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Abstract

In this paper we investigate analytical properties of systems of linear ordinary
differential equations (ODEs) with unsmooth nonintegrable inhomogeneities and
a time singularity of the first kind. We are especially interested in specifying the
structure of general linear two-point boundary conditions guarantying existence
and uniqueness of solutions which are continuous on the closed interval including
the singular point. Moreover, we study the convergence behaviour of collocation
schemes applied to solve the problem numerically. Our theoretical results are
supported by numerical experiments.

Keywords: linear systems of ODEs; singular boundary value problem; time
singularity of the first kind; unsmooth inhomogeneity; existence and uniqueness;
collocation method; convergence
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1 Introduction
Singular boundary value problems (BVPs) arise in numerous applications in natu-
ral sciences and engineering and therefore, since many years, they are in focus of
extensive investigations. An important class of linear singular problems takes the
form of the following BVP:

y′(t) =
M

tα
y(t) + f(t), t ∈ (0, 1], B0y(0) +B1y(1) = β, (1)

where α ≥ 1, y is an n-dimensional real function, M is n × n matrix and f is
an n-dimensional function which is at least continuous f ∈ C[0, 1]. We are mainly
interested to find out under which circumstances the above problem has a solution
y ∈ C[0, 1]. B0 and B1 are constant matrices and it turns out that they are subject
to certain restrictions for a well-posed problem with a unique continuous solution.
If α = 1, then we say that BVP (1) has a time singularity of the first kind, while for
α > 1 it has a time singularity of the second kind, commonly referred to as essential
singularity.

Problems of type (1), where f may depend in addition on the space variable y and
may have space singularity at y = 0, have been studied in [2, 21, 23, 24]. The analyt-
ical properties of (1) have been discussed in [9, 10], where the attention was focused
on the existence and uniqueness of solutions and their smoothness. Especially, the
structure of the boundary conditions which are necessary and sufficient for (1) to be
well-posed was of special interest. Our aim is to generalize these analytical results
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to the problem

y′(t) =
M

t
y(t) +

f(t)
t
, t ∈ (0, 1], B0y(0) +B1y(1) = β, (2)

where f ∈ C[0, 1] but f(t)/t may not be integrable on [0, 1]. While for the BVP
(1) and its applications, linear and nonlinear, comprehensive literature is available,
this is not the case for problem (2). Let us add that the equation in (2) can be
obtained from the regular equation u′(x) = Mu(x) + g(x) considered on [0,∞) by
the transformation x = − ln t, and problems of type (2) arise in the modelling of
the avalanche run up [20]. Further, we refer to papers [3, 4, 12, 16, 22], where the
solvability of close linear singular problems is discussed. Interesting results about
well-posedness for linear boundary value problems with time singularities in weight-
spaces have been proved in [1, 13, 14, 15]. Although this framework is close to what
we are aiming at here, it is not quite complete. So, in a way our results are closing
the existing gaps. Note that analytical results which are focused on the unique solv-
ability of equation in (2) can be found in [25, 26] where, in linear case, the main aim
is to describe smooth particular solution of the equation and boundary conditions
are not investigated there. The collocation scheme proposed to solve the problem
numerically, is based on an approximation of the associated integral equation and
is less accurate than the scheme proposed here.

To compute the numerical solution of (1) polynomial collocation was proposed in
[8]. This was motivated by its advantageous convergence properties for (1), while
in the presence of a singularity other high order methods show order reductions
and become inefficient [11]. Consequently, we have implemented two Matlab col-
location based codes for singular BVPs [5, 17]. The code sbvp solves explicit first
order ODEs [5], while bvpsuite can be applied to arbitrary order problems also in
implicit formulation and to differential algebraic equations [17]. Over recent years,
both codes were applied to simulate singular BVPs important for applications and
proved to work dependably and efficiently. This was our motivation to also propose
and analyse polynomial collocation for the approximation of the initial value prob-
lems (IVPs) (2).

The paper is organized as follows: In Section 2, we collect the preliminary results
and introduce the necessary notation. In Sections 3, 4, and 5, three case studies are
carried out, the case of only negative real parts of the eigenvalues of M , positive
real parts of the eigenvalues of M , and zero eigenvalues of M , respectively. These
results are summarized and compared with the case of smooth inhomogeneity in
Section 6. Finally, the three case studies are used to formulate the respective results
for the general IVPs and terminal value problems (TVPs) and BVPs in Section 7.
We show convergence orders in context of general IVPs in Section 8 and illustrate
the theoretical findings by experiments carried out using bvpsuite in Section 9. In
Section 10, we recapitulate the most important results of the study.
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2 Preliminaries
We are interested in analyzing the BVP

y′(t) =
M

t
y(t) +

f(t)
t
, t ∈ (0, 1], y ∈ C[0, 1], B0y(0) +B1y(1) = β, (3)

where M ∈ Rn×n, B0, B1 ∈ Rm×n, β ∈ Rm and f ∈ C[0, 1]. Note that in general
m ≤ n because the requirement y ∈ C[0, 1] results in additional n −m conditions
solution y has to satisfy [9].

Throughout the paper, the following notation is used. We denote by Rn and Cn the
n-dimensional vector space of real-valued and complex-valued vectors, respectively,
and denote the maximum vector norm by

|x| := |(x1, . . . , xn)>| = max
1≤i≤n

|xi|.

We denote by Cn[0, 1] the space of continuous real vector-valued functions on [0, 1].
In this space, we use the maximum norm,

‖y‖ := max
t∈[0,1]

|y(t)|,

and the norm restricted to the interval [0, δ], δ > 0, is denoted by

‖y‖δ := max
t∈[0,δ]

|y(t)|.

Space Cpn[0, 1] is the space of p times continuously differentiable real vector-valued
functions on [0, 1]. If there is no confusion, we omit the subscripts n and write
C[0, 1] = Cn[0, 1], Cp[0, 1] = Cpn[0, 1]. For a matrix A ∈ Cm×n we use the maximum
norm,

|A| = max
1≤i≤m

n∑
j=1

|aij |.

Before discussing the BVP (3), we first consider the easier problem consisting of
the ODE system

y′(t) =
M

t
y(t) +

f(t)
t
, t ∈ (0, 1], (4)

subject to initial/terminal conditions, i.e. we deal with the initial value problem
(IVP),

y′(t) =
M

t
y(t) +

f(t)
t
, t ∈ (0, 1], y ∈ C[0, 1], B0y(0) = β, (5)

where B0 ∈ Rm×n, β ∈ Rm, and m ≤ n, or with the terminal value problem (TVP),

y′(t) =
M

t
y(t) +

f(t)
t
, t ∈ (0, 1], y ∈ C[0, 1], B1y(1) = β, (6)
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where B1 ∈ Rn×n, β ∈ Rn, respectively.

Particular attention is paid to the structure of initial/terminal and boundary con-
ditions which are necessary and sufficient for the existence of a unique continuous
solution on the closed interval [0, 1]. It turns out that the form of such conditions
depends on the spectral properties of the coefficient matrix M . Therefore, we dis-
tinguish between three cases, where all eigenvalues of M have negative real parts,
positive real parts, or are zero.

In the first step, we construct the general solution of (4). Let us denote by J ∈
Cn×n the Jordan canonical form of M and let E ∈ Cn×n be the associated matrix
of the generalized eigenvectors of M . Thus,

M = EJE−1. (7)

Moreover, let us introduce new variables, v(t) := E−1y(t) and g(t) := E−1f(t),
then we can decouple the system (4) and obtain

v′(t) =
J

t
v(t) +

g(t)
t
. (8)

By the variation of constant, any general solution of linear equation (8) is a complex-
valued function of the form

v(t) = Φ(t)d+ Φ(t)
∫ t

1

Φ−1(s)
g(s)
s

ds = tJd+ tJ
∫ t

1

s−J−Ig(s) ds, t ∈ (0, 1], (9)

where d ∈ Cn is an arbitrary vector and

Φ(t) = tJ := exp(J ln(t)) =
∞∑
j=0

Jj(ln t)j

j!
,

is the fundamental solution matrix satisfying

Φ′(t) =
J

t
Φ(t), Φ(1) = I, t ∈ (0, 1],

see [7, Chapter IV]. In case that J consists of m Jordan boxes, J1, J2, . . . , Jm, the
fundamental solution matrix has the form of the following block diagonal matrix,
tJ = diag(tJ1 , tJ2 , . . . , tJm), where

Jk =


λk 1

. . . . . .
. . . 1

λk

 , k = 1, . . . ,m, (10)
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and

tJk = tλk



1 ln t (ln t)2

2 . . . (ln t)nk−1

(nk−1)!

0 1 ln t . . . (ln t)nk−2

(nk−2)!

0
. . . 1

. . .
...

...
. . . . . . ln t

0 . . . . . . 0 1


, t ∈ (0, 1]. (11)

Here, λk = σk+iρk ∈ C is an eigenvalue of M and dimJ1+dimJ2+· · ·+dimJm = n.
The general solution of equation (4) is then given by

y(t) = tMc+ tM
∫ t

1

s−M−If(s) ds, t ∈ (0, 1], (12)

where c = Ed ∈ Cn and tM = EtJE−1 ∈ Cn×n. Also,

(
tM
)′

= MtM−I , t ∈ (0, 1] (13)

and

t−M =
(

1
t

)M
⇒
(
t−M

)′
= −Mt−M−I , t ∈ (0, 1]. (14)

From the structure of matrix (11), it is obvious that the solution contribution
related to the k-th Jordan box may become unbounded for t = 0. Apparently,
the asymptotic behavior of the solution depends on the sign of the real part σk
of the associated eigenvalue λk. Therefore, we have to distinguish between three
cases, σk < 0, λk = 0, and σk > 0. We assume that M has no purely imaginary
eigenvalues to exclude solutions of the form tiρ = cos(ρ ln t) + i sin(ρ ln t).

We complete the preliminaries by two technical remarks, which will be frequently
used in the following analysis.

Remark 1 The main focus of our investigations is on correctly posed ini-
tial/terminal conditions which guarantee the existence of continuously differentiable
solutions of (4), y ∈ C1[0, 1]. Since logarithm terms occur in matrix (11), the relation

lim
t→0+

tα (ln t)k = 0, ∀α ∈ R+, ∀k ∈ N, (15)

is essential when discussing the smoothness of y.

Remark 2 By integrating (14) we obtain

M

∫ 1

t

s−M−I ds = −s−M
∣∣1
t

= t−M − I, t ∈ (0, 1]. (16)
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Moreover, if M has only eigenvalues with negative real parts, then lims→0+ s−M = 0
due to Remark 1, and therefore

∫ 1

0

s−M−I ds = (−M)−1
. (17)

3 Eigenvalues of M with negative real parts

In this section, we consider system (4), such that all eigenvalues of M have negative
real parts. It turns out that in this case, it is necessary to prescribe initial conditions
of a certain structure to guarantee that the solution is continuous on [0, 1]. Moreover,
this continuous solution of the associated IVP (5) is shown to be unique and its
form is provided in Theorem 5. In the proof of this theorem, we require the following
lemmas.

Lemma 3 Let γ ≥ 0 and let the n× n matrix J be of the form

J =


λ 1

. . . . . .
. . . 1

λ

 , λ = σ + iρ, (18)

where σ ≤ 0. For σ = 0, we assume λ = 0 and γ > 0. Then, for t ∈ (0, 1],

∫ t

0

|s−J |sγ−1 ds =
n−1∑
j=0

j∑
k=0

tγ−σ(− ln t)k

k!(γ − σ)j+1−k , (19)

and in particular,

∫ 1

0

|s−J |sγ−1 ds =
n−1∑
j=0

1
(γ − σ)j+1

. (20)

Proof: Due to the form of J , the norm of s−J for s ∈ (0, 1] is

|s−J | = |s−λ|
n−1∑
j=0

| ln s|j

j!
= s−σ

n−1∑
j=0

(− ln s)j

j!
.

