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ADAPTIVE FEM, BEM, AND FEM-BEM COUPLING WITH

OPTIMAL RATES FOR STRONGLY NON-SYMMETRIC PROBLEMS

M. FEISCHL, T. FÜHRER, AND D. PRAETORIUS

Abstra
t. We prove an abstra
t summability result whi
h is motivated by the usual

Pythagoras theorem for symmetri
 problems. This allows to prove 
onvergen
e with

optimal algebrai
 rates for adaptive algorithms for a wide range of non-symmetri
 prob-

lems as long as they �t into the abstra
t setting of the Lax-Milgram lemma. Possible

appli
ations in
lude the 
oupling of �nite elements and boundary elements as well as

boundary element formulations for mixed boundary 
onditions. The operators of these

model problems 
annot be de
omposed into a symmetri
 and ellipti
 prin
iple part plus

a 
ompa
t perturbation, but the non-symmetri
 part is non-
ompa
t as well. While this

prevents the use of available te
hniques from the literature, these problems �t into the

framework of the Lax-Milgram lemma and are hen
e 
overed by our analysis.

1. Introdu
tion

Suppose a 
ontinuous and ellipti
 bilinear form b(·, ·) on a real Hilbert spa
e X . Given
a fun
tional f ∈ X ∗

, the Lax-Milgram lemma guarantees existen
e and uniqueness of

u ∈ X with

b(u, v) = f(v) for all v ∈ X . (1)

Given an initial �nite dimensional subspa
e X0 ⊆ X based on a triangulation T0, an
adaptive algorithm of the form

Solve −→ Estimate −→ Mark −→ Refine (2)

generates a sequen
e of nested triangulations Tℓ with 
orresponding dis
rete spa
es Xℓ ⊆
X and approximates the exa
t solution by 
omputing Galerkin approximations Uℓ ∈ Xℓ

for all ℓ ∈ N. The module Solve in (2) assumes an exa
t solver whi
h 
omputes the

unique solution Uℓ ∈ Xℓ of

b(Uℓ, V ) = f(V ) for all V ∈ Xℓ. (3)

The ellipti
ity of b(·, ·) provides a 
onstant CCea > 0 whi
h depends only on b(·, ·), su
h
that Uℓ satis�es the Céa-type estimate

‖u− Uℓ‖X ≤ CCea min
Vℓ∈Xℓ

‖u− Vℓ‖X for all ℓ ∈ N. (4)

The module Estimate in (2) assumes a 
omputable error estimator

ρ2ℓ :=
∑

T∈Tℓ

ρℓ(T )
2

for all ℓ ∈ N0. (5)
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The module Mark in (2) uses the Dör�er marking 
riterion to determine a set of marked

element domainsMℓ ⊆ Tℓ as a set of minimal 
ardinality to satisfy

θρ2ℓ ≤
∑

T∈Mℓ

ρℓ(T )
2

(6)

for some �xed parameter 0 < θ < 1.
The module Refine in (2) enri
hes the spa
e Xℓ by re�ning the underlying triangulation

Tℓ to generate Tℓ+1 and Xℓ+1 ⊇ Xℓ (see Se
tion 3.1 for details and dis
ussion).

The goal of this work is to prove optimal 
onvergen
e rates for the estimator ρℓ in the

following sense: If theoreti
ally there exist meshes T̃ℓ whi
h are re�nements of T0 su
h

that a 
ertain rate of 
onvergen
e s > 0 is possible for the 
orresponding error estimator

ρ̃ℓ, i.e.

ρ̃ℓ . (#T̃ℓ −#T0)
−s

for all ℓ ∈ N, (7)

then, the adaptively generated meshes re
over at least this rate, i.e.,

ρℓ . (#Tℓ −#T0)
−s

for all ℓ ∈ N, (8)

see Theorem 14 below for a pre
ise statement of the result.

A 
ommon tool in the proofs of su
h optimality statements (7)�(8) in e.g. [Ste07,

CKNS08,FKMP13,Gan13℄ is a Pythagoras identity of the form

‖u− Uℓ+1‖
2
X + ‖Uℓ+1 − Uℓ‖

2
X = ‖u− Uℓ‖

2
X for all ℓ ∈ N. (9)

This is essential to relate su

essive solutions Uℓ, Uℓ+1 with ea
h other. In 
ase of a

symmetri
 bilinear form with indu
ed norm ‖ · ‖X := b(·, ·)1/2, su
h an identity follows

immediately from the Galerkin orthogonality

b(u− Uℓ+1, Uℓ+1 − Uℓ) = 0 = b(Uℓ+1 − Uℓ, u− Uℓ+1) for all ℓ ∈ N, (10)

but fails to hold in many other 
ases as, e.g., non-symmetri
 problems or FEM-BEM


oupling formulations. In the frame of the Lax-Milgram lemma and in many appli
ations,


onvergen
e

lim
ℓ→∞
‖u− Uℓ‖X = 0 (11)

is a priori available by means of the estimator redu
tion prin
iple [AFLP12℄ or follows

from more general 
on
epts [MSV08,Sie11℄. The Pythagoras identity (9) therefore implies

∞∑

k=ℓ

‖Uk+1 − Uk‖
2
X = ‖u− Uℓ‖

2
X for all ℓ ∈ N. (12)

The generalization of (12) to general quasi-orthogonality

∞∑

k=ℓ

‖Uk+1 − Uk‖
2
X ≤ C1‖u− Uℓ‖

2
X for all ℓ ∈ N (13)

for some ℓ-independent 
onstant C1 > 0 still enables the analysis to prove optimal 
on-

vergen
e rates in the spirit of [Ste07℄ (see Se
tion 3 and Se
tion 8), but allows to in
lude

a mu
h wider variety of problem 
lasses.

This improves on the existing literature on rate optimality. The seminal work [Ste07℄

proves optimal 
onvergen
e rates for the Lapla
ian, whereas [CKNS08℄ applies to linear

symmetri
 and ellipti
 se
ond-order PDEs, and [AFK

+
13,FPP14℄ in
lude non-homoge-

neous boundary 
onditions. For boundary element methods, the works [FKMP13,Gan13℄

were the �rst to prove optimal 
onvergen
e rates, where [FKMP13℄ is 
on
erned with the

weakly-singular integral equation for the Lapla
ian on polygonal domains, while [Gan13℄
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onsiders weakly-singular and hyper-singular integral equation on smooth domains. The

work [Gan08℄ proves optimal rates for 
ertain non-symmetri
 problems for a wavelet

method. The work [CN12℄ 
onsiders mildly non-symmetri
, linear ellipti
 se
ond-order

PDEs and proves optimal 
onvergen
e rates for standard 
onforming FEM under the

assumption that the initial mesh is su�
iently �ne. The re
ent work [FFP12℄ improves

on that by dropping the assumption on the initial mesh-width and in
luding general linear

ellipti
 se
ond-order PDEs into the analysis. There also exist optimality results [FFP12,

GMZ12,BDK12,HTZ10℄ for 
ertain 
lasses of non-linear se
ond-order PDEs.

The present work is the �rst to prove optimal 
onvergen
e rates for linear, but non-

symmetri
 problems beyond 
onforming FEM for se
ond-order PDEs, as for example the


oupling of FEM and BEM (see Se
tions 5�6) or the boundary element formulation for

mixed boundary 
onditions (see Se
tion 7). The proposed general quasi-orthogonality (13)

is a true generalization of the existing quasi-orthogonality 
on
epts found in e.g. [CN12,

AFK

+
13, FFP12℄ and allows to ta
kle even problems where the non-symmetry is not


ompa
t (as opposed to [CN12,FFP12℄).

The remainder of the work is organized as follows: The �rst half, 
omprising of Se
-

tion 2, provides the proof of (13) for general linear and ellipti
 problems (1). In the se
ond

half, Se
tion 3 states the adaptive algorithm as well as the main result on quasi-optimal


onvergen
e (Theorem 14). The short Se
tion 4 gives a new proof of the result for linear

se
ond-order PDEs in [FFP12℄. Se
tions 5�6 apply the results of the previous se
tions to

two formulations of the FEM-BEM 
oupling. Se
tion 7 
onsiders the so-
alled symmetri


boundary integral formulation of some mixed boundary value problem. Finally, Se
tion 8


ontains the postponed proof of Theorem 14.

Throughout the paper, . denotes ≤ up to a multipli
ative 
onstant and ≃ denotes

that both . and & hold.

2. General quasi-orthogonality

The following theorem is the main result of this se
tion and it will serve as the main

tool to prove optimal 
onvergen
e rates in the following se
tions.

Theorem 1. Suppose a 
onstant C2 > 0 su
h that the bilinear form b(·, ·) is 
ontinuous
and ellipti
 in the sense of

b(v, w) ≤ C2‖v‖X‖w‖X and b(v, v) ≥ C−1
2 ‖v‖

2
X for all v, w ∈ X . (14)

Suppose that Xℓ are nested subspa
es of X , i.e. Xℓ ⊆ Xℓ+1 ⊆ X for all ℓ ∈ N0. Let

Uℓ ∈ Xℓ and u ∈ X denote the unique solutions of (1)�(3). Then, 
onvergen
e (11)

implies general quasi-orthogonality (13).

Remark 2. Without loss of generality, we may assume Uℓ 6= Uℓ+1 for all ℓ ∈ N, sin
e
otherwise the respe
tive terms vanish in the general quasi-orthogonality (13). The unique

solvability therefore implies Uℓ+1 /∈ Xℓ for all ℓ ∈ N.

For the proof, and for 
onvenien
e of the presentation, an equivalent operator formu-

lation repla
es the variational setting above. To that end, de�ne the operator

B : X → X ∗, v 7→ Bv := b(v, ·), (15)

as well as for all X⋆ ⊆ X the restri
tion PX⋆ : X
∗ → X ∗

⋆ by

PX⋆f = f |X⋆ for all f ∈ X ∗. (16)

The problem (1) as well as its dis
retization (3) equivalently read as

Bu = f and PXℓ
B|Xℓ

Uℓ = PXℓ
f for all ℓ ∈ N0. (17)
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The proof of Theorem 1 is split into two parts whi
h mark the following two subse
tions.

In Se
tion 2.1, the result is proved for the simpler 
ase of symmetri
 but inde�nite bilinear

forms b(·, ·) with the additional restri
tion that dim(Xℓ)+1 = dim(Xℓ+1). In Se
tion 2.2,

it is shown that the general 
ase 
an be redu
ed to the 
ase of Se
tion 2.1

2.1. Step 1: The symmetri
 but possibly inde�nite 
ase. Sin
e this se
tion poses

additional assumptions on the spa
es Xℓ as well as on the operator B, it seems useful

to 
hange the notation slightly. All the previous de�nitions (1)�(3) and (13) transfer

likewise in the sense that u ∈X is the unique solution of

b(u, v) = f(v) for all v ∈X (18)

with Galerkin dis
retization

b(U ℓ,V ) = f(V ) for all V ∈Xℓ. (19)

Proposition 3. Let X denote a real Hilbert spa
e and let Xℓ be �nite dimensional

subspa
es of X with

X =
⋃

ℓ∈N0

Xℓ and dim(Xℓ) + 1 = dim(X ℓ+1) for all ℓ ∈ N0.

