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ZZ-Type A Posteriori Error Estimators

for Adaptive Boundary Element Methods on a Curve

Michael Feischl, Thomas Führer, Michael Karkulik, Dirk Praetorius∗

Abstract

In the context of the adaptive finite element method (FEM), ZZ-error estimators named after Zienkiewicz and Zhu [ZZ87]
are mathematically well-established and widely used in practice. In this work, we propose and analyze ZZ-type error
estimators for the adaptive boundary element method (BEM). We consider weakly-singular and hyper-singular integral
equations and prove, in particular, convergence of the related adaptive mesh-refining algorithms. Throughout, the
theoretical findings are underlined by numerical experiments.

Keywords: boundary element method, local mesh-refinement, adaptive algorithm, ZZ-type error estimator
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1. Introduction

Since the seminal work of Zienkiewicz and Zhu [ZZ87],
averaging techniques became popular in engineering and
applied sciences for the a posteriori error control of the
finite element solution of partial differential equations. To
sketch the idea, we consider the most simple context of the
2D Poisson equation

−∆u = f in Ω,

u = 0 on ∂Ω.
(1)

Here and throughout the work, Ω ⊂ R2 is a bounded Lip-
schitz domain with polygonal boundary ∂Ω.

Let Th denote a regular triangulation of Ω into com-
pact, nondegenerate triangles. Let P0(Th) be the space
of all Th-piecewise constant functions and S1(Th) be the
space of all Th-piecewise affine and globally continuous
splines. The lowest-order finite element solution uh ∈
S1
0 (Th) :=

{
vh ∈ S1(Th) : vh = 0 on ∂Ω

}
is the unique

solution of the Galerkin formulation
∫

Ω

∇uh · ∇vh dx =

∫

Ω

fvh dx (2)

for all test functions vh ∈ S1
0 (Th). In this context, the ZZ

error estimator reads

ηh = ‖(1−Ah)∇uh‖L2(Ω), (3)
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where Ah : P0(Th)2 → S1(Th)2 is some averaging opera-
tor which maps the Th-piecewise constant gradient ∇uh ∈
P0(Th)2 onto some continuous and piecewise affine func-
tion Ah∇uh ∈ S1(Th)2. Possible choices for Ah are the
usual Clément-type operators like

(Ahv)(z) =
1

area(ωz)

∫

ωz

v dx (4)

for all nodes z ∈ Kh of Th, where

ωz :=
⋃{

T ∈ Th : z ∈ T
}

(5)

denotes the patch of z, i.e., the union of all elements T ∈ Th
which have z as a node. Although ZZ error estimators are
strikingly simple and mathematically well-developed for
the finite element method, see e.g. [BC02a, BC02b, Car04,
Rod94], they have not been considered for boundary ele-
ment methods, yet. Available error estimators from the lit-
erature include residual-based error estimators for weakly-
singular [CS95, CS96, Car97, CF01, CMS01, Fae00, Fae02]
and hyper-singular integral equations [Car97, CMPS04],
hierarchical error estimators for weakly-singular [EH06,
HMS01, MSW98] and hyper-singular integral equations
[Heu02, HMS01], (h−h/2)-based error estimators [EFLFP09,
EFGP12, FLP08], averaging on large patches [CP06, CP07b,
CP07a], and estimators based on the use of the full Calderón
system [MPM99, SS00, Ste00]. The reader is also referred
to the overviews given in [CF01, EFGP12] and the refer-
ences therein.

This note proposes ZZ-type error estimators in the con-
text of the boundary element method. As model problems
serve the hyper-singular and the weakly-singular integral
equation associated with the 2D Laplacian. Difficulties
arise from the fact that neither the involved integral oper-
ators nor the energy norms are local.
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The outline of this paper reads as follows: In Section 2,
we consider the hyper-singular integral equation, introduce
a ZZ-type error estimator, and provide numerical evidence
for its successful use on a slit model problem as well as for
the first-kind integral formulation of some Neumann prob-
lem. In Section 3, we apply this approach in the context
of the weakly-singular integral equation. While Section 2
and Section 3 are written for a general audience, Section 4
collects the preliminaries for the numerical analysis of the
proposed a posteriori error estimators. A rigorous a pos-
teriori error analysis is postponed to Section 5. The final
Section 6 even proves convergence of the standard adap-
tive mesh-refining algorithm steered by the ZZ-type error
estimators proposed.

2. Hyper-singular integral equation

We suppose that Ω ⊂ R2 is simply connected, i.e., Ω has
no holes and ∂Ω thus is connected. We denote the funda-
mental solution of the 2D Laplacian by

G(z) := − 1

2π
log |z| for z ∈ R2\{0}. (6)

Let Γ be some relatively open and connected subset of the
boundary ∂Ω. Then, the hyper-singular integral operator
is formally defined by

(Wu)(x) = −∂n(x)
∫

Γ

∂n(y)G(x− y)u(y) dΓ(y) (7)

for x ∈ Γ. Here,
∫
Γ dΓ denotes integration along the curve

and ∂n(x) is the normal derivative at some point x ∈ Γ.
The hyper-singular integral equation reads

Wu = f on Γ. (8)

For the following facts on the functional analytic setting as
well as for proofs and further details, the reader is referred
to e.g. the monographs [HW08, McL00, SS11].

2.1. Slit model problem

Assume that Γ $ ∂Ω is not closed. Let H̃1/2(Γ) denote
the space of all H1/2(Γ)-functions which vanish at the tips
of Γ. Then, W is a linear, bounded and elliptic operator
between the fractional-order Sobolev space H̃1/2(Γ) and
its dual space H−1/2(Γ), where duality is understood with
respect to the extended L2(Γ)-scalar product 〈· , ·〉L2(Γ).

Let f ∈ H−1/2(Γ). The variational form of (8) reads

〈Wu , v〉L2(Γ) = 〈f , v〉L2(Γ) for all v ∈ H̃1/2(Γ). (9)

Since the left-hand side defines a scalar product on H̃1/2(Γ),
the Lax-Milgram lemma provides existence and uniqueness
of the solution u.

2.2. Model problem on closed boundaries

Assume that Γ = ∂Ω is closed. Then, W is a linear and

bounded operator from H1/2(∂Ω) to H
−1/2
⋆ (∂Ω) :=

{
ψ ∈

H−1/2(∂Ω) : 〈ψ , 1〉L2(∂Ω) = 0
}
. Moreover, W is ellip-

tic on the subspace H1/2(∂Ω)/R ≡ H
1/2
⋆ (∂Ω) :=

{
v ∈

H1/2(∂Ω) :
∫
∂Ω
v dΓ = 0

}
, where connectedness of ∂Ω is

required. Let f ∈ H
−1/2
⋆ (∂Ω). The variational form of (8)

now reads

〈Wu , v〉L2(∂Ω) = 〈f , v〉L2(∂Ω) for all v ∈ H
1/2
⋆ (∂Ω).

(10)

As before, the left-hand side defines a scalar product on

H
1/2
⋆ (∂Ω), and the Lax-Milgram lemma thus provides ex-

istence and uniqueness of the solution u.
We note that, for certain right-hand sides f and Γ =

∂Ω, (8) is an equivalent formulation of the Neumann prob-
lem

−∆u = f in Ω,

∂nu = g on ∂Ω.
(11)

In this case, the solution u of (8) is, up to some additive
constant, the trace u|∂Ω of the solution u of (11).

