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ON A DECOUPLED LINEAR FEM INTEGRATOR FOR
EDDY-CURRENT-LLG

KIM-NGAN LE, MARCUS PAGE, DIRK PRAETORIUS, AND THANH TRAN

Abstract. We propose a linear scheme for the numerical solution of the eddy-current equa-
tion coupled with the Landau–Lifshitz–Gilbert equation where the effective field contains
some general energy including anisotropy fields and applied fields. At each time-step, our
suggested algorithm solves successively two linear systems, one for the magnetization field
and another one for the magnetic field. Convergence to the weak solution is proved. Nu-
merical experiments with a micromagnetic benchmark problem underline the performance
of the proposed algorithm.

1. Introduction

The Landau–Lifshitz–Gilbert equation (LLG) has been widely used to model micromag-
netic phenomena which have applications in the production of magnetic sensors, recording
heads, and magneto-resistive storage devices [17, 23]. Existence and non-uniqueness results
can be found in [3, 29]. In our contribution, the LLG equation is coupled with the quasi-
static Maxwell’s equations to describe electromagnetic wave and magnetization propagation
of a ferromagnetic medium confined in a larger magnetic field.

Throughout the literature, various works on the numerical analysis of LLG and coupling
to the full Maxwell system can be found, and we refer to [1, 2, 5, 7, 9, 10] and the references
therein. Considering the quasi-static approximation of the Maxwell system, also known as
the eddy-current equation (E), however, only little work has been done.

In [24], the analysis of [1] is successfully extended to the study of the coupled eddy-
current and Landau-Lifshitz-Gilbert system (ELLG), for a simplified effective field. There,
a convergent linear integrator was developed which, however, needs the solution of one huge
linear system for the coupled problem. On the other hand, in [7], an algorithm for the
Maxwell-LLG system is presented which decouples both problems and requires the solution
of two small linear systems per time-step. In the present paper, we combine the ideas
of [7] and [24] to derive an unconditionally convergent algorithm for the ELLG system
which decouples both problems. The proposed algorithm requires the successive solution
of only two small linear systems, one for LLG- and one for the eddy-current part. This
improvement has a huge impact on the computational applicability of the scheme since an
existing LLG solver can easily be reused. This simplifies implementation as well as possible
debugging. Moreover, possible preconditioning of the eddy-current part greatly benefits from
the decoupling as well. Finally, we introduce a general field operator π(·) which allows us
to cover much more general field contributions than previous works. In particular, our work
covers exchange, anisotropy, and external field contributions, as well as the magnetic field
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from the eddy-current part. We emphasize that, with the techniques from [12], a spatial
approximation of the effective field can rigorously be included into the analysis.

The remainder of the paper is organized as follows. In Section 2 we give the precise
problem formulation as well as the notion of a weak solution. Section 3 is devoted to the
introduction of finite element spaces and their approximation properties. The algorithm
is presented in Section 4, and the main result on convergence is presented and proved in
Section 5. Finally, Section 6 is devoted to our numerical results.

2. Problem formulation

We consider the Landau-Lifshitz-Gilbert equation coupled with the eddy-current equa-
tion. This system describes the evolution of the magnetization of a ferromagnetic body that
occupies the domain ω ⋐ Ω ⊆ R3. For a given damping parameter α > 0, the magnetization
m : (0, T )× ω → S2 and the magnetic field H : (0, T )× Ω → R3 satisfy the ELLG system

mt − αm×mt = −m×Heff in ωT := (0, T )× ω (1a)

µ0Ht + σ−1∇× (∇×H) = −µ0mt in ΩT := (0, T )× Ω (1b)

where the effective field Heff consists of Heff = Ce∆m + H + π(m) for some general time-
independent energy contribution π : L2(Ω) → L2(Ω), which is assumed to fulfill a certain set
of properties, see (10)–(12). We stress that, with the techniques from [12], an approximation
πh of π can rigorously be included into the analysis as well, see Section 3 below. Furthermore,
we emphasize that throughout this work, the case Heff = Ce∆m + H + CaDΦ(m) + Hext

is particularly covered. Here, Φ(·) denotes the crystalline anisotropy density, and Hext is a
given applied field. The constant µ0 ≥ 0 denotes the magnetic permeability of free space,
and the constant σ ≥ 0 stands for the conductivity of the ferromagnetic domain ω. As is
usually done for simplicity, we assume Ω ⊂ R3 to be bounded with perfectly conducting
outer surface ∂Ω into which the ferromagnet ω ⋐ Ω is embedded, and Ω\ω is assumed to be
vacuum. Additionally, the ELLG system (1) is supplemented by initial conditions

m(0, ·) = m0 in ω and H(0, ·) = H0 in Ω (1c)

as well as boundary conditions

∂nm = 0 on ∂ωT , (∇×H)× n = 0 on ∂ΩT . (1d)

