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Cross-diffusion systems and fast-reaction limits

Institute for Analysis and Scientific Computing
Vienna University of Technology
Wiedner Hauptstraße 8–10
1040 Wien, Austria

E-Mail: admin@asc.tuwien.ac.at

WWW: http://www.asc.tuwien.ac.at

FAX: +43-1-58801-10196

ISBN 978-3-902627-00-1

c© Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Autors.



BIT manuscript No.
(will be inserted by the editor)

On singular BVPs with unsmooth data. Part 2: Convergence
of the collocation schemes

Jana Burkotová · Irena Rachůnková ·
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1 Introduction

We are interested in analysing the convergence properties of the polynomial colloca-
tion as a numerical approach to solve singular problems of the form

y′(t) =
M(t)

t
y(t)+

f (t)
t

, B0y(0)+B1y(1) = β , (1.1)

where y is a n-dimensional real function, M is a n× n matrix function and f is a
n-dimensional function which are at least continuous, M ∈C[0,1], f ∈C[0,1]. More-
over, B0,B1 ∈ Rm×n are constant matrices which are subject to certain restrictions
for a well-posed problem, and β ∈ Rm. Note that in general m≤ n. In Part 1 [7], we
focused our attention on the existence and uniqueness of a solution y ∈C[0,1]. This
smoothness requirement results in general, in n−m additional initial conditions the
solution y has to satisfy. We have also specified conditions for f and M which are
sufficiently for y ∈Cr[0,1], r ∈ N.

To compute the numerical solution of (1.1) the polynomial collocation [4] was
proposed in [8]. See also [21] for second order systems. This was motivated by its
advantageous convergence properties for (1.1) while in the presence of a singularity
other high order methods show order reductions and become inefficient [9]. Con-
sequently, for singular boundary value problems (BVPs) two open domain MAT-
LAB codes based on collocation have been implemented [3,12]. The code sbvp can
be applied to explicit first order ordinary differential equations (ODEs) [3], while
bvpsuite can be used to solve arbitrary mixed order problems in implicit formula-
tion. Its scope also includes the differential algebraic equations [12]. Both codes were
used to numerically simulate singular BVPs important for applications and proved to
work dependably and efficiently [5], [11]. This was our motivation to propose the
polynomial collocation for the approximation of (1.1).

Due to the very advantageous properties of the collocation method, this approach
has been used in a variety of other openly available programs. We enclose some ex-
amples for the existing software packages designed to deal with regular and singular
ODEs: the standard MATLAB code bvp4c [17] and the related solver bvp5c [10],
two FORTRAN codes, BVPSOLVER specified in [18], and COLNEW described in [1]
and based on one of the best established BVP solvers COLSYS [2]. For most of the
basic solvers, error estimation routines and grid adaptation strategies implemented in
these codes, analytical justification in context of singular systems is given. Typically,
to enhance the efficiency of the code, the order of the basic solver varies depending
on the tolerances specified by the user.

In [20] local existence and uniqueness analysis was provided for a certain class
of nonlinear differential equation of the type tu(t) = g(t,u(t)), see also [19]. Also in
the nonlinear case the boundary conditions are disregarded and the problem is solved
numerically by collocation applied to the integral equation resulting after the integra-
tion of the ODE system. It turns out that the global error of the collocation scheme
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is O(hk| lnh|) provided that the problem data is appropriately smooth and h is suffi-
ciently small. Here, k is the number of collocation points.

Collocation proved to be also a useful tool to treat other problem classes, dynam-
ical system in ODEs [14] and algebraic-differential equations, see [15], [16].

For linear problems of type (1.1) with constant coefficient matrices, posed in form
of an initial value problem, it was shown in [6] that the convergence order of the col-
location is at least equal to the stage order of the method. In the present paper, we
intend to generalize the above convergence analysis to the case of a linear BVP with
a variable coefficient matrix M and unsmooth inhomogeneity.

The paper is organized as follows: In Section 2 the necessary notation is intro-
duced. The analytical properties of (1.1), discussed in [7], are briefly recapitulated
in Section 3. Sections 5 and 6 are devoted to the convergence analysis of the col-
location applied to solve initial value problems (IVPs) and terminal value problems
(TVPs), respectively. These results are used to show the convergence of the colloca-
tion schemes in the context of the general BVPs in Section 7. Finally, in Section 8, we
provide numerical examples to illustrate the theory, and in Section 9, we summarize
the most important results.

2 Notation

Throughout the paper, the following notation is used. We denote by Rn and Cn the
n-dimensional vector space of real-valued and complex-valued vectors, respectively,
and denote the maximum vector norm by

|x| := |(x1, . . . ,xn)
>|= max

1≤i≤n
|xi|.

We denote by Cn[0,1] the space of continuous real vector-valued functions on [0,1].
In this space, we use the maximum norm,

‖y‖ := max
t∈[0,1]

|y(t)|,

and the norm restricted to the interval [0,δ ], δ > 0, is denoted by

‖y‖δ := max
t∈[0,δ ]

|y(t)|.

Cp
n [0,δ ], δ > 0, is the space of p times continuously differentiable real vector-valued

functions on [0,δ ] with the norm

‖y‖Cp
n [0,δ ] :=

p

∑
k=0
‖y(k)‖δ .
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Furthermore, we denote by Rm×n, Cm×n the m×n-dimensional space of real-valued,
complex-valued matrices, respectively, and denote the corresponding matrix norm by

|A|= max
1≤i≤m

n

∑
j=1
|ai j|.

Additionally, the space of p-times continuously differentiable real-valued matrix func-
tions on [0,δ ] is denoted by Cp

m×n[0,δ ], δ > 0, p ∈ N. This space is equipped with
the norm

‖M‖Cp
m×n[0,δ ]

:=
p

∑
k=1
‖M(k)‖δ ,

where
‖M‖δ := max

t∈[0,δ ]
|M(t)|.

If it cannot be confusing, we omit the subscripts m and n for simplicity of notation,
and write C[0,1] =Cn[0,1], Cp[0,1] =Cp

n [0,1], Cp[0,1] =Cp
m×n[0,1], etc.

3 Analytical results

Here, we recapitulate the most important analytical properties of the BVP (1.1) [7].
We were mainly interested in deriving general two-point boundary conditions which
guarantee certain smoothness requirements for the analytical solution y of (1.1) in
the closed interval [0,1]. It turned out that the form of such conditions depends on the
spectral properties of the coefficient matrix M(0). Therefore we distinguish between
three cases where all eigenvalues of M(0), denoted by λk = σk+ iρk, k = 1, . . .n, have
negative real parts, positive real parts or they are equal zero. The case of purely imag-
inary eigenvalues of M(0) is excluded.

Throughout this section we assume that f ∈C[0,1] and the matrix M ∈C[0,1] can be
written in the form

M(t) = M(0)+ tγ D(t), γ > 0, t ∈ [0,1], D ∈C[0,1]. (3.1)

Case 1. If all eigenvalues of M(0) have negative real parts then there exists a unique
continuous solution y of the BVP (1.1). However, the boundary conditions in (1.1)
are here reduced to the initial conditions M(0)y(0) =− f (0), which is necessary
and sufficient for y ∈ C[0,1]. Moreover, if f ∈ Cr[0,1], D ∈ Cr[0,1] and γ > r,
then y ∈Cr[0,1]. Let us mention, that the assumption (3.1) can be weakened, see
Part 1 [7].