Let B : X → X∗
denote a symmetri
 operator in the sense 〈Bv , w〉 = 〈Bw , v〉 for all

v, w ∈ X whi
h satis�es

max{‖B‖X→X
∗ , ‖B−1‖X∗→X} ≤ C3 (20a)

as well as for all ℓ ∈ N0

‖(PXℓ
B|Xℓ

)−1‖X∗
ℓ→Xℓ

≤ C3 (20b)

for some 
onstant C3 > 0. Then, the problems (18) and (19) allow for unique solutions,

and there holds general quasi-orthogonality

∞∑

k=ℓ

‖U k+1 −U k‖
2
X
≤ C1‖u−U ℓ‖

2
X

for all ℓ ∈ N0. (21)

The proof requires some preparations. To that end, let (vℓ)ℓ∈N0 ⊂X be an orthonormal

basis of X su
h that

Xℓ = span

{
vk : k = 0, . . . , ℓ

}
for all ℓ ∈ N0.

Note that su
h a basis 
an always be 
onstru
ted e.g. via Gram-S
hmidt orthogonaliza-

tion.

Lemma 4. There exists a sequen
e (wℓ)ℓ∈N ⊂X and a 
onstant C4 > 0 su
h that there

holds

(i) Nestedness:

span

{
wk : k = 0, . . . , ℓ

}
= Xℓ for all ℓ ∈ N0. (22)

(ii) Boundedness:

C−1
4 ≤ ‖wℓ‖X ≤ C4 for all ℓ ∈ N0. (23)

(iii) B-orthogonality:

〈Bwℓ , wk〉 = 0 for all ℓ 6= k and 〈Bwℓ , wℓ〉 ∈ {−1, 1} for all ℓ ∈ N0. (24)
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Proof. De�ne w0 = v0 and for all ℓ ≥ 1

wℓ := vℓ − (PXℓ−1
B|Xℓ−1

)−1PXℓ−1
Bvℓ.

From wℓ ∈ vℓ + Xℓ−1 and the 
hoi
e of vℓ, we derive (22). Obviously, there holds

‖w0‖X = 1 and sin
e (vℓ)ℓ∈N0 is an orthonormal basis

‖wℓ‖
2
X

= 1 + ‖(PXℓ−1
B|Xℓ−1

)−1PXℓ−1
Bvℓ‖

2
X

for all ℓ ∈ N. Sin
e 
ontinuity of B implies 
ontinuity of PXℓ
B|Xℓ

even with the same

stability 
onstant ‖PXℓ
B|Xℓ

‖Xℓ→X ∗
ℓ
≤ ‖B‖X→X ∗ ≤ C3, the last identity and (20) prove

1 ≤ ‖wℓ‖
2
X
≤ 1 + C4

3 for all ℓ ∈ N.

Moreover, there holds for 0 ≤ k < ℓ

〈Bwℓ , vk〉 = 〈PXℓ−1
Bvℓ − PXℓ−1

B|Xℓ−1
(PXℓ−1

B|Xℓ−1
)−1PXℓ−1

Bvℓ , vk〉 = 0.

This shows 〈Bwℓ , x〉 = 0 for all x ∈ Xℓ−1. Symmetry of B proves the �rst statement

of (24). For the se
ond part, observe that ea
h x ∈ Xℓ has a representation x =∑ℓ
i=0 xivi. The orthogonality from above together with 
ontinuity of B and (20b) imply

1 ≃ ‖PXℓ
B|Xℓ

wℓ‖X⋆
ℓ
= sup

x∈Xℓ, ‖x‖X≤1

〈Bwℓ , x〉 = sup
xℓ∈R, |xℓ|≤1

xℓ〈Bwℓ , vℓ〉 = |〈Bwℓ , vℓ〉|.

By de�nition of wℓ, we get |〈Bwℓ , wℓ〉| = |〈Bwℓ , vℓ〉| ≃ 1. This, together with (23),

allows to s
ale the basis (wℓ)ℓ∈N, su
h that there holds both, the orthogonality (24) as

well as (23). This 
on
ludes the proof. �

Lemma 5. Let (wℓ)ℓ∈N denote the basis from Lemma 4. De�ne the spa
es

X+ := span
{
wℓ : 〈Bwℓ , wℓ〉 = 1, ℓ ∈ N

}
,

X− := span
{
wℓ : 〈Bwℓ , wℓ〉 = −1, ℓ ∈ N

}
,

(25)

where the 
losure is understood in X. Then, there holds the dire
t de
omposition X+ ⊕
X− = X. Hen
e, there exist 
ontinuous proje
tions

P+ : X →X+ with kerP+ = X−,

P− : X →X− with kerP+ = X+
(26)

with ‖P+‖X→X , ‖P−‖X→X ≤ C5 <∞.

Proof. Due to (22), it is 
lear that X+ + X− = X. To see X+ ∩ X− = {0}, let
x ∈ X+ ∩X−. Then, there exists a sequen
e xj ∈ X◦

− := span

{
wℓ : 〈Bwℓ , wℓ〉 =

−1, ℓ ∈ N
}
su
h that xj → x in X as j →∞. Then, the orthogonality (24) proves

〈Bx , wℓ〉 = lim
j→∞
〈Bxj , wℓ〉 = 0 for all ℓ ∈ N0 with wℓ ∈X+.

For ℓ ∈ N with wℓ ∈ X−, we obtain the same result. Therefore, it holds 〈Bx , wℓ〉 = 0
for all ℓ ∈ N and hen
e x = 0. Therefore, ea
h x ∈ X has a unique de
omposition

into x = x+ + x− with x+ ∈ X+ and x− ∈ X−. A

ording to linear algebra, this

gives rise to P+x = x+ and P−x = x−. To see the 
ontinuity of the proje
tions, we

employ Bana
h's 
losed-graph theorem: Suppose xj → x and P+xj → y in X. It

remains to show that P+x = y. Sin
e X+ is 
losed, we see that y ∈ X+, i.e. P+y = y.

Moreover, P+(xj − P+xj) = 0 and hen
e xj − P+xj ∈ kerP+ = X−. Therefore, it holds

x− y = limj→∞(xj − P+xj) ∈X− = kerP+. Altogether, this yields

P+x− y = P+(x− y) = 0.

The boundedness of P− follows analogously. �
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Lemma 6. De�ne the operator

ι :
⋃

ℓ∈N

Xℓ → ℓ2(N), ι
( N∑

ℓ=1

λjwℓ

)
= λ := (λ1, . . . , λN , 0, . . .) (27)

for all N ∈ N and λj ∈ R. The operator ι may be 
ontinuously extended to an operator

ι : X → ℓ2(N) su
h that

‖ι(x)‖ℓ2(N) :=
( ∞∑

j=1

(ι(x)j)
2
)1/2
≤ C4‖x‖X for all x ∈X. (28)

Moreover, it holds

ι(x)ℓ = 〈Bwℓ , wℓ〉〈Bx , wℓ〉 for all x ∈X and ℓ ∈ N. (29)

Proof. De�ne N+ :=
{
ℓ ∈ N : wℓ ∈X+

}
and N− :=

{
ℓ ∈ N : wℓ ∈X−

}
= N \N+ and

note that for x =
∑N

j=0 λjwj ∈XN , it holds

〈Bx , wℓ〉 = 〈Bwℓ , wℓ〉λℓ for all 0 ≤ ℓ ≤ N.

Sin
e 〈Bwℓ , wℓ〉 ∈ {1,−1}, this proves

λℓ = 〈Bx , wℓ〉〈Bwℓ , wℓ〉 for all 0 ≤ ℓ ≤ N, (30)

as well as

λℓ := 〈Bx , wℓ〉〈Bwℓ , wℓ〉 = 0 for all N < ℓ <∞.

Moreover, we see immediately P+x =
∑

j∈N+
λjwj as well as P−x =

∑
j∈N−

λjwj . To-

gether with the 
ontinuity of P+ and P−, this implies

‖ι(x)‖2ℓ2(N) =
N∑

ℓ=1

λ2ℓ =

∞∑

ℓ=1

〈Bx , wℓ〉
2

=
∑

ℓ∈N+

〈Bx , wℓ〉
2 +

∑

ℓ∈N−

〈Bx , wℓ〉
2

=
∑

ℓ∈N+

〈Bx , 〈Bx , wℓ〉wℓ〉 −
∑

ℓ∈N−

〈Bx , −〈Bx , wℓ〉wℓ〉

= 〈Bx , P+x〉 − 〈Bx , P−x〉 . ‖x‖
2
X
.

The 
onstants in the estimate above do not depend on N ∈ N. As
⋃

N∈N0
XN is dense in

X, ι 
an be extended 
ontinuously to ι : X → ℓ2(N). Sin
e evaluation of one 
omponent

is a 
ontinuous operation in ℓ2(N), there holds for limj→∞xj = x with xj ∈
⋃

ℓ∈N Xℓ

together with (30)

ι(x)ℓ = lim
j→∞

ι(xj)ℓ = lim
j→∞
〈Bxj , wℓ〉〈Bwℓ , wℓ〉 = 〈Bx , wℓ〉〈Bwℓ , wℓ〉.

This proves (29) and 
on
ludes the proof. �

Proof of Proposition 3. Obviously, there holds U k+1 − U k ∈ Xk+1 as well as Galerkin

orthogonality

〈B(U k+1 −U k) , wj〉 = 0 for all j ≤ k.
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Re
all the basis (wℓ)ℓ∈N0 from Lemma 4. The above orthogonality implies U k+1 −U k =
αk+1wk+1 for some αk+1 ∈ R and hen
e ι(U k+1 −U k) = αk+1ek+1 for some αk+1 ∈ R by

de�nition of ι. Due to (23), it holds

‖U k+1 −U k‖X = |αk+1|‖wk+1‖X ≃ |αk+1| = ‖ι(U k+1 −U k)‖ℓ2(N) for all k ∈ N0.
(31)

We have

(ι(U k+1)− ι(U k))j = 0 for all j 6= k + 1.

Furthermore, the representation (29) together with (1)�(3) imply for j ≤ k

ι(U k)j = 〈Bwj , wj〉〈BU k , wj〉 = 〈Bwj , wj〉〈Bu , wj〉 = ι(u)j.

This yields

(ι(u)− ι(U k+1))j = 0 for all 0 ≤ j ≤ k + 1.

Consequently, we see

〈ι(u)− ι(U k+1) , ι(U k+1)− ι(U k)〉ℓ2(N) = 0 for all k ∈ N.

This orthogonality proves the Pythagoras theorem

‖ι(u−U k+1)‖
2
ℓ2(N) + ‖ι(U k+1 −U k)‖

2
ℓ2(N) = ‖ι(u−U k)‖

2
ℓ2(N). (32)

With (31)�(32) and with the stability of ι : X → ℓ2(N), it follows
∞∑

k=ℓ

‖U k+1 −U k‖
2
X
≃

∞∑

k=ℓ

‖ι(U k+1 −U k)‖
2
ℓ2(N)

=

∞∑

k=ℓ

(
‖ι(u−U k)‖

2
ℓ2(N) − ‖ι(u−U k+1)‖

2
ℓ2(N)

)

≤ ‖ι(u−U ℓ)‖
2
ℓ2(N) . ‖u−U ℓ‖

2
X
.

This 
on
ludes the proof. �

2.2. Step 2: Redu
tion to the symmetri
 
ase. The redu
tion step depends on the


onstru
tion of an equivalent operator, whi
h satis�es the 
laims of Proposition 3.

For the following proposition, re
all the right-hand side f ∈ X ∗
and the operator B

from (15) as well as the solutions u and Uℓ from (1)�(3), resp. (17).

Proposition 7. Suppose the assumptions of Theorem 1. Then, there exists a Hilbert

spa
e X whi
h is a 
losed subspa
e of X × X and a sequen
e of nested subspa
es Xℓ of

X su
h that X =
⋃

ℓ∈N Xℓ and dim(Xℓ) + 1 = dim(Xℓ+1) for all ℓ ∈ N0. There exists

a symmetri
 operator B : X →X⋆
whi
h satis�es (20). Given f := (f,−f) the unique

solutions of (18)�(19) satisfy u := (u, u) ∈ X and U 2ℓ+1 := (Uℓ, Uℓ) ∈ X2ℓ+1 for all

ℓ ∈ N.

Proof. With the notation (15)�(17), 
onsider the transposed operator BT : X → X ⋆
,

BTv := b(·, v) and de�ne the symmetri
 part S := (B + BT )/2 as well as the antisym-

metri
 part A := (B−BT )/2. Obviously, there holds ST = S, AT = −A, and B = S+A.
With this, de�ne the symmetri
 operator B : X ×X → X ⋆ × X ⋆

as

B :=

(
S A
−A −S

)
.

7



By de�nition of f as well as of u, there holds

Bu = f . (33)

De�ne the subspa
es Xℓ indu
tively for ℓ ∈ N by

X0 := span{(U0, 0)},

X2ℓ−1 := span(X2ℓ−2 ∪ {(0, Uℓ−1)},

X2ℓ := span(X2ℓ−1 ∪ {(Uℓ, 0)}.

Note that there holds dim(Xℓ) + 1 = dim(X ℓ+1) due to Remark 2. Consequently, de�ne

X :=
⋃

ℓ∈N

Xℓ.

Sin
e u = limℓ→∞ Uℓ, there also holds u ∈X.

To show that B satis�es (20), 
onsider for V = (V1, V2) and W = (W1,W2)

inf
V ∈Xℓ

sup
V ∈Xℓ

〈BV , W 〉

‖V ‖X‖W ‖X

= inf
V ∈Xℓ

sup
W∈Xℓ

〈SV1 , W1〉+ 〈AV2 , W1〉 − 〈AV1 , W2〉 − 〈SV2 , W2〉

‖V ‖X‖W ‖X

≥ inf
V ∈Xℓ

〈SV1 , V1〉+ 〈AV2 , V1〉+ 〈AV1 , V2〉+ 〈SV2 , V2〉

‖V ‖X‖(V1,−V2)‖X

= inf
V ∈Xℓ

〈SV1 , V1〉+ 〈SV2 , V2〉

‖V ‖2
X

.

Sin
e 〈Sv , v〉 = 〈Bv , v〉 ≥ C−1
2 ‖v‖

2
X , this implies

inf
V ∈Xℓ

sup
V ∈Xℓ

〈BV , W 〉

‖V ‖X‖W ‖X
≥ C−1

2 inf
V ∈Xℓ

‖V1‖
2
X + ‖V2‖

2
X

‖V ‖2
X

= C−1
2 > 0.

This implies (20b). The same arguments on X together with the 
ontinuity of B im-

ply (20a). Hen
e, the problems (18) and (19) allow for a unique solution. Sin
e (u, u) ∈ X

solves (18) and (Uℓ, Uℓ) ∈X2ℓ+1 solves (19), this 
on
ludes the proof. �

Proof of Theorem 1. The operator B and the 
onstru
ted spa
es X and (Xℓ)ℓ∈N0 from

Proposition 7 satisfy all 
laims of Proposition 3. Re
all that Proposition 7 states u =
(u, u) and U 2ℓ+1 = (Uℓ, Uℓ). Hen
e, Proposition 3 implies

∞∑

k=ℓ

‖Uk+1 − Uk‖
2
X ≤

∞∑

k=ℓ

‖U 2k+3 −U 2k+1‖
2
X

≤ 2
∞∑

k=ℓ

(
‖U 2k+3 −U 2k+2‖

2
X
+ ‖U 2k+2 −U 2k+1‖

2
X

)

=
∞∑

k=2ℓ+1

‖U k+1 −U k‖
2
X

. ‖u−U 2ℓ+1‖
2
X
≤ 2‖u− Uℓ‖

2
X .

This 
on
ludes the proof of Theorem 1. �
8



3. Abstra
t optimality analysis

This se
tion builds the framework to apply the quasi-orthogonality result from the

previous se
tions and to thus analyze the 
onvergen
e and quasi-optimality of adaptive

mesh-re�ning algorithms for the problem 
lass stated in the introdu
tion of Se
tion 1.

The outline of this se
tion is as follows: Algorithm 8 is the 
ommonly used formulation

of the adaptive loop (2). Under 
ertain assumptions (Assumption 10�11), whi
h are

later veri�ed for parti
ular model problems, 
onvergen
e with optimal algebrai
 rates is

shown (Theorem 14). The abstra
t rate optimality analysis is �rst found in [CFPP13℄

and is re
alled here only for the 
onvenien
e of the reader and to underline the important


ontribution of Theorem 1.

The following formulation of the adaptive loop (2) iteratively generates triangulations

Tℓ, ℓ ∈ N, by lo
al re�nement of an initial 
onforming triangulation T0 of a d-dimensional

manifold with d ≥ 1 and hen
e 
orresponding dis
rete spa
es Xℓ whi
h are supposed to

be nested and 
onforming, i.e. Xℓ ⊆ Xℓ+1 ⊆ X for all ℓ ∈ N0 (see Se
tion 3.1 for details).

Algorithm 8. Input: initial mesh T0, adaptivity parameter 0 < θ < 1, and ℓ = 0

(i) Compute solution Uℓ ∈ Xℓ of (3).

(ii) Compute error estimator ρℓ(T ) from (5) for all T ∈ Tℓ.
(iii) Determine a set of marked elements Mℓ ⊆ Tℓ with minimal 
ardinality whi
h

satis�es the Dör�er marking (6).

(iv) Re�ne the marked elements Tℓ+1 = refine(Tℓ,Mℓ) to obtain an enri
hed spa
e

Xℓ+1 ⊇ Xℓ (see Se
tion 3.1 for details).

(v) In
rement ℓ← ℓ+ 1 and goto (i).

Output: sequen
e of error estimators (ρℓ)ℓ∈N and sequen
e of Galerkin solutions (Uℓ)ℓ∈N.

Remark 9. Note that the restri
tion to an exa
t solver in (i) is only to allow for a


onvenient presentation. As shown in [CFPP13, Se
tion 7℄, an approximate solver 
an

easily be integrated in the analysis.

3.1. Mesh re�nement. For d = 1, the bise
tion algorithm from [AFF

+
13b℄ is used for

mesh re�nement. For d = 2 and d = 3, we use newest vertex bise
tion, see e.g. [KPP13℄

(for d = 2) and [Ste08℄ (for d ≥ 3) as well as the referen
es therein. Constrained by these

re�nement rules, we suppose that Tℓ+1 = refine(Tℓ,Mℓ) is the 
oarsest 
onforming

re�nement of Tℓ su
h that all marked elements T ∈Mℓ have been bise
ted.

The notation T⋆ ∈ refine(Tℓ) denotes that there exists a sequen
e of marked element

sets M̃j, j = 1, . . . , N − 1 and a sequen
e of intermediate meshes T̃j , j = 1, . . . , N su
h

that Tℓ = T̃0, T⋆ = T̃N , and T̃j+1 = refine(T̃j ;M̃j) for all j = 1, . . . , N − 1. We suppose

that ea
h re�nement T⋆ ∈ refine(T0) indu
es a dis
rete spa
e X⋆ := X (T⋆) ⊆ X su
h

that X⋆ ⊇ Xℓ whenever T⋆ ∈ refine(Tℓ).
First, the 
hoi
e of these mesh-re�nement strategies guarantees that the meshes Tℓ

generated by Algorithm 8 are uniformly γ-shape regular, where γ > 0 depends only on

the initial mesh T0. For d = 1, this means

|T |

|T ′|
≤ γ for all neighbouring T, T ′ ∈ T0, (34a)

whereas for d ≥ 2, γ-shape regularity is understood as

diam(T )

|T |1/d
≤ γ for all T ∈ T0. (34b)

Here, | · | denotes the d-dimensional (surfa
e) measure.

9



Se
ond, it has �rst been observed in [BDD04℄ for 2D newest vertex bise
tion that the

number #Tℓ of elements in Tℓ 
an be 
ontrolled by the number of marked elements, i.e.

#Tℓ −#T0 ≤ Cmesh

ℓ−1∑

j=0

#Mj, (35)

where Cmesh > 0 depends only on T0. While [BDD04℄ requires an additional assumption

on T0, this assumption has been removed in [KPP13℄, so that T0 is in fa
t an arbitrary


onforming triangulation. For d = 1, the estimate (35) is proved in [AFF

+
13b℄ for

a bise
tion-based re�nement, where additional bise
tions of non-marked elements are

required to ensure uniform γ-shape regularity (34a). For d ≥ 3, the result is proved

in [Ste08℄, but requires an admissibility 
ondition for the initial mesh T0.
Finally, for two triangulations Tℓ, T⋆ ∈ refine(T0), let Tℓ⊕T⋆ ∈ refine(Tℓ)∩refine(T⋆)

be the 
oarsest 
ommon re�nement of both Tℓ and T⋆. Then, Tℓ⊕T⋆ is in fa
t the overlay,

and it holds

#(Tℓ ⊕ T⋆) ≤ #Tℓ +#T⋆ −#T0, (36)

see [Ste07℄ for d = 2 and [CKNS08℄ for d ≥ 3 resp. [AFF

+
13b℄ for d = 1.

For any subset S ⊆ Tℓ of a mesh Tℓ, de�ne the pat
h

ωℓ(S) :=
{
T ∈ Tℓ : exists T ′ ∈ S with T ∩ T ′ 6= ∅

}
. (37)

For simpli
ity, we write ωℓ(T ) instead of ωℓ({T}) for single elements T ∈ Tℓ.
De�ne the lo
al mesh-size fun
tion hℓ ∈ L∞(

⋃
Tℓ) by hℓ|T = |T |1/d for all T ∈ Tℓ.

By de�nition of the re�nement rules, there exists 0 < qref < 1, whi
h depends only on

d = 1, 2, 3, su
h that

h⋆|T ′ ≤ qrefhℓ|T for all sons T ′ $ T, T ′ ∈ T⋆, T ∈ Tℓ. (38)

3.2. Optimal 
onvergen
e rates. To quantify the quality of the 
onvergen
e rate of

Algorithm 8, we introdu
e for all s > 0 the approximability quasi-norm

‖ρ‖As := sup
N∈N0

inf
T⋆∈refine(T0)
#T⋆−#T0≤N

(N + 1)sρ⋆.

