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A note on Aubin-Lions-Dubinskii lemmas

13/2013 G. Kitzler, J. Schöberl
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ENERGY NORM BASED ERROR ESTIMATORS FOR ADAPTIVE BEM
FOR HYPERSINGULAR INTEGRAL EQUATIONS

MARKUS AURADA, MICHAEL FEISCHL, THOMAS FÜHRER, MICHAEL KARKULIK,
AND DIRK PRAETORIUS

Abstract. For hypersingular integral equations in 2D and 3D, we analyze easy-to-imple-
ment error estimators like (h − h/2)-based estimators, two-level estimators, and averaging
on large patches and prove their equivalence. Moreover, we introduce some ZZ-type error
estimators. All of these a posteriori error estimators are analyzed within the framework of
localization techniques for the energy norm.

1. Introduction

Let Ω be a polygonal resp. polyhedral, bounded Lipschitz domain in Rd, d = 2, 3, with
boundary ∂Ω and let Γ ⊆ ∂Ω be a relatively open and connected surface with Lipschitz
boundary ∂Γ. Neumann screen problems on Γ yield the hypersingular integral equation

Wu(x) := − ∂

∂nx

∫

Γ

( ∂

∂ny

G(x, y)
)
u(y) dΓ(y) = f(x) for all x ∈ Γ(1)

with the hypersingular integral operator W . Here nx denotes the outer normal unit vector
of Ω at some point x ∈ Γ, and

G(x, y) :=

{
− 1

2π
log |x− y|, for d = 2,

+ 1
4π

1
|x−y|

, for d = 3,
(2)

is the fundamental solution of the Laplacian.

For some closed subspaces H
1/2
⋆ (Γ) of H1/2(Γ), it is known that W induces an equivalent

scalar product 〈〈u , v〉〉 := 〈Wu , v〉Γ on H
1/2
⋆ (Γ), where 〈· , ·〉Γ denotes the extended L2(Γ)-

scalar product. For some given right-hand side f ∈ H
1/2
⋆ (Γ)∗ in its dual space, (1) can

equivalently be stated as follows: Find u ∈ H
1/2
⋆ (Γ) such that

〈〈u , v〉〉 = 〈f , v〉Γ for all v ∈ H1/2
⋆ (Γ).(3)

In particular, the Lax-Milgram lemma applies and proves existence and uniqueness of the

solution u ∈ H
1/2
⋆ (Γ) of (3). (See Section 2.1–2.2 for the precise functional analytic setting.)

Based on a triangulation Tℓ of Γ, the Galerkin discretization employs conforming subspaces

Sp
⋆ (Tℓ) ⊂ H

1/2
⋆ (Γ) of Tℓ-piecewise polynomials of degree p ≥ 1. (See Section 2.3–2.5 for the
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precise discrete setting.) The Galerkin formulation then reads as follows: Find Uℓ ∈ Sp
⋆ (Tℓ)

such that

〈〈Uℓ , Vℓ〉〉 = 〈f , Vℓ〉Γ for all Vℓ ∈ Sp
⋆ (Tℓ).(4)

Again the Lax-Milgram lemma applies and proves existence and uniqueness of the solution
Uℓ ∈ Sp

⋆ (Tℓ) of (4). Throughout, the index ℓ corresponds to the level of mesh-generation
by an adaptive algorithm (see Algorithm 25 in Section 5 below), and the corresponding
quantities are discrete and computable.

In practice, the accuracy of a computed Galerkin solution Uℓ is spoilt by the singularities
of the unknown solution u. One remedy is to use triangulations which are appropriately
graded towards the singularities of u. These are usually obtained by adaptive mesh-refining
algorithms of the type

SOLV E =⇒ ESTIMATE =⇒ MARK =⇒ REFINE

which avoid any a priori knowledge of u and refine the triangulation locally, where the error
appears to be large. For the marking criterion serve the local contributions of certain a pos-
teriori error estimators which can be computed as soon as the discrete solution is known.
Empirically, these adaptive algorithms lead to convergence, and even the optimal rate of con-
vergence is regained. For hypersingular integral equations, several types of a posteriori error
estimators have been proposed, see e.g. [Car97, CP07a, CP07b, EFGP13, Heu02, HMS01,
MS00, FFKP13] and the references therein.

A posteriori error estimation is an important tool for reliable and efficient Galerkin bound-
ary element computations.

In this work, we consider (h − h/2)-type error estimators which have been introduced
for hypersingular integral equations in [EFGP13], two-level error estimators which go back
to [MS00, HMS01, Heu02], averaging on large patches [CP07a, CP07b], and ZZ-type error
estimators [FFKP13]. Surprisingly, the analysis of all these estimators can be done in one
common analytical frame, namely localization techniques for the H1/2-norm.

The contributions of this work can be concluded as follows: We generalize the analysis
of [CP07a, CP07b, EFGP13] from the lowest-order case p = 1 in 2D to general p ≥ 1 and
d = 2, 3. In the latter works, the localization of the energy norm is done by lowest-order nodal
interpolation and builds on a 2D result from [Car97]. The novel analysis allows to transfer the
analysis of (h−h/2)-type estimators [EFGP13], averaging on large patches [CP07a, CP07b],
and ZZ-type error estimators [FFKP13] to d = 2, 3 and p ≥ 1. Moreover, we generalize the
original analysis of [MS00] from uniform to adaptive triangulations and therefore provide an
alternative proof to that of [HMS01, Heu02].

The outline of the remainder of this paper reads as follows: We first fix the notation as
well as the continuous and discrete setting (Section 2). The heart of our analysis is the
localization (13) of the H1/2-norm (Section 3) which proves —under certain assumptions—

the norm equivalence ‖·‖
H

1/2
⋆ (Γ)

≃ ‖h1/2ℓ ∇(·)‖L2(Γ), i.e., the H
1/2-norm is replaced by a mesh-

size weighted H1-seminorm. Here, hℓ denotes the local mesh-size function of the underlying
triangulation Tℓ and ∇(·) denotes either the arc-length derivative for d = 2 resp. the surface
gradient for d = 3. With this at hand, we then generalize the (h− h/2)-type estimators to
d = 2, 3 and p ≥ 1 (Section 4.1), give a new analysis for two-level estimators (Section 4.2),
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transfer the analysis for averaging on large patches (Section 4.3), and introduce new ZZ-
type error estimators (Section 4.4) which generalize that of [FFKP13]. The final Section 5
provides some numerical experiments for d = 2, 3.

2. Preliminaries and notation

2.1. Sobolev spaces. The usual Lebesgue and Sobolev spaces on Γ are denoted by

L2(Γ) and H1(Γ). Moreover, H̃1(Γ) is the space of H1(Γ) functions which have a vanishing
trace on the relative boundary ∂Γ.

Sobolev spaces of fractional order 0 < s < 1 are defined by the K-method of inter-
polation [McL00, Appendix B]: For 0 < s < 1, we let Hs(Γ) := [L2(Γ), H1(Γ)]s and

H̃s(Γ) := [L2(Γ), H̃1(Γ)]s. For 0 < s ≤ 1, Sobolev spaces of negative order are defined

by duality H−s(Γ) := H̃s(Γ)∗ and H̃s(Γ) := Hs(Γ)∗, where duality is understood with re-
spect to the extended L2(Γ)-scalar product 〈· , ·〉Γ. In general, there holds the continuous

inclusion H̃±s(Γ) ⊆ H±s(Γ) with ‖v‖H±s(Γ) ≤ ‖v‖H̃±s(Γ). We note that H̃±s(Γ) = H±s(Γ)

for 0 < s < 1/2 with equivalent norms. Moreover, it holds that H̃±s(∂Ω) = H±s(∂Ω) even
with equal norms for all 0 < s ≤ 1. Finally, the treatment of the closed boundary Γ = ∂Ω
requires the definition of H±s

0 (∂Ω) =
{
v ∈ H±s(∂Ω) : 〈v , 1〉∂Ω = 0

}
for all 0 ≤ s ≤ 1,

where H0(∂Ω) := L2(Γ).
All details and equivalent definitions of the Sobolev spaces are, for instance, found in the

monographs [HW08, McL00, SS11, Ste08a].

2.2. Hypersingular integral equation. For 0 ≤ s ≤ 1, the hypersingular integral

operator W : H̃s(Γ) → Hs−1(Γ) is well-defined, linear, and continuous. For s = 1/2, W is
symmetric and elliptic up to constant functions.

For Γ $ ∂Ω and s ≥ 1/2, the space H̃s(Γ) does not contain non-trivial constant func-

tions and hence W : H̃1/2(Γ) → H−1/2(Γ) is elliptic [SS11, Theorems 3.5.9]. In particular,

〈〈u , v〉〉 := 〈Wu , v〉Γ defines a scalar product on H̃1/2(Γ) =: H
1/2
⋆ (Γ).

For Γ = ∂Ω, the constant functions have to be factored out, and W : H
1/2
0 (∂Ω) →

H
−1/2
0 (∂Ω) is elliptic [SS11, Theorem 3.5.3]. In particular, the definition 〈〈u , v〉〉 := 〈Wu , v〉∂Ω

+〈u , 1〉∂Ω〈v , 1〉∂Ω provides a scalar product on H1/2(∂Ω) which reduces to 〈Wu , v〉∂Ω if ei-

ther u or v belong to H
1/2
0 (∂Ω) =: H

1/2
⋆ (Γ).

With this notation and provided that f ∈ H
−1/2
0 (Γ) in case of Γ = ∂Ω, the variational

formulation (3) is equivalently stated by

〈〈u , v〉〉 = 〈f , v〉Γ for all v ∈ H̃1/2(Γ).(5)

Moreover, the scalar product 〈〈· , ·〉〉 induces an equivalent norm on H̃1/2(Γ). This variational
form is, in fact, an equivalent formulation of the hypersingular integral equation (1) and fits
in the frame of the Lax-Milgram lemma.

