profile picture

Alexander Rieder

Institute for Analysis and Scientific Computing
TU Wien
Wiedner Hauptstraße 8-10
1040 Vienna, Austria

Contact

Mail: alexander.rieder@tuwien.ac.at
Office: Room: DA 04 G 02 (Freihaus building, green section, 4th floor)

Research interests:

Short Curriculum Vitae:

03/1989: born in Bruneck/Brunico, Italy
10/2008-10/2011: Bachelor of Science in Mathematics, Technische Universität Wien
10/2011-10/2013: Master of Science in Mathematics, Technische Universität Wien
09/2015-12/2015: visiting L.Banjai, Heriot-Watt University Edinburgh, UK
07/2016-09/2016: visiting F-J. Sayas, University of Delaware , USA
10/2013-06/2017 Phd student and Projektassistent, Technische Universität Wien, supervised by J.M. Melenk,
funded by the Austrian Science Fund(FWF) as part of the Doctoral school "Dissipation and Dispersion in Nonlinear PDEs"
10/2017-10/2019 Postdoc at Technische Universität Wien,
part of the FWF special research program Taming Complexity in Partial Differential Systems
10/2019-10/2021 Postdoc at the University of Vienna in the group of Ilaria Perugia
since 10/2021 University assistant (Postdoc) at the TU Wien

Preprints:

[1] Michael Karkulik, Jens Markus Melenk, and Alexander Rieder. On interpolation spaces of piecewise polynomials on mixed meshes, 2023.
arXiv ]
[2] Markus Faustmann and Alexander Rieder. Fem-bem coupling in fractional diffusion, 2023.
arXiv | http ]
[3] Markus Faustmann and Alexander Rieder. Fractional diffusion in the full space: decay and regularity, 2023.
DOI | http ]

Publications:

[1] Alexander Rieder. Double exponential quadrature for fractional diffusion. Numer. Math., 153(2-3):359----410, 2023.
DOI | arXiv | http ]
[2] Jens Markus Melenk and Alexander Rieder. An exponentially convergent discretization for space–time fractional parabolic equations using hp-FEM. IMA Journal of Numerical Analysis, 10 2022. drac045.
DOI | arXiv | http ]
[3] Christoph Erath, Lorenzo Mascotto, Jens M. Melenk, Ilaria Perugia, and Alexander Rieder. Mortar coupling of hp-discontinuous Galerkin and boundary element methods for the Helmholtz equation. J. Sci. Comput., 92(1):Paper No. 2, 41, 2022.
DOI | arXiv | http ]
[4] Alexander Rieder, Francisco-Javier Sayas, and Jens Markus Melenk. Time domain boundary integral equations and convolution quadrature for scattering by composite media. Math. Comp., 91(337):2165--2195, 2022.
DOI | arXiv | http ]
[5] Franz Achleitner, Christian Kuehn, Jens M. Melenk, and Alexander Rieder. Metastable speeds in the fractional Allen-Cahn equation. Appl. Math. Comput., 408:126329, 2021.
DOI | arXiv | http ]
[6] Jens Markus Melenk and Alexander Rieder. On superconvergence of Runge-Kutta convolution quadrature for the wave equation. Numer. Math., 147(1):157--188, 2021.
DOI | arXiv | http ]
[7] Alexander Rieder, Francisco-Javier Sayas, and Jens Markus Melenk. Rungekutta approximation for c_0-semigroups in the graph norm with applications to time domain boundary integral equations. SN Partial Differential Equations and Applications, 1(6), November 2020.
DOI | arXiv | http ]
[8] Lorenzo Mascotto, Jens M. Melenk, Ilaria Perugia, and Alexander Rieder. FEM-BEM mortar coupling for the Helmholtz problem in three dimensions. Comput. Math. Appl., 80(11):2351--2378, 2020.
DOI | arXiv | http ]
[9] Jens Markus Melenk and Alexander Rieder. hp-FEM for the fractional heat equation. IMA Journal of Numerical Analysis, 04 2020. drz054.
DOI | arXiv | http ]
[10] Michael Karkulik, Jens Markus Melenk, and Alexander Rieder. Stable decompositions of hp-BEM spaces and an optimal Schwarz preconditioner for the hypersingular integral operator in 3D. ESAIM Math. Model. Numer. Anal., 54(1):145--180, 2020.
DOI | arXiv | http ]
[11] Tianyu Qiu, Alexander Rieder, Francisco-Javier Sayas, and Shougui Zhang. Time-domain boundary integral equation modeling of heat transmission problems. Numer. Math., 143(1):223--259, 2019.
DOI | arXiv | http ]
[12] Jens Markus Melenk and Alexander Rieder. Runge-Kutta convolution quadrature and FEM-BEM coupling for the time-dependent linear Schrödinger equation. J. Integral Equations Appl., 29(1):189--250, 2017.
DOI | arXiv | http ]
[13] Lehel Banjai and Alexander Rieder. Convolution quadrature for the wave equation with a nonlinear impedance boundary condition. Mathematics of Computation, page 1, 2017.
DOI | arXiv | http ]
[14] T. Führer, J. M. Melenk, D. Praetorius, and A. Rieder. Optimal additive Schwarz methods for the hp-BEM: the hypersingular integral operator in 3D on locally refined meshes. Comput. Math. Appl., 70(7):1583--1605, 2015.
DOI | arXiv | http ]

Theses:

Convolution Quadrature and Boundary Element Methods in wave propagation: a time domain point of view pdf

Teaching:

Summer 2023: