Rate optimal adaptive FEM with inexact solver for strongly monotone operators

G. Gantner, A. Haberl, D. Praetorius, B. Stiftner
Most recent ASC Reports

19/2016 H. Woracek
Directing functionals and de Branges space completions in almost Pontryagin spaces

18/2016 X. Chen, E.S. Daus, and A. Jüngel
Global existence analysis of cross-diffusion population systems for multiple species

17/2016 M. Halla and L. Nannen
Two scale Hardy space infinite elements for scalar waveguide problems

16/2016 D. Stürzer, A. Arnold, and A. Kugi
Closed-loop stability analysis of a gantry crane with heavy chain

15/2016 L. Nannen, M. Wess
Spurious modes of the complex scaled Helmholtz equation

14/2016 A. Bespalov, A. Haberl, and D. Praetorius
Adaptive FEM with coarse initial mesh guarantees optimal convergence rates for compactly perturbed elliptic problems

13/2016 J.M. Melenk and A. Rieder
Runge-Kutta convolution quadrature and FEM-BEM coupling for the time dependent linear Schrödinger equation

12/2016 A. Arnold and C. Negulescu
Stationary Schrödinger equation in the semi-classical limit: Numerical coupling of oscillatory and evanescent regions

A novel computational approach to singular free boundary problems in ordinary differential equations

10/2016 M. Hanke, R. März, C. Tischendorf, E. Weinmüller, S. Wurm
Least-Squares Collocation for Higher Index Differential-Algebraic Equations

Institute for Analysis and Scientific Computing
Vienna University of Technology
Wiedner Hauptstraße 8–10
1040 Wien, Austria

E-Mail: admin@asc.tuwien.ac.at
WWW: http://www.asc.tuwien.ac.at
FAX: +43-1-58801-10196

ISBN 978-3-902627-00-1

Rate optimal adaptive FEM with inexact solver for strongly monotone operators

Dirk Praetorius

(joint work with Gregor Gantner, Alexander Haberl, and Bernhard Stiftner)

Meanwhile, the mathematical understanding of adaptive FEM has reached a mature state; see [9, 14, 3, 15, 6, 11] for some milestones for linear elliptic PDEs, [17, 8, 2, 13] for non-linear problems, and [4] for some general framework. Optimal adaptive FEM with inexact solvers has already been addressed in [15, 1, 4] for linear PDEs and in [5] for eigenvalue problems. However, for problems involving nonlinear operators, optimal adaptive FEM with inexact solvers has not been analyzed yet. Our work [12] aims to close the gap between convergence analysis (e.g. [4]) and empirical evidence (e.g. [10]) by analyzing an algorithm from [7].

Model problem. We follow [4] and present our results from [12] in an abstract framework, while precise examples for our setting are given, e.g., in [2, 13]. Let H be a separable Hilbert space over $K \in \{\mathbb{R}, \mathbb{C}\}$ with norm $\| \cdot \|$ and scalar product $(\cdot, \cdot)_H$. With the duality pairing $\langle \cdot, \cdot \rangle$ between H and its dual H^*, let $A : H \to H^*$ be a nonlinear operator which satisfies the following assumptions:

(O1) A is strongly monotone: There exists $\alpha > 0$ such that
$$\alpha \| u - v \|^2 \leq \text{Re} \langle Au - Av, u - v \rangle$$
for all $u, v \in H$.

(O2) A is Lipschitz continuous: There exists $L > 0$ such that
$$\| Au - Av \|_* := \sup_{w \in H \setminus \{0\}} \frac{\langle Au - Av, w \rangle}{\|w\|} \leq L \| u - v \|$$
for all $u, v \in H$.

(O3) A has a potential: There exists a Gateaux differentiable function $P : H \to K$ with Gateaux derivative $dP = A$, i.e.,
$$\langle Au, v \rangle = \lim_{r \to 0} \frac{P(u + rv) - P(u)}{r}$$
for all $u, v \in H$.

Let $F \in H^*$. According to the main theorem on strongly monotone operators [18], (O1)–(O2) imply the existence and uniqueness of $u^* \in H$ such that

$$\langle Au^*, v \rangle = \langle F, v \rangle$$
for all $v \in H$.

To sketch the proof, let $I : H \to H^*$ denote the Riesz mapping defined by $\langle Iv, v \rangle = (u, v)_H$ for all $u, v \in H$. Then, $\Phi : H \to H$, $\Phi(u) := u - \frac{\alpha}{L^2} I^{-1}(Au - F)$ satisfies

$$\| \Phi(u) - \Phi(v) \| \leq q \| u - v \|$$
for all $u, v \in H$, where $q := (1 - \alpha^2/L^2)^{1/2} < 1$.

Hence, the Banach fixpoint theorem proves the existence and uniqueness of $u^* \in H$ with $\Phi(u^*) = u^*$ which is equivalent to (1). In particular, the Picard iteration $u^n := \Phi(u^{n-1})$ with arbitrary initial guess $u^0 \in H$ converges to u^*, and it holds

$$\| u^* - u^n \| \leq \frac{q}{1 - q} \| u^1 - u^n \|$$
for all $n \geq 1$.

With (O3), (1) (resp. (4) below) is equivalent to energy minimization, and $\| v - u^* \|^2$ is equivalent to the energy difference. This guarantees the quasi-orthogonality [4].
Applying (3) on the discrete level, we infer from [7] that there is a unique \(u^*_n \in X_n \) such that
\[
\langle Au^*_n, v_n \rangle = \langle F, v_n \rangle \quad \text{for all } v_n \in X_n.
\]
According to (O1)–(O2), it holds the Céa-type quasi-optimality \(\|u^* - u^*_n\| \leq \frac{L}{\alpha} \|u^* - v_n\| \) for all \(v_n \in X_n \). To solve the nonlinear system (4), we use the Picard iteration (applied in \(X_n \)): Given \(u^{n-1}_n \in X_n \), we compute \(u^n_n = pH(u^{n-1}_n) \) as follows:
- Solve the linear system \((Au_n, v_n) = \langle Au^{n-1}_n - F, v_n \rangle \) for all \(v_n \in X_n \).
- Define \(u^T_n := u^{n-1}_n - \frac{L}{\alpha} v_n \).

Applying (3) on the discrete level, we infer from [7] that
\[
\|u^* - u^*_n\| \leq \|u^* - u^*_T\| + \frac{q}{1-q} \|u^*_n - u^*_{n-1}\| \leq \frac{L}{\alpha} \min_{v_n \in X_n} \|u^* - v_n\| + \frac{q^n}{1-q} \|u^*_1 - u^*_0\|.
\]

A posteriori error estimator. We suppose that all considered discrete spaces \(X_n \in \mathcal{H} \) are associated with a conforming triangulation \(T_n \) of a bounded Lipschitz domain \(\Omega \subset \mathbb{R}^d, d \geq 2 \). For all \(T \in T_n \) and all \(v_n \in X_n \), we suppose an a posteriori computable refinement indicator \(\eta_n(T, v_n) \geq 0 \). We then define
\[
\eta_n(v_n) := \eta_n(T_n, v_n) \quad \text{and} \quad \eta_n(U_n, v_n)^2 := \sum_{T \in U_n} \eta_n(T, v_n)^2 \quad \text{for all } U_n \subseteq T_n.
\]

We suppose that there exist constants \(C_{ax} > 0 \) and \(0 < C_{ax} < 1 \) such that for all \(T_n \) and all refinements \(T_n \) of \(T_n \), the following properties (A1)–(A3) from [4] hold:
(A1) Stability on non-refined element domains:
\[
\eta_n(T_n \cap T, v_0) - \eta_n(T_n \cap T, v_n) \leq C_{ax} \|v_0 - v_n\| \quad \text{for all } v_n \in X_n, v_0 \in X_0.
\]
(A2) Reduction on refined element domains:
\[
\eta_n(T_n \setminus T, v_0) \leq C_{ax} \eta_n(T_n \setminus T, v_n) + C_{ax} \|v_0 - v_n\| \quad \text{for all } v_n \in X_n, v_0 \in X_0.
\]
(A3) Discrete reliability:
\[
\|u^*_n - u^*_n\| \leq C_{ax} \eta_n(T_n \setminus T, u^*_n).
\]

Note that (A1)–(A2) are required for all discrete functions (and follow from inverse estimates), while (A3) is only required for the discrete solutions \(u^*_n \) resp. \(u^*_T \) of (4).

Adaptive algorithm. With adaptivity parameters \(0 < \theta \leq 1, \lambda > 0 \), and \(C_{mark} \geq 1 \), an initial conforming triangulation \(T_0 \), an initial guess \(u^0 \in X_0 \), our adaptive algorithm iterates the following steps (i)–(iii) for all \(\ell = 0, 1, 2, \ldots \):
(i) Repeat (a)–(b) for all \(n = 1, 2, 3, \ldots \), until \(\|u^T_n - u^T_{n-1}\| \leq \lambda \eta_n(u^T_n) \).
(a) Compute discrete Picard iterate \(u^n_T \in X_T \).
(b) Compute refinement indicators \(\eta(T, u^n_T) \) for all \(T \in T_T \).
(ii) Define \(u_T := u^n_T \) and determine a set \(M_T \subseteq T_T \) of minimal cardinality, up to the multiplicative factor \(C_{mark} \), such that \(\theta \eta_T(u_T) \leq \eta(M_T, u_T) \).
(iii) Employ newest vertex bisection [16] to generate the coarsest conforming refinement \(T_{T+1} \) of \(T_T \) such that \(M_T \subseteq T_T \setminus T_{T+1} \) (i.e., all marked elements have been refined) and define \(u^T_{T+1} := u_T \in X_{T_T} \subseteq X_{T_{T+1}} \).

In step (iii), we suppose that mesh-refinement leads to nested discrete spaces.
Lucky break-down of adaptive algorithm. First, if the repeat loop in step (i) does not terminate, it holds $u^* \in X_\ell$. Moreover, there exists $C > 0$ with
\[\|u^* - u^*_\ell\| + \eta(\eta(u^*_\ell)) \leq C q^\infty \ell \rightarrow \infty 0. \]
Second, if the repeat loop in step (i) terminates with $M_\ell = \emptyset$ in step (ii), then $u^* = u_k$ as well as $M_k = \emptyset$ for all $k \geq \ell$. Overall, we may thus suppose that the repeat loop in step (i) terminates and that $\# T_\ell < \# T_{\ell+1}$ for all $\ell \geq 0$.

Bounded number of Picard iterations in step (i). There exists $C > 0$ such that nested iteration $u_0^\ell := u_{\ell-1}^\ell \in X_{\ell-1} \subseteq X_\ell$ guarantees
\[u_\ell = u_n^\ell \quad \text{with} \quad n \leq C \left[1 + \log \left(\max \left\{ 1, \frac{\eta^{-1}(u_{\ell-1})}{\eta(u_\ell)} \right\} \right) \right] \quad \text{for all} \quad \ell \geq 1. \]

Linear convergence. For $0 < \theta \leq 1$ and all sufficiently small $\lambda > 0$, there exist constants $0 < \varrho < 1$ and $C > 0$ such that
\[\eta(n(u_\ell+n)) \leq C \varrho^n \eta(u_\ell) \quad \text{for all} \quad \ell, n \geq 0. \]
In particular, there exists $C' > 0$ such that
\[\|u^* - u_\ell\| \leq C' \eta(u_\ell) \leq C' C \varrho^{\ell} \eta_0(u_0) \ell \rightarrow \infty 0. \]

Optimal algebraic convergence rates. For sufficiently small $0 < \theta \ll 1$, sufficiently small $\lambda > 0$, and all $s > 0$, there exists $C > 0$ such that
\[\eta(\lambda u_\ell) \leq C \left(\# T_\ell - \# T_0 + 1 \right)^{-s} \quad \text{for all} \quad \ell \geq 0, \]
provided that the rate s is possible with respect to certain nonlinear approximation classes [4, 6].

Optimal computational complexity. Currently, the proof of optimal computational complexity is open, but it is observed in numerical experiments.

References