2.3. Triangulation and reference elements. For d = 2, let Tℓ = {T1, . . . , TN} be a
triangulation of Γ into affine line segments, i.e., each element T ∈ Tℓ is the affine image of
the reference interval Tref = [0, 1]. By Pp(Tref) = span

{
xk : k = 0, . . . , p

}
, we denote the

space of polynomials of degree at most p on Tref .
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For d = 3, let Tℓ = {T1, . . . , TN} be a regular triangulation of Γ into affine surface
triangles, i.e., each element T ∈ Tℓ is the affine image of the reference triangle Tref =
conv{(0, 0), (0, 1), (1, 0)}. By Pp(Tref) = span {xiyk | 0 ≤ i + k ≤ p}, we denote the space of
polynomials of total degree at most p on Tref .

Given Tℓ, we define the local mesh-width function hℓ ∈ L∞(Γ) on Tℓ by hℓ|T := hℓ(T ) :=
diam(T ). For d = 2, the triangulation Tℓ is called γ-shape regular, if hℓ(T ) ≤ γ hℓ(T

′) for all
T, T ′ ∈ Tℓ with T ∩ T ′ 6= ∅. For d = 3, Tℓ is called γ-shape regular, if hℓ(T ) ≤ γ|T |1/2 for all
T ∈ Tℓ.

By Nℓ, we denote the set of all vertices of Tℓ. Moreover, for each T ∈ Tℓ the element patch
is defined by ωℓ(T ) =

⋃{
T ′ ∈ Tℓ : T ′∩T 6= ∅

}
, i.e., ωℓ(T ) is the union of all elements which

touch T .

2.4. Discrete spaces. In either case d = 2, 3 and for each element T ∈ Tℓ, we fix an affine
parametrization FT : Tref → T of T . Spaces of discontinuous resp. continuous Tℓ-piecewise
polynomials on Γ are then defined by

Pp(Tℓ) =
{
v ∈ L∞(Γ) : v ◦ FT ∈ Pp(Tref) for all T ∈ Tℓ

}
,(6)

Sp(Tℓ) = Pp(Tℓ) ∩ C(Γ).(7)

Moreover, we define

S̃p(Tℓ) = Sp(Tℓ) ∩ H̃1/2(Γ) =

{{
v ∈ Sp(Tℓ) : v|∂Γ = 0

}
, for Γ $ ∂Ω,

Sp(Tℓ), for Γ = ∂Ω.
(8)

2.5. Galerkin discretization. The Galerkin formulation of (5) reads

〈〈Uℓ , Vℓ〉〉 = 〈f , Vℓ〉Γ for all Vℓ ∈ S̃p(Tℓ)(9)

and admits a unique solution. The Galerkin projection Gℓ : H̃
1/2(Γ) → S̃p(Tℓ) is defined by

〈〈Gℓv , Vℓ〉〉 = 〈〈v , Vℓ〉〉 for all Vℓ ∈ S̃p(Tℓ).(10)

Clearly, GℓVℓ = Vℓ for all Vℓ ∈ S̃p(Tℓ). Moreover, Gℓ is the orthogonal projection onto S̃p(Tℓ)
with respect to the energy norm ||| · |||, and it thus holds

|||(1−Gℓ)v||| = min
Vℓ∈S̃p(Tℓ)

|||v − Vℓ||| as well as |||Gℓv|||2 + |||(1−Gℓ)v|||2 = |||v|||2(11)

for all v ∈ H̃1/2(Γ). Finally, in the case of Γ = ∂Ω and v ∈ H
1/2
0 (∂Ω), we note that

Gℓv ∈ Sp(Tℓ) also satisfies 〈Gℓv , 1〉 = 0 which immediately follows from (10) for Vℓ = 1. In
particular, the Galerkin solutions of (4) and (9) coincide.

3. Localization of energy norm

The error estimators which will be considered in Section 4, rely on the fact that, for certain
discrete functions, one may replace the energy norm ||| · ||| ≃ ‖ · ‖H̃1/2(Γ) by some hℓ-weighted

H1-seminorm. To be more precise, let T̂ℓ be the uniform refinement of Tℓ, i.e.,

P0(Tℓ) ⊂ P0(Tℓ+1) and ĥℓ = hℓ/2 for the corresponding mesh-sizes.(12)
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Let p, q ≥ 1 be fixed polynomial degrees. We prove, for all V̂ℓ ∈ S̃q(T̂ℓ), that

C−1
apx |||(1− Pℓ)V̂ℓ||| ≤ min

Vℓ∈Sp(Tℓ)
‖h1/2ℓ ∇(V̂ℓ − Vℓ)‖L2(Γ) ≤ ‖h1/2ℓ ∇(1− Pℓ)V̂ℓ‖L2(Γ),(13a)

C−1
inv ‖h1/2ℓ ∇(1− Pℓ)V̂ℓ‖L2(Γ) ≤ min

Vℓ∈S̃p(Tℓ)
|||V̂ℓ − Vℓ||| ≤ |||(1− Pℓ)V̂ℓ|||,(13b)

where Pℓ : S̃q(T̂ℓ) → S̃p(Tℓ) is an appropriate operator.
Possible choices for Pℓ include the Galerkin projection Pℓ = Gℓ, the usual Lagrange inter-

polation operator Pℓ = Iℓ (see Section 3.5), as well as an appropriate Scott-Zhang projection
Pℓ = Jℓ (see Section 3.4). The original construction of Jℓ in [SZ90], however, does not allow

to employ Jℓ for functions in H̃
1/2(Γ), and we therefore generalize the definition of [SZ90] in

Section 3.2.
The estimate (13b) is an inverse estimate, since a locally weightedH1-seminorm is bounded

by the weaker H1/2-norm. It will be proved in Section 3.3 for all Vℓ ∈ Sp(Tℓ). The esti-

mate (13a) is an approximation estimate with the fractional-order Sobolev space H̃1/2(Γ)
on the left-hand side and a locally weighted H1(Γ)-seminorm on the right-hand side. Note

that the minima in (13) are taken over different spaces Sp(Tℓ) ⊇ S̃p(Tℓ) which coincide for
Γ = ∂Ω.

3.1. Interpolation spaces. In this short section, we collect the results on interpolation
spaces used in the subsequent analysis. The reader is referred to, e.g., the monograph [Tar07]
for further results and different interpolation techniques. We stress that different interpo-
lation techniques lead to the same interpolation spaces, but equivalent norms only. We
assume that one interpolation method, e.g. real interpolation with the K-functional, is used
throughout.

The following result is known as interpolation theorem.

Lemma 1. For j = 0, 1, let Xj and Yj be Hilbert spaces with continuous inclusions X0 ⊇ X1

and Y0 ⊇ Y1. Let T : X0 → Y0 be a linear operator, and let the restriction be well-defined
as T : X1 → Y1. Provided that either operator is continuous with operator norm cj = ‖T :
Xj → Yj‖, the operator T : Xs → Ys between the interpolation spaces Xs = [X0, X1]s and
Ys = [Y0, Y1]s is well-defined and continuous with operator norm

‖T : Xs → Ys‖ ≤ c1−s
0 cs1(14)

for all 0 < s < 1. �

Using interpolation between discrete subspaces of Sobolev spaces, it follows immediately
from the finite dimension of the discrete space that the interpolation norm obtained is, in
fact, equivalent to the norm obtained by interpolation of the entire Sobolev space. However,
we shall need that the norm equivalence constants do not depend on the discrete space, i.e.,
the number of elements of Tℓ in our setting. The following abstract lemma from [AL09]
provides a suitable criterion whose elementary proof is included for the convenience of the
reader.

Lemma 2. For j = 0, 1, let Hj be Hilbert spaces with subspaces Xj ⊆ Hj which satisfy the
continuous inclusions H0 ⊇ H1 and X0 ⊇ X1. Assume that P : Hj → Xj is a well-defined
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linear and continuous projection with operator norm cj = ‖P : Hj → Xj‖, for both j = 0, 1.
Then, there holds equivalence of the interpolation norms

‖v‖[H0,H1]s ≤ ‖v‖[X0,X1]s ≤ c1−s
0 cs1 ‖v‖[H0,H1]s for all v ∈ Xs = [X0, X1]s(15)

and all 0 < s < 1.

Proof. We consider the identity I : X0 →֒ H0 which is also well-defined as I : X1 →֒ H1. With
the interpolation spaces Xs = [X0, X1]s and Hs = [H0, H1]s, the interpolation theorem (14)
yields Xs ⊆ Hs and ‖I : Xs → Hs‖ ≤ 1, which proves the lower estimate in (15). The upper
bound follows from ‖P : Hs → Xs‖ ≤ c1−s

0 cs1 and the projection property v = Pv for all
v ∈ X0 ⊇ Xs. �

3.2. Scott-Zhang projection onto Hs and H̃s. In this short section, we generalize
the Scott-Zhang operator Jℓ from [SZ90]. There, Jℓ is defined on the space Hs(Γ) with
s > 1/2, which is sufficient regularity to define a trace operator and thus to incorporate

Dirichlet boundary conditions. In this work, we deal with energy spaces H̃1/2(Γ) and hence
must not use the classical construction from [SZ90] directly. However, it is possible to extend
the existing results in two steps. First, one can extend the results from [SZ90] to the space
H1/2(Γ). For the closed boundary Γ = ∂Ω, this is precisely the energy space. In contrast,

the energy space in case of an open screen Γ $ ∂Ω is H̃1/2(Γ). Although this space still
does not allow for a trace operator, we need to construct a stable projection with range

S̃p(Tℓ) = Sp(Tℓ) ∩ H̃1/2(Γ), which thus incorporates zero boundary conditions.

Lemma 3 (Scott-Zhang projection onto Sp(Tℓ) ⊂ Hs(Γ)). There exists a linear projection
Jℓ : L

2(Γ) → Sp(Tℓ) such that for all 0 ≤ s ≤ 1

JℓVℓ = Vℓ as well as ‖Jℓv‖Hs(Γ) ≤ Cstab(s) ‖v‖Hs(Γ) for all Vℓ ∈ Sp(Tℓ), v ∈ Hs(Γ).(16)

For v ∈ H1(Γ), it holds that

‖(1− Jℓ)v‖L2(T ) ≤ Csz hℓ(T )‖∇v‖L2(ωℓ(T )) and ‖∇(1− Jℓ)v‖L2(T ) ≤ Csz ‖∇v‖L2(ωℓ(T )).(17)

The constant Csz > 0 depends only on γ-shape regularity of Tℓ and p, while Cstab(s) > 0
additionally depends on Γ and s.

