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ADAPTIVE FEM, BEM, AND FEM-BEM COUPLING WITH
OPTIMAL RATES FOR STRONGLY NON-SYMMETRIC PROBLEMS

M. FEISCHL, T. FUHRER, AND D. PRAETORIUS

ABSTRACT. We prove an abstract summability result which is motivated by the usual
Pythagoras theorem for symmetric problems. This allows to prove convergence with
optimal algebraic rates for adaptive algorithms for a wide range of non-symmetric prob-
lems as long as they fit into the abstract setting of the Lax-Milgram lemma. Possible
applications include the coupling of finite elements and boundary elements as well as
boundary element formulations for mixed boundary conditions. The operators of these
model problems cannot be decomposed into a symmetric and elliptic principle part plus
a compact perturbation, but the non-symmetric part is non-compact as well. While this
prevents the use of available techniques from the literature, these problems fit into the
framework of the Lax-Milgram lemma and are hence covered by our analysis.

1. INTRODUCTION

Suppose a continuous and elliptic bilinear form b(-,-) on a real Hilbert space X. Given
a functional f € A", the Lax-Milgram lemma guarantees existence and uniqueness of
u € X with

b(u,v) = f(v) forallve X. (1)

Given an initial finite dimensional subspace A; C X based on a triangulation 7;, an
adaptive algorithm of the form

|Solve | —» |Estimate | — |Mark| — [Refine]| (2)

generates a sequence of nested triangulations 7, with corresponding discrete spaces X, C
X and approximates the exact solution by computing Galerkin approximations U, € X}
for all £ € N. The module Solve in (2) assumes an exact solver which computes the
unique solution U, € &), of

b(U, V) = f(V) forall V € X,. (3)

The ellipticity of b(-, -) provides a constant Cge, > 0 which depends only on b(-, -), such
that U, satisfies the Céa-type estimate

|lu — Ullx < Ceea min ||u—Vy||x for all £ € N. (4)
VieXy

The module Estimate in (2) assumes a computable error estimator

0 = Z pe(T)? for all £ € N,. (5)

TeT,
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The module Mark in (2) uses the Dorfler marking criterion to determine a set of marked
element domains M, C 7, as a set of minimal cardinality to satisfy

Op; < Y pu(T) (6)
TeM,
for some fixed parameter 0 < 6 < 1.

The module Refine in (2) enriches the space X, by refining the underlying triangulation
T¢ to generate Tpyq and Xy O A (see Section 3.1 for details and discussion).

The goal of this work is to prove optimal convergence rates for the estimator p, in the
following sense: If theoretically there exist meshes 7, which are refinements of 7; such
that a certain rate of convergence s > 0 is possible for the corresponding error estimator
Pe, 1.€.

br < (#T0 — #T5)~° forall £ € N, (7)
then, the adaptively generated meshes recover at least this rate, i.e.,
00 S (#Te— #7To)° forall/ € N, (8)

see Theorem 14 below for a precise statement of the result.
A common tool in the proofs of such optimality statements (7)-(8) in e.g. [Ste07,
CKNS08, FKMP13,Gan13] is a Pythagoras identity of the form

lu = Uesa Iy + U = Uell = = Uil for all £ € N, (9)

This is essential to relate successive solutions U, Uy with each other. In case of a
symmetric bilinear form with induced norm || - ||x := b(-,-)"/2, such an identity follows
immediately from the Galerkin orthogonality

b(u — Ug+1, Ug+1 — Ug) =0= b(Ug_H —Up,u— Ug_,_l) for all ¢ € N, (10)

but fails to hold in many other cases as, e.g., non-symmetric problems or FEM-BEM
coupling formulations. In the frame of the Lax-Milgram lemma and in many applications,
convergence

lim [|u — Upflx = 0 (11)
{—00

is a priori available by means of the estimator reduction principle [AFLP12| or follows
from more general concepts [MSV08,Siell]. The Pythagoras identity (9) therefore implies

> MUkt = Uelly = lu—Uel|} forall £ € N. (12)
k=0
The generalization of (12) to general quasi-orthogonality

D MUkt = Uell} < Cillu = Uyl forall £ €N (13)
k=t
for some /-independent constant C; > 0 still enables the analysis to prove optimal con-
vergence rates in the spirit of [Ste07] (see Section 3 and Section 8), but allows to include
a much wider variety of problem classes.

This improves on the existing literature on rate optimality. The seminal work [Ste07]
proves optimal convergence rates for the Laplacian, whereas [CKNS08| applies to linear
symmetric and elliptic second-order PDEs, and [AFK™13, FPP14| include non-homoge-
neous boundary conditions. For boundary element methods, the works [FKMP13,Gan13]
were the first to prove optimal convergence rates, where [FKMP13| is concerned with the

weakly-singular integral equation for the Laplacian on polygonal domains, while [Gan13|
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considers weakly-singular and hyper-singular integral equation on smooth domains. The
work [Gan08| proves optimal rates for certain non-symmetric problems for a wavelet
method. The work [CN12| considers mildly non-symmetric, linear elliptic second-order
PDEs and proves optimal convergence rates for standard conforming FEM under the
assumption that the initial mesh is sufficiently fine. The recent work [FFP12| improves
on that by dropping the assumption on the initial mesh-width and including general linear
elliptic second-order PDEs into the analysis. There also exist optimality results [FFP12,
GMZ12,BDK12,HTZ10]| for certain classes of non-linear second-order PDEs.

The present work is the first to prove optimal convergence rates for linear, but non-
symmetric problems beyond conforming FEM for second-order PDEs, as for example the
coupling of FEM and BEM (see Sections 5-6) or the boundary element formulation for
mixed boundary conditions (see Section 7). The proposed general quasi-orthogonality (13)
is a true generalization of the existing quasi-orthogonality concepts found in e.g. [CN12,
AFK'13,FFP12] and allows to tackle even problems where the non-symmetry is not
compact (as opposed to [CN12, FFP12]).

The remainder of the work is organized as follows: The first half, comprising of Sec-
tion 2, provides the proof of (13) for general linear and elliptic problems (1). In the second
half, Section 3 states the adaptive algorithm as well as the main result on quasi-optimal
convergence (Theorem 14). The short Section 4 gives a new proof of the result for linear
second-order PDEs in [FFP12|. Sections 5-6 apply the results of the previous sections to
two formulations of the FEM-BEM coupling. Section 7 considers the so-called symmetric
boundary integral formulation of some mixed boundary value problem. Finally, Section 8
contains the postponed proof of Theorem 14.

Throughout the paper, < denotes < up to a multiplicative constant and ~ denotes
that both < and 2 hold.

2. GENERAL QUASI-ORTHOGONALITY

The following theorem is the main result of this section and it will serve as the main
tool to prove optimal convergence rates in the following sections.

Theorem 1. Suppose a constant Cy > 0 such that the bilinear form b(-,-) is continuous
and elliptic in the sense of

b(v,w) < Col|v||lxllwllx and blv,v) > Cyt|v||5  for all v,w € X. (14)

Suppose that X, are nested subspaces of X, i.e. Xy C Xy C X for all ¢ € Ny. Let
Uy € Xy and u € X denote the unique solutions of (1)=(3). Then, convergence (11)
implies general quasi-orthogonality (13).