The fa
t ‖ρ‖As < ∞ for a parti
ular s > 0 implies that the theoreti
ally a
hievable


onvergen
e rate of Algorithm 8 is at least

ρ̃ℓ . (#T̃ℓ −#T0)
−s

for all ℓ ∈ N,

if the optimal meshes T̃ℓ ∈ refine(T0) are 
hosen. Theorem 14 below states that this is,

in fa
t, asymptoti
ally the 
ase for Algorithm 8 if the following Assumptions 10�11 hold.

Moreover, Theorem 14 states that the empiri
al 
onvergen
e rate of Algorithm 8, in fa
t,


hara
terises those s > 0 for whi
h ‖ρ‖As <∞.

Assumption 10. There holds (i)�(iii):

(i) Any re�nement T⋆ ∈ refine(Tℓ) of Tℓ ∈ refine(T0) satis�es
∣∣∣
( ∑

T∈T⋆∩Tℓ

ρ⋆(T )
2
)1/2

−
( ∑

T∈Tℓ∩T⋆

ρℓ(T )
2
)1/2∣∣∣ ≤ Cstab ‖U⋆ − Uℓ‖X . (39)

(ii) Any re�nement T⋆ ∈ refine(Tℓ) of Tℓ ∈ refine(T0) satis�es
∑

T∈T⋆\Tℓ

ρ⋆(T )
2 ≤ qred

∑

T∈Tℓ\T⋆

ρℓ(T )
2 + Cred‖U⋆ − Uℓ‖

2
X . (40)
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(iii) Any re�nement T⋆ ∈ refine(Tℓ) of Tℓ ∈ refine(T0) satis�es dis
rete reliability

‖U⋆ − Uℓ‖
2
X ≤ C2

Rel

∑

T∈R(Tℓ,T⋆)

ρℓ(T )
2

(41)

with the augmented set of re�ned elements

R(Tℓ, T⋆) := ωℓ(Tℓ \ T⋆).

While the previous assumptions may not be ne
essary for the optimality proof (but

turn out to be su�
ient), the following assumption is even ne
essary for plain 
onvergen
e

of Algorithm 8.

Assumption 11. Suppose that the given model problem 
onverges under uniform re-

�nement, i.e. for all ε > 0 exists a maximal mesh-width hε > 0 su
h that all meshes

T⋆ ∈ refine(T0) with h⋆ ≤ hε pointwise almost everywhere satisfy

‖u− U⋆‖X ≤ ε

for the related Galerkin solution U⋆.

Remark 12. Assumption 11 is usually veri�ed via density arguments in 
ombination

with the Céa-type estimate (4) and a priori estimates of the type

‖u− Uℓ‖X . ‖u− v‖X + min
Vℓ∈Xℓ

‖v − Vℓ‖X . ‖u− v‖X +max
T∈Tℓ

(hℓ|T )
γ

for some γ > 0 whi
h depends on the regularity of the smooth approximation v.

Lemma 13. Suppose that Assumptions 10 and Assumption 11 hold. Then, the error

estimator ρℓ is reliable

‖u− Uℓ‖X ≤ CRelρℓ for all Tℓ ∈ refine(T0), (42)

satis�es the estimator redu
tion

ρ2ℓ+1 ≤ qestρ
2
ℓ + Cest‖Uℓ+1 − Uℓ‖

2
X for all ℓ ∈ N0, (43)

and there holds 
onvergen
e

‖u− Uℓ‖X ≤ CRelρℓ → 0 as ℓ→∞ (44)

as well as the general quasi-orthogonality (13). The 
onstant 0 < qest < 1 depends only

on θ and qred. The 
onstant Cest > 0 depends on θ, qred, Cred, and Cstab.

Proof. As shown in [CFPP13, Lemma 3.3℄, dis
rete reliability (41) together with As-

sumption 11 implies reliability (42). Stability (39), redu
tion (40), and Young's in-

equality (a + b)2 ≤ (1 + δ)a2 + (1 + δ−1)b2 for all a, b ∈ R and δ > 0 show with

Cest := (Cred + (1 + δ−1)C2
stab)

ρ2ℓ+1 ≤ qred
∑

T∈Tℓ\Tℓ+1

ρ2ℓ + (1 + δ)
∑

T∈Tℓ∩Tℓ+1

ρ2ℓ + (Cred + (1 + δ−1)C2
stab)‖Uℓ+1 − Uℓ‖

2
X

≤ (1 + δ)ρ2ℓ + (qred − 1− δ)
∑

T∈Tℓ\Tℓ+1

ρ2ℓ + Cest‖Uℓ+1 − Uℓ‖
2
X .

Dör�er marking (6) andMℓ ⊆ Tℓ \ Tℓ+1 imply

ρ2ℓ+1 ≤ (1 + δ − θ(1 + δ − qred))ρ
2
ℓ + Cest‖Uℓ+1 − Uℓ‖

2
X .

Su�
iently small δ > 0 shows 0 < qest := 1 + δ − θ(1 + δ − qred) < 1. This proves (43).
The Céa lemma (4) together with nestedness Xℓ ⊆ Xℓ+1 and elementary 
al
ulus (as laid
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out, e.g., in [CFPP13, Se
tion 3.6℄) shows limℓ→∞ ρℓ = 0, and therefore reliability (42)

implies (44).

With 
onvergen
e (44), the 
laims of Theorem 1 are satis�ed. This implies the general

quasi-orthogonality (13) and 
on
ludes the proof. �

By means of the general quasi-orthogonality (13), the 
onvergen
e result (44) 
an

further be improved to obtain R-linear 
onvergen
e of the estimator (45). However, as

the validity of (13) depends on the mu
h weaker plain 
onvergen
e of the estimator (44),

it seems that (44) is a ne
essary intermediate result.

Theorem 14. Suppose that Assumptions 10�11 hold. Then, for all 0 < θ ≤ 1, there
exist 
onstants CR > 0 and 0 < qR < 1 su
h that there holds R-linear 
onvergen
e of

Algorithm 8 in the sense

ρ2ℓ+k ≤ CR q
k
Rρ

2
ℓ for all ℓ, k ∈ N. (45)

For θ < θopt := (1 + C2
stabC

2
Rel)

−1
, Algorithm 8 
onverges with the optimal rate in the

sense of

copt‖ρ‖As ≤ sup
ℓ∈N0

ρℓ(|Tℓ| − |T0|+ 1)s ≤ Copt‖ρ‖As (46)

for all s > 0. The 
onstants Copt, CR, qR > 0 depend only on θ and on the 
onstants from

Assumption 10, whereas Copt depends additionally on s. The 
onstant copt > 0 depends

only on d.

The proof of the above main result is postponed to Se
tion 8 and utilizes only the

quantities and estimates of Assumptions 10�11 and the general quasi-orthogonality (13).

Therefore, it is su�
ient to prove ea
h of the assumptions separately for the 
on
rete

appli
ations in Se
tion 5�7.

4. Appli
ation 1: Fem for linear se
ond-order PDEs

4.1. Model Problem and de�nitions. We 
onsider the model problem from [FFP12℄.

Given a Lips
hitz domain Ω ⊆ Rd
for d = 2, 3, this se
tion 
onsiders the se
ond-order

ellipti
 PDE

Lu = f0 in Ω,

u = 0 on ∂Ω
(47)

with the non-symmetri
 linear operator

Lu := −div(A∇u) + b · ∇u+ cu. (48)

The given right-hand side satis�es f0 ∈ L2(Ω). Moreover, A = A(x) ∈ Rd×d
with

A ∈
(
W∞

1 (Ω)
)d×d

is a symmetri
 matrix, b = b(x) ∈ Rd
with b ∈

(
L∞(Ω)

)d
is a ve
tor,

and c = c(x) ∈ R with c ∈ L∞(Ω) is a s
alar. Here,W∞
1 (Ω) denotes the spa
e of Lips
hitz


ontinuous fun
tions. This allows to write down the weak formulation of (47) as follows:

Find u ∈ X := H1
0 (Ω) :=

{
v ∈ H1(Ω) : v|Γ = 0 in the sense of tra
es

}
su
h that

b(u, v) :=

∫

Ω

A∇u · ∇v + b · ∇u v + cuv dx = f(v) for all v ∈ H1
0 (Ω) (49)

with f(v) :=
∫
Ω
f0v dx. The assumptions on the given data guarantee the boundedness

of b(·, ·) in the natural norm ‖ · ‖X := ‖∇(·)‖L2(Ω). Moreover, we suppose the 
oe�
ients

to be 
hosen su
h that b(·, ·) is also ellipti
 in the sense

b(v, v) ≥ Cell‖v‖
2
X for all v ∈ X .
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Given an admissible triangulation T⋆ ∈ refine(T0) and a polynomial degree p ≥ 1, de�ne

Sp(T⋆) :=
{
V⋆ ∈ C(Ω) : V⋆|T is polynomial of degree ≤ p for all T ∈ T⋆

}
.

The dis
rete form of (49) is given by (3), where uniqueness and solvability are guaranteed

by the Lax-Milgram lemma. The 
orresponding weighted-residual error estimator reads

ρ2⋆ :=
∑

T∈T⋆

ρ⋆(T )
2
with ρ⋆(T )

2 := |T |2/d‖L|TU⋆ − f‖
2
L2(T ) + |T |

1/d‖[A∇U⋆ · n]‖
2
L2(∂T∩Ω).

Here, [·] denotes the jump over ∂T , and n denotes the outer unit normal ve
tor of ea
h

element T ∈ T⋆.

4.2. Proof of Assumptions 10�11.

Proof of Assumptions 10. The proof of (i)�(ii) is part of the proof of [FFP12, Lemma 2℄ or

in di�erent notation also in [CKNS08, Corollary 3.4℄. The dis
rete reliability (iii) follows

as for the symmetri
 
ase b = 0 with R(Tℓ, T⋆) = Tℓ \ T⋆, see e.g. [CKNS08, Lemma 3.6℄.

The 
onstants Cstab, Cred, qred, CRel depend only on the domain Ω, the 
oe�
ients of L
the γ-shape regularity of Tℓ and T⋆ as well as on the polynomial degree p. �

Proof of Assumptions 11. Let ε > 0. By density, �nd a fun
tion v ∈ C∞(Ω) ∩ H1
0 (Ω)

su
h that

‖u− v‖X ≤ ε.

The Céa lemma (4) together with the standard nodal approximation result proves

‖u− U⋆‖X . ‖u− v‖X + min
V⋆∈X⋆

‖v − V⋆‖X . ε+ ‖h⋆‖L∞(Ω)‖D
2v‖L2(Ω) ≤ 2ε

for su�
iently �ne meshes T⋆ ∈ refine(T0). �

Consequen
e 15. The adaptive �nite element dis
retization of (47) in Algorithm 8


onverges with optimal rates in the sense of Theorem 14.