Sketch of proof. In [SZ90], the proof is carried out in the following way: If {ai} is the col-
lection of degrees of freedom for the space Sp(Tℓ), one chooses either an element σi = Ti (in
case ai lies inside Ti), or an edge σi = Ei (in case ai ∈ Ei). The nodal value of (Jℓv)(ai) is
determined by the values v|σi

of v on σi. In particular, this definition requires the validity
of a trace theorem which fails for the energy case s = 1/2. We may extend the result if
we always choose an element σi = Ti, regardless of the type of ai, as long as ai ∈ Ti. The
remaining construction can be carried out as in [SZ90] and, in particular, does not need a
trace theorem. Arguing along the lines of [SZ90], one sees that Jℓ is stable in L2(Γ) as well
as in H1(Γ), i.e., (16) holds for s = 0, 1, and Jℓ satisfies (17). By Lemma 1, Jℓ is also stable
in Hs(Γ). �

Lemma 4 (Scott-Zhang projection onto S̃p(Tℓ) ⊂ H̃s(Γ)). For Γ = ∂Ω resp. Γ ⊆ R2, there

exists a linear projection Jℓ : L
2(Γ) → S̃p(Tℓ) such that for all 0 ≤ s ≤ 1

JℓVℓ = Vℓ as well as ‖Jℓv‖H̃s(Γ) ≤ Cstab(s) ‖v‖H̃s(Γ) for all Vℓ ∈ S̃p(Tℓ), v ∈ H̃s(Γ).(18)
6



For v ∈ H̃1(Γ), it holds that

‖(1− Jℓ)v‖L2(T ) ≤ Csz hℓ(T )‖∇v‖L2(ωℓ(T )) and ‖∇(1− Jℓ)v‖L2(T ) ≤ Csz ‖∇v‖L2(ωℓ(T )).(19)

The constant Csz > 0 depends only on γ-shape regularity of Tℓ and p, while Cstab(s) > 0
additionally depends on Γ and s.

Proof for Γ = ∂Ω. The claim follows immediately from Lemma 3 as S̃p(Tℓ) = Sp(Tℓ). �

Sketch of proof for Γ $ ∂Ω. First, we follow the construction in [SZ90], i.e., if ai ∈ ∂Γ, we

choose an edge σi := Ei ⊂ ∂Γ with ai ∈ Ei to construct a projection J̃ℓ : H
1(Γ) → Sp(Tℓ).

The arguments in [SZ90] show that J̃ℓ is stable in H1(Γ) and that (19) holds for J̃ℓ and

all v ∈ H1(Γ). Second, let Jℓ be the operator that is constructed analogously to J̃ℓ, but
where we only consider all nodal points {ai} which are not on the boundary ∂Γ. Arguing

as in [SZ90], this operator is stable in L2(Γ). The crucial observation is that Jℓv = J̃ℓv for

all v ∈ H̃1(Γ). In particular, Jℓ satisfies (19) for v ∈ H̃1(Γ) and is stable in H̃1(Γ). By

Lemma 1, Jℓ is also stable in H̃s(Γ). �

3.3. Inverse estimate in Hs. In this section, we prove a local inverse estimate in
the Hs-norm. In 2D, such an estimate is also found in [CP07b, Proposition 3.1], and it is
generalized to 3D in the following. Moreover, the proof of [CP07b] has a minor gap which
is now closed by means of Lemma 2.

Proposition 5. For all 0 ≤ s ≤ 1, it holds

‖h1−s
ℓ ∇Vℓ‖L2(Γ) ≤ Cinv‖Vℓ‖Hs(Γ) for all Vℓ ∈ Sp(Tℓ).(20)

The constant Cinv > 0 depends only on Γ, p, s, and γ-shape regularity of Tℓ.

Proof. An Tℓ-elementwise scaling argument provides the estimate

‖∇Vℓ‖L2(hℓ,Γ) := ‖hℓ∇Vℓ‖L2(Γ) . ‖Vℓ‖L2(Γ) for all Vℓ ∈ Sp(Tℓ),

where the hidden constant depends only on γ-shape regularity of Tℓ and on the polynomial
degree p. Together with the trivial estimate ‖∇Vℓ‖L2(Γ) ≤ ‖Vℓ‖H1(Γ), we see that the gradient
is a continuous linear operator ∇ : Xj → Yj , for j = 0, 1, where

X0 = (Sp(Tℓ), ‖ · ‖L2(Γ)), Y0 = (L2(Γ), ‖ · ‖L2(hℓ,Γ)),

X1 = (Sp(Tℓ), ‖ · ‖H1(Γ)), Y1 = (L2(Γ), ‖ · ‖L2(Γ)).

Therefore, the interpolation theorem (14) implies continuity ∇ : Xs → Ys, where Xs =
[X0, X1]s and Ys = [Y0, Y1]s, and the operator norm depends only on γ-shape regularity of
Tℓ, p, and s, i.e., ‖∇Vℓ‖Ys . ‖Vℓ‖Xs. It remains to characterize the interpolation norms
involved (which is neglected in the proof of [CP07b, Proposition 3.1]).

First, it is a standard result on interpolation of weighted L2-spaces that ‖ψ‖[L2(hℓ,Γ),L2(Γ)]s ≃
‖h1−s

ℓ ψ‖L2(Γ) for all ψ ∈ L2(Γ), see [Tar07, Chapter 23], and norm equivalence constants
depend only on s and Γ.

Second, let P = Jℓ be the Scott-Zhang projection onto Sp(Tℓ) ⊂ H1(Γ) from Lemma 3.
Then, Lemma 2 yields ‖Vℓ‖Xs ≃ ‖Vℓ‖[L2(Γ),H1(Γ)]s = ‖Vℓ‖Hs(Γ), and the norm equivalence
constants depend only on Γ, p, s, and γ-shape regularity of Tℓ.
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Altogether, we thus conclude

‖h1−s
ℓ ∇Vℓ‖L2(Γ) ≃ ‖∇Vℓ‖Ys . ‖Vℓ‖Xs ≃ ‖Vℓ‖Hs(Γ) for all Vℓ ∈ Sp(Tℓ),

and the hidden constants depend only on Γ, p, s, and γ-shape regularity of Tℓ. �

An inverse estimate in H̃s(Γ) follows from Proposition 5 and the continuous inclusion

H̃s(Γ) ⊆ Hs(Γ).

Corollary 6. For all 0 ≤ s ≤ 1, it holds

‖h1−s
ℓ ∇Vℓ‖L2(Γ) ≤ Cinv‖Vℓ‖H̃s(Γ) for all Vℓ ∈ S̃p(Tℓ).(21)

The constant Cinv > 0 depends only on Γ, p, s, and γ-shape regularity of Tℓ. �

3.4. Quasi-interpolation and localization (13) of energy norm. The lower bound
in (13a) is an approximation estimate. We first recall that stable projections exhibit an ap-

propriate first-order approximation property with respect to the H̃s(Γ)-norm. The following
lemma slightly improves a result from [KOP13, Theorem 4]. Since the proof in [KOP13] is
only stated for the lowest-order case p = 1 and since the proof’s arguments are also used
below (see Lemma 10), we sketch the proof for the convenience of the reader.

Lemma 7. Each H̃s(Γ)-stable projection Pℓ : H̃
s(Γ) → S̃p(Tℓ) onto S̃p(Tℓ), i.e.,

PℓVℓ = Vℓ and ‖Pℓv‖H̃s(Γ) ≤ Cstab ‖v‖H̃s(Γ) for all Vℓ ∈ S̃p(Tℓ) and v ∈ H̃s(Γ)(22)

satisfies

‖(1− Pℓ)v‖H̃s(Γ) ≤ Capx min
Vℓ∈Sp(Tℓ)

‖h1−s
ℓ ∇(v − Vℓ)‖L2(Γ) for v ∈ H̃1(Γ).(23)

The constant Capx > 0 depends only on Cstab > 0, Γ, p, s, and γ-shape regularity of Tℓ. For
Γ $ ∂Ω, the constant Capx additionally depends on the shapes of element patches.

Proof. With the Scott-Zhang projection Jℓ : H̃
s(Γ) → S̃p(Tℓ) from Lemma 4, it holds that

‖v − Pℓv‖H̃s(Γ) = ‖(1− Pℓ)(v − Jℓv)‖H̃s(Γ) . ‖v − Jℓv‖H̃s(Γ).

Without loss of generality, we may therefore consider Pℓ = Jℓ only.

Let H̃1(hℓ,Γ) denote the space H̃
1(Γ) which is now associated with the weighted H1-norm

‖v‖2
H̃1(hℓ,Γ)

:= ‖hℓv‖2L2(Γ) + ‖hℓ∇v‖2L2(Γ) for v ∈ H̃1(Γ).

With this notation, (19) and γ-shape regularity imply for all v ∈ H̃1(Γ)

‖(1− Jℓ)v‖L2(Γ) . ‖v‖H̃1(hℓ,Γ)
and ‖(1− Jℓ)v‖H̃1(Γ) . ‖v‖H̃1(Γ)(24)

These estimates state continuity of the operator 1− Jℓ : Xj → Yj, for j = 0, 1, where

X0 = (H̃1(Γ), ‖ · ‖H̃1(hℓ,Γ)
), Y0 = (L2(Γ), ‖ · ‖L2(Γ)),

X1 = (H̃1(Γ), ‖ · ‖H̃1(Γ)), Y1 = (H̃1(Γ), ‖ · ‖H̃1(Γ)).