Remark 2. Without loss of generality, we may assume U, # Uypyq for all £ € N, since
otherwise the respective terms vanish in the general quasi-orthogonality (13). The unique
solvability therefore implies Uprq & Xy for all £ € N.

For the proof, and for convenience of the presentation, an equivalent operator formu-
lation replaces the variational setting above. To that end, define the operator

B: X = X*, v Bu = b(v,), (15)
as well as for all X, C X the restriction Py, : X* — X by
Py, f = flx, forall fe X*. (16)
The problem (1) as well as its discretization (3) equivalently read as
Bu=f and Py,BlxU = Px,f forall {eN. (17)
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The proof of Theorem 1 is split into two parts which mark the following two subsections.
In Section 2.1, the result is proved for the simpler case of symmetric but indefinite bilinear
forms b(-, -) with the additional restriction that dim(A&;) 4+ 1 = dim(&p;;). In Section 2.2,
it is shown that the general case can be reduced to the case of Section 2.1

2.1. Step 1: The symmetric but possibly indefinite case. Since this section poses
additional assumptions on the spaces X, as well as on the operator B, it seems useful
to change the notation slightly. All the previous definitions (1)—(3) and (13) transfer
likewise in the sense that w € X is the unique solution of

b(u,v) = f(v) forallve X (18)
with Galerkin discretization
bU, V)= f(V) forall Ve X,. (19)

Proposition 3. Let X denote a real Hilbert space and let X, be finite dimensional
subspaces of X with

X = U X, and dim(X,)+1=dim(X, 1) for all{ € Ny.

{eNg

Let B : X — X* denote a symmetric operator in the sense (Bv, w) = (Bw, v) for all
v,w € X which satisfies

B~ xx} < Cs (20a)

max{|[| B|x-x-,
as well as for all ¢ € Ny
||(PXZB|Xz)_1||XZ—>Xz < 03 (20b)

for some constant C3 > 0. Then, the problems (18) and (19) allow for unique solutions,
and there holds general quasi-orthogonality

S Uk = Ul < Cillu— Ul for all £ € Ny, (21)
k={

The proof requires some preparations. To that end, let (v,)sen, € X be an orthonormal
basis of X such that

Xg:span{vk : k;:O,...,E} for all ¢ € Nj.

Note that such a basis can always be constructed e.g. via Gram-Schmidt orthogonaliza-
tion.

Lemma 4. There exists a sequence (wy)ey C X and a constant Cy > 0 such that there
holds

(i) Nestedness:
span{’wk : k:O,...,E}:Xg for all ¢ € N. (22)
(ii) Boundedness:
Cit < |lwil|x < Cy  for all £ € N, (23)
(iii) B-orthogonality:

(Bwy, wi) =0 foralll#k and (Bw,,wy) € {—1,1} forallleNy.  (24)
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Proof. Define wy = vy and for all £/ > 1
Wy = Vg — (PXzle|Xzf1)_1PXzle’v€'

From w, € v, + X, and the choice of v,, we derive (22). Obviously, there holds
|lwo||x = 1 and since (vy)sen, is an orthonormal basis

lwel% =1+ ||(Px,_,Blx, ,) " Px,,Bvx

for all £ € N. Since continuity of B implies continuity of Px,B|x, even with the same
stability constant || Py, Blx,||x,»x; < || Bllx—a+ < Cs, the last identity and (20) prove

1 <|we||% <1+C; forall f€N.
Moreover, there holds for 0 < k < /¢
<B’lUg, vk> = <PXzle’v€ - PXZ—1B|XZ—1(PXZ—lB|XZ—1)71PXZ—1B,U£7 vk) =0.

This shows (Bw,, ) = 0 for all x € X, ;. Symmetry of B proves the first statement
of (24). For the second part, observe that each & € X, has a representation & =
Zfzo x;v;. The orthogonality from above together with continuity of B and (20b) imply

1~ |[Px,B|x,wil/x; = sup (Bwg, @)= sup z(Bw,, v) = [(Bwe, vy).
zeXy, ||z||x <1 T€R, |z0]<1

By definition of w,, we get |(Bw,, wy)| = |(Bwy, v,)| ~ 1. This, together with (23),
allows to scale the basis (wy)een, such that there holds both, the orthogonality (24) as
well as (23). This concludes the proof. O

Lemma 5. Let (wy)een denote the basis from Lemma 4. Define the spaces
X, = span{'wg : (Bwy, wy) =1,10 € N},
X_ = span{'wg (Bwy, wy) =—1,0€ N},

where the closure is understood in X . Then, there holds the direct decomposition X , &
X_ = X. Hence, there exist continuous projections

P, X - X, withkerP, =X _|
P : X —X_ withkerP, =X,
Proof. Due to (22), it is clear that X, + X_ = X. To see X N X_ = {0}, let

x € X, N X_. Then, there exists a sequence x; € X° = span{'wg : (Bwy, wy) =
—1, /¢ N} such that ; — « in X as j — oco. Then, the orthogonality (24) proves

(25)

(26)

(Bzx, w;) = lim (Bx;, wy) =0 forall { € Ny with w, € X .
Jj—00

For ¢ € N with w, € X _, we obtain the same result. Therefore, it holds (Bx, w,) =0
for all / € N and hence & = 0. Therefore, each x € X has a unique decomposition
into x = ¢, + x_ with £, € X, and x_ € X _. According to linear algebra, this
gives rise to Pyx = x, and P_.x = x_. To see the continuity of the projections, we
employ Banach’s closed-graph theorem: Suppose x; — x and P,xz; — y in X. It
remains to show that P,x = y. Since X, is closed, we see that y € X, i.e. Pyy =y.
Moreover, P, (x; — Pix;) = 0 and hence ; — Pyx; € kerP, = X _. Therefore, it holds
x—y =Ilim; ,(x; — Prx;) € X_ =kerP,. Altogether, this yields

Pz —y=P. (x—y)=0.

The boundedness of P_ follows analogously. O
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Lemma 6. Define the operator

v X = 2(N) ZAW =A==\, 2,0, (27)

£eN

for all N € N and \; € R. The operator . may be continuously extended to an operator
L2 X — (?(N) such that

= 1/2
l@)llee = (D @),)?) " < Cullallx  for allz € X. (28)
=1
Moreover, it holds
t(x), = (Bwy, wy)(Bx, w,) foralxe X andl € N. (29)

Proof. Define Ny == {{eN:w,e X }and N_.:={{eN:w,e€ X_} =N\ N, and
note that for « = Z;V:o Ajw; € X, it holds

(Bx, wy) = (Bwy, wy)A, forall0 </{ < N.
Since (Bwy, wy) € {1,—1}, this proves
A = (Bx, wy)(Bw,, w,) forall0 < /<N, (30)
as well as
A= (Bx, wy)(Bwy, wy) =0 forall N </ < 0.

Moreover, we see immediately Prax = 3.y Ajw; as well as Pox = .\ Ajw;. To-
gether with the continuity of P, and P_, this implies

”@(N) Z)\z Z Bz, wy)?
=1
= Z(Ba:, wy)? + Z(BCB, wy)?

leNy leN_
= Z (Bx, (Bx, w,)w;) — Z (Bx, —(Bx, w)wy)
leNy leN_

— (Bx, P,x) — (Bx, @) < |allk.

