profile picture

Alexander Rieder

I have moved to the University of Vienna,


Tel: +43 1 58801-10168

Research interests:

Short Curriculum Vitae:

03/1989: born in Bruneck/Brunico, Italy
10/2008-10/2011: Bachelor of Science in Mathematics, Technische Universität Wien
10/2011-10/2013: Master of Science in Mathematics, Technische Universität Wien
09/2015-12/2015: visiting L.Banjai, Heriot-Watt University Edinburgh, UK
07/2016-09/2016: visiting F-J. Sayas, University of Delaware , USA
10/2013-06/2017 Phd student and Projektassistent, Technische Universität Wien, supervised by J.M. Melenk,
funded by the Austrian Science Fund(FWF) as part of the Doctoral school "Dissipation and Dispersion in Nonlinear PDEs"
since 10/2017 Postdoc at Technische Universität Wien,
part of the FWF special research program Taming Complexity in Partial Differential Systems


[1] Jens Markus Melenk and Alexander Rieder. On superconvergence of runge-kutta convolution quadrature for the wave equation, 2019.
arXiv ]


[1] Jens Markus Melenk and Alexander Rieder. hp-fem for the fractional heat equation. accepted at IMA J. Numer. Anal., September 2019.
arXiv ]
[2] Michael Karkulik, Jens Markus Melenk, and Alexander Rieder. Stable decompositions of hp-BEM spaces and an optimal schwarz preconditioner for the hypersingular integral operator in 3d. ESAIM: Mathematical Modelling and Numerical Analysis, July 2019.
DOI | arXiv | http ]
[3] Tianyu Qiu, Alexander Rieder, Francisco-Javier Sayas, and Shougui Zhang. Time-domain boundary integral equation modeling of heat transmission problems. Numer. Math., 143(1):223--259, 2019.
DOI | arXiv | http ]
[4] Lehel Banjai and Alexander Rieder. Convolution quadrature for the wave equation with a nonlinear impedance boundary condition. Mathematics of Computation, page 1, 2017.
DOI | arXiv | http ]
[5] Jens Markus Melenk and Alexander Rieder. Runge-Kutta convolution quadrature and FEM-BEM coupling for the time-dependent linear Schrödinger equation. J. Integral Equations Appl., 29(1):189--250, 2017.
DOI | arXiv | http ]
[6] T. Führer, J. M. Melenk, D. Praetorius, and A. Rieder. Optimal additive Schwarz methods for the hp-BEM: the hypersingular integral operator in 3D on locally refined meshes. Comput. Math. Appl., 70(7):1583--1605, 2015.
DOI | arXiv | http ]


Convolution Quadrature and Boundary Element Methods in wave propagation: a time domain point of view pdf


Summer 2019:

Iterative solution of large systems of equations - TISS