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ADAPTIVE FEM, BEM, AND FEM-BEM COUPLING WITH

OPTIMAL RATES FOR STRONGLY NON-SYMMETRIC PROBLEMS

M. FEISCHL, T. FÜHRER, AND D. PRAETORIUS

Abstrat. We prove an abstrat summability result whih is motivated by the usual

Pythagoras theorem for symmetri problems. This allows to prove onvergene with

optimal algebrai rates for adaptive algorithms for a wide range of non-symmetri prob-

lems as long as they �t into the abstrat setting of the Lax-Milgram lemma. Possible

appliations inlude the oupling of �nite elements and boundary elements as well as

boundary element formulations for mixed boundary onditions. The operators of these

model problems annot be deomposed into a symmetri and ellipti priniple part plus

a ompat perturbation, but the non-symmetri part is non-ompat as well. While this

prevents the use of available tehniques from the literature, these problems �t into the

framework of the Lax-Milgram lemma and are hene overed by our analysis.

1. Introdution

Suppose a ontinuous and ellipti bilinear form b(·, ·) on a real Hilbert spae X . Given
a funtional f ∈ X ∗

, the Lax-Milgram lemma guarantees existene and uniqueness of

u ∈ X with

b(u, v) = f(v) for all v ∈ X . (1)

Given an initial �nite dimensional subspae X0 ⊆ X based on a triangulation T0, an
adaptive algorithm of the form

Solve −→ Estimate −→ Mark −→ Refine (2)

generates a sequene of nested triangulations Tℓ with orresponding disrete spaes Xℓ ⊆
X and approximates the exat solution by omputing Galerkin approximations Uℓ ∈ Xℓ

for all ℓ ∈ N. The module Solve in (2) assumes an exat solver whih omputes the

unique solution Uℓ ∈ Xℓ of

b(Uℓ, V ) = f(V ) for all V ∈ Xℓ. (3)

The elliptiity of b(·, ·) provides a onstant CCea > 0 whih depends only on b(·, ·), suh
that Uℓ satis�es the Céa-type estimate

‖u− Uℓ‖X ≤ CCea min
Vℓ∈Xℓ

‖u− Vℓ‖X for all ℓ ∈ N. (4)

The module Estimate in (2) assumes a omputable error estimator

ρ2ℓ :=
∑

T∈Tℓ

ρℓ(T )
2

for all ℓ ∈ N0. (5)
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The module Mark in (2) uses the Dör�er marking riterion to determine a set of marked

element domainsMℓ ⊆ Tℓ as a set of minimal ardinality to satisfy

θρ2ℓ ≤
∑

T∈Mℓ

ρℓ(T )
2

(6)

for some �xed parameter 0 < θ < 1.
The module Refine in (2) enrihes the spae Xℓ by re�ning the underlying triangulation

Tℓ to generate Tℓ+1 and Xℓ+1 ⊇ Xℓ (see Setion 3.1 for details and disussion).

The goal of this work is to prove optimal onvergene rates for the estimator ρℓ in the

following sense: If theoretially there exist meshes T̃ℓ whih are re�nements of T0 suh

that a ertain rate of onvergene s > 0 is possible for the orresponding error estimator

ρ̃ℓ, i.e.

ρ̃ℓ . (#T̃ℓ −#T0)
−s

for all ℓ ∈ N, (7)

then, the adaptively generated meshes reover at least this rate, i.e.,

ρℓ . (#Tℓ −#T0)
−s

for all ℓ ∈ N, (8)

see Theorem 14 below for a preise statement of the result.

A ommon tool in the proofs of suh optimality statements (7)�(8) in e.g. [Ste07,

CKNS08,FKMP13,Gan13℄ is a Pythagoras identity of the form

‖u− Uℓ+1‖
2
X + ‖Uℓ+1 − Uℓ‖

2
X = ‖u− Uℓ‖

2
X for all ℓ ∈ N. (9)

This is essential to relate suessive solutions Uℓ, Uℓ+1 with eah other. In ase of a

symmetri bilinear form with indued norm ‖ · ‖X := b(·, ·)1/2, suh an identity follows

immediately from the Galerkin orthogonality

b(u− Uℓ+1, Uℓ+1 − Uℓ) = 0 = b(Uℓ+1 − Uℓ, u− Uℓ+1) for all ℓ ∈ N, (10)

but fails to hold in many other ases as, e.g., non-symmetri problems or FEM-BEM

oupling formulations. In the frame of the Lax-Milgram lemma and in many appliations,

onvergene

lim
ℓ→∞
‖u− Uℓ‖X = 0 (11)

is a priori available by means of the estimator redution priniple [AFLP12℄ or follows

from more general onepts [MSV08,Sie11℄. The Pythagoras identity (9) therefore implies

∞∑

k=ℓ

‖Uk+1 − Uk‖
2
X = ‖u− Uℓ‖

2
X for all ℓ ∈ N. (12)

The generalization of (12) to general quasi-orthogonality

∞∑

k=ℓ

‖Uk+1 − Uk‖
2
X ≤ C1‖u− Uℓ‖

2
X for all ℓ ∈ N (13)

for some ℓ-independent onstant C1 > 0 still enables the analysis to prove optimal on-

vergene rates in the spirit of [Ste07℄ (see Setion 3 and Setion 8), but allows to inlude

a muh wider variety of problem lasses.

This improves on the existing literature on rate optimality. The seminal work [Ste07℄

proves optimal onvergene rates for the Laplaian, whereas [CKNS08℄ applies to linear

symmetri and ellipti seond-order PDEs, and [AFK

+
13,FPP14℄ inlude non-homoge-

neous boundary onditions. For boundary element methods, the works [FKMP13,Gan13℄

were the �rst to prove optimal onvergene rates, where [FKMP13℄ is onerned with the

weakly-singular integral equation for the Laplaian on polygonal domains, while [Gan13℄
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onsiders weakly-singular and hyper-singular integral equation on smooth domains. The

work [Gan08℄ proves optimal rates for ertain non-symmetri problems for a wavelet

method. The work [CN12℄ onsiders mildly non-symmetri, linear ellipti seond-order

PDEs and proves optimal onvergene rates for standard onforming FEM under the

assumption that the initial mesh is su�iently �ne. The reent work [FFP12℄ improves

on that by dropping the assumption on the initial mesh-width and inluding general linear

ellipti seond-order PDEs into the analysis. There also exist optimality results [FFP12,

GMZ12,BDK12,HTZ10℄ for ertain lasses of non-linear seond-order PDEs.

The present work is the �rst to prove optimal onvergene rates for linear, but non-

symmetri problems beyond onforming FEM for seond-order PDEs, as for example the

oupling of FEM and BEM (see Setions 5�6) or the boundary element formulation for

mixed boundary onditions (see Setion 7). The proposed general quasi-orthogonality (13)

is a true generalization of the existing quasi-orthogonality onepts found in e.g. [CN12,

AFK

+
13, FFP12℄ and allows to takle even problems where the non-symmetry is not

ompat (as opposed to [CN12,FFP12℄).

The remainder of the work is organized as follows: The �rst half, omprising of Se-

tion 2, provides the proof of (13) for general linear and ellipti problems (1). In the seond

half, Setion 3 states the adaptive algorithm as well as the main result on quasi-optimal

onvergene (Theorem 14). The short Setion 4 gives a new proof of the result for linear

seond-order PDEs in [FFP12℄. Setions 5�6 apply the results of the previous setions to

two formulations of the FEM-BEM oupling. Setion 7 onsiders the so-alled symmetri

boundary integral formulation of some mixed boundary value problem. Finally, Setion 8

ontains the postponed proof of Theorem 14.

Throughout the paper, . denotes ≤ up to a multipliative onstant and ≃ denotes

that both . and & hold.

2. General quasi-orthogonality

The following theorem is the main result of this setion and it will serve as the main

tool to prove optimal onvergene rates in the following setions.

Theorem 1. Suppose a onstant C2 > 0 suh that the bilinear form b(·, ·) is ontinuous
and ellipti in the sense of

b(v, w) ≤ C2‖v‖X‖w‖X and b(v, v) ≥ C−1
2 ‖v‖

2
X for all v, w ∈ X . (14)

Suppose that Xℓ are nested subspaes of X , i.e. Xℓ ⊆ Xℓ+1 ⊆ X for all ℓ ∈ N0. Let

Uℓ ∈ Xℓ and u ∈ X denote the unique solutions of (1)�(3). Then, onvergene (11)

implies general quasi-orthogonality (13).

Remark 2. Without loss of generality, we may assume Uℓ 6= Uℓ+1 for all ℓ ∈ N, sine
otherwise the respetive terms vanish in the general quasi-orthogonality (13). The unique

solvability therefore implies Uℓ+1 /∈ Xℓ for all ℓ ∈ N.

For the proof, and for onveniene of the presentation, an equivalent operator formu-

lation replaes the variational setting above. To that end, de�ne the operator

B : X → X ∗, v 7→ Bv := b(v, ·), (15)

as well as for all X⋆ ⊆ X the restrition PX⋆ : X
∗ → X ∗

⋆ by

PX⋆f = f |X⋆ for all f ∈ X ∗. (16)

The problem (1) as well as its disretization (3) equivalently read as

Bu = f and PXℓ
B|Xℓ

Uℓ = PXℓ
f for all ℓ ∈ N0. (17)
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The proof of Theorem 1 is split into two parts whih mark the following two subsetions.