The operator norms cj = ‖1−Jℓ : Xj → Yj‖ depend only on Γ, on p, and γ-shape regularity
of Tℓ. The interpolation theorem (14) yields continuity of 1 − Jℓ : Xs → Ys, where Xs =

[H̃1(hℓ,Γ), H̃
1(Γ)]s and Ys = [L2(Γ), H̃1(Γ)]s = H̃s(Γ). To proceed, we need the following
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estimate for the interpolation norm on Xs = [H̃1(hℓ,Γ), H̃
1(Γ)]s which is proved in [KOP13,

Lemmas 1 and 5] in the case of H1(Γ), but the proof transfers verbatim to H̃1(Γ):

‖v‖Xs = ‖v‖[H̃1(hℓ,Γ),H̃1(Γ)]s
. ‖h1−s

ℓ ∇v‖L2(Γ) + ‖h−s
ℓ v‖L2(Γ) for all v ∈ H̃1(Γ).(25)

Here and in the following, the hidden constant depends only on Γ, p, s, and γ-shape regularity
of Tℓ. Altogether, we have now proved

‖(1− Jℓ)v‖H̃s(Γ) . ‖v‖Xs . ‖h1−s
ℓ ∇v‖L2(Γ) + ‖h−s

ℓ v‖L2(Γ) for all v ∈ H̃1(Γ).

We use the projection property (1− Jℓ) = (1− Jℓ)
2 and the local estimates (19) to improve

the last estimate to

‖(1− Jℓ)v‖H̃s(Γ) . ‖h1−s
ℓ ∇(1− Jℓ)v‖L2(Γ) + ‖h−s

ℓ (1− Jℓ)v‖L2(Γ) . ‖h1−s
ℓ ∇v‖L2(Γ)

for all v ∈ H̃1(Γ). Finally, we use the projection property of Jℓ once more to improve the
last estimate to

‖(1− Jℓ)v‖H̃s(Γ) = min
Vℓ∈S̃p(Tℓ)

‖(1− Jℓ)(v − Vℓ)‖H̃s(Γ) . min
Vℓ∈S̃p(Tℓ)

‖h1−s
ℓ ∇(v − Vℓ)‖L2(Γ),

where the minima are attained due to finite dimension. For Γ = ∂Ω, it holds S̃p(Tℓ) = Sp(Tℓ)

which proves (13a). For Γ $ ∂Ω, the argument is more involved. Let J̃ℓ denote the Scott-
Zhang projection which was employed in the proof of Lemma 4, and let Πℓ denote the
L2-projection onto Pp−1(Tℓ). In [AFK+13, Proposition 8], it is proved that, for v ∈ H1(Γ),
it holds

‖(1− Πℓ)∇v‖L2(T ) ≤ ‖∇(1− J̃ℓ)v‖L2(T ) . ‖(1−Πℓ)∇v‖L2(ωℓ(T )) for all T ∈ Tℓ.(26)

The hidden constants depend only p, γ-shape regularity of Tℓ, and the shapes of the element
patches. As Jℓv = J̃ℓv for v ∈ H̃1(Γ), the estimates (26) remain true for Jℓ and v ∈ H̃1(Γ).

With the techniques used already before, we see, for all v ∈ H̃1(Γ),

‖(1− Jℓ)v‖H̃1/2(Γ) . ‖h1/2ℓ ∇(1− Jℓ)v‖L2(Γ) ≃ ‖(1− Πℓ)∇v‖L2(Γ)

≤ min
Vℓ∈Sp(Tℓ)

‖h1/2ℓ ∇(v − Vℓ)‖L2(Γ).

This concludes the proof. �

Remark 8. (i) Lemma 7 holds accordingly for Hs(Γ)-stable projections onto Sp(Tℓ).
(ii) For d = 3 and newest vertex bisection, only finitely many shapes of triangles and hence
element patches occur, see e.g. [Ste08b]. Consequently, Capx > 0 remains uniformly bounded
for Γ $ ∂Ω. The same holds for d = 2 and the bisection algorithm from [AFF+13].
(iii) In either case Γ $ ∂Ω and Γ = ∂Ω, the arguments from the proof of Lemma 7 yield

‖(1− Jℓ)v‖H̃1/2(Γ) . min
Vℓ∈Sp(Tℓ)

‖h1/2ℓ ∇(v − Vℓ)‖L2(Γ) ≃ ‖h1/2ℓ (1−Πℓ)∇v‖L2(Γ)(27)

for all v ∈ H̃1(Γ) and Πℓ : L2(Γ) → Pp−1(Tℓ) the L2-orthogonal projection. The hidden
constants depend only on Γ, p, s, and γ-shape regularity of Tℓ as well as on the shapes of
element patches.

(iv) For T̂ℓ being the uniform refinement of Tℓ and v = V̂ℓ ∈ Sq(T̂ℓ), one can prove that in
either case Γ = ∂Ω and Γ $ ∂Ω the constant Capx in (23) does not depend on the shapes of
element patches, see the scaling arguments in the proof of Lemma 10 below. �
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Combining the inverse estimate from Corollary 6 with the approximation estimate of
Lemma 7, we are in the position to prove the localization estimate (13).

Proposition 9. Let Pℓ ∈ {Gℓ, Jℓ} denote either the Galerkin projection Gℓ : H̃1/2(Γ) →
S̃p(Tℓ) or the Scott-Zhang projection Jℓ : H̃1/2(Γ) → S̃p(Tℓ) from Lemma 4. Then, Pℓ

satisfies the localization estimate (13). Up to norm equivalence, the constant Capx > 0
coincides with that of Lemma 7. The constant Cinv > 0 depends only on Γ, p, s, and γ-shape
regularity of Tℓ.

Proof of (13a). From the best approximation property of the Galerkin projection Gℓ and
norm equivalence, we infer

|||(1−Gℓ)v||| ≤ |||(1− Jℓ)v||| ≃ ‖(1− Jℓ)v‖H̃1/2(Γ)

Therefore, Lemma 7 for Pℓ = Jℓ and s = 1/2 concludes the proof. �

Proof of (13b). Let V̂ℓ ∈ S̃q(T̂ℓ) and Vℓ ∈ S̃p(Tℓ). We employ the projection property of Jℓ
and the local stability (19) to see

‖h1/2ℓ ∇(1− Jℓ)V̂ℓ‖L2(Γ) = ‖h1/2ℓ ∇(1− Jℓ)(1−Gℓ)V̂ℓ‖L2(Γ) . ‖h1/2ℓ ∇(1−Gℓ)V̂ℓ‖L2(Γ).

With (1−Gℓ)V̂ℓ ∈ S̃p(T̂ℓ) and ĥℓ = hℓ/2 the inverse estimate from Corollary 6 gives

‖h1/2ℓ ∇(1−Gℓ)V̂ℓ‖L2(Γ) . ‖(1−Gℓ)V̂ℓ‖H̃1/2(Γ).

Next, the projection property of Gℓ yields

‖(1−Gℓ)V̂ℓ‖H̃1/2(Γ) = ‖(1−Gℓ)(V̂ℓ − Vℓ)‖H̃1/2(Γ).

Norm equivalence on H̃1/2(Γ) and the best approximation property of Gℓ yield

‖(1−Gℓ)(V̂ℓ − Vℓ)‖H̃1/2(Γ) ≃ |||(1−Gℓ)(V̂ℓ − Vℓ)||| ≤ |||V̂ℓ − Vℓ|||.

Combining the last four estimates and taking the infimum over all Vℓ, we prove (13b). Due
to finite dimension, the infimum is attained. �

3.5. Nodal interpolation and localization (13) of energy norm. By Iℓ, we denote
the Lagrange interpolation operator Iℓ : C(Γ) → Sp(Tℓ), which is defined by

Iℓv =
N∑

i=1

v(ai)ϕi,(28)

where {ai}Ni=1 are the degrees of freedom of Sp(Tℓ) with corresponding Lagrange basis func-

tions {ϕi}Ni=1, i.e., ϕi(aj) = δij , for all i, j = 1, . . . , N with Kronecker’s delta. In particular,
this yields the projection property IℓVℓ = Vℓ for all Vℓ ∈ Sp(Tℓ). Moreover, v|∂Γ = 0 implies

Iℓv ∈ S̃p(Tℓ), i.e., possible zero boundary conditions are preserved.

Since functions in H̃1(Γ) are not continuous in general for d = 3, an approximation result
for Iℓ analogous to Lemma 7 can, in fact, only hold for discrete functions.
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Lemma 10. Let T̂ℓ be the uniform refinement of Tℓ. For q ≥ p and 0 ≤ s ≤ 1, nodal

interpolation Iℓ : S̃q(T̂ℓ) → S̃p(Tℓ) satisfies

‖(1− Iℓ)V̂ℓ‖H̃s(Γ) ≤ Capx min
Vℓ∈Sp(Tℓ)

‖h1−s
ℓ ∇(V̂ℓ − Vℓ)‖L2(∂Ω) for all V̂ℓ ∈ S̃q(T̂ℓ).(29)

The constant Capx > 0 depends only on Γ, p, q, s, and γ-shape regularity of Tℓ.

Proof. Let Πℓ : L
2(Γ) → Pp−1(Tℓ) be the L2(Γ)-orthogonal projection. For V̂ℓ ∈ S̃q(T̂ℓ) and

T ∈ Tℓ, scaling arguments prove

‖(1− Iℓ)V̂ℓ‖L2(T ) . hℓ(T )‖∇V̂ℓ‖L2(T ) and ‖∇(1− Iℓ)V̂ℓ‖L2(T ) . ‖(1−Πℓ)∇V̂ℓ‖L2(T ),(30)

where the hidden constants depend only on q, p and γ-shape regularity of Tℓ. For the second
estimate, note that semi-norms on finite dimensional spaces are equivalent if and only if their
kernels coincide. With the notation from the proof of Lemma 7, (30) implies

‖(1− Iℓ)V̂ℓ‖L2(Γ) . ‖V̂ℓ‖H̃1(hℓ,Γ)
and ‖(1− Iℓ)V̂ℓ‖H̃1(Γ) . ‖V̂ℓ‖H̃1(Γ).

These estimates state continuity of the operator 1− Iℓ : Xj → Yj, for j = 0, 1, where

X0 = (S̃q(T̂ℓ), ‖ · ‖H̃1(hℓ,Γ)
), Y0 = (S̃q(T̂ℓ), ‖ · ‖L2(Γ)),

X1 = (S̃q(T̂ℓ), ‖ · ‖H̃1(Γ)), Y1 = (S̃q(T̂ℓ), ‖ · ‖H̃1(Γ)).