The space H(curl; Ω) is defined in Section 3. Note that the side constraint |m| = 1 a.e. in
ωT directly follows from |m0| = 1 a.e. in ω and ∂t|m|2 = 2m · mt = 0 in ωT , which is a
consequence of (1a). This behaviour should also be reflected by the numerical integrator. In
analogy to [24], we assume the given data to satisfy

m0 ∈ H1(ω, S2), H0 ∈ H(curl; Ω) (1e)

as well as

div(H0 + χωm
0) = 0 in Ω, ⟨H0 + χωm

0,n⟩ = 0 on ∂Ω. (1f)

We now recall the notion of a weak solution of (1a)–(1b) from [24] which extends [3] from
the pure LLG to ELLG .

Definition 1. Given (1e)–(1f), the tupel (m,H) is called a weak solution of ELLG if,

(i) m ∈ H1(ωT ) with |m| = 1 almost everywhere in ωT ;
2



(ii) H,Ht,∇×H ∈ L2(ΩT ), i.e. H ∈ H1(L2) := H1([0, T ];L2(Ω)) and ∇×H ∈ L2(ΩT )
in the weak sense;

(iii) for all φφφ ∈ C∞(ωT ) and ζζζ ∈ C∞(ΩT ), we have∫
ωT

⟨mt,φφφ⟩ − α

∫
ωT

⟨(m×mt),φφφ⟩ = −Ce

∫
ωT

⟨(∇m×m),∇φφφ⟩ (2)

+

∫
ωT

⟨(H×m),φφφ⟩+
∫
ωT

⟨(π(m)×m),φφφ⟩,

µ0

∫
ΩT

⟨Ht, ζζζ⟩+ σ−1

∫
ΩT

⟨∇ ×H,∇× ζζζ⟩ = −µ0

∫
ωT

⟨mt, ζζζ⟩; (3)

(iv) there holds m(0, ·) = m0 and H(0, ·) = H0 in the sense of traces;
(v) for almost all t′ ∈ [0, T ], we have bounded energy

∥∇m(t′)∥2L2(ω) + ∥mt∥2L2(ωt′ )
+ ∥H(t′)∥2L2(Ω) + ∥(∇×H)(t′)∥2L2(Ω) + ∥Ht∥2L2(Ωt′ )

≤ C1, (4)

where C1 > 0 is independent of t′.

Existence of weak solutions for a simplified effective field was first shown in [24]. Moreover,
existence also follows from the current work as our analysis is constructive.

Remark 2. In the special case Heff = ∆m+H, the energy estimate (4) becomes

E(t′) + ∥mt∥2L2(Ωt′ )
+ ∥Ht∥2L2(Ωt′ )

+ ∥∇ ×H∥2L2(Ωt′ )
≤ E(0),

with

E(t′) = ∥∇m(t′)∥2L2(ω) + ∥H(t′)∥2L2(Ω)) + ∥(∇×H)(t′)∥2L2(Ω).

Moreover, under some additional assumptions on the general operator π(·), namely bound-
edness in L4(Ω) and self-adjointness, one can even derive

E(t′) + C∥mt∥2L2(Ωt′ )
+ ∥Ht∥2L2(Ωt′ )

+ ∥∇ ×H∥2L2(Ωt′ )
≤ E(0)

for the full effective field see [27].

Remark 3. We emphasize the additional regularity Ht ∈ L2(ΩT ) and ∇×H ∈ L2(ΩT ) for
the derivative and the curl of the magnetic field H. If LLG is coupled to the full Maxwell
system, the current analysis of weak solvers provides only the reduced regularity E,H ∈
L2(ΩT ) for the electric and magnetic field, see [5, 7].

