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STABILITY OF SYMMETRIC AND NONSYMMETRIC FEM-BEM

COUPLINGS FOR NONLINEAR ELASTICITY PROBLEMS

M. FEISCHL, T. FÜHRER, M. KARKULIK, AND D. PRAETORIUS

Abstract. We consider symmetric as well as non-symmetric coupling formulations of FEM
and BEM in the frame of nonlinear elasticity problems. In particular, the Johnson-Nédélec
coupling is analyzed. We prove that these coupling formulations are well-posed and allow for
unique Galerkin solutions if standard discretizations by piecewise polynomials are employed.
Unlike prior works, our analysis does neither rely on an interior Dirichlet boundary to tackle
the rigid body motions nor on any assumption on the mesh-size of the discretization used.

1. Introduction & overview

The coupling of the finite element method (FEM) and the boundary element method (BEM)
became very popular when it first appeared in the late seventies of the last century. These
methods combine the advantages of FEM, which allows to resolve nonlinear problems in
bounded domains, and BEM, which allows to solve problems with elliptic differential oper-
ators with constant coefficients in unbounded domains. The two methods are coupled via
transmission conditions on the coupling boundary.

In 1979, Zienkiewicz and co-workers [ZKB79] introduced a non-symmetric one-equation
coupling which is based on the first equation of the Calderón system and only relies on
the simple-layer potential V as well as the double-layer potential K. In 1980, Johnson &
Nédélec [JN80] gave a first mathematical proof that this coupling procedure is well-posed
and stable. This coupling is therefore also referred to as Johnson-Nédélec coupling. Their
analysis relied on Fredholm theory and the compactness of K and was thus restricted to
smooth coupling boundaries. Based on these works, other coupling methods such as the
one-equation Bielak-MacCamy coupling and the (quasi-symmetric) Bielak-MacCamy cou-
pling [BM84] have been proposed. The requirement for smooth boundaries is a severe re-
striction when dealing with standard FEM or BEM discretizations. Moreover, numerical
experiments in [CES91] gave empirical evidence that this assumption and hence the com-
pactness of K can be avoided. It took until 2009 when Sayas [Say09] gave a first mathematical
proof for the stability of the Johnson-Nédélec coupling on polygonal boundaries.
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In the meantime and because of the lack of satisfying theory, the symmetric coupling
has been proposed independently by Costabel [Cos88] and Han [Han90]. Relying on the
symmetric formulation of the exterior Steklov-Poincaré operator, [Cos88, Han90] proved
stability of the symmetric coupling. Early works including [Cos88, CS88, Han90, Ste92] used
interior Dirichlet boundaries to tackle constant functions for Laplace transmission problems
resp. rigid body motions for elasticity problems. We also refer to the monograph [GH95] for
further details.

To the best of the authors’ knowledge, the very first work which avoided the use of an
additional artificial Dirichlet boundary was [CS95], where a nonlinear Laplace transmission
problem is considered. In the latter work the authors used the exterior Steklov-Poincaré
operator to reduce the coupling equations to an operator equation with a strongly monotone
operator. Although their analysis avoids an artificial Dirichlet boundary, their proof of
ellipticity of the discrete exterior Steklov-Poincaré operator, and hence of unique solvability
of the discrete coupling equations, involved sufficiently small mesh-sizes. Bootstrapping the
original proof of [CS95], this assumption could recently be removed [AFP12]. The authors
of [CFS97] then transferred the ideas of [CS95] to nonlinear elasticity problems in 2D. From
an implementational point of view, however, the symmetric coupling seems not to be as
attractive as the one-equation coupling methods, since all four integral operators of the
Calderón system are involved.

While Sayas’ work [Say09] focused on the linear Yukawa transmission problem as well
as the Laplace transmission problem, Steinbach [Ste11] proved stability for a class of linear
Laplace transmission problems. He introduced an explicit stabilization for the coupling equa-
tions so that the stabilized equations turn out to be elliptic. However, the computation of
the stabilization requires the numerical solution of an additional boundary integral equation
at every discrete level. Of & Steinbach [OS11] improved the results from [Ste11], and also
gave a sharp condition under which the stabilized problem is elliptic. Based on and inspired
by the analysis of [Say09, Ste11], Aurada et al. [AFF+12] introduced the idea of implicit
stabilization. They proved that all (continuous and discrete) coupling equations are equiva-
lent to associated stabilized formulations, even with the same solution. Since the stabilized
formulations appear to be elliptic, this proves well-posedness and stability of the original
coupling formulations, i.e. no explicit stabilization is needed or has to be implemented in
practice. For the Johnson-Nédélec and Bielak-MacCamy coupling, their analysis covers the
same problem class as [Ste11] and moreover extends it to handle certain nonlinearities. For
the symmetric coupling, the analysis of [AFF+12] provides an alternate proof for the results
of [CS95], but avoids any restriction on the mesh-size.