The operator norms cj = ‖1 − Iℓ : Xj → Yj‖ depend only on q, p, and γ-shape regularity
of Tℓ. The interpolation theorem (14) yields continuity of 1 − Iℓ : Xs → Ys, where Xs =
[X0, X1]s and Ys = [Y0, Y1]s. Arguing as in the proof of Proposition 5 to identify the discrete

interpolation norms, we see, for all V̂ℓ ∈ S̃q(T̂ℓ),

‖(1− Iℓ)V̂ℓ‖H̃s(Γ) ≃ ‖(1− Iℓ)V̂ℓ‖Ys . ‖V̂ℓ‖Xs ≃ ‖V̂ℓ‖[H̃1(hℓ,Γ),H̃1(Γ)]s
.

From now on, we may follow the lines of the proof of Lemma 7 to conclude the proof.
To that end, note that (30) provides the necessary counterpart to (19) and, in particular,
improves (26) in the sense that element patches are avoided. �

For v ∈ H̃1/2(Γ) ∩ C(Γ), nodal interpolation guarantees Iℓv ∈ H̃1/2(Γ) ∩ S̃p(Tℓ). With
the approximation property of Lemma 10 and the local estimates (30), one may therefore
follow the proof of Proposition 9 verbatim to obtain the corresponding result for nodal
interpolation. The details are left to the reader.

Proposition 11. Let T̂ℓ be the uniform refinement of Tℓ and q ≥ p ≥ 1. Let Pℓ ∈ {Gℓ, Iℓ, Jℓ}
denote either the Galerkin projection Gℓ, or the Lagrange interpolation operator Iℓ, or the
Scott-Zhang projection Jℓ from Lemma 4. Then, Pℓ satisfies the localization estimate (13).
The constants Capx, Cinv > 0 depend only on Γ, p, q, and γ-shape regularity of Tℓ. �

4. A posteriori error estimation

Throughout this section, let Uℓ ∈ S̃p(Tℓ) denote the Galerkin solution of (9) with respect to

Tℓ, and let Ûℓ ∈ S̃p(T̂ℓ) denote the Galerkin solution with respect to the uniform refinement

T̂ℓ of Tℓ.
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4.1. (h− h/2)-type error estimators. Suppose that Pℓ : S̃q(T̂ℓ) → S̃p(Tℓ) is a linear

projection onto S̃p(Tℓ) which satisfies (13). We consider the following four error estimators

ηℓ := |||Ûℓ − Uℓ||| µℓ := ‖h1/2ℓ ∇(Ûℓ − Uℓ)‖L2(Γ)

η̃ℓ := |||(1− Pℓ)Ûℓ||| µ̃ℓ := ‖h1/2ℓ ∇(1− Pℓ)Ûℓ‖L2(Γ)

(31)

The estimators ηℓ and η̃ℓ serve for error estimation only, whereas the local contributions of
µℓ and µ̃ℓ can also serve as refinement indicators in the adaptive mesh-refining algorithm of
Section 5. From a computational point of view, the estimators η̃ℓ and µ̃ℓ are more attractive,
since they do not require the computation of the coarse mesh-solution Uℓ.

Although (h − h/2)-type estimators are conceptually simple, they have firstly been pro-
posed by [FLP08] for weakly-singular integral equations. Their analysis has been transferred
to hypersingular integral equations with d = 2 and p = 1 in [EFGP13]. The following
theorem generalizes the latter result to d = 2, 3 and p ≥ 1.

Theorem 12. With the constants Capx, Cinv > 0 from (13), it holds

ηℓ ≤ η̃ℓ ≤ Capx µ̃ℓ and max{µℓ, µ̃ℓ} ≤ Cinv ηℓ.(32)

While efficiency

ηℓ ≤ |||u− Uℓ|||(33)

is always satisfied with constant 1, reliability

|||u− Uℓ||| ≤ Crel ηℓ(34)

with some constant Crel > 0 is equivalent to the saturation assumption

|||u− Ûℓ||| ≤ qsat |||u− Uℓ|||(35)

with some constant 0 < qsat < 1.

Proof. Note that the definition of the Galerkin projection (10) ensures GℓÛℓ = Uℓ. Therefore,
the best approximation property of Gℓ and (13a) yield

ηℓ = |||(1−Gℓ)Ûℓ||| ≤ η̃ℓ ≤ Capx µ̃ℓ

On the other hand, the inverse estimate (13b) yields

µ̃ℓ = ‖h1/2ℓ ∇(1− Pℓ)Ûℓ‖L2(Γ) ≤ Cinv min
Vℓ∈S̃p(Tℓ)

|||Ûℓ − Vℓ||| = Cinv ηℓ,

where the last equality follows from the best approximation property of Gℓ. Since Gℓ also
satisfies (13), the same argument also proves µℓ ≤ Cinv ηℓ.

The remaining claims (33)–(35) follow from the Pythagoras theorem

|||u− Uℓ|||2 = |||u− Ûℓ|||2 + |||Ûℓ − Uℓ|||2 = |||u− Ûℓ|||2 + η2ℓ

and reveal the identity qsat = (1− C2
rel)

1/2 resp. Crel = (1− qsat)
−1/2. �

Remark 13. The saturation assumption (35) is essentially equivalent to the fact that the
numerical scheme has reached an asymptotic regime [FLP08, Section 5.2]. It can be proved
for FEM model problems [DN02, FLOP10] if the given data are sufficiently resolved. For

smooth data and T̂ℓ being the k-times uniform refinement of Tℓ, it is proved in [AFF+13,
Appendix] for weakly-singular integral equations in 2D, where k depends only on Γ. �
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4.2. Two-level error estimators. In this subsection, we first recall the two-level
error estimator from [MS00, HMS01, Heu02]. While the analysis of [MS00] is restricted to
uniform meshes and lowest-order elements, the analysis of [HMS01, Heu02] already works
for hp-refinement on γ-shape regular meshes. We consider only h-refinement and provide,
in this frame, an alternate proof to those of [MS00, HMS01, Heu02]. In contrast to and
generalization of [HMS01, Heu02], our proof avoids any strong assumptions on the two-level
basis functions.

Let T̂ℓ be the uniform refinement of Tℓ. Suppose that {φ1, . . . , φn} is a basis of S̃p(Tℓ)

and {φ1, . . . , φn, ϕ1, . . . , ϕN} is a basis of S̃p(T̂ℓ). We suppose that ϕj(z) = 0 for all vertices
z ∈ Nℓ and j = 1, . . . , N and that the number of overlapping supports supp(ϕj) is uniformly
bounded in terms of the γ-shape regularity of Tℓ. To employ scaling arguments in the proof
of Lemma 15 below, we assume that there are only finitely many reference functions ϕref

k such
that ϕj ◦ FT ∈ {0, ϕref

1 , . . . , ϕref
M } for all j = 1, . . . , n. We remark that these assumptions are

met for Lagrange bases, but also satisfied for, e.g., the usual basis of S2(T̂ℓ) which consists
of hat functions plus edge bubble functions.

Under these assumptions, the two-level error estimator reads

τℓ =
( N∑

j=1

|〈f −WUℓ , ϕj〉L2(Γ)|2
|||ϕj|||2

)1/2

.(36)

The local contributions τℓ(T ), where the sum in (36) is taken only over the indices j with
|T ∩supp(ϕj)| > 0, can serve as refinement indicators for the adaptive algorithm of Section 5.

Theorem 14. The two-level error estimator τℓ satisfies

C−1
1 ηℓ ≤ τℓ ≤ C2ηℓ.(37)

The constants C1, C2 > 0 depend only on Γ, p, and γ-shape regularity of Tℓ. In particu-
lar, τℓ is always efficient with constant C2, while reliability is equivalent to the saturation
assumption (35).

To prove the preceding theorem, we need two auxiliary results.

Lemma 15. For V̂ℓ,j ∈ Sp
ℓ,j := span{ϕj} ⊂ S̃p(T̂ℓ) holds

C−1
3

( N∑

j=1

|||V̂ℓ,j|||2
)1/2

≤
∣∣∣
∣∣∣
∣∣∣

N∑

j=1

V̂ℓ,j

∣∣∣
∣∣∣
∣∣∣ ≤ C4

( N∑

j=1

|||V̂ℓ,j|||2
)1/2

(38)

The constants C3, C4 > 0 depend only on Γ, p, and γ-shape regularity of Tℓ.

Proof. Let Iℓ : C(Γ) → S1(Tℓ) denote the nodal interpolation operator onto the lowest-order

BEM space S1(Tℓ). Note that V̂ℓ,j = (1 − Iℓ)V̂ℓ,j by assumption on ϕj . Therefore, the
localization estimate (13) yields

|||V̂ℓ,j||| ≃ ‖h1/2ℓ ∇V̂ℓ,j‖L2(Γ) as well as
∣∣∣
∣∣∣
∣∣∣

N∑

j=1

V̂ℓ,j

∣∣∣
∣∣∣
∣∣∣ ≃

∥∥∥h1/2ℓ ∇
N∑

j=1

V̂ℓ,j

∥∥∥
L2(Γ)

.
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Moreover, for each T ∈ Tℓ, it holds that

∥∥∥∇
N∑

j=1

V̂ℓ,j

∥∥∥
2

L2(T )
.

N∑

j=1

‖∇V̂ℓ,j‖2L2(T ) .
∥∥∥∇

N∑

j=1

V̂ℓ,j

∥∥∥
2

L2(T )
.