By repeated integration by parts, we obtain

∫
(− ln s)j

j!
sγ−σ−1 ds =

sγ−σ

γ − σ
(− ln s)j

j!
+
∫
sγ−σ−1

γ − σ
(− ln s)j−1

(j − 1)!
ds =

j∑
k=0

sγ−σ(− ln s)k

k!(γ − σ)j+1−k .
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Therefore, due to (15),

∫ t

0

|s−J |sγ−1 ds =
∫ t

0

n−1∑
j=0

(− ln s)j

j!
sγ−σ−1 ds =

n−1∑
j=0

j∑
k=0

sγ−σ(− ln s)k

k!(γ − σ)j+1−k

t
0

=
n−1∑
j=0

j∑
k=0

tγ−σ(− ln t)k

k!(γ − σ)j+1−k .

Clearly, for t = 1 ∫ 1

0

|s−J |sγ−1 ds =
n−1∑
j=0

1
(γ − σ)j+1

which completes the proof. �

Lemma 4 Assume that all eigenvalues of the matrix M have negative real parts.
Then

lim
t→0+

∫ t

0

∣∣s−M−I ∣∣ ds = 0. (21)

Proof: Let λk = σk + iρk, k = 1, . . . , l, be eigenvalues of matrix M and Jk, k =
1, . . . , l, the associated Jordan boxes of M. Then s−M = Es−JE−1, where s−J =
diag

(
s−J1 , s−J2 , . . . , s−Jl

)
. Therefore,

lim
t→0+

∫ t

0

∣∣s−M−I ∣∣ ds ≤ |E||E−1| lim
t→0+

∫ t

0

∣∣s−J ∣∣ s−1 ds.

The result follows from (19) with γ = 0 and (15). �

Theorem 5 Let us assume that all eigenvalues of M have negative real parts.
Then for every f ∈ C[0, 1] system (4) has a unique solution y ∈ C[0, 1]. This
solution has the form

y(t) =
∫ 1

0

s−M−If(ts) ds, t ∈ [0, 1]

and satisfies the initial condition

My(0) = −f(0).

This condition is necessary and sufficient for y to be continuous on [0, 1]. Moreover,
if f ∈ Cr[0, 1], r ≥ 0, then y ∈ Cr[0, 1], and the following estimates hold for all
t ∈ [0, 1]:

|y(k)(t)| ≤ const. ‖f (k)‖, k = 0, . . . , r.
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Proof: The general solution of system (4) can be split into two parts

y(t) = tMc+ tM
∫ t

1

s−M−If(s) ds

= tM
(
c−

∫ 1

0

s−M−If(s) ds
)

+ tM
∫ t

0

s−M−If(s) ds

=: yh(t) + yp(t), t ∈ (0, 1]. (22)

First, we show that yp ∈ C[0, 1]. Change of variable, u = s/t, yields

yp(t) =
∫ 1

0

u−M−If(ut) du, t ∈ (0, 1].

Let us now introduce the functions,

zm(t) :=
∫ 1

1
m

s−M−If(st) ds, m ∈ N, (23)

z∞(t) :=
∫ 1

0

s−M−If(st) ds. (24)

Then, by (21),

lim
m→∞

|z∞(t)− zm(t)| = lim
m→∞

∣∣∣∣∣
∫ 1

m

0

s−M−If(st) ds

∣∣∣∣∣ ≤ ‖f‖ lim
m→∞

∫ 1
m

0

∣∣s−M−I ∣∣ ds = 0.

Clearly zm(t) ∈ C[0, 1], for m ∈ N, and hence z∞ is continuous as the uniform limit
of continuous functions. Consequently, yp(t) ∈ C[0, 1].

Since all real parts of eigenvalues are negative, yh is not continuous at t = 0 and
it is obvious that y ∈ C[0, 1] if and only if

c̃ := c−
∫ 1

0

s−M−If(s) ds = 0.

Thus the unique continuous solution satisfying (4) has the form

y(t) =
∫ 1

0

s−M−If(st) ds, t ∈ [0, 1], (25)

and the estimate

|y(t)| ≤ const. ‖f‖, t ∈ [0, 1],

holds due to Lemma 4. This solution is uniquely determinated by c̃ = 0 and there
are no additional conditions to be imposed. Note that c̃ = 0 is equivalent to

My(0) = −f(0)
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which follows from

y(0) =
∫ 1

0

s−M−If(0) ds = (−M)−1
(
1−M − 0−M

)
f(0) = −M−1f(0),

according to Remark 2 and (17).
We now examine the smoothness of y. Let f ∈ C1[0, 1]. For the first derivative y′,

we have from (25)

y′(t) =
∫ 1

0

s−Mf ′(ts) ds, |y′(t)| ≤ const. ‖f ′‖, t ∈ [0, 1],

due to Lemma 3. Similarly, if f ∈ C2[0, 1], it follows for the second derivative

y′′(t) =
∫ 1

0

sI−Mf ′′(ts) ds, |y′′(t)| ≤ const. ‖f ′′‖, t ∈ [0, 1].

Clearly, if f ∈ Cr[0, 1], then

y(r)(t) =
∫ 1

0

s(r−1)I−Mf (r)(ts) ds, |y(r)(t)| ≤ const. ‖f (r)‖, t ∈ [0, 1]

and the result follows. �

Theorem 5 shows that if all eigenvalues of M have negative real parts, then there
exists a unique continuous solution y of IVP (5) if and only if B0 = M , β = −f(0),
and m = n. Clearly, B0 has to be nonsingular. Note that for this spectrum of M a
terminal problem (6) cannot be set up in a reasonable way.

Remark 6 Interestingly, in the above case, the ODE system in (5) has a limit for
t→ 0, which yields a representation for y′(0) consistent with (26). Let us consider
the solution y of (5) specified in (25). For f ∈ C1[0, 1], y′ ∈ C[0, 1] and the Taylor
expansion at t = 0 yields

y′(t) =
1
t
M (y(0) + ty′(ξ)) +

1
t
f(t) =

(
1
t
My(0) +

1
t
f(t)

)
+My′(ξ),

where ξ ∈ (0, t). Letting t→ 0, results in

y′(0) = lim
t→0

1
t

(My(0) + f(t)) +My′(0).

Since My(0) = −f(0),

y′(0) = lim
t→0

1
t

(f(t)− f(0)) +My′(0)

and

y′(0) = (I −M)−1
f ′(0)

which coincides with what we obtain by evaluating (26) at t = 0.
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4 Eigenvalues of M with positive real parts

In this section we deal with system (4) whose matrixM has eigenvalues with positive
real parts. It turns out that in this case there exists a unique continuous solution
of problem (6). Its smoothness depends not only on the smoothness of f but also
on the size of real parts of the eigenvalues of M . Before stating the main result of
this section in Theorem 9, we show the following two lemmas.

Lemma 7 Let γ ≥ 0 and let the n× n matrix J be of the form (18),

J =


λ 1

. . . . . .
. . . 1

λ

 , λ = σ + iρ,

where σ > 0. Then for t ∈ [0, 1] the function

u(t) =
∫ 1

t

∣∣∣∣∣
(
t

s

)J ∣∣∣∣∣ sγ−1 ds,

satisfies the following inequalities:

(i) u(t) ≤ const. tγ for γ < σ, (26)

(ii) u(t) ≤ const. tσ
n−1∑
j=0

(− ln t)j+1

j!
for γ = σ, (27)

(iii) u(t) ≤ const. tσ
n−1∑
j=0

(− ln t)j

j!
for γ > σ. (28)

Proof: We discuss separately the cases γ < σ, γ = σ, and γ > σ.

(i) First, let γ < σ. Then there exists a constant ε > 0 such that σ = γ+ 2ε. The
term (

t

s

)ε n−1∑
j=0

(
− ln

(
t
s

))j
j!

is bounded on [0, 1] due to (15) and hence

∫ 1

t

∣∣∣∣∣
(
t

s

)J ∣∣∣∣∣ sγ−1 ds =
∫ 1

t

(
t

s

)σ n−1∑
j=0

(
− ln

(
t
s

))j
j!

sγ−1 ds

≤ const. tγ+ε
∫ 1

t

s−ε−1 ds = const. tγ .
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(ii) For γ = σ function u can be estimated by

∫ 1

t

∣∣∣∣∣
(
t

s

)J ∣∣∣∣∣ sγ−1 ds =
∫ 1

t

(
t

s

)σ n−1∑
j=0

(
− ln

(
t
s

))j
j!

sγ−1 ds

= tσ
∫ 1

t

s−σ+γ−1
n−1∑
j=0

(
− ln

(
t
s

))j
j!

ds

≤ tσ
n−1∑
j=0

(− ln t)j

j!

∫ 1

t

s−1 ds ≤ const. tσ
n−1∑
j=0

(− ln t)j+1

j!
.

(iii) Finally, for γ > σ, we have

∫ 1

t

∣∣∣∣∣
(
t

s

)J ∣∣∣∣∣ sγ−1 ds =
∫ 1

t

(
t

s

)σ n−1∑
j=0

(
− ln

(
t
s

))j
j!

sγ−1 ds

≤ tσ
n−1∑
j=0

(− ln t)j

j!

∫ 1

t

s−σ+γ−1 ds ≤ const. tσ
n−1∑
j=0

(− ln t)j

j!
.

�

Lemma 8 Let γ ≥ 0 and let all eigenvalues of M have positive real parts. Then
the function

u(t) =
∫ 1

t

∣∣∣∣∣
(
t

s

)M ∣∣∣∣∣ sγ−1 ds, t ∈ [0, 1],

is bounded on [0, 1] and

lim
t→0+

u(t) = 0 for γ > 0. (29)

Proof: Let all eigenvalues of M have positive real parts. Then

u(t) =
∫ 1

t

∣∣∣∣∣
(
t

s

)M ∣∣∣∣∣ sγ−1 ds ≤ |E||E−1|
∫ 1

t

∣∣∣∣∣
(
t

s

)J ∣∣∣∣∣ sγ−1 ds.

Estimates (26) to (28) and property (15) imply u(t) ≤ const. tσ0 for t ∈ [0, 1], where
σ0 = min

{
γ, σ2

}
≥ 0. This means that u is bounded in [0, 1]. If γ > 0, then σ0 > 0

and (29) follows. �

Theorem 9 Let us assume that all eigenvalues of M have positive real parts. Then
for every f ∈ C1[0, 1] and every constant vector c, there exists a solution y ∈ C[0, 1]
of (4). This solution has the form

y(t) =

 tMc+ tM
∫ t
1
s−M−If(s) ds for t ∈ (0, 1],

−M−1f(0) for t = 0.
(30)

If the matrix B1 ∈ Rn×n in (6) is nonsingular, then for any β ∈ Rn there exists a
unique solution of TVP (6). This solution is given by (30) with c = B−1

1 β.
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Let f ∈ Cr+2[0, 1]. Then the following statements hold:
(i) y ∈ Cr[0, 1] ∩ Cr+3(0, 1] for 0 ≤ r < σ+ ≤ r + 1.
(ii) y ∈ Cr+1[0, 1] ∩ Cr+3(0, 1] for σ+ > r + 1.
Moreover, higher derivatives of y satisfy for t ∈ [0, 1]
(i) |y(k)(t)| ≤ const.

(
tσ+−k(1 + | ln(t)|nmax−1) + ‖f (k)‖

)
for k = 0, 1, . . . , r,

(ii) |y(k)(t)| ≤ const.
(
tσ+−k(1 + | ln(t)|nmax−1) + ‖f (k)‖

)
for k = 0, 1, . . . , r + 1,

where σ+ is the smallest positive real part of the eigenvalues of M and nmax is the
dimension of the largest Jordan box in J .

Proof: The general solution of equation (4) can be written in the following form:

y(t) = tMc+tM
∫ t

1

s−M−If(s) ds = tMc+
∫ t

1

(
t

s

)M
f(s)
s

ds =: yh(t)+yp(t). (31)

Since all eigenvalues have positive real parts, it follows from (15) that yh(t) = tMc

is continuous on [0, 1].
Now, we show that limt→0 yp(t) exists and therefore y ∈ C[0, 1]. Using the inte-

gration formula (16) we obtain

∫ t

1

(
t

s

)M
f(0)
s

ds = M−1(tM − I)f(0),

and hence

−M−1f(0) =
∫ t

1

(
t

s

)M
f(0)
s

ds−M−1tMf(0).