The constants in the estimate above do not depend on N € N. As | Jyy, X is dense in
X, ¢ can be extended continuously to ¢ : X — ¢*(N). Since evaluation of one component
is a continuous operation in ¢*(N), there holds for lim; , x; = = with z; € [J,oy X/
together with (30)

t(x)y = lim L(.’Dj)g = lim (Bz;, w,)(Bw;, wy) = (Bz, w;)(Bw,, wy).
j ]—)OO

This proves (29) and concludes the proof. O

Proof of Proposition 3. Obviously, there holds U, — Uy € X1 as well as Galerkin
orthogonality

(B(Uj41 —Uy), w;) =0 forall j <k.
6



Recall the basis (wy)en, from Lemma 4. The above orthogonality implies Uy, — Uy, =
g1 Wiy for some a1 € R and hence ((Ugy1 — Uy) = agyi€ps1 for some ag 1 € R by
definition of ¢. Due to (23), it holds

[ Uks1 — Ukllx = [ags1l[|lweii | x = Jaggi]| = [[t(Urs1 — Up)ll2qyy  for all k € Ny.
(31)

We have
(t(Ugs1) —t(Ug)); =0 forall j #k+ 1.
Furthermore, the representation (29) together with (1)—(3) imply for j < k
WUr); = (Bw;, w;)(BUy, wj) = (Bw;, w;)(Bu, w;) = t(u);.

This yields

((u) = t(Ugs1)); =0 forall0<j<k+1.
Consequently, we see

(t(w) = e(Ugs1), (Ups1) = t(Uk))zyy =0 for all k € N.
This orthogonality proves the Pythagoras theorem
le(u = U2y + [« hrr = Ul = le(w = U - (32)

With (31)—(32) and with the stability of ¢ : X — ¢*(N), it follows

DUk = Ul = Y 16U = Ul

k=t k=t
:Z (le(w = UD)le) — (e = Uk )
k=
< \L(u Unlim < llu— Ul

This concludes the proof. O

2.2. Step 2: Reduction to the symmetric case. The reduction step depends on the
construction of an equivalent operator, which satisfies the claims of Proposition 3.

For the following proposition, recall the right-hand side f € X* and the operator B
from (15) as well as the solutions u and U, from (1)—(3), resp. (17).

Proposition 7. Suppose the assumptions of Theorem 1. Then, there exists a Hilbert
space X which is a closed subspace of X x X and a sequence of nested subspaces X, of
X such that X = | J,cny Xy and dim(Xy) + 1 = dim(X 41) for all £ € Ny. There exists
a symmetric operator B : X — X which satisfies (20). Given f := (f,—f) the unique
solutions of (18)—(19) satisfy uw := (u,u) € X and Ugpy := (Up,Uy) € Xopyq for all
¢ e N.

Proof. With the notation (15)-(17), consider the transposed operator BT : X — X*,
BTv := b(-,v) and define the symmetric part S := (B + BT)/2 as well as the antisym-
metric part A := (B — BT)/2. Obviously, there holds ST = S, AT = —A, and B = S+ A.
With this, define the symmetric operator B : X x X — X* x X* as

mo(54)

7



By definition of f as well as of u, there holds
Bu = f. (33)
Define the subspaces X, inductively for ¢ € N by

X :=span{(Up,0)},
Xor—1 :=span(Xq_o U{(0,Us_1)},
X :=span(Xy 1 U{(Uy,0)}.

Note that there holds dim(X,) + 1 = dim(X 1) due to Remark 2. Consequently, define

X = UXL;.

leN

Since u = limy_,, Uy, there also holds u € X.
To show that B satisfies (20), consider for V' = (V;, V) and W = (W;, W5)
f sup BV W)
vex vex, [VIx[Wlix
<S‘/17 W1> + <A‘/27 Wl) - <A‘/17 W2> - <S‘/27 W2>

= inf su
VGXzWegg ||V||X||W||X
i (VAL V) (AVe, Vi) o+ (AVA, Va) + (SVa, Va)
= vex, [V [ xI[(Vi, =V2)llx
SV, V) + (813, VA)
= inf 3 .
Vex, IV [[5%

Since (Sv, v) = (Bv, v) > CyY|v[|%, this implies

. (BV, W) _ | VilZ+ Va2
inf sup ———~> > (C inf
Vex vex, [VIxIWix = ° vex.  |[VI[%

=Cyt > 0.

This implies (20b). The same arguments on X together with the continuity of B im-
ply (20a). Hence, the problems (18) and (19) allow for a unique solution. Since (u,u) € X
solves (18) and (Uy, Uy) € Xop11 solves (19), this concludes the proof. O

Proof of Theorem 1. The operator B and the constructed spaces X and (X)pen, from
Proposition 7 satisfy all claims of Proposition 3. Recall that Proposition 7 states u =
(u,u) and Ugp1 = (Uy, Uy). Hence, Proposition 3 implies

o0 o0
Z |Ups1 — Upll3 < Z U 243 — Usiey1 ||
et et

< QZ <”U2k+3 —Uspiallx + |Uzby2 — U2k+1”?x')
=t

[e.9]

= Y Uk —Uslk
k=20+1

S llw = Uk < 2llu—Uel%

This concludes the proof of Theorem 1. O



3. ABSTRACT OPTIMALITY ANALYSIS

This section builds the framework to apply the quasi-orthogonality result from the
previous sections and to thus analyze the convergence and quasi-optimality of adaptive
mesh-refining algorithms for the problem class stated in the introduction of Section 1.
The outline of this section is as follows: Algorithm 8 is the commonly used formulation
of the adaptive loop (2). Under certain assumptions (Assumption 10-11), which are
later verified for particular model problems, convergence with optimal algebraic rates is
shown (Theorem 14). The abstract rate optimality analysis is first found in [CFPP13]
and is recalled here only for the convenience of the reader and to underline the important
contribution of Theorem 1.

The following formulation of the adaptive loop (2) iteratively generates triangulations
Te, £ € N, by local refinement of an initial conforming triangulation 7, of a d-dimensional
manifold with d > 1 and hence corresponding discrete spaces X, which are supposed to
be nested and conforming, i.e. Xy C A1 C X for all £ € Ny (see Section 3.1 for details).

Algorithm 8. Input: initial mesh Ty, adaptivity parameter 0 < 0 <1, and { =0

(i) Compute solution Uy € Xy of (3).

(ii) Compute error estimator p,(T) from (5) for all T € T,.

(iii) Determine a set of marked elements M, C T, with minimal cardinality which
satisfies the Dorfler marking (6).

(iv) Refine the marked elements Tor1 = refine(Ty, M,) to obtain an enriched space
Xoy1 2 Xy (see Section 3.1 for details).

(v) Increment { < { + 1 and goto (i).

Output: sequence of error estimators (pe)een and sequence of Galerkin solutions (Up)sen.

Remark 9. Note that the restriction to an exact solver in (i) is only to allow for a
convenient presentation. As shown in [CFPP13, Section 7], an approzimate solver can
easily be integrated in the analysis.