In Setion 2.1, the result is proved for the simpler ase of symmetri but inde�nite bilinear

forms b(·, ·) with the additional restrition that dim(Xℓ)+1 = dim(Xℓ+1). In Setion 2.2,

it is shown that the general ase an be redued to the ase of Setion 2.1

2.1. Step 1: The symmetri but possibly inde�nite ase. Sine this setion poses

additional assumptions on the spaes Xℓ as well as on the operator B, it seems useful

to hange the notation slightly. All the previous de�nitions (1)�(3) and (13) transfer

likewise in the sense that u ∈X is the unique solution of

b(u, v) = f(v) for all v ∈X (18)

with Galerkin disretization

b(U ℓ,V ) = f(V ) for all V ∈Xℓ. (19)

Proposition 3. Let X denote a real Hilbert spae and let Xℓ be �nite dimensional

subspaes of X with

X =
⋃

ℓ∈N0

Xℓ and dim(Xℓ) + 1 = dim(X ℓ+1) for all ℓ ∈ N0.

Let B : X → X∗
denote a symmetri operator in the sense 〈Bv , w〉 = 〈Bw , v〉 for all

v, w ∈ X whih satis�es

max{‖B‖X→X
∗ , ‖B−1‖X∗→X} ≤ C3 (20a)

as well as for all ℓ ∈ N0

‖(PXℓ
B|Xℓ

)−1‖X∗
ℓ→Xℓ

≤ C3 (20b)

for some onstant C3 > 0. Then, the problems (18) and (19) allow for unique solutions,

and there holds general quasi-orthogonality

∞∑

k=ℓ

‖U k+1 −U k‖
2
X
≤ C1‖u−U ℓ‖

2
X

for all ℓ ∈ N0. (21)

The proof requires some preparations. To that end, let (vℓ)ℓ∈N0 ⊂X be an orthonormal

basis of X suh that

Xℓ = span

{
vk : k = 0, . . . , ℓ

}
for all ℓ ∈ N0.

Note that suh a basis an always be onstruted e.g. via Gram-Shmidt orthogonaliza-

tion.

Lemma 4. There exists a sequene (wℓ)ℓ∈N ⊂X and a onstant C4 > 0 suh that there

holds

(i) Nestedness:

span

{
wk : k = 0, . . . , ℓ

}
= Xℓ for all ℓ ∈ N0. (22)

(ii) Boundedness:

C−1
4 ≤ ‖wℓ‖X ≤ C4 for all ℓ ∈ N0. (23)

(iii) B-orthogonality:

〈Bwℓ , wk〉 = 0 for all ℓ 6= k and 〈Bwℓ , wℓ〉 ∈ {−1, 1} for all ℓ ∈ N0. (24)

4



Proof. De�ne w0 = v0 and for all ℓ ≥ 1

wℓ := vℓ − (PXℓ−1
B|Xℓ−1

)−1PXℓ−1
Bvℓ.

From wℓ ∈ vℓ + Xℓ−1 and the hoie of vℓ, we derive (22). Obviously, there holds

‖w0‖X = 1 and sine (vℓ)ℓ∈N0 is an orthonormal basis

‖wℓ‖
2
X

= 1 + ‖(PXℓ−1
B|Xℓ−1

)−1PXℓ−1
Bvℓ‖

2
X

for all ℓ ∈ N. Sine ontinuity of B implies ontinuity of PXℓ
B|Xℓ

even with the same

stability onstant ‖PXℓ
B|Xℓ

‖Xℓ→X ∗
ℓ
≤ ‖B‖X→X ∗ ≤ C3, the last identity and (20) prove

1 ≤ ‖wℓ‖
2
X
≤ 1 + C4

3 for all ℓ ∈ N.

Moreover, there holds for 0 ≤ k < ℓ

〈Bwℓ , vk〉 = 〈PXℓ−1
Bvℓ − PXℓ−1

B|Xℓ−1
(PXℓ−1

B|Xℓ−1
)−1PXℓ−1

Bvℓ , vk〉 = 0.

This shows 〈Bwℓ , x〉 = 0 for all x ∈ Xℓ−1. Symmetry of B proves the �rst statement

of (24). For the seond part, observe that eah x ∈ Xℓ has a representation x =∑ℓ
i=0 xivi. The orthogonality from above together with ontinuity of B and (20b) imply

1 ≃ ‖PXℓ
B|Xℓ

wℓ‖X⋆
ℓ
= sup

x∈Xℓ, ‖x‖X≤1

〈Bwℓ , x〉 = sup
xℓ∈R, |xℓ|≤1

xℓ〈Bwℓ , vℓ〉 = |〈Bwℓ , vℓ〉|.

By de�nition of wℓ, we get |〈Bwℓ , wℓ〉| = |〈Bwℓ , vℓ〉| ≃ 1. This, together with (23),

allows to sale the basis (wℓ)ℓ∈N, suh that there holds both, the orthogonality (24) as

well as (23). This onludes the proof. �

Lemma 5. Let (wℓ)ℓ∈N denote the basis from Lemma 4. De�ne the spaes

X+ := span
{
wℓ : 〈Bwℓ , wℓ〉 = 1, ℓ ∈ N

}
,

X− := span
{
wℓ : 〈Bwℓ , wℓ〉 = −1, ℓ ∈ N

}
,

(25)

where the losure is understood in X. Then, there holds the diret deomposition X+ ⊕
X− = X. Hene, there exist ontinuous projetions

P+ : X →X+ with kerP+ = X−,

P− : X →X− with kerP+ = X+
(26)

with ‖P+‖X→X , ‖P−‖X→X ≤ C5 <∞.

Proof. Due to (22), it is lear that X+ + X− = X. To see X+ ∩ X− = {0}, let
x ∈ X+ ∩X−. Then, there exists a sequene xj ∈ X◦

− := span

{
wℓ : 〈Bwℓ , wℓ〉 =

−1, ℓ ∈ N
}
suh that xj → x in X as j →∞. Then, the orthogonality (24) proves

〈Bx , wℓ〉 = lim
j→∞
〈Bxj , wℓ〉 = 0 for all ℓ ∈ N0 with wℓ ∈X+.

For ℓ ∈ N with wℓ ∈ X−, we obtain the same result. Therefore, it holds 〈Bx , wℓ〉 = 0
for all ℓ ∈ N and hene x = 0. Therefore, eah x ∈ X has a unique deomposition

into x = x+ + x− with x+ ∈ X+ and x− ∈ X−. Aording to linear algebra, this

gives rise to P+x = x+ and P−x = x−. To see the ontinuity of the projetions, we

employ Banah's losed-graph theorem: Suppose xj → x and P+xj → y in X. It

remains to show that P+x = y. Sine X+ is losed, we see that y ∈ X+, i.e. P+y = y.

Moreover, P+(xj − P+xj) = 0 and hene xj − P+xj ∈ kerP+ = X−. Therefore, it holds

x− y = limj→∞(xj − P+xj) ∈X− = kerP+. Altogether, this yields

P+x− y = P+(x− y) = 0.

The boundedness of P− follows analogously. �
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Lemma 6. De�ne the operator

ι :
⋃

ℓ∈N

Xℓ → ℓ2(N), ι
( N∑

ℓ=1

λjwℓ

)
= λ := (λ1, . . . , λN , 0, . . .) (27)

for all N ∈ N and λj ∈ R. The operator ι may be ontinuously extended to an operator

ι : X → ℓ2(N) suh that

‖ι(x)‖ℓ2(N) :=
( ∞∑

j=1

(ι(x)j)
2
)1/2
≤ C4‖x‖X for all x ∈X. (28)

Moreover, it holds

ι(x)ℓ = 〈Bwℓ , wℓ〉〈Bx , wℓ〉 for all x ∈X and ℓ ∈ N. (29)

Proof. De�ne N+ :=
{
ℓ ∈ N : wℓ ∈X+

}
and N− :=

{
ℓ ∈ N : wℓ ∈X−

}
= N \N+ and

note that for x =
∑N

j=0 λjwj ∈XN , it holds

〈Bx , wℓ〉 = 〈Bwℓ , wℓ〉λℓ for all 0 ≤ ℓ ≤ N.

Sine 〈Bwℓ , wℓ〉 ∈ {1,−1}, this proves

λℓ = 〈Bx , wℓ〉〈Bwℓ , wℓ〉 for all 0 ≤ ℓ ≤ N, (30)

as well as

λℓ := 〈Bx , wℓ〉〈Bwℓ , wℓ〉 = 0 for all N < ℓ <∞.

Moreover, we see immediately P+x =
∑

j∈N+
λjwj as well as P−x =

∑
j∈N−

λjwj . To-

gether with the ontinuity of P+ and P−, this implies

‖ι(x)‖2ℓ2(N) =
N∑

ℓ=1

λ2ℓ =

∞∑

ℓ=1

〈Bx , wℓ〉
2

=
∑

ℓ∈N+

〈Bx , wℓ〉
2 +

∑

ℓ∈N−

〈Bx , wℓ〉
2

=
∑

ℓ∈N+

〈Bx , 〈Bx , wℓ〉wℓ〉 −
∑

ℓ∈N−

〈Bx , −〈Bx , wℓ〉wℓ〉

= 〈Bx , P+x〉 − 〈Bx , P−x〉 . ‖x‖
2
X
.

The onstants in the estimate above do not depend on N ∈ N. As
⋃

N∈N0
XN is dense in

X, ι an be extended ontinuously to ι : X → ℓ2(N). Sine evaluation of one omponent

is a ontinuous operation in ℓ2(N), there holds for limj→∞xj = x with xj ∈
⋃

ℓ∈N Xℓ

together with (30)

ι(x)ℓ = lim
j→∞

ι(xj)ℓ = lim
j→∞
〈Bxj , wℓ〉〈Bwℓ , wℓ〉 = 〈Bx , wℓ〉〈Bwℓ , wℓ〉.