Therefore∫ t

1

(
t

s

)M
f(s)
s

ds−(−M)−1f(0) =
∫ t

1

(
t

s

)M
f(s)− f(0)

s
ds+M−1tMf(0). (32)

Since f ∈ C1[0, 1], there exists M0 ∈ (0,∞) such that∣∣∣∣f(s)− f(0)
s

∣∣∣∣ ≤M0, s ∈ [0, 1]. (33)

Relation (32) together with (33) yield∣∣∣∣∣
∫ t

1

(
t

s

)M
f(s)
s

ds− (−M)−1f(0)

∣∣∣∣∣ ≤M0

∫ 1

t

∣∣∣∣∣
(
t

s

)M ∣∣∣∣∣ ds+
∣∣(−M)−1tMf(0)

∣∣ .
Since all eigenvalues of M have positive real parts, (15) implies

lim
t→0+

∣∣(−M)−1tMf(0)
∣∣ = 0.

Moreover, by Lemma 8 with γ = 1 property (29) holds and therefore,

lim
t→0+

∣∣∣∣∣
∫ t

1

(
t

s

)M
f(s)
s

ds− (−M)−1f(0)

∣∣∣∣∣ = 0.
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Thus, limt→0+ yp(t) = (−M)−1f(0) and y ∈ C[0, 1].

It is clear from (31) that the solution y of (4) becomes unique if we specify the
constant vector c ∈ Rn. Note that at t = 0, y(0) satisfies n linearly independent
conditions My(0) = −f(0) for any c ∈ Rn. Therefore, we have to specify c via the
terminal conditions given in (6). Let β ∈ Rn and let B1 ∈ Rn×n be nonsingular,
then it follows from B1y(1) = B1c = β that the unique solution of TVP (6) is given
by (31), where c = B−1

1 β.

We now provide the estimate for y. To this aim, we utilize Lemma 8 with γ = 0
and the inequality

|tM | = |EtJE−1| ≤ const. |tJ | ≤ const. tσ+(1 + | ln(t)|nmax−1).

Hence,

|y(t)| ≤
∣∣∣∣ tMc+ tM

∫ t

1

s−M−If(s) ds
∣∣∣∣

≤
∣∣ tMB−1

1 β
∣∣+

∣∣∣∣∣
∫ t

1

(
t

s

)M
s−1f(s) ds

∣∣∣∣∣
≤

∣∣ tMB−1
1 β

∣∣+ ||f ||
∫ t

1

∣∣∣∣∣
(
t

s

)M
s−1

∣∣∣∣∣ ds

≤ const. tσ+(1 + | ln(t)|nmax−1)
∣∣B−1

1 β
∣∣+ const. ‖f‖.

In order to discuss the smoothness of y, we first study the general solution of the
homogeneous problem yh. Assume that 0 ≤ r < σ+ ≤ r + 1. Then, we have

y′h(t) =
(
tMc

)′
= MtM−Ic,

y′′h(t) =
(
tMc

)′′
= M(M − I)tM−2Ic,

y
(k)
h (t) =

(
tMc

)(k)
= M(M − I) · · · (M − (k − 1)I)tM−kIc, k = 1, . . . , r,

and it is easily seen that yh ∈ Cr[0, 1] ∩ C∞(0, 1].

We now turn to the smoothness of the particular solution of the inhomogeneous
problem yp. First, we integrate by parts

yp(t) = tM
∫ t

1

s−M−If(s) ds

= tM
(

(−M)−1t−Mf(t)− (−M)−1If(1)− (−M)−1

∫ t

1

s−Mf ′(s) ds
)

= (M)−1

(
tMf(1)− f(t) + tM

∫ t

1

s−Mf ′(s) ds
)
.

Note that tM and M−1 are commutative if tM and M are commutative, since
tMM−1 = (Mt−M )−1. The later property will be shown in Lemma 19. Let us now
assume that f ∈ C2[0, 1]. Then, we can differentiate the above equation and obtain
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y′p(t) = (M)−1

(
MtM−If(1)− f ′(t) +MtM−I

∫ t

1

s−Mf ′(s) ds+ tM t−Mf ′(t)
)

= tM−If(1) + tM−I
∫ t

1

s−Mf ′(s) ds.

If σ+ > 1, then we argue as at the beginning of the proof (in context of y and
σ+ > 0) and conclude that yp ∈ C1[0, 1]. Moreover, the following estimate holds:

|y′p(t)| ≤ |f(1)|const. tσ+−1(1 + | ln(t)|nmax−1) + ‖f ′‖t−1

∣∣∣∣∣
∫ t

1

(
t

s

)M
ds

∣∣∣∣∣
≤ |f(1)|const. tσ+−1(1 + | ln(t)|nmax−1) + ‖f ′‖t−1const. t

≤ const.
(
tσ+−1(1 + | ln(t)|nmax−1) + ‖f ′‖

)
, t ∈ [0, 1].

This procedure can be iterated: Let f ∈ C3[0, 1], then we integrate y′p by parts and
have

y′p(t) = (M − I)−1

(
tM−If ′(1) + (M − I)tM−If(1)− f ′(t) + tM−I

∫ t

1

sI−Mf ′′(s) ds
)
.

Differentiating the above representation of y′p yields

y′′p (t) = tM−2If ′(1) + (M − I)tM−2If(1) + tM−2I

∫ t

1

sI−Mf ′′(s) ds.

If σ+ > 2, then yp ∈ C2[0, 1] and the following estimate holds:

|y′′p (t)| ≤ (|f(1)|+ |f ′(1)|)const. tσ+−2(1 + | ln(t)|nmax−1) +

∣∣∣∣∣ t−1

∫ t

1

(
t

s

)M−I
f ′′(s)

∣∣∣∣∣
≤ const.

(
tσ+−2(1 + | ln(t)|nmax−1) + ‖f ′′‖

)
, t ∈ [0, 1].

Similarly, if f ∈ Cr+2[0, 1] and σ+ > r, then yp ∈ Cr[0, 1] and the following estimate
holds:

|y(r)
p (t)| ≤ const.

(
tσ+−r(1 + | ln(t)|nmax−1) + ‖f (r)‖

)
, t ∈ [0, 1].

For σ+ > r + 1, then yp ∈ Cr+1[0, 1] and

|y(r+1)
p (t)| ≤ const.

(
tσ+−r−1(1 + | ln(t)|nmax−1) + ‖f (r+1)‖

)
, t ∈ [0, 1].

It follows from (4) that if f ∈ Cr+2[0, 1] then yp ∈ Cr+3(0, 1]. Consequently, we
have yp ∈ Cr[0, 1] ∩ Cr+3(0, 1] for r < σ+ ≤ r + 1 and yp ∈ Cr+1[0, 1] ∩ Cr+3(0, 1]
for σ+ > r + 1.

We recall: if r < σ+ ≤ r + 1 then the solution yh ∈ Cr[0, 1] ∩ C∞(0, 1] satisfies

|y(r)
h (t)| ≤ const. tσ+−r(1 + | ln(t)|nmax−1), t ∈ [0, 1].
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For σ+ > r + 1, we have yh ∈ Cr+1[0, 1] ∩ C∞(0, 1] and

|y(r+1)
h (t)| ≤ const. tσ+−r−1(1 + | ln(t)|nmax−1), t ∈ [0, 1].

The above smoothness results for yp and yh complete the proof. �

We recapitulate the case when all eigenvalues of M have positive real parts: For
any f ∈ C1[0, 1] and any vector β ∈ Rn there exists a unique continuous solution
y of TVP (6) if and only if the matrix B1 ∈ Rn×n is nonsingular. For each contin-
uous solution y of (4), My(0) = −f(0) holds independently on c ∈ Rn from (31).
Consequently, in this case a well-posed initial problem (5) does not exist.

Remark 10 A continuous solution to (4) exists also in the case when f is not con-
tinuously differentiable in [0, 1]. However, in this case, we need some more structure
in f close to the singularity. Let us assume that

f(t) = O (tαh(t)) as t→ 0, (34)

for some constant α > 0 and a function h ∈ C[0, δ1], δ1 > 0. Then, the solution
of (4) is still continuous on [0, 1]. To see this note, that due to (34) there exists
a δ2 > 0 such that |f(t)| < const. tα|h(t)| for t ∈ (0, δ2). Define δ := min{δ1, δ2}.
Then

yp(t) =
∫ t

1

(
t

s

)M
f(s)
s

ds =
∫ δ

1

(
t

s

)M
f(s)
s

ds+
∫ t

δ

(
t

s

)M
f(s)
s

ds.

Moreover by (29),

lim
t→0+

∣∣∣∣∣
∫ t

δ

(
t

s

)M
f(s)
s

ds

∣∣∣∣∣ < lim
t→0+

const. ‖h‖δ1
∫ t

1

∣∣∣∣∣
(
t

s

)M ∣∣∣∣∣ sα−1 ds = 0.

Then, according to (15), we deduce

lim
t→0+

yp(t) = lim
t→0+

∫ δ

1

(
t

s

)M
f(s)
s

ds = 0.

Therefore, y ∈ C[0, 1]. Note that the function f(t) = (tα1 , . . . , tαn)>, where αi > 0,
i = 1, . . . , n, also satisfies condition (34).

5 Eigenvalues λ = 0
Finally, we consider the case when all eigenvalues of the matrix M are zero. We
begin with a scalar equation (4) which for M = λ = 0 immediately reduces to

y′(t) =
f(t)
t
, (35)

and show that additional structure in the function f is necessary to guarantee
that the solution y is continuous on [0, 1]. To see this, assume that f is a constant
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function, f(t) ≡ 1. Then, any solution y of equation (35) has the following form:

y(t) = y(1) +
∫ t

1

1
s

ds = y(1) + ln t, t ∈ (0, 1]

and, clearly, y is not continuous at t = 0.
Motivated by the scalar case, we require the inhomogeneity f to satisfy additional
conditions providing the continuity of the associated solution.

Let us denote the eigenspace of M associated with the eigenvalues zero by X0,
the orthogonal projection onto X0 by R, and the matrix, which consists of linearly
independent columns of R by R̃. We also define the projection H as H := I −R.

Before formulating the main result of this section we show the following lemma.

Lemma 11 Let us assume that all eigenvalues of the matrix M are zero. Then
for α > 0

lim
t→0+

∫ t

0

∣∣s−M ∣∣ sα−1 ds = 0. (36)

Proof: Let Jk, k = 1, . . . , l, be the Jordan boxes of M . Then we can write
s−M = Es−JE−1, s−J = diag

(
s−J1 , . . . , s−Jl

)
and thus

lim
t→0+

∫ t

0

∣∣s−M ∣∣ sα−1 ds ≤ |E||E−1|
∫ t

0

∣∣s−J ∣∣ sα−1 ds.

Applying (19) and (15) we obtain (36). �

Theorem 12 Let all eigenvalues of the matrix M be zero. Moreover, let us assume
that there exist a constant α > 0 and a function h ∈ C[0, δ], δ > 0 such that

f(t) = O(tαh(t)) for t→ 0. (37)

Then for any f ∈ C[0, 1], β ∈ Rm, and a nonsingular m × m matrix B0R̃, there
exists a unique solution y ∈ C[0, 1] of IVP (5), where m = dimX0. This solution
has the form

y(t) = R̃(B0R̃)−1β +
∫ 1

0

s−Ms−1f(st) ds, t ∈ (0, 1],

and satisfies the initial condition

My(0) = 0, (38)

which is necessary and sufficient for y ∈ C[0, 1]. Moreover,

|y(t)| ≤ |R̃(B0R̃)−1β|+ const. (‖f‖+ tα‖h‖δ), t ∈ [0, 1],
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and if α ≥ r+1, f ∈ Cr[0, 1], and h ∈ Cr[0, δ], then y ∈ Cr+1[0, 1] and the following
estimates hold

|y(k)| ≤ const.
k−1∑
j=0

(
tα−1

)(k−1−j) ‖h(j)‖δ, t ∈ [0, δ),

|y(k)| ≤ const.
k−1∑
j=0

((
tα−1

)(k−1−j) ‖h(j)‖δ +
(
t−1
)(k−1−j) ‖f (j)‖

)
, t ∈ [δ, 1],

where k = 0, . . . , r + 1.

Proof: We split the general solution of (4) into two parts y(t) = yh(t) + yp(t)
as defined in (22). To prove that yp ∈ C[0, 1], we again use the functions zm with
m ∈ N and z∞ specified in (23) and (24). Due to (19), (36), and (37), we obtain

lim
m→∞

|z∞(t)− zm(t)| = lim
m→∞

∣∣∣∣∣
∫ 1

m

0

s−Ms−1f(st) ds

∣∣∣∣∣
≤ ‖h‖δtα lim

m→∞

∫ 1
m

0

∣∣s−M ∣∣ sα−1 ds = 0. (39)

Therefore, yp = z∞ ∈ C[0, 1] and yp(0) = 0 since f(0) = 0 due to (37).
We now examine the continuity of

yh(t) = tM
(
c+

∫ 0

1

s−Ms−1f(s) ds
)

=: tMη,

cf. (22). The fundamental solution matrix is given by tM = EtJE−1, where tJ has
the form tJ = diag(tJ1 , . . . , tJl) and

E =
(
v1, h

(1)
1 , h

(2)
1 , . . . , h

(n1−1)
1 , v2, h

(1)
2 , . . . , h

(n2−1)
2 , . . . , vl, h

(1)
l , . . . , h

(nl−1)
l

)
,

where for k = 1, . . . , l, vk are the eigenvectors of M , h(1)
k , . . . , h

(nk−1)
k are the as-

sociated principal eigenvectors, and nk are the dimensions of the Jordan boxes Jk.
Clearly, because of the logarithmic terms occurring in tJ , see (11), yh is not con-
tinuous at t = 0 in general. Only when the contributions including the logarithmic
terms vanish, yh becomes continuous on [0, 1]. It is clear from (11) that the only
bounded contributions to yh are linear combinations of the eigenvectors of M . Con-
sequently, any linear combination of principal vectors has to vanish. This is the case
when ηi = 0,∀i 6= 1, n1 + 1, n1 + n2 + 1, . . . ,

∑l
k=1 nk + 1 and arbitrary ηi for all

i = 1, n1+1, n1+n2+1, . . . ,
∑l
k=1 nk+1. Thus, yh is continuous on [0, 1] if and only

if it is a constant linear combination of the eigenvectors of M . With other words,
by setting yh(t) := η, we have

y(t) ∈ C[0, 1]⇔My(0) = Mη = 0⇔ η ∈ Ker M.

Consequently, My(0) = 0 is necessary and sufficient for the solution

y(t) = η +
∫ 1

0

s−M−If(ts) ds, t ∈ [0, 1] (40)



Rachůnková et al. Page 18 of 41

to be continuous on [0, 1]. The smoothness results for y follow from the smoothness
of f and from Lemma 11.

Note that the regularity requirement My(0) = 0 contains n− l linearly indepen-
dent conditions and can be equivalently expressed by Hy(0) = 0, y(0) = Ry(0)
or y(0) ∈ KerM. The remaining l free constants have to be uniquely specified by
appropriately prescribed initial conditions. Let us consider the initial conditions
specified in (5), where B0 ∈ Rm×n and β ∈ Rm. Since yp(0) = 0 and yh(0) = η, the
initial condition B0y(0) = β is equivalent to B0η = β. Due to the fact that η ∈ ImR,
there exists a unique l-dimensional vector d, l = dimX0, such that η = R̃d, where
R̃ is the n× l matrix containing the linearly independent columns of R. Clearly, the
problem is uniquely solvable if and only if m = l = dimX0 and the m×m matrix
B0R̃ is nonsingular. Hence,

B0η = β ⇔ B0R̃d = β ⇒ d = (B0R̃)−1β ⇒ η = R̃(B0R̃)−1β,

and the solution y has the form

y(t) = R̃(B0R̃)−1β +
∫ 1

0

s−Ms−1f(st) ds, t ∈ [0, 1].

This solution is bounded by

|y(t)| ≤ |R̃(B0R̃)−1β|+ const. (tα‖h‖δ + ‖f‖), t ∈ [0, 1],

due to

|yp(t)| =
∣∣∣∣∫ 1

0

s−Ms−1f(ts) ds
∣∣∣∣

=
∣∣∣∣∫ 1

δ

s−Ms−1f(ts) ds
∣∣∣∣+

∣∣∣∣∣
∫ δ

0

s−Ms−1f(ts) ds

∣∣∣∣∣
≤ const. ‖f‖+ const. tα‖h‖δ

∫ δ

0

∣∣s−M ∣∣ sα−1 ds, t ∈ [0, 1]

≤ const. (‖f‖+ tα‖h‖δ), t ∈ [0, 1],

and (19).
In order to derive an estimate for the first derivative, we substitute the solution
given by (40) into equation (4) and use the property Mη = 0 and Lemma 11. If
α ≥ 1 then the first derivative is bounded by

|y′(t)| ≤ const.
|M |
t
tα
∣∣∣∣∫ 1

0

s−Msα−1h(st) ds
∣∣∣∣+ const.

tα|h(t)|
t

≤ const. tα−1‖h‖δ, t ∈ [0, δ),

|y′(t)| ≤ const.
|M |
t
tα

∣∣∣∣∣
∫ δ

0

s−Msα−1h(st) ds

∣∣∣∣∣+
|M |
t

∣∣∣∣∫ 1

δ

s−Ms−1f(st) ds
∣∣∣∣+
|f(t)|
t

≤ const. tα−1‖h‖δ + const. t−1‖f‖, t ∈ [δ, 1].
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For f ∈ C1[0, 1], h ∈ C1[0, δ], and α ≥ 2, we now derive a bound of the second
derivative,

y′′(t) = −M
t2

∫ 1

0

s−Ms−1f(st) ds+
M

t

∫ 1

0

s−Mf ′(st) ds− f(t)
t2

+
f ′(t)
t

,

|y′′(t)| ≤ const. (tα−2‖h‖δ + tα−1‖h′‖), t ∈ [0, δ),

|y′′(t)| ≤ const. (tα−2‖h‖δ + tα−1‖h′‖+ t−2‖f‖+ t−1‖f ′‖), t ∈ [δ, 1].

Analogously, for f ∈ Cr[0, 1], h ∈ Cr[0, δ], α ≥ r + 1, we have y ∈ Cr+1[0, 1] and

|y(r+1)| ≤ const.
r∑

k=0

(
tα−1

)(r−k) ‖h(k)‖δ, t ∈ [0, δ),

|y(r+1)| ≤ const.
r∑

k=0

((
tα−1

)(r−k) ‖h(k)‖δ +
(
t−1
)(r−k) ‖f (k)‖

)
, t ∈ [δ, 1].

�

Remark 13 Here, we deal with a purely polynomial inhomogeneity of the form

f(t) = (tα1 , . . . , tαn)> ,

where, αi ∈ N, for i = 1, . . . , n. In this case, y ∈ C∞[0, 1]. To see this, we consider
the components of y,

y(t) = γ +
∫ 1

0

s−Ms−1f(st) ds,

given by

yk(t) = γk +
∫ 1

0

n∑
j=1

(
s−M

)
kj
sαj−1tαj ds = γk +

n∑
j=1

wj(t),

where wj(t) = tαj
∫ 1

0

(
s−M

)
kj
sαj−1 ds. We now differentiate wj , j = 1 . . . , n, and

obtain

w′j(t) = αjt
αj−1

∫ 1

0

s−Msαj−1 ds,

w′′j (t) = αj(αj − 1)tαj−2

∫ 1

0

s−Msαj−1 ds,

w
(αj)
j (t) = αj !

∫ 1

0

s−Msαj−1 ds,

w
(αj+1)
j (t) = 0.

Therefore y(t) ∈ C∞[0, 1].
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In Theorem 12, we described the unique solvability of IVP (5) in case when all
eigenvalues of M are zero. The dimension of the corresponding eigenspace X0 was
m < n and it turned out that a regularity requirement My(0) = 0 has to be
satisfied. If m = n, then M = 0 and the regularity condition holds. In this case we
can also investigate if a well-posed TVP (6) exists. This question is dealt with in
the next lemma.

Lemma 14 Consider system (4) with the matrix M = 0. Let f ∈ C[0, 1] and
assume that (37) is satisfied. Then, for any vector β ∈ Rn and a nonsingular matrix
B1 ∈ Rn×n there exists a unique solution of (6),

y(t) = B−1
1 β +

∫ t

1

f(s)
s

ds,

bounded by

|y(t)| ≤ |B−1
1 β|+ const. (‖f‖+ tα‖h‖δ).

Moreover, if f ∈ Cr[0, 1], h ∈ Cr[0, δ], and α ≥ r + 1, then y ∈ Cr+1[0, 1] and the
following estimates hold:

|y(k)(t)| ≤ const.
k−1∑
j=0

(
tα−1

)(k−1−j) ‖h(j)‖δ, t ∈ [0, δ),

|y(k)(t)| ≤ const.
k−1∑
j=0

(
t−1
)(k−1−j) ‖f (j)‖, t ∈ [δ, 1],

where k = 0, . . . , r + 1.

Proof: For M = 0 the system (4) reduces to

y′(t) =
f(t)
t
,

and its solution is

y(t) = y(1) +
∫ t

1

f(s)
s

ds.

To show that y ∈ C[0, 1], we follow the arguments given in the proof of Theorem
12. The terminal condition B1y(1) = β yields y(1) = B−1

1 β. Moreover,

|y(t)| ≤ |B−1
1 β|+

∫ δ

1

f(s)
s

ds+
∫ t

δ

f(s)
s

ds

≤ |B−1
1 β|+ ‖f‖| ln(δ)|+ const. ‖h‖δ

∫ t

δ

sα−1 ds

≤ |B−1
1 β|+ const. (‖f‖+ ‖h‖δ).

Estimates for the higher derivatives of y follow in an analogous manner. �
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6 Differences between linear systems with smooth and unsmooth
inhomogeneity

Before discussing the case of an arbitrary spectrum of M which enables more general
well-posed IVPs, TVPs, and BVPs, we summarize here the results from the previous
sections and point out the differences when compared to the framework given in
[9, 19], where linear systems with smooth inhomogeneity,

y′(t) =
M

t
y(t) + f(t), f ∈ C[0, 1], (41)

were studied.

6.1 Eigenvalues with negative real parts

Let us consider the ODE system (41) and assume that all eigenvalues of M have
negative real parts. Then, according to [9, 19], y ∈ C[0, 1] if and only if y(0) = 0.
Therefore, the following IVP has a unique solution:

y′(t) =
M

t
y(t) + f(t), y(0) = 0.

Moreover, y ∈ Cr+1[0, 1] if f ∈ Cr[0, 1], r ≥ 0.
According to Theorem 5, ODE system (4) has a solution y ∈ C[0, 1] if and only if
My(0) = −f(0). Consequently, the IVP specified below has a unique solution,

y′(t) =
M

t
y(t) +

f(t)
t
, My(0) = −f(0).

Moreover, y ∈ Cr[0, 1] if f ∈ Cr[0, 1], r ≥ 0.
The conditions y(0) = 0 and My(0) = −f(0) are necessary and sufficient for the
solution y ∈ C[0, 1] in case of the system (41) and (4), respectively.