3.1. Mesh refinement. For d = 1, the bisection algorithm from [AFF*13b] is used for
mesh refinement. For d = 2 and d = 3, we use newest vertex bisection, see e.g. [KPP13]
(for d = 2) and [Ste08]| (for d > 3) as well as the references therein. Constrained by these
refinement rules, we suppose that 7,,; = refine(7;, M,) is the coarsest conforming
refinement of 7, such that all marked elements T € M, have been bisected.

The notation 7, € refine(7;) denotes that there exists a sequence of marked element
sets M;, j =1,..., N —1 and a sequence of intermediate meshes 7;, j = 1,..., N such
that 7, = 7o, T» = Tn, and 7,41 = refine(7;; M;) for all j =1,..., N — 1. We suppose
that each refinement 7, € refine(7;) induces a discrete space X, := X(7,) C X such
that X, O A, whenever T, € refine(7y).

First, the choice of these mesh-refinement strategies guarantees that the meshes 7,
generated by Algorithm 8 are uniformly 7-shape regular, where v > 0 depends only on
the initial mesh 7y. For d = 1, this means

T
% <~ for all neighbouring T, 7" € 7Ty, (34a)
whereas for d > 2, v-shape regularity is understood as
diam(7T")
Here, | - | denotes the d-dimensional (surface) measure.
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Second, it has first been observed in [BDDO04| for 2D newest vertex bisection that the
number #7; of elements in 7, can be controlled by the number of marked elements, i.e.

/—1
#To — #T5 < Cesn Y #M,, (35)
j=0

where Clesn > 0 depends only on 7y. While [BDDO04| requires an additional assumption
on 7Ty, this assumption has been removed in [KPP13|, so that 7 is in fact an arbitrary
conforming triangulation. For d = 1, the estimate (35) is proved in [AFF*13b]| for
a bisection-based refinement, where additional bisections of non-marked elements are
required to ensure uniform v-shape regularity (34a). For d > 3, the result is proved
in [Ste08|, but requires an admissibility condition for the initial mesh 7.

Finally, for two triangulations 7, T, € refine(7y), let 7,07, € refine(7;)Nrefine(7T,)
be the coarsest common refinement of both 7, and 7,. Then, 7,&® 7, is in fact the overlay,
and it holds

#(Te @ To) < #To + #T — #To, (36)
see [Ste07] for d = 2 and [CKNS08] for d > 3 resp. [AFF*13b] for d = 1.
For any subset S C 7; of a mesh 7,, define the patch
w(S) :={T €T, : exists T' € S with TNT" #0}. (37)

For simplicity, we write w(T") instead of w,({T'}) for single elements T' € 7y.

Define the local mesh-size function hy, € L®(JT;) by he|r = [T for all T € T,.
By definition of the refinement rules, there exists 0 < ¢, < 1, which depends only on
d=1,2,3, such that

hilrr < qeethely  for allsons T"C T, T' e T, T €Ty (38)

3.2. Optimal convergence rates. To quantify the quality of the convergence rate of
Algorithm 8, we introduce for all s > 0 the approximability quasi-norm

R 3 S
lolla, == sup i (N +1)%ps
H#Tx—#To<N

The fact ||pl|a, < oo for a particular s > 0 implies that the theoretically achievable
convergence rate of Algorithm 8 is at least

br < (#T0 — #T5)~° forall £ € N,

if the optimal meshes 7, € refine (7o) are chosen. Theorem 14 below states that this is,
in fact, asymptotically the case for Algorithm 8 if the following Assumptions 10-11 hold.
Moreover, Theorem 14 states that the empirical convergence rate of Algorithm 8, in fact,
characterises those s > 0 for which [|p||a, < 0.
Assumption 10. There holds (i)—(iii):
(i) Any refinement T, € refine(Ty) of Ty € refine(Ty) satisfies
1/2 1/2
(X 2@ = (X )| < Coan UL~ Uil (39)
TeTNT, TeTNTx
(ii) Any refinement T, € refine(Ts) of To € refine(Ty) satisfies
Z p*(T)2 < Qred Z /M(T)2 + Cred”U* - UZ”?\{ (40)

TeT\Te TeT\T
10



(iii) Any refinement T, € refine(Ty) of Te € refine(Ty) satisfies discrete reliability
U= Ul < CRa D> pulT)? (41)
TeR(Te, T+)
with the augmented set of refined elements

R(Te, To) = we(Te \ T).

While the previous assumptions may not be necessary for the optimality proof (but
turn out to be sufficient), the following assumption is even necessary for plain convergence
of Algorithm 8.

Assumption 11. Suppose that the given model problem converges under uniform re-
finement, i.e. for all € > 0 exists a mazrimal mesh-width he > 0 such that all meshes
T, € refine(Ty) with h, < h. pointwise almost everywhere satisfy

[u—Uilx <e
for the related Galerkin solution U,.

Remark 12. Assumption 11 is usually verified via density arguments in combination
with the Céa-type estimate (4) and a priori estimates of the type

lw = Uellae < flu = vl + min flv = Vellae S [lu = vilx + max(helr)?
for some v > 0 which depends on the regularity of the smooth approximation v.

Lemma 13. Suppose that Assumptions 10 and Assumption 11 hold. Then, the error
estimator py 1s reliable

lu — Usllx < Crape for all Ty € refine(Ty), (42)
satisfies the estimator reduction
p?—i—l < Qestpi + CeSt”Uerl - Uf”g( fO’/’ all £ € N07 (43)

and there holds convergence
lu — Upllx < Crape — 0 asl — (44)

as well as the general quasi-orthogonality (13). The constant 0 < gesy < 1 depends only
on 0 and qeq. The constant Cesy > 0 depends on 0, qreq, Crea, and Ceap.

Proof. As shown in [CFPP13, Lemma 3.3|, discrete reliability (41) together with As-
sumption 11 implies reliability (42). Stability (39), reduction (40), and Young’s in-
equality (a + 0)? < (1 + 8)a*> + (1 + 6 H)p? for all a,b € R and § > 0 show with
Cest = (Crea + (L +67HC2,,)

P§+1 < Gred Z Pe (149) Z Pe Crea + (1 +6~ ) stab)||U€+1 - UKHX

TETN\Te+1 TeTNTo41
S (1 + 5)p§ + (Qred —1- 5) Z p? + Cest”Uﬁ-H - UK”%{
TeT\Tes1

Dorfler marking (6) and M, C T, \ Ty imply
Pror < (140 —0(14 08 — grea))p; + Cost||Us1 — Usl|%-

Sufficiently small 6 > 0 shows 0 < gest == 1+ — (1 +§ — grea) < 1. This proves (43).

The Céa lemma (4) together with nestedness X, C Xy, and elementary calculus (as laid
11



out, e.g., in [CFPP13, Section 3.6]) shows lim,_,,, p¢ = 0, and therefore reliability (42)
implies (44).

With convergence (44), the claims of Theorem 1 are satisfied. This implies the general
quasi-orthogonality (13) and concludes the proof. O

By means of the general quasi-orthogonality (13), the convergence result (44) can
further be improved to obtain R-linear convergence of the estimator (45). However, as
the validity of (13) depends on the much weaker plain convergence of the estimator (44),
it seems that (44) is a necessary intermediate result.

Theorem 14. Suppose that Assumptions 10-11 hold. Then, for all 0 < 6 < 1, there
exist constants Cr > 0 and 0 < qr < 1 such that there holds R-linear convergence of
Algorithm 8 in the sense

prin < Cranp; for all £,k € N. (45)

For 0 < Oy = (14 C2%,,C3.,)"", Algorithm 8 converges with the optimal rate in the
sense of

as < sup pe(|Te| = [To| +1)° < Copellp
£eNy

Copt P As (46)

for all s > 0. The constants Copt, Cr, qr > 0 depend only on 0 and on the constants from
Assumption 10, whereas Copy depends additionally on s. The constant cop, > 0 depends
only on d.

The proof of the above main result is postponed to Section 8 and utilizes only the
quantities and estimates of Assumptions 10-11 and the general quasi-orthogonality (13).
Therefore, it is sufficient to prove each of the assumptions separately for the concrete
applications in Section 5-7.

4. APPLICATION 1: FEM FOR LINEAR SECOND-ORDER PDESs

4.1. Model Problem and definitions. We consider the model problem from [FFP12].
Given a Lipschitz domain Q C R? for d = 2,3, this section considers the second-order
elliptic PDE

Lu=fy in €,
u=0 on 0N (47)
with the non-symmetric linear operator
Lu = —div(AVu) +b- Vu+ cu. (48)

The given right-hand side satisfies fy € L?(Q2). Moreover, A = A(z) € R™? with
A€ (Wf"(Q))dXd is a symmetric matrix, b = b(z) € R? with b € (LOO(Q))d is a vector,
and ¢ = ¢(z) € R with ¢ € L>(12) is a scalar. Here, W°(Q2) denotes the space of Lipschitz

continuous functions. This allows to write down the weak formulation of (47) as follows:
Find v € X := Hj(Q) := {v € H'(Q) : v[r = 0 in the sense of traces} such that

b(u,v) = / AVu-Vv+b-Vuv+ cuvdr = f(v) forallv € Hj(Q) (49)
Q

with f(v) := [, fovdz. The assumptions on the given data guarantee the boundedness
of b(-,-) in the natural norm || - ||x := [[V(-)||12(0). Moreover, we suppose the coefficients
to be chosen such that b(-,-) is also elliptic in the sense
b(v,v) > Culv]|3 forallv e X.
12



Given an admissible triangulation 7, € refine(7) and a polynomial degree p > 1, define
SP(T,) = {V* € C(Q) : V,|r is polynomial of degree < p for all T € 71}.

The discrete form of (49) is given by (3), where uniqueness and solvability are guaranteed
by the Lax-Milgram lemma. The corresponding weighted-residual error estimator reads

2= 3 pu(T) with p(T)? = (TP L1 U, — IRy + 1TV AVT, 0] oreny
TeTx
Here, [-] denotes the jump over J7', and n denotes the outer unit normal vector of each
element T € 7T,.
4.2. Proof of Assumptions 10-11.

Proof of Assumptions 10. The proof of (i)—(ii) is part of the proof of [FFP12, Lemma 2| or
in different notation also in [CKNS08, Corollary 3.4|. The discrete reliability (iii) follows
as for the symmetric case b = 0 with R(7, 7.) = T¢ \ T, see e.g. [CKNS08, Lemma 3.6].
The constants Csiap, Cred, Gred; Crel depend only on the domain €2, the coefficients of £
the vy-shape regularity of 7, and 7, as well as on the polynomial degree p. O

Proof of Assumptions 11. Let ¢ > 0. By density, find a function v € C*°(Q) N HL(Q)
such that

lu—v||xr <e.
The Céa lemma (4) together with the standard nodal approximation result proves

lu = Udlx S llu = vlla + min Jo—Villx S e+ el oo [ D0 p2ge) < 26

for sufficiently fine meshes 7, € refine(7y). O

Consequence 15. The adaptive finite element discretization of (47) in Algorithm 8
converges with optimal rates in the sense of Theorem 14.

5. APPLICATION 2: NON-SYMMETRIC JOHNSON-NEDELEC FEM/BEM-COUPLING

5.1. Model problem and definitions. Given a Lipschitz domain Q C R? for d € {2, 3},
this section considers a FEM-BEM reformulation of the linear Laplace-type transmission
problem
—div(AVu™) = f, in Q,
—Au™t =0 in R\ Q,
u™ — ™t =y on I :=0Q,
(AVu™) - n — 0,u™" = ¢y onT,

where fo € L*(Q), up € HYT), ¢o € L*(T), A € W>(Q) with A(z) € R4 being
a symmetric matrix, and the normal derivative 0,(-) is understood with respect to the
outer unit normal vector n on I'. Let 0 < ¢z < 1 denote the contraction constant of
the double layer potential & defined below, see e.g. [Stell|. We suppose that there exist
ca/4 < Anin < Amax < 00 such that there holds Ay < A(z) < Ajax for all z € Q in
the sense that the eigenvalues of A(x) are bounded from below and from above. The
uniqueness of the solution is guaranteed via the following radiation condition

u™ = O(|z|™!) as |z| — oo, (50b)

(50a)

which requires the compatibility condition [, fdz + [ ¢ods = 0 for d = 2. Moreover,

we assume diam(€2) < 1 for d = 2.
13



The presence of the unbounded domain R?\ Q motivates the use of boundary elements
for the exterior problem. One possible formulation is known as the one-equation cou-
pling of Johnson and Nédélec [JN80| and employs the simple-layer integral operator U :
H=Y2(I') — HY2(I") as well as the double layer integral operator & : H'/2(I') — H/*(I")
which are formally defined via the Newton kernel

—Lloglz|l, d=2
G(z) = 2 ’ ’ 51
2 {_ T, G1a)

as

Vo)) = |

FG(x—y)cb(y) dy and (8g)(z):= /Farz(y)G(x—y)g(y) dy  (51b)

for all z € I'. With these operators, (50) is equivalently reformulated as follows: Find
u = (u™, ) € X := H'(Q) x H™/2(T') such that
b(u,v) = f(v) for all v:= (V"™ ¢) € X, (52)
where the bilinear form reads
b(u,v) = (AVU™, Vo'™) 20y + (¢, v™) 2@y + (¥, (
and the right-hand side is defined by
F) = (fo, v™) 2y + (b0, V™) 2y + (¥, (5 = R)uo) 2(r)-

The two formulations (50) and (52) are linked as follows: Given (u™", u®™"), there holds
0,u™t = ¢. Given u = (u'™, ¢), the exterior solution is available via the representation
formula u®* ;= Ku* — V. Here, V and K denote the integral operators from (51b), but
are now evaluated in R? \ Q.

We consider the natural norm on the product space X = H'(Q) x H~'/%(T")

— R)u™) 2y + (U, Vo) r2(ry

N[

ol = 1™ o) + [ll5-12(ry  for all v = (0™, ¢) € X
Given an admissible triangulation 7, € refine(7y) of 2, define
PP YTlp) = {\If* € L*(I') : W, |pr polynomial of degree < p — 1 for all T € 71}.
With this, the discrete analogue of (52) reads: Find U, := (U™ ®,) € X, := SP(T,) x
PP=Y(T,|r) such that
b(U,,V,) = f(V,) forall V, := (V™ ¥,)c X,. (53)

Note that b((1,0),(1,0)) = 0, so that b(-,-) is not elliptic and unique solvability is thus
not obvious. The solvability of (52) and (53) were firstly proved for smooth boundaries T’
in [JN80]. For polyhedral boundaries, the case was open until [Say09]. Inspired by [Stell,
Say09], the recent work [AFF*13a] uses a novel technique to generalize the available
results and prove unique solvability even for strongly monotone operators. The residual-

based error estimator (see e.g. [AFP12, AFF*13a] for the derivation) reads elementwise
forall T € T,

po(T)? = diam(T)?|| fo + div(AVU) ||y + diam(T) | [(AVU™) - 0] 172070
+diam(T)||¢o + P, — (AVU™) - 2|72 o70r)

+ diam(T) | Ve (3 — &) (uo — U™) — B®,) |12 orr)
14



where [-] denotes the jump over interior edges of 7, and n is the outer unit normal vector
of each element T" € 7,. Note that the exterior problem affects the estimator only on
elements T' € T, with TNT # (). The overall estimator reads

/
Py 1= < Z p*(T)2>1 ’ for all 7, € refine(7y).

TeTx

5.2. Proof of Assumptions 10-11. The method of implicit stabilization from [AFF*13a]
introduces an equivalent problem

b(u,v) :=b(u,v) + (1, (3 = K)u™ + V) r2r) (1, (3 — K)v™ + V) 2y,
) = f) + (L, (5 = R)uo)r2qry-

The bilinear form b(-, -) is elliptic (see [AFF*13a, Theorem 14] for a proof) in the sense
of

(54)

b(v,v) > CyYv||% for all v = ('™, ¢) € X, (55)

and the solutions u, U, of (52) and (53) satisfy for all 7, € refine(7y)

b(u,v) = f(v) forallve X and bU,,V,) = f(Vi) forall V, € X..

Thus, (54) serves as an equivalent reformulation of (52) with the additional property that

b(-,-) is strongly elliptic and hence fits in the frame of the Lax-Milgram lemma outlined
in the introduction of Section 1. Hence, we prove Assumption 10 for the equivalent
formulation (54).

Proof of Assumption 10 (i)—(ii). The statements (i) and (ii) are part of the proof of [AFF*13a,
Theorem 25| and follow from the triangle inequality and local inverse estimates for the
non-local operators U and K from [AFFT12]. The constants Cyap, Cred, Grea depend only
on I', the polynomial degree p, the y-shape regularity of 7, and 7,, and on A. O

Proof of Assumption 10 (iii). The proof is essentially the combination of the correspond-
ing proofs for FEM in [Ste07, CKNS08] and BEM in [FKMP13|. There holds with ellip-
ticity [AFFT13a, Theorem 14] and V, = (V" ¥ ,):= U, — U, € X,
1T = Uell% S B(U, = Up, Vi) = b(U, = Uy, Vi)
= F(Vi = Vi) = (U, V. — V) forall V, € X,.

Recall the Scott-Zhang operator J, : H'(Q2) — SP(T;) from [SZ90| as well as the L*(T)-
orthogonal projection IT, : L*(T') — PP~!(T;|r). With this, define

Ve = (J,V™ I1,0,) € A,.
This implies
U = Uell3 S (fo, (1= J)Vi™) 12) — (AVUR™, V(1 = J) V™) 1200
+ (g0 — P¢, (1= J0)V™) 2y (56)

+ (1 =)W, (3 — R)(uo — U™) — VL) r2(ry.
15



Te-piecewise integration by parts shows
(fo, 1 =TV 2y — (AVU™, V(1 = J)VI™) 120y + (do — o, (1 — J)V™) 2y

S fo + div(AVU) |2 1 (1 = J) V™ |l 2y
TeT;

+ Z ( [((AVT™) - 0|l 2 o700y
TeT,;

+ 160 — @ = (AVU) - nllzaorary ) (1 = TV 17207

Since all T' € T, with T ¢ w(T; \ T;) satisfy ((1— J;)V™)|p = 0 (This is can be improved
to T, N T, as shown in [CKNS08, FFK*13b|. However, the improvement is not necessary
here and therefore omitted.) and by use of the first-order approximation properties of Jy,
the above estimate implies

(fo, M= TV p2) — (AVUP™, V(1 = J)V™) 120 + (do — P, (1= J)V™) 12

S ) (diam(T)HfoeriV(AV UM zzcry + diam(T) 2| [(AVU™) - 0] 2 (om0
Tewe(Te\Tx)

+ dlam(T)1/2||¢o - (bg — (AVUlnt) n||L2(8TﬁF)) ||V‘/*int||L2(T), (57)

where the hidden constant depends only on vy-shape regularity of 7, and 2. Consider a
partition of unity of I' in the sense

> &=1 onT

zel
z node of Ty

with the nodal hat functions &, € P'(T;|r) N C(T') which satisfy &.(2') = 4§, for all
boundary nodes 2’ € I' of 7, with Kronecker’s 0, ... Since (1 —1II,)¥, =0 on 7, N7y, the
last term on the right-hand side of (56) satisfies

<<1 — Hg)\p* s (% — ﬁ)(uo — Umt> Q](I)g>L2(F)
= (1 -T)T,, Y &G = &) (uo— UM) = B8y)) 12ry.

zeU(Tp\Tx)NT
z node of Ty

The fact (1, (3 — 8)(uo — U™) — V) r2(7nry = 0 for all T € T; allows to follow the
arguments of the proof of [FKMP13, Proposition 5.3| resp. [FFK*13a, Proposition 4].
This shows

(L =TIV, , (5 — R)(uo — U™) — BPy) 121y (58)
SO diam()2Ve(( — R)(uo — U) = B0) |2z )| all 17200
Tewe(Te\Tx)

The combination of (57)—(58) with (56) concludes the proof of the discrete reliability (41).
The constant Cge depends only on I, the coefficient matrix A, the vy-shape regularity of
T, and T, and the polynomial degree p. O

Proof of Assumption 11. The proof follows with the same arguments as in Section 4. [J

Consequence 16. Algorithm 8 for the Johnson-Nédélec formulation of FEM-BEM cou-
pling converges with optimal rates in the sense of Theorem 14.
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6. APPLICATION 3. SYMMETRIC FEM/BEM-COUPLING

6.1. Model problem and definitions. As in the previous section, we consider the
transmission problem (50). To state the so-called symmetric coupling, define the hyper-
singular integral operator 20 : H/2(I') — H~'/2(T") formally as

Wo(x) := —Opw) /Famy)G(l“ —y)o(y) dy.

With this, (50) reformulates as: Find u := (u™, ¢) € X := H'(Q) x H~'/2(") such that
b(u,v) = f(v) forall v:= (v™ ) € X, (59)
where the bilinear form reads
b(u,v) = (AVU™, V™) 20) + (& = 3)¢, ™) r2ry + (W™, ™) p2r)
+ (v, (% - ﬁ)uimﬁ%r) + (¥, Vo) 2

and the right-hand side is defined by
) = (fo, v"™)120) + (¢o + Wug, v™ ) r2ry + (o, V"™V 2wy + (¥, (2 — K)uo) 12y,

The two formulations (50) and (59) are linked as for the Johnson-Nédélec coupling from
Section 5, and the space X is equipped with the same norm.