2.3. Galerkin boundary element discretization

Let Th be a partition of Γ into affine line segments. Let
S1(Th) denote the space of all functions vh which are con-
tinuous and Th-piecewise affine with respect to the arc-
length. For Γ $ ∂Ω, S1

0 (Th) := S1(Th) ∩ H̃1/2(Γ) de-
notes the subspace of all functions vh ∈ S1(Th) which ad-
ditionally vanish at the tips of Γ. For Γ = ∂Ω, S1

0 (Th) :=
S1(Th)∩H1/2

⋆ (Γ) denotes the subspace of all functions vh ∈
S1(Th) which satisfy

∫
Γ
vh dΓ = 0. In either case, S1

0 (Th)
is a conforming subspace of H̃1/2(Γ) resp. H

1/2
⋆ (∂Ω). In

particular, the Galerkin formulation of (9) resp. (10) reads

〈Wuh , vh〉L2(Γ) = 〈f , vh〉L2(Γ) for all vh ∈ S1
0 (Th) (12)

and admits a unique Galerkin solution uh ∈ S1
0 (Th).

2.4. ZZ-type error estimator

Let h ∈ L∞(Γ) be the local mesh-size function defined by

h|T := length(T ) for T ∈ Th (13)

with the arclength length(·). With (·)′ denoting the arc-
length derivative, we propose the following ZZ-type error
estimator

ηh = ‖h1/2(1−Ah)u
′
h‖L2(Γ), (14)

where Ah : L2(Γ) → S1(Th) denotes the Clément operator
defined by

(Ahv)(z) :=
1

length(ωz)

∫

ωz

v dΓ (15)

for all nodes z ∈ Kh of Th with ωz =
⋃{

T ∈ Th : z ∈ T
}

the node patch.

2.5. Adaptive mesh-refining algorithm

Given a right-hand side f ∈ H−1/2(Γ), an initial partition
Th of Γ, and some adaptivity parameter 0 < θ < 1, the
proposed adaptive algorithm reads as follows:
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(i) Compute discrete solution uh ∈ S1
0 (Th).

(ii) For all T ∈ Th, compute the refinement indicators

ηh(T )
2 := length(T ) ‖(1−Ah)u

′
h‖2L2(T ). (16)

(iii) Determine a set Mh ⊆ Th such that

θ η2h ≤
∑

T∈Mh

ηh(T )
2. (17)

(iv) Generate a new mesh Th by bisection of at least all
elements in Mh.

(v) goto (i) and iterate.

For the proof of quasi-optimal convergence rates in the
frame of adaptive FEM, e.g. [Ste07, CKNS08], and adap-
tive BEM [FKMP13, Tso13], the set Mh in step (iii) is
usually chosen with minimal cardinality. A greedy algo-
rithms sorts the indicators in descending order and then
iteratively splits Th into Mh and Th\Mh by moving the
largest indicator from Th\Mh to Mh until the Dörfler cri-
terion (17) is satisfied.

For our implementation, we use the Matlab BEM li-
brary HILBERT [AEF+11]. The local mesh-refinement in
step (iv) of the algorithm is done by some bisection-based
algorithm from [AFF+13] which guarantees that the local
mesh-ratio

κ(Th) := max
{ length(T )

length(T ′)
: T, T ′ ∈ Th neighbors

}
(18)

stays uniformly bounded κ(Th) ≤ γ for some γ ≥ 2 which
depends only on the initial partition. We stress that such
a property is required for the numerical analysis of ηh in
Section 5 and Section 6 below.

We recall from the literature [SS11] that the optimal
rate of convergence with lowest-order BEM is O(h3/2) if
the exact solution is smooth. This corresponds toO(N−3/2)
with respect to the number N of elements on adaptively
generated meshes.

2.6. Numerical experiment for slit problem

We consider the hyper-singular integral equation

Wu = 1 on Γ = (−1, 1)× {0}. (19)

The exact solution is known and reads u(x, 0) = 2
√
1− x2.

Note that u ∈ H̃1/2(Γ) ∩ H1−ε(Γ) for all ε > 0. In par-
ticular, we expect an empirical convergence order O(h1/2)
for uniform mesh-refinement.

The initial mesh Th for the computation is shown in
Figure 1. We compare adaptive mesh-refinement with pa-
rameter θ = 1/2 with uniform mesh-refinement. The cor-
responding convergence graphs are visualized in Figure 2.
While uniform mesh-refinement leads to the predicted sub-
optimal order O(h1/2) = O(N−1/2), the proposed adap-
tive strategy regains the optimal rate O(N3/2).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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0.6

0.8

initial mesh with N=4 elements

Figure 1: Slit Γ = (−1, 1) × {0} and initial mesh Th with N = 4
elements of the numerical experiment for the hyper-singular integral
equation from Section 2.6.

2.7. Numerical experiment on closed boundary

We consider the Z-shaped domain with reentrant corner at
the origin (0, 0), see Figure 3 for a sketch. The right-hand
side f = (1/2−K ′)(∂nu) ∈ H−1/2(Γ) with Γ = ∂Ω and K ′

the adjoint double layer-potential is chosen such that the
hyper-singular integral equation (8) is equivalent to some
Neumann problem (11) with f = 0. The exact solution
reads

u(x) = r4/7 cos(4ϕ/7) (20)

in 2D polar coordinates x = r (cosϕ, sinϕ). The exact so-
lution u of (8) is, up to some additive constant, the trace
u|Γ. Moreover, u admits a generic singularity at the reen-

trant corner. Note that u ∈ H
1/2
0 (∂Ω) ∩H4/7+1/2−ε(∂Ω)

for all ε > 0. Theoretically, this predicts an expected con-
vergence order O(h4/7) for uniform mesh-refinement.

The Z-shaped domain as well as the initial mesh Th
for the computation are shown in Figure 3. We com-
pare adaptive mesh-refinement with parameter θ = 1/2
with uniform mesh-refinement. The corresponding con-
vergence graphs are visualized in Figure 4. While uniform
mesh-refinement leads to the expected rate O(h4/7) =
O(N−4/7), the proposed adaptive strategy regains the op-
timal rate O(N−3/2).

3. Weakly-singular integral equation

In this section, we consider the simple-layer potential

(V φ)(x) =

∫

Γ

G(x − y)φ(y) dΓ(y) for x ∈ Γ, (21)

where G(·) denotes the fundamental solution of the 2D
Laplacian from (6). We assume that Γ ⊆ ∂Ω is a relatively

3
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Figure 2: Numerical outcome of the experiment for the hyper-
singular integral equation from Section 2.6.

open but possibly non-connected subset of the boundary
∂Ω and that diam(Ω) < 1. For the following facts on the
functional analytic setting as well as for proofs and fur-
ther details, we again refer to e.g. the monographs [HW08,
McL00, SS11].

3.1. Model problem

It is well-known that V is a linear, bounded, and elliptic
operator from H̃−1/2(Γ) to its dual H1/2(Γ), where ellip-
ticity follows from diam(Ω) < 1. Given some f ∈ H1/2(Γ),
we aim at the numerical solution of the weakly-singular in-
tegral equation

V φ = f. (22)

We use the variational form

〈V φ , ψ〉L2(Γ) = 〈f , ψ〉L2(Γ) for all ψ ∈ H̃−1/2(Γ). (23)

The left-hand side defines an equivalent scalar product on
H̃−1/2(Γ), and the Lax-Milgram lemma thus provides exis-

tence and uniqueness of the solution φ ∈ H̃−1/2(Γ) of (23).
We stress that, for certain right-hand sides f and Γ =

∂Ω, (22) is an equivalent formulation of the Dirichlet prob-
lem

−∆u = f in Ω,

u = g on Γ.
(24)

In this case, it holds φ = ∂nu. In particular, one cannot
expect that φ is locally smooth, where the outer normal
vector n is not.

3.2. Galerkin boundary element discretization

Let Th be a partition of Γ into affine line segments. Let
P0(Th) denote the space of all Th-piecewise constant func-
tions ψh. For the Galerkin discretization, we replace φ, ψ ∈
H̃−1/2(Γ) by discrete functions φh, ψh ∈ P0(Th). Then,
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0.8

1
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Figure 3: Boundary Γ = ∂Ω and initial mesh Th with N = 9 elements
of the numerical experiment for the hyper-singular integral equation
from Section 2.7.

