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Abstract – In metamaterial acoustics, it is conceivable that any type of fine-tuned acoustic prop-
erties far beyond those found in nature may be transferred to an appropriate medium. Effective
design and engineering of these modern acoustic metadevices poses one of the forefront challenges
in this field. As a practical example of a new covariant approach for modelling acoustics on
spacetime manifolds, we choose to implement the acoustic analogue of the frequency shift due
to gravitational time-dilation. In accordance with Einstein’s equivalence principle, two differ-
ent spacetimes, corresponding to uniform acceleration or uniform gravity, are considered. For
wave propagation in a uniformly accelerating rigid frame, an acoustic event horizon arises. The
discussion includes a detailed numerical analysis for both spacetime geometries.

Introduction. – As the interdisciplinary science that
studies the effects and properties of mechanical waves in
various media, acoustics has come a long way from the ini-
tial attempts of the ancient Greek philosopher Pythagoras
in the 6th century B.C. to explain the harmonic overtone
series on a string up to the consolidation of the field of
mathematical acoustics in the 19th century pioneered by
Helmholtz and Rayleigh.

Recent successes in the covariant formulation of ana-
logue models of gravity for optics (see [1] and references
therein), known as transformation optics, have inspired
a similar approach for physical systems describing sound
propagation in acoustic metamaterials [2]. Such metama-
terials are mostly artificially produced with suitable and
highly unusual acoustic properties that are not found in
nature [3,4]. Advanced acoustic devices may be composed
of these metamaterials, and their technical and industrial
applications are numerous, ranging from the acoustic im-
provement of concert halls to the design of submarines
undetectable for sonar probes. More interesting details on
acoustic cloaking are found, for example, in ref. [5, 6].

In analogy with transformation optics, transformation
acoustics allows for deformations of the acoustic propaga-

(a)E-mail: mtung@mat.upv.es

tion space, which mathematically resembles spacetime of
general relativity in the presence of gravitating matter or
energy, so that the underlying mathematical structure is
described by pseudo-Riemannian manifolds [2]. As a con-
sequence, transformation acoustics proposes to employ so-
phisticated differential-geometric tools for the efficient de-
sign and manufacturing of these modern acoustic devices.

Recently, a theoretical Lagrangian framework was elab-
orated which generally describes the evolution of acoustic
pressure through an appropriate metamedium [2]. It de-
rives from a variational principle in fully covariant space-
time all the equations governing non-dissipative acoustic
phenomena. Undoubtedly, this approach opens up many
new practical possibilities for the construction of acoustic
metadevices with unexpected characteristics.

In this letter, we present a novel application of trans-
formation acoustics by implementing the gravitational
frequency-shift analogue in acoustics, i.e., the acoustic im-
itation of a shift in radiation frequency due to a gravita-
tional field. The measurement of gravitational frequency
shifts provides some of the crucial experimental checks on
the basic predictions of general relativity. It was in fact
Einstein’s famous elevator thought experiment, in which
objects in a uniform gravitational field behave similarly
to objects inside a uniformly accelerating frame, that led
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him to formulate his equivalence principle—the principle
that would form the very foundation of general relativity.

In the following, we will first introduce some necessary
details of the framework describing spacetime for a ref-
erence frame with uniform acceleration or with a uniform
gravitational field. Next, we proceed with the derivation of
the corresponding acoustic wave equations in a most gen-
eral manner via a variational principle. At the same time,
we will also be able to derive the fundamental relations be-
tween the constitutive acoustic parameters, which provide
the description on how to actually transfer the spacetime
characteristics at hand into the acoustic metadevice. A
numerical discussion will follow in order to visualize some
of the metadevice’s outstanding acoustic features.

Spacetime for uniform acceleration and gravity.
– In this work, we intend to mimic the effect on the fre-
quency of sound propagating in a suitable acoustic meta-
material which an accelerated observer detects, or alterna-
tively, a gravitational field produces. For this purpose, we
assume the following simple Euclidean form for the line
element with static spacetime and the mixed signature
(−,+,+,+):

ds2 = −α2(y) c2dt2 + dx2 + dy2 + dz2, (1)

where c > 0 is the speed of sound within the medium. The
line element is constructed in such a way that the gravita-
tional field or the accelerated motion is aligned along the
y-axis and the temporal scale factor α 6= 0 only depends
on the variable y. The underlying Lorentzian metric is
then given by

gµν =




−α2(y) 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 . (2)

Note that
√−g = |α| holds, using the standard notation

g = det(gµν) for the determinant of the metric.

For a uniformly accelerating frame (UAF) and a uniform
gravitational field (UGF), Desloge proposed the following
two scale factors [7–9]:

α(y) =





1 +
g0
c2
y, (UAF)

e
g0
c2 y. (UGF)

(3)

Here, g0 is the constant acceleration related to the moving
frame or the fixed strength of the gravitational field within
the rest frame, respectively. Observe that for both cases
the metric, eq. (2), does not converge to the Minkowski
metric at spatial infinity. Moreover, the UAF metric is
singular at y = −c2/g0, which corresponds to a typical
Rindler event horizon.

It is not difficult to check that the only non-vanishing

Christoffel symbols are

Γ2
00 = α(y)α′(y),

Γ0
02 =

α′(y)
α(y)

.
(4)

Then, there exists one independent component of the Rie-
mann curvature tensor, namely [7]

R0220 = −α(y)α′′(y), (5)

which demonstrates that the underlying UGF spacetime
is not empty and is curved (R0220 6= 0), whereas the UAF
spacetime is flat (R0220 = 0) and represents a pseudo-
force. Furthermore, the components of the Einstein tensor
are given by

G11 = G33 =
α′′(y)
α(y)

, G00 = G22 = 0, (6)

which shows that only the UAF metric is an exact solution
of the vacuum Einstein equations.
In fact, eqs. (4) readily yield for the geodesics of the rele-

vant y-direction (acceleration occurs only in this direction
and thus ẍ = z̈ = 0) the general formula

ÿ + c2α(y)α′(y) = 0, (7)

which results in

ÿ =





−g0
(
1 +

g0
c2
y
)
, (UAF)

−g0e
2g0
c2 y. (UGF)

(8)

These two expressions are approximately equal for suffi-
ciently small values of y. In the regime |y| ¿ c2/g0, obser-
vations made in the UAF frame are physically equivalent
to those made in the UGF frame. Note also that under
the exchange y ↔ −(y + 2c2/g0) the UAF acceleration in
eq. (8) switches sign, which produces a change in direc-
tion at y = −c2/g0 and again is linked to the presence
of the Rindler horizon separating the physical domains
y > −c2/g0 and y < −c2/g0.
An interesting discussion on the physical relation be-

tween reference frames at rest with a uniform gravitational
field and uniformly accelerating frames in field-free space
in connection with the validity of the equivalence principle
is provided in ref. [10]. For our means, it will suffice to
accept both cases as viable models and testing ground for
further investigations in transformation acoustics.

Hamilton’s principle and acoustic wave equation.
– In the context of transformation acoustics, Hamilton’s
principle states that the evolution of a non-dissipative
acoustic system is described by a variational principle
for the generalized coordinate φ : M → R, where φ de-
notes the scalar potential of the acoustic metafluid defined
on the pseudo-Riemannian spacetime manifold M with a
smooth, symmetric metric g : TpM × TpM → R. If the
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state of φ on the boundary ∂Ω of a bounded, closed set of
spacetime Ω ⊂ M is known, then the source-free dynam-
ics on Ω is fully determined by the requirement that the
following functional derivative vanishes [2]:

δ

δφ

∫

Ω

d4x
(

1
2

√−g gµνφ,µφ,ν
)
= 0, (9)

where the conventional comma notation in the index refers
to a partial derivative of the respective spacetime compo-
nent, and gµν is the inverse metric tensor in a particu-
lar coordinate frame. For the spacetime integration of
eq. (9), the invariant volume element is as usual given
by d4x

√−g = dx0dx1dx2dx3
√−g, and the bracket just

contains the kinetic term of the acoustic field in covari-
ant four-dimensional form [2]. This formalism automati-
cally guarantees the essential condition that the resulting
acoustic wave equation will be invariant under certain co-
ordinate transformations.