The discretization of (59) is straightforward. Given a triangulation 7, € refine(7y)
and a polynomial degree p > 1: Find U, := (U™, ®,) € X, := SP(T;) x P"~"YTIr)

b(U,,V,) = f(V,) forall V, := (V™ ¥,)c X,. (60)

The solvability of (59) and (60) were firstly proved in [Cos88]. The recent work [AFF*13a]
uses the implicit stabilization technique to give a much simplified version of the proof.
The residual-based error estimator (see e.g. [CS95, AFF*13a] for a reliability proof) reads
elementwise for all 7" € T,

pu(T)? = diam(T)?|| f + div(AVU™)|[72(p) + diam(T) [ [(AVU™) - 0] (172070
+diam(T)|l¢o — (& — 3)@, — WU — ug) — (AVU™) - 1|72 7mr)
+ diam (T)[|Vr((3 — 8)(uo — U™) — DL |72 900 -

and hence

Py 1= ( Z p*(T)2> i for all 7, € refine(7y).

TeTx

As above [-] denotes the jump over interior edges of 7, and n is the outer unit normal
vector of each element T € 7T,.

6.2. Proof of Assumption 10—11. The proof of Assumption 10-11 is very similar to
that of the previous section and therefore omitted.

Consequence 17. Algorithm 8 for the symmetric formulation of FEM-BEM coupling
converges with optimal rates in the sense of Theorem 14.
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7. APPLICATION 4: BEM FOR MIXED BOUNDARY VALUE PROBLEMS
7.1. Model problem and definitions. Given a Lipschitz domain {2 C R? and relatively
open, disjoint boundary parts I'pUI'y = 02, consider the mixed boundary value problem
—Aw=0 in €,
w=up onlp, (61)
8nw = ng on PN,
where (up,¢y) € H'(I'p) x L*(Ty) are given boundary data and the sought solution
satisfies u € H'(Q2). The Dirichlet boundary is non-trivial [['p| > 0 and for d = 2, the

domain satisfies diam(£2) < 1. For the boundary integral formulation of (61), let up €
HY2(T) and ¢y € H~'/2(T) be arbitrary extensions of the given data from I'p resp. I'y to

the whole boundary 9. Define the spaces H/2(I'y) 1= {ve HY*(09) : supp(v) C T}
and H=Y2(I'p) := HY*(I'p)*. With this, the so-called symmetric formulation reads: Find
u = (uy,¢p) € X := H/?(T'y) x H'/?(T'p) such that

QITNN ﬁ,DN un'y\ -0 1/2—.@’ Up (62)
—fxp Ypp) \¢p) \1/2+K T o)
with Upp : H-Y2(Tp) — HY2(Tp), Ryp : HYA(Dy) — HY2(Tp), Ry : HV2(Tp) —
H=Y2(Ty), and Wyy : HY*(Ty) — HY*(Ty) denoting the boundary integral op-

erators U, 8,20 and the adjoint & € L(HY2(9Q), HY/2(0Q)) restricted to the re-
spective boundary parts I'p,I'y C T. The formulations (61) and (62) are linked as

follows: Given the solution w € H'(Q) from (61), uy := w —up € HY*('y) and
ép = Ohw—¢n € HY2(T'p) solve (62). Given the solution u = (uy, ¢p) € X from (62),
the representation formula provides a solution of (61), i

B(dp + on) — Klup + uy).

Here, U and & formally denote the integral operators from (51), but now they are eval-
uated in 2.
This motivates the definition of the following bilinear form for all u = (uy, ¢p),v :=

(on,¥p) € X
b(u,v) == (Wynun + Rpydp , UN) r2ry) + (Bppdp — ANpUN , UD) 12(r))- (63)
Obviously, the bilinear form is elliptic with
b(v,v) = (Wnnvn, n) 2wy + VooV s YD) 20y
o Now oy + 16015y, = ol for allv e X (64

and fits in the frame of the Lax-Milgram lemma. This guarantees uniqueness and solv-
ability of

b(u,v) = f(v) forallveX (65)
with
f(v) = (=Wup + (1/2 = K)on , vn)r2wy) + ((1/2+ K)up — Vén , ¥p)r2ry)-
The discretization of (65) is straightforward. Suppose a triangulation 7, € refine(7p).

With the spline space SPT(Ti|ry ) = SPP(T;|ry) N HY2(Dy), let X, = SEN(Tilr,) x
PP(Tilrp), and find Uy := (U, n, Py p) € X, such that all V, := (V, v, ¥, p) € X, satisty
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The weighted-residual error estimator reads elementwise for all T € T,
p*(T)z = diam(T)HQUNNU*,N + ﬁ/DN(I)*vD + QﬁuD - (1/2 - ﬁ,)QSNH%Q(TﬂFN)
+ diam(T)HV(%DD(ID*p - ﬁNDU*,N - (]_/2 + ﬁ)UD + m¢N)||%2(TmFD)
and

Py 1= < Z p*(T)2> v for all 7, € refine(7y).

TeTx

This follows from the combination of the respective proofs for the weakly-singular integral
equation [CMS01] and the hyper-singular integral equation [CMPS04]. Moreover, we refer
to the proof of Assumption 10 (iii) below, where the main arguments of the derivation
are reused.

7.2. Proof of Assumption 10-11.

Proof of Assumption 10 (i)—(ii). Let T, denote a triangulation and let 7, denote an ar-
bitrary refinement. With the triangle inequality and h, = hy on w := |J(7T, N T;) C 99,
it holds

(X n@?)” (X iy

TET.NT; TETNT,
S Hhiﬁ (QBNN(U*,N —Uin) + Ry (Pup — (I)z,D)) | 22(w)
+ ||hi/2v(%DD((D*,D — ®yp) — Anp(Usn — Uz,N)) |22 (w)
S RHS := [|hY2 (W (Uen = Uew)) 2wy + 10 (R (@ap = ®00)) 22rp)
+ B2V (Bpp(®ap — ©0p)2wp) + 1>V (Rnp (U = Uen)) 22w
The inverse estimates from [AFFT12| show
RHS S \Uan = Uenll ey + 1960 = @epllg-1/20,) = U = Uellx. (67)

This concludes the proof of (i). The constant Cgy, depends only on I'y and T'p, the
~v-shape regularity of 7, and 7, and the polynomial degree p.