6.2 Eigenvalues with positive real parts

For this spectrum of M neither for system (41) nor for (4) there exists a well-posed
IVP. In both cases we need to specify the boundary conditions at t = 1 and solve
the TVP. In particular, the TVP

y′(t) =
M

t
y(t) + f(t), B1y(1) = β,

where B1 ∈ Rn×n is nonsingular and β ∈ Rn, has a unique solution y ∈ C[0, 1].
This solution satisfies y(0) = 0. If f ∈ Cr[0, 1] and σ+ > r + 1 then y ∈ Cr+1[0, 1],
cf. [9]. In contrast to system (41), we need extra smoothness of the function f to
obtain a unique continuous solution of the TVP

y′(t) =
M

t
y(t) +

f(t)
t
, B1y(1) = β,

where B1 ∈ Rn×n is nonsingular and β ∈ Rn. Theorem 9 states that y ∈ C[0, 1] if
f ∈ C1[0, 1]. Additionally, if f ∈ Cr+2[0, 1] and σ+ > r+1 then y ∈ Cr+1[0, 1], r ≥ 0.
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6.3 Eigenvalues λ = 0
If all eigenvalues of M are zero, then the well-posed IVP associated with (41) takes
the form

y′(t) =
M

t
y(t) + f(t), My(0) = 0, B0y(0) = β,

where the m×m matrix B0R̃ is nonsingular, β ∈ Rm, and m = dimX0. The
initial condition My(0) = 0 is necessary and sufficient for the solution to by con-
tinuous. The remaining m conditions necessary for its uniqueness are specified by
B0y(0) = β. For f ∈ Cr[0, 1], r ≥ 0, y ∈ Cr+1[0, 1], see [9, 19].
In case of the unsmooth inhomogeneity in (4), f has to satisfy an additional re-
quirement,

f(t) = O(tαh(t)) as t→ 0, α > 0, h ∈ C[0, δ], δ > 0,

to enable a continuous solution of the following IVP:

y′(t) =
M

t
y(t) +

f(t)
t
, My(0) = 0, B0y(0) = β,

where the m×m matrix B0R̃ is nonsingular, β ∈ Rm, and m = dimX0.

Finally, if f ∈ Cr[0, 1], h ∈ Cr[0, δ], and α ≥ r + 1, then y ∈ Cr+1[0, 1].

7 General IVPs, TVPs and BVPs
In this section we study general IVPs, TVPs and BVPs. For the subsequent discus-
sion, we have to introduce the following notation.

X+ is the invariant subspace associated with the eigenvalues with positive real parts;

X
(e)
0 is the space of eigenvectors associated with eigenvalues λ = 0;

X− is the invariant subspace associated with the eigenvalues with negative real parts;

X
(h)
0 is the space of generalized eigenvectors associated with the eigenvalue λ = 0;

S is the orthogonal projection onto X+;

R is the orthogonal projection onto X(e)
0 ;

P := R+ S is the projection onto X+ ⊕X(e)
0 ;

Q := I − P is the projection onto X− ⊕X(h)
0 ;

Z is the orthogonal projection onto X(e)
0 ⊕X(h)

0 ;

N is the orthogonal projection onto X−;

H is the orthogonal projection onto X(h)
0 .

All projections are constructed using the eigenbasis of M .

Firstly, we discuss general IVPs (5) and TVPs (6), where all conditions which
are necessary and sufficient to specify a unique solutions y ∈ C[0, 1] are posed at
only one point, either at t = 0 or at t = 1. According to the results derived above,
restrictions on the spectrum of M need to be made.
A.1 For IVP (5) we assume that the matrix M has only eigenvalues with nonpos-

itive real parts and if σ = 0 then λ = 0.
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A.2 For TVP (6) we assume that the matrix M has only eigenvalues with nonneg-
ative real parts and if σ = 0 then λ = 0. Additionally, if zero is an eigenvalue
of M , then the associated invariant subspace is assumed to be the eigenspace
of M .

Results formulated below without proofs are simple consequences of Theorems 5,
9, 12, and Lemma 14.

Lemma 15 Let us assume that f ∈ C[0, 1], Sf ∈ C1[0, 1] and Zf satisfies condi-
tion (37).

(i) Assume A.1 to hold. Let y be a continuous solution of IVP (5). Then

MNy(0) = −Nf(0), Hy(0) = 0.

(ii) Assume A.2 to hold. Let y be a continuous solution of TVP (6). Then

MSy(0) = −Sf(0).

In both cases

My(0) = M(S +N)y(0) = −f(0).

The statement of Lemma 15 means that the conditions which are necessary for
the solution of IVP (5) to be continuous are equivalent to

rankM = rankH + rankN = rankQ = n− rankR

initial conditions, which the solution y has to satisfy. In case of TVP (6), where A.2
holds, any solution of (4) is continuous on [0, 1] and no regularity conditions have
to be prescribed.

From Theorems 5 and 12 we obtain the following result for a general IVP (5).

Theorem 16 Let us assume that A.1 holds, the m×m matrix B0R̃ is nonsingular,
where the matrix R̃ consists of the linear independent columns of the projection
matrix R, and β ∈ Rm. Then, for every f ∈ C[0, 1] such that Zf satisfies (37),
there exists a unique solution y ∈ C[0, 1] of IVP (5),

y(t) = R̃(B0R̃)−1β +
∫ 1

0

s−Ms−1f(st) ds.

This solution is bounded by

|y(t)| ≤ const.(tα‖h‖δ + ‖f‖) + |R̃(B0R̃)−1β|.

Let Nf ∈ Cr+1[0, 1] and Zf ∈ Cr[0, 1] satisfy condition (37) with α ≥ r + 1. Then
y ∈ Cr+1[0, 1].

The analogous result for a general TVP (6) follows from Theorems 9 and 12.
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Theorem 17 Let us assume that A.2 holds, B1 ∈ Rn×n is nonsingular, and
β ∈ Rn. Then, for every f ∈ C[0, 1] such that Rf satisfies (37) and Sf ∈ C1[0, 1],
there exists a unique solution y ∈ C[0, 1] of TVP (6),

y(t) = tMB−1
1 β + tM

∫ t

1

s−Ms−1f(s) ds, t ∈ (0, 1].

This solution satisfies My(0) = −f(0) and is bounded by

|y(t)| ≤ const. (1 + tσ+(1 + | ln(t)|nmax−1))|B−1
1 β|+ const. (‖f‖+ tα‖h‖δ).

Let r < σ+ ≤ r + 1, Sf ∈ Cr+2[0, 1], and Zf ∈ Cr−1[0, 1] satisfy condition (37)
with α ≥ r, then y ∈ Cr[0, 1]. For σ+ > r + 1, Sf ∈ Cr+2[0, 1], and Zf ∈ Cr[0, 1]
satisfying condition (37) with α ≥ r + 1, we have y ∈ Cr+1[0, 1]. Here, σ+ denotes
the smallest positive real part of the eigenvalues of M and nmax is the dimension
of the largest Jordan box of M .

Further, we study the linear BVPs of the form

y′(t) =
M

t
y(t) +

f(t)
t
, t ∈ (0, 1], y ∈ C[0, 1], B0y(0) +B1y(1) = β, (42)

where the matrix M may have an arbitrary spectrum, B0, B1 ∈ Rm×n, m ≤ n,
β ∈ Rm, and f ∈ C[0, 1]. It is clear from the previous considerations that the form
of the boundary conditions which guarantee the existence of a unique continuous
solution of (42) will depend on the spectral properties of the coefficient matrix M .
Before proceeding with the analysis, we show the following auxiliary results.

Lemma 18 Let R be a projection onto the eigenspace associated with eigenvalues
λ = 0. Then

tMR = R, t ∈ [0, 1].

Proof: Let M and R be represented using the eigenbasis of M , this means
M = EJE−1 and R = ER̂E−1, where R̂ is a diagonal matrix with ones at the
positions corresponding to the eigenvalues λ = 0 and zero entries elsewhere. It is
sufficient to show tJ R̂ = R̂ since this implies

tMR = EtJE−1ER̂E−1 = ER̂E−1 = R.

The multiplication tJ R̂ means an operation on columns of tJ and due to the struc-
ture of R̂, the result of the matrix multiplication tJ R̂ is a matrix whose columns
corresponding to the eigenvectors associated with λ = 0 remain unchanged and all
other columns vanish. Clearly, the nontrivial columns of tJ R̂ are unit vectors, since
tλ = 1 for λ = 0, and the result, tJ R̂ = R̂, follows. �

Lemma 19 The projection matrices S, Z, and N and the matrix tM commutate.
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Proof: We show the result for the projection S, for the other projections the proof
is analogous. First, we prove that for the Jordan canonical form tJ Ŝ = ŜtJ holds for
t ∈ [0, 1], where M = EJE−1 and S = EŜE−1. The matrix Ŝ is a diagonal matrix
with ones at the positions corresponding to the eigenvalues with positive real parts
and zero entries elsewhere. The multiplication ŜtJ means operations on rows of tJ ,
while the multiplication tJ Ŝ represents operations on columns of tJ . Being aware
of the block structure of matrix tJ we see that the result of ŜtJ or tJ Ŝ is a matrix
containing Jordan boxes corresponding to eigenvalues with positive real parts and
tJ Ŝ = ŜtJ for t ∈ [0, 1]. This implies

tMS = EtJE−1EŜE−1 = EŜE−1EtJE−1 = StM

and the statement follows. �

Note that the above projections S, Z, and N commutate with M .

To specify the boundary conditions which guarantee the well-posedness of BVP
(42) the following lemma is required.

Lemma 20 Consider the following BVP:

y′(t) =
M

t
y(t) +

f(t)
t
, t ∈ (0, 1],

Hy(0) = 0, MNy(0) = −Nf(0), Sy(1) = Sγ, Ry(0) = Rγ.

Then, for every f ∈ C[0, 1], such that Zf satisfies (37) and Sf ∈ C1[0, 1], and for
any constant vector γ, there exist a unique continuous solution of the form

y(t) = tMPγ + tMS

∫ t

1

s−M−If(s) ds+ (Q+R)
∫ 1

0

s−M−If(st) ds.

Proof: According to the previous results, the contributions to the solution y

depend on the signs of the eigenvalues of M . For the eigenvalues with negative real
parts the contribution has the form

y−(t) = N

∫ 1

0

s−M−If(st) ds, t ∈ [0, 1].

For the eigenvalues with positive real parts the contribution is given by

y+(t) = tMSγ + tMS

∫ t

1

s−M−If(s) ds, t ∈ (0, 1],

and can be continuously extended to t = 0. Finally, for the eigenvalues λ = 0, we
have

y0(t) = Rγ + Z

∫ 1

0

s−M−If(st) ds, t ∈ [0, 1].
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The solution y is the sum of all contributions, y(t) = (N + S + Z)y(t). Therefore,
we obtain

y(t) = Rγ + tMSγ + (N +R+H)
∫ 1

0

s−M−If(st) ds+ tMS

∫ t

1

s−M−If(s) ds

= tMPγ + tMS

∫ t

1

s−M−If(s) ds+ (Q+R)
∫ 1

0

s−M−If(st) ds.

We now evaluate y at the boundaries to show that the above boundary conditions
are satisfied. According to (37), Zf(0) = 0 holds. This yields

(R+H)y(0) = Zy(0) = Rγ + Z

∫ 1

0

s−M−If(0) ds = Rγ +
∫ 1

0

s−M−I dsZf(0) = Rγ.

Therefore Hy(0) = 0 and Ry(0) = Rγ. Moreover,

Sy(t) = tMSγ + tMS

∫ t

1

s−M−If(s) ds⇒ Sy(1) = Sγ.

Finally, we show that MNy(0) = −Nf(0). First note that

MNy(0) = NM

∫ 1

0

s−M−I dsf(0).

According to (16),

M

∫ 1

t

s−M−I ds = t−M − I

for t ∈ (0, 1]. Taking into account (17) and letting t→ 0+, we obtain

NM

∫ 1

0

s−M−I ds = lim
t→0+

Nt−M −N = −N,

since the matrix Nt−M consist only of Jordan boxes corresponding to eigenvalues
with negative real parts. Therefore MNy(0) = −Nf(0). �

We now turn to the general boundary conditions specified in (42). For the inves-
tigation of these condition, we have to rewrite the representation of the solution y,
especially the term y0,

y0(t) = Rγ + Z

∫ 1

0

s−M−If(st) ds = Rγ + ZtM
∫ t

0

s−M−If(s) ds

= Rγ + tMR

∫ t

0

s−M−If(s) ds+ tMH

∫ t

0

s−M−If(s) ds

= Rγ̃ + tMR

∫ t

1

s−M−If(s) ds+ tMH

∫ t

0

s−M−If(s) ds,

where

γ̃ := γ +
∫ 1

0

s−M−If(s) ds.
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Remark 21 Note that the function

tMH

∫ t

0

s−M−If(s) ds = tMHt−M
∫ 1

0

s−M−If(st) ds,

is continuous on [0, 1]. In order to see this, we again use functions zm and z∞ given
by (23) and (24). Due to (15), (36), (37), and (39), we have

lim
m→∞

|(ln t)kz∞(t)− (ln t)kzm(t)| ≤ ‖h‖δ‖tα(ln t)k‖ lim
m→∞

∫ 1
m

0

∣∣s−M ∣∣ sα−1 ds = 0

for k ∈ N ∪ {0}. Since each entry of the matrix tMHt−M is a sum of terms
const. (ln t)k, k ∈ N ∪{0}, the function

tMHt−M
∫ 1

0

s−M−If(st) ds = tMHt−Mz∞

is continuous on [0, 1].