P0(Th) ⊂ H̃−1/2(Γ) is a conforming subspace, and the
Galerkin formulation

〈V φh , ψh〉L2(Γ) = 〈f , ψh〉L2(Γ) for all ψh ∈ P0(Th) (25)

admits a unique Galerkin solution φh ∈ P0(Th).
3.3. ZZ-type error estimator

With h ∈ L∞(Γ) the local mesh-size function from (13),
we propose the following ZZ-type error estimator

ηh = ‖h1/2(1−Ah)φh‖L2(Γ). (26)

As noted before, we may expect that φ is non-smooth at
points x ∈ Γ, where the normal mapping x 7→ n(x) is
non-smooth. Therefore, we slightly modify the Clément
operator Ah : L2(Γ) → P1(Th) from (15) as follows:

• First, if {z} = Tj ∩ Tk is the node between the ele-
ments Tj , Tk ∈ Th and if the normal vector of Tj and
Tk does not jump at z, we define

(Ahv)(z) :=
1

length(ωz)

∫

ωz

v dΓ (27)

with ωz =
⋃{

T ∈ Th : z ∈ T
}
= Tj ∪ Tk the node

patch.

• Second, if the normal vectors of Tj and Tk differ at
z, we allow Ahv to jump at z as well, namely

(Ahv)|Tj (z) =
1

length(Tj)

∫

Tj

v dΓ,

(Ahv)|Tk
(z) =

1

length(Tk)

∫

Tk

v dΓ.

(28)
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Figure 4: Numerical outcome of the experiment for the hyper-
singular integral equation from Section 2.7.

Note that this definition can only be meaningful if each
connected component γ ⊆ Γ on which the normal map-
ping x 7→ n(x) is smooth, consists of at least two elements.
Otherwise, γ = Tj would lead to φh|γ = (Ahφh)|γ so that
ηh vanishes on γ, i.e. Tj would never be marked for refine-
ment by an adaptive algorithm.

3.4. Adaptive algorithm

We consider the adaptive algorithm from Section 2.5 with
the obvious modifications., i.e. we compute φh ∈ P0(Th)
in step (i) as well as the local contributions

ηh(T )
2 := length(T ) ‖(1−Ah)φh‖2L2(T ) (29)

in step (ii). We refer to the literature, e.g. [SS11], that the
optimal rate of lowest-order BEM is O(h3/2) for a smooth
solution φ, and the adaptive algorithm thus aims to regain
a convergence order O(N−3/2) with respect to the number
of elements.

3.5. Numerical experiment for slit problem

We consider the weakly-singular integral equation

V φ = 1 on Γ = (−1, 1)× {0}. (30)

The unique exact solution of this equation is known and
reads φ(x, 0) = −2x/

√
1− x2. Note that φ ∈ H̃−1/2(Γ) ∩

H−ε(Γ) for all ε > 0. In particular, we expect an empirical
convergence order O(h1/2) for uniform mesh-refinement.

The initial mesh Th for the computation is shown in
Figure 5. We compare adaptive mesh-refinement with pa-
rameter θ = 1/2 with uniform mesh-refinement. The cor-
responding convergence graphs are visualized in Figure 6.
While uniform mesh-refinement leads to the expected rate
O(h1/2) = O(N−1/2), the adaptive algorithm regains the
optimal rate O(N−3/2).

3.6. Numerical experiment on closed boundary
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Figure 5: Slit Γ = (−1, 1) × {0} and initial mesh Th with N = 4
elements of the numerical experiment from Section 3.5.
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Figure 6: Numerical outcome of experiment from Section 3.5.

We consider the rotated L-shaped domain from Figure 7
with reentrant corner at the origin (0, 0). We consider Γ =
∂Ω and choose the right-hand side f = (K + 1/2)(u|Γ) ∈
H1/2(Γ) with K the double-layer potential, so that the
weakly-singular integral equation (22) is equivalent to some
Dirichlet problem (24) with f = 0. The exact solution
of (24) is prescribed as

u(x) = r2/3 cos(2ϕ/3) (31)

in 2D polar coordinates x = r (cosϕ, sinϕ) and admits a
generic singularity at the reentrant corner. The exact so-
lution φ of (22) is the normal derivative φ = ∂nu. We note
that φ ∈ H2/3−1/2−ε(Γ) for all ε > 0, and we may hence
expect convergence of order O(h2/3) for uniform mesh-
refinement.
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Figure 7: Boundary Γ = ∂Ω and initial mesh Th with N = 16
elements of the numerical experiment from Section 3.6.
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Figure 8: Numerical outcome of experiment from Section 3.6.

The L-shaped domain as well as the initial mesh Th
for the computation are shown in Figure 7. We compare
adaptive mesh-refinement with parameter θ = 1/2 with
uniform mesh-refinement. The corresponding convergence
graphs are visualized in Figure 8. The proposed adaptive
algorithm recovers the optimal order of convergence.

4. Preliminaries

The purpose of this short section is to fix the notation of
the spaces involved and to recall standard results used in
the following.

4.1. Interpolation spaces

Let X0 and X1 be Hilbert spaces with X0 ⊇ X1 and con-
tinuous inclusion, i.e., there exists some constant C > 0

such that

‖x‖X0
≤ C ‖x‖X1

for all x ∈ X1. (32)

Interpolation theory, e.g. [BL76], provides a means to de-
fine intermediate spaces

X1 ⊆ Xs := [X0;X1]s ⊆ X0 for all 0 < s < 1, (33)

where [·; ·]s denotes the interpolation operator of, e.g., the
K-method. The norm related to the intermediate interpo-
lation space Xs satisfies

‖x‖Xs ≤ ‖x‖1−s
X0

‖x‖sX1
for all x ∈ X1. (34)

The most important consequence, however, is the so-called
interpolation estimate: Let X0 ⊇ X1 and Y0 ⊇ Y1 be
Hilbert spaces with continuous inclusions. Let T : X0 →
Y0 be a linear operator with T (X1) ⊆ Y1. Assume that
T : X0 → Y0 as well as T : X1 → Y1 are continuous, i.e.,

‖Tx‖Y0
≤ C1 ‖x‖X0

for all x ∈ X0,

‖Tx‖Y1
≤ C2 ‖x‖X1

for all x ∈ X1,
(35)

with the respective operator norms C1, C2 > 0. Let 0 <
s < 1 and Xs = [X0;X1]s and Ys = [Y0;Y1]s. Then, T :
Xs → Ys is a well-defined linear and continuous operator
with

‖Tx‖Ys ≤ C1−s
1 Cs

2 ‖x‖Xs for all x ∈ Xs. (36)

Note that for other interpolation methods than the real
K-method, the previous estimates (34) and (36) hold only
up to some additional constant which depends only on Γ,
see e.g. [BL76].

4.2. Function spaces

Let L2(Γ) denote the space of square integrable functions
on Γ, associated with the Hilbert norm

‖v‖2L2(Γ) :=

∫

Γ

v2 dΓ. (37)

Note that ‖ · ‖L2(Γ) stems from the scalar product

〈v , w〉L2(Γ) :=

∫

Γ

vw dΓ. (38)

Let H1(Γ) denote the closure of all Lipschitz continuous
functions on Γ with respect to the Hilbert norm

‖v‖2H1(Γ) := ‖v‖2L2(Γ) + ‖v′‖2L2(Γ). (39)

Let H̃1(Γ) denote the closure of all Lipschitz continuous
functions on Γ with respect to the H1(Γ)-norm which van-

ish at the tips of Γ. We stress that both H1(Γ) and H̃1(Γ)
are dense subspaces of L2(Γ) with respect to the L2(Γ)-

norm. Moreover, it holds H1(Γ) = H̃1(Γ) in case of a
closed boundary Γ = ∂Ω.
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Sobolev spaces of fractional order 0 < s < 1 are defined
by interpolation

Hs(Γ) := [L2(Γ);H1(Γ)]s,

H̃s(Γ) := [L2(Γ); H̃1(Γ)]s.
(40)

To abbreviate notation, we shall also write L2(Γ) = H0(Γ) =

H̃0(Γ). It follows that all Hs(Γ) and H̃s(Γ) are dense sub-
spaces of L2(Γ) with respect to the L2(Γ)-norm. There-
fore, the dual spaces can be understood with respect to
the extended L2(Γ)-scalar product. For −1 ≤ s < 0, we
define

H−s(Γ) := H̃s(Γ)∗,

H̃−s(Γ) := Hs(Γ)∗.
(41)

It follows that L2(Γ) is dense in H−s(Γ) and H̃−s(Γ)
with respect to the associated norms. For s = 0, we let
H̃0(Γ) := L2(Γ) =: H0(Γ).

We stress that interpolation theory also states the equal-
ities

H−s(Γ) = [H−1(Γ);L2(Γ)]s,

H̃−s(Γ) = [H̃−1(Γ);L2(Γ)]s
(42)

in the sense of sets and equivalent norms [McL00]. More-

over, interpolation reveals the continuous inclusions H̃±s(Γ) ⊆
H±s(Γ) as well as H̃±s(∂Ω) = H±s(∂Ω).

The analysis of the hyper-singular integral equation
further requires

H±s
⋆ (∂Ω) :=

{
v ∈ H±s(∂Ω) : 〈v , 1〉L2(∂Ω) = 0

}
(43)

for 0 ≤ s ≤ 1. We define L2
⋆(Γ) := H0

⋆ (Γ). We again note
that interpolation yields the equality

H±s
⋆ (∂Ω) = [L2

⋆(∂Ω);H
1
⋆ (∂Ω)]s. (44)

Finally, Hs
0(Γ) denotes either H̃s(Γ) for Γ $ ∂Ω resp.

Hs
⋆(∂Ω) for Γ = ∂Ω. In either case, Hs

0(Γ) contains no
constant function different from zero provided that Γ is
connected.

4.3. Discrete spaces

We assume that Th = {T1, . . . , TN} is a partition of Γ into
finitely many compact and affine line segments T ∈ Th.
With each element T ∈ Th, we associate an affine bijection
γT : [0, 1] → T .

For q ∈ N0, let Pq denote the space of polynomials
of degree ≤ q on R. With this, we define the space of
Th-piecewise polynomials by

Pq(Th) :=
{
vh : Γ → R : ∀T ∈ T vh ◦ γT ∈ Pq

}
. (45)

Note that functions vh ∈ Pq(Th) are discontinuous in gen-
eral. Special attention is paid to the piecewise constants
P0(Th).

If continuity is required, we use the space

Sq(Th) := Pq(Th) ∩ C(Γ) (46)

of continuous splines of piecewise degree q ≥ 1. Special
attention is paid to the Courant space S1(Th) of lowest
order.

For the treatment of the hyper-singular integral equa-
tion, we additionally define

S̃q(Th) := Sq(Th) ∩ H̃1(Γ), (47)

Sq
⋆(Th) := Sq(Th) ∩H1

⋆ (Γ). (48)

Finally, Sq
0 (Th) denotes either S̃q(Th) for Γ $ ∂Ω resp.

Sq
⋆(Th) for Γ = ∂Ω.

4.4. Projections

Let Xh be a finite dimensional subspace of a Hilbert space
X . The X-orthogonal projection onto Xh is the unique
linear operator Ph : X → Xh such that, for all x ∈ X and
xh ∈ Xh, it holds

Phxh = xh,

〈Phx , xh〉X = 〈x , xh〉X .
(49)

This implies the Pythagoras theorem

‖x‖2X = ‖Phx‖2X + ‖(1− Ph)x‖2X (50)

and consequently

‖(1− Ph)x‖X = min
xh∈Xh

‖x− xh‖X . (51)

In [SZ90], a quasi-interpolation operator J Ω
h : H1(Ω) →

S1(T Ω
h ) is introduced. Here, Ω ⊂ Rd for d ≥ 2 is a Lips-

chitz domain, T Ω
h is a conforming triangulation of Ω into

simplices, and S1(T Ω
h ) is the lowest-order Courant finite

element space. It is shown that J Ω
h has a local first-order

approximation property and is a linear and continuous
projection onto S1(T Ω

h ). Moreover, J Ω
h preserves discrete

boundary data, since the boundery values (Jhv)|Γ depend
only on the trace v|Γ with Γ = ∂Ω.

Let Th denote the partition of Γ induced by T Ω
h . Then,

the mentioned properties of Jh yield that the restriction
Jh := J Ω

h (·)|Γ : H1/2(Γ) → S1(Th) to the trace space
H1/2(Γ) yields a well-defined, linear, and continuous pro-
jection onto S1(Th) with respect to the H1/2(Γ)-norm.
However, arguing along the lines of the domain-based proof
from [SZ90], we see that Jh has the following properties.
For an element T ∈ Th, we denote by

ωT :=
⋃{

T ′ ∈ Th : T ∩ T ′ 6= ∅
}

(52)

its patch, i.e., the union of T and its (at most two) neigh-
bours. We shall use the following properties of Jh:

(i) Jhv is well-defined for all v ∈ L2(Γ).
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(ii) (Jhv)|T depends only on the function values v|ωT on
the patch of T ∈ Th.

(iii) Jh is locally L2-stable, for all v ∈ L2(Γ),

‖(1− Jh)v‖L2(T ) ≤ C3 ‖v‖L2(ωT ). (53)

(iv) Jh is locally H1-stable, for all v ∈ H1(Γ),

‖((1− Jh)v)
′‖L2(T ) ≤ C3 ‖v′‖L2(ωT ). (54)

(v) Jh has a first-order approximation property, for all
v ∈ H1(Γ),

‖(1− Jh)v‖L2(T ) ≤ C3 ‖hv′‖L2(ωT ). (55)

(vi) The constant C3 > 0 depends only on the local mesh-
ratio κ(Th).

Since ωT consists of at most three elements, the ℓ2-sums
of the estimates (53)–(55) also provide global estimates
with T and ωT replaced by Γ. From (iii), we thus see that
Jh ∈ L(L2(Γ);L2(Γ)). The combination of (iii)–(iv) yields
Jh ∈ L(H1(Γ);H1(Γ)). In particular, the interpolation
estimate (36) provides Jh ∈ L(Hs(Γ);Hs(Γ)), for all 0 ≤
s ≤ 1.

5. A posteriori error analysis

In this section, we show that under appropriate assump-
tions, the ZZ-type error estimators proposed provide an
upper bound for the error (reliability) and, up to some
higher-order terms, also a lower bound for the error (effi-
ciency). Our analysis builds on equivalence of seminorms
on finite dimensional spaces and scaling arguments. The
elementary, but abstract result employed reads as follows:
If X is a finite dimensional space with seminorms | · |1 and
| · |2, an estimate of the type

|x|1 ≤ C |x|2 for all x ∈ X (56)

and some independent constant C > 0 is equivalent to the
inclusion

{
x ∈ X : |x|2 = 0

}
⊆

{
x ∈ X : |x|1 = 0

}
(57)

of the respective null spaces. This result is used for polyno-
mial spaces on element patches. To this end, the restricted
partition of the patch ωT from (52) is denoted by

Th|ωT :=
{
T ′ ∈ Th : T ∩ T ′ 6= ∅

}
(58)

for all T ∈ T .

5.1. Hyper-singular integral equation

Recall the abbreviate notation H
1/2
0 (Γ) from Section 4.2

and note that

|||v|||2 := 〈Wv , v〉L2(Γ) (59)

defines an equivalent Hilbert norm on H
1/2
0 (Γ). Because

of H1/2(∂Ω) = H̃1/2(∂Ω) even with equal norms, we can
simply use the norm ‖ · ‖H̃1/2(Γ) ≃ ||| · ||| throughout the
section.

We start with the derivation of an upper bound. The
proof relies on the assumption that Th is the uniform re-
finement of some coarser mesh T2h and on some saturation
assumption (61). While the first assumption can easily
be achieved implementationally, the latter is essentially
equivalent to the assumption that the numerical scheme
has reached an asymptotic regime, see [FLP08, Section 5.2]
for discussion and numerical evidence.

Theorem 1. Let Th be the uniform refinement of some
mesh T2h, i.e. all elements T ∈ T2h are bisected into two
sons T1, T2 ∈ Th of half length. Let uh ∈ S1

0 (Th) and
u2h ∈ S1

0 (T2h) be the respective Galerkin solutions. Then,
it holds

|||uh − u2h||| ≤ C4 ηh (60)

with some constant C4 > 0 which depends only on Γ and
all possible shapes of element patches (52). Under the sat-
uration assumption

|||u − uh||| ≤ Csat |||u − u2h||| (61)

with some uniform constant 0 < Csat < 1, there holds

C−1
sat |||u− uh||| ≤ |||u− u2h||| ≤

C4

(1 − C2
sat)

1/2
ηh. (62)

Proof. Let Π2h : L2(Γ) → P0(T2h) denote the L2-orthogonal
projection onto the T2h-piecewise constants, i.e. the piece-
wise integral mean operator

(Π2hψ)|T̂ =
1

length(T̂ )

∫

T̂

ψ dΓ for all T̂ ∈ T2h. (63)

According to [EFGP12], it holds that

|||uh − u2h||| ≃ ‖h1/2(1−Π2h)u
′
h‖L2(Γ),

where the hidden constants depend only on Γ and the local
mesh-ratio κ(Th) from (18). To prove (60), we will verify

‖h1/2(1−Π2h)u
′
h‖L2(T ) . ‖h1/2(1−Ah)u

′
h‖L2(ωT ) (64)

for all T ∈ Th in the following. Both sides of (64) de-
fine seminorms on P0(Th|ωT ), where u

′
h is replaced by an

arbitrary ψh ∈ P0(Th|ωT ). It thus suffices to show that
‖h1/2(1−Ah)ψh‖L2(ωT ) = 0 implies ‖h1/2(1−Π2h)ψh‖L2(T )

= 0. From ‖h1/2(1 − Ah)ψh‖L2(ωT ) = 0 and hence ψh =
Ahψh on ωT , we see that ψh is constant on ωT , since ψh is
both, Th-piecewise constant and continuous on ωT . By as-
sumption, T has a brother T ′ ∈ Th such that T̂ = T ∪T ′ ∈
T2h. Moreover, the definition of the patch and T ∩ T ′ 6= ∅
yield T̂ ⊆ ωT . Therefore, ψh is constant on T̂ so that
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ψh = Π2hψh on T̂ . This proves ‖h1/2(1−Π2h)ψh‖L2(T ) = 0
and thus verifies

‖h1/2(1−Π2h)ψh‖L2(T ) . ‖h1/2(1 −Ah)ψh‖L2(ωT )

for all T ∈ Th and ψh ∈ P0(Th). Finally, a scaling argu-
ment proves that the hidden constant depends only on the
shape of the patch ωT . We note that each element T ′ ∈ Th
is contained in at most three patches. Taking the ℓ2-sum
in (64) over all elements T ∈ Th, we arrive at

‖h1/2(1 −Π2h)ψh‖L2(Γ) . ‖h1/2(1 −Ah)ψh‖L2(Γ) (65)

for all ψh ∈ P0(Th). Plugging in ψh = u′h, we conclude
the proof of (60).

The proof of (62) follows from abstract principles. Ac-
cording to the Galerkin orthogonality

〈W (u− uh) , vh〉L2(Γ) = 0 for all vh ∈ S1
0 (Th),

we obtain a Pythagoras theorem for the induced Hilbert
norm

|||u− uh|||2 + |||uh − u2h|||2 = |||u − u2h|||2,

where we use vh = uh−u2h. Together with the saturation
assumption (61), this results in

C−1
sat |||u− uh||| ≤ |||u− u2h||| ≤

1

(1 − C2
sat)

1/2
|||uh − u2h|||,

and (62) follows. �

Remark 2. With the same techniques as in the proof of
Theorem 1, one can prove that the ZZ-type error estimator
ηh is an upper bound for the estimator µh from [CP07b]
which is based on averaging on large patches. The analysis
then requires that Th is a refinement of a coarser mesh Tkh
for some k ≥ 2 which depends only on Γ. Then, the satu-
ration assumption (61) is formally avoided. However, the
parameter k is still unknown, although k = 2 empirically
appears to be sufficient, see e.g. the numerical experiments
in [CP07b]. Moreover, the upper bound (62) holds only up
to some additional best approximation error

|||u − uh||| . ηh + min
Uh∈S2

0
(Tkh)

|||u − Uh|||

with higher-order elements S2
0 (Tkh) := P2(Tkh)∩H̃1/2(Γ) ⊆

H1(Ω) which are piecewise quadratic and globally continu-
ous. If the exact solution u is smooth or if the mesh is ap-
propriately graded to the singularities of u, this additional
term is of higher-order. The reader is referred to [CP07a]
for further discussions. �

We next prove the lower bound. Unlike the reliability
estimate (62), the following efficiency estimate (66) does
not rely on the saturation assumption (61), but holds only
up to some further best approximation error with higher-
order elements. If the exact solution solution u of (8) is

smooth or if the mesh is properly adapted to the singular-
ities of u, this term becomes a higher-order term.

Let S2,1(Th) := P2(Th)∩C1(Γ) denote the set of all Th-
piecewise quadratic polynomials p such that p as well as its
derivative p′ are continuous. With S2,1

0 (Th) := S2,1(Th) ∩
H

1/2
0 (Γ), our efficiency result then reads as follows:

Theorem 3. It holds

C−1
5 ηh ≤ |||u − uh|||+ min

Uh∈S2,1
0

(Th)
|||u− Uh|||. (66)

The constant C5 > 0 depends only on Γ and all possible
shapes of element patches (52).

The proof requires the following probably well-known
lemma. For the convenience of the reader, we include the
proof also here.

Lemma 4. For 0 ≤ s ≤ 1, the arc-length derivative
induces linear and continuous operators (·)′ : Hs(Γ) →
Hs−1(Γ) and (·)′ : H̃s(Γ) → H̃s−1(Γ).

Proof. For s = 1, it holds

‖v′‖L2(Γ) ≤ ‖v‖H1(Γ) for all v ∈ H1(Γ)

and, by integration by parts,

〈v′ , w〉L2(Γ) = −〈v , w′〉L2(Γ) ≤ ‖v‖L2(Γ)‖w‖H1(Γ).

for all w ∈ H̃1(Γ). Note that here we require either that
Γ = ∂Ω or that w (or v) vanishes at the tips of Γ. By

definition of the duality H−1(Γ) = H̃1(Γ)∗, this yields

‖v′‖H−1(Γ) ≤ ‖v‖L2(Γ) for all v ∈ H1(Γ).

Since H1(Γ) is dense in L2(Γ), we obtain continuity of
(·)′ : L2(Γ) → H−1(Γ), i.e. the last estimate holds even
for all v ∈ L2(Γ). Finally, the interpolation estimate (36)
reveals

‖v′‖Hs−1(Γ) ≤ ‖v‖Hs(Γ) for all v ∈ Hs(Γ),

i.e. (·)′ : Hs(Γ) → Hs−1(Γ) is a linear and continuous
operator, even with operator norm 1.

To prove the same statement for (·)′ : H̃s(Γ) → H̃s−1(Γ),

recall the duality H̃−1(Γ) = H1(Γ)∗. With v ∈ H̃1(Γ) and
w ∈ H1(Γ) all foregoing steps remain valid with nothing
but the obvious modifications. �

Proof of Theorem 3. Let Jh : L2(Γ) → S1(Γ) denote the
Scott-Zhang projection from Section 4.4. We first show
that

‖h1/2(1−Ah)ψh‖L2(Γ) . ‖h1/2(1 − Jh)ψh‖L2(Γ) (67)

for all ψh ∈ P0(Th). To that end, we use a seminorm
argument on P0(Th|ωT ): From ‖h1/2(1−Jh)ψh‖L2(ωT ) = 0,
it follows that ψh is constant on ωT . By definition (15)
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of Ah this yields Ahψh = ψh on T . Therefore, we see
‖h1/2(1−Ah)ψh‖L2(T ) = 0, and

‖h1/2(1−Ah)ψh‖L2(T ) . ‖h1/2(1− Jh)ψh‖L2(ωT )

follows. A scaling argument proves that the hidden con-
stant depends only on the shape of the patch ωT . Taking
the ℓ2-sum of the last estimate over all elements T ∈ Th,
we obtain (67).
• Second, we show that

‖h1/2(1 − Jh)ψh‖L2(Γ) . ‖ψh −Ψh‖H̃−1/2(Γ) (68)

for all ψh ∈ P0(Th) and Ψh ∈ S1(Th). Since the Scott-
Zhang projection is stable with respect to the h1/2-weighted
L2-norm, see Section 4.4, the projection property of Jh
gives

‖h1/2(1− Jh)ψh‖L2(Γ) = ‖h1/2(1− Jh)(ψh −Ψh)‖L2(Γ)

. ‖h1/2(ψh −Ψh)‖L2(Γ).

The inverse estimate of [GHS05, Thm 3.6] then concludes
the proof of (68).

• Finally, let Ph : H
1/2
0 (Γ) → S2,1

0 (Th) denote theH1/2
0 (Γ)-

orthogonal projection onto S2,1
0 (Th) with respect to the

energy norm ||| · |||. Combining norm equivalence ||| · ||| ≃
‖ · ‖H̃1/2(Γ) with the estimates (67) and (68) for ψh = u′h
and Ψh = (Phuh)

′, we obtain

‖h1/2(1 −Ah)u
′
h‖L2(Γ) . ‖(uh − Phuh)

′‖H̃−1/2(Γ)

. ‖(1− Ph)uh‖H̃1/2(Γ) ≃ |||(1 − Ph)uh|||.

The triangle inequality and stability of Ph yield

|||(1 − Ph)uh||| ≤ |||(1 − Ph)u|||+ |||u − uh|||.

Since Phu is the best approximation (51) of u in S2,1
0 (Th)

with respect to ||| · |||, this proves (66). �

5.2. Weakly-singular integral equation

We stress that the same results hold as for the hyper-
singular integral equation. By

|||w|||2 := 〈V w , w〉L2(Γ), (69)

we now denote the Hilbert norm which is induced by the
weakly-singular integral operator, and note that ||| · ||| ≃
‖ · ‖H̃−1/2(Γ) is an equivalent norm on H̃−1/2(Γ). The reli-

ability result reads as follows:

Theorem 5. Let Th be the uniform refinement of some
mesh T2h, i.e. all elements T ∈ T2h are bisected into two
sons T1, T2 ∈ Th of half length. Let φh ∈ P0(Th) and
φ2h ∈ P0(T2h) be the respective Galerkin solutions. Then,
it holds

|||φh − φ2h||| ≤ C6 ηh (70)

with some constant C6 > 0 which depends only on Γ and
all possible shapes of element patches (52). Under the sat-
uration assumption

|||φ − φh||| ≤ Csat |||φ − φ2h||| (71)

with some uniform constant 0 < Csat < 1, there holds

C−1
sat |||φ− φh||| ≤ |||φ− φ2h||| ≤

C6

(1− C2
sat)

1/2
ηh. (72)

Remark 6. We refer to [AFF+13], where the satura-
tion assumption (71) is proved in the frame of the weakly-
singular integral equation for the Dirichlet problem (24)
and T2h replaced by some coarser mesh Tkh with k ≥ 2
depending only on Γ. �

Proof of Theorem 5. We adopt the notation from the proof
of Theorem 1. According to [EFLFP09], it holds that

|||φh − φ2h||| ≃ ‖h1/2(1−Π2h)φh‖L2(Γ),

where the hidden constants depend only on Γ and the local
mesh-ratio κ(Th) from (18). Recall that the operator Ah

is now slightly different to the case of the hyper-singular
integral equation. However, the same arguments as in the
proof of Theorem 1 show that (65) remains valid. As be-
fore the hidden constant involved depends on all possible
shapes of element patches in Th. This yields (70), and (72)
follows as before. �

We next prove the lower bound. As before, the follow-
ing efficiency estimate (73) does not rely on the saturation
assumption (71), but holds only up to some further best
approximation error with higher-order elements.

Theorem 7. It holds

C−1
7 ηh ≤ |||φ− φh|||+ min

Φh∈S1(Th)
|||φ− Φh|||. (73)

The constant C7 > 0 depends only on Γ and all possible
shapes of element patches (52).

Proof. Arguing along the lines of the proof of Theorem 3,
we see that

‖h1/2(1 −Ah)φh‖L2(Γ) . ‖φh −Ψh‖H̃−1/2(Γ)

for all Ψh ∈ S1(Th). Let Ph : H̃−1/2(Γ) → S1(Th) be
the orthogonal projection onto S1(Th) with respect to the
energy norm |||·|||. With norm equivalence |||·||| ≃ ‖·‖H̃−1/2(Γ)

and the triangle inequality, we see for Ψh = Phφh

|||φh −Ψh||| = |||(1 − Ph)φh|||
≤ |||(1 − Ph)φ||| + |||(1 − Ph)(φ− φh)|||
≤ |||(1 − Ph)φ||| + |||φ − φh|||.

Since Phφ is the best approximation of φ in S1(Th) with
respect to ||| · |||, we conclude the proof. �
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6. Adaptive mesh-refinement

In this section, we prove that the constants in the a pos-
teriori estimates of Section 5 are uniformly bounded and
that the adaptive algorithms of Section 2.5 and Section 3.4
are convergent.

6.1. Notation

For the following analysis, we slightly change the notation
for the discrete quantities. Let T0 be the given initial par-
tition of Γ, the adaptive algorithm is started with. Let
ℓ = 0, 1, 2, . . . denote the counter for the adaptive loop,
i.e. we start with ℓ = 0, and ℓ 7→ ℓ + 1 is increased in
step (v) of the adaptive algorithm.

The mesh in the ℓ-th step of the adaptive loop is de-
noted by Tℓ. With Tℓ, we associate the local mesh-size
hℓ ∈ L∞(Γ) defined in (13). Moreover, uℓ ∈ S1

0 (Tℓ) resp.
φℓ ∈ P0(Tℓ) are the corresponding discrete solutions with
respective ZZ-type error estimators ηℓ.