3. Preliminaries

For time discretization, we impose a uniform partition 0 = t0 < t1 < . . . < tN = T
of the time interval [0, T ]. The time-step size is denoted by k = kj := tj+1 − tj for j =
0, . . . , N −1. For each (discrete) function φφφ, we denote by φφφj := φφφ(tj) the evaluation at time
tj. Furthermore, we write dtφφφ

j+1 := (φφφj+1 −φφφj)/k for j ≥ 1 and a sequence {φφφj}j≥0.
For the spatial discretization, let T Ω

h be a regular triangulation of the polyhedral bounded
Lipschitz domain Ω ⊂ R3 into compact and non-degenerate tetrahedra. By Th, we denote
its restriction to ω ⋐ Ω, where we assume that ω is resolved, i.e.

Th = T Ω
h |ω =

{
T ∈ T Ω

h : T ∩ ω ̸= ∅
}

and ω =
∪
T∈Th

T.
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By S1(Th), we denote the standard P1-FEM space of globally continuous and piecewise affine
functions from ω to R3, i.e.

S1(Th) := {ϕϕϕh ∈ C(ω,R3) : ϕϕϕh|T ∈ P1(T ) for all T ∈ Th}.

By Ih : C(Ω) → S1(Th), we denote the nodal interpolation operator onto this space. The
set of nodes of the triangulation Th is denoted by Nh. To discretize the magnetization m
in (1a), we define the set of admissible discrete magnetizations by

Mh := {ϕϕϕh ∈ S1(Th) : |ϕϕϕh(z)| = 1 for all z ∈ Nh}.
The main idea in the upcoming algorithm is to introduce an additional free variable v for
the time derivative of m, since LLG is a linear equationin v = mt. Due to the modulus
constraint |m(t)| = 1, and therefore mt ·m = 0 almost everywhere in ωT , we discretize the
time derivative v(tj) := mt(tj) in the discrete tangent space which is defined by

Kϕϕϕh
:= {ψψψh ∈ S1(Th) : ψψψh(z) · ϕϕϕh(z) = 0 for all z ∈ Nh}

for any ϕϕϕh ∈ Mh. For two vectors x,y ∈ R3,x · y stands for the usual scalar product in R3.
To discretize the eddy-current equation (1b), we follow the lines of [24] and use the con-

forming ansatz spaces Xh ⊂ H(curl; Ω) :=
{
φφφ ∈ L2(Ω) : ∇×φφφ ∈ L2(Ω)

}
, given by the first

order edge elements, i.e.

Xh := {φφφh ∈ H(curl; Ω) : φφφh|T ∈ P1(T ) for all T ∈ T Ω
h },

cf. [25, Chapter 8.5]. Associated with Xh, let IXh
: H2(Ω) → Xh denote the corresponding

nodal FEM interpolator. By standard estimates, see e.g. [25, 11], one derives the approxi-
mation property

∥φφφ− IXh
φφφ∥L2(Ω) + h∥∇ × (φφφ− IXh

φφφ)∥L2(Ω) ≤ C h2∥∇2φφφ∥L2(Ω) (5)

for all φφφ ∈ H2(Ω). Here and throughout, h > 0 denotes the maximal element diameter of
the elements T ∈ Th.

As for the general field contribution, we assume that π is a spatial operator which maps
the magnetization m(t) ∈ L2(Ω) at given time t onto some field π(m)(t) = π(m(t)) ∈ L2(Ω),
i.e. π(·) is not time-dependent. As mentioned above, it is even possible to replace π by some
numerical approximation πh as long as a certain weak convergence property is fulfilled, cf. [12,
Equation (32)]. In particular, this includes approximation errors, arising from numerical
computation of complicated field contributions, into the analysis.

Finally, given two expressions A and B, we write A ≲ B if there exists a constant c > 0
which is independent of h and k, such that A ≤ cB.

4. Numerical algorithm

We recall that the LLG equation (1a) can equivalently be stated as

αmt +m×mt = Heff − (m ·Heff)m (6)

under the constraint |m| = 1 almost everywhere in ΩT . This formulation will now be used
to construct the upcoming numerical scheme, where we follow the approaches of [1, 2, 12,
18, 19, 20]. Note that in contrast to [24], our integrator fully decouples LLG from the eddy-
current equation which greatly simplifies an actual numerical implementation as well as the
possible preconditioning of iterative solvers.
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Algorithm 4. Input: Initial data m0 and H0, parameter 0 ≤ θ ≤ 1, counter i = 0.
For all i = 0, . . . , N − 1 iterate:

(i) Compute unique solution vi
h ∈ Kmi

h
such that for all ϕϕϕh ∈ Kmi

h
there holds

α(vi
h,ϕϕϕh) +

(
(mi

h × vi
h),ϕϕϕh

)
+ Ce(θk∇vi

h,∇ϕϕϕh) = −Ce(∇mi
h,∇ϕϕϕh)

+ (Hi
h,ϕϕϕh) +

(
π(mi

h),ϕϕϕh

)
.