Consequently, the general continuous solution of the ODE system given in (42)
can be represented as

y(t) = tMPγ + tMP

∫ t

1

s−M−If(s) ds+ tMQ

∫ t

0

s−M−If(s) ds, (43)

and satisfies the following boundary conditions:

Hy(0) = 0, MNy(0) = −Nf(0), Py(1) = Pγ.

In the following lemma, we use the superposition principle to rewrite the solution
(43) of (42) in a way convenient to discus the boundary conditions specified in (42).

Lemma 22 Let us assume that the inhomogeneity f ∈ C[0, 1] is given in such a
way that Zf satisfies (37) and Sf ∈ C1[0, 1]. Let the n ×m matrix P̃ be a matrix
consisting of the linearly independent columns of P . Then the general continuous
solution of (42) has the form

y(t) = ỹ(t) + Y (t)α, t ∈ [0, 1], (44)

where α is a constant m-dimensional vector and ỹ is the unique solution of

ỹ′(y) =
M

t
ỹ(t) +

f(t)
t
, t ∈ [0, 1], Hỹ(0) = 0, MNỹ(0) = −Nf(0), P ỹ(1) = 0,

and Y (t) is the unique continuous fundamental solution matrix satisfying

Y ′(t) =
M

t
Y (t), t ∈ [0, 1], Y (1) = P̃ .
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The case of the general boundary conditions (42) is covered by the following
lemma.

Lemma 23 Let f ∈ C[0, 1] be given in such a way that Zf satisfies (37) and
Sf ∈ C1[0, 1]. Then, there exists a unique solution y ∈ C[0, 1] of BVP (42) if and
only if the m×m matrix

B0R̃+B1P̃

is nonsingular. Here, B0, B1 ∈ Rm×n, β ∈ Rm, and m = rankP .

Proof: We use (43) and (44) to calculate y(0) and y(1). Since Hy(0) = 0 and
limt→0 t

MS = 0, we first deduce

y(0) = (H + P +N)y(0) = (P +N)(ỹ(0) + Y (0)α) = (P +N)ỹ(0) + PY (0)α

= (P +N)ỹ(0) + (R+ S)Y (0)α = (P +N)ỹ(0) + R̃α.

Moreover, from P̃ y(1) = 0 and 1MS = S, we have

y(1) = (Q+ P )y(1) = (Q+ P )(ỹ(1) + Y (1)α) = Qỹ(1) + (QY (1) + P̃ )α

= Qỹ(1) + P̃α.

Finally, we substitute y(0) and y(1) into the boundary condition and obtain

B0y(0) +B1y(1) = B0

(
(P +N)ỹ(0) + R̃α

)
+B1

(
Qỹ(1) + P̃α

)
= β.

Thus,(
B0R̃+B1P̃

)
α = β −B0(P ỹ(0) +Nỹ(0))−B1Qỹ(1),

and the unknown vector α can be uniquely determined if the m×m matrix

B0R̃+B1P̃

is nonsingular. This completes the proof. �

The following theorem stated without proof is a consequence of the above results.

Theorem 24 Consider BVP (42), where the inhomogeneity f is given in such
a way such that f ∈ C[0, 1], Zf satisfies (37), and Sf ∈ C1[0, 1]. Moreover, let
B0, B1 ∈ Rm×n, β ∈ Rm, and m = rankP. Let us assume that the m ×m matrix
B0R̃+B1P̃ is nonsingular. Then, BVP (42) has a unique continuous solution y ∈
C[0, 1]. This solution satisfies two initial conditions,

Hy(0) = 0, MNy(0) = −Nf(0)

which are necessary and sufficient for y ∈ C[0, 1].
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8 Collocation method
In this section we propose and analyze the polynomial collocation, cf. [8], for the
numerical treatment of IVP (5) which we assume to be well-posed,

y′(t) =
M

t
y(t) +

f(t)
t
, B0y(0) = β,

where the matrix M has only eigenvalues with nonpositive real parts, and if σ = 0
then λ = 0. Moreover, B0 ∈ Rm×n, β ∈ Rm, where rankR = m ≤ n. For the
numerical treatment, we have to augment the m initial conditions specified by
B0y(0) = β by the n −m linearly independent initial conditions singled out from
the set

Hy(0) = 0, MNy(0) = −Nf(0).

Consequently, we have to solve the initial value problem,

y′(t) =
M

t
y(t) +

f(t)
t
, B0y(0) = β, Hy(0) = 0, MNy(0) = −Nf(0). (45)

We first discretize the analytical problem (45). The interval of integration [0, 1] is
partitioned by an equidistant mesh ∆,

∆ := {0 = t0 < t1 < . . . < tI−1 < tI = 1, tj = jh, j = 0, . . . , I = 1/h},

and in each subinterval [tj , tj+1], we introduce k collocation nodes tjl := tj+ulh, j =
0, . . . , I − 1, l = 1, . . . , k, where 0 < u1 < u2 < . . . < uk ≤ 1. The computational
grid including the mesh points and the collocation points is shown in Figure 1.

t0 . . . tj

. . . tjl . . .

tj+1 . . . tI︸ ︷︷ ︸
h

Figure 1 The computational grid

By Pk,h we denote the class of piecewise polynomial function of degree less or
equal to k on each subinterval [tj , tj+1]. We approximate the analytical solution y

by a piecewise polynomial function p ∈ Pk,h ∩ C[0, 1], p(t) := pj(t), t ∈ [tj , tj+1],
j = 0, . . . , I − 1 such that p satisfies ODE system (4) at the collocation points,

p′(tjl)−
M

tjl
p(tjl) =

f(tjl)
tjl

, l = 1, . . . , k, j = 0, . . . , I − 1, (46)

together with the continuity relations,

pj−1(tj) = pj(tj), j = 1, . . . , I − 1, (47)



Rachůnková et al. Page 30 of 41

and p0 satisfies the initial conditions

B0p(0) = γ, Hp(0) = 0, MNp(0) = −Nf(0). (48)

Note, that rankB0 + rankH + rankN = n. Since in each subinterval [tj , tj+1]
p(t) = pj(t) is a polynomial of degree smaller or equal to k, the total number of
unknowns, the coefficients in the ansatz function p, is (k + 1)In. On the other
hand, the system (46) consists of kIn equations, (47) provides (I − 1)n, and (48)
n conditions, which together add up to (k + 1)In. This means that the collocation
scheme (46), (47), and (48) is closed.

The collocation applied to solve (41) was studied in [8], where in particular,
unique solvability of the collocation scheme and the convergence properties have
been shown. For reader’s convenience, we recapitulate in the next theorem an im-
portant auxiliary result from [8] required in the subsequent investigations. Note that
since analytical problem (45) has a unique solution, its value y(0) is known. There-
fore, in Theorem 4.1 [8], a slightly simpler problem is considered, where instead of
the initial conditions the correct value of y(0) := δ is prescribed.

Theorem 25 (Theorem 4.1 in [8]) Let us consider the collocation scheme,

p′(tjl)−
M

tjl
p(tjl) = Mµ cjl

tβjl
, l = 1, . . . , k, j = 0, . . . I − 1, p(0) = δ, (49)

where µ, β = 0, 1, and p ∈ Pk,h ∩ C[0, 1]. Then problem (49) has a unique solution
provided that h is sufficiently small. This solution satisfies

|p(t)| ≤ const.
(
|δ|+ | ln(h)|d |Mδ|+ | ln(h)|(β(d−µ))+C

)
, t ∈ [0, 1],

where C = max0≤j≤I−1 max1≤l≤k |cjl|, d is the dimension of the largest Jordan box
of M associated to the eigenvalue λ = 0 and

(x)+ =

{
x x ≥ 0,
0 x < 0.

We are now in the position to formulate the convergence result for the collocation
method.

Theorem 26 Let us consider the initial value problem

y′(t)− M

t
y(t) =

f(t)
t
, y(0) = δ,

where Hδ = 0 and MNδ = −Nf(0). Let us assume that the function f satisfies
Nf ∈ Ck+1[0, 1], Zf = O(tαz(t)), with α ≥ k + 1, Zf ∈ Ck[0, 1] and z ∈ Ck[0, 1].
Let the function p ∈ Pk,h ∩ C[0, 1] satisfy the collocation scheme

p′(tjl)−
M

tjl
p(tjl) =

f(tjl)
tjl

, l = 1, . . . k, j = 0, . . . , I − 1, p(0) = δ.
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Then

|p(t)− y(t)| ≤ const. hk, t ∈ [0, 1].

Proof: The idea of the proof is to introduce an error function e ∈ Pk,h ∩ C[0, 1]
and investigate how it is related to the global error p − y of the scheme. Let e be
defined as follows:

e′(tjl) := y′(tjl)− p′(tjl), l = 1, . . . , k, j = 0, . . . , I − 1, e(0) := 0.

Since on each subinterval [tj , tj+1] the function e′(t) is a polynomial of degree less
or equal to k − 1 it is uniquely determined by its values at k distinct points in this
interval,

e′(t) =
k∑
i=1

li

(
t− tj
h

)
y′(tji)− p′(t), t ∈ [tj , tj+1],

where

li(t) = w(t)/ ((t− ui)w′(ui)) , i = 1, . . . , k, w(t) = (t− u1)(t− u2) · · · (t− uk).

Since y ∈ Ck+1[0, 1] the interpolation error is O(hk) and hence,

e′(t) = y′(t)− p′(t) +O(hk).

By integration in [0, t], we obtain

e(t) = y(t)− p(t) +O(hkt)

which means that e differs from y − p by O(hk) terms. Moreover, we see that e
satisfies the following collocation scheme:

e′(tjl)−
M

tjl
e(tjl) = y′(tjl)−

M

tjl
y(tjl)−

(
p′(tjl)−

M

tjl
p(tjl)

)
− M

tjl
O(tjlhk)

=
f(tjl)
tjl

− f(tjl)
tjl

− M

tjl
O(tjlhk) = O(hk), e(0) = 0.

According to Theorem 25, we obtain e(t) = O(hk). This together with e(t) =
y(t)− p(t) +O(hk) yields

|p(t)− y(t)| ≤ const. hk

and the result follows. �

The especially attractive property of the collocation is the so called superconver-
gence. For regular ODEs and certain choices of the collocation points (Gaussian,
Lobatto, Radau), the convergence order in the mesh points can be considerably
higher than k, provided that the solution y is sufficiently smooth. For the Gaus-
sian points the superconvergence order is O(h2k). Since already for the problem
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(41) counterexamples show that the superconvergence does not hold [8], we do not
expect it for the problem at hand either. However, the so-called small superconver-
gence uniform in t can be shown, see next theorem. The main prerequisite for the
proof is the property

∫ 1

0

w(s) ds = 0 (50)

which holds for an appropriate choice of the collocation points.

Theorem 27 Let Nf ∈ Ck+2[0, 1], Zf ∈ Ck+1[0, 1] and Zf = O(tαz(t)), where
α ≥ k + 2 and z ∈ Ck+1[0, 1]. If (50) holds, then the estimate for the global error
given in Theorem 26 can be replaced by

|p(t)− y(t)| ≤ const. hk+1| ln(h)|(d−1)+ .

Proof: Consider again the error function e defined in Theorem 26. Due to the
smoothness assumptions made for the problem data y ∈ Ck+2[0, 1] follows. There-
fore,

e′(t) =
k∑
i=1

li

(
t− tj
h

)
y′(tji)− p′(t)

= y′(t)− p′(t) +
hk

k!
w

(
t− tj
h

)
y(k+1)(tj) +O(hk+1), t ∈ [tj , tj+1].

We integrate e′ on [0, 1] and use (50) to obtain

e(t) = y(t)− p(t) +
j−1∑
i=0

hk

k!
y(k+1)(ti)

∫ ti+1

ti

w

(
s− ti
h

)
ds

+
hk

k!
y(k+1)(tj)

∫ t

tj

w

(
s− tj
h

)
ds+O(thk+1) = y(t)− p(t) +O(thk+1).