In the very recent work [Ste12], Steinbach extended the results from [OS11, Ste11] to linear
elasticity problems. We also refer to [GHS12], where stability of the Johnson-Nédélec, the
one-equation Bielak-MacCamy, and the (quasi-) symmetric Bielak-MacCamy coupling for a
Yukawa transmission problem is proven. Moreover, they also show that the Johnson-Nédélec
coupling applied to elasticity problems with interior Dirichlet boundary is stable for certain
specific material parameters.

In our work, we consider (possibly) nonlinear transmission problems in elasticity. As a
novelty, we introduce a general framework to handle both, the symmetric and non-symmetric
couplings. We transfer and extend the idea of implicit theoretical stabilization from [AFF+12]
to the present setting. This allows us to prove well-posedness of the non-stabilized coupling
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equations, although they seem to lack ellipticity. The basic idea is the following: We add
appropriate terms to the right-hand side and left-hand side of the equations and prove that
this modified (continuous or discrete) problem is equivalent to the original problem, even
with the same solution. This means that a solution of the modified problem also solves the
original problem and vice versa. Then, we prove existence and uniqueness of the solution
of the modified problem and, due to equivalence, we infer that the original problem is well-
posed. As in [CFS97, GHS12, Ste12], our analysis applies to polygonal resp. polyhedral
coupling boundaries. From our point of view, the advances over the state of art are fourfold:

• Unlike [CFS97], we do not have to impose any assumption on the mesh-size h in case
of the symmetric coupling.

• Unlike [CS88, GH95, GHS12, Han90, Ste92], we avoid the use of an artificial Dirichlet
boundary to tackle the rigid body motions.

• Unlike [Ste12], we prove well-posedness and stability of the original coupling equations
and thus avoid any explicit stabilization which requires the solution of additional
boundary integral equations.

• Unlike [GHS12, Ste12], our analysis for the one-equation couplings also covers certain
nonlinear material laws, e.g. nonlinear elastic Hencky material laws.

The remainder of this work is organized as follows: In Section 2, we state the nonlinear
elasticity transmission problem as well as the precise assumptions on the nonlinearity. Fur-
thermore, we fix some notation and collect some important properties of linear elasticity
problems and boundary integral operators, which are used throughout the work.

Section 3 deals with the symmetric coupling. Here, we introduce the concept of implicit
stabilization, and prove unique solvability of the coupling equations (Theorem 1). We prove
that the necessary assumption on the BEM discretization is satisfied, if the BEM ansatz
space contains the piecewise constants (Theorem 2).

In Section 4, we apply the ideas worked out in Section 3 to the Johnson-Nédélec coupling.
Moreover, we incorporate analytical techniques from [OS11, Ste12] to our method and prove
unique solvability under an additional assumption on the material parameters.

Finally, the short Section 5 analyzes the one-equation Bielak-MacCamy coupling which
seems not to be as present as the symmetric resp. Johnson-Nédélec coupling in the litera-
ture.

2. Model problem

Throughout this work, Ω ⊆ R
d (d = 2, 3) denotes a connected Lipschitz domain with poly-

hedral boundary Γ = ∂Ω and complement Ωext = R
d\Ω.

2.1. Notation. We use bold symbols for d-dimensional vectors, e.g. x, and vector valued
functions u : Rd → R

d. The components of such objects will be indexed, e.g. u = (u1,u2)
T .

For a set of n ∈ N or a sequence of vector-valued objects we use upper indices for each
element of the set resp. sequence, i.e. {uj}nj=1 resp. {uj}∞j=1.

