in Corollary 1.3.

Proof of Corollary 1.3 Let M, be a minimizer. We assume with no loss of generality
that n > 6 so that by Proposition 3.1 the maximal hexagon H,,, is not degenerate.
Then

.....

Therefore, by (62) and (70) we obtain that

dr (M, HrMn) < DPn— 6rM,,

<94+ /a1 = (@) +75

=/ Tan1* = (an)? +0(1)

<V2[a,14+0() < x/i\/«/IZn —3+1+0()
<2344 4L 0q)

where we used Proposition 3.7 in the second inequality. O
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4 Convergence to the Wulff Shape

In this section, we use the lower bound (69) on the maximal radius ry, associated to
each minimizer M,, of (2) to study the convergence of minimizers to the hexagonal
asymptotic shape as the number n of points tends to infinity.

To this end, we recall from the introduction that W is the regular hexagon defined
as the convex hull of the vectors

1
—=t, £——=t, = } )
{ V3 f V3
where t; are defined in Definition 3.2 for i = 1, 2, 3. Furthermore, in the following u
will denote the measure

2
K= —=XW;
V3
where yw is the characteristic function of W. We recall that by || - || we denote the
total variation norm and by || - ||f the flat norm defined by
|||l := sup [/ @ dpu : @ is Lipschitz with |||y 1,002y < 1] (72)
R2

for every u € Mp(R?) (see Whitney 1957).

4.1 Proof of Theorem 1.2

In this subsection, we prove Theorem 1.2.
Step 1 We start by considering

Ky 1= 571 [on1? = (em)?, (73)

where a;, := +/12n — 3, see (70). In view of the definition of H;,, , we observe that

\My\ Hyy, | =n— (143 m,) +37u,)

oy affed 1 2 o
<n -1 3(6 2 6\/ran1 (ozn)—|—33)

-3 ([OZJ - é\/mnﬁ — (an)? + 33)

2
=n— ro;; + ro;” VTeal? = (@)? + o)
- méﬁ VInl? = (an)? + o) (74)
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where we used Proposition 3.7 in the inequality. Therefore, by (73) and (74) we obtain
estimate (24), i.e.,

|My \ Hyy,, | < Kgn®* +0(n/%).

Furthermore, since

|M,AH,,,
om, =, | = =
n n
and Hy, C M,, by (24) we also obtain that
HMM” — ,bLHrMn H < Knn—1/4 + o(n—1/4)_ (75)

We now define
d, =1+ 3}”Mn +3 (I’MW)2

and consider the empirical measure i p, associated to the daisy Dy, . For every point
x; € Dgy,, we denote by Z; the Voronoi cell in £; related to x; that is the regular

hexagon centered in x; with side 1/+/3 and edges orthogonal to the three lattice
directions. Furthermore, let Z' := {x/ J/n @ x € Z;}. We observe that

I
N

1
\/3n’

dy
“ ((U Zf) AW) = ?Knn—l/“. (77)
i=1

For every ¢ € W1 (R?), we obtain that

)/szdm—/ﬁ%ﬂdu(—‘%écp x’n [/ (pdx
f‘z (7 )ﬁz(zn)—/ o dx]

‘Z/n </’(x)) dx‘ + = ||¢||LOO(R2)£ ((CJ zy) AW)

d,
2 n
—x|dx + —=¢ll; co(m2, L2 AR WN%
‘ /3 IR iL:le

=

o H Lo(Z1) (76)

and

IVoll oo (r2.R2 /
«/_ L>* R R)Z "
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dy d
2 n

E (HrMn-‘rl)

dy
< IVl o) — L inwnm po 2 7| aw
RN (R%RS) n /3 (R?) Ui

lolly1.00 @200 ™) + llgll oo g2y Knn ™14, (78)

IA

IA

where we used (76) and (77) in the third and the last inequality, respectively.
By combining (75) with (78), we obtain that

iy —* o weakly* in My (R?), (79)
and
|, = g < 2Kan™ % + 0™, (80)

where M) := M, — q,, with g, € L, such that H), = D1+3rMn 1372, + gn.

Step 2 Assertions (15)—(18) directly follow from (24), (75), and (80) since by (70) and
(73) a direct computation shows that

[ ]
K, = 611—3/4 |—05n-|2 - (Oln)2

_ 3%\/[ 12n—3—‘ —J12n =3 +o(1)

— K,\/L/un—ﬂ — V12n =3 +o(1) (81)

We notice here that Theorem 1.2 implies in particular the convergence (up to transla-
tions) of the empirical measures associated with the minimizers to the measure u not
only with respect to the weaksx-converge of measures, but also with respect to the flat
norm [see (72)].

We remark that an alternative approach to the one adopted in Theorem 1.2 is that
of defining a unique n-configurational Wulff shape W,, for all the minimizer with n
atoms. For example, we could define

where Wn is the hexagon with side p, /6 and center x(1). We remark that the O(nl/ 4)
estimate on the Hausdorff distance and the O(n/#)-law still hold true by replacing

the maximal hexagon H,,, with W,,.
More precisely, by Proposition 3.7 we have that

(W Hyy,,) = 6|22 = 1) < /o1 = (@2 +O() (82)
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and that

W\ Hry, | < |3( L%J )2 +3( L%J ) =3 (rm)* = 3rm,
(2 ) 2]
= 2T = @) + o)
= (“6”] Va1 = (@n)? + o(m¥%) (83)

for every minimizer M,,. Therefore, we obtain that

dy (M, Wy) < O(n'/%)
by (20) and (82), and
M, AW,| < Om**) (84)
by (24) and (84), with M), := M, — g, where g, € L, are chosen in such a way that

H,

rMn

= Dl+3rMn+3r[%/ln + Qn.

Furthermore, from (84) it follows that

— M < O(n_1/4).
n

|l — 1w,

4.2 Proof of Theorem 1.4

In this subsection, we prove that the estimates (15)—(17) are sharp.
Step 1 In this step, we show that there exists a sequence of minimizers M, such that,
denoting by H,_ their maximal hexagons,

My \ Hyyy | = Knn®® +0(n™). (85)

We will explicitly construct the minimizers M,,. To this end, we denote by I:Irn the
closure of the regular hexagon in R? with center in Xz(1) and side r,, defined by

| el 1 5
'n -—’7 6 6 [ | (an) —‘,

and we introduce H,, := ﬁrn N L;. Furthermore, we define
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Fig. 6 The form of a minimizer ML
M, constructed in the proof of AR
Theorem 1.4 is shown. The
configuration M, is contained in
the union of the hexagon I:Ir,,
drawn in the darAkest color (blue)
and the region A, constructed
on two of its sides drawn in the
lightest color (yellow) (Color
figure online)

and we consider the region
Ay = {x+huty : x € H,} \ H,,

that consists of two parallelograms of height /,, constructed on two consecutive sides
of H,, (see Fig. 6).
Letc := |(ﬁrn U An) N L;|. We denote by C, the configuration defined by

Ce:= (Flrn U An) N Ly
and we observe that, by construction, the perimeter of C, satisfies
P(Cc) = pa. (86)
We subdivide the remaining proof of the claim into two substeps. o
Substep 1.1. We claim that for every n big enough there exists a minimizer M,, such
that

H,, CM,C<C.

and |C. \ M| <2r, — 1.
We begin by observing that

c:=|Cc| = |Hy,| + @rn + Dhy

=1+4+3r2+3r +(r —|—1)(p — 6ry,)
n n n ) n n

= 3r2 4 para+ 1+ % (87)
Then, a direct computation shows that
3s2—pns—l—%20 (88)
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1
—3 + 6‘/ [, 1% + 3], and, for n

[ty ] 1 2 [ty ]
f —3 ——/ 3
or every s € |: G 6 [o 17+ 3, 6

big enough,
2 Pn
3s +(2—pn)s—2—7+n20 (89)

for every s € R. In particular, (88) and (89) hold for s = r, and for n sufficiently
large, yielding

0<c—n<2r,—1. (90)

We now observe that by the definition of C. it is possible to remove up to 2r, — 1
points from C. \ H,, without changing the perimeter of the configuration. In view of
(90), we construct M, by removing in such a way ¢ — n points from C,. It follows
from (86) that P(M,) = p, and hence, the claim holds true.

Substep 1.2. Let M, be the sequence of ground states constructed in the previous

substep. In view of (90), and of the definition of «,, and p,, there holds

[Chn \ Hrn| = 2rp + Dh,
Pn

= —6(rpn)* = 3rp + Pntn + 1+ >

= ] Jrant? — (@? + o). 1)

Moreover, by the definition of M, we have that

1Co \ M| <21y — 1 =0n!?) =on®%). (92)

The thesis follows frzn combining (91) and (92) since H,, is by construction the
maximal hexagon of M,,.
Step 2 In this last step, we remark that

limsup K, = K; limsup\/{\/un —3—‘ —+12n -3 < K,

n——+00 n— 400

and that for those n; € N of the formn; =2 +3; +3j 2 there holds

X, K, (93)

j—)m::

as j — 4oo0.
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In fact, we have that

J12n, =3 = J12(1 43 +32) +9

12
(6) +3)
12

) 12 ’
(6] +3)|:1+\/1+—(6j+3)2]

= (6j +3),[1+

=6j+3+

which in turn yields

12

|12 =3 | = 120, =3 =1- 1

12
j 1 14+ —
(6]+3)[ +\/ +(6j+3)2]

as j — 4oo0. O

It is remarkable that the leading terms in the estimates (24), (75), and (80) estab-
lished in Step 1 of Theorem 1.2 are optimal for every n € N as it follows from Step 1
of the proof of Theorem 1.4.

Finally, we notice that the bounded quantities K,, defined in (73) are O for every
n € N that can be written as n = 1 4 3k + 3k? for some k € N. This reflects the fact
that for those n the daisy Dy, is the unique minimizer, whose maximal hexagon H,,
is the daisy itself. Therefore, Theorem 1.4 also entails that, by adding a point to every
EIP (2) with n = 1 4 3i + 3i> for some i € N, we pass not only from a problem
characterized by uniqueness of solutions to a problem with nonuniqueness, but also
from a situation of zero deviation of the minimizer from its maximal hexagon to the
situation in which minimizers include one that attains the maximal deviation.
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Abstract. We present a novel variational approach to dynamic perfect plasticity. This is based
on minimizing over entire trajectories parameter-dependent convex functionals of weighted-inertia-
dissipation-energy (WIDE) type. Solutions to the system of dynamic perfect plasticity are recovered
as limits of minimizing trajectories as the parameter goes to zero. The crucial compactness is achieved
by means of a time discretization and a variational convergence argument.
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1. Introduction. Plasticity is the macroscopic, inelastic behavior of a metal
resulting from the accumulation of slip defects at its microscopic, crystalline level. As
a result of these dislocations, the behavior of the material remains purely elastic (and
hence reversible) as long as the magnitude of the stress remains small, and becomes
irreversible as soon as a given stress-threshold is reached. When that happens, a
plastic flow is developed such that, after unloading, the material remains permanently
plastically deformed [27].

We refer the reader to [22, 34] for an overview on plasticity models; here we focus
on dynamic perfect plasticity in the form of the classical Prandtl-Reuss model [16],

(1.1) pii—V -0 =0,
(1.2) o =C(Eu—p),
(1.3) OH(p) 3 op,

describing the basics of plastic behavior in metals [20]. Here u(t) : @ — R3 denotes
the (time-dependent) displacement of a body with reference configuration Q C R3 and

density p > 0, and o(t) : @ — MZx3 is its stress. In particular, relation (1.1) expresses

the conservation of momenta. The constitutive relation (1.2) relates the stress o(¢)
to the linearized strain Eu(t) = (Vu(t)+Vu(t)")/2 : Q@ — M2%3 and the plastic

Sym
strain p(t) : Q — M%XB (deviatoric tensors) via the fourth-order elasticity tensor C.
Finally, (1.3) expresses the plastic-flow rule: H : M%XB' — [0,+00) is a positively
1-homogeneous, convex dissipation function, op stands for the deviatoric part of the
stress, and the symbol 0 is the subdifferential in the sense of convex analysis [9]. The
system will be driven by imposing a nonhomogeneous boundary displacement. Details
on notation and modeling are given in section 2.
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The focus of this paper is on recovering weak solutions to the dynamic perfect
plasticity system (1.1)—(1.3) by minimizing parameter-dependent convex functionals
over entire trajectories, and by passing to the parameter limit. In particular, we
consider the weighted-inertia-dissipation-energy (WIDE) functional of the form

(1.4) I.(u,p) = /OT/Q exp (—2) <p2€2|u2 +eH(p) + %(Eu—p) : (C(Eu—p)) dzx dt,

to be defined on suitable admissible classes of entire trajectories ¢ € [0, T]+— (u(t), p(t)):
Q — R3 x M5 fulfilling given boundary-displacement and initial conditions (on u
and p, respectively). The functional bears its name from the sum of the inertial
term p|ii|%/2, the dissipative term H(p), and the energy term (Eu—p) : C(Eu—p)/2,
weighted by different powers of € as well as the function exp(—t/e).

For all £ > 0 one can prove that (a suitable relaxation of) the convex functional
I. admits minimizers (u®,p®), which indeed approximate solutions to the dynamic
perfect plasticity system (1.1)—(1.3). In particular, by computing the corresponding
Euler-Lagrange equations, one finds that the minimizers (u®,p®) weakly solve the
elliptic-in-time approximating relations,

(1.5) &2 pii® — 22 pii + pii° — V-0 =0,
(1.6) o0 = C(Eu® — p°),
(L.7) —e(0H (%)) + OH(p") 3 0,

along with Neumann conditions at the final time T'.

The dynamic perfect plasticity system (1.1)—(1.3) is formally recovered by tak-
ing € — 0 in system (1.5)—(1.7). The main result of this paper consists of making
this intuition rigorous, resulting in a new approximation theory for dynamic perfect
plasticity.

The interest in this variational-approximation approach is threefold. First, the
differential problem (1.1)—(1.3) is reformulated on purely variational grounds. This
opens the possibility of applying the powerful tools of the calculus of variations to the
problem, such as the direct method, relaxation, and I'-convergence [15].

Second, by addressing a time-discrete analogue of this approach we contribute a
novel numerical strategy in order to approximate dynamic perfect plasticity by means
of space-time optimization and collocation methods. We believe this to be of potential
interest in combination with global constraints or noncylindrical domains.

Eventually, the variational formulation via WIDE functionals is easily open to
generalization by including more refined material effects, especially in terms of addi-
tional internal-variable descriptions. This indeed has been one of the main motivations
for advancing the WIDE method; see, in particular, [10, 26] for applications in ma-
terials science. Details of the method in the case of dynamic perfect plasticity could
then serve as the basis for developing complete theories for evolutionary dissipative
processes, such as those involving damage or fracture effects.

As a by-product of our analysis, we obtain a new proof of existence of weak
solutions to dynamic perfect plasticity. Note that existence results for (1.1)—(1.3) are
indeed quite classical. In the quasi-static case, in which the inertial term is neglected,
they date back to Suquet [50] and have been subsequently reformulated by Dal Maso,
DeSimone, and Mora [11] and Francfort and Giacomini [18] within the theory of rate-
independent processes (see the recent monograph [39]). In the dynamic case both
the first existence results due to Anzellotti and Luckhaus [6, 35] and the subsequent
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revisiting of these results by Babadjian and Mora [7] are based on viscosity techniques.
Dimension reduction has been tackled in both the quasi-static and the dynamic case
in [13, 28, 29] and [36], respectively. Finally, in [12] convergence of solutions of the
dynamic problem to solutions of the quasi-static problem has been shown. With
respect to the available existence theories our approach is new, for it does not rely on
viscous approximation but rather a global variational method.

Before moving on, let us review here the available literature on WIDE variational
methods. At the level of Euler-Lagrange equations, elliptic-regularization techniques
are classical and can be traced back to Lions [32, 33] and Oleinik [43]. Their variational
version via global functionals was already mentioned in the classical textbook by
Evans [17, Problem 3, p. 487] and has been used by Ilmanen [24] in the context
of Brakke mean-curvature flow of varifolds and by Hirano [23] in connection with
periodic solutions to gradient flows.

The formalism has then been applied in the context of rate-independent systems
by Mielke and Ortiz [38]; see also the follow-up paper [40]. Viscous dynamics have
been considered in many different settings, including gradient flows [41], curves of
maximal slopes in metric spaces [44, 45], mean-curvature flow [48], doubly nonlinear
equations [1, 2, 3, 4, 5], reaction-diffusion systems [37], and quasi-linear parabolic
equations [8].

The dynamic case has been the object of a long-standing conjecture by De Giorgi
on semilinear waves [14]. The conjecture was solved affirmatively [49] for finite-time
intervals and by Serra and Tilli [46] for the whole time semiline, that is, in its original
formulation. De Giorgi himself pointed out in [14] the interest in extending the
method to other dynamic problems. The task has then been taken up in [31] for mixed
hyperbolic-parabolic equations, in [30] for Lagrangian mechanics, and in [47] for other
hyperbolic problems. The present paper delivers, in its main result (Theorem 2.3),
the first realization of De Giorgi’s suggestion in the context of continuum mechanics.

We briefly outline the main steps of the WIDE approach, and of the proof of
Theorem 2.3, in our setting. First, we perform a time discretization of the WIDE
functional. By choosing suitable test functions in the discrete Euler—Lagrange equa-
tions, and by performing time-discrete integration by parts, we prove in Theorem 4.8 a
first a priori estimate for minimizers of the time-discrete WIDE functionals. A crucial
point of the argument is to guarantee that the estimate above is uniform with respect
to both the WIDE parameter € and the width of the time-discretization step. Second,
we show via a I'-convergence type of argument that the same uniform a priori esti-
mate is fulfilled by suitable minimizers of the WIDE functional at the time-continuous
level (see Corollary 5.3). This latter estimate guarantees compactness of sequences
of minimizers as € tends to zero, and it allows us to recover conditions (1.1) and
(1.2) in the limit. The third step (see Propositions 6.4 and 6.6) consists of deducing
both an energy inequality at the e-level fulfilled by minimizers, and a corresponding
integrated-in-time counterpart. Finally, we pass to the limit in the energy inequality
and show that the flow rule in (1.3) is attained in weak form (see subsection 2.8).

An alternative approach to deducing a uniform energy estimate analogous to that
in Corollary 5.3 could be to try performing directly some very careful energy estimates
in the equations, along the lines of [46, 47]. We have decided here to proceed instead
as in [49], namely by first performing a discretization in time, establishing a uniform
a priori estimate at the time-discrete level, and eventually showing that this estimate
transfers to the time-continuous setting.

We have chosen to adopt this latter strategy for three main reasons. First, the
existence results in the literature for solutions to both the quasi-static and the dynamic
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problem in perfect plasticity are classically proven by resorting to time discretization.
Adopting the analogous strategy might allow us to gain further insight into the relation
between classical approximations via viscosity solutions and those provided by the
WIDE approach; this is currently an open question. Second, the WIDE approach for
rate-independent processes has been developed by relying on a time-discrete analysis.
In this regard, our analysis shows that the same methodology can be used to discuss
both the quasi-static and the dynamic case. Finally, the establishment of the time-
discrete a priori estimates might prove useful for advancing the study of the numerics
of the problem.

The motivation for choosing dynamic perfect plasticity as a test for the WIDE
methodology is threefold. First, the existence theory in this setting has already been
fully characterized in both the quasi-static and the dynamic case. This provides a solid
starting point for our analysis that might be not available in different frameworks.
Second, we are interested in checking whether the WIDE methodology is amenable
also to solving dynamic problems calling for very weak formulations in spaces of mea-
sures. Third, we intend to proceed along the line proposed by De Giorgi in his seminal
paper [14, Conj. 4, Rem. 1] of extending the reach of the WIDE methodology beyond
semilinear waves. This has partly succeeded in the case of additional superlinear dissi-
pation [31, 47]. Our goal is then to check whether a similar analysis applies to perfect
plasticity, in which the dynamic of the system is characterized by linear dissipation
instead.

The paper is organized as follows. We introduce notation and state our main
result, namely Theorem 2.3, in section 2. Then, we discuss in section 3 the existence
of minimizers of the WIDE functionals. In section 4 a time discretization of the
minimization problem is addressed. Its time-continuous limit is discussed in section
5 by means of variational convergence arguments. A parameter-dependent energy
inequality is derived in section 6 and used in section 7 in order to pass to the limit as
¢ — 0 and prove Theorem 2.3.

2. Statement of the main result. We devote this section to the specification
of the material model and its mathematical setting. Some notions from measure
theory need to be recalled, and we introduce the notation and assumptions to be
used throughout the article. The specific form of the WIDE functionals is eventually
introduced in subsection 2.9, and we conclude by stating our main result, namely
Theorem 2.3.

2.1. Tensors. In what follows, for any map f : [0,7] x R? — R we will denote
by f its time derivative and by V[ its spatial gradient. The set of 3 x 3 real matrices
will be denoted by M?*3, Given M, N € M?*3, we will denote their scalar product
by M : N := tr(M T N), where tr denotes the trace and the superscript stands for
transposition, and we will adopt the notation Mp to identify the deviatoric part of
M, namely Mp := M — tr(M)Id/3, where Id is the identity matrix. The symbol
Mi;n? will stand for the set of symmetric 3 x 3 matrices, whereas M?}_,Xg will be the
subset of M2X3 given by symmetric matrices having null trace.

sym

2.2. Measures. Given a Borel set B C R, the symbol M(B;R™) denotes
the space of all bounded Borel measures on B with values in R™ (m € N). When
m = 1 we will simply write M,(B). We will endow M,(B;R™) with the norm
l12ll A, (Bimmy = ||(B), where |u| € My(B) is the total variation of the measure .

If the relative topology of B is locally compact, then by the Riesz representation
theorem the space My(B;R™) can be identified with the dual of Co(B;R™), which



676 ELISA DAVOLI AND ULISSE STEFANELLI

is the space of all continuous functions ¢ : B — R™ such that the set {|¢| > 0} is
compact for every § > 0. The weak* topology on My(B;R™) is defined using this
duality.

2.3. Functions with bounded deformation. Let U be an open set of R3.
The space BD(U) of functions with bounded deformation is the space of all functions
u € LY(U;R3) whose symmetric gradient Fu := sym Du := (Du + Du?)/2 (in the
sense of distributions) belongs to My (U; M2x3). Tt is easy to see that BD(U) is a
Banach space endowed with the norm

ol wiey + 1Bl sy
A sequence {u"} is said to converge to u weakly* in BD(U) if u*¥ — u weakly in
LY(U;R®) and Euf — Eu weakly* in My(U;M2%3). Every bounded sequence in
BD(U) has a weakly* converging subsequence. If U is bounded and has a Lipschitz
boundary, then BD(U) can be embedded into L3/2(U;R?) and every function u €
BD(U) has a trace, still denoted by u, which belongs to L' (0U; R3). If T is a nonempty
open subset of QU in the relative topology of AU, then there exists a constant C > 0,
depending on U and I such that
(2.1) ||’UJ||L1(U;R3) < C”U”Ll(p;]}@) + C||EuHMb(U;M3X3

sym)”

(See [51, Chapter II, Proposition 2.4 and Remark 2.5].) For the general properties of
the space BD(U) we refer the reader to [51].

2.4. The elasticity tensor. Let C be the elasticity tensor, which is considered
a symmetric positive-definite linear operator C : Msyxn‘f — Mf;n‘f, and let @ : Mf;n‘f —

[0,400) be the quadratic form associated with C, given by

Q&) = 1(C§ : & for every € € Msyxn‘?’

2
Let the two constants ac and B¢, with 0 < ac < B¢, be such that
(2.2) aclé? < Q(€) < Belél?  for every € € MR
and
(2:3) CE| < 2Bclé]  for every & € M.

2.5. The reference configuration. Let 2 be a bounded open set in R® with
C? boundary. Let Ty be a connected open subset of 9 (in the relative topology of
09) such that 9pal'g is a connected, one-dimensional C? manifold. In the following
we will assume that € is the reference configuration of our material and that 'y is the
Dirichlet portion of 92, where time-dependent boundary conditions are prescribed.

2.6. The dissipation potential. Let K be a closed convex set of M?I’DXS such
that there exist two constants rx and Ry, with 0 < rx < R, satisfying

{eeMy?: |¢ <rk} C K c{¢eMF?®: |¢| < Rk}

The boundary of K is interpreted as the yield surface. The plastic dissipation potential

is given by the support function H : MSDXB — [0,400) of K, defined as

H(¢):=supo:¢&.
oK
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Note that K = 0H(0) is the subdifferential of H at 0 (see, e.g., [9, section 1.4]). The
function H is convex and positively 1-homogeneous, with

(2.4) ri|€] < H(€) < Rilé| for every & € M.
In particular, H satisfies the triangle inequality
(2.5) H(E+¢) < H(E)+H(C) for every & ¢ € M.

For every p € My(QUTo; M%) let dyu/d|u| be the Radon-Nikodym derivative of y
with respect to its variation |p|.

According to the theory of convex functions of measures [19], we introduce the
nonnegative Radon measure H(u) € My(QQUTy), defined by

() (a) = [ 11 (g alul,

for every Borel set A C QUTy. We also consider the functional
H o My(QUTo; MEP) — [0, +00),
defined by .
Mo = H©@UTo) = [ (Gl dlul

for every pu € My(QUTTo; M353). Notice that H is lower semicontinuous on M;(Q U
Lo; M?I’DXB) with respect to weak* convergence. The following lemma is a consequence
of [19, Theorem 4] and [51, Chapter II, Lemma 5.2] (see also [11, subsection 2.2]).

LEMMA 2.1. Setting Kp(Q) := {7 € Co(QUTo; M3?) : 7(x) € K for every x €
O}, there holds

H(p) = sup{(r, u) : 7 € Kp(Q)}
for every u € My(Q U To; M353).