This implies

e′(tjl)−
M

tjl
e(tjl) = y′(tjl)−

M

tjl
y(tjl)−

(
p′(tjl)−

M

tjl
p(tjl)

)
− M

tjl
O(hk+1)

= −M
tjl
O(hk+1), e(0) = 0.

According to Theorem 25 we have

|e(t)| ≤ const.
(
| ln(h)|(d−1)+hk+1

)
,

and finally

|p(t)− y(t)| ≤ const.
(
| ln(h)|(d−1)+hk+1

)
.

This completes the proof. �
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9 Numerical experiments
In order to illustrate the theoretical results derived in the previous section, we
have constructed model problems and run the collocation code bvpsuite on coher-
ently refined meshes to compare the empirically estimated convergence orders of
the scheme with the theoretically predicted ones.

9.1 General IVP with smooth solution

We first deal with a linear system of ODEs,

y′(t) =
1
t

 −4 2 −1
−8 4 −2
−12 8 −4

 y(t) +
f(t)
t
, t ∈ (0, 1], (51)

subject to initial conditions

B0y(0) =
(

3 −2 1
)
y(0) = 1,

(
−2 2 −1
−2 1 0

)
y(0) =

(
0
0

)
. (52)

Here,

f(t) =

 t exp(t) + 2 exp(t) + sin(t) cos(t) + t cos2(t)− t sin2(t)
2t exp(t) + 4 exp(t) + 2 sin(t) cos(t) + 2t cos2(t)− 2t sin2(t) + 2t2

2t exp(t) + 4 exp(t) + t cos2(t)− t sin2(t) + 4t2

 ,

where f(0) = (2 4 4)T and the exact solution y ∈ C∞[0, 1] of IVP (51), (52) reads:

y(t) =

 exp(t) + sin(t) cos(t)
2 exp(t) + 2 sin(t) cos(t) + t2

2 exp(t) + sin(t) cos(t) + 2t2

 , y(0) =

 1
2
2

 .

First of all, note that y(0) satisfies (52). The matrix M has a double eigenvalue
λ1 = λ2 = −2, a single eigenvalue λ3 = 0, and the Jordan canonical form is

J =

 −2 1 0
0 −2 0
0 0 0

 .

Therefore, the second set of two linearly independent initial conditions in (52) are
regularity conditions, necessary and sufficient for y ∈ C[0, 1]. The remaining free
constant has to be calculated from the first initial condition in (52). With the
projection matrices

N =

 1 0 0
2 0 0
2 −1 1

 , R =

 0 0 0
−2 1 0
−2 1 0

 ,
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it is easily seen that the condition MNy(0) = −Nf(0) is satisfied. Moreover, the
1× 1 matrix

B0R̃ = (3 − 2 1)

 0
1
1

 = −1

is nonsingular, and therefore IVP (51), (52) is well-posed.

In Tables 1 to 4, we illustrate the convergence behaviour for the collocation exe-
cuted with equidistant and Gaussian collocation points. The number of the collo-
cation points k was chosen to vary from 1 to 8. However, in the simulations shown
here, we report only on the values 1 to 4 since the results for 5 to 8 are very similar.
The maximal global error is computed either in the mesh points,

‖Yh − Y ‖∞ := max
0≤j≤I

|p(tj)− y(tj)|,

or ‘uniformly’ in t,

‖Yh − Y ‖∞ := max
0≤i≤1.000

|p(τi)− y(τi)|, τi = ih, h = 10−3.

The estimated order of convergence p and the error constant c are estimated using
two consecutive meshes with the step sizes h and h/2.

Since ‖Yh − Y ‖ ≈ chp for h→ 0, we have

‖Yh−Y ‖∞ = chp, ‖Yh/2−Y ‖∞ = c

(
h

2

)p
⇒ p = ln

(
‖Yh − Y ‖∞
‖Yh/2 − Y ‖∞

)
1

ln(2)
.

Having p, we calculate the error constant from c = ‖Yh/2 − Y ‖∞/
(
h
2

)p
.

According to the experiments, the empirical convergence orders very well reflect
the theoretical findings. For Gaussian points, we observe the small superconvergence
order k + 1 uniformly in t. The superconvergence order 2k in the mesh points does
not hold in general, see case k = 4. For uniformly spaced equidistant collocation
points we again observe the order k+ 1 which for this model is slightly better than
we can show theoretically.

9.2 General IVP with ‘unsmooth’ solution

Next, we discuss an IVP whose solution is less smooth than in the previous model.
The problem reads:

y′(t) =
M

t
y(t)+

f(t)
t
, (1 0 0)y(0) =

1
4
,

(
−1 1 0

1 −1 1

)
y(0) =

(
0
0

)
, (53)

where

M =

 −4 0 0
−2 −2 0

2 −2 0

 , f(t) =

 exp(t)
exp(t) + t

t+ 1
2 t

1
2 sin(t) + t

3
2 cos(t)

 .
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The eigenvalues of M are λ1 = −4, λ2 = −2, and λ3 = 0 and the initial conditions
are designed in such a way that IVP (53) is well-posed with an analytical solution
y ∈ C1[0, 1] given by

y(t) =

 t−4
(
6− 6 exp(t) + 6t exp(t)− 3t2 exp(t) + t3 exp(t)

)
t−4

(
6− 6 exp(t) + 6t exp(t)− 3t2 exp(t) + t3 exp(t)

)
+ t

3
t
3 +
√
t sin(t)

 .

The related numerical results are listed for k = 4 in Table 5. As expected, we
observe an order reduction down to 1.5, not only for k = 4, but also for all other
values of k.

9.3 General TVP with small positive eigenvalues

The case of the matrix M having eigenvalues with positive real parts has not been
investigated yet, since the related theory is particularly tedious and involved, cf.
[18]. However, some interesting numerical simulations are already available and
therefore, the results of these experiments are shortly discussed here to complete
the picture.

First we consider the following model problem

y′(t) =
M

t
y(t) +

f(t)
t
, B1y(1) =

 4 −1 1
0 1 0
3 −1 1

 y(1) =

 −1
7
2

 , (54)

where

M =

 3.5 −1 1
−14 5 −4
−24.5 8 −7

 , f(t) =

 1− 4t2

4 + t2 ln(t)
1 + t2 ln(t) + 14t2

 .

The solution y ∈ C[0, 1] of TVP (54) is

y(t) =

 3
√
t− 2t2 − 4

12
√
t− 8 + 4t+ t2 ln(t)− t2

3
√
t+ 4t+ 5 + 6t2 + t2 ln(t)

 .

In Tables 6 and 7, we again see the order reduction down to 0.5, due to the fact that
the first derivative y′ is unbounded for t → 0. Moreover, we see that the problem
is hard to solve and the convergence is very slow – for h ≈ 2·10−3 the level of the
global error is only ‖Yh − Y ‖∞ ≈ 10−1.

The remedy for this lack of smoothness due to the small size of the positive
eigenvalues of M is to make a change of the independent variable [6], t = τµ for
some µ > 1. Then ỹ(τ) := y(τµ) satisfies the transformed ODE system

ỹ′(τ) =
M̃

τ
y(τ) +

f̃(τ)
τ

, τ ∈ (0, 1], (55)
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where M̃ = µM and f̃(τ) = µf(τµ). The eigenvalues of the matrix M̃ become
λ̃ = µλ and therefore, the solution ỹ of the transformed equation is smoother than
the solution y of the original one. One can also interpret the above smoothing in
terms of the mesh adaptation – solving the ODE system (55) on an equidistant
mesh, means solving the original ODE system on a mesh which is adequately re-
fined close to the singularity, where the solution y and its derivatives rapidly change.

Consequently, we solve the TVP

ỹ′(τ) =
M̃

τ
y(τ)+

f̃(τ)
τ

, τ ∈ (0, 1], B1y(1) =

 4 −1 1
0 1 0
3 −1 1

 ỹ(1) =

 −1
7
2

 ,

(56)

where for µ = 8,

M̃ = µ

 3.5 −1 1
−14.0 5 −4
−24.5 8 −7

 =

 28 −8 8
−112 40 −32
−196 64 −56

 ,

and

f̃(τ) =

 µ− 4µτ2µ

4µ+ µτ2µ ln(τµ)
µ+ µτ2µ ln(τµ) + 14µτ2µ

 =

 8− 32τ16

32 + 8τ16 ln(τ8)
8 + 8τ16 ln(τ8) + 112τ16

 .

The eigenvalues of M are λ1 = 0.5, λ2 = 1, and λ3 = 0, and the eigenvalues of M̃
become λ̃1 = 4, λ̃2 = 8, and λ̃3 = 0. The solution of (56) reads:

y(τ) =

 3τ
µ
2 − 2τ2µ − 4

−8 + 12τ
µ
2 + 4τµ + τ2µ ln τµ − τ2µ

5 + 6τ2µ + 4τµ + τ2µ ln τµ + 3τ
µ
2

 =

 3τ4 − 2τ16 − 4
−8 + 12τ4 + 4τ8 + τ16 ln τ8 − τ16

5 + 6τ16 + 4τ8 + τ16 ln τ8 + 3τ4

 .

Tables 8 and 9 show the desired effect. For k = 2 and equidistant collocation points,
we observe theO(hk) behavior of the global error uniformly in t, as it was the case for
a smooth IVP. For the Gaussian points we see the superconvergence O(h2k), both,
in the mesh points and uniformly in t which is better than expected. However, this
very fast convergence for the Gaussian points is put into the right perspective by
the data for k = 3 in Table 9. Here, only the expected order O(hk+1) uniformly in
t can be observed.

The above experiments in context of the TVPs suggest the following working
hypothesis: The polynomial collocation shows the same convergence behaviour for
the well-posed TVPs and IVPs, provided that their solutions are appropriately
smooth. This hypothesis may become a subject of further studies.
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10 Conclusions
In this paper, we investigated the analytical properties of the singular BVP

y′(t) =
M

t
y(t) +

f(t)
t
, t ∈ (0, 1], y ∈ C[0, 1], B0y(0) +B1y(1) = β.

It turns out that the structure of the initial/terminal/boundary conditions to guar-
antee that the problem is well-posed and has a unique solution which is at least
continuous on [0, 1] depend on the spectral properties of the matrix M . Also, the
smoothness of higher derivatives of y depends on f and the spectrum of M . In-
terestingly, we can enlarge the positive real parts of the eigenvalues of M by a
properly chosen transformation of the independent variable. In such a way only the
smoothness of f influences the smoothness of y.