5. Appli
ation 2: Non-symmetri
 Johnson-Nédéle
 FEM/BEM-
oupling

5.1. Model problem and de�nitions. Given a Lips
hitz domainΩ ⊆ Rd
for d ∈ {2, 3},

this se
tion 
onsiders a FEM-BEM reformulation of the linear Lapla
e-type transmission

problem

−div(A∇uint) = f0 in Ω,

−∆uext = 0 in Rd \ Ω,

uint − uext = u0 on Γ := ∂Ω,

(A∇uint) · n− ∂nu
ext = φ0 on Γ,

(50a)

where f0 ∈ L2(Ω), u0 ∈ H1(Γ), φ0 ∈ L2(Γ), A ∈ W 1,∞(Ω) with A(x) ∈ Rd×d
being

a symmetri
 matrix, and the normal derivative ∂n(·) is understood with respe
t to the

outer unit normal ve
tor n on Γ. Let 0 < cK < 1 denote the 
ontra
tion 
onstant of

the double layer potential K de�ned below, see e.g. [Ste11℄. We suppose that there exist

cK/4 < λmin ≤ λmax < ∞ su
h that there holds λmin ≤ A(x) ≤ λmax for all x ∈ Ω in

the sense that the eigenvalues of A(x) are bounded from below and from above. The

uniqueness of the solution is guaranteed via the following radiation 
ondition

uext = O(|x|−1) as |x| → ∞, (50b)

whi
h requires the 
ompatibility 
ondition

∫
Ω
f dx +

∫
Γ
φ0 ds = 0 for d = 2. Moreover,

we assume diam(Ω) < 1 for d = 2.
13



The presen
e of the unbounded domain Rd \Ω motivates the use of boundary elements

for the exterior problem. One possible formulation is known as the one-equation 
ou-

pling of Johnson and Nédéle
 [JN80℄ and employs the simple-layer integral operator V :
H−1/2(Γ)→ H1/2(Γ) as well as the double layer integral operator K : H1/2(Γ)→ H1/2(Γ)
whi
h are formally de�ned via the Newton kernel

G(z) :=

{
− 1

2π
log |z|, d = 2,

1
4π
|z|−1, d = 3,

(51a)

as

(Vφ)(x) :=

∫

Γ

G(x− y)φ(y) dy and (Kg)(x) :=

∫

Γ

∂n(y)G(x− y)g(y) dy (51b)

for all x ∈ Γ. With these operators, (50) is equivalently reformulated as follows: Find

u := (uint, φ) ∈ X := H1(Ω)×H−1/2(Γ) su
h that

b(u, v) = f̃(v) for all v := (vint, ψ) ∈ X , (52)

where the bilinear form reads

b(u, v) := 〈A∇uint , ∇vint〉L2(Ω) + 〈φ , v
int〉L2(Γ) + 〈ψ , (

1
2
− K)uint〉L2(Γ) + 〈ψ , Vφ〉L2(Γ)

and the right-hand side is de�ned by

f(v) := 〈f0 , v
int〉L2(Ω) + 〈φ0 , v

int〉L2(Γ) + 〈ψ , (
1
2
− K)u0〉L2(Γ).

The two formulations (50) and (52) are linked as follows: Given (uint, uext), there holds

∂nu
ext = φ. Given u = (uint, φ), the exterior solution is available via the representation

formula uext := K̃uint− Ṽφ. Here, Ṽ and K̃ denote the integral operators from (51b), but

are now evaluated in Rd \ Ω.
We 
onsider the natural norm on the produ
t spa
e X = H1(Ω)×H−1/2(Γ)

‖v‖2X := ‖vint‖2H1(Ω) + ‖ψ‖
2
H−1/2(Γ) for all v = (vint, ψ) ∈ X .

Given an admissible triangulation T⋆ ∈ refine(T0) of Ω, de�ne

Pp−1(T⋆|Γ) :=
{
Ψ⋆ ∈ L

2(Γ) : Ψ⋆|T∩Γ polynomial of degree ≤ p− 1 for all T ∈ T⋆
}
.

With this, the dis
rete analogue of (52) reads: Find U⋆ := (U int
⋆ ,Φ⋆) ∈ X⋆ := Sp(T⋆) ×

Pp−1(T⋆|Γ) su
h that

b(U⋆, V⋆) = f(V⋆) for all V⋆ := (V int
⋆ ,Ψ⋆) ∈ X⋆. (53)

Note that b((1, 0), (1, 0)) = 0, so that b(·, ·) is not ellipti
 and unique solvability is thus

not obvious. The solvability of (52) and (53) were �rstly proved for smooth boundaries Γ
in [JN80℄. For polyhedral boundaries, the 
ase was open until [Say09℄. Inspired by [Ste11,

Say09℄, the re
ent work [AFF

+
13a℄ uses a novel te
hnique to generalize the available

results and prove unique solvability even for strongly monotone operators. The residual-

based error estimator (see e.g. [AFP12,AFF

+
13a℄ for the derivation) reads elementwise

for all T ∈ T⋆

ρ⋆(T )
2 := diam(T )2‖f0 + div(A∇U int

⋆ )‖2L2(T ) + diam(T )‖[(A∇U int
⋆ ) · n]‖2L2(∂T∩Ω)

+ diam(T )‖φ0 + Φ⋆ − (A∇U int
⋆ ) · n‖2L2(∂T∩Γ)

+ diam(T )‖∇Γ((
1
2
− K)(u0 − U

int
⋆ )−VΦ⋆)‖

2
L2(∂T∩Γ),
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where [·] denotes the jump over interior edges of T⋆ and n is the outer unit normal ve
tor

of ea
h element T ∈ T⋆. Note that the exterior problem a�e
ts the estimator only on

elements T ∈ T⋆ with T ∩ Γ 6= ∅. The overall estimator reads

ρ⋆ :=
( ∑

T∈T⋆

ρ⋆(T )
2
)1/2

for all T⋆ ∈ refine(T0).

5.2. Proof of Assumptions 10�11. The method of impli
it stabilization from [AFF

+
13a℄

introdu
es an equivalent problem

b̃(u, v) := b(u, v) + 〈1 , (1
2
− K)uint +Vφ〉L2(Γ)〈1 , (

1
2
− K)vint +Vψ〉L2(Γ),

f̃(v) := f(v) + 〈1 , (1
2
− K)u0〉L2(Γ).

(54)

The bilinear form b̃(·, ·) is ellipti
 (see [AFF+
13a, Theorem 14℄ for a proof) in the sense

of

b̃(v, v) ≥ C−1
2 ‖v‖

2
X for all v = (vint, ψ) ∈ X , (55)

and the solutions u, U⋆ of (52) and (53) satisfy for all T⋆ ∈ refine(T0)

b̃(u, v) = f̃(v) for all v ∈ X and b̃(U⋆, V⋆) = f̃(V⋆) for all V⋆ ∈ X⋆.

Thus, (54) serves as an equivalent reformulation of (52) with the additional property that

b̃(·, ·) is strongly ellipti
 and hen
e �ts in the frame of the Lax-Milgram lemma outlined

in the introdu
tion of Se
tion 1. Hen
e, we prove Assumption 10 for the equivalent

formulation (54).

Proof of Assumption 10 (i)�(ii). The statements (i) and (ii) are part of the proof of [AFF

+
13a,

Theorem 25℄ and follow from the triangle inequality and lo
al inverse estimates for the

non-lo
al operators V and K from [AFF

+
12℄. The 
onstants Cstab, Cred, qred depend only

on Γ, the polynomial degree p, the γ-shape regularity of Tℓ and T⋆, and on A. �

Proof of Assumption 10 (iii). The proof is essentially the 
ombination of the 
orrespond-

ing proofs for FEM in [Ste07,CKNS08℄ and BEM in [FKMP13℄. There holds with ellip-

ti
ity [AFF

+
13a, Theorem 14℄ and V⋆ = (V int

⋆ ,Ψ⋆) := U⋆ − Uℓ ∈ X⋆

‖U⋆ − Uℓ‖
2
X . b̃(U⋆ − Uℓ, V⋆) = b(U⋆ − Uℓ, V⋆)

= f(V⋆ − Vℓ)− b(Uℓ, V⋆ − Vℓ) for all Vℓ ∈ Xℓ.

Re
all the S
ott-Zhang operator Jℓ : H
1(Ω) → Sp(Tℓ) from [SZ90℄ as well as the L2(Γ)-

orthogonal proje
tion Πℓ : L
2(Γ)→ Pp−1(Tℓ|Γ). With this, de�ne

Vℓ := (JℓV
int
⋆ ,ΠℓΨ⋆) ∈ Xℓ.

This implies

‖U⋆ − Uℓ‖
2
X . 〈f0 , (1− Jℓ)V

int
⋆ 〉L2(Ω) − 〈A∇U

int
ℓ , ∇(1− Jℓ)V

int
⋆ 〉L2(Ω)

+ 〈φ0 − Φℓ , (1− Jℓ)V
int
⋆ 〉L2(Γ)

+ 〈(1− Πℓ)Ψ⋆ , (
1
2
− K)(u0 − U

int
ℓ )−VΦℓ〉L2(Γ).

(56)
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Tℓ-pie
ewise integration by parts shows

〈f0 , (1− Jℓ)V
int
⋆ 〉L2(Ω) − 〈A∇U

int
ℓ , ∇(1− Jℓ)V

int
⋆ 〉L2(Ω) + 〈φ0 − Φℓ , (1− Jℓ)V

int
⋆ 〉L2(Γ)

.
∑

T∈Tℓ

‖f0 + div(A∇U int
ℓ )‖L2(T )‖(1− Jℓ)V

int
⋆ ‖L2(T )

+
∑

T∈Tℓ

(
‖[(A∇U int

ℓ ) · n]‖L2(∂T∩Ω)

+ ‖φ0 − Φℓ − (A∇U int
ℓ ) · n‖L2(∂T∩Γ)

)
‖(1− Jℓ)V

int
⋆ ‖H1/2(T ).

Sin
e all T ∈ Tℓ with T /∈ ωℓ(Tℓ \T⋆) satisfy ((1−Jℓ)V
int
⋆ )|T = 0 (This is 
an be improved

to Tℓ ∩ T⋆ as shown in [CKNS08,FFK

+
13b℄. However, the improvement is not ne
essary

here and therefore omitted.) and by use of the �rst-order approximation properties of Jℓ,
the above estimate implies

〈f0 , (1− Jℓ)V
int
⋆ 〉L2(Ω) − 〈A∇U

int
ℓ , ∇(1− Jℓ)V

int
⋆ 〉L2(Ω) + 〈φ0 − Φℓ , (1− Jℓ)V

int
⋆ 〉L2(Γ)

.
∑

T∈ωℓ(Tℓ\T⋆)

(
diam(T )‖f0 + div(A∇U int

ℓ )‖L2(T ) + diam(T )1/2‖[(A∇U int
ℓ ) · n]‖L2(∂T∩Ω)

+ diam(T )1/2‖φ0 − Φℓ − (A∇U int
ℓ ) · n‖L2(∂T∩Γ)

)
‖∇V int

⋆ ‖L2(T ), (57)

where the hidden 
onstant depends only on γ-shape regularity of Tℓ and Ω. Consider a

partition of unity of Γ in the sense

∑

z∈Γ
z node of Tℓ

ξz = 1 on Γ

with the nodal hat fun
tions ξz ∈ P
1(Tℓ|Γ) ∩ C(Γ) whi
h satisfy ξz(z

′) = δz,z′ for all

boundary nodes z′ ∈ Γ of Tℓ with Krone
ker's δz,z′. Sin
e (1−Πℓ)Ψ⋆ = 0 on Tℓ ∩ T⋆, the
last term on the right-hand side of (56) satis�es

〈(1− Πℓ)Ψ⋆ , (
1
2
− K)(u0 − U

int
ℓ )−VΦℓ〉L2(Γ)

= 〈(1−Πℓ)Ψ⋆ ,
∑

z∈
⋃
(Tℓ\T⋆)∩Γ

z node of Tℓ

ξz
(
(1
2
− K)(u0 − U

int
ℓ )−VΦℓ

)
〉L2(Γ).