The constant in the lower estimate depends only on γ-shape regularity of Tℓ, since the number

of overlapping supports supp(V̂ℓ,j) = supp(ϕj) is uniformly bounded. The upper estimate
follows from a scaling argument and equivalence of norms on finite dimensional spaces. To

see this, note that supp(V̂ℓ,j) ∩ T 6= ∅ holds only for finitely many j and that the V̂ℓ,j are

linearly independent with
∑N

j=1 V̂ℓ,j(z) = 0 for all nodes z ∈ Nℓ. The hidden constants thus
depend only on γ-shape regularity of Tℓ, but not on N . Summing the last estimate over all
T ∈ Tℓ, we see

∣∣∣
∣∣∣
∣∣∣

N∑

j=1

V̂ℓ,j

∣∣∣
∣∣∣
∣∣∣
2

≃
∥∥∥h1/2ℓ ∇

N∑

j=1

V̂ℓ,j

∥∥∥
2

L2(Γ)
≃

N∑

j=1

‖h1/2ℓ ∇V̂ℓ,j‖2L2(Γ) ≃
N∑

j=1

|||V̂ℓ,j|||2

and conclude the proof. �

Lemma 16. Let Gℓ,j : H̃
1/2(Γ) → Sp

ℓ,j := span{ϕj} denote the Galerkin projection onto Sp
ℓ,j

for j = 1, . . . , N and Gℓ,0 := Gℓ. Then, it holds

C−1
5 |||V̂ℓ||| ≤

( N∑

j=0

|||Gℓ,jV̂ℓ|||2
)1/2

≤ C6 |||V̂ℓ||| for all V̂ℓ ∈ S̃p(T̂ℓ).(39)

The constants C5, C6 > 0 depend only on Γ, p, and γ-shape regularity of Tℓ.

Proof. Let Iℓ : C(Γ) → S1(Tℓ) denote the nodal interpolation operator onto the lowest-

order BEM space S1(Tℓ). With λ1 := 1, ϕ0 := IℓV̂ℓ, and
∑N

j=1 λjϕj = (1 − Iℓ)V̂ℓ, we have

V̂ℓ =
∑N

j=0 λjϕj. Therefore, the Cauchy-Schwarz inequality yields

|||V̂ℓ|||2 = 〈〈V̂ℓ , V̂ℓ〉〉 =
N∑

j=0

〈〈V̂ℓ , λjϕj〉〉 =
N∑

j=0

〈〈Gℓ,jV̂ℓ , λjϕj〉〉

≤
( N∑

j=0

|||Gℓ,jV̂ℓ|||2
)1/2( N∑

j=0

|||λjϕj |||2
)1/2

.

The lower estimate in Lemma 15 and the localization estimate (13) yield

N∑

j=0

|||λjϕj |||2 . |||IℓV̂ℓ|||2 + |||
N∑

j=1

λjϕj |||2 = |||IℓV̂ℓ|||2 + |||(1− Iℓ)V̂ℓ|||2 . |||V̂ℓ|||2.

Combining the last two estimates, we prove the first estimate in (39). To see the second
estimate, we note that

N∑

j=0

|||Gℓ,jV̂ℓ|||2 =
N∑

j=0

〈〈Gℓ,jV̂ℓ ,Gℓ,jV̂ℓ〉〉 =
N∑

j=0

〈〈Gℓ,jV̂ℓ , V̂ℓ〉〉 ≤ |||
N∑

j=0

Gℓ,jV̂ℓ||||||V̂ℓ|||.
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The upper estimate in Lemma 15 therefore yields

|||
N∑

j=0

Gℓ,jV̂ℓ||| ≤ |||Gℓ,0V̂ℓ|||+ |||
N∑

j=1

Gℓ,jV̂ℓ||| ≤
√
2
(
|||Gℓ,0V̂ℓ|||2 + |||

N∑

j=1

Gℓ,jV̂ℓ|||2
)1/2

.
( N∑

j=0

|||Gℓ,jV̂ℓ|||2
)1/2

and concludes the proof. �

Proof of Theorem 14. Let V̂ℓ = Ûℓ−Uℓ ∈ S̃p(T̂ℓ) and note that Gℓ,0V̂ℓ = 0, since Gℓ,0Ûℓ = Uℓ.
Lemma 16 thus yields

ηℓ = |||V̂ℓ||| ≃
( N∑

j=1

|||Gℓ,jV̂j |||2
)1/2

.

Since Gℓ,j is the orthogonal projection onto the one-dimensional space spanned by ϕj, it
holds

Gℓ,jV̂ℓ =
〈〈Ûℓ − Uℓ , ϕj〉〉

|||ϕj|||2
ϕj .

Finally, ϕj ∈ S̃p(T̂ℓ) and the Galerkin formulation (9) for Ûℓ ∈ S̃p(T̂ℓ) reveal

|||Gℓ,jV̂j||| =
|〈f −WUℓ , ϕj〉Γ|

|||ϕj|||
.

For Γ = ∂Ω, the stabilization disappears as 〈1 , Uℓ〉Γ = 0. This concludes the proof. �

4.3. Averaging on large patches. The (h − h/2)-type estimators from Section 4.1
and the two-level error estimator from Section 4.2 are unsatisfactory in the sense that one
computes the Galerkin matrix and the right-hand side vector with respect to the uniform

refinement T̂ℓ, while only the error |||u − Uℓ||| with respect to Tℓ is controlled. Moreover,
for either estimator its reliability is equivalent to the saturation assumption (35) which is
mathematically open and may fail to hold in general because of some possible preasymptotic
convergence behavior.

In this section, we consider the strategy proposed in [CP07b] and extend the analysis
of [CP07b, EFGP13] from 2D and p = 1 to d = 2, 3 and p ≥ 1. Unlike the previous

sections, the estimators considered now, control the error |||u−Ûℓ||| on the uniform refinement.

Throughout, Uℓ ∈ S̃p(Tℓ) and Ûℓ ∈ S̃p(T̂ℓ) denote the Galerkin solutions with respect to Tℓ

and T̂ℓ. With the Galerkin projection

Gℓ : H̃
1/2(Γ) → S̃p+1(Tℓ)(40)

onto the higher-order space S̃p+1(Tℓ) with respect to the coarse mesh Tℓ, we define the error
estimator

αℓ := |||(1−Gℓ)Ûℓ|||.(41)

The following proposition is proved in [CP07a, CP07b] by abstract Hilbert space arguments.
15



Proposition 17. With the quantities

qℓ :=
|||(1−Gℓ)u|||
|||u− Ûℓ|||

and λℓ := max
V ℓ∈S̃p+1(Tℓ)\{0}

min
V̂ℓ∈S̃p(T̂ℓ)

|||V ℓ − V̂ℓ|||
|||V ℓ|||

,(42)

it holds efficiency

αℓ ≤ (1 + qℓ) |||u− Ûℓ|||.(43)

Provided that q2ℓ + λ2ℓ < 1, there also holds reliability

�|||u− Ûℓ||| ≤
1√

1− λ2ℓ − qℓ
αℓ.(44)

As the assumption q2ℓ + λ2ℓ < 1 can hardly be checked in practice, the interpretation of
this result is as follows: If the exact solution u is sufficiently smooth or if the mesh Tℓ is
appropriately graded towards the singularities of u, it holds qℓ → 0. Moreover, instead of

a single uniform refinement (12), one can obtain T̂ℓ by k successive uniform refinements,

i.e. ĥℓ = 2−khℓ. Then, the approximation result of Lemma 7 and the inverse estimate of
Corollary 6 show for s = 1/2 and V ℓ ∈ S̃p+1(Tℓ)

‖(1− Ĝℓ)V ℓ‖H̃1/2(Γ)

‖V ℓ‖H̃1/2(Γ)

.
‖ĥ1/2ℓ ∇V ℓ‖L2(Γ)

‖V ℓ‖H̃1/2(Γ)

= 2−k/2 ‖h
1/2
ℓ ∇V ℓ‖L2(Γ)

‖V ℓ‖H̃1/2(Γ)

. 2−k/2

and hence λℓ . 2−k/2. In particular, the assumptions q2ℓ + λ2ℓ < 1 is satisfied asymptotically
and for sufficiently large k which depends on p, Γ, and γ-shape regularity of Tℓ.

The numerical experiments in [CP07b] give evidence that —at least for d = 2 and lowest-

order polynomials p = 1— the choice k = 1 and hence ĥℓ = hℓ/2 is sufficient. In the following,
we restrict to the case k = 1, but stress that the crucial norm localization estimate (13)
remains valid for any fixed k ≥ 1, where Cinv > 0 then additionally depends on k.

In addition to the computationally expensive estimator αℓ from (41), we define the fol-
lowing localized variants,

βℓ := ‖h1/2ℓ ∇(1− P ℓ)Ûℓ‖L2(Γ) and β̃ℓ := ‖h1/2ℓ (1− Πℓ)∇Ûℓ‖L2(Γ),(45)

where P ℓ : S̃p(T̂ℓ) → S̃p+1(Tℓ) satisfies (13) and where Πℓ : L2(Γ) → Pp(Tℓ) denotes the
L2(Γ)-orthogonal projection.

The following theorem has been proved for d = 2 and p = 1 in [EFGP13], while the
equivalence αℓ ≃ βℓ under the same restrictions is already found in [CP07b]. It is now
transferred to the general case d = 2, 3 and p ≥ 1.

Theorem 18. It holds

C−1
7 αℓ ≤ β̃ℓ ≤ βℓ ≤ Cinv αℓ.(46)

In particular, βℓ, β̃ℓ are reliable and efficient estimators for the fine-mesh error |||u− Ûℓ||| in
the sense of Proposition 17. Moreover, it holds

C−1
invβ̃ℓ ≤ ηℓ ≤ C8 β̃ℓ.(47)
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In particular, αℓ, βℓ, β̃ℓ are also reliable and efficient estimators for the coarse-mesh error
|||u − Uℓ||| in the sense of Theorem 12. The constant Cinv > 0 is that from (13), while
C7, C8 > 0 depend only on Capx > 0 and on p and γ-shape regularity of Tℓ.

Proof. According to Proposition 9, the localization estimate (13) holds for both P ℓ and Gℓ.

This proves C−1
apxαℓ ≤ βℓ ≤ Cinv αℓ. Moreover, it holds β̃ℓ ≤ βℓ, since ∇P ℓÛℓ ∈ Pp(Tℓ) and

Πℓ is the Tℓ-elementwise L2-bestapproximation operator. It thus only remains to prove that

βℓ . β̃ℓ. Since all operators P ℓ with (13) lead to equivalent estimators, we may assume
that P ℓ is the Lagrange nodal interpolation operator onto Sp+1(Tℓ). For T ∈ T , a scaling
argument and equivalence of semi-norms on finite dimensional spaces prove

‖∇(1− P ℓ)Ûℓ‖L2(T ) . ‖(1− Πℓ)∇Ûℓ‖L2(T ),

since both semi-norms have the same kernel. The hidden constant depends only on the
polynomial degree p (resp. p + 1) and γ-shape regularity of Tℓ. This concludes the proof

of (46). To prove (47), we use the Lagrange nodal interpolation operator Pℓ : S̃p(T̂ℓ) →
S̃p(Tℓ) onto Sp(Tℓ) for the definition of µℓ. Arguing as before, we see

β̃ℓ ≤ µℓ ≤ Cinv ηℓ as well as C−1
apx ηℓ ≤ µℓ . β̃ℓ

where the second estimate is proved Tℓ-elementwise as for βℓ ≃ β̃ℓ. This concludes the
proof. �

Remark 19. Let Pℓ and P ℓ denote the nodal interpolation operators onto Sp(Tℓ) resp.