Throughout, we assume that mesh-refinement is based
on bisection only, i.e. refined elements are bisected into two
sons of half length. In step (iv) of the adaptive algorithm,
we ensure

κ(Tℓ) ≤ 2 κ(T0) (74)

Algorithmically, this mesh-refinement is stated and ana-
lyzed in [AFF+13]. In addition to (74), the properties of
the mesh-refinement necessary in current proofs of quasi-
optimal convergence rates for adaptive boundary element
methods [FKMP13, Tso13] and adaptive finite element
methods [CKNS08, Ste07, Ste08] are satisfied, i.e. the so-
called overlay estimate andmesh-closure estimate are valid.
Moreover, bisection and boundedness (74) of the local mesh-
ratio guarantee that only a finite number of shapes of el-
ement patches (52) can occur. Therefore, the constants
in the a posteriori analysis of Section 5 are uniformly
bounded.

6.2. Hyper-singular integral equation

The proof of the following theorem follows the concept of
estimator reduction proposed in [AFLP12] for (h − h/2)-
type error estimators. We show that the ZZ-type error
estimator is contractive up to some vanishing perturbation

ηℓ+1 ≤ q ηℓ + αℓ with 0 ≤ αℓ
ℓ→∞−−−→ 0 (75)

for some ℓ-independent constant 0 < q < 1. In the cur-
rent frame, however, the proof that the perturbation αℓ

tends to zero, is much more involved than in [AFLP12],
since it does not only rely on the a priori convergence of
Lemma 9, but also on a pointwise convergence property of
the averaging operator Ah.

Theorem 8. Let (uℓ)ℓ∈N and (ηℓ)ℓ∈N be the sequences of
discrete solutions and error estimators generated by the
adaptive algorithm. Then, it holds estimator convergence

lim
ℓ→∞

ηℓ = 0. (76)

Provided that |||u − uℓ||| . ηℓ, cf. Theorem 1, we may thus
conclude lim

ℓ→∞
uℓ = u.

The proof requires the following lemmas. The first is
already found in the early work [BV84] and will be applied

for H = H
1/2
0 (Γ) and Xℓ = S1

0 (Tℓ) for the hyper-singular

integral equation as well as for H = H̃−1/2(Γ) and Xℓ =
P0(Tℓ) for the weakly-singular integral equation.

Lemma 9 (A priori convergence of Galerkin solutions).
Suppose that H is a Hilbert space and (Xℓ)ℓ∈N is a se-
quence of discrete subspaces with Xℓ ⊆ Xℓ+1. For u ∈ H
and ℓ ∈ N, let uℓ ∈ Xℓ be the best approximation of u.
Then, there exists a limit u∞ ∈ H such that lim

ℓ→∞
‖u∞ −

uℓ‖X = 0. �

The following lemma recalls local L2-stability and first-
order approximation property of the averaging operatorAℓ

used.

Lemma 10. Let T ∈ Tℓ. Then, the operators Aℓ : L
2(Γ) →

L2(Γ) defined in (15) resp. (28) are locally L2-stable

‖Aℓv‖L2(T ) ≤ C8 ‖v‖L2(ωT ), (77)

for all v ∈ L2(Γ), are local H1-stable

‖(Aℓv)
′‖L2(T ) ≤ C8 ‖v‖H1(ωT ), (78)

for all v ∈ H1(Γ), and have a local first-order approxima-
tion property

‖(1−Aℓ)v‖L2(T ) ≤ C8 ‖hℓv′‖L2(ωT ), (79)

for all v ∈ H1(Γ). Here, ωT denotes the element patch (52)
of T ∈ Tℓ, and C8 > 0 depends only on Γ and the mesh-
refinement chosen.

Proof. The proof follows as for usual Clément-type oper-
ators in finite element analysis, cf e.g. [BS08, SZ90]. Scal-
ing arguments prove that the constants involved depend
only on the shape of the element patch ωT . The mesh-
refinement chosen guarantees that only finitely many pat-
ches occur so that these constants depend, in fact, only on
the boundary Γ and the mesh-refinement strategy. �

The following proposition is more general than required
for the proof of Theorem 8. However, it might be of general
interest and might have further applications, since it also
applies to FEM and higher dimensions even with the same
proof.

Proposition 11 (A priori convergence of averaging oper-
ators). Given the sequence (Tℓ)ℓ∈N of adaptively generated
meshes, let Aℓ : L

2(Γ) → H1(Γ) be a linear operator which
satisfies (77)–(79). Assume that, for all elements T ∈ Tℓ
and all functions v ∈ L2(Γ), (Aℓv)|T depends only on the
function values v|ωT on the element patch (52). Then,
there a exists a limit operator A∞ : L2(Γ) → L2(Γ) which
satisfies the following:
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(i) For all 0 ≤ s ≤ 1, A∞ : Hs(Γ) → Hs(Γ) is a well-
defined linear and continuous operator.

(ii) For all 0 ≤ s < 1, A∞ is the pointwise limit of Aℓ,
i.e., for all v ∈ Hs(Γ) it holds

lim
ℓ→∞

‖(A∞ −Aℓ)v‖Hs(Γ) = 0. (80)

(iii) For all v ∈ H1(Γ), Aℓv converges weakly in H1(Γ)
towards A∞v as ℓ→ ∞.

Proof. For the proof, let ωℓ(γ) :=
⋃{

T ∈ Tℓ : T ∩ γ 6= ∅
}

denote the patch of subsets γ ⊆ Γ with respect to Tℓ. We
follow the ideas from [MSV08] and define the following
subsets of Γ:

Γ0
ℓ :=

⋃{
T ∈ Tℓ : ωℓ(T ) ⊆

⋃( ∞⋂

j=ℓ

Tj
)}
,

Γℓ :=
⋃{

T ∈ Tℓ : Exists k ≥ 0 s.t. ωT is at least

uniformly refined in Tℓ+k

}
,

Γ∗
ℓ := Γ\(Γℓ ∪ Γ0

ℓ).

According to [MSV08, Corollary 4.1], it holds that

‖hℓ‖L∞(ωℓ(Γℓ)) ≃ ‖hℓ‖L∞(Γℓ)
ℓ→∞−−−→ 0. (81)

Let v ∈ L2(Γ) and ε > 0 be arbitrary. SinceH1(Ω) is dense
in L2(Γ), we find vε ∈ H1(Γ) such that ‖v − vε‖L2(Γ) ≤ ε.
Due to the local L2-stability (77) and the approximation
property (79) of Aℓ, we obtain

‖(1−Aℓ)v‖L2(Γℓ) . ‖(1−Aℓ)vε‖L2(Γℓ) + ε

. ‖hℓ∇vε‖L2(ωℓ(Γℓ)) + ε.

According to (81), we find ℓ0 ∈ N such that

‖hℓ∇vε‖L2(ωℓ(Γℓ)) ≤ ‖hℓ‖L∞(ωℓ(Γℓ))‖∇vε‖L2(Γ) ≤ ε

for all ℓ ≥ ℓ0. This proves

‖(1−Aℓ)v‖L2(Γℓ) . ε for ℓ ≥ ℓ0. (82)

[MSV08, Proposition 4.2] states |Γ∗
ℓ | → 0 as ℓ → ∞. Due

to the non-concentration of Lebesgue functions, this yields

‖v‖L2(ωℓ(Γ⋆
ℓ ))

≤ ε for some ℓ1 ∈ N and all ℓ ≥ ℓ1. (83)

Let ℓ ≥ max{ℓ0, ℓ1} and k ≥ 0. For T ∈ Tℓ, the definition
of (Aℓv)|T depends only on v|ωℓ(T ). By definition of Γ0

ℓ ,
we obtain

‖(Aℓ −Aℓ+k)v‖L2(Γ0
ℓ )

= 0.

With local L2-stability (77) and (83), we see

‖(Aℓ −Aℓ+k)v‖L2(Γ∗

ℓ )
. ‖v‖L2(ωℓ(Γ∗

ℓ ))
+ ‖v‖L2(ωℓ+k(Γ∗

ℓ ))

≤ 2 ‖v‖L2(ωℓ(Γ∗

ℓ ))
. ε.