2.7. The H-dissipation. Let s1,s2 € [0,7] with s; < so. For every function
2 [0,T] — My(QUTo; M3, we define the H-dissipation of t — u(t) in [sy, so] as

(2.6)  Dyy(p;s1,52)

= sup{ZH(ﬂ(tj) —u(tj—1)): si=to<t1 < <ty =89, NE N}.

j=1
Denoting by Vot the pointwise variation of ¢ — u(t), that is,

Viot (14; 81, 82)

n
‘= sup { Z la(t5) = /L(tj—l)”./\/lb(ﬁur‘o;M:‘DX?’) ts1 =t S-Sty =82, M€ N},
j=1

by (2.4) there holds

(2.7) 7K Viot (145 51, 52) < Dy (15 51, 52) < RicVior (143 51, 52)-
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As in [38, section 4.2], for every nonincreasing and positive a € C([0,T]) we define
the a-weighted H-dissipation of t — p(t) in [s1, 2] as

n

(2.8) Dy (a; p; 81, 82) := sup{ Za(tj)’H(,u(tj) — u(tj—1)) : to,tn € [s1, S2),

j=1

to<t1 <-- <ty neN},

and for every b € C(]0,T]) we introduce the b-weighted H-dissipation of t — p(t) in
[s1,82] as

namely, as the Pollard-Moore—Stieltjes integral (see [21, sections 3 and 4]) of b with
respect to the function of bounded variation

[0,T] 3t — Dy (p;0,t) € [0, Dy (1250,T)].

Note that the integral above is well defined, owing to [21, Theorems 5.31 and 5.32],
and that if b is nonincreasing and positive, then

(2.10) Dag(b; 5 51, 52) = Da(b; 15 51, 52)-
An adaptation of [11, Theorem 7.1] yields that if p is absolutely continuous in time,

then .
Dl sr.se) = [ HGi)de

and .
Dy(a; 15 51, 52) :/ a(t)H () dt

S1
for every nonincreasing and positive a € C([0,T]).
2.8. The equations of dynamic perfect plasticity. On I’y for every ¢t €
[0, T] we prescribe a boundary datum w(t) € W'/22(T; R?). With a slight abuse of
notation we also denote by w(t) a W2(£); R?)-extension of the boundary condition
to the set 2.

The set of admissible displacements and strains for the boundary datum w(t) is
given by

2.11) A (w(t) ::{(u, e,p) € BD(Q) x L2 ME3) x My(QUTo; MY ) :
Eu=e+pinQ, p=(w(t)—u)®vH*on FO},
where ® stands for the symmetrized tensor product, namely,

a®b:=(a@b+b®a)/2 Ya,beR3

v is the outer unit normal to 92, and H? is the two-dimensional Hausdorff measure.
The function u represents the displacement of the body, while e and p are called the
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elastic and plastic strain, respectively. Note that the two equalities in (2.11) hold in
the sense of M, (Q U o; M3?).
We point out that the constraint

(2.12) p= (w(t) —u) ®vH?* on Ty

is a relaxed formulation of the boundary condition u = w(t) on I'y (see also [42]). As
remarked in [11], the mechanical meaning of (2.12) is that whenever the boundary
datum is not attained a plastic slip develops, whose amount is directly proportional
to the difference between the displacement u and the boundary condition w(t).

Let w € W22(0,T; WH2(Q; R3)) N C3([0, T); L2(;R3)). A solution to the equa-
tions of dynamic perfect plasticity is a function t — (u(t), e(t),p(t)) from [0, 7] into
(L2(:R*)NBD(£)) x L2 (€ M2X3) x My, (QULg; MB®) with u € W22°(0, T L2(Q; R?))
NLip(0,T; BD(R)), e € W1(0, T; L2(Q; R?)), p € Lip(0, T; My(QUT o; M3,?)) such
that for every t € [0, 7] there holds (u(t),e(t),p(t)) € &/ (w(t)), and for almost every
t € [0,T] the following conditions are satisfied:

(c1) equation of motion: pi(t) —divo(t) = 0 in Q and o(t)r = 0 on 9N\ Ty in
the sense of Remark 4.4, where o(t) := Ce(t) is the stress tensor, and p > 0
is the constant density;

(c2) stress constraint: op(t) € K;

(¢3) energy inequality:
P . 2 ! .
[ atenae+ 2 [lawpas+ [ ueenas [ oo
p y 2 t : Fuw(s i(s) - w(s)dxrds
5 [raFdet [ [ ats): Bats) + pis) - ils) dos.

We remark that condition (¢3) guarantees that the sum of the elastic and kinetic
energies with the plastic dissipation at each time t is always less than or equal to
the sum of the initial energy with the work due to the time-dependent boundary
condition.

Under suitable assumptions, when (c1) and (c2) are satisfied, condition (c3) is
indeed an equality, and it is equivalent to the following flow rule:

(c3") p(t) =0if op(t) € int K, while p(¢) belongs to the normal cone to K at op(t)
if op (t) € 0K.

A detailed analysis of the equivalence between (c1)—(c3) and (c1)—(c2), (c3’) has
been performed in [11, section 6]. An adaptation of the argument yields the analogous
statements in the dynamic setting.

The following existence and uniqueness result holds true (see [36, Theorem 3.1
and Remark 3.2]).

THEOREM 2.2 (existence of the evolution). Let 2 be a bounded open set in R3
with C% boundary. Let Ty be a connected open subset of O (in the relative topology
of 0Q) such that dpal'y is a connected, one-dimensional C? manifold.

Letw € W22(0, T; WH2(Q; R3)NC3([0, TT; L2(;R?)) and (u®, €0, p°) € o7 (w(0))
be such that divCe® = 0 a.e. in Q, (Ce®)v =0 H%-a.e. on IQ\ Ty, and (Ce®)p € K
a.e. in Q. Eventually, let (u',e!,0) € o (w(0)).

Then there exist unique uw € W?2>(0,T;L*(Q;R3)) N Lip(0,7; BD(Q)),
e € WH(0,T; L2(;R3)), and p € Lip(0, T; My (Q U To; M?)) solving (c1), (c2),
and (c3), with (u(0),e(0),p(0)) = (u®, € p°), and u(0) = u'.
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2.9. The WIDE functional. Let the boundary datum
w e W20, T; WH2(Q:R%)) N C2([0, T); L (4 R?))

be given. By reformulating the expression in (1.4) for the triple (u, e, p) one would be
tempted to introduce the functional

(u,e,p) — /OT exp ( - é) (622p/9 |ii|? dx + eH(p) + /Q Q(e) d:v) dt,

to be defined on the set V, given by the class of triples (u, e, p) such that the following
conditions are fulfilled:
V1. u € (W220,T; L?(Q;R3)) N L1(0,T; BD(Q))) with 4(0) = u°, u(0) = u';
V2. p € BV([0,T); Myp(QUTo; M3?)) and attains the initial datum p(0) = p°;
V3. e(t) := BEu(t) — p(t) in D' (4 M233) for every t € [0,T],e € L*((0,T) x
Q;M2%%) and e(0) = €%
V4. (u(t),e(t),p(t)) € & (w(t)) for a.e. t € [0,T],
where (u?, €%, p%) € & (w(0)), and ut € W12(Q;R3) is such that u! = (0) on Iy.
We observe that if (u,e,p) € V, then Eu € W22(0,T; W~12(Q;M2%3)). Thus,
e(t) is defined for every ¢ € [0,7T] as a map in W~12(Q; M2X3) + M, (Q U To; M),
and the initial condition e(0) = €° is well justified. We stress that BV ([0, T]; M,(QU
To; M%%)) denotes here the set of maps u such that u(t) € My(Q U To; M353) for
every t € [0,T], u € L*(0,T; Myp(Q U To; MH?)), and Vi (150, T) < +oo (see also
[11, Appendix]).
On the other hand, one readily sees that the term

/OT exp ( — g)?—[(p) dt

is not well defined in case p is not absolutely continuous with respect to time (see [11,
Theorem 7.1]). We hence need to relax the form of the WIDE functional as

(2.13)

Ia(u7 67]))
t

= /OTexp(E) (EZP/Q|ﬁ2da:+/QQ(€)d$) dt + eDy(exp(— - /€);p;0,T)

for every (u, e,p) € V. As pointed out in subsection 2.7, an adaptation of [11, Theorem
7.1] yields

T
t .
Dy (exp(—-/¢);p;0,T) = / exp ( - E)H(p) dt
0
whenever p is absolutely continuous with respect to time.

2.10. Main result. We are now ready to state the main result of the paper.

THEOREM 2.3 (dynamic perfect plasticity as convex minimization). Let Q be a
bounded open set in R® with C? boundary. Let Ty be a connected open subset of IS (in
the relative topology of O2) such that Opal'g is a connected, one-dimensional C? man-
ifold. Let w € W22(0,T; WH2(Q; R3)) N C3([0, T); L2 (4 R?)), and let (u°, e, pY) €
2 (w(0)) be such that divCe® = 0 a.e. in Q, (Ce®)v = 0 H2-a.e. on 0N\ Ty, and
(Ce"p € K a.e. in Q. Eventually, let (ul,e!,0) € o7 (1w(0)).
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For every € > 0 there exists {(u®,e®,p®)} C V solving

(2.14) I.(u®,e,p°) = min I (u,e,p),
(u,e,p)€V

such that for e — 0 there holds
u® —u  weakly in WH2(0,T; L*(Q; R?)),
e — e weakly in L*(0,T; L*(Q; M253)).
Additionally, for every t € [0,T] we have
pe(t) = p(t)  weakly™ in My(QUTo; M),
and for a.e. t € [0,T] there exists a t-dependent subsequence {e} such that
utt(t) =" u(t) weakly* in BD(Q),
et (t) — e(t)  weakly in L*(Q; M2X3),

Sym

where u € W2(0,T; L*(Q;R3)) N Whe(0,T; BD()), e € WHe°(0,T; L*(; R3)),

and p € WH22(0,T; Myp(Q2U Tg; M?]DXS)) is the unique solution to the dynamic perfect

plasticity problem (c1), (c2), and (c3), with (u(0), e(0),p(0)) = (u°, €%, p%) and u(0) =
1

ut.

The rest of the paper is devoted to the proof of Theorem 2.3. Our argument runs
as follows: in section 3 we prove that minimizers {(u®, e?,p®)} of problem (2.14) exist.
Then we devise an e-independent a priori estimate on {(u®, e, p®)} first in a discrete
and then in a continuous setting (section 4) by means of a I'-convergence argument
(section 5). Finally, we derive an energy inequality at level e > 0 (section 6) which
allows for discussing the limit € — 0 in section 7 and for recovering condition (c3) in
the limit.

We point out that the C2? regularity of 0 is needed in Theorem 2.3 in order
to introduce a duality between stresses and plastic strains, along the lines of [25,
Proposition 2.5]. For technical reasons it is not possible to use here the results in [18]
and to consider the case of a Lipschitz 92. We refer the reader to Remark 4.6 for
some discussion of this point.

3. Minimizers of the WIDE functional. We start by focusing here on prob-
lem (2.14) and show that the functional I, admits a minimizer in V.

PROPOSITION 3.1 (existence of minimizers). For every e > 0 there exists a triple
(u®,e%,p%) € V such that

(3.1) I.(u®,e,p%) = inf  I.(u,e,p).
(u,e,p)€V

Proof. Fix € > 0, and let {(uy,€n,pn)} C V be a minimizing sequence for I.. We
first observe that the triple

t— (u® + tur + w(t) — w(0) — tw(0), e’ + te* + Fw(t) — Fw(0) — tEw(0),p°)

belongs to V. Hence,

T t
hm Is(unvenvpn) S/ €xXp (77)
0 E

n——+oo

. EQJ w2 dx e el w(t) — Ew B "
(2 /QI "d +/QQ( +te' + Buw(t) — Bw(0) —tE (0))d)dtgc,
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thus yielding the uniform bound

(3.2) sug{|\un||L2(o,T;L2(Q;R3)) + Dyy(exp(— - /2); pn; 0, T)
ne

+ llenllao.ms 2@zt } < C-

Since (un, en,pn) € V, there holds p,(0) = p° for every n € N. In view of (2.7) and
(25,

T €Xp(—T1'/€)Viot (Pn; 0,T) < exp(—T/e) Dy (pn;0,T) < Dy (exp(— - /€);pn; 0,T).

Therefore, we are in a position to apply the variant of Helly’s theorem in [11, Lemma
7.2] and to deduce the existence of a subsequence, still denoted by {p,}, and a map
p° € BV(0,T; My(Q UTo; M%?)) such that

(3.3) pu(t) = p°(t) weakly* in My,(QUTo; M53)  for every ¢ € (0,77,

and we have the lower semicontinuity of the H-dissipation,

(3.4) Dy (exp(— - /e);p%;0,T) < limJirnfDH(exp(— - /€);0n;0,T).
n——+oo

By (3.2), there exist e¢ € L2(0,T; L?(Q; M3X3)) and u® € W22(0, T; L*(£; R?)) such

sym

that, up to the extraction of a (non-relabeled) subsequence,

(3.5) en — € weakly in L*(0, T L* (0 M3)5Y))
and
(3.6) up — uf  weakly in W2(0,T; L?(Q; R?)).

This implies that u*(0) = «° and 4°(0) = u!. By (3.3), (3.5), and (3.6) it follows that

(3.7 en(t) = eS(t)  weakly in D'(Q; M3%3

sym

for every t € [0, 7], and hence €*(0) = €°. In view of (3.5) and Fatou’s lemma, there

holds r r
/ liminf/ |en|2dxdt§liminf/ / len|? dzdt < C.
0 n——+oo Q n——+oo 0 Q

Thus, by (3.7) for a.e. t € [0, T there exists a t-dependent subsequence {n;} such that

(3.8) en, (1) — € (t) weakly in L?(€; M2%3).

sym

Finally, by (2.1), (3.3), and (3.7), up to subsequences there holds
Up, (1) =% u(t) weakly* in BD(Q) for a.e. ¢t € [0,T].

The fact that p® satisfies the Dirichlet condition on I'y for a.e. ¢ € [0, 7] follows,
arguing as in [11, Lemma 2.1]. The minimality of the limit triple (u®,e®,p®) is a
direct consequence of the lower semicontinuity of I. with respect to the convergences
in (3.4), (3.5), and (3.6). O

We conclude this section with a result stating the uniqueness of the displacement
for a given plastic strain.
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PROPOSITION 3.2 (uniqueness of minimizers given the plastic strain). Let
(Uq, €q,Da) and (up, €p,pp) be two minimizers of I. in V. Then there exists a con-
stant C' such that

(3.9) 52”ua - ubH%Vl?(O,T;L?(Q;R?’)) + llea = €b||12(01T;L2(Q;ngXr3))

T
< Ceexp (;)Vtot(pa 7pb§0:T)’

Proof. Arguing as in [11, Theorem 3.8], we set v = u, — up, [ = €4 — €, and
q = pa — pp- Since (v(t), f(t),q(t)) € <7(0) for almost every t € [0, 7], it follows that
(Ua, €a,Pa) + A(v, f,q) €V for every A € R. Thus,

I (uas €asPa) < Ic((Ua, €a, Pa) + A (v, f,q))

:/OTexp (-2)(5?’/Q|ua+M)|2dx+/ﬂQ(ea+Af)dx) dt

+ eDyw(exp(— - /e);pa + Ag; 0,T).

By the arbitrariness of A we deduce the inequality

T
(3.10) —eDylexp(—-/e);¢;0,T) < /0 exp ( — 2) /Q (e%pita¥ + Ceq : f) da dt
< eDy(exp(=- /e); =4;0,T).

Arguing analogously, the minimality of (us, €, pp) yields

T
(3.11) —eDy(exp(— - /e);—q;0,T) < f/ exp ( — é) / (€2pﬁbi) + Cey : f) dx dt
0 Q
< eDyy(exp(— - /2);¢;0,T).
Summing (3.10) and (3.11) we obtain
—eDy(exp(— - /€)ipa — pp; 0, T) — eDyy(exp(— - /€);py — Pa; 0, T)

- T (_ f) 2 1 s 2 B
< exp (£2pliiq — iin]® +2Q(eq — €1)) da dt
0 €/ Ja

< eDy(exp(=- /€);pa = pp; 0, T) + eDy(exp(= - /2); pp — Pa; 0, T).
The thesis follows now by (2.2), (2.7), and (2.8). d

We point out that minimizers of I, are, in general, nonunique. The proof of the
approximation result in Theorem 2.3 will in fact rely on a selection of minimizers of
I, performed via a I'-convergence type of argument (see Corollary 5.3).

4. Discrete energy estimate. With the aim of establishing an a priori estimate
on {(u®,e®,p%)} independent of € we start by analyzing a time-discrete version of the
problem. Fix n € N, set 7 := T/n, and consider the time partition

O=to<ti < ---<t,=T1T, t; == aT.

We define wy := w(0), wy := wo + 7w(0), and, for i = 2,...,n, we set w; := w(t;).
Our analysis will be set in the space

(41) %T 32{(”07607170)7--->(Unaenapn)

€ ((BD(Q) N L (@ B?) x L(Q MEE) x My(QUTo; ME?))

sym

n+1 .

(ui, e5,p;) € o (w;) fori=1,.. .,n}.
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We define the discrete energy functional I, : % — [0,400) as

(42) IET((Uan()apO)a"'?(u’rhen)pn))
52/) n n—2
= ZTnm‘/ |6%u;|? d + Z TNrit2 / Q(e;) dz
i=2 Q i=2 Q
n—1
ter Z Nri+1H(Opi),
i=1
where, given a vector v = (v1,...,v,), the operator § denotes its discrete derivative,
P Uifl’ §ho, = §F 1y, — 5k_lvz>1’
T T

for £k € N, k > 1, and where the Pareto weights

(4.3) nm»::( = ) i=0,...n,

eE+T

are a discretization of the map t — exp ( —t/ E). Define the set

(44) %‘(u07607p07u1) = {(U07€07p0)7 EEER} (unven:pn) € %7' :

0 0 0 1
UO:U560:€7p0:pa5U1:u}'

Arguing as in Proposition 3.1 we obtain the following result.

LEMMA 4.1. There exists an (n+1)-tuple of triples (u$,, 5., pf.) such that ((ug, €5, 1j),
o (g, e%,pi)) € Ay (ul, e p° ut) and

(45) IET ((u87 egap8)7 cey (u7617 Gi,p,i))
= min I (w0, €0,90)s - - -, (Un, €0y D))
((40,€0.P0)1---: (1t e P ) ) €85 (w060 p0 )
4.1. Discrete Euler—Lagrange equations. We first compute the discrete Euler—
Lagrange equations satisfied by a minimizing (n+1)-tuple (u§, €5, pf), - . ., (us,, €5, 5).

PROPOSITION 4.2 (discrete Euler-Lagrange equations).  Let (u§,e§,pf), ...,
(us, e, p5) be a solution to (4.5). Then

n n—2
(4.6) ZfZPUT,z‘/ §%u - 6% d + Z 77m'+2/ Ce; : Epidr =0
i=2 Q i=2 Q

for every ¢; € WH2(Q;R?) such that ; =0 H%-a.e. onTq, i =2,...,n. In addition,

€
e+T

T
eE+T

€
e+T

@0 (e 19 < (=) [ o e <o + (S5m0

for every € € L2 M53), i =2,...,n—2.
Proof. Let

(’Uo, foﬂ]o)» cee (vnv fna Qn) € (BD<Q) X LQ(Q,MS;X?) X Mb(Q U FO;M%XB))H+1
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be such that (vg, fi,q;) € #(0) for i = 1,...,n, with vg = dv; =0, and fo = go = 0.
Consider the (n+1)-tuple

(ug = Avo, ef = Afo, PG £ Ao)s - - -, (s, £ Avg, €5, £ A, 05, £ Agn),

with A > 0. By the minimality of (u§, ef, p§),- - -, (u$, €5, pg ), there holds

1
XIST((uf] + Mg, eq £ Mo, pg £ Ago), - - -, (us, £ Avn, €5, £ Afn, 05, £ )\qn))
1

- XIET((,U“& 6(6)7p(5))7 D) (ufw efL’pr)) 2 0.

Therefore, by (2.5) and (4.2) we deduce the inequality

n—1

(4.8) —ET Z Nr.i+1H(0gi)

i=1

n n—2
< EQpZ 7-177714/ 52uf - 0%v; dx + Z 7'77771»_5_2/ Ce5 : fidx
i=2 @ i=2 2
n—1

< ETZﬁr,iH’H(*(SQi)-
i=1
For i = 0,...,n, let ¢; € WH2((;R?) with ¢; = 0 H2-a.e. on Iy, and let & €
Lz(Q;M%X?’). Choosing v; = i, fi = Eyi, and ¢; = 0 for i = 2,...,n, by (4.8) we
obtain

n n—2
EZpZ TNri /Q 52uf . 52901» dr + Z TNrit+2 /Q Ce; : Ep;dx =0
i=2 i=2

for every ¢1,..., 0, € WH2(;R?), o, = 0 H?-a.e. on g, i = 0,...,n, and hence
(4.6). Choosing v; =0, f; =&;, and ¢; = —=&; for i = 1,...,n, estimate (4.8) yields

n—2 n—1

> Tﬁmurz/ Ces : &da < ety nr i H(0E)
i=2 Q i=1

for every &1,...,&, € L2(Q;M35?), and thus (4.7). d

We observe that it follows from (4.7) that (CeS)p € L>°(€; M35®) for every i and
e, although the bound is not uniform with respect to 7 or €. Indeed, for every B
Borel subset of Q and for every M € M%XS we can choose £ = Mg in (4.7), where
x B denotes the characteristic function of B. We have

(4.9) — (6

fori=2,...,n—2 and a.e. z € Q, which by (2.4) imply

n—1
—e7 Y i H(—68) <
i=1

9 3

e+T

)H(M)—H(—M) < <E+%)(Cef(x) M < H(M)+( )H(_M)

+ 7

T

—2Rg|M| < ( )«:eg(x) . M < 2Ry |M|

e+ T
fori=2,...,n—2, and every M € M?bx‘o’ for a.e. x € Q. Thus, we get the estimate

eE+T
T

(4.10) 1(Cef)nll iz < 2( ) R

fori=2,...,n—2.
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As a consequence of inequality (4.9), the deviatoric parts of the discrete stresses
of :=Cef,1=2,...,n — 2, belong to the subdifferential in 0 of suitable convex and
positively 1-homogeneous functions. Indeed, by (4.9) we have

( a )Jf(x)eaFﬁ(O) forae. z€Q,i=2,...,n—2,
E+T

where F§, : M3® — [0, +00) is defined as
£
Fg(M):=H(M — | H(-M
R0 = BN + (5 ) He-)

for every M € M%XS. The convexity and positive 1-homogeneity of Fg; follow directly
by the corresponding properties of H.

By means of a discrete integration by parts in time, (4.6) can be equivalently
reformulated in the following useful form.

PROPOSITION 4.3 (discrete Euler-Lagrange part 2). Let (u§, €§,p§), ..., (us, €5, ps)
be a solution to (4.5). Then
(4.11) 82us, = §3%us, = 0,
(4.12) /Q [p(e26% S,y — 2e6°uS 4 + 0°uS) - o + Ce : Ep| dz =0

fori=2,....n—2 and for every p € WH2(Q;R3) with ¢ =0 H?-a.e. on .

We omit the proof of this proposition as it follows by arguing exactly as in [49,
subsection 2.3]. In view of (4.12), there holds

(4.13) div Ces = p(e?6*us,, — 2e63uS, 4 + 6%u5) a.e. in Q,
' Cesv =0 H?-a.e. on 9N\ I,

and hence divCe§ € BD(Q) N L2(4R3), i =2,...,n — 2.

4.2. Stress-strain duality. In order to establish a uniform discrete energy es-
timate we need to introduce a preliminary notion of duality for the discrete stresses
o; and the plastic strains p§.

We work along the lines of [25] and [11, subsection 2.3]. Define the set
(4.14)

2(Q) = {o € L*(MZ:Y) : op € L>( M%) and dive € BD(Q) N L*(Q;R?)}.

By [25, Proposition 2.5], for every o € ¥(2) there holds

o€ LS(Q;M3%3)

Sym

and

HtrUHLG(Q;M3X3 < C(HUHLl(Q;M;%an? + HUDHLOC(Q;M%“) + [|div U||L2(Q;R3))'

sym

In addition, we can introduce the trace [ov] € W—1/22(9Q; R?) (see, e.g., [51, Chapter
I, Theorem 1.2]) as

([ov], ¥)oa ::/Qdivo-wdx—F/QU:Ez/)dx
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for every ¢ € WH2(Q; R3). Defining the normal and the tangential part of [ov] as
[ov], := ([ov] - v)v and [ov]}: = [ov] — ([ov] - V),

by [25, Lemma 2.4] we have that [ov];: € L>(9Q;R?) and
1 1
H[UV}V HLN(aQ;D@) < EHUD”LOO(Q;M?)DXS).

Let 0 € %(Q), and let u € BD(Q) N L?(Q;R3), with divu € L?(2). We define the
distribution [op : Epu] on § as

1
(4.15) ([op : Epul, @) := f/ Lpdivmudxfg/ @tra'divudzf/ o: (ueVyp)dx
Q Q Q

for every ¢ € C°(Q2). By [25, Theorem 3.2] it follows that [op : Epu] is a bounded
Radon measure on 2, whose variation satisfies

llop : Epul| < |lon Lo x| Epul  in €.

Let IIp, (£2) be the set of admissible plastic strains, namely the set of maps p €
M,(2U To; ME5®) such that there exist u € BD(Q) N L* (4 R3), e € L2(Q;M23),
and w € WH2(Q;R?) with (u,e,p) € o/ (w). Note that the additive decomposition
Eu = e+ p implies that divu € L?(9).

It is possible to define a duality between elements of ¥(Q2) and IIp,(€2). To be
precise, given p € IIp, () and o € £(Q), we fix (u,e,w) such that (u,e,p) € & (w),
with u € L?(Q;R?), and we define the measure [op : p] € My(Q UTo; M%53) as

[0’ 'p]': [O'DZEDU]—O'DZBD iIlQ7
b [ov]E - (w — u)H? on T,

so that

| edlonis = [ vdlo: Epul~ [ popiendot [ plovti - (w-wdn’
QU Q Q

o

for every ¢ € C(£). Arguing as in [11, section 2], one can prove that the definition
of [op : p| is independent of the choice of (u,e,w), and that if op € C(Q;M%®) and

© € C(Q), then
/ wdlop : p] :/ wop : dp.
Qur, QU

Remark 4.4 (Neumann condition). We are now in a position to make the mean-
ing of the Neumann condition in (c1) precise. The functional [ov] € H~1/2(99Q) is a
distribution. As such, one can define its restriction [ov]|4 to the set A := 9Q \ T,
which is open in the relative topology of 912, as

(4.16) ([ov]la, @) == (lov], @) Vo € CZ(4),

where ¢ € C*°(99) is the trivial extension of ¢ to the whole of 9. Condition (4.12)
entails that [ov]|4 = 0 as distribution. Hence, it is indeed a function, and [ov]|4 = 0
almost everywhere.