The fa
t 〈1 , (1
2
− K)(u0 − U int

ℓ ) − VΦℓ〉L2(T∩Γ) = 0 for all T ∈ Tℓ allows to follow the

arguments of the proof of [FKMP13, Proposition 5.3℄ resp. [FFK

+
13a, Proposition 4℄.

This shows

〈(1−Πℓ)Ψ⋆ , (
1
2
− K)(u0 − U

int
ℓ )−VΦℓ〉L2(Γ) (58)

.
( ∑

T∈ωℓ(Tℓ\T⋆)

diam(T )1/2‖∇Γ

(
(1
2
− K)(u0 − U

int
ℓ )−VΦℓ

)
‖L2(T∩Γ)

)
‖Ψ⋆‖H−1/2(Γ).

The 
ombination of (57)�(58) with (56) 
on
ludes the proof of the dis
rete reliability (41).

The 
onstant CRel depends only on Γ, the 
oe�
ient matrix A, the γ-shape regularity of

Tℓ and T⋆, and the polynomial degree p. �

Proof of Assumption 11. The proof follows with the same arguments as in Se
tion 4. �

Consequen
e 16. Algorithm 8 for the Johnson-Nédéle
 formulation of FEM-BEM 
ou-

pling 
onverges with optimal rates in the sense of Theorem 14.
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6. Appli
ation 3. Symmetri
 FEM/BEM-
oupling

6.1. Model problem and de�nitions. As in the previous se
tion, we 
onsider the

transmission problem (50). To state the so-
alled symmetri
 
oupling, de�ne the hyper-

singular integral operator W : H1/2(Γ)→ H−1/2(Γ) formally as

Wφ(x) := −∂n(x)

∫

Γ

∂n(y)G(x− y)φ(y) dy.

With this, (50) reformulates as: Find u := (uint, φ) ∈ X := H1(Ω)×H−1/2(Γ) su
h that

b(u, v) = f(v) for all v := (vint, ψ) ∈ X , (59)

where the bilinear form reads

b(u, v) := 〈A∇uint , ∇vint〉L2(Ω) + 〈(K
′ − 1

2
)φ , vint〉L2(Γ) + 〈Wuint , vint〉L2(Γ)

+ 〈ψ , (1
2
− K)uint〉L2(Γ) + 〈ψ , Vφ〉L2(Γ)

and the right-hand side is de�ned by

f(v) := 〈f0 , v
int〉L2(Ω) + 〈φ0 +Wu0 , v

int〉L2(Γ) + 〈φ0 , v
int〉L2(Γ) + 〈ψ , (

1
2
− K)u0〉L2(Γ).

The two formulations (50) and (59) are linked as for the Johnson-Nédéle
 
oupling from

Se
tion 5, and the spa
e X is equipped with the same norm.

The dis
retization of (59) is straightforward. Given a triangulation T⋆ ∈ refine(T0)
and a polynomial degree p ≥ 1: Find U⋆ := (U int

⋆ ,Φ⋆) ∈ X⋆ := S
p(T⋆)× P

p−1(T⋆|Γ)

b(U⋆, V⋆) = f(V⋆) for all V⋆ := (V int
⋆ ,Ψ⋆) ∈ X⋆. (60)

The solvability of (59) and (60) were �rstly proved in [Cos88℄. The re
ent work [AFF

+
13a℄

uses the impli
it stabilization te
hnique to give a mu
h simpli�ed version of the proof.

The residual-based error estimator (see e.g. [CS95,AFF

+
13a℄ for a reliability proof) reads

elementwise for all T ∈ T⋆

ρ⋆(T )
2 := diam(T )2‖f + div(A∇U int

⋆ )‖2L2(T ) + diam(T )‖[(A∇U int
⋆ ) · n]‖2L2(∂T∩Ω)

+ diam(T )‖φ0 − (K′ − 1
2
)Φ⋆ −W(U int

⋆ − u0)− (A∇U int
⋆ ) · n‖2L2(∂T∩Γ)

+ diam(T )‖∇Γ((
1
2
− K)(u0 − U

int
⋆ )−VΦ⋆)‖

2
L2(∂T∩Γ).

and hen
e

ρ⋆ :=
( ∑

T∈T⋆

ρ⋆(T )
2
)1/2

for all T⋆ ∈ refine(T0).

As above [·] denotes the jump over interior edges of T⋆, and n is the outer unit normal

ve
tor of ea
h element T ∈ T⋆.

6.2. Proof of Assumption 10�11. The proof of Assumption 10�11 is very similar to

that of the previous se
tion and therefore omitted.

Consequen
e 17. Algorithm 8 for the symmetri
 formulation of FEM-BEM 
oupling


onverges with optimal rates in the sense of Theorem 14.
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7. Appli
ation 4: BEM for mixed boundary value problems

7.1. Model problem and de�nitions. Given a Lips
hitz domain Ω ⊂ R2
and relatively

open, disjoint boundary parts ΓD∪ΓN = ∂Ω, 
onsider the mixed boundary value problem

−∆w = 0 in Ω,

w = uD on ΓD,

∂nw = φN on ΓN ,

(61)

where (uD, φN) ∈ H1(ΓD) × L2(ΓN ) are given boundary data and the sought solution

satis�es u ∈ H1(Ω). The Diri
hlet boundary is non-trivial |ΓD| > 0 and for d = 2, the
domain satis�es diam(Ω) < 1. For the boundary integral formulation of (61), let uD ∈
H1/2(Γ) and φN ∈ H

−1/2(Γ) be arbitrary extensions of the given data from ΓD resp. ΓN to

the whole boundary ∂Ω. De�ne the spa
es H̃1/2(ΓN ) :=
{
v ∈ H1/2(∂Ω) : supp(v) ⊆ ΓN

}

and H̃−1/2(ΓD) := H1/2(ΓD)
∗
. With this, the so-
alled symmetri
 formulation reads: Find

u := (uN , φD) ∈ X := H̃1/2(ΓN)× H̃
−1/2(ΓD) su
h that

(
WNN K

′
DN

−KND VDD

)(
uN
φD

)
=

(
−W 1/2− K

′

1/2 + K −V

)(
uD
φN

)
, (62)

with VDD : H̃−1/2(ΓD)→ H1/2(ΓD), KND : H̃1/2(ΓN)→ H1/2(ΓD), K
′
DN : H̃−1/2(ΓD)→

H−1/2(ΓN ), and WNN : H̃1/2(ΓN) → H−1/2(ΓN) denoting the boundary integral op-

erators V,K,W and the adjoint K
′ ∈ L(H−1/2(∂Ω), H−1/2(∂Ω)) restri
ted to the re-

spe
tive boundary parts ΓD,ΓN ⊆ Γ. The formulations (61) and (62) are linked as

follows: Given the solution w ∈ H1(Ω) from (61), uN := w − uD ∈ H̃1/2(ΓN) and

φD := ∂nw−φN ∈ H̃
−1/2(ΓD) solve (62). Given the solution u = (uN , φD) ∈ X from (62),

the representation formula provides a solution of (61), i.e.

w = Ṽ(φD + φN)− K̃(uD + uN).

Here, Ṽ and K̃ formally denote the integral operators from (51), but now they are eval-

uated in Ω.
This motivates the de�nition of the following bilinear form for all u = (uN , φD), v :=

(vN , ψD) ∈ X

b(u, v) := 〈WNNuN + K
′
DNφD , vN〉L2(ΓN ) + 〈VDDφD − KNDuN , ψD〉L2(ΓD). (63)

Obviously, the bilinear form is ellipti
 with

b(v, v) = 〈WNNvN , vN 〉L2(ΓN ) + 〈VDDψD , ψD〉L2(ΓD)

≃ ‖vN‖
2
H̃1/2(ΓN )

+ ‖ψD‖
2
H̃−1/2(ΓD)

=: ‖v‖2X for all v ∈ X
(64)

and �ts in the frame of the Lax-Milgram lemma. This guarantees uniqueness and solv-

ability of

b(u, v) = f(v) for all v ∈ X (65)

with

f(v) := 〈−WuD + (1/2− K
′)φN , vN〉L2(ΓN ) + 〈(1/2 + K)uD −VφN , ψD〉L2(ΓD).

The dis
retization of (65) is straightforward. Suppose a triangulation T⋆ ∈ refine(T0).

With the spline spa
e Sp+1
0 (T⋆|ΓN

) := Sp+1(T⋆|ΓN
) ∩ H̃1/2(ΓN), let X⋆ := Sp+1

0 (T⋆|ΓN
) ×

Pp(T⋆|ΓD
), and �nd U⋆ := (U⋆,N ,Φ⋆,D) ∈ X⋆ su
h that all V⋆ := (V⋆,N ,Ψ⋆,D) ∈ X⋆ satisfy

b(U⋆, V⋆) = f(V⋆). (66)
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The weighted-residual error estimator reads elementwise for all T ∈ T⋆

ρ⋆(T )
2 := diam(T )‖WNNU⋆,N + K

′
DNΦ⋆,D +WuD − (1/2− K

′)φN‖
2
L2(T∩ΓN )

+ diam(T )‖∇(VDDΦ⋆,D − KNDU⋆,N − (1/2 + K)uD +VφN)‖
2
L2(T∩ΓD)

and

ρ⋆ :=
( ∑

T∈T⋆

ρ⋆(T )
2
)1/2

for all T⋆ ∈ refine(T0).

This follows from the 
ombination of the respe
tive proofs for the weakly-singular integral

equation [CMS01℄ and the hyper-singular integral equation [CMPS04℄. Moreover, we refer

to the proof of Assumption 10 (iii) below, where the main arguments of the derivation

are reused.

7.2. Proof of Assumption 10�11.

Proof of Assumption 10 (i)�(ii). Let Tℓ denote a triangulation and let T⋆ denote an ar-

bitrary re�nement. With the triangle inequality and h⋆ = hℓ on ω :=
⋃
(T⋆ ∩ Tℓ) ⊆ ∂Ω,

it holds

∣∣∣
( ∑

T∈T⋆∩Tℓ

ρ⋆(T )
2
)1/2

−
( ∑

T∈Tℓ∩T⋆

ρℓ(T )
2
)1/2∣∣∣

. ‖h1/2⋆

(
WNN(U⋆,N − Uℓ,N) + K

′
DN(Φ⋆,D − Φℓ,D)

)
‖L2(ω)

+ ‖h1/2⋆ ∇
(
VDD(Φ⋆,D − Φℓ,D)− KND(U⋆,N − Uℓ,N)

)
‖L2(ω)

. RHS := ‖h1/2⋆

(
WNN(U⋆,N − Uℓ,N)

)
‖L2(ΓN ) + ‖h

1/2
ℓ

(
K

′
DN(Φ⋆,D − Φℓ,D)

)
‖L2(ΓD)

+ ‖h1/2⋆ ∇
(
VDD(Φ⋆,D − Φℓ,D)‖L2(ΓD) + ‖h

1/2
ℓ ∇

(
KND(U⋆,N − Uℓ,N)

)
‖L2(ΓN ).