Let X ⊆ R
d be a nonempty, measurable set and let L2(X) resp. H1(X), H1/2(X) =

(H−1/2(X))∗ denote the usual Lebesgue resp. Sobolev spaces. We define 〈u , v〉X :=
∫
X
uv dx

for u, v ∈ L2(X). For u ∈ H−1/2(Γ), v ∈ H1/2(Γ), the brackets 〈u , v〉Γ denote the continu-
ously extended L2-scalar product.
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For vector-valued Lebesgue resp. Sobolev spaces we use bold symbols, i.e. L2(X) :=
[L2(X)]d resp. H1(X) := [H1(X)]d and so on. Then, we define 〈u , v〉X :=

∫
X
u · v dx

for u, v ∈ L2(X). The product space H := H1(Ω) ×H−1/2(Γ), equipped with the norm

‖(u,φ)‖H :=
(
‖u‖2

H1(Ω)
+ ‖φ‖2

H−1/2(Γ)

)1/2
for (u,φ) ∈ H, will be used throughout the

work. Moreover, let ǫ(u) : σ(v) =
∑d

j,k=1 ǫjk(u)σjk(v) denote the Frobenius inner product

for arbitrary tensors ǫ,σ, and define 〈σ(u) , ǫ(v)〉Ω :=
∫
Ω
σ(u) : ǫ(v) dx. The divergence

div(ǫ(u)) of a tensor is understood component-wise (div(ǫ(u)))j =
∑d

k=1 ∂ǫjk(u)/∂xk for
j = 1, . . . , d. Finally, we write ‖ǫ(u)‖2

L2(Ω)
:= 〈ǫ(u) , ǫ(u)〉Ω.

2.2. Linear elasticity. As usual, the linear and symmetric strain tensor ǫ is defined
component-wise by

ǫjk(u) =
1

2

(∂uj

∂xk
+

∂uk

∂xj

)
(1)

for all u ∈ H1(Ω) and j, k = 1, . . . , d. Together with the Young modulus E > 0 and the
Poisson ratio ν ∈ (0, 1

2
), the linear stress tensor σ is defined by

σjk(u) = δjk
Eν

(1 + ν)(1− 2ν)
divu+

E

1 + ν
ǫjk(u)(2)

for all u ∈ H1(Ω) and j, k = 1, . . . , d. To simplify notation, one usually introduces the
so-called Lamé constants

λ :=
Eν

(1 + ν)(1− 2ν)
and µ :=

E

2(1 + ν)
.(3a)

With the identity matrix I ∈ R
d×d, the stress tensor σ then satisfies

σ(u) = λdiv(u)I + 2µǫ(u) as well as

divσ(u) = µ∆u+ (λ+ µ)∇div(u) in 3D, and

divσ(u) = µ∆u+
( Eν

(1 + ν)(1− ν)
+ µ

)
∇div(u) in 2D.

(3b)

The kernel of the strain tensor ǫ is given by the space of rigid body motions Rd := ker(ǫ) =
{v ∈H1(Ω) : ǫ(v) = 0} which reads

R2 := span

{(
1
0

)
,

(
0
1

)
,

(
−x2

x1

)}
for d = 2(4)

and

R3 := span








1
0
0


 ,



0
1
0


 ,



0
0
1


 ,



−x2

x1

0


 ,




0
−x3

x2


 ,



x3

0
−x1







 for d = 3.(5)

Therefore, it holds σ(v) = 0 for all v ∈ Rd as well.
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2.3. Nonlinear transmission problem. As model problem, we consider the following
nonlinear transmission problem in free space

−divAǫ(u) = f in Ω,(6a)

−divσext(uext) = 0 in Ωext,(6b)

u− uext = u0, on Γ(6c)
(
Aǫ(u)− σext(uext)

)
n = φ0, on Γ,(6d)

|uext(x)| = O(1/|x|) for |x| → ∞,(6e)

where n denotes the exterior unit normal vector on Γ pointing from Ω to Ωext. The nonlinear
operator A : Rd×d

sym → R
d×d
sym is used to describe a (possibly) nonlinear material law in Ω. Our

assumptions on the operator A and a more detailed description will be given later on in
Section 2.5. The stress tensor σext, which corresponds to the linear elasticity problem in the
exterior domain, is defined as in (2)–(3) with Lamé constants λext, µext. For given data f ∈
L2(Ω),u0 ∈H

1/2(Γ), and φ0 ∈H
−1/2(Γ), problem (6) admits unique solutions u ∈H1(Ω)

and uext ∈ H1
loc(Ω

ext) in 3D. This follows from the equivalence to the symmetric coupling
and its well-posedness, see Section 3. For the two-dimensional case, the two-dimensional
compatibility condition

〈f , ej〉Ω + 〈φ0 , e
j〉Γ = 0 j = 1, 2(7)

ensures unique solvability. Here, ej are the standard unit normal vectors in R
2. We refer

to [HW08] for further details.