(7a)

(ii) Define mi+1
h ∈ Mh nodewise by mi+1

h (z) =
mi

h(z) + kvi
h(z)

|mi
h(z) + kvi

h(z)|
for all z ∈ Nh.

(iii) Compute unique solution Hi+1
h ∈ Xh such that for all ζζζh ∈ Xh there holds

µ0(dtH
i+1
h , ζζζh) + σ−1(∇×Hi+1

h ,∇× ζζζh) = −µ0(v
i
h, ζζζh). (7b)

The following lemma states that the above algorithm is indeed well-defined.

Lemma 5. Algorithm 4 is well-defined in the sense that it admits a unique solution (vi
h,m

i+1
h ,Hi+1

h )
at each step i = 0, . . . , N − 1 of the iterative loop. Moreover, we have ∥mi

h∥L∞(ω) = 1 for
each i = 0, . . . , N .

Proof. Unique solvability of (7a)–(7b) directly follows from the linearity of the right-hand
sides, positive definiteness of the left-hand sides, and finite space dimension, cf. e.g. [7].
Due to the Pythagoras theorem and the pointwise orthogonality from Kmi

h
, we further get

|mi
h(z) + kvi

h(z)|2 = |mi
h(z)|2 + k|vi

h(z)|2 ≥ 1, and thus also step (ii) of the algorithm is
well-defined. The boundedness of ∥mi

h∥L∞(ω) = 1 finally follows from normalization at the
grid points and use of barycentric coordinates. □
Remark 6. At first glance, it might seem a bit odd that the notion of a weak solution and
the construction of the numerical scheme rely on different formulations of LLG. Besides the
fact that the weak solution was already formulated in earlier works, one would expect that the
algorithm even converges to a tupel (m,H) that fulfills a formulation of a weak solution based
on equation (6). Suprisingly, however, this is not the case as an additional term occurs. For
details, the reader is referred to [27].

5. Main theorem & Convergence analysis

In this section, we consider the convergence properties of the above algorithm and show
that it indeed converges towards a weak solution of the coupled ELLG system. Moreover,
the proof is constructive in the sense that it even shows existence of weak solutions of ELLG.

5.1. Main result. We start by collecting some general assumptions. Throughout, we
assume that the spatial meshes Th are uniformly shape regular and satisfy the angle condition∫

ω

∇ζi · ∇ζj ≤ 0 for all hat functions ζi, ζj ∈ S1(Th) with i ̸= j. (8)

For x ∈ Ω and t ∈ [ti, ti+1), we now define for γℓh ∈ {mℓ
h,H

ℓ
h,v

ℓ
h} the time approximations

γhk(t,x) :=
t− ti
k

γi+1
h (x) +

ti+1 − t

k
γih(x),

γ−hk(t,x) := γih(x), γ+hk(t,x) := γi+1
h (x),

(9)

and note the ∂tγhk(t,x) = dtγ
i+1
h (x).
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Remark 7. The angle condition (8) is automatically fulfilled for tetrahedral meshes with di-

hedral angle smaller than π/2. It is needed to ensure the discrete energy decay
∫
ω

∣∣∇Ih

(
mh

|mh|

)∣∣2 ≤∫
ω
|∇mh|2, for the nodal interpoland Ih : C(Ω) → S1(Th) and all mh ∈ S1(Th) with

|mh(z)| ≥ 1 for all z ∈ Nh, cf. [8].

The next statement is the main result of this work.

Theorem 8. (a) Suppose that there exists a constant Cπ > 0 which only depends on |ω|
such that the general energy contribution π(·) is uniformly bounded

∥π(n)∥2L2(ω) ≤ Cπ, for all n ∈ L2(ω) with ∥n∥2L2(ω) ≤ 1. (10)

Moreover, for the initial data, we assume

m0
h ⇀m0 weakly in H1(ω), as well as H0

h ⇀ H0 weakly in H(curl,Ω). (11)

Then, we have strong subconvergence of m−
hk towards some function m in L2(ΩT ).