Case 2. In this case all eigenvalues of M(0) are assumed to have positive real parts.
Then, provided that f ∈ C1[0,1] and B1 ∈ Rn×n is nonsingular, there exists a
unique continuous solution y of the BVP (1.1). Here, again the general boundary
conditions are reduced to a particular form, namely to the terminal conditions
B1y(1) = β . The smoothness of y depends not only on the smoothness of the
inhomogeneity f but also on the size of the smallest positive real part σ+ of
the eigenvalues of M(0). In particular, if f ∈Cr+1[0,1], D ∈Cr[0,1], γ > r, and
σ+ > r, then y ∈Cr[0,1].
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Case 3. For the case that all eigenvalues of M(0) are equal zero, we have to assume
some special structure in f close to the singularity, namely, f (t) = O(tα h(t)) for
t→ 0, where h∈C[0,δ ], δ > 0 and α > 0. Then, there exists a unique continuous
solution y of the BVP (1.1) reduced to an IVP, where B1 ≡ 0 and B0R̃ ∈ Rm×m

is nonsingular. The matrix R̃ consists of the linearly independent columns of the
projection R onto the m-dimensional space spanned by eigenvectors associated
with zero eigenvalues. The necessary and sufficient condition for y to be continu-
ous is here M(0)y(0) = 0. Moreover, if f ∈Cr[0,1], D ∈Cr[0,1], α ≥ r+1, and
γ ≥ r+1, then y ∈Cr+1[0,1].
It is clear from the previous considerations that the form of the general bound-

ary conditions in (1.1) which are necessary and sufficient for the unique solution
y ∈C[0,1] of (1.1) depends on the spectrum of M(0). Let S,R, H and N denote the
projection onto the subspace spanned by the eigenvectors associated with eigenval-
ues with positive real parts, the subspace spanned by eigenvectors associated with
zero eigenvalues, the subspace spanned by principal eigenvectors associated with zero
eigenvalues, and the subspace spanned by eigenvectors associated with eigenvalues
with negative real parts, respectively. Moreover, we define Z := R+H, P := R+ S.
We also use P̃, R̃ to denote the matrices consisting of the maximal set of linearly
independent columns of the respective projections.

In order to formulate the main result for a general BVP (1.1), we have to assume
that the inhomogeneity f satisfies S f ∈ C1[0,1] and Z f (t) = O(tα h(t)) for t → 0,
where α > 0 and h is continuous at zero. Furthermore, we have to assume that the
m×m matrix B0R̃+B1P̃ is nonsingular, where m = rankP. Then, the BVP (1.1) has
a unique solution y ∈ C[0,1]. This solution satisfies two initial conditions, Hy(0) =
0,M(0)Ny(0) = −N f (0) which are necessary and sufficient for y ∈C[0,1]. For de-
tails, we refer the reader to Part 1 [7]. The smoothness result y ∈ Cr[0,1] can be
shown by applying results of the Cases 1–3 to the corresponding projections of the
function f and the matrix M.

4 Collocation method

In this section, we introduce a class of collocation methods applied to approximate
the solution y of the problem

y′(t) =
M(t)

t
y(t)+

f (t)
t

, B0y(0)+B1y(1) = β . (4.1)

We assume that the BVP (4.1) has a unique solution in C[0,1]. We first choose I, k∈N
and discretize problem (4.1). To this aim, the interval of integration [0,1] is parti-
tioned,

∆ := {0 = t0 < t1 < .. . < tI−1 < tI = 1, t j = jh, j = 0, . . . , I = 1/h},
and in each subinterval [t j, t j+1] we introduce k equidistantly spaced collocation nodes
t jl := t j +ulh, j = 0, . . . , I−1, l = 1, . . . ,k, where 0 < u1 < .. . < uk ≤ 1. The com-
putational grid including the mesh points and the collocation points is shown in Fig-
ure 4.1.
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t0 . . . t j

. . . t jl . . .

t j+1 . . . tI︸ ︷︷ ︸
h

Fig. 4.1 The computational grid

By Pk,h, we denote the class of piecewise polynomial functions which are glob-
ally continuous on [0,1] and reduce in each subinterval [t j, t j+1] to a polynomial of
degree less or equal to k. We now approximate the analytical solution y by a polyno-
mial function p ∈Pk,h, such that p satisfies system (1.1) at the collocation points,

p′(t jl)−
M(t jl)

t jl
p(t jl) =

f (t jl)

t jl
, l = 1, . . . ,k, j = 0, . . . , I−1,

the boundary conditions

B0 p(0)+B1 p(1) = β ,

and the continuity relations,

p j−1(t j) = p j(t j), j = 1, . . . , I−1,

where p(t) := p j(t), t ∈ [t j, t j+1].
For the subsequent analysis, we assume M ∈C1[0,1] which yields

M(t) = M(0)+ tD(t), t ∈ [0,1], D ∈C[0,1]. (4.2)

Moreover, if M(0) has eigenvalues with positive real parts, we assume that the small-
est positive real part σ+ > 1. This does not mean a restriction of generality since
using the transformation t = τµ , µ > 1, we can enlarge the smallest positive real part
according to σ̃+ = µσ+, where σ̃+ is the smallest positive real part of the eigenvalues
of the transformed system.

In the following sections, we first discuss IVPs and TVPs. Then, we generalize
these results to general linear BVPs.

5 Convergence of the collocation scheme for IVPs

Here, we restrict our attention to the class of singular BVPs which can be equivalently
expressed as a well-posed IVP, where all boundary conditions are posed at t = 0. In
this case, we have to assume that the matrix M(0) has only eigenvalues λ := σ + iρ,
with nonpositive real parts, and if σ = 0 then λ = 0. These restrictions are necessary
to ensure the existence of a well-posed initial value problem, see assumption A.1
in Part 1 [7]. Let H and N denote projections onto the subspace spanned by the
principal eigenvectors associated with zero eigenvalues and the subspace spanned by
the eigenvectors associated with eigenvalues with negative real parts, respectively.
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The underlying IVP has the form

y′(t) =
M(t)

t
y(t)+

f (t)
t

, B0y(0) = β , Hy(0) = 0, M(0)Ny(0) =−N f (0), (5.1)

where B0 ∈ Rm×n, β ∈ Rm, and rankR = m≤ n.

Collocation methods for linear problems with a smooth inhomogeneity were stud-
ied in [8]. In the next lemma, the relevant auxiliary results from Theorem 4.1 [8] are
recapitulated.

Lemma 5.1 (Theorem 4.1 in [8]) Let us consider the collocation scheme,

p′(t jl)−
M(t jl)

t jl
p(t jl) = Mµ(0)

c jl

tν
jl
, l = 1, . . . ,k, j = 0, . . . I−1, p(0) = δ , (5.2)

where µ,ν ∈ {0,1}, M ∈C1[0,1], δ ∈ Rn and c jl are arbitrary constants. Then prob-
lem (5.2) has a unique solution p ∈Pk,h provided that h is sufficiently small. This
solution satisfies

|p(t)| ≤ const.
(
|δ |+ | ln(h)|d |M(0)δ |+ | ln(h)|(ν(d−µ))+CI

)
, t ∈ [0,1],

where d is the dimension of the largest Jordan box of M(0) associated with the eigen-
value λ = 0,

(x)+ =

{
x x≥ 0,
0 x < 0,

and
CI = max

0≤ j≤I−1
max

1≤l≤k
|c jl |.