Remark. The radiation condition (6e) can be generalized to

uext(x) = −G(x)a+ r +O
(
|x|1−d

)
for |x| → ∞,(8)

with r ∈ Rd, a ∈ R
d, and G(·) being the Kelvin tensor defined in (10) below. Moreover,

a =
∫
Γ
σext(uext)n dΓ. A solution of (6a)–(6d) with (8) is unique. To see this, we stress that

the pair (u,uext) solves (6a)–(6d) with (8) if and only if the pair (ũ, ũext) = (u−r,uext−r)
solves (6a)–(6d) with

ũ
ext(x) = −G(x)a+O(1/|x|1−d) for |x| → ∞(9)

and vice versa. Our analysis presented in this work still holds true if we replace (u,uext) by
(ũ, ũext) in (6a)–(6d) and the radiation condition (6e) by (9). Note that a = 0 implies the
compatibility condition (7) in 2D. Therefore, the compatibility condition can be dropped in
2D for a 6= 0. In general, the constant a is determined by a =

∫
Ω
f dx +

∫
Γ
φ0 dΓ, which

follows from (6a) and (6d). Furthermore, note that |G(x)| = O(1/|x|) for |x| → ∞ and
d = 3. Hence, (9) coincides with (6e) in 3D. �

2.4. Boundary integral operators. The fundamental solution for linear elastostatics is
given by the Kelvin tensor G(z) ∈ R

d×d
sym with

Gjk(z) =
λ+ µ

2µ(λ+ 2µ)

(
λ+ 3µ

λ+ µ
G(z)δjk +

zjzk

|z|d

)
(10)
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for all z ∈ R
d\{0} and j, k = 1, . . . , d, where G denotes the fundamental solution of the

Laplacian, i.e.

G(z) =

{
− 1

2π
log |z| for d = 2,

1
4π

1
|z|

for d = 3.
(11)

Throughout this work, V denotes the simple-layer potential, K the double-layer potential
with adjoint K′, and W denotes the hypersingular integral operator. The boundary integral
operators formally read for x ∈ Γ as follows:

Vφ(x) :=

∫

Γ

G(x− y)φ(y) dΓy,(12)

Kv(x) :=

∫

Γ

γint
1,yG(x− y)v(y) dΓy,(13)

Wv(x) := −γint
1,xKv(x),(14)

where γint
1,x denotes the conormal derivative with respect to x defined in (21) below. These

operators can be extended to continuous linear operators

V ∈ L(H−1/2(Γ);H1/2(Γ)),(15)

K ∈ L(H1/2(Γ);H1/2(Γ)),(16)

K′ ∈ L(H−1/2(Γ);H−1/2(Γ)),(17)

W ∈ L(H1/2(Γ);H−1/2(Γ)).(18)

We summarize some important properties of these operators. In 3D, the simple-layer poten-
tial is symmetric and elliptic, i.e. there holds

〈φ , Vψ〉Γ = 〈ψ , Vφ〉Γ and ‖φ‖2
H−1/2(Γ)

. 〈φ , Vφ〉Γ for all φ,ψ ∈H−1/2(Γ).(19)

Thus, ‖φ‖V := 〈φ , Vφ〉1/2Γ defines an equivalent Hilbert norm on H−1/2(Γ). In 2D, elliptic-
ity can be achieved by an appropriate scaling of the domain Ω, see e.g. [Ste08, Section 6.7]
for further details, and we may thus assume that V is elliptic. The hypersingular operator
is symmetric positive semidefinite, i.e.

〈Wv , w〉Γ = 〈Ww , v〉Γ and 〈Wv , v〉Γ ≥ 0 for all v,w ∈H1/2(Γ).(20)

There holds ker(W) = ker(1
2
+K) = Rd, see e.g. [Ste08, Section 6.7]. Throughout this work,

the boundary integral operators V,K,K′, and W are always understood with respect to the
exterior Lamé constants λext, µext. We stress that the natural conormal derivative γint

1 is

γint
1 u := σ(u)n on Γ.(21)

There holds Betti’s first formula, cf. e.g. [Ste08, Section 4.2],

〈σ(u) , ǫ(v)〉Ω = 〈Lu , v〉Ω + 〈γint
1 (u) , v〉Γ,(22)

with the linear differential operator Lu = −divσ(u).