In context of an IVP with appropriately smooth solution, polynomial collocation
method executed with k arbitrary collocation points retains the classical stage order
O(hk) uniformly in t. For Gaussian points the small superconvergence orderO(hk+1)
can be shown to hold uniformly in t. In general, the superconvergence order O(h2k)
in the mesh points cannot be expected.
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Tables

equidistant points Gaussian points
uniform mesh uniform

h ‖Yh − Y ‖∞ c p ‖Yh − Y ‖∞ c p ‖Yh − Y ‖∞ c p

1/2 1.4e-01 – – 9.2e-02 – – 1.4e-01 – –

1/4 3.5e-02 2.1e+00 1.96 2.3e-02 3.7e-01 2.01 3.5e-02 2.1e+00 1.96

1/8 9.0e-03 2.2e+00 1.98 5.8e-03 3.7e-01 2.00 9.0e-03 2.2e+00 1.98

1/16 2.3e-03 2.2e+00 1.99 1.4e-03 3.7e-01 2.00 2.3e-03 2.2e+00 1.99

1/32 5.7e-04 2.3e+00 2.00 3.6e-04 3.7e-01 2.00 5.7e-04 2.3e+00 2.00

1/64 1.4e-04 2.3e+00 2.00 9.0e-05 3.7e-01 2.00 1.4e-04 2.3e+00 2.00

1/128 3.6e-05 2.3e+00 2.00 2.2e-05 3.7e-01 2.00 3.6e-05 2.3e+00 2.00

1/256 8.9e-06 2.3e+00 2.00 5.6e-06 3.7e-01 2.00 8.9e-06 2.3e+00 2.00

1/512 2.2e-06 2.3e+00 2.00 1.4e-06 3.7e-01 2.00 2.2e-06 2.3e+00 2.00

Table 1 IVP (51), (52): Convergence of the collocation scheme, k = 1

equidistant points Gaussian points
uniform mesh uniform

h ‖Yh − Y ‖∞ c p ‖Yh − Y ‖∞ c p ‖Yh − Y ‖∞ c p

1/2 3.7e-03 – – 3.7e-03 – – 7.8e-03 – –

1/4 5.1e-04 6.4e-01 2.87 1.6e-04 8.4e-02 4.50 1.2e-03 3.6e+00 2.73

1/8 6.6e-05 8.1e-01 2.96 8.1e-06 6.7e-02 4.34 1.5e-04 6.4e+00 2.93

1/16 8.3e-06 8.8e-01 2.99 4.4e-07 5.1e-02 4.21 2.0e-05 7.6e+00 2.98

1/32 1.0e-06 9.0e-01 3.00 2.5e-08 4.0e-02 4.12 2.5e-06 8.1e+00 2.99

1/64 1.3e-07 9.1e-01 3.00 1.5e-09 3.3e-02 4.06 3.1e-07 8.4e+00 3.00

1/128 1.6e-08 9.2e-01 3.00 9.3e-11 2.9e-02 4.03 3.8e-08 8.5e+00 3.00

1/256 2.0e-09 9.2e-01 3.00 5.7e-12 2.7e-02 4.02 4.8e-09 8.5e+00 3.00

1/512 2.6e-10 9.2e-01 3.00 3.5e-13 2.8e-02 4.03 6.0e-10 8.5e+00 3.00

Table 2 IVP (51), (52): Convergence of the collocation scheme, k = 2
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equidistant points Gaussian points
uniform mesh uniform

h ‖Yh − Y ‖∞ c p ‖Yh − Y ‖∞ c p ‖Yh − Y ‖∞ c p

1/2 2.0e-04 – – 3.6e-05 – – 3.5e-04 – –

1/4 7.4e-06 3.8e+00 4.75 5.1e-07 2.6e-03 6.15 1.3e-05 2.8e+02 4.73

1/8 3.0e-07 2.7e+00 4.63 7.6e-09 2.3e-03 6.07 5.4e-07 1.8e+02 4.61

1/16 1.4e-08 1.5e+00 4.46 1.2e-10 2.1e-03 6.03 2.5e-08 9.1e+01 4.44

1/32 6.9e-10 8.0e-01 4.30 1.8e-12 2.1e-03 6.02 1.3e-09 4.2e+01 4.29

1/64 3.8e-11 4.4e-01 4.18 2.0e-14 8.9e-03 6.44 7.1e-11 2.1e+01 4.17

1/128 2.2e-12 2.8e-01 4.10 3.4e-14 1.0e-15 -0.72 4.2e-12 1.3e+01 4.09

1/256 1.3e-13 2.0e-01 4.04 1.1e-14 1.1e-10 1.66 2.5e-13 8.5e+00 4.03

1/512 7.1e-15 8.0e-01 4.24 2.0e-14 5.9e-17 -0.94 1.6e-14 8.7e+00 4.03

Table 3 IVP (51), (52): Convergence of the collocation scheme, k = 3

equidistant points Gaussian points
uniform mesh uniform

h ‖Yh − Y ‖∞ c p ‖Yh − Y ‖∞ c p ‖Yh − Y ‖∞ c p

1/2 2.7e-05 – – 6.9e-07 – – 2.6e-05 – –

1/4 9.1e-07 2.2e+00 4.91 5.8e-09 8.2e-05 6.90 8.6e-07 3.7e+02 4.90

1/8 2.9e-08 2.7e+00 4.98 4.7e-11 8.7e-05 6.95 2.7e-08 5.0e+02 4.98

1/16 9.0e-10 2.9e+00 5.00 3.7e-13 9.3e-05 6.97 8.6e-10 5.4e+02 5.00

1/32 2.8e-11 2.9e+00 5.00 6.2e-15 4.7e-06 5.90 2.7e-11 5.6e+02 5.00

1/64 8.8e-13 3.1e+00 5.01 1.5e-14 7.4e-17 -1.28 8.4e-13 5.8e+02 5.01

1/128 3.1e-14 1.2e+00 4.84 8.9e-15 3.6e-13 0.77 2.4e-14 1.1e+03 5.10

1/256 2.7e-15 2.4e-04 3.52 7.1e-15 4.2e-14 0.32 3.1e-15 1.3e-04 2.97

1/512 1.3e-15 3.4e-12 1.00 1.3e-14 4.7e-17 -0.91 3.6e-15 6.4e-16 -0.19

Table 4 IVP (51), (52): Convergence of the collocation scheme, k = 4

equidistant points Gaussian points
uniform mesh uniform

h ‖Yh − Y ‖∞ c p ‖Yh − Y ‖∞ c p ‖Yh − Y ‖∞ c p

1/2 3.2e-03 – – 6.2e-04 – – 1.2e-03 – –

1/4 1.1e-03 1.0e-01 1.49 2.2e-04 1.7e-03 1.50 4.4e-04 1.9e-01 1.50

1/8 4.1e-04 1.0e-01 1.50 7.7e-05 1.7e-03 1.50 1.6e-04 1.9e-01 1.50

1/16 1.4e-04 1.0e-01 1.50 2.7e-05 1.7e-03 1.50 5.5e-05 1.9e-01 1.50

1/32 5.1e-05 1.0e-01 1.50 9.6e-06 1.7e-03 1.50 1.9e-05 1.9e-01 1.50

1/64 1.8e-05 1.0e-01 1.50 3.4e-06 1.7e-03 1.50 2.4e-04 3.6e-15 -3.65

1/128 8.0e-05 7.4e-11 -2.15 1.2e-06 1.7e-03 1.50 4.9e-03 3.4e-17 -4.34

1/356 7.9e-04 4.0e-14 -3.31 4.3e-07 1.7e-03 1.50 1.0e-01 2.1e-17 -4.40

1/512 2.5e-02 2.5e-19 -4.99 1.5e-07 1.7e-03 1.50 4.8e-01 1.5e-09 -2.20

Table 5 IVP (53): Convergence of the collocation scheme, k = 4
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equidistant points Gaussian points
uniform mesh uniform

h ‖Yh − Y ‖∞ c p ‖Yh − Y ‖∞ c p ‖Yh − Y ‖∞ c p

1/2 2.2e+00 – – 1.7e+00 – – 1.7e+00 – –

1/4 1.5e+00 5.4e+00 0.51 1.2e+00 2.4e+00 0.51 1.2e+00 5.4e+00 0.51

1/8 1.1e+00 5.3e+00 0.50 8.5e-01 2.4e+00 0.50 8.5e-01 5.3e+00 0.50

1/16 7.5e-01 5.3e+00 0.50 6.0e-01 2.4e+00 0.50 6.0e-01 5.2e+00 0.50

1/32 5.3e-01 5.2e+00 0.50 4.2e-01 2.4e+00 0.50 4.2e-01 5.2e+00 0.50

1/64 3.8e-01 5.2e+00 0.50 3.0e-01 2.4e+00 0.50 3.0e-01 5.2e+00 0.50

1/128 2.7e-01 5.2e+00 0.50 2.1e-01 2.4e+00 0.50 2.1e-01 5.2e+00 0.50

1/256 1.9e-01 5.2e+00 0.50 1.5e-01 2.4e+00 0.50 1.5e-01 5.2e+00 0.50

1/512 1.3e-01 5.2e+00 0.50 1.1e-01 2.4e+00 0.50 1.1e-01 5.2e+00 0.50

Table 6 TVP (54): Convergence of the collocation scheme, k = 2

equidistant points Gaussian points
uniform mesh uniform

h ‖Yh − Y ‖∞ c p ‖Yh − Y ‖∞ c p ‖Yh − Y ‖∞ c p

1/2 1.7e+00 – – 1.2e+00 – – 1.2e+00 – –

1/4 1.2e+00 4.7e+00 0.50 8.6e-01 1.7e+00 0.50 8.6e-01 5.2e+00 0.50

1/8 8.3e-01 4.7e+00 0.50 6.1e-01 1.7e+00 0.50 6.1e-01 5.1e+00 0.50

1/16 5.8e-01 4.7e+00 0.50 4.3e-01 1.7e+00 0.50 4.3e-01 5.1e+00 0.50

1/32 4.1e-01 4.7e+00 0.50 3.0e-01 1.7e+00 0.50 3.0e-01 5.1e+00 0.50

1/64 2.9e-01 4.7e+00 0.50 2.1e-01 1.7e+00 0.50 2.1e-01 5.1e+00 0.50

1/128 2.1e-01 4.7e+00 0.50 1.5e-01 1.7e+00 0.50 1.5e-01 5.1e+00 0.50

1/256 1.5e-01 4.7e+00 0.50 1.1e-01 1.7e+00 0.50 1.1e-01 5.1e+00 0.50

1/512 1.0e-01 4.7e+00 0.50 7.6e-02 1.7e+00 0.50 7.6e-02 5.1e+00 0.50

Table 7 TVP (54): Convergence of the collocation scheme, k = 3

equidistant points Gaussian points
uniform mesh uniform

h ‖Yh − Y ‖∞ c p ‖Yh − Y ‖∞ c p ‖Yh − Y ‖∞ c p

1/2 5.4e+00 – – 2.1e+00 – – 1.9e+00 – –

1/4 2.3e+00 5.2e+01 1.26 2.3e-01 1.8e+01 3.17 2.2e-01 2.2e+03 3.14

1/8 6.8e-01 1.7e+02 1.73 1.7e-02 4.2e+01 3.76 1.6e-02 1.3e+04 3.74

1/16 1.8e-01 3.1e+02 1.93 1.1e-03 6.1e+01 3.94 1.1e-03 2.6e+04 3.93

1/32 4.5e-02 3.8e+02 1.98 7.0e-05 6.9e+01 3.98 6.8e-05 3.3e+04 3.98

1/64 1.1e-02 4.1e+02 2.00 4.4e-06 7.2e+01 4.00 4.3e-06 3.5e+04 4.00

1/128 2.8e-03 4.2e+02 2.00 2.7e-07 7.3e+01 4.00 2.7e-07 3.6e+04 4.00

1/256 7.1e-04 4.2e+02 2.00 1.7e-08 7.3e+01 4.00 1.7e-08 3.6e+04 4.00

1/512 1.8e-04 4.2e+02 2.00 1.1e-09 7.4e+01 4.00 1.0e-09 3.6e+04 4.00

Table 8 TVP (56): Convergence of the collocation scheme, k = 2
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equidistant points Gaussian points
uniform mesh uniform

h ‖Yh − Y ‖∞ c p ‖Yh − Y ‖∞ c p ‖Yh − Y ‖∞ c p

1/2 2.2e+00 – – 1.5e-01 – – 1.5e-01 – –

1/4 2.8e-01 1.1e+03 2.98 3.7e-03 5.7e+00 5.29 4.1e-03 4.5e+05 5.18

1/8 2.1e-02 8.2e+03 3.71 8.3e-05 7.5e+00 5.49 8.3e-05 2.1e+06 5.62

1/16 1.4e-03 1.7e+04 3.93 5.2e-06 3.4e-01 4.00 5.2e-06 2.1e+03 4.00

1/32 8.8e-05 2.2e+04 3.98 3.3e-07 3.4e-01 4.00 3.3e-07 2.1e+03 4.00

1/64 5.5e-06 2.3e+04 4.00 2.0e-08 3.4e-01 4.00 2.0e-08 2.1e+03 4.00

1/128 3.5e-07 2.4e+04 4.00 1.3e-09 3.4e-01 4.00 1.3e-09 2.1e+03 4.00

1/256 2.2e-08 2.4e+04 4.00 8.0e-11 3.3e-01 3.99 8.0e-11 2.0e+03 3.99

1/512 1.4e-09 2.4e+04 4.00 7.0e-12 2.2e-02 3.50 7.0e-12 4.6e+01 3.50

Table 9 TVP (56): Convergence of the collocation scheme, k = 3
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