Using Lemma 5.1, we can formulate the convergence result for the collocation method
applied to IVP (5.1). For the convergence analysis, we rewrite (5.1) to obtain a more
convenient form,

y′(t)− M(t)
t

y(t) =
f (t)

t
, y(0) = δ , (5.3)

where
B0δ = β , Hδ = 0, M(0)Nδ =−N f (0). (5.4)

Conditions for the existence of a solution y ∈Ck+1 of problem (5.3), (5.4) are given
in Section 3.

Theorem 5.1 Let us assume that y ∈ Ck+1[0,1] is the unique solution of problem
(5.3), (5.4) and M ∈ C1[0,1], f ∈ C[0,1]. Let the function p ∈Pk,h be the unique
solution of the collocation scheme,

p′(t jl)−
M(t jl)

t jl
p(t jl) =

f (t jl)

t jl
, l = 1, . . .k, j = 0, . . . , I−1, p(0) = δ .

Then
‖p− y‖ ≤ const.hk.
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Proof: To prove the convergence of the collocation scheme applied to solve IVP
(5.3), (5.4), we first define an error function e ∈Pk,h,

e′(t jl) := y′(t jl)− p′(t jl), l = 1, . . . ,k, j = 0, . . . , I−1, e(0) := 0, (5.5)

and show that the error function e differs from the global error p− y by O(hk) terms.
Clearly, since the function e′(t) belongs to Pk−1,h, it is uniquely determined by its
values at k distinct points in each subinterval [t j, t j+1], j = 0, . . . I−1,

e′(t) =
k

∑
i=1

li

(
t− t j

h

)
y′(t ji)− p′(t), t ∈ (t j, t j+1],

where

li(t)=w(t)/
(
(t−ui)w′(ui)

)
, i = 1, . . . ,k, (5.6)

w(t)=(t−u1)(t−u2) · · ·(t−uk).

For y ∈Ck+1[0,1], the interpolation error is O(hk) and hence,

e′(t) = y′(t)− p′(t)+O(hk)

which by integration on [0, t] yields

e(t) = y(t)− p(t)+O(hkt), t ∈ [0,1].

Therefore, e satisfies the following collocation scheme:

e′(t jl)−
M(t jl)

t jl
e(t jl) =

= y′(t jl)−
M(t jl)

t jl
y(t jl)−

(
p′(t jl)−

M(t jl)

t jl
p(t jl)

)
−

M(t jl)

t jl
O(t jlhk)

=
f (t jl)

t jl
−

f (t jl)

t jl
−

M(t jl)

t jl
O(t jlhk) = O(M(0)hk + t jlD(t jl)hk)

= O(M(0)hk), e(0) = 0.

According to Lemma 5.1, with µ = 0, ν = 0, and c jl = O(hk), the error function
e = O(hk) and since e(t) = y(t)− p(t) + O(hk), the estimate for the global error
‖p− y‖ follows. �

For regular ODEs and suitably chosen collocation points (Gaussian, Lobatto,
Radau), the superconvergence order in the mesh points can be observed. For singular
problems considered here, the superconvergence order cannot be expected to hold,
in general. Counterexamples in [8] show that the superconvergence order does not
hold even for singular problems with a smooth inhomogeneity. The so-called small
superconvergence uniform in t will be shown in the next theorem.
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Theorem 5.2 Let us assume that the solution y of (5.3), (5.4) satisfies y ∈Ck+2[0,1].
Moreover, let the collocation points be chosen in such a way that∫ 1

0
w(s) ds = 0 (5.7)

holds. Then, the estimate for the global error given in Theorem 5.1 can be replaced
by

‖p− y‖ ≤ const.hk+1| ln(h)|(d−1)+ .

Proof: Let us consider the error function e defined in (5.5). Since y ∈Ck+2[0,1], we
have for j = 0, . . . I−1 and li from (5.6),

e′(t) =
k

∑
i=1

li

(
t− t j

h

)
y′(t ji)− p′(t)

= y′(t)− p′(t)+
hk

k!
w
(

t− t j

h

)
y(k+1)(t j)+O(hk+1), t ∈ (t j, t j+1].

We now integrate e′ on [0, t], t ∈ (t j, t j+1], and use (5.7) to obtain

e(t) = y(t)− p(t)+
j−1

∑
i=0

hk

k!
y(k+1)(ti)

∫ ti+1

ti
w
(

s− ti
h

)
ds

+
hk

k!
y(k+1)(t j)

∫ t

t j

w
(

s− t j

h

)
ds+O(thk+1) = y(t)− p(t)+O(hk+1).

This implies

e′(t jl)−
M(t jl)

t jl
e(t jl)

= y′(t jl)−
M(t jl)

t jl
y(t jl)−

(
p′(t jl)−

M(t jl)

t jl
p(t jl)

)
−

M(t jl)

t jl
O(hk+1)

= −
M(t jl)

t jl
O(hk+1) = O

(
M(0)

t jl
hk+1

)
+O(D(t jl)hk+1)

= O
(

M(0)
t jl

hk+1
)
, e(0) = 0,

and from Lemma 5.1, with µ = 1, ν = 1, and c jl = O(hk+1), we conclude

|e(t)| ≤ const.
(
| ln(h)|(d−1)+hk+1

)
,

and thus,

‖p− y‖ ≤ const.
(
| ln(h)|(d−1)+hk+1

)
.

�
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6 Convergence of the collocation scheme for TVPs

Now we assume that all eigenvalues of matrix M(0) have nonnegative real parts and
if zero is an eigenvalue of M(0), then the associated invariant subspace is assumed to
be the eigenspace of M(0), cf. assumption A.2 in Part 1 [7].

Under these assumptions, we study the terminal value problem,

y′(t) =
M(t)

t
y(t)+

f (t)
t

, B1y(1) = β , (6.1)

with B1 ∈ Rn×n, β ∈ Rn.

The existence and uniqueness of the respective collocation solution was already
studied in [13]. The following lemma covers the case of TVPs with constant matrix
M(0) which has only eigenvalues with positive real parts.

Lemma 6.1 (Lemma 3.2 [13]) Assume that all eigenvalues of M(0) have positive
real parts and M ∈C1[0,1]. For α ∈ {0,1} and arbitrary constants c jl , there exists a
unique polynomial function p ∈Pk,h which, for any 0 < b≤ 1, satisfies

p′(t jl) =
M(0)

t jl
p(t jl)+

c jl

tα
jl
, p(b) = γ, j = 0, . . . I−1, l = 1, . . .k. (6.2)

Furthermore,

‖p‖t j+1 := max
0≤s≤t j+1

|p(s)| ≤ const.(|γ|+ t1−α

j+1 CI), j = 0, . . . I−1.

Remark 6.1 In the case when the matrix M(0) has zero eigenvalues and the associated
invariant subspace coincides with the eigenspace of M(0), for α ∈ {0,1}, 0 < b≤ 1,
and arbitrary constants c jl , there exists a unique collocation polynomial p ∈Pk,h
such that

p′(t jl) =
c jl

tα
jl
, p(b) = γ, j = 0, . . . I−1, l = 1, . . .k,

and
‖p‖t j+1 ≤ const.(|γ|+ t1−α

j+1 CI), j = 0, . . . I−1.

Consequently, for the matrix M(0) whose spectrum consists of eigenvalues with pos-
itive real parts and zero eigenvalues with the same algebraic and geometric multiplic-
ity, there exists a unique polynomial function p ∈Pk,h satisfying (6.2). Furthermore,

‖p‖t j+1 ≤ const.(|γ|+ t1−α

j+1 CI), j = 0, . . . I−1.