We finally rewrite [11, Proposition 2.2] in our framework.
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PROPOSITION 4.5. Let 0 € %(Q), w € W' (Q;R?), and (u,e,p) € o (w), with
u € L?(;R3). Assume additionally that [ov] =0 on 90\ T in the sense of Remark
4.4. Then

[UD:p}(QUFO)Jr/QJ:(ewa)dx:f/Qdiva(ufw)dx.

Remark 4.6. We point out that the C? regularity of 99 is needed here in order
to apply [25, Proposition 2.5]. It is not possible to use here the results in [18] and
extend the analysis to the case in which 9 is Lipschitz, as (4.13) only implies that
div Ces € L?(;R3), whereas [18, Proposition 6.1] requires div Ce§ € L3(2; R3).

4.3. Discrete energy estimate. This subsection is devoted to the proof of a
uniform energy estimate at a time-discrete level. The formal proof strategy can be
summarized as follows:

e We first test (1.1) against the map ¢ — u(t) — u! — 1(t) + w(0), and (1.3)
against ¢ — p(t). This provides an estimate of the form fOT F.(u,4,i)dt < C,
for a suitable function F. dependent on ¢, and for a constant C' dependent
on the initial and boundary data;

e We then estimate the quantity

T T ot
/ F.(u,t,) dt+/ / F.(u,,i)ds,
0 0o Jo

and perform the analogous strategy for (1.3), using the final conditions at
time T'.

The rigorous implementation of the methodology highlighted above relies on test-
ing (4.13) against the map ¢ = 7(du§ —u' —dw; +1(0)), and on summing the resulting
expression with its corresponding integrated-in-time counterpart. Before moving to
the proof of the discrete energy estimate, we establish a preliminary lower bound on
the mass of the measures [(Ce$)p : ¢], i = 2,...,n—2, where ¢ € I, (12) is such that
there exist v € BD(€) N L*(;R?) and f € L?(Q; M2%3) satisfying (v, f,q) € #/(0).
By choosing ¢ = ¢p5, this will indeed allow us to estimate the quantities [(Ce$)p : Ipf]
from below in terms of H(0p§) for i =2,...,n — 2.

Caveat on notation. In the following we use the symbol C' to indicate a generic
constant, possibly depending on data and varying from line to line.

The following estimate holds true.

PROPOSITION 4.7. Let q € T, (Q), v € BD(Q)NL* (4 R?), and f € L*(Q; M2

be such that (v, f,q) € </(0). Then, if (uf,e5,p5), ..., (us, e, p5) is a solution to
(4.5), it satisfies

(4.17) 7[(Cei)p : q)(QUT0) + (e + T)H(p; — q) +eH(q) > (¢ + 7)H(dp;)

for everyi=2,...,n—2.

Proof. Let q be as in the statement of the proposition. By (4.10) and (4.13)
it follows that Cef € 3(Q), ¢ = 2,...,n — 2. In view of the triangular inequality
(2.5), since (u§, €5, p5), - - ., (us, €5, p5) is a solution to (4.5), it also solves the implicit
minimum problem

IET((U‘87€87Z)8)7 L] (ufw efmpi,))

JET(<U’07 60?p0)7 ceey (unvenvpn))a

min
(©0,€0,P0) 55 (Un s€n,Pn ) EHF (u0,e0,p0 ul)
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where

n
P
JET((U'anOapO)a (unve'rupn) TZTT]T,j/ ‘52’&3“261:[‘
j=2 Q

n—2 _ . . -
+ Z TNz j+2 /Q Qlej)dx + et an‘ﬂ [’H(pj TPJ—1) n H(ij - Dj—1 )]
=2 o

Arguing as in Proposition 4.2 we compute the Euler-Lagrange equations associated
to the minimum problem above, and we perform variations (u§ £ Avg, €§ £ A fo, p§ £
AG0)s -« - (UE £ Ay, €5, £ A fn, PS5 £ Agn), with A > 0, and (v, fo,90),- - -, (Vn, fn, qn) €
(BD(Q) x L2(Q;MEX3) x My(Q U To; ME®)™™ such that (v;, fi,q:) € «(0) for

1=1,...,n, with vg = dv; =0, and fy = ¢o = 0. The convexity of H yields

5PZ7'7773/52 € 5%de+27’77”+2/(€6 fjdz

Jj=2 j=2
+er i Nrjt1 [ <5pj - ) H(op5) + 'H( %‘7_1)} > 0.
j=1

By combining Proposition 4.5 with the Euler-Lagrange equation (4.13), and perform-
ing the discrete integration by parts in [49, subsection 2.3], we have

n—2
= 0 j42(Ce§)p : q;](2UT0)
j=2
n—1 q a;
+em Y mrjn (51)] ]) — H(6p5) + ’H( - ]T_l)] > 0.
j=1
The thesis follows by choosing ¢; = —7¢ for j =4, and g; = 0 otherwise. 0
Given a vector (wo,...,w,) we denote by w, and w, its backward piecewise-

constant and its piecewise-affine interpolants on the partition, that is,
(4.18)  w-(0) = w,(0) =wg, wr(t) =w;, wr(t):=ar(E)w;+ (1—a-(t))w;_;
fort € ((i — 1)7,i7],i=1,...,n, where

(t—(—17)

a-(t) = -

forte (i —Dr,i7], i=1,...,n.
In particular, 1, (t) = dw,(t) for almost every ¢t € (0,T). Analogously, we define the
piecewise-constant maps

r(t) :=n.; forte (i —1)rir], i=1,...,n.

In addition, as in [49, subsection 2.5.1] we denote by w, the piecewise-quadratic
interpolants, defined via

(4.19) Wr(t) :=w,(t) in [0,7], 0, (iT) =w; for i =1,...,n,
Wy (t) = o ()i, (t) + (1 — o ()i (t — 1)  in (7,T).

Notice that ) )
Wr(t) =W, (t —7) + T (t)w,(¢) for ae. t € (,T].
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THEOREM 4.8 (discrete energy estimate). Let (ug,eg,pg) o (ug,es, ) be a
solution to (4.5). Assume in addition that pt = 0. Let (ug, T,pT) (us,es,p3),
and (GZ,e2,p%) be the triples of associated piecewise-constant, piecewise-affine, and
piecewise-quadratic interpolants, respectively. Then there exists a constant C (inde-
pendent of € and T) such that

T—-21 . T—-21 t .
(4.20) 6p/ /\ai|2dxdt+ep/ / /|ai|2dxdsdt
2T Q 27 27 JQ
T-21 T-21 T—-21
+p/ /|ui\2dxdt+/ /Q(éi)dmdt+/ H(pS) dt
T Q T Q T

gc(1+g).

Proof. Take the map ¢ = 7(6u$ —u' — dw; +1(0)) as test function in (4.13). For
k=2,...,n— 2 we obtain

k
(4.21) 52,027'/ §Mus o - (0uS — ut — dw; +w(0)) d
- Q
_25,02 /5u (6us —u' — dw; 4+ w(0)) dz
+ pZT/ 62us - (6us — u' — dw; 4+ w(0)) dx
i=2 9
k
- ZT/ div Ces - (6u — u' — dw; +1w(0)) dx = 0.
i=2 9

Arguing as in [49, subsection 2.4] we perform an integration by parts in time at the
time-discrete level, and we estimate the first term in the left-hand side of (4.21) from
below as

k
(4.22) 52;)27/ §Mus g (0uS — u' — dw; +(0)) d
’p
> —/ |6%u|* d + EQp/ 85 o - (Suf, — u' — dwy, + w(0)) dx

\52uk+1|2dﬂﬂ+ Z/ |6%ufy — 0%uf|* dx

+e2p 62ui+1 - 82wy, dx — 52/)/ 82us - 0%wsy dx

Q/Q
J

e%p
2

2

\
‘m
o
)
(]~
\]
—
=%
1)
e
)
)
QU
S
|
\»o
\‘
—
=3
w
g
o
QU
8

Analogously, the second and third terms in the left-hand side of (4.21) are bounded
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from below by

k
(4.23) - 25pZT/ S,y - (0uS —u' — Sw; +(0)) dx
i=2 78
k
> —epZT/ |62w;|? da — 25p/ S2u - (6uf, — u' — Swy +0(0)) dz
i=2 /9 Q

k
—i—epZT/ |62us|? da
i=2 v

and

k
(4.24) pZT/ 82us - (6us — ut — dw; 4+ 1w(0)) dz
i=2 /O

k
_B e 12 B e _ € 2
74/Q|5uk u| da:+2;/95uZ dui_ | dx
k
—pZ/Q(wf—aug,ly(5wi—w(0))dx
=2

k k-1

4 112 P 2 4 2

> out — d fE Sut — ous d——g outl*d
,2/ﬂ|uk u'l I+2i_2/ﬂ u; ui_q|* da 16i_27'/ﬂ|ul| x

- p/ [i(0)|? dx — p/ ouy, - Swy, dx
Q Q

k
+ p/ oug - dwg dx — 4,027’/ |6%w;|* de.
Q s Jo
Regarding the fourth term in the left-hand side of (4.21), by (4.10) and (4.13)

there holds Ce; € £(Q) for ¢ = 2,...,n — 2 (see (4.14)). Therefore, in view of
Proposition 4.5 and (4.13), we have

k
- ZT/ div Ces = (6uS — ut — dw; +w(0)) dx
i=2 /9

k k
= ZT/ Ces : (de5 — e — Edw; + Ew(0)) dx + ZT[(C@?)D 20pf1(QUT)
i=2 /9

i=2
for k =2,...,n — 2. On the one hand,

k
ZT/ Ce; : (—Eéw; + Ew(0)) dz
i=2 V9

1 & ,
> —4;T/§2Q(ei)dx—4;7'/QQ(E5wi—Ew(O))dm,

and on the other hand,

k k
ZT/(C@?:((S@?—el)de/Q(ei)dm—/Q(el)dx—ZT/(Cef:eldx.
=z 79 @ Q i—2 79
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By Proposition 4.7 we infer that

k k
ZT [(Cef)p : 0p5[(Q2UTY) Z (6p5).
1=2

=2

Therefore,

k
(4.25) 727/ div Ces : (6uS —u' — dw; +w(0)) dw
— Jo
k
Q(GZ)d.’L‘*/QQil)dx*ZT/(Cef261 dx
7,2 Q dxf4z /Qanl Ei(0 dx+ZT”H ops).

=2

By combining (4.22)—(4.25), equality (4.21) yields

(4.26)

2 3,€ € 1 : e%p 2,6 |2 e2p 2, €2
e“p 6uk+2.(6uk—u —5wk+w(0))dx—7 Q|5 uf 1| dx—l—T Q|(5 ug|® dx
k
TpZ/ |62u Z+1—62uf|2d9€+62p/52u,€+1 SPwp dr + = /|5u ut|? dx
&2
725p/52u2+1(6Ui*u175wk+w(0))d1’+(6*5)/)27'/ ‘62uf|2dx
=3 7O
k
gZ/ |5uf75uffl|2dmfp/5u2~5wkdz+p/5u§~5w2dx
k—1
Z /\(m |2d:c+/Qek dx+ZT’H 5p%)
§82p/ |52w2|2dx+227'/ |53wi\2d$+5p27’/ |6%w;)? da
Q 2 = Jo - Ja
k k
+p/ |1b(0)|2da:+4p27’/ |§2wi|2d1‘+427’/ Q(Esw; — Ew(0)) dx
/Q derZ /(Ce eldr + - Z
=2

Since w € W22(0,T; WH2(Q; R3))NC3([0, T]; L2(; R3)), by Hélder’s inequality there
holds

(4.27) €2p/ |62ws|? d = 52p/ wits) = 27 (0) = w(0) ’2 dx

72

27 5
—c p/‘ / / dAdg’ dz < Ce2p,
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as well as

(4.28) éT/Q |52w¢|2dxi7/ ’/( (t) T( dt‘ dz + Ct

i—1)T

k
1
<= // / |2d§dtda:+07-<0/ |W|* dz dt + C'.
T == JoJi-1)rJi—1
=3

In addition, we have that

4.29) /53w12dxf /’/ / ) —w(s—T) dsdﬁ’ dx
( | ‘ TSZ Q (i—-1)T T

gc// || dit da.
QJ0o

Finally, in view of Jensen’s inequality, we compute
k
(4.30) 427 / Q(Esw; — Ew(0)) dx

<ar(k-2) [ QEa©) dx+8Z/ /(“ Bi(€) de)
w5 [ Qs /0 (Bi(€) — Bib(0)) de )
<arn [ Qo) ds+s [ [ " QB s
+s [ [ i) - pio) ded.

By (4.27)—(4.30), the first two rows of the right-hand side of (4.26) are uniformly
bounded in terms of the boundary datum w, independently of 7 and . Therefore, we
obtain the estimate

(4.31)
2
52,0/952ui+1 - 62wy d$+529/ﬂ5gui+2 - (uS, — ut — Swy, +(0)) dx+%/9 1620S 2 dar
_EQJ |526 2 _ 2. € e .1 . B e 152
U1 ["dw — 2ep 5 g1 - (Ouf, —u 5wk+w(0))dx+ |ouy, — u ["dx
Q
E—— Z /‘62 6|2d$+/Q€k d:E+TZH (SpZ /6uk dwy, dx

+p/(5u1 (5w2dx—— /|(5u€|2dx

k k
§C+/Q(el)dz+27'/(Cef:elda:JriZT/Q(ef)dm
Q i=2 Y i=2 Y
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Multiplying the previous inequality by 7 and summing for k£ = 2,...,n — 2, one
obtains

(4.32)
2 n—2

QT(TL—S)/ \52u§\2d$+827/ |6ug, — u'|? da

4 Q 4 = Jo
n—2 n—2

+ egpz 7'/ §2us, - Pwi dr + 52pz T/ 835 o - (Suf, — u' — Swy, + w(0)) dz
k=2 Y& k=2 Y&

9 n—2 n—2
B % > 7'/ 6% [P da — 2ep Y T/ 0y - (Ouf, — u' = dw +1w(0)) da
= Jo k=2 79

2 n—2 k n—2 n—2 k
€
+ (Ef?)p Z ZTQ / |02us|? da + Z 7'/ Q(ef) dz + Z ZTQH((Spf)
k=3 i=3 79 k=2 7O k=2 i=2

n—2 n—2k—1
—,OZT/ 6ui~(5wkdm+p'r(n—3)/ ouy - dwe dx — EZZTQ/ |6us|? dx

k=2 79 Q 16255 Je

n—2 k (TL 3) n—2

< _ 1 2 £. ol — 2 € )
<C+r7(n 3)/§1Q(e)dx+kz::2;7 /ﬂ@eZ e dx + 1 iz:;T /QQ(el)d:z

By choosing k = n — 2 in (4.31), and by observing that (4.11) yields §2us_; = 0, we
have

(4.33)

n—2

82—[)/ |6%us)? dx+£/ |6us,_y — ut > do+ (sfi)pZT/ |52u§|2da:+/ Q(e5,_5) dx
4 Q 2 4 Q n—2 2 — Q K Q n—2
n—2 p n—3
(= 5 € €12
+§T’H(6pi) —p/ﬂdun_g -6wn_2d$+p/ﬂdu1 - dwg dx — 16§T/Q |ous|* dx
n—2 1 n—2
SC—O—/Q(el)dI—FZT/(Cef:eldx—}—ZZT/Q(ef)dm.
Q2 i=2 /O i=2 /O

In view of (4.11) and (4.28), using again that §%us,_; = 0, we deduce the lower
bounds

n—2
(4.34) e2p Z 7’/ 835 o - (0uf, — u' — Swy +w(0)) dz
k=2 7%

n—2
= —szpz 7'/9521@_H - (8%uf, — 0%wy) dx
k=2

362 n—2 c n—2
27?'027/ \62u2\2da;77p27/ |6%wy,|? da
k=2 Y9 k=2 Y9

n—2
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and, analogously,

n—2
(4.35) erZT/ §2ug - 0%wy, d
k=2 7O

In addition, arguing as in [49, subsection 2.4], by expanding the term §2us, L1, We
obtain

(4.36)
n—2
— 2£pZT/ §us - (Suf, —u' — dwy + w(0)) dx

k=2 7O

n—3
= ng/ |6us,y — ous|* do — Ep/ |6us,_; — ul|* dx + ep/ |6us — u' | dx
P Q Q
n—2
- 25,0/ (6us,_q — dug) - w(0) dx + 2ep Z / (Ougq — dug) - dwy dx
Q Pl

n—1
> —25p/ |6us,_; —u'|*de — %ZT/ |62 |? do — O,
Q i—s /9

where we used (4.11), (4.28), and the estimate

n—2

_ 25/)/ (6us,_y — 6u5) - w(0) dz + 2ep » / (0u§ 4y — 6uf) - Swy dz
Q Py
= —25p/ (6us,_ —u') - 1(0) da — 25p/ (u* — dus) - w(0) dx
Q Q
n—2
+ 2ep Z T/ §%us, | - Swy dx
k=2 79
> —ep/ |ous,_y —u'|*dr — 2€p/ [ (0)|* da — ep/ |u' — dus|? dx
Q Q Q
c n—2 n—2
- Zp ZT/ |6%u 4 |* do — 4EpZT/ |6wy|? da.
k=2 79 k=2 79
Finally, using the elementary inequality

|6us|? < 2|6us —u'? +2/u'* ae. in Q for every i,
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we deduce that

n—2
(4.37) — 25p/ |6us,_; —u'|*de — pz T/ ouy, - dwg, dx
Q i—s /9
n—2k—1

+,07'(n—3)/5u1 5w2dx——zz /|5u5|2dx

Q k=2 i=2

—,0/ 5uf172.6wn,2dx+p/ dus - 5w2dx—— /\&f\zdx
Q

n—2
1 P
> _ (= € .12 _ £12
> (4+25)p/§2|5un71 u|* dx 151;27/Q|6uk dz
k
Z /|5u€|2d:ﬂ—

Summing (4.32) with (4.33), in view of (4.11), estimates (4.34)—(4.37) yield the

inequality

(4.38)

n—2
1
gZT/ |6ug, — u'|? do + (5 —35>p/ |6us,_, —u'|*dx
Q Q
k=2
n—2
3
+ (Zg *382>p27’/ |6%ug |? dx
k=3 JQ
n—2 k

6p(1+7’ 3)) 2512 g 2,512 du
+ /|6|d+( z::; /|6|d

n—2 k n—2
+Z /Qek dr 4+ > TH( 6pz)+/Q e z)dwaH(m
k=2 i=2
n—2 k n—2
< (1+7(n—3)) Q(el)d + <C 'd + Q(

7'2/Q(ef)dw+27/@ef:eldx+c.
- Q — Jo



DYNAMIC PERFECT PLASTICITY AS CONVEX MINIMIZATION 697

For 7 and e small enough we eventually obtain

n—2 n—2 k n—2
(4.39) ngT/ |52ui|2dx+5p2272/ \52uf|2d:r+p27/ |6us, — ut|? da
k=3 Y9 k=3 i=3 e k=2 Y9

n—2 n—2
£y T/ Q(ef) du+ S TH(5p5) < C,
k=2 7 k=2

and the assertion follows. O

5. T'-convergence from discrete to continuous. In this section we prove that
for fixed € > 0 the sequence of discrete energy functionals {I.,} (see (4.2)) converges,
as the time step 7 tends to zero, to the functional I.. This will allow us to pass to the
limit 7 — 0 in the discrete energy estimate (4.20) in order to obtain its continuous
analogue; see (5.42) below.

In order to state the convergence result we need to introduce a few auxiliary
spaces and to extend the energy functionals I. and I... Let

U :={(u,e,p) € (WH*(0,T; L*(;R*)) N L}(0,T; BD(R)))

x L2(0,T; L2 (4 MESE)) x L0, T3 My (Q U To; MB?))}

sym

and

gz/afﬁnc

i={(u,e,p) : [0,T] = (BD(Q) N L*(4R?)) x L*(MZ53) x Mp(QUTo; M)
piecewise affine on the time partition of step 7 on [0, T],
and such that (u(0),e(0), p(0)), (u(1),e(r),p(1)), ...,

(u(T), e(T),p(T)) € Hr(u’, e’ p°,ul)},
where J#; is the class defined in (4.4). We set

L(u,e,p) if (ue,p) €V,
GE y &y =
(u,e,p) { 400 otherwise in %

(where V is the space defined in subsection 2.9) and

Ger(Ur, €7, pr)
IeT((“'f@)? e (0),p-(0)), (ur(7),e7(7), 07 (7)) - - o, (ur (1), eT(T)va(T)))
= if (ur,er,p,) € U Mne,
+00 otherwise in % .
We now show that the sequence of energies {G.,} converges to G. in the sense of
I'-convergence in % as 7 — 0.
THEOREM 5.1 (liminf inequality). Let {(ur,er,ps)} C %2 and (u,e,p) € %
be such that
(5.1) ur —u  weakly in WH2(0,T; L?(Q; R3)),
(5.2) pr(t) =" p(t)  weakly* in My(QUTo; ML) for every t € 0,77,
(5.3) e, — e weakly in L*(0,T; L*(Q; M23X3)).

sym



698 ELISA DAVOLI AND ULISSE STEFANELLI

Then, we have that
Ge(u,e,p) < liminf Ger (ur, er,pr).
T—0

Proof. Let {(ur,er,p;)} and (u,e,p) be as in the statement of the theorem. If

liminf, 0 Ger(tr, €, pr) = +00, there is nothing to prove, and therefore without loss
of generality we can assume that

. .. 52P = 9 N
(5.4) hmlglf Ger(Ur,€7,pr) = 11£11H161f {7 ;Tnm»/g |6%u, (47)|* da

T
n—2 n—1
+ Z TN i+2 / Qe (it))dx + eT Z 7777”17-[(6])7(2'7'))} < +o00.
i=2 L i=1

In view of (5.1) and (5.2), it follows that u(0) = u® and p(0) = p°. Denoting by i,
and @, the piecewise-constant and piecewise-quadratic interpolants associated to u,
(see (4.18) and (4.19)), respectively, by (5.4), up to the extraction of a (not relabeled)
subsequence, we have

2 T . T—-2T1
(5.5) ;%[%”/T 777/Q|127\2dxdt+/T 777(~+27)/QQ(éT)da:dt
T
(5.6) b [ a4 ) de] < +oo.
0

In view of (5.6) and (4.3), by Holder’s inequality we obtain the estimate

i—1 2
i / |6ur (i) da < 21)r.; / \Znﬁur((kﬂh)] dz +2 / ju'? dz
Q Q' Q
1—1

gcmm-/ Z|62u7((k+1)7)|2dx+2/ lu'|? dz
Q Q

k=1
1—1
< CT/ an,k\52uT((k+1)7')|2dsc+2/ ! 2 da.
Q E—1 Q

Thus, for 7 small there holds

52p T B T—-21
(5.7) liminf[—/ /(|a7\2+|uT|2)dzdt+/ /Q(éT)d:rdt
70 2 T Q T Q
T
+€/ H(p,)dt} < foo.
0

Therefore, there exists a map v € W22(0,T; L?(Q; R3)) such that

(5.8) @, — v  weakly in W22(0,T; L*(Q; R?)).

Arguing as in [49, subsection 2.5.1], we obtain that u = v and @(0) = u!.

By (5.4) we deduce the upper bound

(5.9) lim Dy (730,T) < C.
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Since p,(0) = p° for every 7, by [11, Lemma 7.2] there exists a map
q € BV([0,T]; Mp(2 UTo; M3?)) such that

(5.10) pr(t) =" q(t) weakly™ in M,(QUTo; MH®)  for every t € [0,T],

and
Dy (q;0,T) < liminf Dy (pr;0,7T).

By (5.7) and Fatou’s lemma, for a.e. ¢ € [0,T] there exist f* € L?(Q;M2%3) and a
t-dependent subsequence 7; such that

(5.11) e, (t) = f' weakly in L2(Q;M3X3).

sym

By (5.10) and (5.11), for a.e. t € [0,T], the sequence { Fi, (¢)} is bounded in M, (QU
To; M%%) (see [11, Theorem 3.3]). This implies that for a.e. ¢ € [0,7] there exists a
map v' € BD() such that

(5.12) Ur, (t) —=* v'  weakly* in BD(Q),
(5.13) Ev' = f'+q(t),
(5.14) q(t) = (w(t) —v") ©vH? onTy.

In view of (5.1), there holds
(5.15) ur(t) = u(t) weakly in L?(Q;R?) for every t € [0, 7.
In addition, for fixed ¢ € N and for t € ((i — 1)7, i7], we have
Ur(t) — ur(t) = (47 — )0, (t).
Thus, by (5.7) we obtain the estimate
|ur —urllz2(0,1;L2(0:R3)) = %”uTHLZ(O,T;L%Q;Rf‘)) <Cr,

which in turn by (5.15) implies that

(5.16) U (t) = u(t) weakly in L2(Q;R?) for a.e. t € [0,T).
By (5.12) we conclude that

(5.17) v' =u(t) forae. te0,T).