This proves (29) and onludes the proof. �

Proof of Proposition 3. Obviously, there holds U k+1 − U k ∈ Xk+1 as well as Galerkin

orthogonality

〈B(U k+1 −U k) , wj〉 = 0 for all j ≤ k.
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Reall the basis (wℓ)ℓ∈N0 from Lemma 4. The above orthogonality implies U k+1 −U k =
αk+1wk+1 for some αk+1 ∈ R and hene ι(U k+1 −U k) = αk+1ek+1 for some αk+1 ∈ R by

de�nition of ι. Due to (23), it holds

‖U k+1 −U k‖X = |αk+1|‖wk+1‖X ≃ |αk+1| = ‖ι(U k+1 −U k)‖ℓ2(N) for all k ∈ N0.
(31)

We have

(ι(U k+1)− ι(U k))j = 0 for all j 6= k + 1.

Furthermore, the representation (29) together with (1)�(3) imply for j ≤ k

ι(U k)j = 〈Bwj , wj〉〈BU k , wj〉 = 〈Bwj , wj〉〈Bu , wj〉 = ι(u)j.

This yields

(ι(u)− ι(U k+1))j = 0 for all 0 ≤ j ≤ k + 1.

Consequently, we see

〈ι(u)− ι(U k+1) , ι(U k+1)− ι(U k)〉ℓ2(N) = 0 for all k ∈ N.

This orthogonality proves the Pythagoras theorem

‖ι(u−U k+1)‖
2
ℓ2(N) + ‖ι(U k+1 −U k)‖

2
ℓ2(N) = ‖ι(u−U k)‖

2
ℓ2(N). (32)

With (31)�(32) and with the stability of ι : X → ℓ2(N), it follows
∞∑

k=ℓ

‖U k+1 −U k‖
2
X
≃

∞∑

k=ℓ

‖ι(U k+1 −U k)‖
2
ℓ2(N)

=

∞∑

k=ℓ

(
‖ι(u−U k)‖

2
ℓ2(N) − ‖ι(u−U k+1)‖

2
ℓ2(N)

)

≤ ‖ι(u−U ℓ)‖
2
ℓ2(N) . ‖u−U ℓ‖

2
X
.

This onludes the proof. �

2.2. Step 2: Redution to the symmetri ase. The redution step depends on the

onstrution of an equivalent operator, whih satis�es the laims of Proposition 3.

For the following proposition, reall the right-hand side f ∈ X ∗
and the operator B

from (15) as well as the solutions u and Uℓ from (1)�(3), resp. (17).

Proposition 7. Suppose the assumptions of Theorem 1. Then, there exists a Hilbert

spae X whih is a losed subspae of X × X and a sequene of nested subspaes Xℓ of

X suh that X =
⋃

ℓ∈N Xℓ and dim(Xℓ) + 1 = dim(Xℓ+1) for all ℓ ∈ N0. There exists

a symmetri operator B : X →X⋆
whih satis�es (20). Given f := (f,−f) the unique

solutions of (18)�(19) satisfy u := (u, u) ∈ X and U 2ℓ+1 := (Uℓ, Uℓ) ∈ X2ℓ+1 for all

ℓ ∈ N.

Proof. With the notation (15)�(17), onsider the transposed operator BT : X → X ⋆
,

BTv := b(·, v) and de�ne the symmetri part S := (B + BT )/2 as well as the antisym-

metri part A := (B−BT )/2. Obviously, there holds ST = S, AT = −A, and B = S+A.
With this, de�ne the symmetri operator B : X ×X → X ⋆ × X ⋆

as

B :=

(
S A
−A −S

)
.

7



By de�nition of f as well as of u, there holds

Bu = f . (33)

De�ne the subspaes Xℓ indutively for ℓ ∈ N by

X0 := span{(U0, 0)},

X2ℓ−1 := span(X2ℓ−2 ∪ {(0, Uℓ−1)},

X2ℓ := span(X2ℓ−1 ∪ {(Uℓ, 0)}.

Note that there holds dim(Xℓ) + 1 = dim(X ℓ+1) due to Remark 2. Consequently, de�ne

X :=
⋃

ℓ∈N

Xℓ.

Sine u = limℓ→∞ Uℓ, there also holds u ∈X.

To show that B satis�es (20), onsider for V = (V1, V2) and W = (W1,W2)

inf
V ∈Xℓ

sup
V ∈Xℓ

〈BV , W 〉

‖V ‖X‖W ‖X

= inf
V ∈Xℓ

sup
W∈Xℓ

〈SV1 , W1〉+ 〈AV2 , W1〉 − 〈AV1 , W2〉 − 〈SV2 , W2〉

‖V ‖X‖W ‖X

≥ inf
V ∈Xℓ

〈SV1 , V1〉+ 〈AV2 , V1〉+ 〈AV1 , V2〉+ 〈SV2 , V2〉

‖V ‖X‖(V1,−V2)‖X

= inf
V ∈Xℓ

〈SV1 , V1〉+ 〈SV2 , V2〉

‖V ‖2
X

.

Sine 〈Sv , v〉 = 〈Bv , v〉 ≥ C−1
2 ‖v‖

2
X , this implies

inf
V ∈Xℓ

sup
V ∈Xℓ

〈BV , W 〉

‖V ‖X‖W ‖X
≥ C−1

2 inf
V ∈Xℓ

‖V1‖
2
X + ‖V2‖

2
X

‖V ‖2
X

= C−1
2 > 0.

This implies (20b). The same arguments on X together with the ontinuity of B im-

ply (20a). Hene, the problems (18) and (19) allow for a unique solution. Sine (u, u) ∈ X

solves (18) and (Uℓ, Uℓ) ∈X2ℓ+1 solves (19), this onludes the proof. �

Proof of Theorem 1. The operator B and the onstruted spaes X and (Xℓ)ℓ∈N0 from

Proposition 7 satisfy all laims of Proposition 3. Reall that Proposition 7 states u =
(u, u) and U 2ℓ+1 = (Uℓ, Uℓ). Hene, Proposition 3 implies

∞∑

k=ℓ

‖Uk+1 − Uk‖
2
X ≤

∞∑

k=ℓ

‖U 2k+3 −U 2k+1‖
2
X

≤ 2
∞∑

k=ℓ

(
‖U 2k+3 −U 2k+2‖

2
X
+ ‖U 2k+2 −U 2k+1‖

2
X

)

=
∞∑

k=2ℓ+1

‖U k+1 −U k‖
2
X

. ‖u−U 2ℓ+1‖
2
X
≤ 2‖u− Uℓ‖

2
X .

This onludes the proof of Theorem 1. �
8



3. Abstrat optimality analysis

This setion builds the framework to apply the quasi-orthogonality result from the

previous setions and to thus analyze the onvergene and quasi-optimality of adaptive

mesh-re�ning algorithms for the problem lass stated in the introdution of Setion 1.

The outline of this setion is as follows: Algorithm 8 is the ommonly used formulation

of the adaptive loop (2). Under ertain assumptions (Assumption 10�11), whih are

later veri�ed for partiular model problems, onvergene with optimal algebrai rates is

shown (Theorem 14). The abstrat rate optimality analysis is �rst found in [CFPP13℄

and is realled here only for the onveniene of the reader and to underline the important

ontribution of Theorem 1.

The following formulation of the adaptive loop (2) iteratively generates triangulations

Tℓ, ℓ ∈ N, by loal re�nement of an initial onforming triangulation T0 of a d-dimensional

manifold with d ≥ 1 and hene orresponding disrete spaes Xℓ whih are supposed to

be nested and onforming, i.e. Xℓ ⊆ Xℓ+1 ⊆ X for all ℓ ∈ N0 (see Setion 3.1 for details).

Algorithm 8. Input: initial mesh T0, adaptivity parameter 0 < θ < 1, and ℓ = 0

(i) Compute solution Uℓ ∈ Xℓ of (3).

(ii) Compute error estimator ρℓ(T ) from (5) for all T ∈ Tℓ.
(iii) Determine a set of marked elements Mℓ ⊆ Tℓ with minimal ardinality whih

satis�es the Dör�er marking (6).

(iv) Re�ne the marked elements Tℓ+1 = refine(Tℓ,Mℓ) to obtain an enrihed spae

Xℓ+1 ⊇ Xℓ (see Setion 3.1 for details).

(v) Inrement ℓ← ℓ+ 1 and goto (i).

Output: sequene of error estimators (ρℓ)ℓ∈N and sequene of Galerkin solutions (Uℓ)ℓ∈N.

Remark 9. Note that the restrition to an exat solver in (i) is only to allow for a

onvenient presentation. As shown in [CFPP13, Setion 7℄, an approximate solver an

easily be integrated in the analysis.

3.1. Mesh re�nement. For d = 1, the bisetion algorithm from [AFF

+
13b℄ is used for

mesh re�nement. For d = 2 and d = 3, we use newest vertex bisetion, see e.g. [KPP13℄

(for d = 2) and [Ste08℄ (for d ≥ 3) as well as the referenes therein. Constrained by these

re�nement rules, we suppose that Tℓ+1 = refine(Tℓ,Mℓ) is the oarsest onforming

re�nement of Tℓ suh that all marked elements T ∈Mℓ have been biseted.