Lemma 6.2 Assume that M ∈C1[0,1]. Then for a sufficiently small h, for α ∈ {0,1},
and arbitrary constants c jl , there exists a unique collocation polynomial p ∈Pk,h
which satisfies

p′(t jl) =
M(t jl)

t jl
p(t jl)+

c jl

tα
jl
, p(1) = γ, j = 0, . . . I−1, l = 1, . . .k.

Moreover,
‖p‖ ≤ const.(|γ|+CI).
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Proof: First, let us note that the classical theory yields the existence and uniqueness
of a collocation solution r on the interval [t1,1], t1 = h. In order to show the existence
of the solution on [0, t1] for h small enough, we rewrite the collocation problem as
an operator equation p = K q, K : Pk,h[0, t1]→Pk,h[0, t1], where p is defined for
q ∈Pk,h[0, t1] as the solution of the related collocation scheme with the constant
coefficient matrix M(0),

p′(t0l) =
M(0)

t0l
p(t0l)+D(t0l)q(t0l)+

c0l

tα
0l
, p(t1) = r(t1), l = 1, . . .k,

where D was specified in (4.2). We now show that for a sufficiently small h, the oper-
ator K is a contraction on Pk,h[0, t1] and therefore, the Banach fixed point theorem
can be used. Let q1, q2 ∈Pk,h[0, t1]. Then K q1 and K q2 are solutions of the collo-
cation schemes with q = q1 and q = q2, respectively. Therefore, v := K q1−K q2 is
implicitly defined as the solution of the collocation scheme,

v′(t0l) =
M(0)

t0l
v(t0l)+D(t0l)(q1(t0l)−q2(t0l)) , v(t1) = 0, l = 1, . . .k,

According to Lemma 6.1 and Remark 6.1,

‖K q1−K q2‖t1 ≤ const.h‖D‖t1‖q1−q2‖t1 .

For a sufficiently small h = t1, the estimate

const. t1 ‖D‖t1 =: L < 1

holds and thus, K is a contraction on Pk,h[0, t1]. Consequently, the Banach fixed
point theorem ensures the existence of a unique fixed point

p = K p in Pk,h[0, t1].

Moreover, the following estimate holds:

‖p‖t1 ≤ const.(|r(t1)|+ t1 ‖p‖t1‖D‖t1 + t1−α

1 C1),

and thus,

‖p‖t1 ≤
1

1−L
const.(|r(t1)|+ t1−α

1 C1),

where C1 := max1≤l≤k |c0l |. Using the classical theory, we extend the estimate to the
whole interval,

‖p‖ ≤ const.(|γ|+CI).

�
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We now recapitulate the results of this section: Providing that h is sufficiently
small, there exists a unique collocation polynomial p ∈Pk,h satisfying

p′(t jl) =
M(t jl)

t jl
p(t jl)+

(1− t jl)c jl

t jl

=
M(t jl)

t jl
p(t jl)+

c jl

t jl
− c jl , p(1) = γ, j = 0, . . . I−1, l = 1, . . .k,

and
‖p‖ ≤ const.(|γ|+CI).

We are now able to formulate the convergence result for the TVPs. We consider the
TVP (6.1) in the form

y′(t) =
M(t)

t
y(t)+

f (t)
t

, y(1) = δ , (6.3)

where B1δ = β .

Theorem 6.1 Let us assume that M ∈ C1[0,1], f ∈ C[0,1] and y ∈ Ck+1[0,1] is the
unique solution of (6.3). Let the function p ∈Pk,h satisfy the collocation scheme

p′(t jl) =
M(t jl)

t jl
p(t jl)+

f (t jl)

t jl
, p(1) = δ , j = 0, . . . I−1, l = 1, . . .k.

Then, provided that h is sufficiently small,

‖p− y‖ ≤ const.hk.

Proof: Let us define an error function e ∈Pk,h as follows:

e′(t jl) := y′(t jl)− p′(t jl), j = 0, . . . , I−1, l = 1, . . . ,k, e(1) = 0.

Since the function e′ belongs to Pk−1,h, it is uniquely determined by

e′(t) =
k

∑
i=1

li

(
t− t j

h

)
y′(t ji)− p′(t), t ∈ (t j, t j+1],

where li are specified in (5.6). For y ∈Ck+1[0,1] the interpolation error is O(hk) and
hence, e′(t) = y′(t)− p′(t)+O(hk). By integration over [t,1] we obtain

e(t) = y(t)− p(t)+(1− t)O(hk).

Moreover, we see that e satisfies the following collocation scheme:

e′(t jl)−
M(t jl)

t jl
e(t jl)

= y′(t jl)−
M(t jl)

t jl
y(t jl)−

(
p′(t jl)−

M(t jl)

t jl
p(t jl)

)
−

M(t jl)

t jl
(1− t jl)O(hk)

= −
M(t jl)

t jl
(1− t jl)O(hk), e(1) = 0,
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and Lemma 6.2 finally yields,

‖e‖ ≤ const.‖M‖O(hk).

Consequently, ‖y− p‖ ≤ const.hk. �

7 Convergence of the collocation scheme for BVPs

In this section, we generalize the convergence results derived for IVPs and TVPs to
the general BVPs of the form

y′(t) =
M(t)

t
y(t)+

f (t)
t

, (7.1)

B0y(0)+B1y(1) = β . (7.2)

We allow the spectrum of the matrix M(0) to contains both, eigenvalues with nonpos-
itive and nonnegative real parts. Recall that the above BVP is well-posed if and only
if the boundary conditions (7.2) can be equivalently written in a separated fashion,

Hy(0) = 0, M(0)Ny(0) =−N f (0), Ry(0) = Rγ, Sy(1) = Sγ (7.3)

and therefore, we can restrict our attention to the problem (7.1), (7.3). First, we show
the existence and uniqueness of solution to the associated collocation scheme,

p′(t jl) =
M(t jl)

t jl
p(t jl)+

f (t jl)

t jl
, j = 0, . . . I−1, l = 1, . . .k,

(7.4)
H p(0) = 0, M(0)N p(0) =−N f (0), Rp(0) = Rγ, Sp(1) = Sγ

and then show that this scheme converges with the classical stage order.

Theorem 7.1 There exists a unique solution p∈Pk,h of the collocation scheme (7.4)
provided that h is sufficiently small and M ∈C1[0,1], f ∈ [0,1]. This solution satisfies

‖p‖ ≤ const.
(
|γ|+ | ln(h)|d |M(0)||γ|+(| ln(h)|d +1)‖ f‖

)
,

where d is the dimension of the largest Jordan box of M(0) associated with the eigen-
value λ = 0.

Proof: In order to show the existence and uniqueness result for p, we study the fixed
point equation p = K (q), K : Pk,h→Pk,h, where p is defined as a solution of the
related collocation scheme with the constant matrix M(0):

p′(ti j) =
M(0)

ti j
p(ti j)+D(ti j)q(ti j)+

f (ti j)

ti j
, j = 0, . . . I−1, l = 1, . . .k,

subject to boundary conditions (7.3). In order to decouple the above scheme, we
introduce new variables,

v(t jl) = E−1 p(t jl), Q(t jl) = E−1D(t jl), g(t jl) = E−1 f (t jl),
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where J is the Jordan canonical form of M(0) and E is the associated matrix of the
generalized eigenvectors of M(0). Then, the decoupled system reads:

v′(t jl) =
J
t jl

v(t jl)+Q(t jl)q(t jl)+
g(t jl)

t jl
, j = 0, . . . I−1, l = 1, . . .k,

JV Nv(0) =−V Ng(0), V Zv(0) = E−1Rγ, V Sv(1) = E−1Sγ,

where

J =

 JN 0 0
0 JZ 0
0 0 JS


and

V N =

 IN 0 0
0 0 0
0 0 0

 , V Z =

 0 0 0
0 IZ 0
0 0 0

 , V S =

 0 0 0
0 0 0
0 0 IS

 .