By (5.3) and (5.8), since 7, 7+ (-+27) — exp(—<) strongly in L>°(0,T'), we obtain
that

(5.18)  Xprr—27 V(- +27)Er — exp ( - é)e weakly in L*(0,T; L*(9; M253))
and
(5.19) Xr 727Vl — exp ( - 7>u weakly in L2(0, T; L2(; R3)),

€

where X[ 7—-] and X[ 7—2,) are the characteristic functions of the sets 7,7 — 7] and
[7,T — 27], respectively. Additionally,

(5.20) (- + 7) — exp(—t/e) strongly in L>°(0,T")

as 7 — 0.
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Fix ¢ € Nand ¢ € ((¢ — 1)7,47]. Then,
(5.21) 1P (t) — pT(t)”Mb(QuFO;Mf"D”) =I(t - iT)ﬁr(t)||Mb(Quro;M%X3)-

Therefore, by (2.4) one has

_ T
1P = Prlliao.mim uromay@y = GIP7 Il o.mm ouromays))

(5.22) / H(p,)dt < Cr,

- 27’K
where the last inequality is due to (5.7). In view of (5.22),

lp-(t) — pT(t)HMb(QUFO;M%”) — 0 for ae. t€0,T].
Thus, by (5.2) and (5.10) we deduce that
(5.23) p(t) =q(t) for ae. t €[0,T].

By (5.13), (5.17), and (5.23) we conclude that f* = e(t) for a.e. t € [0,7] and
(u,e,p) € V. Therefore, by (5.18) and (5.19) one has that

—/ exp - - /\u(t )P dadt + - /0 exp(—é)/ﬂ@(e(t))dmdt
< %hggf/o [6 Pz (U)X (7, 7—7) /\uf(tl dx

(4 27) X (1) / Q(e, (1)) do] d

52p 1 T-21
= hmmf [ / nT/ |, | da dt + = / (- + 27)/ Q(e,)dx dt}
7—0 2 T T Q

.. 52/) s 2 . N2 = .
(5.24) = 11£n_3(r)1f [7 ZT’I]T’Z'/Q |0%u, (i7)|* dx + ;THT’i+2/SlQ(eT(ZT))dZi|.

=2

To conclude we need to prove a liminf inequality for the plastic dissipation. For
this purpose, let 0 <1 <711 < -+ <71y, < T. In view of (5.10) and (5.23), we have

i_n;exp ( - %)H(p(rz‘) —p(ri-1)) < liITn_j(r)lf {iexp ( - %)H(@(ri) - pT(ri_l))]

i=1
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On the other hand, since p, only jumps in the points iT, i = 1,...,n, we have

> (= )t~ i)
- iexp ( - EL%J T)’H(ﬁT(n) —pr(ric1))
3o (=) e (- 1|2t et

< ieXp ( - %)H(ﬁr(”) —pr((i = 1)7))

= |2 Gm) = e - D7)
< iTeXp ( - *) (0p7 (i) + DH(pT,O T).
By (5.9) there holds
lim EDH@T; 0,T) =0.
Thus, we obtain
fjexp(— Yoo — i) <timing [ 3 exp (= )5 (r) = 51 ri-0)]

i=1
n

< liminf [ Zexp ( - %T)’H(fspr(”))}

T—0
=1

< liminf [ ZUT 1+1H(5PT(ZT))}

+ hm T‘ Z (exp ( - —) — 777,1-4_1)7—[(5]77(2'7'))‘.

Since p, only jumps in the points i, i = 1,...,n, we deduce

T Z H(dp-(iT)) = Dy (p7;0,T).

i=1

Therefore, by (5.9) and (5.20), we obtain

}_il)r%)T‘ i (exp ( - g) - nT,i+1)H(5pT(iT)))

: AN Z” .
< limy H P ( B E) et T)HL‘X’(O,T)T — H(0p-(im))
t
lig flexo (=) = a4 o Pul )
t
<th’Hexp(—7>—nTt+TH =0
£ > (0,7)
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Thus, we have checked that
Dexp (= 2 )R = pricn)) < limint [ 3 exp (= 2o () =5 i)
< lirTn_j(r)lf {7’ Zl 1777i+17-{(6p7(i7))] .

The arbitrariness of the time partition {¢;};=0,....m yields that

n—1

(5.25) Dy (exp(— - /2);p;0,T) < lin}rinf {7’ Z Nrit1 H(Op-(i7))|.
i=1
The thesis follows now by combining (5.24) and (5.25). d

We now prove that the lower bound identified in Theorem 5.1 is optimal.

THEOREM 5.2 (limsup inequality). Let (u,e,p) € V. There exists a sequence of
triples (ur,er,pr) € %0 such that

(5.26) u, —u  strongly in W52(0,T; L*(Q; R?)),
(5.27) pr(t) =% p(t)  weakly* in My(QUTo; M5?) for a.e. t €[0,T],
(5.28) é- — e strongly in L*(0,T; L*(Q; M253)),
and
(5.29) lim s(l)lp Ger(ur,er,pr) < Ge(u,e,p).
T

Proof. Let u, be defined as the affine-in-time interpolant of the values

u,(0) = u?,
ur (1) = u® + Tul,
ur(it) = M- (u)(iT) foreveryi=2,...,n,
where M. is the backward mean operator,
t

M, (u)(t) == % / u(s)ds for every t > T.

t—T1

Define e, accordingly, let €, be its associated piecewise-constant interpolant, and let
pr be the piecewise-affine-in-time interpolant of the measure satisfying

p-(0) =p",
pr(1) =+ 7p,
pr(iT) = M- (p)(iT) for every i =2,...,n,

1/t
(p, M(p)(iT)) := 7/ /ﬂ @ dp(s)ds for every ¢ € Co(Q2UTg; M),
t Ul'y

-7
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The triple (u,, e,, p,) satisfies (u,, e,,p,) € Z211¢ and (5.26) is obtained by arguing
as in [49, subsection 2.5.2]. Property (5.28) follows by the Lebesgue differentiation
theorem once we observe that

/Q|e(t)féT(t)|2dx§ i/(;;)T/Qk(t)e(S)?dg:dsg i/tiiT/Qk(t)e(s)Fdxds

for every t € (27, 7).
Regarding the plastic strains, fix ¢t € (0,T]. For 7 small enough, there exists i > 2
such that ¢ € ((i — 1)7,47]. Thus, for every ¢ € Cp(Q U T'o; M3?), there holds

630 | [ e~ [ pdnt)

_ H(@) /(;) ( /Q LR /Q UFO(pdp(t)) ds

+ (1 _ (t - (iT— 1)7)) /(::T (/QUFU odp(s) — /QUFU <pdp(t)> ds’

< ||<PHL0°(QUFO)

t+27
—_ —p(t 3x3y ds.
BS = /t—QT Ip(s) — p( )||Mb(ﬂuF0;M; 3y as

In particular, for 7 small enough we have

t+27
|- (t) — p(t)”/\/lb(ﬂuFD;M%X?’) < ;/t ) llp(s) *p(t)HMb(QuFo;M%”) ds.
—ZT

Since t +— ||p(t)||Mb(QUFO_M%X3) is L1(0,T), in view of the Lebesgue differentiation
theorem, we obtain that

(5.31) pr(t) = p(t) strongly in My(QUTo; ML) for ae. t € (0,7
In addition, by the definition of p, there holds
(5.32)

T
D3 (pr;0,T) < Dy (p; 0,T) + T”leMb(QUFU;M%XB) + 2/0 Hp”M;,(QUFO;M";X‘Q') dt < C.

Arguing as in [49, subsection 2.5.2] we obtain the inequality

2 n n—2
limsup | 2" 7y /Q |6%ur (iT) 2 dz + > 72 /Q Qe (i7)) dz
1=2 =2

T—0

§/OTexp(—z) (522"/ﬂ|u|2dx+/ﬂcg(e)dx) dt.

To prove (5.29) it remains only to show that

(5.33) lim sup [T Z nT,,»HH(apT(iT))} < Dy(exp(—- /€);p;0,T).
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We first observe that

(5.34) T Z Nr,i41H(Op7 (i7)) = Z M, z+1H(p‘r (it) — pr((i — 1)7_))

(i = exp (= T) )Mo i) — p (i~ 1)7)

=1

£ exp (= D) #lprtim) — pe((i - 1)),

i=1

By (5.32) the first term in the right-hand side of (5.34) can be bounded from above
as

635 |3 (s — e (= D)) Hlprim) ~ (G- 1))

< D H(prlir) = pr (i = D7) 170 +7) — exp(=+ /2) |~ 0.1)

< Du(pr; 0,177 (- + 1) — exp(— - /&)l (0,1)
< COlnr (- + 1) —exp(— - /el (0,1)

and converges to zero as 7 — 0.
To study the second term in the right-hand side of (5.34) we remark that for
i>2,

(536)  H(pe(ir) — pr((i — D7) < /( ) /( . — p(s)) dsdt.

Indeed, for every ¢ € Co(22U Tp; M%X?’) NKp(2), by Lemma 2.1 there holds

(0, pr(iT) = p-(( = 1)7))

(i—-1)7
/ / - dp(t dt—f/ / - dp(s)ds
(i—1)T JQUIg (i—2)7 JQUIg
(i—1)T
L / o+ dp(t) — p(s)) dsdi

(i—-1)7 J(i—2)7 JQUT(

(i— 1)‘r
—/ / —p(s)) dsdt.
(i-1)7 J(i—-2)7

A further application of Lemma 2.1 indeed yields (5.36). Analogously,

27

(5.37) H(pr (27)—ps(1)) < % H(p(t)—p°) di+7H(p') < Dy (p: 0,27) +7H(p").
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In view of (5.36) and (5.37), we obtain
(5.38) Y exp (= =) H(p, (i) = pr((i = 1))
i=1
~ iT ) 1
< _ .
< i:ZZeXp ( 5 )Dy(p,O,ZT) +27H(p")

< Zexp(— g) sup{ZH(p(sj) —p(sj21)) 1 0< 81 <-- <8y < 2'7}
i=2 j=1
+27H(p') < Dulexp(—- /€)ip:0,T) + 27H(p").

Estimate (5.33) follows now by combining (5.34)—(5.38). d

As a corollary of Theorems 5.1 and 5.2, we obtain a uniform energy estimate for
minimizers of G..

COROLLARY 5.3 (uniform energy estimate). Let p* = 0. For every 7 > 0, let

(Ur,er,pr) € UM be @ minimizer of Go.. Then, there exists a minimizer (uf, e, p)
of G¢ in V such that

(5.39) Uy — u  weakly in W>2(0,T; L*(Q;R?)),
(5.40) pr(t) =" pE(t)  weakly* in My(QUTo; ME®) for a.e. t €[0,T),
(5.41) er — ¢ weakly in L*(0,T; L* (5 MZ)53)),

where u; and e, are the piecewise-quadratic and piecewise-constant interpolants of u,
and e,, respectively (see (4.18) and (4.19)). In addition, there ezxists a constant C,
independent of €, and such that

T t T
(5.42) 6p/ / i 2 dar ds it + 8p/ (i 2 der dt
0 0 Q 0 Q

T T
+p/ /|u€|2dxdt+/ /Q(es)d:rdt+DH(p€;0,T)§C.
0 Q 0 Q

Proof. Let {(ur,e-,p;)} be as in the statement of the theorem. Let w, be the
piecewise-affine-in-time interpolant associated with the maps {wy, ..., w,} (see (4.1)).
Since (u®+tu! —w(0) —tw(0) +w, (), e +tel — Ew(0) —t B (0)+ Ew, (t), p°) € %,2fne
for every 7 > 0, there holds

(543) GET(UT? €r, p'r)
< Ger (uP+tu' —w(0)—tw (0)+w, (1), 4te! — Ew(0)—tEw(0)+Ew,(t),p?)

n—2

= Z 7-7777i+2/ Qe +ite! — Ew(0) — it Bw(0) + Ew;)dx < C
Q

=2

for every 7 > 0. Arguing as in the proof of Theorem 5.1, in view of (5.43) there exists
(u®,e%,p%) € V such that (5.39)—(5.41) hold true, with

(5.44)  X(rr—2m /7 (- + 27)E — exp ( - g>e weakly in L2(0, T; L2(Q; M22)),
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and

(5.45) 5;”/0Texp(—z)/ﬂ|uf(t)|2dxdt

2 T
< Limigt [ 7.Ox-a-a0) [ [ OF
2 0 Jo ’ Q

T—

(5.46) ;/OT exp ( — é) /QQ(es(t)) dx dt

1 T
< 5 lim lnf/ Mr (t + QT)X[T,T—QT] (t) / Q(é'r (t)) dx dta
0 Q

T—0

(5.47) Dyy(exp(— - /€);p%;0,T)

n—1
< limTinf [7’ Z 777,i+1H(5pT(iT))} .

i=1

Hence,

(5.48) Ge(u®,e®,p%) <lim i(I)lf Ger(Ur, €7,D7).
T

Let now (v, f,q) € V. By Theorem 5.2 there exist maps (v,, fr,q,) € %M such
that

(549) 111’1’1 sup G&T(UT7 fT7 qT) S GE(Ua fa q)

T—0

The minimality of (u®,e®,p®) follows then by the minimality of (u,,e,,p,) and by
combining (5.48) with (5.49). Using again Theorem 5.2 we get the existence of a
sequence {(i,,é,,p,)} C 220 such that

(5.50) limsup Ger (Ur, €7, pr) < limsup Ger(Gr, é-,pr) < Ge(uf, e, p%).
T—0

T—0

Combining (5.48) with (5.50), we conclude that
}_E}% Gsr(ura 677177) = Gs(uga ee’pa)'

In view of Theorem 4.8, by (5.39) and (5.41) we have

T T T
(5.51) z—:p/ / / |ii€)? dxdsdt—i—ep/ / |if|2d1:dt+p/ / |uf|? da dt
o Jo Jao 0o Ja 0o Ja

+/OT/QQ(eE)dxdt§C.

In addition, by (5.40), the lower semicontinuity of #, and Theorem 4.8,

(5.52) sup Dy (p%;a,T — a) < sup limi(r)lf Dy (pr;a, T —a) <C.
a>0

a>0 T

The thesis follows by combining (5.51) and (5.52). o
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6. Energy inequality at level €. The central results of this section are Propo-
sitions 6.4 and 6.6, delivering an energy inequality at the level ¢ > 0 fulfilled by
minimizers, and its integrated-in-time counterpart (see (6.17)). The proof strategy
follows closely that of [47, Theorem 2.5 (c)]. The additional difficulties in our setting
are due to the fact that the dissipation potential satisfies linear growth conditions from
above, and the triple (u®,e®,p®) is required to fulfill the constraint (uf,e®,p®) € V.
Another crucial difference is that our analysis is performed on the finite interval [0, T']
instead of in the entire semiline ¢ > 0. The methodology relies on the notion of
approzimate energy (see (6.3)). This consists, roughly speaking, of the sum of the
kinetic and elastic energies with the plastic dissipation potential, suitably weighted
by a rescaled e-dependent probability kernel. The structure of the proof will be the
following: first, in Lemma 6.1 we will exploit the minimality of (uf,e®, p®) to perform
some internal variations, by considering as competitors the composition of (u¢, e, p°)
with reparametrizations of the time interval [0, T]. In Corollaries 6.2 and 6.3 we will
establish some properties of the approximate energy, which in turn will be the start-
ing points of the proofs of Propositions 6.4 and 6.6. An additional characterization
of minimizing triples will be provided in Proposition 6.7.

As in [47, section 4] we first introduce some auxiliary quantities. Throughout this
section we assume that (u!,e!,0) € & (1(0)), and we consider a minimizer (u, e, p©)
of G.. We set

2
K.(t) == %/ |65 ()2 de and  He(t) = eDyu(p%;0,1),
Q
for every t € [0,T], and set as well
e € - pEQ € 2
We(t) .= | Q(e°(t))dz and D.(t):= 5 |t (t)|° dz
Q Q

for a.e. t € [0,T], and we define the locally integrable Lagrangian

L:(t) :=D(t) + We(t) + Hz(t) for a.e. t € [0,T].
Note that K. € WH(0,T), with
(6.1) K.(t) = p€2/ 4 (t) - u°(t)dz for a.e. t € [0,T).
Q

For f :[0,T] — [0, +oc0] measurable we consider the operator

Af(t) == /tT exp (t_TS)f(s) ds for every t € [0,T).

We point out that if

Af(0) = /OTexp( z)f(s) ds < 400,

then f € L*([0,7]), and
Af(t)

3

(6.2) A(t) =

— f(t) fora.e. t€]0,T]
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satisfies A € L'(0,T). In other words, if Af(0) < 400, then Af € Wh1([0,T]).
A direct computation yields

A% f(t) = A(Af)(t) = /t exp (?)(s —t)f(s)ds for every t € [0,T)

and
A2f(0) = /OTeXp ( - g)sf(s)ds.

For every € > 0 the approximate energy & is defined as
1
(6.3) E(t) =Ko (t) + A2W.(t) + g,427116(75) for every t € [0,T).

While the Lagrangian L. is given by the sum of the inertial term, the elastic
energy, and the dissipation, the approximate energy features the kinetic energy asso-
ciated with the model, and an integrated version of the sum of the elastic energy and
the plastic dissipation potential, weighted by a suitably rescaled probability kernel.
The presence of the third term in the right-hand side of (6.3) is a key difference with
respect to [47] and is needed due to the linear growth assumptions on the plastic dis-
sipation potential in our setting. Indeed, in the case in which the dissipation potential
is quadratic, the associated estimates simplify, and it is thus possible to control this
quantity without adding the dissipative term to the approximate energy (see Defini-
tion 4.2 and Proposition 4.4 in [47]). This is not the case in the situation in which the
dissipation potential grows only linearly (see (4.8) in [47]). The term A?H. is added
to the approximate energy in order to overcome this technical difficulty.

We start by proving a preliminary inequality involving the quantities D, K., and
L.

LEMMA 6.1. Let (ul,e!,0) € &7 (1 (0)), and let (uf,e®,p°) be a minimizer of G..
Then,

/OT exp ( - g)(sg(s) —g(8))Le(s)ds — 4e /OT exp ( - g)g(s)DE(s) ds
- E/OT exp ( S)g(s)le(s) ds + 63,0/0T /Q exp ( - z)ua(s) (w(s)g(s)) dxds

e
+ E/OT/Qexp ( — E)Cef(s) : Ew(s)g(s)dxds
—I—E/OT/QeXp ( — S)Cee(s) . (er = Ew(0))sg(0)dxds > 0

for every g € C%([0,T)) such that g(0) = 0 and g(t) > 0 for every t € [0,T).

Proof. We argue as in [47, Proposition 4.4], and for every ¢ > 0 we consider the
map
ps(t) ==t —deg(t) for every t € [0,T].

For & small, s is a C? diffeomorphism from [0,7] to [0, ¢s(7T)], with inverse 15 :
[0,05(T)] — [0,T] satisfying

Ps(t) ==t + deg(vs(t)) for every ¢t € [0,T).
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We define the triple

@ (t) == u (ps(t)) + t0eg(0)u' + w(t) — w(ps(t)) — teg(0)w(0),
pe(t) == p"(ps(t))

for every t € [0, T, and
&5 (t) := e (s(t)) + tog(0)e' + Bw(t) — Ew(ps(t)) — téeg(0)Ew(0)
for every t € [0, T]. Since (u°, é%,5°) € V, by the minimality of (u®, e, p°) there holds

GE ~E7 ~E7 ~E _GS 6, E, £
(6.4) lim sup (@, &, p) (u, e, p)

> 0.
d—0 g

We make the preliminary observation that
U (t) = 0 (05(8))ps (t) + Geg(0)u’ + o (t) — i (i05(8))ps (t) — 32g(0)ar(0)
for every t € [0,T], and
us () = i@ (ps (1)) (95 (1) + 0% (05 (1)) (1) + W (t) — (s (1)) (25(1))? — w(e0s(1)) s (1)

for a.e. t € [0,T]. Therefore, a change of variable in inequality (6.4) yields
ps(T) |

sy +{ [ ds@esn (= ) [ [0 @stwso))?
+ 0 () @s (s (1)) + (s (1)) — () (26 (P05 (1)) — w(t)ds(¥s(t))|* da
+ /Q Qe (t) + ¥s(t)0eg(0)e! + Bw(ys(t)) — Bw(t) — Ys(t)0eg(0) Ei(0)) dw} dt

—/OTeXp<—z) [ip/Q|u€(t)|2dx+/QQ(e€(t))dx} dt
+ e(Dyu(exp(— - /€);5%;0,T) — Dyy(exp(— - /5);p5;0,T))} >0,

which in turn, since ¢5(T) < T, implies

(6.5)
i 2 [ s esp ( 2O) [ [ s

5—0

+ 05 (8)@s (Y5 () + i (Ys (1)) — w(t) (25 (15(t)))? — w(t)Bs(1s(t))[? da
+ /Q Qe (t) + 1/}5(75)569'(0)61 + Bw(ys(t)) — Ew(t) — 1s(t)0eg(0)Ew(0)) dfc} dt

_/me exp(—é) [EZP/Qif(t)|2dat+/QQ(eE(t))d:c] dt
+ e(Dy(exp(— - /€);9%;0,T) — Dy(exp(— - /¢); p%; 0, <P5(T)))} > 0.
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The inertial terms satisfy

(6.6) tmsup 1 /0¢5<T>%(t)ex (- Ley[=e [ [ 1O

§—0 €

+ 0 (8) @5 (5 (t)) + (W5 (t)) — (8) (55 (t)))* — w(t)s(s(t))] }dfvdt
e

@s(T)
b e 2
5 /) eXp( E)/Q|u )| dxdt}
52/) r . t g 2
= [ oo - a®yexn (=) [ i dodr
r t
v [ e (=) [0 (2 @an - @io o)
0 €/ Ja
+ 2w(t)g(t)+w(t)§(t)) da dt.
This latter inequality follows by the dominated convergence theorem, by the fact that

the left-hand side coincides with the integral between 0 and ¢s(7") of the incremental
ratio between 0 and § of the function

sty (— L) 2 [ i o)oatvs o)) + i 007atvs(0) + alws()
- w<t><¢5<w5<t>>>2 — ()35 (s(1) ] da

and by the identities

9 (dstyen (~ 20))| = (eat) gy esn (- 1),
%@Ds t)( =eg(t),

S, = ~2230)

s, = —<it)

for every t € [0, 7], and

%(/ﬂ i (£) (95 (Vs (1)) + 0 (£) s (V5 () + W (s (t))
— (1) (s (1s(1)))* — w(t)Gs (s (1)) dx) ‘520
=2 / us(t) - ( = 2ii°(t)g(t) — 0*(1)g(t) + @(t)g(t) + 2w (t)g(t) + w(t)é(t)) da
Q

for a.e. t € [0,T]. Analogously,

55 L QUEO +0s030(0)e! + Buws(0) — Bult) — vs()323(0) Bi(0)) da|

—s/ Ce®( g(t) + tg(0)e! — tg(0 )Eu')(())) dw
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for a.e. t € [0,T], and hence

imsup 1 { [ " sty (- 10) [ @)+ vstizg )t + Buuit)

§—0 J

- Ew(t)—w(s(t)deg(O)Ew(O)) da dt — /O o exp(—g) /Q Q(e* (1)) do dt)

—/0T<ag<t> snew (- 1) [ aew)dear
6.7)

te /0 Texp(— é) /Q Ces(t) - (Eu')(t)g(t)—i—tg(O)el —tg'(O)Eu';(O)) dz dt.

To complete the proof of the lemma it remains to study the asymptotic behavior of
the dissipation as 6 — 0. Fix A >0, and let 0 <ty <ty <--- <t, <T be such that

Dy (exp(— - /e);p%;0,T) i ( ) P (ts) — D% (ri1)) + A

Fori=1,...,m, let s; € [0, p5(T)] be such that ¢; = 1s(s;). There holds
ti

gexp< €>H(p” 7 (rie)) = Zex ( ) M (6 — P (500))

exp (=2 ) Hp () = p7(s5-1))

NE

> exp (=) [ exp (=g(s(s:))) = 1 (" (s0) ~ p7(51-1))
< Dyy(exp(—- /e

I
S

+

~—

1% 0,05(T))
fazexp( =) 9(s(s)) M (s0) = 9 (s1-2)) + O(6)

= Dy/(exp(— - /€); 0550, 5(T))

m

=0 exp (=) gls " (s1) = p(si-2)) + O(6?).

i=1

Thus,
Dyy(exp(— - /€);p%;0,T) < Dy(exp(— - /€);p%;0,05(T)) + A

”Zexp(—*) si)H(p®(s:1) — p°(si-1)) + O(6%).

By considering finer and finer refinements of {to,...,t}, in view of the definition of
Dy (see (2.9)), and by the arbitrariness of A\ we conclude that

(6.8)
Dy (exp(— - /€);p%0,T)
< Dy(exp(— - /);p;0,6(T)) + 6Dy (— exp(— - /2)g(-); 0, 05(T)) + O(5%).
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By (6.8) and [21, Theorem 4.5] we obtain

(69)  Timsup o (Dylexp(~- /):5%0,T) = Drulexp(~ - /)i 0, 5(T)

o—

< limsup e Dy (— exp(— - /2)g();0, 05(T)) = lim sup
—0 5—0

—ePMS /O%(T) exp ( - g)g(t) dDy(p°;0,1)

= —timint {gles(T) exp (— P Dry(p;0, (1))
ws(T) t

- [ it g exo (= 2)Dutor0. 0yt

< / " (ealt) — (1) exp (- E)Dﬂw;o,t) dt.

The thesis follows by combining (6.1), (6.5)—(6.7), and (6.9) and by the definitions of

K., D, and L.. 0
Setting
(6.10) R.(t) := —6/ Ce(t) : (' — Ew(0)) du,

Q

(6.11) R.(t) :== —Egp/Q £(t) - w(t) w—s/ﬂ@es (t) : Bw(t)dx
(6.12) R.(t) := —253;;/9116(15) -aib(t) da,
(6.13) R.(t) := —%p /Q () - w(t) do

for a.e. t € [0,7T], and choosing g(t) = t in Lemma 6.1, the same approximation
argument as in [47, Corollary 4.5] yields the following.

COROLLARY 6.2. Let (ul,e!,0) € & (w(0)), and let (uf, e, p?) be a minimizer of
G.. Then

eAL.(0) — A2L.(0) — 4e AD.(0) > A*R.(0) + A%R.(0) + AR.(0).
Finally, by considering the sequence of maps gs : [0,7] — [0, +00) defined as

0 if s <t,
gs(s) = { G52 ift <s<t+49,
s—t—g ifs>t+4

in Lemma 6.1, and by letting § go to zero, we deduce the following inequality.