The notation T⋆ ∈ refine(Tℓ) denotes that there exists a sequene of marked element

sets M̃j, j = 1, . . . , N − 1 and a sequene of intermediate meshes T̃j , j = 1, . . . , N suh

that Tℓ = T̃0, T⋆ = T̃N , and T̃j+1 = refine(T̃j ;M̃j) for all j = 1, . . . , N − 1. We suppose

that eah re�nement T⋆ ∈ refine(T0) indues a disrete spae X⋆ := X (T⋆) ⊆ X suh

that X⋆ ⊇ Xℓ whenever T⋆ ∈ refine(Tℓ).
First, the hoie of these mesh-re�nement strategies guarantees that the meshes Tℓ

generated by Algorithm 8 are uniformly γ-shape regular, where γ > 0 depends only on

the initial mesh T0. For d = 1, this means

|T |

|T ′|
≤ γ for all neighbouring T, T ′ ∈ T0, (34a)

whereas for d ≥ 2, γ-shape regularity is understood as

diam(T )

|T |1/d
≤ γ for all T ∈ T0. (34b)

Here, | · | denotes the d-dimensional (surfae) measure.

9



Seond, it has �rst been observed in [BDD04℄ for 2D newest vertex bisetion that the

number #Tℓ of elements in Tℓ an be ontrolled by the number of marked elements, i.e.

#Tℓ −#T0 ≤ Cmesh

ℓ−1∑

j=0

#Mj, (35)

where Cmesh > 0 depends only on T0. While [BDD04℄ requires an additional assumption

on T0, this assumption has been removed in [KPP13℄, so that T0 is in fat an arbitrary

onforming triangulation. For d = 1, the estimate (35) is proved in [AFF

+
13b℄ for

a bisetion-based re�nement, where additional bisetions of non-marked elements are

required to ensure uniform γ-shape regularity (34a). For d ≥ 3, the result is proved

in [Ste08℄, but requires an admissibility ondition for the initial mesh T0.
Finally, for two triangulations Tℓ, T⋆ ∈ refine(T0), let Tℓ⊕T⋆ ∈ refine(Tℓ)∩refine(T⋆)

be the oarsest ommon re�nement of both Tℓ and T⋆. Then, Tℓ⊕T⋆ is in fat the overlay,

and it holds

#(Tℓ ⊕ T⋆) ≤ #Tℓ +#T⋆ −#T0, (36)

see [Ste07℄ for d = 2 and [CKNS08℄ for d ≥ 3 resp. [AFF

+
13b℄ for d = 1.

For any subset S ⊆ Tℓ of a mesh Tℓ, de�ne the path

ωℓ(S) :=
{
T ∈ Tℓ : exists T ′ ∈ S with T ∩ T ′ 6= ∅

}
. (37)

For simpliity, we write ωℓ(T ) instead of ωℓ({T}) for single elements T ∈ Tℓ.
De�ne the loal mesh-size funtion hℓ ∈ L∞(

⋃
Tℓ) by hℓ|T = |T |1/d for all T ∈ Tℓ.

By de�nition of the re�nement rules, there exists 0 < qref < 1, whih depends only on

d = 1, 2, 3, suh that

h⋆|T ′ ≤ qrefhℓ|T for all sons T ′ $ T, T ′ ∈ T⋆, T ∈ Tℓ. (38)

3.2. Optimal onvergene rates. To quantify the quality of the onvergene rate of

Algorithm 8, we introdue for all s > 0 the approximability quasi-norm

‖ρ‖As := sup
N∈N0

inf
T⋆∈refine(T0)
#T⋆−#T0≤N

(N + 1)sρ⋆.

The fat ‖ρ‖As < ∞ for a partiular s > 0 implies that the theoretially ahievable

onvergene rate of Algorithm 8 is at least

ρ̃ℓ . (#T̃ℓ −#T0)
−s

for all ℓ ∈ N,

if the optimal meshes T̃ℓ ∈ refine(T0) are hosen. Theorem 14 below states that this is,

in fat, asymptotially the ase for Algorithm 8 if the following Assumptions 10�11 hold.

Moreover, Theorem 14 states that the empirial onvergene rate of Algorithm 8, in fat,

haraterises those s > 0 for whih ‖ρ‖As <∞.

Assumption 10. There holds (i)�(iii):

(i) Any re�nement T⋆ ∈ refine(Tℓ) of Tℓ ∈ refine(T0) satis�es
∣∣∣
( ∑

T∈T⋆∩Tℓ

ρ⋆(T )
2
)1/2

−
( ∑

T∈Tℓ∩T⋆

ρℓ(T )
2
)1/2∣∣∣ ≤ Cstab ‖U⋆ − Uℓ‖X . (39)

(ii) Any re�nement T⋆ ∈ refine(Tℓ) of Tℓ ∈ refine(T0) satis�es
∑

T∈T⋆\Tℓ

ρ⋆(T )
2 ≤ qred

∑

T∈Tℓ\T⋆

ρℓ(T )
2 + Cred‖U⋆ − Uℓ‖

2
X . (40)
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(iii) Any re�nement T⋆ ∈ refine(Tℓ) of Tℓ ∈ refine(T0) satis�es disrete reliability

‖U⋆ − Uℓ‖
2
X ≤ C2

Rel

∑

T∈R(Tℓ,T⋆)

ρℓ(T )
2

(41)

with the augmented set of re�ned elements

R(Tℓ, T⋆) := ωℓ(Tℓ \ T⋆).

While the previous assumptions may not be neessary for the optimality proof (but

turn out to be su�ient), the following assumption is even neessary for plain onvergene

of Algorithm 8.

Assumption 11. Suppose that the given model problem onverges under uniform re-

�nement, i.e. for all ε > 0 exists a maximal mesh-width hε > 0 suh that all meshes

T⋆ ∈ refine(T0) with h⋆ ≤ hε pointwise almost everywhere satisfy

‖u− U⋆‖X ≤ ε

for the related Galerkin solution U⋆.

Remark 12. Assumption 11 is usually veri�ed via density arguments in ombination

with the Céa-type estimate (4) and a priori estimates of the type

‖u− Uℓ‖X . ‖u− v‖X + min
Vℓ∈Xℓ

‖v − Vℓ‖X . ‖u− v‖X +max
T∈Tℓ

(hℓ|T )
γ

for some γ > 0 whih depends on the regularity of the smooth approximation v.

Lemma 13. Suppose that Assumptions 10 and Assumption 11 hold. Then, the error

estimator ρℓ is reliable

‖u− Uℓ‖X ≤ CRelρℓ for all Tℓ ∈ refine(T0), (42)

satis�es the estimator redution

ρ2ℓ+1 ≤ qestρ
2
ℓ + Cest‖Uℓ+1 − Uℓ‖

2
X for all ℓ ∈ N0, (43)

and there holds onvergene

‖u− Uℓ‖X ≤ CRelρℓ → 0 as ℓ→∞ (44)

as well as the general quasi-orthogonality (13). The onstant 0 < qest < 1 depends only

on θ and qred. The onstant Cest > 0 depends on θ, qred, Cred, and Cstab.

Proof. As shown in [CFPP13, Lemma 3.3℄, disrete reliability (41) together with As-

sumption 11 implies reliability (42). Stability (39), redution (40), and Young's in-

equality (a + b)2 ≤ (1 + δ)a2 + (1 + δ−1)b2 for all a, b ∈ R and δ > 0 show with

Cest := (Cred + (1 + δ−1)C2
stab)

ρ2ℓ+1 ≤ qred
∑

T∈Tℓ\Tℓ+1

ρ2ℓ + (1 + δ)
∑

T∈Tℓ∩Tℓ+1

ρ2ℓ + (Cred + (1 + δ−1)C2
stab)‖Uℓ+1 − Uℓ‖

2
X

≤ (1 + δ)ρ2ℓ + (qred − 1− δ)
∑

T∈Tℓ\Tℓ+1

ρ2ℓ + Cest‖Uℓ+1 − Uℓ‖
2
X .

Dör�er marking (6) andMℓ ⊆ Tℓ \ Tℓ+1 imply

ρ2ℓ+1 ≤ (1 + δ − θ(1 + δ − qred))ρ
2
ℓ + Cest‖Uℓ+1 − Uℓ‖

2
X .

Su�iently small δ > 0 shows 0 < qest := 1 + δ − θ(1 + δ − qred) < 1. This proves (43).
The Céa lemma (4) together with nestedness Xℓ ⊆ Xℓ+1 and elementary alulus (as laid
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out, e.g., in [CFPP13, Setion 3.6℄) shows limℓ→∞ ρℓ = 0, and therefore reliability (42)

implies (44).

With onvergene (44), the laims of Theorem 1 are satis�ed. This implies the general

quasi-orthogonality (13) and onludes the proof. �

By means of the general quasi-orthogonality (13), the onvergene result (44) an

further be improved to obtain R-linear onvergene of the estimator (45). However, as

the validity of (13) depends on the muh weaker plain onvergene of the estimator (44),

it seems that (44) is a neessary intermediate result.

Theorem 14. Suppose that Assumptions 10�11 hold. Then, for all 0 < θ ≤ 1, there
exist onstants CR > 0 and 0 < qR < 1 suh that there holds R-linear onvergene of

Algorithm 8 in the sense

ρ2ℓ+k ≤ CR q
k
Rρ

2
ℓ for all ℓ, k ∈ N. (45)

For θ < θopt := (1 + C2
stabC

2
Rel)

−1
, Algorithm 8 onverges with the optimal rate in the

sense of

copt‖ρ‖As ≤ sup
ℓ∈N0

ρℓ(|Tℓ| − |T0|+ 1)s ≤ Copt‖ρ‖As (46)

for all s > 0. The onstants Copt, CR, qR > 0 depend only on θ and on the onstants from

Assumption 10, whereas Copt depends additionally on s. The onstant copt > 0 depends

only on d.

The proof of the above main result is postponed to Setion 8 and utilizes only the

quantities and estimates of Assumptions 10�11 and the general quasi-orthogonality (13).