(b) In addition to the above, we assume

π(m−
hk)⇀ π(m) weakly subconvergent in L2(ωT ). (12)

Then, the computed FE solutions (mhk,Hhk) are weakly subconvergent in H1(ωT )×
(
H1(L2(Ω))∩

L2(H(curl,Ω))
)
towards a weak solution (m,H) of ELLG. In particular, this yields existence

of weak solutions and each accumulation point of (mhk,Hhk) is a weak solution in the sense
of Definition 1.

Remark 9. The conditions (10) and (12) are fulfilled for all field contributions mentioned
in Section 2. Moreover, those conditions are fulfilled by the operators arising from certain
(nonlinear) multiscale problems, as well as their respective numerical discretizations, cf. [12].

The proof of the main Theorem 8 will roughly be done in three steps:

(i) Boundedness of the discrete quantities and energies.
(ii) Existence of weakly convergent subsequences.
(iii) Identification of the limits with a weak solution of ELLG.

Lemma 10. For all k < α, the discrete quantities (mj
h,H

j
h) ∈ Mh ×Xh fulfill

∥∇mj
h∥

2
L2(ω)+k

j−1∑
i=0

∥vi
h∥2L2(ω) +

(
θ − 1/2

)
k2

j−1∑
i=0

∥∇vi
h∥2L2(ω) + ∥Hj

h∥
2
L2(Ω) + ∥∇ ×Hj

h∥
2
L2(Ω)

+

j−1∑
i=0

∥Hi+1
h −Hi

h∥2L2(Ω) + k

j−1∑
i=0

∥dtHi+1
h ∥2L2(Ω) + k

j−1∑
i=0

∥∇ ×Hi+1
h ∥2L2(Ω)

+

j−1∑
i=0

∥∇ × (Hi+1
h −Hi

h)∥2L2(Ω) ≤ C2 (13)

for each j = 0, . . . , N and some constant C2 > 0 that only depends on |Ω|, on |ω|, as well as
on Cπ.
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Proof. For the eddy-current equation (7b) in step (iii) of Algorithm 4, we choose ζζζh = Hi+1
h

as test function and multiply by k
Ce

to get

µ0

Ce

(Hi+1
h −Hi

h,H
i+1
h ) +

k

σCe

∥∇ ×Hi+1
h ∥2L2(Ω) = −µ0k

Ce

(vi
h,H

i
h) +

µ0k

Ce

(vi
h,H

i
h −Hi+1

h ).

(14)

The LLG equation (7a) is tested with φφφh = vi
h ∈ Kmi

h
. With

(
(mi

h×vi
h),v

i
h

)
= 0, this yields

after multiplication with µ0k
Ce

> 0

µ0αk

Ce

∥vi
h∥2L2(ω) + µ0θk

2∥∇vi
h∥2L2(ω) = −µ0k(∇mi

h,∇vi
h) +

µ0k

Ce

(Hi
h,v

i
h) +

µ0k

Ce

(
π(mi

h),v
i
h

)
.

Next, we follow the lines of [1] and use the fact that ∥∇mi+1
h ∥2L2(ω) ≤ ∥∇(mi

h + kvi
h)∥2L2(ω),

cf. Remark 7, to see

µ0

2
∥∇mi+1

h ∥2L2(ω) ≤
µ0

2
∥∇mi

h∥2L2(ω) + µ0k (∇mi
h,∇vi

h) +
µ0k

2

2
∥∇vi

h∥2L2(ω)

≤ µ0

2
∥∇mi

h∥2L2(ω) − µ0

(
θ − 1/2

)
k2∥∇vi

h∥2L2(ω)

− αµ0k

Ce

∥vi
h∥2L2(ω) +

µ0k

Ce

(Hi
h,v

i
h) +

µ0k

Ce

(
π(mi

h),v
i
h

)
.