Here, JN is the Jordan block of dimension rankN associated with the eigenvalues
with negative real parts, JZ is the Jordan block of dimension rankH + rankR associ-
ated with zero eigenvalues and JS is the Jordan block of dimension rankS associated
with the eigenvalues with positive real parts. The matrices IN , IZ , and IS are identity
matrices of corresponding dimensions.

We can now split the discrete system into an IVP, governed by the blocs JN and
JZ , associated with the negative real parts and zero eigenvalues of M(0), respectively,
and into a TVP, governed by the block JS, associated with the positive real parts of
eigenvalues of M(0). Applying Lemma 5.1 to the IVP and Lemma 6.2 to the TVP,
we conclude the existence of a unique collocation solution p of (7.4) which satisfies

‖p‖ ≤ const.
(
|γ|+ | ln(h)|d |M(0)||γ|+(| ln(h)|d +1)‖ f‖

)
.

�

In the following theorem, we formulate the convergence properties of the colloca-
tion solution p to the general BVP (7.4). The proof relays on the techniques developed
in Theorem 3.1 [13] for nonlinear problems with smooth inhomogeneities. Therefore,
we only discuss the main ideas of this technique and refer to [13] for technical details.
Note that here, the situation is easier than in [13] since we deal with a linear problem.

Theorem 7.2 Let us assume that y ∈ Ck+2[0,1] is the unique solution of the BVP
(7.1), (7.3), f ∈ Ck+1[0,1], M ∈ Ck+2[0,1], and σ+ > k + 2. Let p ∈Pk,h be the
unique solution of the collocation scheme (7.4). Then,

‖p− y‖ ≤ const.hk.
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Proof: The main idea of the proof is to derive a representation for the global error
p− y of the collocation solution p at all points1 t jl , j = 0, . . . I−1, l = 1, . . .k+1,

p(t jl) = y(t jl)+ e(t jl)hk + r(t jl), (7.5)

where y is the exact solution of (7.1), (7.3), e ∈ C[0,1] and r ∈Pk,h. After some
tedious calculation cf. Section 3.2 [13], we arrive at the following relation for t jl , j =
0, . . . I−1, l = 1, . . .k+1,

p′(t jl) = y′(t jl)+ e′(t jl)hk + r′(t jl)

− 1
(k+1)!

Ω
′(ρl)y(k+1)(t jl)hk +(1+‖e′′‖)O(hk+1),

where Ω(t) := Π
k+1
i=1 (t−ρi). We substitute (7.5) into the collocation scheme (7.4),

p′(t jl) =
M(t jl)

t jl
p(t jl)+

f (t jl)

t jl
,

and obtain

y′(t jl)+ e′(t jl)hk + r′(t jl)−
1

(k+1)!
Ω
′(ρl)y(k+1)(t jl)hk +(1+‖e′′‖)O(hk+1)

=
M(t jl)

t jl

(
y(t jl)+ e(t jl)hk + r(t jl)

)
+

f (t jl)

t jl
,

or equivalently,

e′(t jl)hk + r′(t jl)−
1

(k+1)!
Ω
′(ρl)y(k+1)(t jl)hk +(1+‖e′′‖)O(hk+1)

=
M(t jl)

t jl

(
e(t jl)hk + r(t jl)

)
,

since y is the exact solution. To determinate a relation defining e, we collect all terms
multiplying hk and obtain,

e′(t jl) =
M(t jl)

t jl
e(t jl)+

1
(k+1)!

Ω
′(ρl)y(k+1)(t j), j = 0, . . . I−1, l = 1, . . .k,

(7.6)
He(0) = 0, M(0)Ne(0) = 0, Re(0) = 0, Se(1) = 0,

on noting that y(k+1)(t jl)hk = y(k+1)(t j)hk +O(hk+1) holds.
The relation for r follows by collecting all remaining terms,

r′(t jl) =
M(t jl)

t jl
r(t jl)+(1+‖e′′‖)O(hk+1), j = 0, . . . I−1, l = 1, . . .k,

(7.7)
Hr(0) = 0, M(0)Nr(0) = 0, Rr(0) = 0, Sr(1) = 0.

1 For technical reasons the mesh is restricted to uk < 1 and uk+1 := 1.
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We now construct an analytical BVP related to (7.6) whose solution is e ∈C[0,1],

e′(t) =
M(t)

t
e(t)+

1
(k+1)!

g(t),

He(0) = 0, M(0)Ne(0) =−N f (0), Re(0) = 0, Se(1) = 0,

where g = gi(t), t ∈ [t j, t j+1], j = 0, . . . I−1, is an appropriate, piecewise polynomial
function satisfying gi(t jl) = Ω ′(ρl)y(k+1)(t j), j = 0, . . . I− 1, l = 1, . . .k. Therefore,
the function e is also a piecewisely defined. The fact that the above BVP has a unique
solution e ∈ C[0,1]∩Ck+2[t j, t j+1], j = 0, . . . I− 1, follows from Theorem 2.2 [13].
Moreover, note that ‖e′′‖hk+1 = O(hk).

It follows from Section 3.1 [13], that there exists a unique solution r ∈Pm,h of
problem (7.7) such that

‖r‖t j+1 ≤ t j+1O(hk), j = 0, . . . I−1.

We now combine the results for e and r to show the result. Let E be a piecewise
polynomial function of degree less or equal k such that

E(t jl) := p(t jl)− y(t jl), j = 0, . . . I−1, l = 1, . . .k+1.

Then,

E(t) = p(t)−
k+1

∑
i=1

li

(
t− t j

h

)
y(t ji), t ∈ [t j, t j+1], j = 0, . . . I−1.

For y ∈Ck+2[0,1] the interpolation error is O(hk+1) and hence,

E(t) = p(t)− y(t)+O(hk+1), t ∈ [t j, t j+1], j = 0, . . . I−1.

On the other hand, from the error representation (7.5), E(t jl) = e(t jl)hk + r(t jl), t ∈
(t j, t j+1], j = 0, . . . I−1, and therefore,

E(t)=
k+1

∑
i=1

li

(
t− t j

h

)
E(t ji) =

k+1

∑
i=1

li

(
t− t j

h

)(
e(t ji)hk + r(t ji)

)
=hk

k+1

∑
i=1

li

(
t− t j

h

)
e(t ji)+ r(t). (7.8)

Since e ∈Ck+2(t j, t j+1), the interpolation error is O(hk+1) and thus,

E(t)=hk
(

e(t)+O(hk+1)
)
+ r(t) = hk

(
O(1)+O(hk+1)

)
+O(hk) = O(hk),

for t ∈ (t j, t j+1), j = 0, . . . , I− 1, For the subinterval endpoints, t = t j+1, we have
from (7.8)

E(t j+1) = hk
k+1

∑
i=1

li(1)e(t ji)+ r(t ji) = O(hk), j = 0, . . . I−1,



On singular BVPs with unsmooth data. Part 2 17

and finally, for t = 0, j = 0,

E(0) := lim
t→0

E(t) = hk
k+1

∑
i=1

li(0)e(t0i)+ r(t0i) = O(hk).