Moreover, (82) and a triangle inequality prove

‖(Aℓ −Aℓ+k)v‖L2(Γℓ) . ε.

The combination of the last three estimates yields

‖(Aℓ −Aℓ+k)v‖L2(Γ) . ε.

Altogether, (Aℓv)ℓ is thus a Cauchy sequence in L2(Γ)
and hence convergent to some limit A∞v := limℓ Aℓv ∈
L2(Γ). Elementary calculus predicts that this provides a
well-defined linear operator A∞ : L2(Γ) → L2(Γ), and the
Banach-Steinhaus theorem even predicts continuity A∞ ∈
L(L2(Γ);L2(Γ)).

Second, theH1-stability (78) yields thatAℓ ∈ L2(H1(Γ);
H1(Γ)) are uniformly continuous operators. For v ∈ H1(Γ),
the sequence (Aℓv)ℓ is hence bounded in H1(Γ) and thus
admits a weakly convergent subsequenceAℓkv ⇀ w weakly
in H1(Γ) as k → ∞. The Rellich compactness theorem
yields Aℓkv → w strongly in L2(Ω). Uniqueness of limits
therefore reveals A∞v = w ∈ H1(Γ). Iterating this argu-
ment, we see that each subsequence ofAℓv admits a further
subsequence such that Aℓkj

v converges to A∞v ∈ H1(Γ)

weakly in H1(Γ). By elementary calculus, this implies
weak convergence Aℓv ⇀ A∞v in H1(Γ) for the entire se-
quence. Again, the Banach-Steinhaus theorem applies and
proves that A∞ ∈ L(H1(Γ);H1(Γ)).

Third, the remaining claims follow from interpolation.
The interpolation estimate (36) implies that the operator
A∞ ∈ L(Hs(Γ);Hs(Γ)) is well-defined, linear, and contin-
uous. Moreover, the estimate (34) of the interpolation
norm and boundedness of weakly convergent sequences
yields

‖(A∞ −Aℓ)v‖Hs(Γ)

≤ ‖(A∞ −Aℓ)v‖1−s
L2(Γ)‖(A∞ −Aℓ)v‖sH1(Γ)

ℓ→0−−−→ 0

for all 0 < s < 1 and v ∈ H1(Γ). By density of H1(Γ) in
Hs(Γ) and stability of Aℓ, this results in pointwise conver-
gence ‖(A∞ −Aℓ)v‖Hs(Γ) → 0 for all v ∈ Hs(Γ). �

Proof of Theorem 8. The triangle inequality shows

ηℓ+1 ≤‖h1/2ℓ+1(1 −Aℓ)u
′
ℓ‖L2(Γ)

+ ‖h1/2ℓ+1(1−Aℓ+1)(uℓ+1 − uℓ)
′‖L2(Γ)

+ ‖h1/2ℓ+1(Aℓ+1 −Aℓ)u
′
ℓ‖L2(Γ).

(84)

• For the first term, we argue analogously to [AFLP12]:
According to bisection, we have hℓ+1|T = 1

2 hℓ|T for refined
elements T ∈ Tℓ\Tℓ+1. This gives

‖h1/2ℓ+1(1 −Aℓ)u
′
ℓ‖2L2(Γ)

≤
∑

T∈Tℓ∩Tℓ+1

ηℓ(T )
2 +

1

2

∑

T∈Tℓ\Tℓ+1

ηℓ(T )
2

= η2ℓ −
1

2

∑

T∈Tℓ\Tℓ+1

ηℓ(T )
2.
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Since at least all marked elements are refined, the Dörfler
marking strategy (17) in step (iii) of the adaptive algo-
rithm yields

∑

T∈Tℓ\Tℓ+1

ηℓ(T )
2 ≥

∑

T∈Mℓ

ηℓ(T )
2 ≥ θ η2ℓ .

Combining the last two estimates, we see

‖h1/2ℓ+1(1−Aℓ)u
′
ℓ‖L2(Γ) ≤ (1 − θ/2)1/2 ηℓ. (85)

• Next, we consider the second term in (84). The local
H1-stability (77) yields

‖h1/2ℓ+1(1−Aℓ+1)(uℓ+1−uℓ)′‖L2(Γ) . ‖h1/2ℓ+1(uℓ+1−uℓ)′‖L2(Γ).

The inverse estimate of [GHS05, Thm. 3.6] gives

‖h1/2ℓ+1(uℓ+1 − uℓ)
′‖L2(Γ) . ‖(uℓ+1 − uℓ)

′‖H̃−1/2(Γ)

. ‖uℓ+1 − uℓ‖H̃1/2(Γ) ≃ |||uℓ+1 − uℓ|||.

Together with the a priori convergence of Lemma 9, we
thus see

‖(1−Aℓ+1)(uℓ+1 − uℓ)
′‖L2(Γ)

ℓ→∞−−−→ 0. (86)

• Third, we consider the last term in (84): Let ε > 0.
According to the a priori convergence of Lemma 9, there
exists an index k0 ∈ N such that

‖uℓ − uk‖H̃1/2(Γ) ≤ ε for all k, ℓ ≥ k0.

According to the pointwise a priori convergence of Aℓ from
Lemma 11, there exists an index ℓ0 ∈ N such that

‖(Aℓ+1 −Aℓ)u
′
k0
‖L2(Γ) ≤ ε for all ℓ ≥ ℓ0.

Moreover, the local L2-stability (77) of the operators yields

‖h1/2ℓ+1(Aℓ+1 −Aℓ)ψ‖L2(Γ) . ‖h1/2ℓ+1ψ‖L2(Γ).

Plugging in ψ = (uℓ − uk0
)′, the usual inverse estimate

from [GHS05, Thm. 3.6] shows

‖h1/2ℓ+1(Aℓ+1−Aℓ)(uℓ−uk0
)′‖L2(Γ) . ‖h1/2ℓ+1(uℓ − uk0

)′‖L2(Γ)

. ‖(uℓ − uk0
)′‖H̃−1/2(Γ) . ‖uℓ − uk0

‖H̃1/2(Γ),

where the hidden constants depend only on Γ and uni-
form boundedness of the local mesh-ratio κ(Tℓ). For ℓ ≥
max{k0, ℓ0}, we thus obtain

‖h1/2ℓ+1(Aℓ+1 −Aℓ)u
′
ℓ‖L2(Γ)

. ‖(Aℓ+1 −Aℓ)u
′
k0
‖L2(Γ) + ‖uℓ − uk0

‖H̃1/2(Γ)

≤ 2ε.

This proves

‖h1/2ℓ+1(Aℓ+1 −Aℓ)u
′
ℓ‖L2(Γ)

ℓ→∞−−−→ 0. (87)

• Altogether, (85)–(87) prove

ηℓ+1 ≤ (1 − θ/2)1/2 ηℓ + αℓ with 0 ≤ αℓ
ℓ→∞−−−→ 0.

Since 0 < θ ≤ 1, the error estimator is thus contractive up
to a zero sequence. Therefore, elementary calculus con-
cludes (76). �

6.3. Weakly-singular integral equation

As for the hyper-singular integral equation, we have the
following convergence result for the adaptive algorithm of
Section 3.4.

Theorem 12. Let (φℓ)ℓ∈N and (ηℓ)ℓ∈N be the sequences
of discrete solutions and error estimators generated by the
adaptive algorithm. Then, it holds

lim
ℓ→∞

ηℓ = 0. (88)

Provided that |||φ − φℓ||| . ηℓ, cf. Theorem 5, we may thus
conclude lim

ℓ→∞
φℓ = φ.

Proof. The proof follows analogously to that of Theorem 8.
�
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