(15)

Combining (14)–(15), we obtain

µ0

2
(∥∇mi+1

h ∥2L2(ω) − ∥∇mi
h∥2L2(ω)) + µ0(θ − 1/2)k2∥∇vi

h∥2L2(ω) +
αµ0k

Ce

∥vi
h∥2L2(ω)

+
µ0

Ce

(Hi+1
h −Hi

h,H
i+1
h ) +

k

σCe

∥∇ ×Hi+1
h ∥2L2(Ω)

≤ µ0k

Ce

(vi
h,H

i
h −Hi+1

h ) +
µ0k

Ce

(π(mi
h),v

i
h).

Next, we recall Abel’s summation by parts, i.e. for arbitrary ui ∈ R and j ≥ 0, there holds

j∑
i=1

(ui − ui−1, ui) =
1

2
|uj|2 −

1

2
|u0|2 +

1

2

j∑
i=1

|ui − ui−1|2. (16)

Summing up over i = 0, . . . , j−1, and exploiting Abel’s summation for theHi
h scalar product

as well as the inequalities of Young and Hölder, this yields for any ε > 0

µ0

2
∥∇mj

h∥
2
L2(ω) +

(
θ − 1/2

)
µ0k

2

j−1∑
i=0

∥∇vi
h∥2L2(ω) +

αkµ0

Ce

j−1∑
i=0

∥vi
h∥2L2(ω) +

µ0

2Ce

∥Hj
h∥

2
L2(Ω)

+
µ0

2Ce

j−1∑
i=0

∥Hi+1
h −Hi

h∥2L2(Ω) +
k

σCe

j−1∑
i=0

∥∇ ×Hi+1
h ∥2L2(Ω)

≤ µ0k

4εCe

j−1∑
i=0

(∥π(mi
h)∥2L2(ω) + ∥Hi+1

h −Hi
h∥2L2(Ω)) +

εµ0k

Ce

j−1∑
i=0

∥vi
h∥2L2(ω)

+
µ0

2
(∥∇m0

h∥L2(ω) +
1

Ce

∥H0
h∥2L2(Ω)).
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With the notation Ck
v := 2µ0k

Ce
(α− ε), and Ck

H := µ0

Ce

(
1− k

2ε

)
, this yields

µ0∥∇mj
h∥

2
L2(ω) + 2

(
θ − 1/2

)
µ0k

2

j−1∑
i=0

∥∇vi
h∥2L2(ω) + Ck

v

j−1∑
i=0

∥vi
h∥L2(ω)

+
µ0

Ce

∥Hj
h∥

2
L2(Ω) + Ck

H

j−1∑
i=0

∥Hi+1
h −Hi

h∥2L2(Ω) +
2k

σCe

j−1∑
i=0

∥∇ ×Hi+1
h ∥2L2(Ω)

≤ µ0k

2εCe

j−1∑
i=0

∥π(mi
h)∥2L2(ω) + µ0∥∇m0

h∥L2(ω) +
µ0

Ce

∥H0
h∥2L2(Ω).

(17)

Next, we test with ζζζh = dtH
i+1
h in (7b) to obtain after multiplication by 2k

2µ0k∥dtHi+1
h ∥2L2(Ω) + 2σ−1(∇×Hi+1

h ,∇× (Hi+1
h −Hi

h)) = −2µ0k(v
i
h, dtH

i+1
h ).

The right-hand side can further be estimated by

−2µ0k(v
i
h, dtH

i+1
h ) ≤ µ0k∥vi

h∥2L2(ω) + µ0k∥dtHi+1
h ∥2L2(Ω).

Abel’s summation by parts (16) thus yields

µ0k

j−1∑
i=0

∥dtHi+1
h ∥2L2(Ω) + σ−1∥∇ ×Hj

h∥
2
L2(Ω) + σ−1

j−1∑
i=0

∥∇ × (Hi+1
h −Hi

h)∥2L2(Ω)

≤ σ−1∥∇ ×H0
h∥2L2(Ω) + µ0k

j−1∑
i=0

∥vi
h∥2L2(ω).

(18)

Finally, we weight (18) by α/Ce and add (17). The last term on the right-hand side of (18)
can be absorbed by the corresponding term on the left-hand side of (17). For the desired
result, we have to ensure that there is a choices of ε such that the Ck

v−µ0kα/Ce, and C
k
H are

positive, i.e. (α − 2ε) > 0 and
(
1− k

2ε

)
> 0. This is, however, equivalent to k/2 < ε < α/2.