For the proof of (ii), the mesh size reduction (38) is exploited. It holds h, < gethe on
w:=U(T\T) = U(T:\ T¢). Hence, the same arguments as above and Young’s inequality
(a+b)?<(1+8)a*+ (1+ 6 1)b* for all a,b € R and 6 > 0 show

> pT)P < (1+9) (Hhiﬂ (WynUen + Koy ®ep +Wup — (1/2 — &)én) 72
TeT\Te

1/2

+ ||V (Bpp®e.p — AnpUey — (1/2+ R)up + mch)H%m))
+ (146 1) RHS?
<1+ 0@ >, p(T)*+ (1+6 ") RHS”
TeT\Tx

Sufficiently small § > 0 and (67) conclude the proof of (ii). The constant C.q depends
only on I'y and I'p, the ~-shape regularity of 7, and 7, and the polynomial degree p. [J

Proof of Assumption 10 (iii). Ellipticity (64) and Galerkin orthogonality show for all
Vie X,

U, — Ul|3 ~b(U, — Uy, Uy, — Uy — V) = b(u — Uy, U, — Uy — V).
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With the Scott-Zhang projection J, : HY2(I'y) — SP™(Tilr,) (see [AFF+13c, Sec-

tion 3.2] for the definition and discussion on H'/2(I'y), since the original construc-

tion [SZ90] requires H'/>*¢ regularity for some £ > 0) and the L?-orthogonal projection
e 12(Tp) — P?(Tilr,), define

Vi = (Jo(Uen — Upn), o(@.p — P p)) € A
This implies
|U. = Udll = (W (un = Uew) + Kpn (60 = Dep) s (1= J)(Usy = Uen)szey) (68)
+ (Upp(¢p — Prp) — Anplun — Urn), (1 =) (Psp — Pop)) r2(rp)-

There holds (1 — J;)(Usn — Upn) = 0in Tp \ we(7: \ T¢) and (1 — L) (Pyp — Prp) = 0
in 7, N T,. The first term on the right-hand side of (68) is estimated as in [FFK*13b].
Since there also holds

<%DD(¢>D — (IDE,D) — ﬁND(’LLN — U&N) , 1>L2(T) =0 forall T e 72|FD’

the estimate for the second term on the right-hand side of (68) follows with the arguments
from [FKMP13]| for p = 0 resp. [FFK"13a] for general p > 0. This concludes the proof.
The constant Cge depends only on 'y and I'p, the y-shape regularity of 7, and 7, and
the polynomial degree p. (l

Proof of Assumption 11. The proof follows with the same arguments as in Section 4. [J

Consequence 18. Algorithm 8 for the symmetric boundary element formulation of some
mixed boundary value problem converges with optimal rates in the sense of Theorem 14.

8. PROOF OF THEOREM 14

For this section, assume that Assumptions 10-11 hold for a given model problem with
error estimator p(-).

Proposition 19. For any 0 < Oy = (1 4+ C2,,C3.) ", there exists 0 < Kopy < 1 such
that all T, € refine(T;) satisfy the implication

P < ket = 0 < > puT) (69)
TeR(T,,T.)

Proof. Recall Young’s inequality (a + b)* < (1 +d)a® + (1 + 6 1)b? for all a,b € R and
d > 0. The stability (39) shows

pi= > T+ > pu(T)

TETNT: TET\T:

<(48) Y pdTP+ D pl TP+ (146 oI = Uil
TeT.NT; TeTN\Tx

The assumption p? < kp? together with discrete reliability (41) implies
P < (L4 0)kp] + (14 (14 0)Co0Cra) >, pu(T)?
TeER(Te,T+)
and rearrangement of the terms proves 0p; < > 7. 7y pe(T)? for all

1—(1+4+0)k
<0<0 = .
0<6<6r) ?i}g 1+ (1406 1)C%,,Cha
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For each 6 < 0,p, there exist d,x > 0 such that

0 < 1—(1+9)k _ 1 _4
1+ (1 + 571)Cs2tabcl2%el 1+ C(s2tabc(l2%el o
and hence 6 < 0(k). This concludes the proof. O

The definition of the approximability quasi-norm ||p||, allows to find optimal meshes,
which compare with the adaptively generated meshes. This is stated in the following
lemma.

Lemma 20. Let 0 < kopy < 1 and let s > 0 such that ||p|la, < co. For all meshes Ty,
there ezists a refinement T, € refine(T;) with

P2 < koppr  and #T, — #To+ 1 < Collp|li*p, M. (70)
The constant Cs > 0 depends only on Csab, Cred, CRels Kopt, and s > 0.

Proof. Stability (39), reduction (40), and discrete reliability (41) prove for all refinements
T, € refine(7y)

Pl < 200+ 2(Cliap + Cread) Uy = Uillye < (24 2(Cliap, + Cirea)Crar) 7. (71)

Define the constant Cpon = (2 + 2(C2,, + Crea)C2y)Y/?. Arguing as e.g. in [CFPP13,
Ste07, CKNSO08|, find a mesh 7, € refine(7;) which satisfies

HT — #To+ 1S Il e and g2 < CR2 Koph?.
Define 7, := T; @ T+ and use the overlay estimate (36) to verify
#T—#T+ 1< H#T — #To+ 1< ollilpe
Since T, € refine(7,), the quasi-monotonicity (71) shows
Pz < CI?IlOnpi < "ioptpg-
This concludes the proof. O

Proof of Theorem 14. To see linear convergence (45), apply the estimator reduction (43)
for ¢, N ¢ N

{+N {+N {+N
§ 2 § 2 § 2
pj S est pj_l + C1est ||UJ - Uj—1||X'
j=0+1 J={+1 Jj=t+1

The general quasi-orthogonality (13) and reliability (42) show

{+N

(1 - Qest> Z p? S Qestp? + C(estc(l”u - UZH?\{ S (Qest + Cestclcfel)pg-
Jj=0+1

Since the involved constants do not depend on N € N, there holds with Cg := 1+ (gest +
Cestclcfel)/<1 - qest) > 1

> 702 < Crik.
j=¢
This and mathematical induction on £ € N show

S =X A)-uas0-C) Y A< <= A
j=¢

j=b+k j=b+k—1 j=t+k—1
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which implies immediately
P < Cr(1 = CRH*pf.

This concludes the proof of (45) with 0 < g := (1 — Cg') < 1.

The optimality statement (46) follows as a consequence. Choose rop > 0 sufficiently
small such that the implication (69) holds true. Given 7;, Lemma 20 provides a mesh
T, € refine(7;) with (70). Therefore, Proposition 19 implies that 7, \ 7, satisfies the
Doérfler marking (6). Since M, is a set of minimal cardinality which satisfies the Dorfler
marking (6), there holds

#M+ LS #(TANT) + 1< #T — #Te+ 1< Collplliloc "
This and the mesh closure estimate (35) imply

/—1 /—1
HT; — #75+1<Z H#M;+1) S ol .
7=0

The R-linear convergence (45) together with the convergence of the geometric series show

/-1

1/s —1/s ~—1/s l—3)/s 1/s —1/s

#Te = #To+ 15 lollil2or OV D al ™ S lloll o,
=0

This implies the upper bound in (46). The lower bound in (46) follows form elementary
arguments and the fact that each refined element is split into at most two sons for
d = 1, four sons for d = 2, and into a uniformly bounded number of sons for d = 3
(the proof follows with arguments from [Ste08]) as pointed out by R. Stevenson in a
private communication (we refer to [CFPP13, Section 2.5| for details). This concludes
the proof. O

Remark 21. Our proof of (45) shows that the modified general quasi-orthogonality

(+N
> NUkpr = Uell3 < C1p7 for all £, N € N (72)
k=t

is sufficient. In our frame, (72) follows from Theorem 1 and reliability (42). We refer
to [CFPP13, Proposition 4.10—4.11] for the proof that, under Assumption 10 (i)—(ii) and
reliability (42), (72) is, in fact, equivalent to R-linear convergence (45).
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