Therefore, it is su�ient to prove eah of the assumptions separately for the onrete

appliations in Setion 5�7.

4. Appliation 1: Fem for linear seond-order PDEs

4.1. Model Problem and de�nitions. We onsider the model problem from [FFP12℄.

Given a Lipshitz domain Ω ⊆ Rd
for d = 2, 3, this setion onsiders the seond-order

ellipti PDE

Lu = f0 in Ω,

u = 0 on ∂Ω
(47)

with the non-symmetri linear operator

Lu := −div(A∇u) + b · ∇u+ cu. (48)

The given right-hand side satis�es f0 ∈ L2(Ω). Moreover, A = A(x) ∈ Rd×d
with

A ∈
(
W∞

1 (Ω)
)d×d

is a symmetri matrix, b = b(x) ∈ Rd
with b ∈

(
L∞(Ω)

)d
is a vetor,

and c = c(x) ∈ R with c ∈ L∞(Ω) is a salar. Here,W∞
1 (Ω) denotes the spae of Lipshitz

ontinuous funtions. This allows to write down the weak formulation of (47) as follows:

Find u ∈ X := H1
0 (Ω) :=

{
v ∈ H1(Ω) : v|Γ = 0 in the sense of traes

}
suh that

b(u, v) :=

∫

Ω

A∇u · ∇v + b · ∇u v + cuv dx = f(v) for all v ∈ H1
0 (Ω) (49)

with f(v) :=
∫
Ω
f0v dx. The assumptions on the given data guarantee the boundedness

of b(·, ·) in the natural norm ‖ · ‖X := ‖∇(·)‖L2(Ω). Moreover, we suppose the oe�ients

to be hosen suh that b(·, ·) is also ellipti in the sense

b(v, v) ≥ Cell‖v‖
2
X for all v ∈ X .
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Given an admissible triangulation T⋆ ∈ refine(T0) and a polynomial degree p ≥ 1, de�ne

Sp(T⋆) :=
{
V⋆ ∈ C(Ω) : V⋆|T is polynomial of degree ≤ p for all T ∈ T⋆

}
.

The disrete form of (49) is given by (3), where uniqueness and solvability are guaranteed

by the Lax-Milgram lemma. The orresponding weighted-residual error estimator reads

ρ2⋆ :=
∑

T∈T⋆

ρ⋆(T )
2
with ρ⋆(T )

2 := |T |2/d‖L|TU⋆ − f‖
2
L2(T ) + |T |

1/d‖[A∇U⋆ · n]‖
2
L2(∂T∩Ω).

Here, [·] denotes the jump over ∂T , and n denotes the outer unit normal vetor of eah

element T ∈ T⋆.

4.2. Proof of Assumptions 10�11.

Proof of Assumptions 10. The proof of (i)�(ii) is part of the proof of [FFP12, Lemma 2℄ or

in di�erent notation also in [CKNS08, Corollary 3.4℄. The disrete reliability (iii) follows

as for the symmetri ase b = 0 with R(Tℓ, T⋆) = Tℓ \ T⋆, see e.g. [CKNS08, Lemma 3.6℄.

The onstants Cstab, Cred, qred, CRel depend only on the domain Ω, the oe�ients of L
the γ-shape regularity of Tℓ and T⋆ as well as on the polynomial degree p. �

Proof of Assumptions 11. Let ε > 0. By density, �nd a funtion v ∈ C∞(Ω) ∩ H1
0 (Ω)

suh that

‖u− v‖X ≤ ε.

The Céa lemma (4) together with the standard nodal approximation result proves

‖u− U⋆‖X . ‖u− v‖X + min
V⋆∈X⋆

‖v − V⋆‖X . ε+ ‖h⋆‖L∞(Ω)‖D
2v‖L2(Ω) ≤ 2ε

for su�iently �ne meshes T⋆ ∈ refine(T0). �

Consequene 15. The adaptive �nite element disretization of (47) in Algorithm 8

onverges with optimal rates in the sense of Theorem 14.

5. Appliation 2: Non-symmetri Johnson-Nédéle FEM/BEM-oupling

5.1. Model problem and de�nitions. Given a Lipshitz domainΩ ⊆ Rd
for d ∈ {2, 3},

this setion onsiders a FEM-BEM reformulation of the linear Laplae-type transmission

problem

−div(A∇uint) = f0 in Ω,

−∆uext = 0 in Rd \ Ω,

uint − uext = u0 on Γ := ∂Ω,

(A∇uint) · n− ∂nu
ext = φ0 on Γ,

(50a)

where f0 ∈ L2(Ω), u0 ∈ H1(Γ), φ0 ∈ L2(Γ), A ∈ W 1,∞(Ω) with A(x) ∈ Rd×d
being

a symmetri matrix, and the normal derivative ∂n(·) is understood with respet to the

outer unit normal vetor n on Γ. Let 0 < cK < 1 denote the ontration onstant of

the double layer potential K de�ned below, see e.g. [Ste11℄. We suppose that there exist

cK/4 < λmin ≤ λmax < ∞ suh that there holds λmin ≤ A(x) ≤ λmax for all x ∈ Ω in

the sense that the eigenvalues of A(x) are bounded from below and from above. The

uniqueness of the solution is guaranteed via the following radiation ondition

uext = O(|x|−1) as |x| → ∞, (50b)

whih requires the ompatibility ondition

∫
Ω
f dx +

∫
Γ
φ0 ds = 0 for d = 2. Moreover,

we assume diam(Ω) < 1 for d = 2.
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The presene of the unbounded domain Rd \Ω motivates the use of boundary elements

for the exterior problem. One possible formulation is known as the one-equation ou-

pling of Johnson and Nédéle [JN80℄ and employs the simple-layer integral operator V :
H−1/2(Γ)→ H1/2(Γ) as well as the double layer integral operator K : H1/2(Γ)→ H1/2(Γ)
whih are formally de�ned via the Newton kernel

G(z) :=

{
− 1

2π
log |z|, d = 2,

1
4π
|z|−1, d = 3,

(51a)

as

(Vφ)(x) :=

∫

Γ

G(x− y)φ(y) dy and (Kg)(x) :=

∫

Γ

∂n(y)G(x− y)g(y) dy (51b)

for all x ∈ Γ. With these operators, (50) is equivalently reformulated as follows: Find

u := (uint, φ) ∈ X := H1(Ω)×H−1/2(Γ) suh that

b(u, v) = f̃(v) for all v := (vint, ψ) ∈ X , (52)

where the bilinear form reads

b(u, v) := 〈A∇uint , ∇vint〉L2(Ω) + 〈φ , v
int〉L2(Γ) + 〈ψ , (

1
2
− K)uint〉L2(Γ) + 〈ψ , Vφ〉L2(Γ)

and the right-hand side is de�ned by

f(v) := 〈f0 , v
int〉L2(Ω) + 〈φ0 , v

int〉L2(Γ) + 〈ψ , (
1
2
− K)u0〉L2(Γ).

The two formulations (50) and (52) are linked as follows: Given (uint, uext), there holds

∂nu
ext = φ. Given u = (uint, φ), the exterior solution is available via the representation

formula uext := K̃uint− Ṽφ. Here, Ṽ and K̃ denote the integral operators from (51b), but

are now evaluated in Rd \ Ω.
We onsider the natural norm on the produt spae X = H1(Ω)×H−1/2(Γ)

‖v‖2X := ‖vint‖2H1(Ω) + ‖ψ‖
2
H−1/2(Γ) for all v = (vint, ψ) ∈ X .

Given an admissible triangulation T⋆ ∈ refine(T0) of Ω, de�ne

Pp−1(T⋆|Γ) :=
{
Ψ⋆ ∈ L

2(Γ) : Ψ⋆|T∩Γ polynomial of degree ≤ p− 1 for all T ∈ T⋆
}
.

With this, the disrete analogue of (52) reads: Find U⋆ := (U int
⋆ ,Φ⋆) ∈ X⋆ := Sp(T⋆) ×

Pp−1(T⋆|Γ) suh that

b(U⋆, V⋆) = f(V⋆) for all V⋆ := (V int
⋆ ,Ψ⋆) ∈ X⋆. (53)

Note that b((1, 0), (1, 0)) = 0, so that b(·, ·) is not ellipti and unique solvability is thus

not obvious. The solvability of (52) and (53) were �rstly proved for smooth boundaries Γ
in [JN80℄. For polyhedral boundaries, the ase was open until [Say09℄. Inspired by [Ste11,

Say09℄, the reent work [AFF

+
13a℄ uses a novel tehnique to generalize the available

results and prove unique solvability even for strongly monotone operators. The residual-

based error estimator (see e.g. [AFP12,AFF

+
13a℄ for the derivation) reads elementwise

for all T ∈ T⋆

ρ⋆(T )
2 := diam(T )2‖f0 + div(A∇U int

⋆ )‖2L2(T ) + diam(T )‖[(A∇U int
⋆ ) · n]‖2L2(∂T∩Ω)

+ diam(T )‖φ0 + Φ⋆ − (A∇U int
⋆ ) · n‖2L2(∂T∩Γ)

+ diam(T )‖∇Γ((
1
2
− K)(u0 − U

int
⋆ )−VΦ⋆)‖

2
L2(∂T∩Γ),
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where [·] denotes the jump over interior edges of T⋆ and n is the outer unit normal vetor

of eah element T ∈ T⋆. Note that the exterior problem a�ets the estimator only on

elements T ∈ T⋆ with T ∩ Γ 6= ∅. The overall estimator reads

ρ⋆ :=
( ∑

T∈T⋆

ρ⋆(T )
2
)1/2

for all T⋆ ∈ refine(T0).

5.2. Proof of Assumptions 10�11. The method of impliit stabilization from [AFF

+
13a℄

introdues an equivalent problem

b̃(u, v) := b(u, v) + 〈1 , (1
2
− K)uint +Vφ〉L2(Γ)〈1 , (

1
2
− K)vint +Vψ〉L2(Γ),

f̃(v) := f(v) + 〈1 , (1
2
− K)u0〉L2(Γ).

(54)

The bilinear form b̃(·, ·) is ellipti (see [AFF+
13a, Theorem 14℄ for a proof) in the sense

of

b̃(v, v) ≥ C−1
2 ‖v‖

2
X for all v = (vint, ψ) ∈ X , (55)

and the solutions u, U⋆ of (52) and (53) satisfy for all T⋆ ∈ refine(T0)

b̃(u, v) = f̃(v) for all v ∈ X and b̃(U⋆, V⋆) = f̃(V⋆) for all V⋆ ∈ X⋆.

Thus, (54) serves as an equivalent reformulation of (52) with the additional property that

b̃(·, ·) is strongly ellipti and hene �ts in the frame of the Lax-Milgram lemma outlined

in the introdution of Setion 1. Hene, we prove Assumption 10 for the equivalent

formulation (54).

Proof of Assumption 10 (i)�(ii). The statements (i) and (ii) are part of the proof of [AFF

+
13a,

Theorem 25℄ and follow from the triangle inequality and loal inverse estimates for the

non-loal operators V and K from [AFF

+
12℄. The onstants Cstab, Cred, qred depend only

on Γ, the polynomial degree p, the γ-shape regularity of Tℓ and T⋆, and on A. �

Proof of Assumption 10 (iii). The proof is essentially the ombination of the orrespond-

ing proofs for FEM in [Ste07,CKNS08℄ and BEM in [FKMP13℄. There holds with ellip-

tiity [AFF

+
13a, Theorem 14℄ and V⋆ = (V int

⋆ ,Ψ⋆) := U⋆ − Uℓ ∈ X⋆

‖U⋆ − Uℓ‖
2
X . b̃(U⋆ − Uℓ, V⋆) = b(U⋆ − Uℓ, V⋆)

= f(V⋆ − Vℓ)− b(Uℓ, V⋆ − Vℓ) for all Vℓ ∈ Xℓ.

Reall the Sott-Zhang operator Jℓ : H
1(Ω) → Sp(Tℓ) from [SZ90℄ as well as the L2(Γ)-

orthogonal projetion Πℓ : L
2(Γ)→ Pp−1(Tℓ|Γ). With this, de�ne

Vℓ := (JℓV
int
⋆ ,ΠℓΨ⋆) ∈ Xℓ.

This implies

‖U⋆ − Uℓ‖
2
X . 〈f0 , (1− Jℓ)V

int
⋆ 〉L2(Ω) − 〈A∇U

int
ℓ , ∇(1− Jℓ)V

int
⋆ 〉L2(Ω)

+ 〈φ0 − Φℓ , (1− Jℓ)V
int
⋆ 〉L2(Γ)

+ 〈(1− Πℓ)Ψ⋆ , (
1
2
− K)(u0 − U

int
ℓ )−VΦℓ〉L2(Γ).

(56)
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Tℓ-pieewise integration by parts shows

〈f0 , (1− Jℓ)V
int
⋆ 〉L2(Ω) − 〈A∇U

int
ℓ , ∇(1− Jℓ)V

int
⋆ 〉L2(Ω) + 〈φ0 − Φℓ , (1− Jℓ)V

int
⋆ 〉L2(Γ)

.
∑

T∈Tℓ

‖f0 + div(A∇U int
ℓ )‖L2(T )‖(1− Jℓ)V

int
⋆ ‖L2(T )

+
∑

T∈Tℓ

(
‖[(A∇U int

ℓ ) · n]‖L2(∂T∩Ω)

+ ‖φ0 − Φℓ − (A∇U int
ℓ ) · n‖L2(∂T∩Γ)

)
‖(1− Jℓ)V

int
⋆ ‖H1/2(T ).

Sine all T ∈ Tℓ with T /∈ ωℓ(Tℓ \T⋆) satisfy ((1−Jℓ)V
int
⋆ )|T = 0 (This is an be improved

to Tℓ ∩ T⋆ as shown in [CKNS08,FFK

+
13b℄. However, the improvement is not neessary

here and therefore omitted.) and by use of the �rst-order approximation properties of Jℓ,
the above estimate implies

〈f0 , (1− Jℓ)V
int
⋆ 〉L2(Ω) − 〈A∇U

int
ℓ , ∇(1− Jℓ)V

int
⋆ 〉L2(Ω) + 〈φ0 − Φℓ , (1− Jℓ)V

int
⋆ 〉L2(Γ)

.
∑

T∈ωℓ(Tℓ\T⋆)

(
diam(T )‖f0 + div(A∇U int

ℓ )‖L2(T ) + diam(T )1/2‖[(A∇U int
ℓ ) · n]‖L2(∂T∩Ω)

+ diam(T )1/2‖φ0 − Φℓ − (A∇U int
ℓ ) · n‖L2(∂T∩Γ)

)
‖∇V int

⋆ ‖L2(T ), (57)

where the hidden onstant depends only on γ-shape regularity of Tℓ and Ω. Consider a

partition of unity of Γ in the sense

∑

z∈Γ
z node of Tℓ

ξz = 1 on Γ

with the nodal hat funtions ξz ∈ P
1(Tℓ|Γ) ∩ C(Γ) whih satisfy ξz(z

′) = δz,z′ for all

boundary nodes z′ ∈ Γ of Tℓ with Kroneker's δz,z′. Sine (1−Πℓ)Ψ⋆ = 0 on Tℓ ∩ T⋆, the
last term on the right-hand side of (56) satis�es

〈(1− Πℓ)Ψ⋆ , (
1
2
− K)(u0 − U

int
ℓ )−VΦℓ〉L2(Γ)

= 〈(1−Πℓ)Ψ⋆ ,
∑

z∈
⋃
(Tℓ\T⋆)∩Γ

z node of Tℓ

ξz
(
(1
2
− K)(u0 − U

int
ℓ )−VΦℓ

)
〉L2(Γ).

The fat 〈1 , (1
2
− K)(u0 − U int

ℓ ) − VΦℓ〉L2(T∩Γ) = 0 for all T ∈ Tℓ allows to follow the

arguments of the proof of [FKMP13, Proposition 5.3℄ resp. [FFK

+
13a, Proposition 4℄.

This shows

〈(1−Πℓ)Ψ⋆ , (
1
2
− K)(u0 − U

int
ℓ )−VΦℓ〉L2(Γ) (58)

.
( ∑

T∈ωℓ(Tℓ\T⋆)

diam(T )1/2‖∇Γ

(
(1
2
− K)(u0 − U

int
ℓ )−VΦℓ

)
‖L2(T∩Γ)

)
‖Ψ⋆‖H−1/2(Γ).

The ombination of (57)�(58) with (56) onludes the proof of the disrete reliability (41).

The onstant CRel depends only on Γ, the oe�ient matrix A, the γ-shape regularity of

Tℓ and T⋆, and the polynomial degree p. �

Proof of Assumption 11. The proof follows with the same arguments as in Setion 4. �

Consequene 16. Algorithm 8 for the Johnson-Nédéle formulation of FEM-BEM ou-

pling onverges with optimal rates in the sense of Theorem 14.
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6. Appliation 3. Symmetri FEM/BEM-oupling

6.1. Model problem and de�nitions. As in the previous setion, we onsider the

transmission problem (50). To state the so-alled symmetri oupling, de�ne the hyper-

singular integral operator W : H1/2(Γ)→ H−1/2(Γ) formally as

Wφ(x) := −∂n(x)

∫

Γ

∂n(y)G(x− y)φ(y) dy.

With this, (50) reformulates as: Find u := (uint, φ) ∈ X := H1(Ω)×H−1/2(Γ) suh that

b(u, v) = f(v) for all v := (vint, ψ) ∈ X , (59)

where the bilinear form reads

b(u, v) := 〈A∇uint , ∇vint〉L2(Ω) + 〈(K
′ − 1

2
)φ , vint〉L2(Γ) + 〈Wuint , vint〉L2(Γ)

+ 〈ψ , (1
2
− K)uint〉L2(Γ) + 〈ψ , Vφ〉L2(Γ)

and the right-hand side is de�ned by

f(v) := 〈f0 , v
int〉L2(Ω) + 〈φ0 +Wu0 , v

int〉L2(Γ) + 〈φ0 , v
int〉L2(Γ) + 〈ψ , (

1
2
− K)u0〉L2(Γ).

The two formulations (50) and (59) are linked as for the Johnson-Nédéle oupling from

Setion 5, and the spae X is equipped with the same norm.

The disretization of (59) is straightforward. Given a triangulation T⋆ ∈ refine(T0)
and a polynomial degree p ≥ 1: Find U⋆ := (U int

⋆ ,Φ⋆) ∈ X⋆ := S
p(T⋆)× P

p−1(T⋆|Γ)

b(U⋆, V⋆) = f(V⋆) for all V⋆ := (V int
⋆ ,Ψ⋆) ∈ X⋆. (60)

The solvability of (59) and (60) were �rstly proved in [Cos88℄. The reent work [AFF

+
13a℄

uses the impliit stabilization tehnique to give a muh simpli�ed version of the proof.