By substituting the metric under consideration, eq. (2),
into the variational principle, eq. (9), we obtain

δ

δφ

∫

Ω

d4x 1
2 |α|

[
∇2φ− 1

c2α2
φ̇

]
= 0. (10)

Using standard differential-geometric methods (see e.g.
ref. [11]), one can directly derive the acoustic wave equa-
tion in curved spacetime for the spacetime metric at hand
from the variation of the action, eq. (10). After some
simplification and the suppression of the physically unin-
teresting third space component, this yields

∆Mφ =
1√−g

(√−g gµνφ,µ
)
,ν

= − 1

α2
φ,00 + φ,11 +

1

|α|
(
|α|φ,2

)
,2
= 0,

(11)

where ∆Mφ is the Laplace-Beltrami operator on manifold
M . Note that eq. (11) completely determines the acous-
tic wave propagation in the prefabricated metamaterial
under consideration. Every concrete physical spacetime
geometry has its own acoustic equivalent which then may
become subject to further investigation—in full agreement
with the gravity analogue programme [12].

The relevant acoustic parameters are the scalar bulk
modulus κ : M → R+ and the anisotropic mass-density
tensor ρ : TpN×TpN → R on a smooth three-dimensional
manifold N . We are now in the position to identify the
fundamental constitutive relations between these param-
eters [2], linking together the virtual space (flat space
with Minkowski metric ḡµν = diag(−1, 1, 1, 1) and known
wave propagation) and physical space (curved, trans-
formed space with metric gµν and the desirable acoustic
properties). Then, using

√−ḡ = 1 and
√−g = |α| imme-

diately gives

κ =

√−g√−ḡ κ̄ = |α(y)|κ̄, (12a)

ρ0ρ
ij =

√−ḡ√−g ḡ
ij =

1

|α(y)|



1 0 0
0 1 0
0 0 1


 , (12b)

where ρ0 denotes the metafluid density and ρij is the in-
verse of the density tensor ρ in local coordinates. Ob-
viously, the density tensor, eq. (12b), has the following,
particularly simple form in a Euclidean frame:

ρ = ρ0|α(y)|I3, (13)

where I3 is just the three-dimensional identity. This
means, as expected, that the UAF and UGF acoustic sys-
tems display full isotropy, but contain a crucial change of
scale in y-direction, the direction to be chosen to align with
the acceleration or force field, respectively. In summary,
eqs. (12a) and (13) precisely provide the recipe for engi-
neering the physical acoustic metamedia with Desloge’s
underlying spacetime metrics.
For a more detailed analysis of the wave propagation

in such spacetime, we apply the method of separation of
variables to the acoustic potential in eq. (11) by taking

φ(t, x, y) = φ0(t)φ1(x)φ2(y). (14)

Then, for angular frequency ω, a straightforward calcula-
tion gives the standard harmonic time-dependence of the-
oretical acoustics

φ0(t) = eiωt (15)

and the plane-wave solution for a progressive wave in x-
direction

φ1(x) = A+e−ikxx (16)

with corresponding wavenumber kx and amplitude A+

(see e.g. ref. [13]). The y-dependence is of main interest
and dictated by the following differential equation

φ′′2 +
α′

α
φ′2 +

(
ω2

c2α2
− k2x

)
φ2 = 0, (17)

where we have been using the identity |α|′/|α| = α′/α.
Eq. (17) is necessarily self-adjoint, as it is the result of a
variational principle [14], and gives rise to classical Sturm-
Liouville problem. With suitably chosen boundary condi-
tions, its analytical solution can be expressed in terms of
Bessel functions of the first and second kind [15]. However,
this analytical solution is quite complicated and lengthy,
and hence its evaluation is tedious. In contrast, the direct
numerical integration of eq. (17) is easier and proves to be
much more stable.