Sp+1(Tℓ). The proof of Theorem 18 shows that βℓ, β̃ℓ, and µ̃ℓ are locally equivalent, i.e.

β̃ℓ(T ) ≤ min{βℓ(T ), µ̃ℓ(T )} ≤ max{βℓ(T ), µ̃ℓ(T )} . β̃ℓ(T ) for all T ∈ Tℓ,
where, e.g., β̃ℓ(T ) := diam(T )1/2 ‖(1−Πℓ)∇Ûℓ‖L2(T ) and βℓ, µℓ are defined accordingly. The
hidden constant depends only on p and γ-shape regularity of Tℓ. �

4.4. ZZ-type error estimator. Since the seminal work of Zienkiewicz and Zhu [ZZ87],
averaging techniques for FEM a posteriori error control became quite popular among the en-
gineering community. For BEM, ZZ-type error estimators have only recently been proposed
in [FFKP13], where the analysis is, however, restricted to d = 2 and lowest-order ansatz
functions p = 1.

We denote the set of interior edges (d = 3) resp. interior nodes (d = 2) of Tℓ by Eℓ :={
E = T ∩ T ′ : T, T ′ ∈ Tℓ with T 6= T ′

}
. For E = T ∩ T ′, let ωℓ(E) := T ∪ T ′ denote the

corresponding patch. The error estimator is then defined elementwise via

ζ2ℓ :=
∑

E∈Eℓ

ζℓ(E)
2 with ζℓ(E)

2 :=

{∑p
j=1 diam(E)2j‖[∂(j)n Uℓ]‖2L2(E) for d = 3,∑p
j=1 diam(ωℓ(E))

2j
∣∣[U (j)

ℓ ](E)
∣∣2 for d = 2.

For d = 2, [U
(j)
ℓ ] denotes the jump of the j-th arclength derivative at the node E ∈ Eℓ = Nℓ.

For d = 3 the jump of the j-th normal derivative [∂
(j)
n (·)] is defined as follows: Given x ∈ E,

let n, n′ denote tangential unit vectors with x+ tn ∈ T and x+ tn′ ∈ T ′ for sufficiently small
t > 0 such that n ⊥ E and n′ ⊥ E. Then,

[∂(j)n Uℓ](x) :=
∂j

∂tj
(
t 7→ 1

2t
(Uℓ(x+ tn)− Uℓ(x+ tn′))

)
(0).
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Theorem 20. The ZZ-type estimator ζℓ satisfies efficiency up to higher-order terms

C−1
eff ζℓ ≤ |||u− Uℓ|||+

( ∑

E∈Eℓ

min
V ∈Pp+1(ωℓ(E))

‖u− V ‖2H1/2(ωℓ(E))

)1/2

,(48)

where Ceff > 0 depends only on the polynomial degree p and on the γ-shape regularity of Tℓ.
Moreover, suppose that there exists a coarsening T ℓ of Tℓ, such that

|||u− Uℓ||| ≤ qsat|||u− U ℓ||| and #
{
T ∈ Tℓ : T ⊆ T ′

}
≤ Ccoarse for all T ′ ∈ T ℓ.(49)

Then, there holds reliability

|||u− Uℓ||| ≤ |||u− U ℓ||| ≤ (1− q2sat)
−1/2Crelζℓ,(50)

where Crel > 0 depends only on the polynomial degree p, on the γ-shape regularity of Tℓ, on
the shapes of the element patches, and on Ccoarse.

Before we come to the proof, we need a technical result.

Lemma 21. Let 0 ≤ s ≤ 1. There exists a constant Cloc > 0 such that
∑

E∈Eℓ

‖v‖2Hs(ωℓ(E)) ≤ Cloc‖v‖2Hs(Γ) for all v ∈ Hs(Γ),(51)

where the Hs-norms for 0 < s < 1 are defined either via interpolation or by use of the
Sobolev-Slobodeckij seminorm. The constant Cloc depends only on the γ-shape regularity of
Tℓ.

Proof. The cases s = 0 and s = 1 are obvious. A colouring argument from [CMS01] provides
a finite number of sets Eℓ = F1∪. . .∪Fn, where n ∈ N depends only on the γ-shape regularity
of Tℓ, such that ωℓ(E) ∩ ωℓ(E

′) = ∅ for all E,E ′ ∈ Fj with E 6= E ′ and all 1 ≤ j ≤ n. By
definition of the Sobolev-Slobodeckij seminorm, there holds

∑

E∈Eℓ

‖v‖2Hs(ωℓ(E)) =
n∑

j=1

∑

E∈Fj

‖v‖2Hs(ωℓ(E)) ≤
n∑

j=1

‖v‖2Hs(Γ) = n‖v‖2Hs(Γ).

To prove the result for interpolation norms, the essential observation is that the product of
interpolated spaces is the interpolation of the products, even with equal norms [Tar07]. The
sum on the left-hand side of (51) can be written as a product norm

∑

E∈Eℓ

‖v‖2Hs(ωℓ(E)) = ‖v‖2ΠE∈Eℓ
Hs(ωℓ(E)).

For s ∈ {0, 1} it holds

‖v‖2ΠE∈Fj
Hs(ωℓ(E)) ≤ ‖v‖2Hs(Γ).

Consequently, interpolation applies and concludes the proof. �

Proof of efficiency (48). Let V ∈ Pp+1(ωℓ(E)), E = T ∩ T ′, and hE := diam(E) for d = 3
and hE := diam(ωℓ(E)) for d = 2. Given 1 ≤ j ≤ p, scaling arguments and norm equivalence
on finite dimensional spaces prove for d = 3

hjE‖[∂(j)n (Uℓ − V )]‖L2(E) . ‖Uℓ − V ‖H1/2(ωℓ(E)).
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The hidden constant depends only on p, the shape of ωℓ(E), and γ-shape regularity of Tℓ.
For d = 2, a similar argument shows

hjE
∣∣[∂(j)n (Uℓ − V )](E)

∣∣ . ‖Uℓ − V ‖H1/2(ωℓ(E)).

With VE ∈ Pp+1(ωℓ(E)) and 51 for v = u− Uℓ, this leads to

ζ2ℓ =
∑

E∈Eℓ

p∑

j=1

ζℓ(E)
2

.
∑

E∈Eℓ

‖Uℓ − VE‖2H1/2(ωℓ(E)) . ‖u− Uℓ‖2H1/2(Γ) +
∑

E∈Eℓ

‖u− VE‖2H1/2(ωℓ(E)).

Taking the infimum over all VE, which is attained due to finite dimension, we conclude
efficiency. �

Proof of reliability (50). Given T ∈ T , define ET :=
{
E ∈ Eℓ : E ⊆ ωℓ(T )

}
and note

#ET . Ccoarse. On S̃p(Tℓ), consider the seminorms | · |1, | · |2,

| · |1 :=
p∑

j=1

∑

E∈ET

h2jE

{
‖[∂(j)n (·)]‖2L2(E) for d = 3,∣∣[(·)(j)](E)

∣∣2 for d = 2,

| · |2 := hT‖∇(1− J ℓ)(·)‖2L2(T ),

where J ℓ : L
2(Γ) → S̃p(T ℓ) is the Scott-Zhang projection from Lemma 4. For V ∈ S̃p(Tℓ),

assume |V |1 = 0. This implies that V ∈ Pp(ωℓ(T )) and therefore J ℓV |T = V |T . This yields
|V |2 = 0 and hence

| · |2 . | · |1.
A scaling argument shows that the hidden constant depends only on the polynomial degree
p ∈ N and the shape of the patch ωℓ(T ) as well as the shape of ET . Since #ET . Ccoarse, this
constant depends only on the shape of the patches of finitely many elements T ′ ∩⋃ ET 6= ∅.
Altogether and with (13), this leads to

|||Uℓ − U ℓ|||2 ≤ |||(1− J ℓ)Uℓ|||2 .
∑

T∈T ℓ

|Uℓ|22 .
∑

T∈T ℓ

|Uℓ|21 ≃ ζ2ℓ .

By assumption, the reliability follows from

|||u− U ℓ|||2 = |||u− Uℓ|||2 + |||Uℓ − U ℓ|||2 ≤ q2sat|||u− U ℓ|||2 + C2
relζ

2
ℓ .

This concludes the proof of reliability. �

Remark 22. With the same techniques as in the proof of Theorem 20, one may prove

ηℓ . ζℓ

with ηℓ denoting the (h−h/2)-error estimator from Theorem 12, which corresponds to T ℓ. �

Remark 23. For the lowest-order case p = 1, the estimator ζℓ is equivalent to the error
estimator from [FFKP13] which reads

ζ̃ℓ := ‖h1/2ℓ (1−Aℓ)∇Uℓ‖L2(Γ)(52)
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with some arbitrary averaging operator Aℓ : P0(Tℓ) → S1(Tℓ) which satisfies (AℓΨ)|T = Ψ|T
for all Ψ ∈ P0(Tℓ) with Ψ|ωℓ(T ) ∈ C(ωℓ(T )) and all T ∈ Tℓ. This can easily be seen by scaling
arguments and norm equivalence on finite dimensional spaces. For higher-order elements
p > 1, the analogous analysis needs an averaging operator Aℓ : Pp−1(Tℓ) → Sp(Tℓ) ∩Hp(Γ)
with more regularity to establish the equivalence. �

Remark 24. The assumption (49) is, for instance, guaranteed if Tℓ := T̂k is the uniform
refinement of some mesh Tk and the classical saturation assumption

|||u− Ûk||| ≤ qsat|||u− Uk|||
holds for some 0 < qsat < 1. Then, (49) holds with T ℓ := Tk. Moreover, if the adaptive
algorithm converges linearly, i.e.,

|||u− Uℓ||| ≤ qsat|||u− Uℓ−1|||,
the assumption (49) is satisfied with T ℓ := Tℓ−1. �

5. Numerical experiments

We consider different numerical examples (d = 2, 3) and compare uniform versus adaptive
strategies as well as some selected a posteriori error estimators presented in this work.