Altogether, E = O(hk) in [0,1] and the result, ‖p− y‖= O(hk), follows.
�

8 Numerical experiments

In this section, we illustrate the theory by numerical experiments. We have con-
structed model problems in the IVP, TVP and BVP setting. To calculate the numerical
results, we have used the MATLAB code bvpsuite and run the code on coherently re-
fined meshes in order to compare the empirically estimated convergence orders with
those predicted by the theory.

8.1 Initial value problem

We consider the following initial value problem:

y′(t) =
M(t)

t
y(t)+

f (t)
t

,

 3 −2 1
−2 2 −1
−2 1 0

y(0) =

 1
0
0

 .

Here

M(t) =

 3t−2sin t−4 −2t + sin t +2 t−1
3t2 +6t−4sin t−8 −2t2−4t +2sin t +4 t2 +2t−2

6t2 +6t−4sin t−12 −4t2−4t +2sin t +8 2t2 +2t−4


and

f (t) =

 −t2 sin(t)+2exp(t)+ sin(t)cos(t)+2t cos2(t)− t
−2t2 sin(t)− t2 exp(t)+4exp(t)+2sin(t)cos(t)+4t cos2(t)+2t2−2t

−2t2 sin(t)−2t2 exp(t)+4exp(t)+2t cos2(t)+4t2− t.

 .

The matrix M(0),

M(0) =

 −4 2 −1
−8 4 −2
−12 8 −4

=

1 1 0
2 2 1
2 1 2

−2 1
−2

0

 3 −2 1
−2 2 −1
−2 1 0


has a double eigenvalue λ1 = λ2 = −2, and a simple eigenvalue λ3 = 0. The exact
solution y ∈C∞[0,1] of the problem is given and has the form

y(t) =

 exp(t)+ sin(t)cos(t)
2exp(t)+2sin(t)cos(t)+ t2

2exp(t)+ sin(t)cos(t)+2t2.

 ,
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In Tables 8.1 – 8.3, we illustrate the convergence behaviour for the collocation
executed with equidistant and Gaussian collocation points. The number of the collo-
cation points k was chosen to vary from 1 to 8. However, in the simulations shown
here, we report only on the values 1 to 4 since the results for 5 to 8 are very similar.
The maximal global error is computed either in the mesh points,

‖Yh−Y‖∆ := max
0≤ j≤I

|p(t j)− y(t j)|,

or ‘uniformly’ in t, ‖Yh−Y‖u := max0≤i≤1.000 |p(τi)− y(τi)|, τi = ih, h = 10−3. The
order of convergence and the error constant c are estimated using two consecutive
meshes with the step sizes h and h/2.

From the ansatz, ‖Yh−Y‖ ≈ chp for h→ 0, we have

‖Yh−Y‖∆ = chp, ‖Yh/2−Y‖∆ = c
(

h
2

)p

⇒ p = ln
(
‖Yh−Y‖∆

‖Yh/2−Y‖∆

)
1

ln(2)
.

Having p, we calculate the error constant from c = ‖Yh/2−Y‖∆/
( h

2

)p
.

According to the experiments, the empirical convergence orders very well reflect
the theoretical findings. For Gaussian points, we observe the small superconvergence
order k+1 in the mesh points. The superconvergence order 2k in the mesh points does
not hold in general. For uniformly spaced equidistant collocation points we observe
the order k uniformly in t as we have proven theoretically.

Table 8.1 IVP: Convergence of the collocation scheme, k = 2

Gaussian, mesh points equidistant, mesh points equidistant, uniform
h ‖Yh −Y‖∆ c p ‖Yh −Y‖∆ c p ‖Yh −Y‖u c p

1/2 1.4e-02 6.8e-02 2.23 4.3e-02 1.6e-01 1.94 4.3e-02 1.6e-01 1.94
1/4 3.1e-03 1.9e-01 2.96 1.1e-02 2.0e-01 2.08 1.1e-02 2.0e-01 2.08
1/8 4.0e-04 2.1e-01 3.02 2.6e-03 1.7e-01 2.01 2.6e-03 1.7e-01 2.01

1/16 4.9e-05 2.1e-01 3.01 6.5e-04 1.6e-01 2.00 6.5e-04 1.6e-01 2.00
1/32 6.1e-06 2.0e-01 3.01 1.6e-04 1.6e-01 2.00 1.6e-04 1.6e-01 2.00
1/64 7.6e-07 2.0e-01 3.00 4.1e-05 1.7e-01 2.00 4.1e-05 1.7e-01 2.00
1/128 9.4e-08 2.0e-01 3.00 1.0e-05 1.7e-01 2.00 1.0e-05 1.7e-01 2.00
1/256 1.2e-08 2.0e-01 3.00 2.5e-06 1.7e-01 2.00 2.5e-06 1.7e-01 2.00
1/512 1.5e-09 – – 6.4e-07 – – 6.4e-07 – –

8.2 Terminal value problem

As a TVP, we consider the following model problem:

y′(t) =
M(t)

t
y(t)+

f (t)
t

,

 2 1 −1
0 1 0
−1 −1 1

y(1) =

 e
e

1/15

 ,



On singular BVPs with unsmooth data. Part 2 19

Table 8.2 IVP: Convergence of the collocation scheme, k = 3

Gaussian, mesh points equidistant, mesh points equidistant, uniform
h ‖Yh −Y‖∆ c p ‖Yh −Y‖∆ c p ‖Yh −Y‖u c p

1/2 2.7e-04 2.1e-03 2.99 2.8e-02 5.2e-01 4.19 2.8e-02 5.2e-01 4.19
1/4 3.3e-05 2.3e-02 4.70 1.6e-03 4.3e-01 4.05 1.6e-03 4.3e-01 4.05
1/8 1.3e-06 3.6e-02 4.93 9.4e-05 4.0e-01 4.01 9.4e-05 4.0e-01 4.01

1/16 4.2e-08 4.1e-02 4.98 5.8e-06 3.8e-01 4.00 5.8e-06 3.8e-01 4.00
1/32 1.3e-09 4.4e-02 4.99 3.6e-07 3.8e-01 4.00 3.6e-07 3.8e-01 4.00
1/64 4.2e-11 4.4e-02 4.99 2.3e-08 3.8e-01 4.00 2.3e-08 3.8e-01 4.00
1/128 1.3e-12 1.0e-01 5.17 1.4e-09 3.8e-01 4.00 1.4e-09 3.8e-01 4.00
1/256 3.7e-14 2.3e-14 -0.08 8.8e-11 3.8e-01 4.00 8.8e-11 3.8e-01 4.00
1/512 3.9e-14 – – 5.5e-12 – – 5.5e-12 – –

Table 8.3 IVP: Convergence of the collocation scheme, k = 4

Gaussian, mesh points equidistant, mesh points equidistant,uniform
h ‖Yh −Y‖∆ c p ‖Yh −Y‖∆ c p ‖Yh −Y‖u c p

1/2 2.2e-05 5.1e-04 4.51 2.1e-03 3.9e-02 4.21 2.1e-03 3.5e-02 4.05
1/4 9.7e-07 1.3e-03 5.22 1.1e-04 4.0e-02 4.22 1.3e-04 4.5e-02 4.23
1/8 2.6e-08 1.2e-03 5.16 6.1e-06 3.0e-02 4.08 6.8e-06 3.7e-02 4.14