The inverse estimates from [AFF

+
12℄ show

RHS . ‖U⋆,N − Uℓ,N‖H̃1/2(ΓN ) + ‖Φ⋆,D − Φℓ,D‖H̃−1/2(ΓD) ≃ ‖U⋆ − Uℓ‖X . (67)

This 
on
ludes the proof of (i). The 
onstant Cstab depends only on ΓN and ΓD, the

γ-shape regularity of Tℓ and T⋆, and the polynomial degree p.
For the proof of (ii), the mesh size redu
tion (38) is exploited. It holds h⋆ ≤ qrefhℓ on

ω :=
⋃
(Tℓ\T⋆) =

⋃
(T⋆\Tℓ). Hen
e, the same arguments as above and Young's inequality

(a+ b)2 ≤ (1 + δ)a2 + (1 + δ−1)b2 for all a, b ∈ R and δ > 0 show

∑

T∈T⋆\Tℓ

ρ⋆(T )
2 ≤ (1 + δ)

(
‖h1/2⋆

(
WNNUℓ,N + K

′
DNΦℓ,D +WuD − (1/2− K

′)φN

)
‖2L2(ω)

+ ‖h1/2⋆ ∇(VDDΦℓ,D − KNDUℓ,N − (1/2 + K)uD +VφN)‖
2
L2(ω)

)

+ (1 + δ−1) RHS2

≤ (1 + δ)qref
∑

T∈Tℓ\T⋆

ρℓ(T )
2 + (1 + δ−1) RHS2.

Su�
iently small δ > 0 and (67) 
on
lude the proof of (ii). The 
onstant Cred depends

only on ΓN and ΓD, the γ-shape regularity of Tℓ and T⋆, and the polynomial degree p. �

Proof of Assumption 10 (iii). Ellipti
ity (64) and Galerkin orthogonality show for all

Vℓ ∈ Xℓ

‖U⋆ − Uℓ‖
2
X ≃ b(U⋆ − Uℓ, U⋆ − Uℓ − Vℓ) = b(u− Uℓ, U⋆ − Uℓ − Vℓ).
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With the S
ott-Zhang proje
tion Jℓ : H̃1/2(ΓN) → Sp+1(Tℓ|ΓN
) (see [AFF

+
13
, Se
-

tion 3.2℄ for the de�nition and dis
ussion on H̃1/2(ΓN), sin
e the original 
onstru
-

tion [SZ90℄ requires H1/2+ε
regularity for some ε > 0) and the L2

-orthogonal proje
tion

Πℓ : L
2(ΓD)→ P

p(Tℓ|ΓD
), de�ne

Vℓ := (Jℓ(U⋆,N − Uℓ,N),Πℓ(Φ⋆,D − Φℓ,D)) ∈ Xℓ.

This implies

‖U⋆ − Uℓ‖
2
X ≃ 〈WNN (uN − Uℓ,N) + K

′
DN(φD − Φℓ,D) , (1− Jℓ)(U⋆,N − Uℓ,N)〉L2(ΓN ) (68)

+ 〈VDD(φD − Φℓ,D)− KND(uN − Uℓ,N) , (1−Πℓ)(Φ⋆,D − Φℓ,D)〉L2(ΓD).

There holds (1 − Jℓ)(U⋆,N − Uℓ,N) = 0 in Tℓ \ ωℓ(T⋆ \ Tℓ) and (1 − Πℓ)(Φ⋆,D − Φℓ,D) = 0
in Tℓ ∩ T⋆. The �rst term on the right-hand side of (68) is estimated as in [FFK

+
13b℄.

Sin
e there also holds

〈VDD(φD − Φℓ,D)− KND(uN − Uℓ,N) , 1〉L2(T ) = 0 for all T ∈ Tℓ|ΓD
,

the estimate for the se
ond term on the right-hand side of (68) follows with the arguments

from [FKMP13℄ for p = 0 resp. [FFK

+
13a℄ for general p ≥ 0. This 
on
ludes the proof.

The 
onstant CRel depends only on ΓN and ΓD, the γ-shape regularity of Tℓ and T⋆ and
the polynomial degree p. �

Proof of Assumption 11. The proof follows with the same arguments as in Se
tion 4. �

Consequen
e 18. Algorithm 8 for the symmetri
 boundary element formulation of some

mixed boundary value problem 
onverges with optimal rates in the sense of Theorem 14.

8. Proof of Theorem 14

For this se
tion, assume that Assumptions 10�11 hold for a given model problem with

error estimator ρ(·).

Proposition 19. For any θ < θopt := (1 + C2
stabC

2
Rel)

−1
, there exists 0 < κopt < 1 su
h

that all T⋆ ∈ refine(Tℓ) satisfy the impli
ation

ρ2⋆ ≤ κoptρ
2
ℓ =⇒ θρ2ℓ ≤

∑

T∈R(Tℓ,T⋆)

ρℓ(T )
2. (69)

Proof. Re
all Young's inequality (a + b)2 ≤ (1 + δ)a2 + (1 + δ−1)b2 for all a, b ∈ R and

δ > 0. The stability (39) shows

ρ2ℓ =
∑

T∈Tℓ∩T⋆

ρℓ(T )
2 +

∑

T∈Tℓ\T⋆

ρℓ(T )
2

≤ (1 + δ)
∑

T∈T⋆∩Tℓ

ρ⋆(T )
2 +

∑

T∈Tℓ\T⋆

ρℓ(T )
2 + (1 + δ−1)C2

stab‖U⋆ − Uℓ‖
2
X .

The assumption ρ2⋆ ≤ κρ2ℓ together with dis
rete reliability (41) implies

ρ2ℓ ≤ (1 + δ)κρ2ℓ + (1 + (1 + δ−1)C2
stabCRel)

∑

T∈R(Tℓ,T⋆)

ρℓ(T )
2

and rearrangement of the terms proves θρ2ℓ ≤
∑

T∈R(Tℓ,T⋆)
ρℓ(T )

2
for all

0 ≤ θ < θ(κ) := sup
δ>0

1− (1 + δ)κ

1 + (1 + δ−1)C2
stabC

2
Rel

.
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For ea
h θ < θopt, there exist δ, κ > 0 su
h that

θ <
1− (1 + δ)κ

1 + (1 + δ−1)C2
stabC

2
Rel

<
1

1 + C2
stabC

2
Rel

= θopt

and hen
e θ < θ(κ). This 
on
ludes the proof. �

The de�nition of the approximability quasi-norm ‖ρ‖As allows to �nd optimal meshes,

whi
h 
ompare with the adaptively generated meshes. This is stated in the following

lemma.

Lemma 20. Let 0 < κopt < 1 and let s > 0 su
h that ‖ρ‖As < ∞. For all meshes Tℓ,
there exists a re�nement T⋆ ∈ refine(Tℓ) with

ρ2⋆ ≤ κoptρ
2
ℓ and #T⋆ −#Tℓ + 1 ≤ C6‖ρ‖

1/s
As
ρ
−1/s
ℓ . (70)

The 
onstant C6 > 0 depends only on Cstab, Cred, CRel, κopt, and s > 0.

Proof. Stability (39), redu
tion (40), and dis
rete reliability (41) prove for all re�nements

T+ ∈ refine(Tℓ)

ρ2+ ≤ 2ρℓ + 2(C2
stab + Cred)‖U+ − Uℓ‖

2
X ≤ (2 + 2(C2

stab + Cred)C
2
Rel)ρ

2
ℓ . (71)

De�ne the 
onstant Cmon := (2 + 2(C2
stab + Cred)C

2
Rel)

1/2
. Arguing as e.g. in [CFPP13,

Ste07,CKNS08℄, �nd a mesh T+ ∈ refine(T0) whi
h satis�es

#T+ −#T0 + 1 . ‖ρ‖
1/s
As
ρ
−1/s
ℓ and ρ2+ ≤ C−2

monκoptρ
2
ℓ .

De�ne T⋆ := Tℓ ⊕ T+ and use the overlay estimate (36) to verify

#T⋆ −#Tℓ + 1 ≤ #T+ −#T0 + 1 . ‖ρ‖
1/s
As
ρ
−1/s
ℓ .

Sin
e T⋆ ∈ refine(T+), the quasi-monotoni
ity (71) shows

ρ2⋆ ≤ C2
monρ

2
+ ≤ κoptρ

2
ℓ .

This 
on
ludes the proof. �

Proof of Theorem 14. To see linear 
onvergen
e (45), apply the estimator redu
tion (43)

for ℓ, N ∈ N
ℓ+N∑

j=ℓ+1

ρ2j ≤ qest

ℓ+N∑

j=ℓ+1

ρ2j−1 + Cest

ℓ+N∑

j=ℓ+1

‖Uj − Uj−1‖
2
X .

The general quasi-orthogonality (13) and reliability (42) show

(1− qest)
ℓ+N∑

j=ℓ+1

ρ2j ≤ qestρ
2
ℓ + CestC1‖u− Uℓ‖

2
X ≤ (qest + CestC1C

2
rel)ρ

2
ℓ .

Sin
e the involved 
onstants do not depend on N ∈ N, there holds with CR := 1+ (qest +
CestC1C

2
rel)/(1− qest) > 1

∞∑

j=ℓ

ρ2j ≤ CRρ
2
ℓ .

This and mathemati
al indu
tion on k ∈ N show

∞∑

j=ℓ+k

ρ2j =
( ∞∑

j=ℓ+k−1

ρ2j

)
− ρ2ℓ+k−1 ≤ (1− C−1

R )

∞∑

j=ℓ+k−1

ρ2j ≤ . . . ≤ (1− C−1
R )k

∞∑

j=ℓ

ρ2j ,
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whi
h implies immediately

ρ2ℓ+k ≤ CR(1− C
−1
R )kρ2ℓ .

This 
on
ludes the proof of (45) with 0 < qR := (1− C−1
R ) < 1.

The optimality statement (46) follows as a 
onsequen
e. Choose κopt > 0 su�
iently

small su
h that the impli
ation (69) holds true. Given Tℓ, Lemma 20 provides a mesh

T⋆ ∈ refine(Tℓ) with (70). Therefore, Proposition 19 implies that Tℓ \ T⋆ satis�es the

Dör�er marking (6). Sin
eMℓ is a set of minimal 
ardinality whi
h satis�es the Dör�er

marking (6), there holds

#Mℓ + 1 ≤ #(Tℓ \ T⋆) + 1 ≤ #T⋆ −#Tℓ + 1 ≤ C6‖ρ‖
1/s
As
ρ
−1/s
ℓ .

This and the mesh 
losure estimate (35) imply

#Tℓ −#T0 + 1 .

ℓ−1∑

j=0

(#Mj + 1) . ‖ρ‖
1/s
As

ℓ−1∑

j=0

ρ
−1/s
j .