We use some local error estimator ρℓ with ρ
2
ℓ =

∑
T∈Tℓ

ρℓ(T )
2 to steer the following adap-

tive algorithm. Here, ρℓ ∈ {µℓ, µ̃ℓ, τℓ, βℓ, β̃ℓ, ζℓ, ζ̃ℓ} denotes either an (h − h/2)-type error
estimator from Section 4.1, the two-level error estimator τℓ from Section 4.2, the averaging

error estimator βℓ resp. β̃ℓ from Section 4.3, or the ZZ-type error estimators ζℓ and ζ̃ℓ from
Section 4.4. The quantities ρℓ(T ) are the contributions of ρℓ associated with the elements
T ∈ Tℓ.
Algorithm 25. Input: Initial triangulation T0, counter ℓ := 0, parameter 0 < θ < 1.

(i) Compute Galerkin solution Uℓ ∈ S̃p(Tℓ).
(ii) Compute local refinement indicators ρℓ(T ) for all T ∈ Tℓ.
(iii) Choose some set Mℓ ⊆ Tℓ (of minimal cardinality) such that

θρ2ℓ ≤
∑

T∈Mℓ

ρℓ(T )
2.(53)

(iv) Refine at least all marked elements T ∈ Mℓ to obtain the refined mesh Tℓ+1, increase
the counter ℓ 7→ ℓ+ 1, and goto (i).

Output: Sequence of nested triangulations Tℓ with corresponding Galerkin solutions Uℓ and
error estimators ρℓ, for ℓ = 0, 1, 2, . . . .

For d = 2, we use the bisection algorithm from [AFF+13, Section 3]. For d = 3, we employ
2D newest vertex bisection, see e.g. [KPP] and the references therein. Either refinement
strategy guarantees that the meshes Tℓ obtained, are uniformly γ-shape regular, where γ
depends only on the initial mesh T0. Moreover, only finitely many shapes of patches occur.
In particular, all constants in the a posteriori analysis of Section 4 remain uniformly bounded.

5.1. Experiment on 2D open slit. For the open boundary Γ = (−1, 1)×{0}, we consider
the hypersingular integral equation (1) with f = 1 and exact solution u(x, 0) = 2

√
1− x2.
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Figure 1. Hypersingular integral equation from Section 5.1 on the slit Γ =
(−1, 1) × {0} with right-hand side f = 1, exact solution u(x, 0) = 2

√
1− x2,

and p = 1. The adaptive refinement is steered by the ZZ-type error estimator

ζ̃ℓ.

Since the energy norm |||u|||2 = π can be computed analytically, we compute the energy error

between u and the Galerkin approximation Uℓ ∈ S̃p(Tℓ) by use of the Galerkin orthogonality

err2ℓ := |||u− Uℓ|||2 = |||u|||2 − |||Uℓ|||2 = π − |||Uℓ|||2.(54)

We stress that u ∈ H̃1/2(Γ)∩H1−ε(Γ) for all ε > 0, but u /∈ H1(Γ). Thus, theory predicts the
convergence order α = 1/2 for uniform mesh refinement, i.e. errh = O(h1/2) = O(N−1/2),
where N denotes the number of elements in the uniform triangulation Tℓ. In contrast to
that, adaptive strategies are likely to regain the optimal convergence order α = 1/2 + p. In
Figure 1 resp. Figure 2, we compare uniform vs. adaptive mesh-refinement for p = 1 resp.
p = 2, where we use the local refinement indicators

ζ̃ℓ(T )
2 = diam(T )‖(1−Aℓ)u

′
ℓ‖2L2(T ) for T ∈ Tℓ(55)

of the ZZ-type error estimator from (52) in Section 4.4 and θ = 0.25 to steer the adaptive
algorithm. Here, Aℓ : L2(Γ) → S1(Tℓ) denotes the standard Clément operator defined
nodewise for z ∈ Nℓ via

(Av)(z) := |ωℓ(z)|−1

∫

ωℓ(z)

v dx with ωℓ(z) :=
⋃{

T ∈ Tℓ : z ∈ T
}

(56)

for p = 1 resp. the Scott-Zhang projection Aℓ = Jℓ from Lemma 3 onto the space Sp(Tℓ)
for p = 2. Additionally, we also compute the (h − h/2)-type error estimators µℓ, µ̃ℓ from
Section 4.1 as well as the two-level estimator τℓ from Section 4.2. We use the nodal inter-
polation operator Pℓ = Iℓ for the computation of µ̃ℓ. As can be seen from Figures 1–2, the
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Figure 2. Hypersingular integral equation from Section 5.1 on the slit Γ =
(−1, 1) × {0} with right-hand side f = 1, exact solution u(x, 0) = 2

√
1− x2,

and p = 2. The adaptive refinement is steered by the ZZ-type error estimator

ζ̃ℓ.

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

Figure 3. Z-shaped domain Ω with boundary Γ = ∂Ω and initial triangula-
tion of Γ into 9 boundary elements for the numerical experiment from Sec-
tion 5.2.

uniform mesh-refinement strategy leads — as expected — to the suboptimal convergence
order α = 1/2, whereas the adaptive strategy regains the optimal order of convergence of
α = 3/2 resp. α = 5/2.
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Figure 4. Hypersingular integral equation from Section 5.2 on the Z-shaped
domain, sketched in Figure 3, with p = 1. The adaptive refinement is steered

by the ZZ-type error estimator ζ̃ℓ.
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Figure 5. Hypersingular integral equation from Section 5.2 on the Z-shaped
domain, sketched in Figure 3, with p = 2. The adaptive refinement is steered

by the ZZ-type error estimator ζ̃ℓ.
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5.2. Experiment on closed boundary of Z-shaped domain in 2D. Let Ω be the
Z-shaped domain from Figure 3 with reentrant corner at the origin (0, 0). Let Γ = ∂Ω denote
its boundary. We consider the hypersingular integral equation (1) with f = (1/2 − K ′)φ.
Here, K ′ denotes the adjoint double-layer potential and φ = ∂nw is the normal derivative of
the function

w(x) = r4/7 cos(4/7ϕ),(57)

where (r, ϕ) are the polar coordinates of x ∈ Γ with respect to the origin (0, 0). By choice
of f , the exact solution u of (1) is, up to some additive constant, the trace of w. Note that

u admits a generic singularity in the origin (0, 0). Since u ∈ H̃1/2(Γ) ∩H4/7+1/2−ε(Γ) for all
ε > 0, theory predicts a convergence order α = 4/7 for uniform mesh-refinement. Because
the exact value of the energy norm |||u||| is unknown, we employ Lemma 7 for s = 1/2
and estimate the energy error between the exact solution u and the Galerkin approximation
Uℓ ∈ Sp(Tℓ) by

|||u− Uℓ||| . ‖h1/2ℓ (u− Uℓ)
′‖L2(Γ) =: errℓ.(58)

In Figure 4 resp. Figure 5, we compare uniform vs. adaptive mesh-refinement for p = 1
resp. p = 2. The adaptive algorithm is steered by the local contributions (55) of the ZZ-type

error estimator ζ̃ℓ from (52) and θ = 0.25. We observe that the uniform strategy leads to
the suboptimal convergence order α = 4/7 for both p = 1 and p = 2, whereas the adaptive
strategy regains the optimal order α = 1/2+ p. For comparison, we also plot the (h− h/2)-
type error estimators µℓ, µ̃ℓ (with Pℓ the nodal interpolation operator) from Section 4.1 as
well as the two-level error estimator τℓ from Section 4.2. Here, we use the nodal interpolation
operator Iℓ for the computation of µ̃ℓ.

5.3. Experiment on 3D screen problem. We choose Γ to be the square screen
(0, 1)2 ×{0} with an initial mesh shown in Figure 6. We consider the hypersingular integral
equation (1) with f = 1. The energy norm is known to be approximately |||u|||2 ≈ 0.45486722,

such that the energy error between u and the Galerkin approximation Uℓ ∈ S̃1(Tℓ) can be
computed by

err2ℓ := |||u− Uℓ|||2 = |||u|||2 − |||Uℓ|||2.

For the exact solution u, it is well known that u ∈ H̃1/2(Γ) ∩ H1−ε(Γ) for all ε > 0, but
u /∈ H1(Γ). Thus, theory predicts the convergence order α = 1/2 − ε for uniform mesh
refinement, i.e., errh = O(h1/2−ε) = O(N−1/4−ε/2), where N denotes the number of elements
in the uniform triangulation Tℓ. In contrast to that, adaptive strategies based on isotropic
mesh refinement are known to regain the convergence order α = 1. In Figure 7, we compare
uniform vs. adaptive mesh-refinement for p = 1, where we use the local contributions (55) of

the ZZ-type error estimator ζ̃ℓ from (52). Here, Aℓ denotes the standard Clément operator.
As before, we also compute the (h − h/2)-type error estimators µℓ, µ̃ℓ (with Pℓ the nodal
interpolation operator) from Section 4.1 as well as the two-level estimator τℓ from Section 4.2
As can be seen from Figure 7, the uniform mesh-refinement strategy leads — as expected
— to the suboptimal convergence order α = 1/4, whereas the adaptive strategy regains the
optimal order of convergence of α = 1/2.
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Figure 6. Initial mesh for the 3D screen problem from Section 5.3. The
reference edges of each triangle used for newest vertex bisection, are indicated
by double lines.
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Figure 7. Hypersingular integral equation from Section 5.3 on the screen
Γ = (0, 1)2 × {0} with right-hand side f = 1 and p = 1. The adaptive
refinement is steered by the ZZ-type error estimator ζℓ.
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