The residual-based error estimator (see e.g. [CS95,AFF

+
13a℄ for a reliability proof) reads

elementwise for all T ∈ T⋆

ρ⋆(T )
2 := diam(T )2‖f + div(A∇U int

⋆ )‖2L2(T ) + diam(T )‖[(A∇U int
⋆ ) · n]‖2L2(∂T∩Ω)

+ diam(T )‖φ0 − (K′ − 1
2
)Φ⋆ −W(U int

⋆ − u0)− (A∇U int
⋆ ) · n‖2L2(∂T∩Γ)

+ diam(T )‖∇Γ((
1
2
− K)(u0 − U

int
⋆ )−VΦ⋆)‖

2
L2(∂T∩Γ).

and hene

ρ⋆ :=
( ∑

T∈T⋆

ρ⋆(T )
2
)1/2

for all T⋆ ∈ refine(T0).

As above [·] denotes the jump over interior edges of T⋆, and n is the outer unit normal

vetor of eah element T ∈ T⋆.

6.2. Proof of Assumption 10�11. The proof of Assumption 10�11 is very similar to

that of the previous setion and therefore omitted.

Consequene 17. Algorithm 8 for the symmetri formulation of FEM-BEM oupling

onverges with optimal rates in the sense of Theorem 14.
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7. Appliation 4: BEM for mixed boundary value problems

7.1. Model problem and de�nitions. Given a Lipshitz domain Ω ⊂ R2
and relatively

open, disjoint boundary parts ΓD∪ΓN = ∂Ω, onsider the mixed boundary value problem

−∆w = 0 in Ω,

w = uD on ΓD,

∂nw = φN on ΓN ,

(61)

where (uD, φN) ∈ H1(ΓD) × L2(ΓN ) are given boundary data and the sought solution

satis�es u ∈ H1(Ω). The Dirihlet boundary is non-trivial |ΓD| > 0 and for d = 2, the
domain satis�es diam(Ω) < 1. For the boundary integral formulation of (61), let uD ∈
H1/2(Γ) and φN ∈ H

−1/2(Γ) be arbitrary extensions of the given data from ΓD resp. ΓN to

the whole boundary ∂Ω. De�ne the spaes H̃1/2(ΓN ) :=
{
v ∈ H1/2(∂Ω) : supp(v) ⊆ ΓN

}

and H̃−1/2(ΓD) := H1/2(ΓD)
∗
. With this, the so-alled symmetri formulation reads: Find

u := (uN , φD) ∈ X := H̃1/2(ΓN)× H̃
−1/2(ΓD) suh that

(
WNN K

′
DN

−KND VDD

)(
uN
φD

)
=

(
−W 1/2− K

′

1/2 + K −V

)(
uD
φN

)
, (62)

with VDD : H̃−1/2(ΓD)→ H1/2(ΓD), KND : H̃1/2(ΓN)→ H1/2(ΓD), K
′
DN : H̃−1/2(ΓD)→

H−1/2(ΓN ), and WNN : H̃1/2(ΓN) → H−1/2(ΓN) denoting the boundary integral op-

erators V,K,W and the adjoint K
′ ∈ L(H−1/2(∂Ω), H−1/2(∂Ω)) restrited to the re-

spetive boundary parts ΓD,ΓN ⊆ Γ. The formulations (61) and (62) are linked as

follows: Given the solution w ∈ H1(Ω) from (61), uN := w − uD ∈ H̃1/2(ΓN) and

φD := ∂nw−φN ∈ H̃
−1/2(ΓD) solve (62). Given the solution u = (uN , φD) ∈ X from (62),

the representation formula provides a solution of (61), i.e.

w = Ṽ(φD + φN)− K̃(uD + uN).

Here, Ṽ and K̃ formally denote the integral operators from (51), but now they are eval-

uated in Ω.
This motivates the de�nition of the following bilinear form for all u = (uN , φD), v :=

(vN , ψD) ∈ X

b(u, v) := 〈WNNuN + K
′
DNφD , vN〉L2(ΓN ) + 〈VDDφD − KNDuN , ψD〉L2(ΓD). (63)

Obviously, the bilinear form is ellipti with

b(v, v) = 〈WNNvN , vN 〉L2(ΓN ) + 〈VDDψD , ψD〉L2(ΓD)

≃ ‖vN‖
2
H̃1/2(ΓN )

+ ‖ψD‖
2
H̃−1/2(ΓD)

=: ‖v‖2X for all v ∈ X
(64)

and �ts in the frame of the Lax-Milgram lemma. This guarantees uniqueness and solv-

ability of

b(u, v) = f(v) for all v ∈ X (65)

with

f(v) := 〈−WuD + (1/2− K
′)φN , vN〉L2(ΓN ) + 〈(1/2 + K)uD −VφN , ψD〉L2(ΓD).

The disretization of (65) is straightforward. Suppose a triangulation T⋆ ∈ refine(T0).

With the spline spae Sp+1
0 (T⋆|ΓN

) := Sp+1(T⋆|ΓN
) ∩ H̃1/2(ΓN), let X⋆ := Sp+1

0 (T⋆|ΓN
) ×

Pp(T⋆|ΓD
), and �nd U⋆ := (U⋆,N ,Φ⋆,D) ∈ X⋆ suh that all V⋆ := (V⋆,N ,Ψ⋆,D) ∈ X⋆ satisfy

b(U⋆, V⋆) = f(V⋆). (66)
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The weighted-residual error estimator reads elementwise for all T ∈ T⋆

ρ⋆(T )
2 := diam(T )‖WNNU⋆,N + K

′
DNΦ⋆,D +WuD − (1/2− K

′)φN‖
2
L2(T∩ΓN )

+ diam(T )‖∇(VDDΦ⋆,D − KNDU⋆,N − (1/2 + K)uD +VφN)‖
2
L2(T∩ΓD)

and

ρ⋆ :=
( ∑

T∈T⋆

ρ⋆(T )
2
)1/2

for all T⋆ ∈ refine(T0).

This follows from the ombination of the respetive proofs for the weakly-singular integral

equation [CMS01℄ and the hyper-singular integral equation [CMPS04℄. Moreover, we refer

to the proof of Assumption 10 (iii) below, where the main arguments of the derivation

are reused.

7.2. Proof of Assumption 10�11.

Proof of Assumption 10 (i)�(ii). Let Tℓ denote a triangulation and let T⋆ denote an ar-

bitrary re�nement. With the triangle inequality and h⋆ = hℓ on ω :=
⋃
(T⋆ ∩ Tℓ) ⊆ ∂Ω,

it holds

∣∣∣
( ∑

T∈T⋆∩Tℓ

ρ⋆(T )
2
)1/2

−
( ∑

T∈Tℓ∩T⋆

ρℓ(T )
2
)1/2∣∣∣

. ‖h1/2⋆

(
WNN(U⋆,N − Uℓ,N) + K

′
DN(Φ⋆,D − Φℓ,D)

)
‖L2(ω)

+ ‖h1/2⋆ ∇
(
VDD(Φ⋆,D − Φℓ,D)− KND(U⋆,N − Uℓ,N)

)
‖L2(ω)

. RHS := ‖h1/2⋆

(
WNN(U⋆,N − Uℓ,N)

)
‖L2(ΓN ) + ‖h

1/2
ℓ

(
K

′
DN(Φ⋆,D − Φℓ,D)

)
‖L2(ΓD)

+ ‖h1/2⋆ ∇
(
VDD(Φ⋆,D − Φℓ,D)‖L2(ΓD) + ‖h

1/2
ℓ ∇

(
KND(U⋆,N − Uℓ,N)

)
‖L2(ΓN ).

The inverse estimates from [AFF

+
12℄ show

RHS . ‖U⋆,N − Uℓ,N‖H̃1/2(ΓN ) + ‖Φ⋆,D − Φℓ,D‖H̃−1/2(ΓD) ≃ ‖U⋆ − Uℓ‖X . (67)

This onludes the proof of (i). The onstant Cstab depends only on ΓN and ΓD, the

γ-shape regularity of Tℓ and T⋆, and the polynomial degree p.
For the proof of (ii), the mesh size redution (38) is exploited. It holds h⋆ ≤ qrefhℓ on

ω :=
⋃
(Tℓ\T⋆) =

⋃
(T⋆\Tℓ). Hene, the same arguments as above and Young's inequality

(a+ b)2 ≤ (1 + δ)a2 + (1 + δ−1)b2 for all a, b ∈ R and δ > 0 show

∑

T∈T⋆\Tℓ

ρ⋆(T )
2 ≤ (1 + δ)

(
‖h1/2⋆

(
WNNUℓ,N + K

′
DNΦℓ,D +WuD − (1/2− K

′)φN

)
‖2L2(ω)

+ ‖h1/2⋆ ∇(VDDΦℓ,D − KNDUℓ,N − (1/2 + K)uD +VφN)‖
2
L2(ω)

)

+ (1 + δ−1) RHS2

≤ (1 + δ)qref
∑

T∈Tℓ\T⋆

ρℓ(T )
2 + (1 + δ−1) RHS2.

Su�iently small δ > 0 and (67) onlude the proof of (ii). The onstant Cred depends

only on ΓN and ΓD, the γ-shape regularity of Tℓ and T⋆, and the polynomial degree p. �

Proof of Assumption 10 (iii). Elliptiity (64) and Galerkin orthogonality show for all

Vℓ ∈ Xℓ

‖U⋆ − Uℓ‖
2
X ≃ b(U⋆ − Uℓ, U⋆ − Uℓ − Vℓ) = b(u− Uℓ, U⋆ − Uℓ − Vℓ).
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With the Sott-Zhang projetion Jℓ : H̃1/2(ΓN) → Sp+1(Tℓ|ΓN
) (see [AFF

+
13, Se-

tion 3.2℄ for the de�nition and disussion on H̃1/2(ΓN), sine the original onstru-

tion [SZ90℄ requires H1/2+ε
regularity for some ε > 0) and the L2

-orthogonal projetion

Πℓ : L
2(ΓD)→ P

p(Tℓ|ΓD
), de�ne

Vℓ := (Jℓ(U⋆,N − Uℓ,N),Πℓ(Φ⋆,D − Φℓ,D)) ∈ Xℓ.