COROLLARY 6.3. Let (ul,e!,0) € &7 (w(0)), and let (u®, e, p%) be a minimizer of
G.. Then

eAL. (t) - A2£E (t) —4eAD. (t) - EICE (t) > -AQRE(t) + ARE (t) + éa(t)

for a.e. t €0,T].
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We are now in a position to prove an energy inequality at the level £ > 0.

PROPOSITION 6.4 (energy inequality). Let (u',er,0) € o/ (w(0)), and let
u®, e, p%) be a minimizer of G.. Then
£,e5,p%) b Nims G.. Th

55(215) ., / () - i) de AQR;(t) N ARg(t) N AR.(t)
€ Q € € €
<& p/ ul i (0) da + “42?5(0) + Azz(o) + ARSE(O)

g2 Q
_p/ot/ng(s)-zb(s)dxds—i-/otRSg(s)ds—/ot R;@ ds.

Proof. By the definition of the approximate energy (see (6.3)) there holds
E(t) =K (t) + A% (L. — D) (1)

for every t € [0, T, which by (6.2) implies

2 2
AL A ng(t)

5'5 (t) = I'Ce (t) c

— ALL(t) + AD.(t)

for a.e. t € [0,T]. On the one hand, in view of Corollary 6.3, we obtain the estimate

E.(t) < _@ 34D (1) — A21?€2€(t) B Aé;(t) B J%Z(t)
(6.14) < A f}(w B AR;(t) - ng(t)

for a.e. t € [0,T]. On the other hand, by (6.2),

(6.15) - R;gt) :p(/ﬂzf(t)-w(t) dx).—p/ﬂue(t) i(t) de,
and
AR AR _ (- A’Re(t) _ AR(t) )y AR(t) _ Re(t)
(6.16) _ (_ A f;(t) ~ «‘U:;(t) _ AR;(t) )'_ Rss(t) B R;gt)

for a.e. t € [0,T]. By combining (6.14)—(6.16) we deduce

(@ _, / ) i) de 4 LR | AR-(t) ARE(ﬂ)'
Q

g2 g2 g2 €

Re(t)  R.(1)

< —p/Qif(t) i (t) do +

9 9

for a.e. t € [0,T]. An integration in time in [0, 7] yields the thesis. 0

The same argument in [47, Lemma 6.1] provides the following technical result.
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LEMMA 6.5. Let £ and m be two nonnegative functions in L*(0,T) such that
A%(t) <m(t) forae te€[0,T).

Then, for every a > 0 and every § € (0,1), there holds

(/Ogasexp ( - g) ds) /t::ﬁ(s)ds < /tt—Hl m(s) ds

for every t € [0,T — a].

In view of Proposition 6.4 and Lemma 6.5, we obtain an integrated-in-time version
of the e-energy inequality.

PROPOSITION 6.6 (integral energy inequality). Let (u',el,0) € 27 (2 (0)), and let
(u®, €%, p%) be a minimizer of G.. Then, for every a >0 and 6 € (0,1), there holds

(6.17)

B vl -205) [ s oo}
P/Ha/ | (s)[2 da ds

_ p/m/ @ (s) - i(s) dzds < — /tm (A2é€(5) L ARG | ARE(S)) ds

g2 g2 €

£ _pa/ul (O)dx+aA2R§(0)+aAR o, RE(O)

p/Ha/ / dxdsder/Ha/gR(s

for every ¢t € [0,T].

t+a p& R

Proof. Owing to Proposition 6.4 we can apply Lemma 6.5, with

and with

m(t) = —K;igt) —l—p/Qq’f(t) b (t) do — A f;(t) _ AR (t) B AR, (t)

g2 €

A2R.(0)  AR.(0) AR.(0
_p/ i(0) dz + 52(>+ E2()+ E()

—p// (s) - dxds—l—/otpbz(s)ds—/otézgs)ds

for a.e. t € [0,T]. The thesis follows by the definitions of W., H., and K.. ]

We conclude this section by showing a further characterization of e-minimizers.

PROPOSITION 6.7 (weak energy equality). Let (uf,e®,p®) be a minimizer of G-.
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Then,
(6.18)

/OTgb(t){/QQ(ea(t))dx—l—ZEP/Ot/Q|115(3)|2d3:d5+g/ﬂms(t”zdx

+D7.L(p5;0,t)} dt—/T¢(t) /t/ Cet(s) : Buir(s) da ds dt

35/’ //|u |2dxdsdt76p/ t)/ t) —as(t)) de dt

+P/ / W (t) - Oc[w(t)(p(t) + 2ep(t))] de dt — e p/ / (t)p(t) dz dt
—EP/O /QSé(t)Vf(t)lQ dxdt+25p/0 /ng(t)'3t[1b(t)(cp(t)+5<p(t))] de dt

for every ¢ € C°(0,T).

This last result of this section relies on the argument developed in [38, Proposition
4.1], which consists of comparing the energy associated to a minimizer (u¢, %, p®) of G,
with that of a suitably rescaled triple (@¢,é%,p¢), obtained by composing (u®,e®, p®)
with a diffeomorphic reparametrization of [0, T]. We postpone the proof of Proposition
6.7 to Appendix A.

7. Proof of Theorem 2.3. For the reader’s convenience, we subdivide the proof
into four steps. In Step 1, we deduce some first compactness properties for sequences
of minimizers of G, satisfying the uniform energy estimate (5.42). In Step 2, we show
that the limit triples identified in Step 1 satisfy conditions (c1) and (c2). Step 3 relies
on the inequalities at level € > 0 proven in section 6, and it is devoted to the proof
of the energy inequality (c3). Finally, in Step 4 we prove that the limit triples satisfy
the first-order initial condition 7(0) = u!.

Step 1. Having established the uniform estimate (5.42), we are now ready to
prove Theorem 2.3. For every € > 0, let (uf,e,p°) be a minimizer of G. satisfying
(5.42). Since p°(0) = p° for every £ > 0, by a generalization of Helly’s theorem [11,
Theorem 7.2] there exists p € BV (0, T; My (Q U To; M%®)) such that

7.1 pe(t) — p(t) weakly* in My(QUTo;M33)  for every ¢ € [0,7],
D
(7.2) Dy (p;0,T) < lim i(I)lf Dy (p%;0,7).
E—>

In addition, (5.42) yields the existence of maps u € W12(0,T; L?(;R3)) and e €
L2(0,T; LQ(Q M3X%3)) such that, up to subsequences,

sym
(7.3) u® —u weakly in Wh2(0,T; L?(; R?)),
(7.4) e — e weakly in L*(0,T; L*(Q; MZ)5))).

In particular, by (7.3) and the embedding of W?2(0,T;L%(Q;R3)) into
Cw ([0, T); L?(Q; R3)), there holds

(7.5) uf(t) — u(t) weakly in L*(Q;R?) for every t € [0,7]
and u(0) = u°. In view of (7.1), (7.4), and (7.5), we obtain that
(7.6) e*(t) — e(t) weakly in D'(Q;M2X3)  for every t € [0,T].

sym
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By (7.1), (7.5), (7.6), and Fatou’s lemma for a.e. t € [0,T], there exists a t-
dependent subsequence {g;} such that

(7.7) et (t) = e(t) weakly in L*(Q;MZ53),
(7.8) ut(t) =" u(t) weakly* in BD(Q).

The fact that p satisfies the Dirichlet condition on I'y for a.e. ¢ € [0, T] follows by
arguing as in [11, Lemma 2.1].
Step 2. Let v € C°((0,T) x Q;R?). For A > 0, we have that

(ue + Aexp <£)v, €® + Aexp (E)Ev, p5> ev,

and thus by the minimality of (u®, e, p®),

1 t t
" (G8 <uE + Aexp <€> v, €5 + \exp <6> Ev, p5> - GE(uE,eE,p‘s)> > 0.

By the arbitrariness of A, considering the limsup of the inequality above as A — 0, we
deduce

T T
p/ /il5~(v+2€'[1+521})dxdt+/ Ce® : Evdzxdt>0
o Ja o Ja
for every v € C°((0,T) x Q;R3). Analogously, by considering variations of the form

(uE — dexp (é)m ef — \exp (E)E’U, ps),

for A > 0 and v € C°((0,T) x Q;R3), we obtain

T T
(7.9) p/ /if-(v+2€i)+€2i})dxdt+/ /(Cegz Bvdxdt =0
0 Q 0 Q

for every v € C°((0,T) x ; R3). Integrating by parts with respect to time, (7.3) and

(7.4) yield
T T
—p/ /u'i}dxdt—k/ /Ce: Evdxdt =0
o Jao o Ja

for every v € C2°((0,T) x ;R3), that is,
(7.10) pii —divCe =0

in the sense of distributions. Since the same procedure applies to every
v € CX(0,T;C>(Q;R3)) with v = 0 on Iy for every t € [0,T], we also obtain

(7.11) Cer =0 on 0Q\Ty.

Let now g € C°(0,T; L2(€; M), A > 0, and consider the test triple

(uE, e® — dexp (é)@pe + Aexp (é)q)

On the one hand, by the minimality of (u¢, €%, p®),

1 € € t £ t 1> £ £
(7.12) X <G5 (u , €5 — dexp (E> q,p° + dexp (E)q) — G:(u, e, p )> > 0.
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On the other hand,

3 (Drlexp(=- /e);p + Aexp(-/€)¢; 0, T) — Dy (exp(~ - /€);p%0,T))

< Dy(exp(— - /e);exp(-/€)g; 0,T),

and by the in-time regularity of ¢,
r t 1 t ty .
Diy(exp(— - /e);exp(-/)g;0,T) = / exp (= )M (Zexp (2)al) + exp (2) )

g
1 [T r
<! /0 H(q(t)) dt + /O H(i(t)) dt.

Thus, (7.12) can be rewritten as

//(Ce qudt+/ H(g dt+€/ H(g(t))dt >0

for every ¢ € C2°(0,T; L?(Q; M%®)), and by (7.4),

/OT/Q(Ce: qdmdtS/OT’H(q(t))dt

for every ¢ € C°(0,T;L?(Q;M%®)). By approximation, the previous inequality
holds in particular by choosing ¢ = Mxrxp with M € MBDXP’, I and B Borel subsets
of (0,T) and Q U Ty, respectively. Hence, we deduce that

(7.13) (Ce(t))p € OH(0)

for a.e. t € [0,7] and z € Q.
Step 3. It remains to show that the limit triple satisfies the energy inequality
(c3). We first fix a > 0 and ¢ € (0, 1), and we argue by passing to the limit as ¢ — 0

in (6.17). Since
) 1 da s
21_13(1)5—2/0 sexp(—g)ds—l,
by (7.2), (7.3), and (7.4), we have

(7.14)
t+a

+5a /Q s)) dz + Dy /(p; 0, s)) ds+ = / / la(s)|? da ds
_p/t+a/ s)drds < PG/QUI'IU(O)dx
p/tHa/O i(s)

St+a A2~ R.(s) AR ( ) AR, (s) (O)G AR R(0)
/t ( N )ds+ +a

/t+a /5 R.( d s /t+a 2

- W(s)dxdsdg

e—=0 3

+ lim sup {
),

’fR

AR(0
ta 2
1>
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where R. and R. are the quantities defined in (6.11) and (6.12), respectively. By
(5.42) there holds
(7.15)

t+a
‘ /t 0

and, analogously,

(7.16) ‘/tHa /05 @dsder /j*“ /Og/ﬂ(CeE(s) : Eu'}(s)dxdsdﬁ’ < Caey/e

for every t € [0, T]. Thus, by (7.4)
(7.17)

t+a ré€ D t+a r€E D t+a p&
lim Re(s) dsdg — R (s) sdé= — Ce(s): Ew(s)dx ds d€.
e—0 2
t o ¢ t o ¢ t 0JQ

Arguing as in (7.16) and using again (5.42), we deduce

¢ R.(s)

< Cacl[ii*[| 20,7522 (o)) 10]| Lo (0,752 (m2)) < Cav/e

(7.18) ’a@‘ gCa\ﬁJraE/ exp - = /(Ce w(s)dxds
0
R I
and
(7.19) ’ AR 0)‘ < Caaf—i—a’/ exp - 7) / Ce®(s) : F(s)dxds
< Caev/e + Ca” exp ( — S)’ o) < Cay/e.

The same argument yields

‘A2R5(t)‘ . ‘ARS

(7.20) >

’ < Cye for every t € [0,T).
Finally, estimates analogous to (7.15) imply

(7.21) ’ARE

t)‘ < Cy/e forevery t € [0,T)].

By combining (7.14) with (7.17), (7.20), and (7.21) we conclude that

t+a

(7.22) / Q(e(s)) dx + Dy (p; 0, s)) ds + g /t“ra/Q [i(s)|? dx ds

t+da

/Ha/ s)dxds < pa/ﬂ ut - w(0) dx
—p/t /0 Au(s)-w(s)dxdsdﬁ

et , o E(0)
— Ce(s) : Eri(s) dx ds d§ + alimsup —;
t 0 Ja e=0 €
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for every a > 0 and § € (0, 1). In particular, letting § — 0, dividing by a, and letting
a — 0, by the Lebesgue differentiation theorem we deduce the inequality

(7.23) /Q ))dx + Dy (p;0,1) + = /|u t)*dx —p /ﬂu(t)w(t)dm

< p/ 0) dx — // ) - w(s)dx ds

//(Ce : E(s) dz ds + limsup 6()

e—0

for a.e. t € [0,7]. In order to complete the proof of the energy inequality (c3) it

remains to estimate from above the quantity lim sup,_, (0) . To this end, we observe
that, by the definition of the approximate energy, by Corollary 6.2, and by (7.20) and
(7.21) there holds

g2 g2 53

IN

g/ |2 d + AE;(O) _AR(0) A2R5(O) ~ AR.(0)

g2 g2 g2

2
< B/ lu'|? da + Aﬁ;(o) _ AR +Cy/e

e2

%/0 exp(_f ”’/m ) da+ [ Qe () dat Dulos0.0) de

By (5.42),
’A2R =(0) ‘/ exp /Cea(s) : (61 —Ew(o)) da:ds‘
< Cy/e.

<*Hexp(—*)s\
9

In view of [21, Theorem 4.5], we have

L2(0,T)

i/OT exp ( - E)Dy(pg;(),t) dt = —exp ( - g)DH(pE;O,T)

T t
+ PMS/ exp ( — 7) dD3 (p%;0,t)
0 5
< Dyy(exp(— - /¢);p%0,T).

Thus, we obtain

&:(0)

g2 _2

/|u12dx+6’f+ —Ge(u®, e, p%).

By the minimality of (u®, e, p®), and since the triple
t— (u® + tu +w(t) — w(0) — t(0), e + te* + Ew(t) — Bw(0) — tEw(0), p°)
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belongs to V, we deduce the upper bound

1
55(0) < B/ |u1\2d$+0\@+7G5(ue,e€,p6)
g2 2 Ja €

< /OTeXp ( - é)%}/ﬂ\ﬂ)(t)ﬁdmdt
+ /OT exp ( - é)é/ﬂQ(eO +te! + Bw(t) — Bw(0) — tEw(0)) dx dt

+B/ |2 dz + Cv/z
2 Ja

T
SB/ \u1|2dx+C\/§+1/ exp(—z)/(Q(eo)—l—Ct)dxdt,
2 Ja € Jo e/ Ja

which in turn implies
. (0 P

(7.24) hmsup%) < 5/ |u|?dz 4+ | Q(e°)dx
e—0 € Q Q

By combining (7.23) with (7.24) we have
/QQ(e(t))dx+DH(p;O,t)+g/Q\u(t)|2dac—p/ﬂﬂ(t)~w(t)dm
S/Q(eo)dm—l-B/ |u1|2d:r—p/u1-w(0)da:
//u(s dxds—/ /(Ce : Bw(s)dx ds

for a.e. t € [0,T]. This completes the proof of condition (c3).
Step 4. In order to show that wu satisfies the first-order initial condition

(7.25) w(0) =u'  in W2 (Q; R?),

we argue as in [46, Theorem 4.2], and we claim that there exists a sequence €, — 0
such that

(7.26) at(t) — a(t) weakly in W12 (Q; R?)

for every t € [0, 7.
To prove claim (7.26), we first observe that the minimality of the triple (u®, e, p°)

yields the Euler-Lagrange equation
(7.27)

EQP/OT/QQXP(_z)ua(t).qlé(t)dxdt‘*'/OT/Qexp(—z)ceg(t)5E¢(t)d$dt—0

for every ¢ € W22(0,T; W, (4 R?)) satlsfying #(0) = ¢/(0) = 0. Let e, — 0, and
let S be a countable dense subset of W0 (Q; R3). Let I C (0,T) be defined as the set
of points ty € (0,7") such that
(7.28)
to+6 to
lim — / exp ) / Fn(t) - h(x) dedt = exp ( — —) / 4 (to) - h(z) dx dt
En Q

50 0
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for every n € N and for every h € S. Note that by the Lebesgue differentiation
theorem the set [0,77] \ I is negligible.
Fix tg € I, and let @5, € C11(R) be defined as

0 t < to,
(t —to)?
Qpén(t) = W te (to,to + 5)a
t—t 5
2% - t>ty+6.
E’rl gn

‘We observe that 9

@gn (t) = @X(tomﬁé) (t),
n

where X (4,,1,+4) is the characteristic function of (tg,to + ). In addition,
2 " 2 "
lpsn ()] < 5 (t—t0)™ and  @sn(t) = —(t —to)
e2 e2

as 0 — 0 for almost every ¢ € (0,T"). Choosing ¢(t,x) = @sn(t)h(z), with h € S, by
(7.27) we obtain

to+s
/exp - — E”(t) h(z) dz dt

+/ / exp - —)gpgn(t)(CeE" (t) : Eh(x)dxdt = 0.
to JQ En

Letting § — 0, (7.28) and the dominated convergence theorem yield

p [ i awmmM+—/t/

By (5.42), there holds

s /to o

= T 2(to — t) i

n 0— )
< Heay HL2(0,T;L2(Q;M;;%X,§)) HEh||L2(Q M3x3 (/ exp (7) (t— t0)2 dt)
n Y to En

t —t9)Ce*"(t) : Eh(z)dzdt =0

tf to)Ce® (t) : Eh(z) dx dt’

sym)
(T —tg) 1

T Zexp(—21) dtf < Oy 2z

< CME?II’le&HQ;RS)(A

where in the last inequality we used the fact that for ¢ large there holds 2 exp(—2t) <
1.
Thus,

p| [ i (to)hle) da] < Clllg oz
Q

where the constant C' is independent of &, and ¢y. In particular, we obtain the uniform
estimate

(7.29) pliie»
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By combining (5.42), (7.3), and (7.29), we deduce that

||u5n

w20, 7w -2 (r3)) < C.

In particular, as W1H2(0,7; W~12(Q; R3)) embeds into C,, ([0, T]; W~12(;R3)), up
to the extraction of a (non-relabeled) subsequence we obtain claim (7.26), which in
turn yields 4(0) = ul.

As pointed out in [36, Remark 3.2], arguing as in [7] one obtains that (c3) holds
with an equality. The additional regularity in time of the solution follows by adapting
the argument in [36, Proof of Theorem 3.1]. The thesis follows now by the uniqueness
of solutions for the dynamic plasticity problem (see Theorem 2.2).

We point out that the assertion of Theorem 2.3 still holds if we generalize the
minimum problem (2.14) by imposing e-dependent initial data satisfying suitable
compatibility assumptions. To be precise, for every €, define the set

V. = {(u,e,p) € W>2(0,T; L*(Q;R®)) N L' (0, T; BD(Q))
x L2((0,T) x Q;M2X3) x BV ([0, T]; My(2 U Tg; M53)) :

(u(t),e(t),p(t)) € d(w(t)) for a.e. t € (0,77,
Eu(t) = e(t) + p(t) in D'(Q;M3%3) for every t € [0,T],

sym
u(0) = u, u(0) = u, e(0) = €2, p(0) = pl},
with (u?,e2,p%) € o (w(0)), and ul € WH2(Q;R?) such that u! = @ (0) on T.

£

Assuming that the initial data are well prepared, namely,

u —* 4°  weakly* in BD(Q),
eg — ¢ weakly in Lz(Q; MS&?)?
2

—*p  weakly* in My (U Do; M),
—u'  strongly in W12 (Q;R3),

<
oM =

and
lim {/Q(eg)dx—f—g/ |u;|2dx—p/u;-u')(0)d:n
e—=0 [¢) 2 QO Q
:/Q(eo)dx—i—g/ |u1\2dx—p/ ut - w(0) dz,
Q 2 Ja Q

one can again prove there exists a sequence of triples {(u®, %, p®)}, with (u®, e, p°) C
V. for every e such that

I.(u®,e®,p°)= min I.(v,f,q),
( %) (o o (v, f.q)

such that {(u®, e®,p®)} converges to the solution (u, e, p) of dynamic perfect plasticity,
namely (cl), (¢2), and (c3), in the sense of Theorem 2.3.

Appendix A. This appendix is devoted to the proof of Proposition 6.7. We
start with a somewhat technical lemma.

LEMMA A.1. Let p € BV(O,T;Mb(QUFO;MBDX?’)), and let ¢ € C°(0,T). Then,

T
Dauips 1:0,T) = — / H(6) Dy (150, 1) .
0
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Proof. In view of [21, Theorem 4.5], there holds (see also [21, Theorem 2.15])
. T
Dulipi0.7) = ~PMS [ Drui0.)d
0

T T
— _RS / Da(y130,8) dp = — / D430, 6) ()
0 0

where PM S [ and RS [ denote the Pollard-Moore-Stieltjes and the Riemann-Stieltjes
integrals, respectively (see [21, section 4]), and where the last equality is due to the
regularity of ¢ and to classical properties of the Riemann—Stieltjes integral. ]

We are now in a position to prove Proposition 6.7.

Proof of Proposition 6.7. We argue as in [38, Proposition 4.1] by comparing the
energy associated to (u®, e, p®) with that of a rescaled triple (4, €%, 5°). Consider an
increasing diffeomorphism

Bs :[0,T] = [0,T]
such that 85 € C2([0,T)), 85(0) = 0, B5(T) = T, and S5(0) = 1. We set
@ (s) = u (B (5) —w(B5 ' () +w(s), 5 (s):=p (85 (5)),
for every s € [0, T, and
& (s) = *(B5 ' (s)) — Bw(B5 ' () + Ew(s)

for every s € [0,T]. It is easy to check that (@, é%,5°) € V. Hence, by the minimality
of (u®,e®,p®) there holds

(A1) Ge(a®,é%,p°) — G (u®,e®,p%) > 0.

Using the definition of (4, &%, 5°), we can rewrite its associated energy as

Gs(ff,éiﬁe):/o eXp( 55 t) /Q (t) — Bw(t) + Ew(Bs(t))) da dt

2 [T 00 CaEWhG o)
3 / (- / ‘(55 G5 (Bs(1))?
(1) B (1)
)

Along the lines of [38, Proposition 4.1], we fix ¢ € C°(0,T). Let 6 € (0,1) be such
that edp(t) < exp(—t/e) for every t € [0,T], and define (5 as the solution to

(A.2) exp ( - ﬁéT(t)) —exp ( - é) = dp(t).

We immediately see that 85(0) = 0 and 85(T) = T. In addition, deriving (A.2) with
respect to time, we have

(A.3) Bs(t) = exp (ﬁ‘l(t)) (exo (- g) ~ (1))

for every t € [0,T], yielding Bg(t) > 0 for every t € (0,7) and [)35(0) = 1. As already
observed in [38, Proposition 4.1],

+ w(@;(t))l dx) dt + eDyy(exp(— - /2); 5750, T).

(A4) Bs(t) =t — edp(t) exp ( ) +0(5?).
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In addition, by (A.2) and (A.3),
(A.5) Bs(t) =1 6(p(t) + et ))exp( ) +0(82),

and by performing a further derivation in time of (A.3),

(4.6) 350 = o (P2 1 2p(0) + 2(0)) exp (1) + 0(62)

Let us first observe that

(A7) 1m o /Texp( Bat) s(t) [ Qe () = Bult) + Bu(3s(t) dadi
_/0 esp (- /Q ) dadt}
~ lim {/ ﬂ (t) - exp(—é))/ﬂ@(ef(t))dxdt
n /0 exp(f@ / Q(Bw(t) — Buw(Bs(t))) du dt
_/OTeXp 5‘5“ /(Ce ~ Bu(Bs(1))) dedt ).

In view of (A.2) and (A.5), and by the dominated convergence theorem, the first term
in the right-hand side of (A.7) becomes

(A.8) ;i_%% ! (exp < - Bé?of))ﬁg(t) — exp ( - é)) Q(e° (1)) du dt
_(%1_%6/ Sop( )+exp(—7)>ﬁ5(t)—exp(—£))/QQ(ee(t))dxdt

_ . /0 (1) /Q Qe (1)) du dt.

By the regularity of w and by (A.4) there holds

Bs (t)
|Bw(t) — Bw(Bs(t))] = ‘/t Ew(¢) d§’ < Vi ||lwllwrzo,rw2 (srs))-

Hence, by (A.2) and (A.5) one obtains

T

(A.9) lim% 0 exp (- 6” t)/Q Bul(t) — Ew(Bs(t))) da dt = 0.

6—0
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Finally, by (A.2), (A.5), and the mean value theorem we get

(A.10)
lim% exp(— 55(”)55@)/ Ces(t) - (Ew(t) —Ew(ﬁg(t))) dz dt

3

! t Balt)
= gl_r)% 5/, (exp — g + dep(t) / Ce®( / Ew(¢) df) dz dt
1 T t . Bs(t) B )
= (%1_{% 5/ (CXp ( - E) + 5€g0(t)) /t /Q(Ce (t) : Ew(&)drdedt
T
= —¢lim gp(t)/ Ce®(t) : Bw (&) drdt = — / t)/ Ce®(t) : Ew(t)dz dt,
§—0 0 Q

where, in the second-to-last line, for every ¢ € [0,7], & is an intermediate value
between ¢ and S5(t). By combining (A.7)-(A.10) we obtain

6—0

7/0 exp (- /Q ) da dt
:-g/o gb(t)/QQ(eg(t)) dxdt+€/0 ga(t)/QCe‘f(t):Ew(t) dz dt.