From the assumed convergence of the initial data (11) as well as (10), we know that the
right-hand side is uniformly bounded, which concludes the proof. □

We can now conclude the existence of weakly convergent subsequences.

Lemma 11. There exist functions (m,H) ∈ H1(ωT )×
(
H1(L2)∩L2(H(curl))

)
, with |m| = 1

almost everywhere in ω such that up to extraction of a subsequence, there holds

mhk ⇀m in H1(ωT ), (19a)

mhk,m
±
hk ⇀m in L2(H1(ω)), (19b)

mhk,m
±
hk → m in L2(ωT ), (19c)

Hhk ⇀ H in H1(L2(Ω)) ∩ L2(H(curl,Ω)), (19d)

H±
hk ⇀ H in L2(H(curl,Ω)), (19e)

v−
hk ⇀mt in L2(ωT ). (19f)

Here, the subsequences are constructed successively, i.e. for arbitrary mesh-sizes h → 0,
and time-step sizes k → 0 there exist subindices hℓ, kℓ for which the above convergence
properties (19) are satisfied simultaneously.
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Proof. Analogously to [7, Lemma 9] and [24, Lemma 4.4], the proof of (19a)–(19e) directly
follows from the boundedness of the discrete quantities from Lemma 10 in combination with
the continuous inclusionsH1(ωT ) ⊆ L2(H1(ω)) ⊆ L2(ωT ) andH

1(L2(Ω))∩L2(H(curl,Ω)) ⊆
L2(ΩT ). For (19a), we additionally exploited the inequality ∥mi+1

h −mi
h∥2L2(Ω) ≤ k2∥vi

h∥2L2(Ω),

cf. [1]. From ∥∂tmhk(t) − v−
hk(t)∥L2(Ω) ≲ k∥v−

hk(t)∥2L2(Ω) (see [1]) and lower semi-continuity,

we deduce (19f). The normalization of the limiting function m finally follows by direct
calculation, i.e.

∥|m| − 1∥L2(ωT ) ≤ ∥|m| − |m−
hk|∥L2(ωT ) + ∥|m−

hk| − 1∥L2(ωT )

and

∥|m−
hk(t, ·)| − 1∥L2(ω) ≤ hmax

tj
∥∇mj

h∥L2(ω).

This concludes the proof. □
Now, we have collected all ingredients for the proof of our main theorem.

Proof of Theorem 8. Let φφφ ∈ C∞(ωT ) and ζζζ ∈ C∞(ΩT ) be arbitrary. We now define test
functions by (ϕϕϕh, ζζζh)(t, ·) :=

(
Ih(m

−
hk × φφφ), IXh

ζζζ
)
(t, ·). Obviously, for any t ∈ [tj, tj+1), we

have (ϕϕϕh, ζζζh) ∈ (Kmj
h
,Xh). With the notation (9), Equation (7a) of Algorithm 4 implies

α

∫ T

0

(v−
hk,ϕϕϕh) +

∫ T

0

(
(m−

hk × v−
hk),ϕϕϕh

)
= −Ce

∫ T

0

(
∇(m−

hk + θkv−
hk),∇ϕϕϕh)

)
+

∫ T

0

(H−
hk,ϕϕϕh) +

∫ T

0

(
π(m−

hk),ϕϕϕh

)
The approximation properties of the nodal interpolation operator Ih, show∫ T

0

(
(αv−

hk +m−
hk × v−

hk), (m
−
hk ×φφφ)

)
+ kθ

∫ T

0

(
∇v−

hk,∇(m−
hk ×φφφ)

)
+ Ce

∫ T

0

(
∇m−

hk,∇(m−
hk ×φφφ)

)
−
∫ T

0

(
H−

hk, (m
−
hk ×φφφ)

)
−

∫ T

0

(
π(m−

hk), (m
−
hk ×φφφ)

)
= O(h)

Passing to the limit and using the strong L2(ωT )-convergence of (m
−
hk×φφφ) towards (m×φφφ),

in combination with Lemma 11 and the weak convergence property (12) of π(m−
hk), this

yields ∫ T

0

(
(αmt +m×mt), (m×φφφ)

)
= −Ce

∫ T

0

(
∇m,∇(m×φφφ)

)
+

∫ T

0

(
H, (m×φφφ)

)
+

∫ T

0

(
π(m), (m×φφφ)