This implies

‖U⋆ − Uℓ‖
2
X ≃ 〈WNN (uN − Uℓ,N) + K

′
DN(φD − Φℓ,D) , (1− Jℓ)(U⋆,N − Uℓ,N)〉L2(ΓN ) (68)

+ 〈VDD(φD − Φℓ,D)− KND(uN − Uℓ,N) , (1−Πℓ)(Φ⋆,D − Φℓ,D)〉L2(ΓD).

There holds (1 − Jℓ)(U⋆,N − Uℓ,N) = 0 in Tℓ \ ωℓ(T⋆ \ Tℓ) and (1 − Πℓ)(Φ⋆,D − Φℓ,D) = 0
in Tℓ ∩ T⋆. The �rst term on the right-hand side of (68) is estimated as in [FFK

+
13b℄.

Sine there also holds

〈VDD(φD − Φℓ,D)− KND(uN − Uℓ,N) , 1〉L2(T ) = 0 for all T ∈ Tℓ|ΓD
,

the estimate for the seond term on the right-hand side of (68) follows with the arguments

from [FKMP13℄ for p = 0 resp. [FFK

+
13a℄ for general p ≥ 0. This onludes the proof.

The onstant CRel depends only on ΓN and ΓD, the γ-shape regularity of Tℓ and T⋆ and
the polynomial degree p. �

Proof of Assumption 11. The proof follows with the same arguments as in Setion 4. �

Consequene 18. Algorithm 8 for the symmetri boundary element formulation of some

mixed boundary value problem onverges with optimal rates in the sense of Theorem 14.

8. Proof of Theorem 14

For this setion, assume that Assumptions 10�11 hold for a given model problem with

error estimator ρ(·).

Proposition 19. For any θ < θopt := (1 + C2
stabC

2
Rel)

−1
, there exists 0 < κopt < 1 suh

that all T⋆ ∈ refine(Tℓ) satisfy the impliation

ρ2⋆ ≤ κoptρ
2
ℓ =⇒ θρ2ℓ ≤

∑

T∈R(Tℓ,T⋆)

ρℓ(T )
2. (69)

Proof. Reall Young's inequality (a + b)2 ≤ (1 + δ)a2 + (1 + δ−1)b2 for all a, b ∈ R and

δ > 0. The stability (39) shows

ρ2ℓ =
∑

T∈Tℓ∩T⋆

ρℓ(T )
2 +

∑

T∈Tℓ\T⋆

ρℓ(T )
2

≤ (1 + δ)
∑

T∈T⋆∩Tℓ

ρ⋆(T )
2 +

∑

T∈Tℓ\T⋆

ρℓ(T )
2 + (1 + δ−1)C2

stab‖U⋆ − Uℓ‖
2
X .

The assumption ρ2⋆ ≤ κρ2ℓ together with disrete reliability (41) implies

ρ2ℓ ≤ (1 + δ)κρ2ℓ + (1 + (1 + δ−1)C2
stabCRel)

∑

T∈R(Tℓ,T⋆)

ρℓ(T )
2

and rearrangement of the terms proves θρ2ℓ ≤
∑

T∈R(Tℓ,T⋆)
ρℓ(T )

2
for all

0 ≤ θ < θ(κ) := sup
δ>0

1− (1 + δ)κ

1 + (1 + δ−1)C2
stabC

2
Rel

.
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For eah θ < θopt, there exist δ, κ > 0 suh that

θ <
1− (1 + δ)κ

1 + (1 + δ−1)C2
stabC

2
Rel

<
1

1 + C2
stabC

2
Rel

= θopt

and hene θ < θ(κ). This onludes the proof. �

The de�nition of the approximability quasi-norm ‖ρ‖As allows to �nd optimal meshes,

whih ompare with the adaptively generated meshes. This is stated in the following

lemma.

Lemma 20. Let 0 < κopt < 1 and let s > 0 suh that ‖ρ‖As < ∞. For all meshes Tℓ,
there exists a re�nement T⋆ ∈ refine(Tℓ) with

ρ2⋆ ≤ κoptρ
2
ℓ and #T⋆ −#Tℓ + 1 ≤ C6‖ρ‖

1/s
As
ρ
−1/s
ℓ . (70)

The onstant C6 > 0 depends only on Cstab, Cred, CRel, κopt, and s > 0.

Proof. Stability (39), redution (40), and disrete reliability (41) prove for all re�nements

T+ ∈ refine(Tℓ)

ρ2+ ≤ 2ρℓ + 2(C2
stab + Cred)‖U+ − Uℓ‖

2
X ≤ (2 + 2(C2

stab + Cred)C
2
Rel)ρ

2
ℓ . (71)

De�ne the onstant Cmon := (2 + 2(C2
stab + Cred)C

2
Rel)

1/2
. Arguing as e.g. in [CFPP13,

Ste07,CKNS08℄, �nd a mesh T+ ∈ refine(T0) whih satis�es

#T+ −#T0 + 1 . ‖ρ‖
1/s
As
ρ
−1/s
ℓ and ρ2+ ≤ C−2

monκoptρ
2
ℓ .

De�ne T⋆ := Tℓ ⊕ T+ and use the overlay estimate (36) to verify

#T⋆ −#Tℓ + 1 ≤ #T+ −#T0 + 1 . ‖ρ‖
1/s
As
ρ
−1/s
ℓ .

Sine T⋆ ∈ refine(T+), the quasi-monotoniity (71) shows

ρ2⋆ ≤ C2
monρ

2
+ ≤ κoptρ

2
ℓ .

This onludes the proof. �

Proof of Theorem 14. To see linear onvergene (45), apply the estimator redution (43)

for ℓ, N ∈ N
ℓ+N∑

j=ℓ+1

ρ2j ≤ qest

ℓ+N∑

j=ℓ+1

ρ2j−1 + Cest

ℓ+N∑

j=ℓ+1

‖Uj − Uj−1‖
2
X .

The general quasi-orthogonality (13) and reliability (42) show

(1− qest)
ℓ+N∑

j=ℓ+1

ρ2j ≤ qestρ
2
ℓ + CestC1‖u− Uℓ‖

2
X ≤ (qest + CestC1C

2
rel)ρ

2
ℓ .

Sine the involved onstants do not depend on N ∈ N, there holds with CR := 1+ (qest +
CestC1C

2
rel)/(1− qest) > 1

∞∑

j=ℓ

ρ2j ≤ CRρ
2
ℓ .

This and mathematial indution on k ∈ N show

∞∑

j=ℓ+k

ρ2j =
( ∞∑

j=ℓ+k−1

ρ2j

)
− ρ2ℓ+k−1 ≤ (1− C−1

R )

∞∑

j=ℓ+k−1

ρ2j ≤ . . . ≤ (1− C−1
R )k

∞∑

j=ℓ

ρ2j ,

21



whih implies immediately

ρ2ℓ+k ≤ CR(1− C
−1
R )kρ2ℓ .

This onludes the proof of (45) with 0 < qR := (1− C−1
R ) < 1.

The optimality statement (46) follows as a onsequene. Choose κopt > 0 su�iently

small suh that the impliation (69) holds true. Given Tℓ, Lemma 20 provides a mesh

T⋆ ∈ refine(Tℓ) with (70). Therefore, Proposition 19 implies that Tℓ \ T⋆ satis�es the

Dör�er marking (6). SineMℓ is a set of minimal ardinality whih satis�es the Dör�er

marking (6), there holds

#Mℓ + 1 ≤ #(Tℓ \ T⋆) + 1 ≤ #T⋆ −#Tℓ + 1 ≤ C6‖ρ‖
1/s
As
ρ
−1/s
ℓ .

This and the mesh losure estimate (35) imply

#Tℓ −#T0 + 1 .

ℓ−1∑

j=0

(#Mj + 1) . ‖ρ‖
1/s
As

ℓ−1∑

j=0

ρ
−1/s
j .

The R-linear onvergene (45) together with the onvergene of the geometri series show

#Tℓ −#T0 + 1 . ‖ρ‖
1/s
As
ρ
−1/s
ℓ C

−1/s
R

ℓ−1∑

j=0

q
(ℓ−j)/s
R . ‖ρ‖

1/s
As
ρ
−1/s
ℓ .

This implies the upper bound in (46). The lower bound in (46) follows form elementary

arguments and the fat that eah re�ned element is split into at most two sons for

d = 1, four sons for d = 2, and into a uniformly bounded number of sons for d = 3
(the proof follows with arguments from [Ste08℄) as pointed out by R. Stevenson in a

private ommuniation (we refer to [CFPP13, Setion 2.5℄ for details). This onludes

the proof. �

Remark 21. Our proof of (45) shows that the modi�ed general quasi-orthogonality

ℓ+N∑

k=ℓ

‖Uk+1 − Uk‖
2
X ≤ C1ρ

2
ℓ for all ℓ, N ∈ N (72)

is su�ient. In our frame, (72) follows from Theorem 1 and reliability (42). We refer

to [CFPP13, Proposition 4.10�4.11℄ for the proof that, under Assumption 10 (i)�(ii) and

reliability (42), (72) is, in fat, equivalent to R-linear onvergene (45).
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