We proceed by performing the analogous computation for the inertial term. We
seek to estimate

(A.11) lim ;{/0 exp( ﬁa B (t) / Q(e°(Bs(t)) — Bw(t) + Bw(Bs(t))) da dt

(A.12)
. /a’(t) )Bs(t)  (t)
§1§%)5{ / ; /‘(ﬂa t))f ﬂa(t5> (Bs(1))?
A e

By (A.2) and (A.5) we have

1e2p (T 1 ﬁé(t) t .
(A.13) 11%05 5/, <(65(t)) exp(— . —exp - - /|u (t)|? dx dt

3
62/) /|u (t)|? dx dt + 2¢2 p/ @(t)/ |31 (t)|? da dt.

By (A.2), (A.5), and (A.6) there holds

lim 1%”/0 exp (- ﬁ";t)) /Q [Egzg;s(ue(t)ﬁ (O — 20 (1) - ae)] de dt = 0,
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as well as

1 ’ Bs(t) Bs(t) . ; e
(A.15) h_r)% 5¢ p/o exp(f 55 ) A (Bsé(t))4u (t) - (w(t) — a(t)) da dt

= /0 By (t) - (n(t)
T
—Wf(t))dedt — ep /0 ((t) + 2e(8))i (2) - (n(t) — 4°(t)) d dt.

To estimate the remaining term, we observe that by (A.5) and in view of the regularity
of the boundary datum,

w B5(t)
- G ) =~ 0= G0+ [ e de
O 2s() , ; Bitt) 2
=G0 e () + [ e s+ o)

By the regularity of w, by (A.4), and by Lebesgue’s theorem,

i |3 P 5(6) de + civ(t)p(t) exp (5) i

50 L2(0,T;L2(;R3))
ﬁs(t)
= lim H / i(E) —
5—0 L2(0 T;L2(Q;R3))
t+de|l¢ll oo 0,7) exp(T/e)
< lim © / / /|w(§ (#)[2 da dé dt = 0.
609 t—5¢llll oo (0,1 exp(T/e)

Therefore, by (A.5) and (A.6),

(A.16) lim %{S%p /OT exp ( - ﬁi(t))ﬁ'a(t) /Q H - (52}((:)))2 +@(ﬁ5(t))’2

i) (ott) ~ i ()07, Y
+2(= Gp tIEO) g =

and

(A.17)
Ly T BN [ o
tm 5<% eXp(‘T)ﬁ‘s“)/ Gror " R T AW)

= —2¢2 / / t) +ep(t)) dedt
/ / (t)p(t) dz dt.
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By combining (A.12)—(A.17), we obtain
1ye%p [T t : e (t 1 (1) Bs (t i(t
6-06 L 2 Jg (Bs(t)) (Bs( ) (Bs(t))

w(t)Bs(t) )560‘) )2
(ﬂa(t)) W (B5(1)) dxdt——/ eXp ! /|u |dmdt}

352” /|u (0)[2 da dt + 222 p/ @(t)/ i (1) dar dt
Q

— p/ / (w(t) — 4 (t)) de dt

fm/m/ £) + 2e0(1))if (1) - (it) — i (1)) dr
—252,0/ /ue(t)-ﬂ)(t)(@(t)+sgb(t))dxdt

—ep// ) - W(t)p(t) dx dt.

To complete the proof of the e-energy inequality it remains to estimate from above
the quantity

(A.19) lir?jgpﬁ(Dn(exp(— - /€);7%50,T) — Dy(exp(— - /€);p%0,T)).

To this end, fix A > 0, and let 0 <ty < t; < --- < t,,, < T be such that

Dy (exp(— - /¢);0%;0,T) Zexp( ) p°(t;) — p°(ric1)) + A

For i =0,...,m, let s; € [0,T] be such that 8s(s;) = t;. By the properties of s, it
follows that 0 < sg < 51 < -+ < s, < T. In view of (A.2), we have

Zm:exp (t;) H(F (t:) — p°(ri-1) Zex < > H(p®(s:) = p*(si-1))
_kam) P (s1) =9 (s:1))
+ Z (exp ( Bale ’)> exp (—S;) )H(ps(sz-) =P (si-1))

< Dy(exp(—- /e);p%0,T) + 6 (s H(p(s:) = p(si-1)).

i=1

By considering finer and finer refinements of {to,...,tm}, in view of the definition
of Dy, and by the arbitrariness of A we conclude that

Dy(exp(— - /);55;0,T) < Dyy(exp(— - /€);p%;0,T) + 6Dy (03970, T).

Thus, we can bound (A.19) from above as
(A.20)

. 1 . .
hr;lsgp g(DH(eXP(* - /€); 950, T) — Dy (exp(— - /€);p%;0,T)) < Dyy(05p%0,T),
-
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where Dy is the quantity defined in (2.8). Combining (A.1), (A.11), (A.18), (A.20),
and Lemma A.1 we finally obtain the inequality

(A.21) 0 < limsup 5% (Ge(u®,e%,p%) — G(u®, e, p%))

i
< /OTc,b(t)/QQ(ee(t))dxdt/OTga(t)/Q(Ces(t):Ew(t)dmdt
v Ost(t) [P dzde+2ep [ 0 [ i) o e
= ' [ sy ate) = i () et
o [+ 20000 o0 i)
~ap [ [0 w000 + gty de
—er/OT/Qu'E(t) () p(t) da dt

- /O D510, ) (1) dt

for every ¢ € C2°(0,T). The weak energy equality (6.18) follows now by performing
an integration by parts. 0
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Dynamic perfect plasticity and damage in viscoelastic solids
ELISA DAVOLI!, TOMAS ROUBICEK 23, ULISSE STEFANELLI>#

Abstract

Abstract. In this paper we analyze an isothermal and isotropic model for viscoelastic media com-
bining linearized perfect plasticity (allowing for concentration of plastic strain and development of shear
bands) and damage effects in a dynamic setting. The interplay between the viscoelastic rheology with
inertia, elasto-plasticity, and unidirectional rate-dependent incomplete damage affecting both the elastic
and viscous response, as well as the plastic yield stress, is rigorously characterized by showing exis-
tence of weak solutions to the constitutive and balance equations of the model. The analysis relies on
the notions of plastic-strain measures and bounded-deformation displacements, on sophisticated time-
regularity estimates to establish a duality between acceleration and velocity of the elastic displacement,
on the theory of rate-independent processes for the energy conservation in the dynamical-plastic part,
and on the proof of the strong convergence of the elastic strains. Existence of a suitably defined weak
solutions is proved rather constructively by using a staggered two-step time discretization scheme.

Keywords: Perfect plasticity, inertia, cohesive damage, Kelvin-Voigt viscoelastic rheology, functions of
bounded deformation, staggered time discretisation, weak solution.

AMS Subj. Classificaiton: 35Q74, 37N15, 74C05, 74R05.

1 Introduction

Plasticity and damage are inelastic phenomena providing the macroscopical evidence of defect formation
and evolution at the atomistic level. Plasticity results from the accumulation of slip defects (dislocations),
which determine the behavior of a body to change from elastic and reversible to plastic and irreversible,
once the magnitude of the stress reaches a certain threshold and a plastic flow develops. Damage evolution
originates from the formation of cracks and voids in the microstructure of the material.

The mathematical modeling of inelastic phenomena is a very active research area, at the triple point
between mathematics, physics, and materials science. A vast literature concerning damage in viscoelastic
materials, both in the quasistatic and the dynamical setting is currently available. We refer, e.g., to [39,41,
46,51,53] and the references therein for an overview of the main results.

The interplay between plasticity and damage has been already extensively investigated, prominently
in the quasistatic framework. The interaction between damage and strain gradient plasticity is addressed
in [19] whereas a perfect-plastic model has been proposed in [1], where the one-dimensional response is
also studied. Existence results in general dimensions have been obtained in [18, 20], see also [21] for
some recent associated lower semicontinuity results. The coupling between damage and rate-independent
small-strain plasticity with hardening is the subject of [10,44,49]. Quasistatic perfect plasticity and damage
with healing are analyzed in [48]. The identification of fracture models as limits of damage coupled with
plasticity has also been considered [24,25].

The analysis of dynamic perfect plasticity without damage has been initiated in [5]. A derivation of the
equations via vanishing hardening, and vanishing viscoplasticity has been performed in [15, 16]. A gen-
eralization via the so-called cap-model approximation has been obtained in [6]. An approximation of the
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equations of dynamic plasticity relying on the minimization of a parameter-dependent functional defined on
trajectories is the subject of [26], whereas an alternative approach based on hyperbolic conservation laws
has been proposed in [7]. Dimension reduction for dynamic perfectly plastic plates has been carried on
in [40]. Convergence of dynamic models to quasistatic ones has been analyzed in [23,43].

To our best knowledge, the combination of perfect plasticity, damage, and inertia has been so far tackled
in the engineering and geophysical literature (see, e.g., [27,32,52]), whilst a mathematical counterpart to the
applicative analysis is still missing. The focus of this paper is to provide a rigorous analysis of an isothermal
and isotropic model for viscoelastic media combining both small-strain perfect plasticity and damage effects
in a dynamic setting.

More specifically, our main result (Theorem 2.2) shows existence of suitably weak solutions to the
following system of equations and differential inclusions, complemented by suitable boundary conditions
and initial data

ptu —dive = f, 0:=C(a)eq + D()éel, eq = e(u) — , (1a)
oy ()Dir(7) > devo, (1b)
I (a) + %C’(a)eel t el 3 ¢ (a) + div (k|ValP?Va), (1¢)

where u, 7, and « denote the displacement, the plastic strain, and the damage variable, respectively, C(-),
D(-), and o, , (-) are the damage-dependent elasticity tensor, viscosity tensor, and yield surface, and e(u) =
(Vu + Vu') is the linearized strain. The notation Dir stands for the set-valued “direction” (see Subsection
2.5), dev o identifies the deviatoric part of the stress o, namely devo := o — tr (0)Id/d, ( is the local
potential of dissipative damage-driving force (see (7)), constraining the damage process to be unidirectional
(no healing). Finally ¢ is the energy associated to the creation of microvoids or microcracks during the
damaging process, « is the length scale of the damage profile, and p the mass density. We refer to Section
2 for the precise setting of the problem, the definition of weak solution to (1a)—(1c), and the statement of
Theorem 2.2.

The analysis of model (1a) presents several technical challenges. Perfect plasticity allows for plastic
strain concentrations along the (possibly infinitesimally thin) slip-bands and calls for weak formulations
in the spaces of bounded Radon measures for plastic strains and bounded-deformation (B D) for displace-
ments. This requires a delicate notion of stress-strain duality (see Subsection 4.1). Considering inertia and
the related kinetic energy renders the analysis quite delicate because of the interaction of possible elastic
waves with nonlinearly responding slip bands, as pointed out already in [8]. Various natural extensions
such as allowing healing instead of unidirectional damage, or mutually independent damage in the viscous
and the elastic response (in contrast to (22b) below), or different damage behaviors in relation to compres-
sion/tension mode leading to a non-quadratic stored energy, or an enhancement by heat generation/transfer
with some thermal coupling to the mechanical part, seem difficult and remain currently open.

The proof strategy relies on a staggered discretization scheme, in which at each time-step we first iden-
tify the damage variable as a solution to the damage evolution equation, and we then determine the plastic
strain and elastic displacements as minimizer of a damage-dependent energy inequality (see Section 4). A
standard test of (1a)—(1c) leads to the proof of a first a-priori estimate in Proposition 5.6. In order to ensure
the strong convergence of the time-discrete elastic strains e,), needed for the limit passage in the damage
flow rule, a further higher order test is performed in Proposition 5.7. The convergence of the elastic strains
is then achieved by means of a delicate limsup estimate (see Proposition 6.2). Due to the failure of energy
conservation under basic data qualification, the flow rule is only recovered, in the limit, in the form of an
energy inequality (see Remark 2.9).

A motivation for tackling the simultaneous occurrence of dynamical perfect plasticity and damaging
is the mathematical modeling of cataclasite zones in geophysics. During fast slips, lithospheric faults in



elastic rocks tend to emit elastic (seismic) waves, which in turn determine the occurrence of (tectonic)
earthquakes, and the local arising of cataclasis. This latter phenomenon consists in a gradual fracturing of
mineral grains into core zones of lithospheric faults, which tend to arrange themselves into slip bands, sliding
plastically on each other without further fracturing of the material. On the one hand, cataclasite core zone are
often very narrow (sometimes centimeters wide) in comparison with the surrounding compact rocks (which
typically extend for many kilometers), and can be hence modeled for rather small time scales (minutes
of ongoing earthquakes or years between them, rather than millions of years) via small-strain perfect (no-
gradient) plasticity. On the other hand the partially damaged area surrounding the thin cataclasite core can
by relatively wide, and thus calls for a modeling via gradient-damage theories (see [45,47]).

The novelty of our contribution is threefold. First, we extend the mathematical modeling of damage-
evolution effects to an inelastic setting. Second, we characterize the interaction between damage onset and
plastic slips formation in the framework of perfect plasticity, with no gradient regularization and in the
absence of hardening. Third, we complement the study of dynamic perfect plasticity, by keeping track of
the effects of damage both on the plastic yield surface, and on the viscoelastic behavior of the material.

The paper is organized as follows: In Section 2, we introduce some basic notation and modeling as-
sumptions, and we state our main existence result. Section 3 highlights the formal strategy that will be
employed afterward for the proof of Theorem 2.2, whereas Section 4 focuses on the formulation of our
staggered two-step discretization scheme. In Section 5 we establish some a-priori energy estimates. Finally
Section 6 is devoted to the proof of the main result.

2 Setting of the problem and statement of the main result

We devote this section to specify the mathematical setting of the model, and to present our main result. We
first introduce some basic notation and assumptions, and we recall some notions from measure theory.

In what follows, let Q@ C R?, d € {2,3} be a bounded open set with C? boundary. In our model, the
domain € represents the reference configuration of a linearly viscoelastic, perfectly plastic Kelvin-Voigt
body subject to a possible damage in its elastic as well as in its viscous and plastic response.

We assume that the boundary 92 =: I is partitioned into the union of two disjoint sets I', and I'y. In
particular, we require I';, to be a connected open subset of I" (in the relative topology of I') such that OrI'p
is a connected, (d — 2)-dimensional, C? manifold, whereas I'y is defined as 'y := T \ Ip.

For any map f : [0,7] x R? — R we will denote by f its time derivative, and by V f its spatial
gradient. We will adopt the notation R?*“ to indicate the set of d x d matrices. Given M, N € R¥x9,
their scalar product will be denoted by M : N := tr(MTN) where tr is the trace operator, and the
superscript stands for transposition. We will write dev M to identify the deviatoric part of M, namely
dev M := M — tr (M)Id/d, where Id is the identity matrix. The symbols R%<¢ and R2*? will represent

Sym dev
the set of symmetric d x d matrices, and that of symmetric matrices having null trace, respectively.

2.1 Function spaces, measures and functions with bounded deformation

We use the standard notation LP, W*P, and LP (0,T;X) or WHP(0,T; X) for Lebesgue, Sobolev, and
Bochner or Bochner-Sobolev spaces. By Cy, (0, T'; X) we denote the space of weakly continuous mappings
with value in the Banach space X. We also use the shorthand convention H* := W2,

Given a Borel set B C R¢ the symbol M, (B;R™) denotes the space of bounded Borel measures on B
with values in R™ (m € N). When m = 1 we will simply write M (B). We will endow M, (B;R™) with
the norm || p4|ne, (B;rm) := [p[(B), where || € M,(B) is the total variation of the measure .

If the relative topology of B is locally compact, by the Riesz representation Theorem the space M (B; R™)
can be identified with the dual of Cp(B; R™), which is the space of continuous functions ¢ : B — R™ such



that the set {|¢| > d} is compact for every 6 > 0. The weak* topology on M (B; R™) is defined using this
duality.
The space BD(£2; R?) of functions with bounded deformation is the space of all functions u € L*(Q; R?)
whose symmetric gradient
\% Vu) T
eu) = Y4V
(defined in the sense of distributions) belongs to My (€2; RE<). It is easy to see that BD(; R?) is a Banach
space when endowed with the norm

”UHLl(Q;Rd) + He(u)HMb(Q;Rdxd).

sym

A sequence {u*} is said to converge to u weakly* in BD(Q;R?) if u¥ — u weakly in L'(£2;R?) and
e(uF) — e(u) weakly* in My (€ ngxrg). Every bounded sequence in BD(£2; R%) has a weakly* converging
subsequence. In our setting, since {2 is bounded and has C? boundary, BD(2; R?) can be embedded into
LY@=1)(Q: R?) and every function v € BD(;R?) has a trace, still denoted by u, which belongs to
LY (I'; RY). For every nonempty subset v of I', which is open in the relative topology of T';, , there exists a

constant C' > 0, depending on €2 and ~, such that the following Korn inequality holds true
ull L1 @ray < Cllullpr(yray + CHB(“)||M,,(U;R§yéﬁ) )

(see [50, Chapter II, Proposition 2.4 and Remark 2.5]). For the general properties of the space BD(£; R?)
we refer to [50].

2.2 State of the system and admissible displacements and strains

At each time t € [0, T, the viscoelastic perfectly-plastic behavior of the body is described by three basic
state variables: the displacement u(t) : Q — RY, the plastic strain 7(t) : Q@ — R%*?, and the damage
variable a(t) : © — [0, 1]. In particular, we adopt the convention (used in mathematics, in contrast to the
opposite convention used in engineering and geophysics) that o« = 1 corresponds to the undamaged elastic
material, whereas o = 0 describes the situation in which the material is totally damaged. The abstract state
g will be here given by the triple ¢ = (u, 7, ).

On I, we prescribe a boundary datum up, € H'/2(T'y; R?), later being considered to be time dependent.
With a slight abuse of notation we also denote by up a H'(2;R%)-extension of the boundary condition to
the set 2.

The set of admissible displacements and strains for the boundary datum uy, is given by

o (up) ::{(u, ear, ™) € (BD(Q;RY) M L2(9)) x LH(Q;RE) x My(Q U Ty REXY) .

sym dev
e(u) =eq +m1inQ, 7= (up —u)©rpHIt on FD}, 3)
where © stands for the symmetrized tensor product, namely
a®b:=(a®b+b®a)/2 VYa,beR?,

vp is the outer unit normal to T, and ¢! is the (d — 1)-dimensional Hausdorff measure. Note that the
kinematic relation e(u) = e + 7 in &7 (up) is classic in linearized elastic theories and it is usually referred
to as additive strain decomposition.

We point out that the constraint

7= (up —u) @ vpHon Ty “4)

is a relaxed formulation of the boundary condition © = up on I'p; see also [42]. As remarked in [22], the
mechanical meaning of (4) is that whenever the boundary datum is not attained a plastic slip develops, whose
amount is directly proportional to the difference between the displacement » and the boundary condition up,.



2.3 Stored energy

dxd N Rdxd

Let £ Sym(RdXd) denote the space of linear symmetric (self-adjoint) operators Rgy 1| sym >

Sym
stood as 4th-order symmetric tensors.

We assume the elastic tensor C : R — Lgym (

being under-

ngxn‘f) to be continuously differentiable, and nondecreasing
in the sense of the Lowner ordering, i.e. the ordering of ngxn‘f with respect to the cone of positive semidefinite
matrices. Additionally, we require C(«) to be positive semi-definite for every o € R. Note that, in view of
the pointwise semi-definiteness of C, the possibility of having complete damage in the elastic part is also
encoded in the model. We additionally assume that C(a)) = C(0) for every o < 0, and that C’(0) = 0. This
corresponds to the situation in which the damage is cohesive.

The stored energy of the model will be given by

&E(q) = & (u,m,a) = / (%(C(oz)eel el — () + g|Voz\p> dz with eq =e(u) —m, (%)
Q

where ¢ : R — R stands for the specific energy of damage, motivated by extra energy of microvoids or
microcracks created by degradation of the material during the damaging process, whereas x represents a
length scale for the damage profile. When ¢'(«) > 0, the damage evolution is an activated processes, even
if there is no activation threshold in the dissipation potential, as indeed considered in (7) below.

For the sake of allowing full generality to the choice of initial conditions, we will assume that devCe =
Cdev e. Note that this is the case for isotropic materials.

2.4 Other ingredients: dissipation and kinetic energy

For the sake of notational simplicity, we consider isotropic materials as far as plastification is concerned.
Let the yield stress o, , as a function of damage o, , : [0, 1] — (0, +00) be continuously differentiable
and non-decreasing. For every m € My(Q2 U I'p; Rgexvd) let dr/d|m| be the Radon-Nikodym derivative of
7 with respect to its total variation |7|. Assuming that v : [0,7] x © — [0, 1] is continuous, we consider
the positively one-homogeneous function M + o, ()| M| for every M € R?*?, and, according to the

theory of convex functions of measures [34], we introduce the functional

dm
Rla, ::/ o a)—d|m
@)= [ oun@gdn

for every m € M,(Q U Tp; RIXD).

In what follows, we will refer to R as to the damage-dependent plastic dissipation potential. Note
that, by Reshetnyak’s lower semicontinuity theorem (see [2, Theorem 2.38 ]), the functional R is lower-
semicontinuous in its second variable with respect to the weak™* convergence in M (2 U I'p; Rg:vd).

For « continuous and such that & < 0in [0, 7] x €2, we define the a-weighted R-dissipation of a map

t — () in the interval [sq, so] as

n
DfR(Oé;ﬂ';Sl,SQ) = sup{ ZR(O&(t]‘),ﬂ'(tj)—ﬂ'(tjfl)) s <t <t <<ty <82, M E N}. 6)
j=1

We will work under the assumption that the damage is unidirectional, i.e. & < 0. Constraining the rate
rather than the state itself, this constraint is to be incorporated into the dissipation potential. For a (small)
damage-viscosity parameter 7 > 0 , we define the local potential of dissipative damage-driving force as

1 .5 ...
C(6) = Mo ifa <0, 7

+o00. otherwise



dxd

sym

Let the viscoelastic tensor D : R — Lgym (R
forces

R(q;q) = H(; 0,7, &)

) be given and define the overall potential of dissipative

— / (ED(Q)ée] . ée] + C(O.é)) d.’L' +/ JYLD (a)di d”/‘.[" Where éel — 6(7,'1,) _ 7{_ (8)
Q

2 QUI, d|7.7‘

Let p € L*(Q2), with p > 0 almost everywhere in €2 denote the mass density. We will additionally
consider the kinetic energy given by

. 1.
9(@:/ 5p\u|2dx. ©)
Q

2.5 Governing equations by Hamilton variational principle

We formulate the model via Hamilton’s variational principle generalized for dissipative systems [9]. This
prescribes that, among all admissible motions ¢ = ¢(t) on a fixed time interval [0, T'] given the initial and
final states ¢(0) and ¢(7"), the actual motion is a stationary point of the action

T
/ﬁz@%@a (10)
0

where ¢ = %q and the Lagrangean £ (t, q, q) is defined as
L(t,q,:4) == T(q) = E(q) + (F(t),q) with F= Fy(t)—09,%(q,9)- (11)

This corresponds to the sum of external time-dependent loading and the (negative) nonconservative force
assumed for a moment fixed. In addition to &, Z#, and .7 from Sections 2.3 and 2.4, we define the outer
loading Fy as (Fo(t),q) = [, f - uwdz, where f is a time-dependent external body load.

The corresponding Euler-Lagrange equations read

. d .
0,2 (t:9,4) = 70,2 (t:¢,4) = 0. (12)

This gives the abstract 2nd-order evolution equation
0T § + 9, %(4,4) + &'(q) = Fo(t) (13)

where O indicates the (partial) Gateaux differential. Let us now rewrite the abstract relation (13) in terms of
our specific choices (5), (7)-(9). We have
the following equation/inclusion on [0, 7] x §2:

pti —dive = f, o0 :=C(a)eq + D()éel, €q = e(u) — , (14a)
oy ()Dir(7) 3 devo, (14b)
I¢(a) + %C’(a)eel s el 3 ¢ () 4 div (k| VaP2Va), (14¢)

complemented by the boundary conditions
ovp =0 on[0,T] xTy, w=wup, on|[0,T]xTp, Va-vp=0 onl0,T]xT. (15)

The notation Dir : R4*¢ = R%*4 iy (14b) means the set-valued “direction” mapping defined by Dir(7) :=

dev dev

[D] - |](7). In particular
. /|7 if m#0
Dir(m) = dxd | .
{deRYY - |d <1} if 7=0

6



Relations (14a), (14b), and (14c) correspond to the equilibrium equation and constitutive relation, the plastic
flow rule, and the evolution law for damage, respectively.
The above boundary-value problem is complemented with initial conditions as follows ,

u(0) =ug, 7(0)=my, «a0)=ay, u(0)=mwvy. (16)

We point out that the monotonicity of C, combined with the unidirectionality (& < 0) of damage implies
that
aC'(a)e:e <0 forevery e € R4, 17)

namely &C’(«) is negative semi-definite. By the monotonicity of o, ,, the unidirectionality of damage also
yields that
&0’ (o) <0. (18)

YLD

The energetics of the model (14)-(15), obtained by standard tests of (14) successively against u, 7, and
@, is formally encoded by the following energy equality

KR
[ BioPas + [ S@@eatn : calt) - oan) + ZIVa(ol da
[ —
kinetic energy stored energy at time ¢
at time ¢

t
// na2 + D(a)ée : éodxds + oy, (a)|7| dz ds
0/
dissipation on [0, ¢]

1 K
— / Ploglda + / S Cla0)ear(0) : ea(0) ~ d(an) + = Voo da
Q Q p

kinetic energy stored energy at time 0
at time 0
t
// f-udxds + // ovr - Up dH“ 1 ds (19)
0JTp
energy of energy of
external bulk load boundary condition

where the last term has to be interpreted in the sense of (40) below. A rigorous derivation of the energy
equality above will be presented in Subsection 3.1.