1/16 7.3e-10 9.8e-04 5.09 3.6e-07 2.5e-02 4.02 3.8e-07 3.0e-02 4.06
1/32 2.1e-11 8.5e-04 5.05 2.2e-08 2.4e-02 4.01 2.3e-08 2.6e-02 4.02
1/64 6.5e-13 3.2e-04 4.81 1.4e-09 2.3e-02 4.00 1.4e-09 2.5e-02 4.01
1/128 2.3e-14 1.3e-11 1.31 8.7e-11 2.3e-02 4.00 8.8e-11 2.4e-02 4.00
1/256 9.3e-15 9.8e-19 -1.65 5.4e-12 2.3e-02 4.00 5.5e-12 2.4e-02 4.00
1/512 2.9e-14 – – 3.4e-13 – – 3.4e-13 – –

where

M(t) =

 24+2t 12+ t −12− t
−26t 20−12t 13t

24−24t 32−11t −12+12t

 ,

M(0) =

24 12 −12
0 20 0

24 32 −12

=

 1 0 1
0 1 0
1 1 2

 12
20

0

 2 1 −1
0 1 0
−1 −1 1


and

f (t) =

 −12exp(t)+ t15

−6t exp(t)
−6t exp(t)−12exp(t)+2t15

 .

The eigenvalues of M(0) are simple, λ1 = 12, λ2 = 20, and λ3 = 0 and the exact
solution y ∈C∞[0,1] reads:

y(t) =

 exp(t)+ 1
15 t15

t exp(t)
exp(t)+ t exp(t)+ 2

15 t15
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Tables 8.4 – 8.6 show the same convergence behaviour as observed for IVPs.
For equidistant collocation points the convergence order k holds not only in the mesh
points but also uniformly in t. Also, the small superconvergence k+1 can be observed
in the mesh points, when Gaussian points are used as collocation points.

Table 8.4 TVP: Convergence of the collocation scheme, k = 2

Gaussian, mesh points equidistant, mesh points equidistant, uniform
h ‖Yh −Y‖∆ c p ‖Yh −Y‖∆ c p ‖Yh −Y‖u c p

1/2 2.8e-01 1.3e+00 2.22 3.7e-01 1.0e+00 1.42 3.7e-01 1.0e+00 1.42
1/4 6.1e-02 4.8e+00 3.15 1.4e-01 1.4e+00 1.64 1.4e-01 1.4e+00 1.64
1/8 6.8e-03 9.1e+00 3.46 4.5e-02 2.3e+00 1.89 4.5e-02 2.3e+00 1.89

1/16 6.2e-04 7.1e+00 3.37 1.2e-02 2.9e+00 1.98 1.2e-02 2.9e+00 1.98
1/32 6.0e-05 4.5e+00 3.24 3.1e-03 3.1e+00 2.00 3.1e-03 3.1e+00 2.00
1/64 6.3e-06 3.0e+00 3.14 7.7e-04 3.1e+00 2.00 7.7e-04 3.1e+00 2.00
1/128 7.2e-07 2.2e+00 3.07 1.9e-04 3.1e+00 2.00 1.9e-04 3.2e+00 2.00
1/256 8.5e-08 1.8e+00 3.04 4.8e-05 3.1e+00 2.00 4.8e-05 3.2e+00 2.00
1/512 1.0e-08 – – 1.2e-05 – – 1.2e-05 – –

Table 8.5 TVP: Convergence of the collocation scheme, k = 3

Gaussian, mesh points equidistant, mesh points equidistant, uniform
h ‖Yh −Y‖∆ c p ‖Yh −Y‖∆ c p ‖Yh −Y‖u c p

1/2 1.3e-02 1.1e-01 3.03 8.0e-02 1.8e-01 1.18 1.2e-01 2.8e-01 1.29
1/4 1.6e-03 5.8e+00 5.90 3.5e-02 2.6e+00 3.11 4.7e-02 1.5e+00 2.48
1/8 2.7e-05 2.7e-01 4.41 4.1e-03 1.0e+01 3.76 8.5e-03 6.9e+00 3.22

1/16 1.3e-06 6.1e-02 3.88 3.0e-04 1.7e+01 3.94 9.1e-04 2.0e+01 3.61
1/32 8.8e-08 5.4e-02 3.85 2.0e-05 2.0e+01 3.98 7.5e-05 4.0e+01 3.80
1/64 6.1e-09 8.9e-02 3.97 1.3e-06 2.1e+01 4.00 5.3e-06 6.0e+01 3.90
1/128 3.9e-10 1.0e-01 3.99 7.8e-08 2.1e+01 4.00 3.6e-07 7.6e+01 3.95
1/256 2.4e-11 9.3e-02 3.98 4.9e-09 2.1e+01 4.00 2.3e-08 8.7e+01 3.98
1/512 1.6e-12 – – 3.1e-10 – – 1.5e-09 – –

Table 8.6 TVP: Convergence of the collocation scheme, k = 4

Gaussian, mesh points equidistant, mesh points equidistant, uniform
h ‖Yh −Y‖∆ c p ‖Yh −Y‖∆ c p ‖Yh −Y‖u c p

1/2 5.0e-03 3.0e-01 5.93 9.6e-02 3.5e-01 1.87 9.6e-02 3.5e-01 1.87
1/4 8.1e-05 4.9e-01 6.28 2.6e-02 2.1e+00 3.16 2.6e-02 2.1e+00 3.16
1/8 1.0e-06 9.5e-02 5.49 2.9e-03 7.4e+00 3.77 2.9e-03 7.4e+00 3.77

1/16 2.3e-08 3.5e-02 5.13 2.1e-04 1.2e+01 3.94 2.1e-04 1.2e+01 3.94
1/32 6.7e-10 2.6e-02 5.04 1.4e-05 1.4e+01 3.99 1.4e-05 1.4e+01 3.99
1/64 2.0e-11 2.2e-02 5.00 8.8e-07 1.4e+01 4.00 8.8e-07 1.4e+01 4.00
1/128 6.4e-13 6.7e-04 4.28 5.5e-08 1.5e+01 4.00 5.5e-08 1.5e+01 4.00
1/256 3.3e-14 2.9e-13 0.39 3.4e-09 1.5e+01 4.00 3.4e-09 1.5e+01 4.00
1/512 2.5e-14 – – 2.1e-10 – – 2.1e-10 – –



On singular BVPs with unsmooth data. Part 2 21

8.3 Boundary value problem

Finally, we discuss the following BVP:

y′(t) =
M(t)

t
y(t)+

f (t)
t

,

−2 3 0
1 −1 0
0 0 0

y(0)+

 0 0 0
0 0 0
0 −1 1

y(1) =

 1/2
0

4/5

 ,

where

M(t) =

 1−2t 3t−3exp(t) 3exp(t)−3
2−2t 3t−2exp(t)−2 2exp(t)−2
2−2t 3t−2exp(t)−12 2exp(t)+8

 ,

M(0) =

 1 −3 0
2 −4 0
2 −14 10

=

 1 3 0
1 2 0
1 2 1

−2
−1

10

−2 3 0
1 −1 0
0 −1 1

 ,

and

f (t) =

 3t21/2− t−1 + t−1 exp(t)−3t10 exp(t)+3t10 + 3
5 exp(t)− 3

5
2t21/2− t−1 + t−1 exp(t)−2t10 exp(t)+2t10 + 2

5 exp(t)− 2
5

2t21/2− t−1 + t−1 exp(t)−2t10 exp(t)+2t10 + 2
5 exp(t)+ 8

5


The matrix M(0) has both positive and negative eigenvalues λ1 = 10, λ2 =−2, λ3 =
−1, and the exact solution has the form

y(t) =

 t−2 + t−1 exp(t)− t−2 exp(t)+ 6
23 t21/2

t−2 + t−1 exp(t)− t−2 exp(t)+ 4
23 t21/2

t−2 + t−1 exp(t)− t−2 exp(t)+ 4
23 t21/2 + t10− 1

5

 .