The R-linear 
onvergen
e (45) together with the 
onvergen
e of the geometri
 series show

#Tℓ −#T0 + 1 . ‖ρ‖
1/s
As
ρ
−1/s
ℓ C

−1/s
R

ℓ−1∑

j=0

q
(ℓ−j)/s
R . ‖ρ‖

1/s
As
ρ
−1/s
ℓ .

This implies the upper bound in (46). The lower bound in (46) follows form elementary

arguments and the fa
t that ea
h re�ned element is split into at most two sons for

d = 1, four sons for d = 2, and into a uniformly bounded number of sons for d = 3
(the proof follows with arguments from [Ste08℄) as pointed out by R. Stevenson in a

private 
ommuni
ation (we refer to [CFPP13, Se
tion 2.5℄ for details). This 
on
ludes

the proof. �

Remark 21. Our proof of (45) shows that the modi�ed general quasi-orthogonality

ℓ+N∑

k=ℓ

‖Uk+1 − Uk‖
2
X ≤ C1ρ

2
ℓ for all ℓ, N ∈ N (72)

is su�
ient. In our frame, (72) follows from Theorem 1 and reliability (42). We refer

to [CFPP13, Proposition 4.10�4.11℄ for the proof that, under Assumption 10 (i)�(ii) and

reliability (42), (72) is, in fa
t, equivalent to R-linear 
onvergen
e (45).

A
knowledgement. The resear
h of the authors is supported through the FWF

proje
t �Adaptive Boundary Element Method�, funded by the Austrian S
ien
e fund

(FWF) under grant P21732, see http://www.as
.tuwien.a
.at/abem. The authors

MF and DP a
knowledge the support of the FWF do
toral program �Dissipation and

Dispersion in Nonlinear PDEs� under grant W1245, see http://npde.tuwien.a
.at/.

Referen
es

[AFF

+
12℄ Markus Aurada, Mi
hael Feis
hl, Thomas Führer, J. Markus Melenk, and Dirk Praetorius.

Inverse estimates for ellipti
 boundary integral operators and their appli
ation to the adap-

tive 
oupling of FEM and BEM. ASC Report, 07/2012, Institute for Analysis and S
ienti�


Computing, Vienna University of Te
hnology, 2012.

[AFF

+
13a℄ Markus Aurada, Mi
hael Feis
hl, Thomas Führer, Mi
hael Karkulik, Jens Markus Melenk,

and Dirk Praetorius. Classi
al FEM-BEM 
oupling methods: nonlinearities, well-posedness,

and adaptivity. Comput. Me
h., 51(4):399�419, 2013.

22



[AFF

+
13b℄ Markus Aurada, Mi
hael Feis
hl, Thomas Führer, Mi
hael Karkulik, and Dirk Praetorius.

E�
ien
y and Optimality of Some Weighted-Residual Error Estimator for Adaptive 2D

Boundary Element Methods. Comput. Methods Appl. Math., 13(3):305�332, 2013.

[AFF

+
13
℄ Markus Aurada, Mi
hael Feis
hl, Thomas Führer, Mi
hael Karkulik, and Dirk Praetorius.

Energy norm based error estimators for adaptive BEM for hypersingular integral equations.

ASC Report, 22/2013, Institute for Analysis and S
ienti�
 Computing, Vienna University

of Te
hnology, 2013.

[AFK

+
13℄ Markus Aurada, Mi
hael Feis
hl, Josef Kemetmüller, Mar
us Page, and Dirk Praetorius.

Ea
h H1/2
-stable proje
tion yields 
onvergen
e and quasi-optimality of adaptive FEM with

inhomogeneous Diri
hlet data in Rd
. ESAIM Math. Model. Numer. Anal., 47:1207�1235,

2013.

[AFLP12℄ Markus Aurada, Samuel Ferraz-Leite, and Dirk Praetorius. Estimator redu
tion and 
onver-

gen
e of adaptive BEM. Appl. Numer. Math., 62(6):787�801, 2012.

[AFP12℄ Markus Aurada, Mi
hael Feis
hl, and Dirk Praetorius. Convergen
e of some adaptive FEM-

BEM 
oupling for ellipti
 but possibly nonlinear interfa
e problems. ESAIM Math. Model.

Numer. Anal., 46(5):1147�1173, 2012.

[BDD04℄ Peter Binev, Wolfgang Dahmen, and Ronald DeVore. Adaptive �nite element methods with


onvergen
e rates. Numer. Math., 97(2):219�268, 2004.

[BDK12℄ Liudmila Belenki, Lars Diening, and Christian Kreuzer. Optimality of an adaptive �nite

element method for the p-Lapla
ian equation. IMA J. Numer. Anal., 32(2):484�510, 2012.

[CFPP13℄ Carsten Carstensen, Mi
hael Feis
hl, Mar
us Page, and Dirk Praetorius. Axioms of adaptiv-

ity.ASC Report, 38/2013, Institute for Analysis and S
ienti�
 Computing, Vienna University

of Te
hnology, 2013.

[CKNS08℄ J. Manuel Cas
on, Christian Kreuzer, Ri
ardo H. No
hetto, and Kunibert G. Siebert. Quasi-

optimal 
onvergen
e rate for an adaptive �nite element method. SIAM J. Numer. Anal.,

46(5):2524�2550, 2008.

[CMPS04℄ Carsten Carstensen, Matthias Mais
hak, Dirk Praetorius, and Ernst P. Stephan. Residual-

based a posteriori error estimate for hypersingular equation on surfa
es. Numer. Math.,

97(3):397�425, 2004.

[CMS01℄ Carsten Carstensen, Matthias Mais
hak, and Ernst P. Stephan. A posteriori error esti-

mate and h-adaptive algorithm on surfa
es for Symm's integral equation. Numer. Math.,

90(2):197�213, 2001.

[CN12℄ J. Manuel Cas
ón and Ri
ardo H. No
hetto. Quasioptimal 
ardinality of AFEM driven by

nonresidual estimators. IMA J. Numer. Anal., 32(1):1�29, 2012.

[Cos88℄ Martin Costabel. A symmetri
 method for the 
oupling of �nite elements and boundary

elements. In The mathemati
s of �nite elements and appli
ations, VI (Uxbridge, 1987),

pages 281�288. A
ademi
 Press, London, 1988.

[CS95℄ Carsten Carstensen and Ernst P. Stephan. Adaptive 
oupling of boundary elements and

�nite elements. RAIRO Modél. Math. Anal. Numér., 29(7):779�817, 1995.

[FFK

+
13a℄ Mi
hael Feis
hl, Thomas Führer, Mi
hael Karkulik, Jens Markus Melenk, and Dirk Prae-

torius. Quasi-optimal 
onvergen
e rates for adaptive boundary element methods with data

approximation, part I: Weakly-singular integral equation. Cal
olo, 2013.

[FFK

+
13b℄ Mi
hael Feis
hl, Thomas Führer, Mi
hael Karkulik, Jens Markus Melenk, and Dirk Prae-

torius. Quasi-optimal 
onvergen
e rates for adaptive boundary element methods with data

approximation, part II: Hypersingular integral equation. ASC Report, 30/2013, Institute for

Analysis and S
ienti�
 Computing, Vienna University of Te
hnology, 2013.

[FFP12℄ Mi
hael Feis
hl, Thomas Führer, and Dirk Praetorius. Adaptive FEM with optimal 
on-

vergen
e rates for a 
ertain 
lass of non-symmetri
 and possibly non-linear problems. ASC

Report, 43/2012, Institute for Analysis and S
ienti�
 Computing, Vienna University of Te
h-

nology, 2012.

[FKMP13℄ Mi
hael Feis
hl, Mi
hael Karkulik, J. Markus Melenk, and Dirk Praetorius. Quasi-optimal


onvergen
e rate for an adaptive boundary element method. SIAM J. Numer. Anal., 51:1327�

1348, 2013.

[FPP14℄ Mi
hael Feis
hl, Mar
us Page, and Dirk Praetorius. Convergen
e and quasi-optimality of

adaptive FEM with inhomogeneous Diri
hlet data. J. Comput. Appl. Math., 255:481�501,

2014.

23



[Gan08℄ Tsogtgerel Gantumur. An optimal adaptive wavelet method for nonsymmetri
 and inde�nite

ellipti
 problems. J. Comput. Appl. Math., 211(1):90�102, 2008.

[Gan13℄ Tsogtgerel Gantumur. Adaptive boundary element methods with 
onvergen
e rates. Numer.

Math., 124(3):471�516, 2013.

[GMZ12℄ Eduardo M. Garau, Pedro Morin, and Carlos Zuppa. Quasi-optimal 
onvergen
e rate of an

AFEM for quasi-linear problems of monotone type. Numer. Math. Theory Methods Appl.,

5(2):131�156, 2012.

[HTZ10℄ M. Holst, G. Tsogtgerel, and Y. Zhu. Lo
al 
onvergen
e of adaptive methods for nonlinear

partial di�erential equations. arXiv:1001.1382, 2010.

[JN80℄ Claes Johnson and J.-Claude Nédéle
. On the 
oupling of boundary integral and �nite ele-

ment methods. Math. Comp., 35(152):1063�1079, 1980.

[KPP13℄ Mi
hael Karkulik, David Pavli
ek, and Dirk Praetorius. On 2D Newest Vertex Bise
tion:

Optimality of Mesh-Closure and H1
-Stability of L2-Proje
tion. Constr. Approx., 38(2):213�

234, 2013.

[MSV08℄ Pedro Morin, Kunibert G. Siebert, and Andreas Veeser. A basi
 
onvergen
e result for


onforming adaptive �nite elements. Math. Models Methods Appl. S
i., 18(5):707�737, 2008.

[Say09℄ Fran
is
o-Javier Sayas. The validity of Johnson-Nédéle
's BEM-FEM 
oupling on polygonal

interfa
es. SIAM J. Numer. Anal., 47(5):3451�3463, 2009.

[Sie11℄ Kunibert G. Siebert. A 
onvergen
e proof for adaptive �nite elements without lower bound.

IMA J. Numer. Anal., 31(3):947�970, 2011.

[Ste07℄ Rob Stevenson. Optimality of a standard adaptive �nite element method. Found. Comput.

Math., 7(2):245�269, 2007.

[Ste08℄ Rob Stevenson. The 
ompletion of lo
ally re�ned simpli
ial partitions 
reated by bise
tion.

Math. Comp., 77(261):227�241, 2008.

[Ste11℄ O. Steinba
h. A note on the stable one-equation 
oupling of �nite and boundary elements.

SIAM J. Numer. Anal., 49(4):1521�1531, 2011.

[SZ90℄ L. Ridgway S
ott and Shangyou Zhang. Finite element interpolation of nonsmooth fun
tions

satisfying boundary 
onditions. Math. Comp., 54(190):483�493, 1990.

Institute for Analysis and S
ientifi
 Computing, Vienna University of Te
hnology,

Wiedner Hauptstraÿe 8-10, A-1040 Wien, Austria

E-mail address : Mi
hael.Feis
hl�tuwien.a
.at (
orresponding author)

E-mail address : {Thomas.Fuehrer,Dirk.Praetorius}�tuwien.a
.at

24


	titelseite39-13
	quasipyth_preprint