2.6 Statement of the main result

Let p > d be given and assume that the data of the problem satisfy the following conditions:

ug € L*(Q;RY) N BD(Q;RY), vy € HY(Q;RY),

mo € Mp(QU T RIXD), 7o € L2(Q R, (20a)
(ug, e(ug) — mo,m0) € < (up(0)), (vo,e(vy) — 7o, o) €  (up(0)), (20b)
ap € WHP(Q), 0<ap <1,

0y (0)Dir(mg) 2 dev (C(ap)(e(ug)—mo) + D(ao)(e(vo)—70)), (20c)
feL?0,T; LA RY), up € WH2(0,T; LA RY)) N HY(0, T; H(Q; RY)). (20d)

The regularity requirements in (20) for vg and 7o and the compatibility condition in (20c) are needed in
order to make some higher-order estimate rigorous, see Subsection 3.2.
We now introduce the notion of weak solution to (14)—(16).



Definition 2.1 (Weak solution to (14)—(16)). A quadruple

w e L®(0,T; BD(;RY)) N H2(0, T; L*(Q; RY))
eal € H'(0,T; L2 (4 RE)),

sym

7€ BV(0,T; My(Q U I'p; RIXD)),

dev

a € (H'(0,T; L*(2) N Cyw (0, T; WP(Q))
is a weak solution to (14)—(16) if it satisfies (16), and the following conditions are fulfilled:
(C1) (u(t),ea(t), m(t)) € o (up(t)) for every t € [0, T] (see (3));
(C2) The equilibrium equation (14a) holds almost everywhere in 2 x (0,7);

(C3) The quadruple (u, eq], 7, cv) satisfies the energy inequality

Ll a i iipded
2u( )|* dx + ; qu-uD xds
Q

1 o ,
! /Q (3C(@(m)ea(T) : calT) = dla(T) + - [Va(T)F) dr

T
+ Dx(c;m;0,T) + / / (]D(a)éel Dol + T]o'zQ) dx dt
0 JQ

< /Q gvg dz +/Q (%C(ao)(e(uo) —70) : (e(up) — m0) — dlaw) + g|Va0|p) dz

+ /Q p(T) - up(T) da +/Q,0UO ~1p (0) dz

T
+ / / <(C(0z)eel : e(dip) + D(a)ée : e(dn) + f - (4 — aD)) da dt.
0 Ja
(C4) The quadruple (u, eq, 7, o) satisfies the damage inequality

T
1 . .
/ / ¢ ()p — Kk|Va|P?Va - Vo — i(ap—a)(cl(oz)eel :eel — navp da dt
0 JQ

T
S/Q¢(04(T))—¢(ao)—;|Va(T)|p+;|Vag|pdx—/O /Qndexdt,

for all p € W1P(Q) with p(x) < 0 forae. x € Q.

21

The main result of the paper consists in showing existence of weak solutions to (14)—(16). Let us

summarize the assumption on the data of the model:

C:R = Lgym (ngxn’f) continously differentiable, positive semidefinite, nondecreasing,
D(-) =Dy + xC(-),Dy positive definite, x > 0,

¢ : R — R continuously differentiable, nondecreasing,

oy - R = R continuously differentiable, positive, and nondecreasing,,

c'(0) =0, ¢'(0)>0,

neL>®Q), n>n >0 ae.,

ke L*(), K>k >0 ae.,

(22a)
(22b)
(22¢)
(22d)
(22¢)
(22f)
(229)



p LX), p>po>0 ae. (22h)

where x > 0 is a constant denoting a relaxation time. The structural assumption (22b) is instrumental in
making our existence theory amenable. It arises naturally by assuming C(-) and D(-) to be pure second-order
polynomials of the damage variable o, namely C(a) = o>Cs (recall (22¢)) and D(a) = Dy + o’Ds. By
assuming the two tensors Co and D5 to be spherical, namely Cy = coly and Dy = doly for some co, do > 0
where I is the identity 4-tensor, one can define x = da/c5 in order to get (22b). Assumption (22e) ensures
that o stays non-negative during the evolution even if the constraint o > 0 is not explicitly included in the
problem, see Remark 2.4 below.

Theorem 2.2 (Existence). Under assumptions (20) on initial conditions and loading and (22) on data
there exists a weak solution to (14)—(16) in the sense of Definition 2.1. Moreover, this solution has the addi-
tional regularity (u, eq, ™) € W1(0,T; BD(;RY)) x W1 (0, T; L?(£; ngﬁg)) x W0, T; My (QU
FD; RdXd))

dev

The proof of Theorem 2.2 is postponed to Section 6, where we present a conceptually implementable,
numerically stable, and convergent numerical algorithm. Instead, we conclude this section with some final
remarks.

Remark 2.3 (Body and surface loads). As pointed out in [6, Introduction], for quasistatic evolution in
perfect plasticity one has to impose a compatibility condition between body and surface loads, namely a
safe load to ensure that the body is not in a free flow. In the dynamic case, under the assumption of null
surface loads, this condition can be weaken for what concerns body loads; see, e.g., [36].

Remark 2.4 (Cohesive damage assumption). We will not include in the model reaction forces to the con-
straint 0 < o < 1. This would be encoded by rewriting (14c) as

. 1
o¢(a) + §(C/(Oé)€e1 Dol +pr 3 ¢ (@) + div (k|VaP?Va)  where pg € Nigy(a);

here Njg1j(-) denote the normal cone and py is a “reaction pressure” to the constraints 0 < o < 1. We

point out that the presence of this additional term in the damage flow rule would cause a loss of regularity
for the damage variable. In order to avoid such problem we will rather enforce the constraint 0 < o < 1 by
exploiting the irreversibility of damage, and by restricting our analysis to the situation in which the damage
is cohesive.

Remark 2.5 (Regularity of I'). We remark that the C?-regularity of I" is needed in order to apply [37,
Proposition 2.5], and define a duality between stresses and plastic strains. For d = 2, owing to the results
in [30], it is also possible to analyze the setting in which I" is Lipschitz. The same strategy can not be applied
for d = 3, for it would require div o € L3(12), whereas here we can only achieve div o € L%(Q).

Remark 2.6 (The role of the term 7cv). The term nc in (14¢) guarantees strong convergence of the damage-
interpolants in the time-discretization scheme to the limit damage variable. This, in turn, is a key point
to ensure strong convergence of the elastic stresses, which is fundamental for the proof of the damage
inequality in condition (C4). From a modeling point of view, this might be interpreted as some additional
dissipation related with the speed of the damaging process contributing to the heat production, possibly
leading to an increase of temperature. The microscopical idea behind it is that faster mechanical processes
cause higher heat production and therefore higher dissipation.



Remark 2.7 (Phase-field fracture). Our cohesive damage with C'(0) = 0 has the drawback that, while «
approaches zero, the driving force needed for its evolution rises to infinity. This model is anyhow used in
the phase-field approximation of fracture.

£/ep)’+a? €
)= /Q %w(u)zemw Ge(y-(1-0)*+ 5IVal?) do (23)

crack surface density

with with G, denoting the energy of fracture and with € controlling a “characteristic” width of the phase-field
fracture zone(s). The physical dimension of £g as well as of € is m (meters) while the physical dimension of
G. is J/m?. In the model (5), it means C(a) = (¢2/e2+a?)C; and ¢(a) = —Gc(1—a)?/(2¢) while k = €
and p = 2. This is known as the so-called Ambrosio-Tortorelli functional. Its motivation came from the static
case, where this approximation was proposed by Ambrosio and Tortorelli [3,4] and the asymptotic analysis
for ¢ — 0 was rigorously proved first for the scalar-valued case. The generalization for the vectorial case is
due to Focardi [28]. Later, it was extended to the evolution situation, namely for a rate-independent cohesive
damage, in [33], see also [11, 12, 14,38,41] where inertial forces are incorporated in the description. Note
however that plasticity was not involved in all these references. Some modifications have been addressed
in [13], see also [46] for various other models, and [17,29, 31, 35] for the linearized and cohesive-fracture
settings.

Remark 2.8 (Ductile damage/fracture). A combination of damage/fracture with plasticity is sometimes
denoted by the adjective “ductile”, in contrast to “brittle”, if plasticity is not considered. There are various
scenarios of combination of plastification processes with damage, that can model various phenomena in
fracture mechanics. Here, we address the case of damage-dependent elastic response and the yield stress.

Remark 2.9 (Influence of damage on the energy equality). We point out that, in the absence of damage,
energy conservation could be recovered. Indeed, it would be possible to prove the energy equality, which
would then ensure the validity of the flow rule (14b) as well. A detailed analysis of an analogous albeit
quasistationary case has been performed in [22, Section 6] in the quasistatic framework. An adaptation of
the argument yields the analogous statements in the dynamic setting.

3 Some formal calculus first

We first highlight a formal strategy that will lead to the proof of Theorem 2.2, avoiding (later necessary)
technicalities. In particular, we first derive the energetics of the model by performing some standard tests
of (14) against the time derivatives (u, 7, ). Further a-priori estimates will be obtained by performing a
test of the same equations against higher-order time-derivatives of the maps. Eventually, a direct strong-
convergence argument will be presented.

All the arguments will be eventually made rigorous in Sections 5-6 by means of a time-discretization
procedure, combined with a passage to the limit as the time-step vanishes. The estimates described in
Subsections 3.2-3.3 will be essential to pass to the limit in the time-discrete damage equation.

3.1 Energetics of the model and first estimates

A formal test of the equations/inclusion (14) successively against 1, 7, and ¢ yields
/ (pii1) - 0) + o(0) ¢ (i(1))) dxr = / £ dx+/ o(tr - () AL, (24)
Q
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/ devo(t) : 7(t)dz = / upp (@) 7(1)] da, (24b)
Q Q
memzéwy@wa

— SCaB)dealt) : calt) - k|Va@P2Va(t) Vi(t)) da. (24c)

Integrating (24a) in time, by (16), (24b), and by the definition of e, we obtain
t 1 .
| (B0 + 5e@@ea(v) catt) do— [ [ SCa)iea: cadads

// Qa)ée : eeldxds—l—// oyp(@)|m| dz ds
/( lvo|? + (C(ozg)eel() ee(0 dx—l—//f ud:r:ds—i—//aup ip dH N ds,  (25)
I'p

In view of (15) and (16), an integration in time of (24c¢) yields

/Ot/Q (77&2 + %O.é(C’(Oé)eol : ecl) dx ds +/Q (g|Va(t)|P _ ¢(a(t))) dz :/Q (%Wao‘p, ¢(a0)) da.

(26)

Thus, summing (25) and (26), by (15) we deduce the energy equality (19).

To see the energy-based estimates from (19), here we should use the Gronwall inequality for the term
f - u benefitting from having the kinetic energy on the left-hand side, and the by-part integration of the
Dirichlet loading term. We stress that the last term in (25) can be rigorously defined as in (40). This way,
we can see the estimates

u € L®(0,T; BD(Q;RY) n Wheo(0, T; L*(; RY)), (27a)
ea € H'(0,T; L*(Q; REXD)), (27b)
m € BV (0, T; Mp(Q U Tp; REX?)), (27¢)
o € L0, T; WhP(Q)) n H*(0,T; L*(Q2)). (27d)

Unfortunately, these estimates do not suffice for the convergence analysis as the time step goes to 0. In
particular, in relation (35) later on one needs to handle the term pty, - 1, which is still not integrable under
(27a).

3.2 Higher-order tests

In this subsection we perform an extension of the regularity estimate in Subsection 3.1, relying on the
unidirectionality of the damage evolution, on the fact that o, | (-) is nondecreasing, and on the monotonicity
of C(-) with respect to the Lowner ordering. We introduce the abbreviation

wi=u-+ Xflla Eel = €¢] t+ Xéel7 and w=m+ Xﬁ-v (28)

and observe that, & = (w—u)/x. Hence, the equilibrium equation rewrites as

pL _dive = f+ p2. (29)
X X
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We first argue by testing the plastic flow rule (14b) against 0. We use the (here formal) calculus

o (ODIR(): F = 2 (0 (@) — Gl (@)IF] > 2 (o0 (@) 30)

because ao?,, ()| < 0 when assuming o, , (-) nondecreasing and using & < 0, cf. (18). This formally
yields

/OT/Q P (@Il ddt 4 x [ (@O0 - xup(a0)|F(0)]) d
T
:/U /QaYLD(a)|7'r|d:cdt-l—X/QUYLD(a(t))Hr(t)dx—x/ﬂgym(a(o))|7}(0)|dx

T
S/ /J:z'vdmdt. 3D
0 JQ

Analogously, testing (29) against w and integrating in time, by (15) we deduce

T P T p T
//(|d}|2+0:e(7l})) dwdt—/ / (f‘U.)‘Fd'lb)dxdt—i—//UVF'<72D+X1.L'D)df}Cd_1dt.
0 Jo ‘X 0 JQ X 0 JIp

(32)
By the definition of the tensor DD (see Subsection 2.3), and by (17), we infer that
/ / o: 6 dl’ dt = / / 861 861 + Doéel : éel +o0: Yﬁ) dz dt
T 1
> / —C(a(t))ealt) : eaq(t) dz +/ / Doéel : €a dadt —/ —C(ap)ee1(0) : €1(0) d
Q2 0o Ja Q2
X . . X . . T )
+ / Doéer(t) : ee(t) dz — / Doéer(0) : e (0) dz +/ / o wdzxdt. (33)
2 Ja 2 Ja 0o Ja

Thus, by combining (31), with (32) and (33), we obtain the inequality

//p|w|2da:dt—|— /(C t))ea(t) : ea(t) da
/ /]Doeel eqdzdt + = /Doeel(t) €e1 de—F// YLD(O&)|’/T|d$dt

+y /Q v D)D) dr < 3 /Q C(a0)2a(0) : 2(0) dr
5 [ Doéa(0): a0 o+ x | @y, (00 F0)|do

//f wda:dtJr//ayF (tp + xiip) dH LAt + = //pu w dxdt.
I'p

Let us note that we can use (27a) in order to control % in the last term above. As for initial data, we need
here that é.1(0) € L*(Q;RE%Y) and 7(0) € L*(Q; R%*%), which follows under the provisions of (20).

Eventually, by (19), and (28) this yields the following additional regularity for the displacement, and for the
elastic and plastic strains

uw e W0, T; BD(; RY) N H?(0, T; L?(Q; RY)), (34a)
e € WH(0,T; L2 (Q; M4*?Y), (34b)
€ Who(0,T; Mp(Q U Tp; REXD). (34c)
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3.3 One more estimate for the strong convergence of e.’s

The strong convergence of the elastic strains e is needed for the limit passage in the damage flow rule. The
failure of energy conservation (see Remark 2.9) prevents the usual “limsup-strategy”, but one can estimate
directly the difference between the (presently still unspecified) approximate solution (uy, ) and its limit
(u, 7) punctually as:

/D(ak)(eelk €e1): (€el k—€el) dzdt
Q

/ ~C(ar(T)) (o i (T)—ea(T)): (eos(T) —ea(T)) da
S/Q/Q(D(Oék)(éel,k_éel)+(C(Oék)(€el,k—€el)):(éel’k_éel)dxdt

< /Q ((f—pizky(ak—a)— (D()ea + Clar)en): (Garn—éa)
T oy () (7] - |frk|>) dadt. (35)

The first inequality in (35) is due to the monotonicity of C(-) with respect to the Lowner ordering so that,
due to (17), it holds

gt ( 1 C(ag) (eel,k—eel)I(eel,k—eel))

1. 0
= iakcl(ak)(eel,k_eel):(eel,k_eel) + C(ak)g < (€el,k—€el): (eel,k_eel)>

< C(ak)(eeLk_eel):(éel,k_éel) . (36)

while the second step in (35) is due to the inequality dev o: (7, — 7) > oy, (o) (|7k| — |7]), following
from the plastic flow rule o, , (a)Dir(7x) > dev o, with o from (14a).

By using weak* upper semicontinuity and the uniform convergence o — « one checks that the limit
superior of the right-hand side in (35) can be estimated from above by zero (so that, in fact, the limit does
exist and equals to zero). We refer to Proposition 6.2 for the rigorous implementation of the above argument.

4 Staggered two-step time-discretization scheme

This section is devoted to the solution of a discrete counterpart of the system of equations (14)—(16), and
to the proof of a-priori estimates for the associated piecewise constant, piecewise affine, and piecewise
quadratic in-time interpolants.

Fix n € N, set 7 := T'/n, and consider the equidistant time partition of the interval [0, 7' with step 7.
We define the discrete body-forces by setting f* : f (e1yr (t)dt forall k € {1,...,T/7}. We consider
the following time-discretization scheme:

po*uy — div(C(afY)ed , +D(af1)del ;) = fF, (37a)

O'YLD<O/; I)Dlr(éﬂ-T) > dev((C(a,lﬁ 1) e1T+]D)(ak 1)6ee17-) (37b)
1

AC(0a7) + 5C°(af, o Megy -+ €y 3 6°(af, of 1) + div (5] Vol P72V a]), (37¢)

to be complemented with the boundary conditions

(C(a’;—l) ek, + D(ak 1)56617) =0 on Iy (38a)

13



k|Vak[P2Va¥ - up =0 on T. (38b)
Here, § and 62 denote the first and second order finite-difference operator, that is

k k—1 k k—1 k—2
ur —u ur — 2u +u
oub =7 and §%uF = 6[5u§] == — r
T T

and where the tensor C°(a, &) and the scalar ¢°(«, &) are defined for all o, & € R as

C(a)—C(a) fata
C(a, ) := oa—a faz

C'(a)=C(a) if a=a,

o)—o@
¢° (o, @) = oa—a it a7 a,

d(a)=¢(a) if a=a.

Let us note that, if ¢(-) is affine, then simply ¢°(a¥,a¥~1) = ¢'. Similarly, if C(-) were affine, then
C°(ak, ak=1) = C’. We point out that this case would be in conflict with (22¢) unless C would be indepen-
dent of damage.

4.1 Weak solutions to the time-discretization scheme

In order to define a notion of weak solutions to (37b), we need to preliminary introduce a duality between
stresses and plastic strains. We work along the footsteps of [37] and [22, Subsection 2.3]. We first define
the set

5(Q):={o€ L2(Q;RE) : deve € L®(Q;RYX?) and dive € LQ(Q;Rd)}. (39)

sym dev

By [37, Proposition 2.5 and Corollary 2.6], for every o € ¥(2) there holds

o € L®(Q; R4,

Sym

In addition, we can introduce the trace [ov] € H~'/2(T; R?) (see e.g. [50, Theorem 1.2, Chapter I]) as
(lovp], ) == / dive -y de +/ o:e(y)dx (40)
Q Q

for every 1» € H'(Q; R?). Defining the normal and the tangential part of [ovp] as

lovply :== ([ovp] - vp)vp  and [UVFL% = [ovp] = (lovp] - vp)vp,

by [37, Lemma 2.4] we have that [ovp];r € L>(I'; R?), and
n 1
llovrl, ||L°°(F;Rd) < %HdeVU”Lm(Q;Rng)'

Let 0 € %(Q) and let u € BD(;R?Y) N L2(;RY), with divu € L?*(Q). We define the distribution
[dev o : deve(u)] on Q as

(|devo : deve(u)], p) := /

1
pdive -udx — /
Q d

g@tra-divuda:/a:(u@Vgo)dx 41)
Q

Q

for every ¢ € C2°(2). By [37, Theorem 3.2] it follows that [dev o : dev e(u)] is a bounded Radon measure
on {2, whose variation satisfies

|[dev o : deve(u)]| < ||dev O-HLOO(Q;Rg;(Vd)‘deV e(u)] in Q.

14



Let ITp, (©2) be the set of admissible plastic strains, namely the set of maps 7 € M (QUT'p; RdXd) such

that there exist u € BD(;R?) N L2(4RY), e € L2(QRE:Y), and w € WH2(Q;R?) with (Seve ) €
4/ (w). Note that the additive decomposition e(u) = e + 7 implies that divu € L?(Q).

It is possible to define a duality between elements of ¥(£2) and IIr,(€2). To be precise, given m €
Ir,(Q), and o € %(), we fix (u, e, w) such that (u,e,7) € o (w), with u € L?(;R?), and we define

the measure [dev o : 7] € My(Q U I'p; RIX?) as

dev

[devo :deve(u)] —devo : deve in
[devo : 7] :=

[ovplt - (w — u)HE! onI'p,
so that
/ pd[devo : 7| = / pd[devo : deve(u)] — / pdevo: devedx +/ olov]t - (w —u) dHI!
QUIp Q Q I'p

for every ¢ € C(£). Arguing as in [22, Section 2], one can prove that the definition of [dev o : 7] is
independent of the choice of (u, e, w), and that if dev o € C(Q;R%*?) and ¢ € C(Q), then

dev

/ gpd[deva:ﬂ']—/ pdevo: dm.
QuUT, QUT,

We are now in a position to state the definition of weak solutions to the time-discretization scheme.

Definition 4.1 (Weak discrete solutions). For every k € {1,...,T/7}, a quadruple (u¥, e 7% ak) is

T el T T
a weak solution to (37) if (uf,e¥ 7F) € o7 (uf ), of € Wl’p(Q) N L>(9) satisfies 0 < a’ﬁ < 1, the
quadruple solves (37¢) and (38), property (37a) holds almost everywhere, and the following discrete flow-

rule is fulfilled

[devol : 6nk](QUT,) = R(ah ™, onF),  with of :=C(ah el . + Dt )del . (42)

Remark 4.2 (The discrete flow-rule). A crucial difference with respect to the results in [6, Proposition 3.3]
is the fact that condition (42) is much weaker than the differential inclusion (37b). This is due to a key
peculiarity of our model, for we consider a viscous contribution involving only the elastic strain, but we still
allow for perfect plasticity. In fact, in our setting (37b) is only formal, as for every 7 and k, the map §7*
is a bounded Radon measure. In particular the quantity o, (a*~!)Dir(67%) does not have a pointwise
meaning. As customary in the setting of perfect plasticity, the dlscrete flow-rule is thus only recovered in a
weaker form.

4.2 Existence of weak solutions

Let us start by specifying the discretization of the boundary Dirichlet data as system

ul = up(0), u;lT = up(0) — 7Up(0), uk_:=wup(kr) foreveryke {1,...,T/7}.

As for initial data, we recall (20) and prescribe

0._ 0._ 0._ 0 _
Uy = Ug, T =T, Q= Qp, €q ., = e(up) — mo.

In order to reproduce the higher-order tests of Subsection 3.2 at the discrete level we need to specify addi-
tionally the following

url =g — v, w1 i=m — 770, orl:=al, e;}T = e(up) — 7(e(vg) — o).
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In particular, the last condition in (20c) ensures that the discrete flow rule (37b) holds at level £ = 0 as well.

In order to check for the solvability of the discrete system (37) we proceed in two steps. For given
o=l e WhP(Q) N L°(Q) with 0 < of~1 < 1 we look for the triple (u?, given by the unique
solution to the minimum problem

]6?17" T)

: Yooy, oo Lo ey k—1y L otk
mln{ /Q <2C(aT Je:e+ 2T]D)(ozT )e—eq,): (e eelT) JAE )
2 2||u—2uk Ly uf_2||%2(Q;Rd)—|—fR(oz,lﬁ_1,7T—7Tf_1) : (u,e,m) E&Q{(ugj)}. (43)

where &7 (-) is defined in (3). The existence and uniqueness of solutions to (43) is ensured by Lemma 4.3
below.

Once (u”, e _, mF) are found, we determine o by solving

el, 7
_ k-1
min { / (TC(aaT) + E|Vo¢|p
Q T p
a(x)
[ s @) e ) (o) — (5,08 @) ds) du (44)
0
aeWh(Q), 0<a < 1} (45)

in Lemma 4.5 below.

Lemma 4.3 (Existence of time-discrete displacements and strains). Let af=1 € WHP(Q) N L>(Q), with
0 < a1 <1, be given. Then, there exists a unique triple (u¥, ¥, . 7%) € o (uf; ) solving (43).

T Zel, T T

Proof. The result follows by compactness, lower-semicontinuity, and by Korn’s inequality (2). The unique-
ness of the solution is a consequence of the strict convexity of the functional, and the fact that .o/ (U]S,T) is
affine. Ol

Minimizers of (43) satisfy the following first order optimality conditions.

Proposition 4.4 (Time-discrete Euler-Lagrange equations for displacement and strains). Let o1 € WP(Q)N
L>®(Q) bea solutlon to (37¢) satisfying 0 < of=1 < 1. Let (u¥, ¥, _ 7F) be the minimizing triple of (43).

Uz, el'r’ T
Then, (uF, e solves (37a) and (42), div o¥ € L2(Q;RY), and [oFvp] = 0 on Ty.

T el‘r’ T)

Proof. We omit the proof of (37a), as it follows closely the argument in [6, Proposition 3.3]. The proof of
(42) is postponed to Corollary 5.3. O

We conclude this subsection by showing existence of solutions to (37c).

Lemma 4.5 (Existence of admissible time-discrete damage variables) Letk € {1,...,T/7}, and assume
that =1 € WHP(Q) N L>®(Q), with 0 < of=1 < 1, is given. Let (uF, 5177 ) be the minimizing triple of

(43). Then there exists o € WP(Q) N L>(Q) solving (37¢), and satisfying 0 < o < 1.
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Proof. We preliminary observe that aﬁ solves (37c¢) if and only if it minimizes the functional in (45). The
existence of a minimizer o € W1P(Q) follows by the continuity of ¢(+) and C(-), by lower-semicontinuity,
and by the Dominated Convergence Theorem. The fact that o (x) < 1 for every x € § is a consequence of
the assumption that 0 < a*~! < 1in Q, and of the constraint a® < a*~!. The constraint 0 < o¥ instead
is satisfied due to the assumptions on C(-) and ¢(-) (see Subsections 2.3 and 2.5), and owing to a truncation
argument. 0

5 A-priori energy estimates

In order to pass to the limit in the discrete scheme as the fineness 7 of the partition goes to 0 we establish
a few a-priori estimates on time interpolants between the quadruple identified via the time-discretization
scheme of Section 4. We first rewrite [22, Proposition 2.2] in our framework.

Lemma 5.1 (Integration by parts). Let ¢ € %(Q), up € HY(4RY), and (u,eq, ) € o (up) with o/ (-)
from (3), withu € L*(Q; R?). Assume that [ovp] = 0 on Tx. Then

[deva:w](QUFD)Jr/QU:(eele(uD))dmz/Qdiva-(uuD)da:.