Numerical discussion. – In acoustics, one usually
measures or wishes to predict the sound pressure of a
wavefront at a certain position and time. For Desloge’s
metrics, the acoustic pressure is determined by

p = ρ0φ̇ = iωρ0A
+ei(ωt−kxx)φ2(y), (18)
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where we have used eqs. (14)–(16). The only unknown
contribution arises from φ2(y). For its numerical compu-
tation, we recast eq. (17) in the form of a system of ODEs
of first order

ψ′
1 = ψ2, (19a)

ψ′
2 =

(
k2x − ω2

c2α2

)
ψ1 − α′

α
ψ2, (19b)

subject to the suitably chosen initial conditions

ψ(0) =

(
ψ1(0)

ψ2(0)

)
=

(
φ2(0)

φ′2(0)

)
=

(
1

0

)
. (20)

As a double check, we have tackled this Cauchy boundary-
value problem with two different classes of Matlab
solvers, namely the standard Matlab solver ode45 and
the more sophisticated SBVP package [16, 17]. The basic
algorithm for ode45 is a standard Runge-Kutta method,
whereas in the SBVP algorithm a polynomial colloca-
tion method is implemented. For efficiency, the code is
equipped with an adaptive mesh algorithm. SBVP was
designed for ODEs with singularities of the first kind [16]
in the differential operator, but it also can be used to solve
regular ODEs. Setting the relative and absolute tolerances
to 10−12, both solvers show excellent agreement in the fol-
lowing computations.
For all numerical estimates, we choose the following typ-

ical values for the parameters: c = 343m/s (the speed
of sound in dry air at 20◦C) and kx = 1 (unitary wave-
length in x-direction), and ω = 3000Hz (an upper value
within the so-called voice frequency band). Furthermore,
to make all effects discernible, we fix the value of the
acceleration/gravitational field strength at about 1000
times earth’s surface gravity. We also consider up and
downward orientation with respect to the y-direction, i.e.
g0 = ±9810m/s

2
.

Fig. 1 compares how φ2 depends on y as predicted by
the UAF and the UGF model, respectively. As expected,
both frequency shifts coincide for small values of y. This is
the region where the two frames are acoustically equivalent
and also match with the original gravity analogue under
similar conditions. Since g0 > 0, this corresponds to a
downward acceleration, cf. eq. (8), and the wavelength
grows with height, or equivalently, the frequency reduces
with height. Therefore, we recognize an acoustic redshift.

For large y, the predictions of both models deviate
considerably, which is due to the distinct asymptotic be-
haviour of the governing differential equation, eq. (17). It
is straightforward to check analytically that in this limit
the UAF model yields simple oscillatory motion with a
constant amplitude, whereas the UGF variant of eq. (17),
with α′/α = g0/c

2, produces an exponentially growing
amplitude.
In figs. 2, we study the UAF and UGF frequency shifts

for an upward acceleration or gravitational field by choos-
ing g0 < 0. In the UGF case, the wavelength is rapidly
decreasing which corresponds to the analogous effect of a

-1

 0

 1

 0  5  10  15  20  25

y [m]

φ2(y)

c = 343 m/s
kx = 1
ω = 3000 Hz

g0 = 9810 m/s2

 UAF
 UGF

Fig. 1: The dependence of the acoustic potential φ2 on height
y for a uniformly accelerating frame (UAF) and in a uniform
gravitational field (UGF). The acceleration g0 > 0 corresponds
to alignment in antiparallel y-direction. An acoustic redshift
is observed.
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ω = 3000 Hz

g0 = -9810 m/s2

 UGF

Fig. 2: The dependence of the acoustic potential φ2 on height
y with (a) uniform acceleration (UAF) and (b) uniform grav-
itational field (UGF). The acceleration g0 < 0 corresponds to
alignment along the y-direction. The UGF potential in (b) dis-
plays a flawless acoustic blueshift, whereas the UAF spacetime
in (a) gives rise to a Rindler event horizon at −g0/c

2 ≈ 12m.