)
Exploiting basic properties of the cross product, we conclude (2). The equality m(0, ·) =

m0 in the trace sense follows from the weak convergence mhk ⇀m in H1(ωT ) Analogously,
we get H(0, ·) = H0 in the trace sense. For the Eddy-current part, (7b) implies

µ0

∫ T

0

(
(Hhk)t, ζζζh

)
+ σ−1

∫ T

0

(∇×H+
hk,∇× ζζζh) = −µ0

∫ T

0

(v−
hk, ζζζh).
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The convergence properties from Lemma 11 in combination with the properties of the inter-
polation operator IXh

from (5) now reveal∫ T

0

(
(Hhk)t, ζζζh

)
−→

∫ T

0

(Ht, ζζζ),∫ T

0

(∇×H+
hk,∇× ζζζh) −→

∫ T

0

(∇×H,∇× ζ), and∫ T

0

(v−
hk, ζζζh) −→ (mt, ζζζ),

whence (3).
It remains to show the energy estimate (4) which follows from the discrete energy esti-

mate (13) together with weak lower semi-continuity, cf. e.g. [7, Proof of Thm. 6] for details.
This yields the desired result. □
Remark 12. Finally, we would like to comment on the choice of θ.

(1) For 0 ≤ θ < 1/2 one has to bound the negative term (θ − 1
2
)k2

∑j−1
i=0 ∥∇vi

h∥2L2(Ω)

on the left-hand side of (13) in Lemma 10 in order to prove boundedness of the
discrete quantities. This can be achieved by using an inverse estimate ∥∇vi

h∥2L2(Ω) ≲
1
h2∥vi

h∥2L2(Ω). The upper bound can then be absorbed into the term k
∑j−1

i=0 ∥vi
h∥2L2(Ω)

which yields convergence , cf. [24, Proof of Thm. 4.5] provided k/h2 → 0.

(2) For the limiting case θ = 1
2
, Lemma 10 provides no boundedness of

√
k∥∇v−

hk∥L2(ωT ).
Therefore, the convergence

kθ

∫ T

0

(
∇v−

hk,∇(m−
hk ×φφφ)

)
→ 0

cannot be guaranteed. As suggested in [1], this can be circumvented by an inverse
estimate provided the fraction k

h
tends to zero.

6. Numerical examples

In order to carry out physically relevant experiments, we choose m0 and H0 satisfying (1f).
This can be achieved by taking

H0 = H∗
0 − χωm0,

where divH∗
0 = 0 in Ω. In our experiment, for simplicity, we choose H∗

0 to be a constant. We
solve the standard problem #1 proposed by the Micromagnetic Modeling Activity Group at
the National Institute of Standards and Technology [26]. In this model, the initial conditions
m0 and H0, and the effective field Heff are given as

m0 = (1, 0, 0) in ω, H∗
0 = (0, 0, 0) in Ω,

and

Heff =
2A

µ∗
0M

2
s

∆m+H+ Ca⟨m,p⟩p+Hext with p = (1, 0, 0).

The parameters for this problem are given below:

α = 0.5, σ = 1, µ0 = 1.25667× 10−6,

Ce = 5× 102, A = 1.3× 10−11, Ms = 8× 105.

10



The domains ω and Ω are chosen (in µm) to be

ω = (0, 2)× (0, 1)× (0, 0.02)

and

Ω = (−0.2, 2.2)× (−0.2, 1.2)× (−0.04, 0.06).

The domain ω is uniformly partitioned into cubes of dimensions 0.1×0.1×0.02, where each
cube consists of six tetrahedra. We generate a nonuniform mesh for the magnetic domain Ω
in such a way that it is identical to the mesh for ω in the region ω, and the mesh-size
gradually increases away from ω.

For time discretization, we perform a uniform partition of [0, 1] with timestep k = 0.01.
In each integration step of Algorithm 4, we solved two linear systems, one of size 2V × 2V
where V = 462 is the number of vertices in the domain ω, and another of size E ×E where
E = 3991 is the number edges in the domain Ω; see Figure 1.

Figure 2 depicts the evolution of the exchange energy ∥∇mh,k(t)∥ω, magnetic field energy
∥Hh,k(t)∥Ω, and total energy ∥∇mh,k(t)∥ω + ∥Hh,k(t)∥Ω + ∥∇×Hh,k(t)∥Ω. The latter figure
supports our theoretical result that these energies are bounded.
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