Note that the above lemma serves as definition of [dev o : 7](2 U T'p), which is a priori not defined for
devo € L2(Q;RYX%) and m € M,(Q U Tp; REX),

dev
We are now in a position of providing, in the following lemmas and corollary, further optimality condi-

tions for triples (u¥, ¥, %) solving (43).

Lemma 5.2 (Discrete Euler-Lagrange equations for the plastic strain). Let (uk ek 7rk) be the minimizing

7 Yel,r) T
triple of (43), and let alﬁ be the quantity defined in (42). Then, there holds
R(aF L 76nF + 1) — R(@F7L, 767F) — [devo® - 7](QUTL) >0 (46)
forevery m € Mp(Q U 'p; Rg:vd) such that there exist u € BD(Q;RY) N L2(;RY), and e € L?($; ngxn‘f)
with (u, e, m) € <7(0).

Proof. Considering variations of the form (u?, e¥ ) + \(u, e, 7) for A > 0 and (u, e, 7) € <7(0) in (43),

Ty T
by the convexity of R in its second variable we obtain

1
A
which yields

(fR(a}ﬁ*l, Tomk 4+ Am) — fR(a’ﬁfl,T&rf)) < R(aFL r6mk 4 1) — R(FL, 7o7h),

/ ok edx +/ pd%uf - udz + R(aFL, ront 4 1) — R(aFL, ronk) — / fFoudz >0, 47
Q Q Q

for every u € BD(Q;R?) N L2(Q;RY), e € L2(Q; REXD), and 7 € My (QUTp; RE?) such that (u, e, ) €

sym

<7(0). In view of Lemma 5.1, and by (37a) the previous inequality implies (46). O

Corollary 5.3 (Discrete flow-rule). Let (u¥, 351,77 %) be the minimizing triple of (43), let o be the solution

to (37c) provided by Lemma 4.5, and let U’T’“ be the quantity defined in (42). Then, (uﬁ, efLT, 77’7?, o/ﬁ) solve
the discrete flow-rule (42).

Proof. The assert follows by choosing 7 = 707¥, and m = —767 in (46). O

17



Lemma 54. For k € {1,...T/7}, let (uF,e
quantity defined in (42). Then, there holds

be the minimizing triple of (43), and let 0' be the

T el T 7')

R(aE 7678 + 1) + R(abE72 7671 — 1) — R(aF71, 767
— R(aF72 767k 1) — r[dev doF : 7 (QUTL) >0
forevery m € Mp(Q U 'p; ]Rg:vd) such that there exist u € BD(Q;RY) N L2(Q; RY), and e € L($; Rfyxn‘f)
with (u,e, ) € 27(0).

Proof. Considering variations of the form (uf=1 ek=1 7k=1) — \(u, e, ) for A > 0 and (u, e, 7) € <7 (0)
in (43) at level ¢ — 1, the convexity of R in its second variable yields

R(ah2 7onFt— 1) — R(aF~L romt—L) — / (Uf_l ce+ pdlulTl oy — fEL u) dz >0, (48)
Q

for every u € BD(Q;RY) N L2(Q; RY), e € L2(Q; RPX?), and 7 € My (QUTp; RE*Y) such that (u, e, 1) €

Sym dev

<7 (0). The assert follows by summing (47) and (48), and by applying Lemma 5.1, and (37a). ]

Let now u, and %, be the backward- and forward- piecewise constant in-time interpolants associated to
the maps u*, namely

w (0) :=wug, wu,(t):=ur"1 foreveryte [(k— 1) kr), ke{l,...,T/7}, (49)
and
i, (0) := ug, ,(t):=ur foreverytc ((k—1)7 k7], ke {l,...,T/r}. (50)

Denote by . the associated piecewise affine in-time interpolant, that is

ur(0) :=wug, ur(t):= (t_(lj_i_lmulﬁ + (1 - wyﬁ_

Y (51)

forevery t € ((k — 1)1, k7], k € {1,...,T/7}, and let finally u, be the piecewise quadratic interpolant
satisfying % (k7) = u¥, and

{AIET(t) = 6% foreveryt e ((k—1)7, k7], ke {1,...,T/7}.

Let a,, 7, el 7, Or, 7, €7, and o, be defined analogously. The following proposition provides a first
uniform estimate for the above quantities.

Proposition 5.5 (Discrete energy inequality). Under assumptions (20), the following energy inequality holds
true

Pis 2 T (T = r . -
§|uT(T)| dz + 3 plur|*deds + pur(-—7) - Up,rdeds
Q 0 JQ T Q

1 _ _ K »
+ Dl 730, T) + /Q (5C(a, (T))6w (1) : €0 (T) — 6o (T)) dz + *|Var(T) ) da

/ / eelr t el dads + / né (T)? dz
Q

< / ( vg + ptr (T) - Up - (1) + puo - Su}) T) dz
0 \2 ’

+/ 1(C(ch)(e(uo) —70) : (e(ug) —mo) — d(ap) do + g|VOzo|p dz
/ / eelT : (UD,T) + D(QT)éel,’r : e({LD7T) + fTT . (T.LT - 1.'LD,T)> dl’ dS. (52)
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Proof. Fixk € {1,...,T/7}. Testing (37c) against 6a*, we deduce the equality
1
[ ntoekda s [ Seo(ak, ok tsakel e do
Q Q
- / ( — ¢°(ak o sak 4 Vol P2valk . V(ao/j)) dz = 0. (53)
Q
Taking 6u® — (5u’1§77 as test function in (37a), we have

/Qp62u’7f - (ouk — (5ul,§,7.) dz — /Qdiv ok (ouk — (5u,’§77) dz = /fo - (ouk — (5ul,§,7.) dz,
which by Lemma 5.1, and by the fact that [0¥11.] = 0 on T'y (see Proposition 4.4), yields

/ p&2ul - (Sul — (5u,’§77) dz 4 [devo® : 67X (QUT) + / ok . (565177_ - e(éugﬁ)) dz
Q Q
= [ g k= s o

In view of Corollary 5.3, we obtain

[ o5k Bk = 5l ) do o Rk )+ [ ok 9k, — el ) da
Q Q

= / fr.(suk — 5u§’7) dz. (54)
Q
Forn € {1,...,T/7}, a discrete integration by parts in time yields
= = 1 1 &
k k k k k— n k
TZ p62u7 ' 5u'r = Zp((6u7)2 - 6““7' : 5“7 1) = §p(6u7)2 - §p’l)g + ? Zp(62u7>2 (55)
k=1 k=1 k=1
a.e. on 2. Analogously, we deduce that
—TZp(;Qu’ﬁ . 5u]]§,7 = TZp(;ulﬁ_l : 52u’,§7T — pouy - dug . — pvo - 5ug77 (56)

k=1 k=1

a.e. on {2. Additionally, by the monotonicity of C in the Léwner ordering, and (22b), we have

n n n
TZ/QUE : (58’;1’7_ dz = TZ /Q C(af_l)elglﬁ : 565177 dz + TZ/QD(ozﬁ_l)(Se’gl’T : 56’;177_ dz
k=1 k=1 k=1

> [ 5ty e do = [ SC(a0)(elun) =) s elun) = ) da

n 1 n
- TZ/ ~8[C(ak))ek ek _da+ TZ/ D(ak)dek, sk _dz, (57)
= /a2 ’ ’ k=174 7 ’
and .
52 / (Co(ar, a7 1)dar = O[C(aR)])  €dyr : el dz = 0. (58)
k=174
=0
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Thus, multiplying (53) and (54) by 7, and summing for k = 1,...,7T/7, in view of (55), (56), (57), and
(58) we deduce

P 2 T T 29 T . 2
Zlu-(T))*dz + = plur|*dedt + pUr(-—7) - Up,dadt
Q2 2Jo Jo 7 Jo

T/

1
+7 Zﬁ(affl, omk) + 2 /Q C(ar(T))ee(T) : ée(T)dx
k=1

T
b [ [ D@ éasdedes [ (nio(TP - olar(@) + £ Var(T)P) ds
0 JQ Q p
P2 y . 0
< / ( vg + ptr(T) - tp - (T) + pvo - dug T) dz
Q\2 ’

+ /Q (%(C(ao)(e(uo) —m0) : (e(uo) — mo) — blag) + gwao\z’) do

T
—l—/ / C(a,)éel,r : e(tp,;) dzds
0 JQ
T —
+/ / D(e, )éelr : €(tpr) + fr- (Ur — Up ) dzds. (59)
0 JQ

Additionally, recalling definition (6), and observing that 7 jumps exactly only in the points 7k, k €
{1,...,T/7}, by the monotonicity of the maps «, (see Subsection 2.4), we have

T/t
Dx(ar;7;0,T) = TZR(aff_l,é?rf). (60)
k=1
This concludes the proof of the energy inequality (52) and of the proposition. O

Owing to the previous discrete energy inequality, we are now in a position to deduce some first a-priori
estimates for the piecewise affine interpolants.

Proposition 5.6 (A-priori estimates). Under assumptions (20), for 7 small enough there exists a constant
C, dependent only on the initial conditions, on f, and on uyp, such that
HO‘THHl(QT;LQ(Q)) + ||a7||L°°(07T;W1’P(Q)) + ”eelﬂ'”Hl(o,T;LZ(Q;ngXI;f))

+ HUTHWLOO(O,T;LQ(Q;Rd)) + ||uT||BV(O,T;BD(Q;Rd)) + HWT||BV(0,T;M5(QUFD'R3§V[1))

)

+ llarllzoe o, x) + @l Lo 01y %) + 1€t ll oo (0. 7, p2(rEXE)) < C- (61)

Sym

Proof. The assert follows by Proposition 5.5, by the regularity of the applied force f and of the boundary
datum uyp,, and by applying Holder’s and discrete Gronwall’s inequalities, for 7 small enough. ]

We proceed by performing at the discrete level the higher-order test with the strategy formally sketched
in Subsection 3.2.

Proposition 5.7 (Second a-priori estimates). Under assumptions (20), for T small enough there exists a
constant C, dependent only on the initial conditions, on f, and on uy, such that

el 20,52 ey + rllrco o0 mD(0;Ra)
+ [~ |

<C.

W10 (0,5, (QUTp;REX 4)) + ||eel,7' |W1’°°(O,T;L2(Q;Rgf,§ )
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Proof. Fix k € {1,...,T/7}, and consider the map w* := u* + xdu¥, where xy > 0 is the constant
introduced in Subsection 2.3. Since §?u* = (dw” — du¥)/x, equation (37a) rewrites as

p(&;’:) _divek = f* +p(5§£). (62)

Now, testing (62) against dw? — (Jul ot xO2uk +)» by Lemma 5.1 we deduce the estimate

i/p|(5wk|2dzv+ [dev ot : (57 + o e (QUTY)
b [ ks el el — el ) = xe(dPul ) do
= [ gk Gk =il = a8l o+ [ s (suk = 6 — 0%l s
+ >1< /Q pdwk - (6uD -+ x0%ul ) dz. (63)
In view of Lemma 5.1 we have

[deva® : (67F + x0*7mE)(QUTY) = [deva? : 67F](QUTY) + x[dev o : 27F)(QUTY).

Now, Corollary 5.3 yields
[dev o+ 677](QUTp) = R(as ™", d7f), (64)

whereas Lemma 5.4 entails

x[deva® : 8278 (QUTY) = xd{[dev ¥ : 67¥](QUTY)} — x[devdok : onF~ L (QUTY)
> x0{[deva? : 67F)(QUTL)} + R(aFL, 67F) + R(aF 72, 678 71) — R(aF~L, 67F 4 67k~
> x{[devor : 67¥(QUTY)} + R(aE™L 678) 4 R(FL, o7k Y) — R(aF1, 078 4 o7k
> x0{[devo¥ : 6xF|(QUT,)}, (65)

where the second-to-last step follows by the fact that o, , is nondecreasing (see Subsection 2.4), and the
last step is a consequence of the triangle inequality. By combining (63), (64), and (65), we obtain

i/ plow?|? dz 4 xd{[dev ¥ : 67¥(QUTD)} + R(ak™L, 67F)
Q
b [ ok @l el - eldub )~ xel@ul ) da
Q
1
< [ g ouk = aub b do k< [ phud(ouk - ul - a2l ) s
Q ’ ’ X Ja ’
1
+X/ pdwk - (5UDT+X52UD ) dz. (66)
Q

Multiplying (66) by 7, summing for k = 1,...,n, withn € {1,...,T/7}, and using again (64) with k = n,
we infer that

Z/ plowk 2 dz + xR(a? L, 677) — xR(a; L, o70)

+7 ZfR( k=1 ok +7’Z/ 5eelT+X(5 eelT)dx
k=1
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<7'Z/fk (dw” _5UD7— X(52uDT)dx—|— Z/péu (6w _5UD7- Xézum.) T

+ - Z/ pdwk - 6uDT—|—x52uDT dx+72/ﬂa’ﬁ: (e(ouk T)+xe(52uDT))dx. (67)
k=1

By (22b),
T Z/ 66'31 T X6 eel ’T de =7 Z/ C el,T + X(selgl,r) : (5e§l,fr + X(SQelgl,T) dz

+ TZ/ ID)oée 5%17 + x6%e eh)dx.

Thus, arguing as in (57), we have

TZ/ 56617’ X5 eelT) dr > / (C ( Cel,r Xdeelr) : ( Cel,r X(;eelr) da
- /Q 5 Clan)(e(uo) =m0 + x(e(vo) = 7o) : (e(uo) — mo + x(e(vo) — 7o) dw
- k. n X .
-l—/ (TZD05ee1,T : e17 + ]D)oée :oegy , dr — gDoe(vo) : e(’uo)) dz. (68)
Q0 k=1
Eventually, by (67) and (68), and by recalling (60), for every t = kT,
I . . . .
// P’U}T|2 dzds + X:R(dr(t)’ﬂ—‘r(t)) + Dﬂ%(arﬂrr;o)t) + X/ ]D)Oeel,r(t) : eel,r(t) dz
X JoJa 2 Ja
t
+ [ € Eorlt) + a0 s Cor )+ xear )b+ [ [ Dot i dads
0
1 . .
< / ( C(a)(e(ug)—mo+xe(vo)—xmo):(e(ug)—mo+xe(vo) —xm0) + %Doe(vo):e(vo))dx
//fT Wy — U XUDT )daxds + — //uT Wy — U XuDT)da:ds
= / / iy + (lip s+ Xiinr) dods + R(ag, o)

// eel r+ D( )éel,T) : (e(iLD,T) + Xe(iD,T))) dz ds.

The assert follows by Holder’s inequality, Proposition 5.6, and the assumptions on o, (see Subsection
2.4). Ol

6 Convergence and proof of Theorem 2.2

Proposition 6.1 (Compactness). Under the assumptions of Theorem 2.2, there exist , eg), w, and u such
that (u(t),eq(t), w(t)) € o/ (up(t)) for every t € [0,T] (see (3)), the initial conditions (16) are satisfied,
and up to the extraction of a (non-relabeled) subsequence, there holds

ar — a  weakly*in H'(0,T; L*(2)) N L>=(0, T; WP (Q)), (69a)
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Celr — € weakly* in W1°°(0,T; L?(Q; RE%D)), (69b)

sym
T =  weakly* in W (0,T; My(Q U Tp; RIXD), (69¢)
u; —u  weakly* in WH(0,T; BD(Q; R%)) N HY(0, T; L*(; RY)), (69d)
a. =« and a; — o weakly*in L>((0,T) x Q), (69¢)
Cel,r — €al  weakly*in L°(0, T3 L*(;RE:Y)), (69f)
Ur — u  weakly in H*(0,T; L*(Q;RY)). (69g2)

Proof. Properties (692)—(69d) are a consequence of Propositions 5.6 and 5.7. The admissibility condition
(C1) (see Definition 2.1) follows by the same argument as in [22, Lemma 2.1]. Additionally, by Proposition
5.6 there holds

u; — u  weakly* in WHo°(0,T; L*(Q; RY)), (70)
and there exist ¢, & € L>=((0,T) x ), and é € L>=(0, T; L*($; ngxrff)) such that

ar — & and o, - & weakly*in L*°((0,7) x Q)

and
€el,r — € weakly* in L>°(0, T L2(Q; Rdxd))

sym

Additionally by Proposition 5.7 there exists a map @& € H?(0, T; L?(£2; R?)) such that, up to the extraction
of a (non-relabeled) subsequence,

U, — 4 weakly in H2(0,T; L*(Q; R%)). (71)

By the compact embeddings of W1 (0, T'; L2(€2; R%)) and H?(0, T; L*(Q; RY)) into C (0, T; L2(Q; RY)),
we deduce
ur(t) = u(t) weakly in L2(Q;R%), (72)

and
U, (t) — a(t) weakly in L?(Q;R?), (73)

for every t € [0, 7. To complete the proof of (69) , it remains to show that & = & = «, é = e, and 4 = u.
We proceed by showing this last equality; the proof of the other two identities is analogous. Fix k €
{1,...,T/7},and t € ((k—1)7, k7]. Then, using the fact that

157(15) _ (t— (5_1)7') 5u§ + <1 _ (t— (k_1)7)>5uk;—1

T
T

for every t € ((k—1)7, k7], we have

T .
[ i) = ) gt = Z / IRICEOREAC

2 o N
_722/ (1— @ (1)2dt
—-1)r

-

= = > 70wkl o ey < CTE (T4
where the last inequality follows by Proposition 5.7. The assert follows then by combining (72), (73), and
(74). Ol

Ur — Ur(-—7T)
T

3 k=1
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Proposition 6.2 (Strong convergence of the elastic strains). Let eq) be the map identified in Proposition 6.1.
Under the assumptions of Theorem 2.2, there holds

Celr — € strongly in H'(0,T; L*(%; ngxng)% (75)
and
€el,r (t) = eal(t) strongly in LZ(Q;Rg;H? ) forae.tel0,T]. (76)

Proof. Fork € {1,...,T/7}, denote by deq (kT) the quantity

dea(kT) = ca(k7) - eel((k—l)T)a

T

and by €], e, the forward-piecewise constant and the affine interpolants between the values {e(k7)}x—1,.. 1/+
(see (49) and (51)). Let ou(kT), om(k7), u”™, u™, @7, and 7" be defined analogously. Note that here we can-
not directly use the values at time ¢, for this would prevent relation (81) to hold. Here, the pointwise value
of 7 is simply that of its right-continuous representative.

Fix k € {1,...,T/7}. We proceed by testing the time-discrete equilibrium equation (37a) by du” —
du(kT). On the one hand, by Lemma 5.1, we have

/ P32l - (5uF — Su(kr)) da + [dev ok : (57 — 6x(k7)))(Q U Tp)
Q
-I—/ ok (565177_ — deel(kT)) dx — / fr(6uf — Su(kr)) dz = 0. 77)
Q Q
On the other hand, Lemma 5.2 yields

[dev ok : (6% — 6m(kT))](QUTD) > R(ak™L, 67F) — R(F1, 67(kT)). (78)

By combining (77) and (78), we obtain

/ o 1 (0egy, — be(kr)) de < R(af ™, om(kT)) — R(af™1, 6mF) + / (fF = pb2ur) - (6uf — Su(kT)) da.
Q Q
(79)

In view of the definition of o, there holds
| ok ek, = eathr)) do = [ C0E ) (el — calhr) s (e = Gealir) da
+ /Q D(ak 1) (ed; , — Sea(kT)): (e —bea (k7)) + D(ak ™) dea (k):(degy —bea (k7)) dz
+ | Clatkr)ealhr) : (3e, bealkr)) da
~ | (i) — Sk ealhr) : (5, = dealir) do (30)

Let now n € {1,...,T/7}. By the monotonicity of C in the Léwner order, arguing as in the proof of (57),
we deduce

T Z/ (C(a’ﬁ_l)(elglﬁ — e (k1)) : ((5651,7_ — deq(kT)) dx
k=1"9
> /Q %C(af)(e&i — e (nT)) : (eQLT —deg(nT)) de. (81)
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Multiplying (79) by 7, and summing for k = 1,...,7T/7, in view of (80) and (81), we obtain the estimate

/Q 1C(QT(T))(éeLT(T) —ea(T)) : (€ar(T) —eq(T)) dx

/ / )(€el,r — €8) : (€er,r — €4) dards

T/t

<7-ZR k=1 6w (kT)) — Dy(or; 75 0,T) + // —4")dzds

/ / Jed : (éelr — € dxds—/ /(c : (Corr — &T) dards
+ /O /Q(C(of) —C(a,))e] : (éerr — €7)) dads.

By Proposition 6.1 we infer that

T
timsup [ [ D@ Gar = éa) Car — Ea)dads
0 JQ

T—0

T T .
+nmsup{ | Rapi)as = Datarims0. 1)+ [ (Fi) - i i) dads

T—0

// (Eelr — € dxds—//(c : (éelr — €5y) dads
w [ [ €@ - e Gar - i) dxds}.

Since u € H?(0,T; L*(Q;RY)) and e € W12°(0, T; L2(2; REXD)), it follows that

sym
u” — u  strongly in L2((0,T) x Q;RY), (82)

and
el — €q strongly in L*((0,T) x € R‘Si;n‘f) (83)

Additionally, by the definition of the affine interpolants,

én — éa  strongly in L((0,7) x Q;REXD), (84)
77 — 7 strongly in L(0, T; M, (2 UFD,Rg:Vd)). (85)

By (69a) and by the Aubin-Lions Lemma, up to the extraction of a (non-relabeled) subsequence,
a; — o strongly in C([0,T] x ). (86)
Since o € HY(0,T; L?(2)) N L>(0,T; WhP(£2)),
a", a” — a strongly in L*((0,T) x Q). (87)

Thus, by the Dominated Convergence Theorem, we deduce that

C(a")el, — C(a)eq strongly in L?((0,T) x ; ngxrg) (88)
(C(a@™) — C(a,))eq — 0 strongly in L*((0,T) x €; Rg;rff) (89)
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D(a, )él — D(a)éq  strongly in L2((0,T) x Q; RIX%). (90)

Sym
Finally, by the assumptions on f, we have
fr — f strongly in L2((0,T) x Q; R%). o1
By combining (82)—(91) we conclude that
lim sup/ / J(€elr — €el) : (€elr — €e1) dz ds

T—0

< lim sup/ R(@r,77)ds — hm mf Dy (ar;mr;0,T). (92)

T—0

Arguing as in [22, Theorem 7.1], since 7 € W (0, T; M(Q U T'p; ]Rfilexvd)) we deduce the uniform bound

T/t

T T
/O 15 g roritzdy = ™ 3 1077l quoroimtcty < /0 #lly gty ds < . 93)
k=1

Hence, by (93) and by the continuity and monotonicity of o, (-) (see Subsection 2.4), there holds

T
limsup/ R(@r,77)ds < hmsup/ R(ar,77)ds

7—0 7—0

< hr?j(l)lp {/0 R(a,77)ds + ‘ /OT(R(af,frT) — R(a, 7)) ds)}

T T
< limsup/ R(a,77)ds + Climsup |loy, (ar)=0yin (@)l Lo 0m)x0) = / R(a,7)ds,  (94)
0 0

T—0 T—0

where the last step follows by (85).
To complete the proof of (75), it remains to show that

Dx(c;m;0,T) < lign_}i(r)lf Dx(cr;mr;0,T). 95)
LetO <tyg <ty <---<t, <T. By the definition of Dy, we have
T/t T/t
Dy(or;m7:0,T) > Y Rlar(ty), mr(ty) — mr(ti1)) = Y R(alty), mr(t;) — wr(tj-1))
= =
-7 Z ||UYLD (aT OyLp (a( ))||L°°(Q)H7TTHL00(0 TMp (QUDp;REX D)) -

Now, by (69¢) and (86),
T/t

71—%7—2 ||UYLD (aT(tj)) - UYLD( ( ))||L°0(Q)||7TT||Loo(o T;Mp, (QUD;REX Yy = 0.

dev

Thus, by (69¢),
T/t T/t
> limi ; > .
lim inf Dy (r; 7750, T) hgngﬂa(tﬂ T (t) = (tj 1) Zsz ), m(t)—m(tj_1))

T—0

By the arbitrariness of the partition, we deduce (95), which in turn yields (75).
Property (76) follows arguing exactly as in the proof of (74). O
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Let us now conclude the proof of Theorem 2.2.

Proof of Theorem 2.2. Let (u, eq, 7, o) be the limit quadruple identified in Proposition 6.1. By Proposi-
tion 6.1 we already know that condition (C1) in Definition 2.1 is fulfilled. For convenience of the reader we
subdivide the proof of the remaining conditions into three steps.

Step 1: We first show that the limit quadruple satisfies the equilibrium equation (14a). In view of (37a) we
have

Par —div (C(Q7—>éel,f =+ ]D)(Qq—)éel,‘r) = fTT
fora.e. x € Qandt € [0,7], and for all 7 > 0. In particular, for all ¢ € C2°(0,T; C2°(2)) there holds
T . T _
| [ oo+ Clapan, + Dlagia) selpydedi = [ [ fpdear
0 /o 0Jo

By (69e-g) and (91), we infer that

/OT/QP'U"P+(C(a)€el+D(a)ée1) e(p)dzdt = //f o dzdt,

which in turn yields (14a) for a.e. z € Q, and ¢ € [0, 7). In particular, (69g) guarantees that u(0) = u?, and
w(0) = vo.

Step 2: The limit energy inequality is a direct consequence of (52), Propositions 6.1 and 6.2, and (95).
Step 3: We now pass to the limit in the discrete damage law. In view of (37c), forevery k € {1,...,T/7}
we deduce the inequality

1
/Q (6°(ak, a1 + div (| VakP2Vak) - SC(ak, ak el el —moak ) (o — 6ak) dw = 0

for all ¢ € W1P(Q) such that p(z) < 0 for a.e. € . Thus, summing in k, we conclude that
1 o _ _ _ .
/ / aT) - |Va ‘p Vo — §C (aTagT)eel,T P el s — 77047'90) dzdt
K
< [ (#larm)) = a0) = Z¥ar ()P + 5 VagP) da

// °(ar, )€l r - eelT)adedt/ /na dzdt.

Condition (C4) in Definition 2.1 follows then in view of Propositions 6.1 and 6.2. 1
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