p-4



Gravitational frequency shifts in transformation acoustics

p

Rindler horizon

 0  5  10  15x

 0

 5

 10

 15

y

-1

-0.5

 0

 0.5

 1

Fig. 3: A snapshot of the acoustic pressure p at t = 0 in the xy-
plane with underlying UAF spacetime metric. The real part
of eq. (18) is taken with kx = 1, and the total amplitude is
normalized. The acoustic spacetime parameters in the plot are
g0 = −9810m/s2 and c = 343m/s, which defines the Rindler
horizon at y0 = −c2/g0 ≈ 12m.

wave moving from a higher to a lower gravitational poten-
tial. Hence, in fig. 2(b) an acoustic blueshift is observed.

For the UAF spacetime, the singularity of the underly-
ing metric at y0 = −c2/g0 causes time to evolve slower in
this region compared to a distant fixed observer. Time-
dilation becomes ever more pronounced when approaching
this region, until time freezes. Essentially, it takes infinite
time to reach y0 from both sides along the y-axis. This
corresponds to a static acoustic barrier which the sound
wave cannot surpass, and thus divides spacetime into two
physical domains with no possible acoustic communication
among them. Because of the symmetry y ↔ −(y+2c2/g0)
under which the UAF acceleration reverses sign, the effect
is also symmetric and identifies y0 with the position of
a symmetric Rindler event horizon. It is quite remark-
able that this effect is independent of wave frequency or
amplitude, as y0 only depends on the acoustic spacetime
properties g0 and c.

Fig. 3 presents a full snapshot of the acoustic pressure
p at time t = 0 calculated from the numerical values of
φ2 for the UAF spacetime, cf. fig. 2(a). In fig. 3, the real
part of eq. (18) is evaluated with unit wavelength kx = 1
and, for convenience, the resulting amplitude ωρ0A

+ is
normalized. As before, the acoustic spacetime parame-
ters are g0 = −9810m/s

2
and c = 343m/s, which lo-

cates the Rindler event horizon on the positive y-axis at
y0 = −c2/g0 ≈ 12m. The incident pressure wave becomes
extremely compressed when approaching the horizon (up
to the point where the numerical simulation fails). Recall
that this UAF event horizon corresponds to an underlying
flat spacetime (viz. eq. (5)) and is an artifact of the coor-
dinate choice alone. Nevertheless, its physical implemen-
tation in an acoustic metamaterial has many challenging
consequences.

In transformation optics, it has been argued that ac-
tual metamaterial losses in the laboratory setting would
interfere with the genuine appearance of an event hori-
zon. However, any attempt to compensate for these losses
would also effectively produce Hawking radiation from the
surface [18]. A similarly interesting phenomenon should be
expected to emerge in transformation acoustics as well.

Conclusion. – In this work, we have applied a re-
cently proposed covariant spacetime approach of metama-
terial acoustics [2] for engineering an acoustic metadevice
with wave properties that mimic gravitational frequency
shifts. Two spacetimes are implemented and discussed,
the flat UAF spacetime for a uniformly accelerating frame
and the curved UGF spacetime representing a uniform
gravitational field [7].
For both spacetimes, the constitutive relations among

the scalar bulk modulus and the mass-density tensor are
specified in order to establish the correspondence of the
curvilinear coordinate transformations between associated
physical and virtual acoustic space and their respective
material properties.
For UGF spacetime, wave propagation in the corre-

sponding prefabricated acoustic metamedium exhibits the
expected frequency shifts, depending on whether sound
travels in the same or opposite direction of the chosen ac-
celeration or gravitational field.
In the case of the UAF metric framework, it is shown

that the acoustic wave analogue necessarily incorporates
a linear event horizon, i.e. a boundary in spacetime be-
yond which events cannot acoustically affect any outside
observers. Due to the similarity of the Rindler horizon to
the event horizon of a Schwarzschild black hole, intriguing
phenomena such as acoustic Hawking radiation may be
studied in detail.
Moreover, the extraordinary acoustic properties of the

UAF and UGF analogues in metamaterial acoustics may
lead the path to the design of acoustic industrial devices
with promising applications in the near future.
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