Here, y ∈ C10[0,1]. In Tables 8.7 – 8.9 the convergence order k can be observed
uniformly in t. For this model and for the Gaussian points we observe the supercon-
vergence order O(h2k). Such high order of convergence can be sometimes observed,
but does not hold in general.

Table 8.7 BVP: Convergence of the collocation scheme, k = 2

Gaussian, mesh points equidistant, mesh points equidistant, uniform
h ‖Yh −Y‖∆ c p ‖Yh −Y‖∆ c p ‖Yh −Y‖u c p

1/2 8.1e-02 3.6e-02 -1.18 5.4e-02 1.1e-02 -2.30 6.1e-01 1.4e+00 1.22
1/4 1.8e-01 8.5e+00 2.77 2.6e-01 2.9e+00 1.73 2.6e-01 2.9e+00 1.73
1/8 2.7e-02 6.2e+01 3.72 7.9e-02 5.5e+00 2.04 7.9e-02 5.0e+00 1.99

1/16 2.0e-03 1.7e+02 4.09 1.9e-02 9.3e+00 2.23 2.0e-02 6.8e+00 2.10
1/32 1.2e-04 1.4e+02 4.02 4.1e-03 4.6e+00 2.02 4.6e-03 6.4e+00 2.09
1/64 7.4e-06 1.2e+02 4.00 1.0e-03 4.4e+00 2.01 1.1e-03 5.7e+00 2.06
1/128 4.6e-07 1.2e+02 4.00 2.5e-04 4.1e+00 2.00 2.6e-04 5.1e+00 2.04
1/256 2.9e-08 1.2e+02 4.00 6.2e-05 4.1e+00 2.00 6.4e-05 4.7e+00 2.02
1/512 1.8e-09 – – 1.6e-05 – – 1.6e-05 – –
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Table 8.8 BVP: Convergence of the collocation scheme, k = 3

Gaussian, mesh points equidistant, mesh points equidistant, uniform
h ‖Yh −Y‖∆ c p ‖Yh −Y‖∆ c p ‖Yh −Y‖u c p

1/2 2.6e-02 2.1e-02 -0.35 6.7e-03 4.5e-04 -3.91 4.2e-01 1.7e+00 2.04
1/4 3.4e-02 2.4e+01 4.75 1.0e-01 5.6e+00 2.90 1.0e-01 5.6e+00 2.90
1/8 1.2e-03 2.2e+02 5.81 1.4e-02 3.5e+01 3.78 1.4e-02 1.8e+01 3.45

1/16 2.2e-05 4.1e+02 6.04 9.9e-04 8.3e+01 4.09 1.2e-03 2.5e+01 3.57
1/32 3.4e-07 3.8e+02 6.01 5.8e-05 6.6e+01 4.02 1.0e-04 5.0e+01 3.78
1/64 5.2e-09 3.6e+02 6.00 3.6e-06 6.1e+01 4.01 7.6e-06 8.0e+01 3.89
1/128 8.2e-11 3.6e+02 6.00 2.2e-07 6.0e+01 4.00 5.2e-07 1.0e+02 3.94
1/256 1.3e-12 4.2e-10 1.04 1.4e-08 5.9e+01 4.00 3.4e-08 1.2e+02 3.97
1/512 6.2e-13 – – 8.7e-10 – – 2.1e-09 – –

Table 8.9 BVP: Convergence of the collocation scheme, k = 4

Gaussian, mesh points equidistant, mesh points equidistant, uniform
h ‖Yh −Y‖∆ c p ‖Yh −Y‖∆ c p ‖Yh −Y‖u c p

1/2 2.8e-03 2.0e-03 -0.45 4.0e-03 5.5e-04 -2.88 2.5e-01 2.1e+00 3.06
1/4 3.8e-03 5.4e+01 6.89 3.0e-02 6.3e+00 3.87 3.0e-02 6.3e+00 3.87
1/8 3.2e-05 4.7e+02 7.94 2.0e-03 1.3e+01 4.23 2.0e-03 8.6e+00 4.02

1/16 1.3e-07 4.7e+02 7.93 1.1e-04 1.3e+01 4.23 1.2e-04 1.6e+01 4.23
1/32 5.3e-10 5.8e+02 8.00 5.7e-06 7.5e+00 4.06 6.6e-06 1.0e+01 4.12
1/64 2.1e-12 4.1e-06 3.49 3.4e-07 6.1e+00 4.01 3.8e-07 9.1e+00 4.08
1/128 1.9e-13 1.1e-16 -1.53 2.1e-08 5.8e+00 4.00 2.3e-08 7.6e+00 4.05
1/256 5.4e-13 1.5e-13 -0.23 1.3e-09 5.7e+00 4.00 1.4e-09 6.6e+00 4.02
1/512 6.3e-13 – – 8.3e-11 – – 8.4e-11 – –

9 Conclusions

In Part 1 [7], the analytical properties, the existence and uniqueness of smooth solu-
tions, of the following singular BVP with a variable coefficient matrix and unsmooth
inhomogeneity were discussed,

y′(t) =
M(t)

t
y(t)+

f (t)
t

, B0y(0)+B1y(1) = β .

In this paper, we have analysed the convergence of the collocation method applied to
approximate the solution of the above analytical problem. The convergence behaviour
have been investigated separately for general IVPs, TVPs and BVPs. It turned out that
the collocation retains its classical stage order k uniformly in t for a scheme with k
collocation points, provided that the analytical solutions are appropriately smooth.
Moreover, for Gaussian points the so-called small superconvergence order k+1 was
shown to hold in context of an IVP, whereas, the superconvergence order in the mesh
points, 2k for Gaussian points, cannot be expected to hold, in general. The theoretical
results are supported by the numerical experiments.



On singular BVPs with unsmooth data. Part 2 23

Acknowledgements

We wish to thank Michael Hubner, Vienna University of Technology, for the numer-
ical simulations.

References

1. Ascher, U., Bader, A.: A new basis implementation for a mixed order boundary value ODE solver.
SIAM J. Scient. Stat. Comput. 8, 483–500 (1987).

2. Ascher, U., Christiansen, J., Russell, R.D.: A collocation solver for mixed order systems of boundary
values problems. Math. Comp. 33, 659–679 (1978).

3. Auzinger, W., Kneisl, G., Koch, O., Weinmüller, E.B.: A collocation code for boundary value prob-
lems in ordinary differential equations. Numer. Algorithms 33, 27–39 (2003).

4. de Boor, C., Swartz, B.: Collocation at Gaussian Points. SIAM J. Num. Anal. 10, 582–606 (1973).
5. Budd, Ch., Koch, O., Weinmüller, E.B.: Computation of Self-Similar Solution Profiles for the Non-

linear Schrödinger Equation. Computing 77, 335–346 (2006).
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