2.5. Nonlinear material law and strongly monotone operators. We assume A to
be strongly monotone (23) and Lipschitz continuous (24), i.e. there exist constants cmon > 0
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and clip > 0 such that

cmon‖ǫ(u)− ǫ(v)‖
2
L2(Ω) ≤ 〈Aǫ(u)− Aǫ(v) , ǫ(u)− ǫ(v)〉Ω, and(23)

‖Aǫ(u)− Aǫ(v)‖L2(Ω) ≤ clip‖ǫ(u)− ǫ(v)‖L2(Ω)(24)

for all u, v ∈H1(Ω). In the case Aǫ(·) = σ(·) there holds, cf. [Ste08, Section 4.2],

|〈σ(u) , ǫ(v)〉Ω| ≤ C1‖ǫ(u)‖L2(Ω)‖ǫ(v)‖L2(Ω),(25)

and

〈σ(u) , ǫ(u)〉Ω ≥ C2‖ǫ(u)‖
2
L2(Ω)(26)

for all u, v ∈H1(Ω), with constants C1 = 6λ+ 4µ and C2 = 2µ.
An example for a nonlinear material law is the nonlinear elastic Hencky material, obeying

the Hencky-Von Mises stress-strain relation

Aǫ(u) := (K − 2
d
µ̃(γ(ǫ(u))))div(u)I + 2µ̃(γ(ǫ(u)))ǫ(u)(27)

with K > 0 being the constant bulk modulus and Lamé function γ(ǫ(u)) := (ǫ(u) −
1
d
div(u)I) : (ǫ(u) − 1

d
div(u)I). Here, µ̃ : R≥0 → R+ denotes a function such that the

operator from (27) satisfies (23)–(24). Further information on the Hencky material law can
be found in e.g. [CFS97, CS90, Ste92, Zei88] and the references therein.

2.6. Discretization. Let Th denote a regular triangulation of Ω and let EΓ
h denote a regular

triangulation of Γ. Here, regularity is understood in the sense of Ciarlet. We define the local
mesh-width function h by h|X := diam(X) for X ∈ Th resp. X ∈ EΓ

h . Moreover, let KΩ
h

denote the set of nodes of Th and let KΓ
h denote the set of nodes of EΓ

h . We stress that the
triangulation EΓ

h of the boundary Γ is, in general, independent of the triangulation Th.
Usually, one uses the space Pp(EΓ

h ) := {v ∈ L2(Γ) : v|E is a polynomial of degree ≤
p for all E ∈ EΓ

h } to approximate functions φ ∈ H−1/2(Γ) and the space Sq(Th) := Pq(Th) ∩
C(Ω) to approximate functions u ∈ H1(Ω), with q = p + 1. Here, Pq(Th) := {v ∈
L2(Ω) : v|T is a polynomial of degree ≤ q}. In Sections 3–5, we may therefore use the

space Hh := Xh × Yh =
(
Sq(Th)

)d
×

(
Pp(EΓ

h )
)d

to approximate functions (u,φ) ∈ H :=

H1(Ω)×H−1/2(Γ).

3. Symmetric FEM-BEM coupling

The symmetric coupling of FEM and BEM has independently been introduced by Costabel
and Han, see [Cos88, Han90] for example. It relies on the use of all boundary integral
operators from the Caldéron projector. For the derivation of the variational formulation of
the symmetric coupling, cf. (28), we refer to e.g. [CFS97, CS90, GH95] for nonlinear elasticity
problems and to e.g. [AFF+12, CS95, GH95] for nonlinear Laplace problems. It is also shown
in [CS90] resp. in [CFS97] for the two-dimensional case that the symmetric coupling (28) is
equivalent to the model problem (6).

3.1. Variational formulation. The symmetric coupling reads as follows: Find (u,φ) ∈
H :=H1(Ω)×H−1/2(Γ), such that

〈Aǫ(u) , ǫ(v)〉Ω + 〈Wu , v〉Γ + 〈(K′ − 1
2
)φ , v〉Γ = 〈f , v〉Ω + 〈φ0 +Wu0 , v〉Γ,(28a)

〈ψ , (1
2
− K)u+Vφ〉Γ = 〈ψ , (1

2
− K)u0〉Γ(28b)
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holds for all (v,ψ) ∈ H.
To abbreviate notation, we define the mapping b : H×H → R and the continuous linear

functional F ∈ H∗ by

b((u,φ), (v,ψ)) := 〈Aǫ(u) , ǫ(v)〉Ω

+ 〈Wu , v〉Γ + 〈(K′ − 1
2
)φ , v〉Γ + 〈ψ , (1

2
− K)u+Vφ〉Γ

(29)

and

F (v,ψ) := 〈f , v〉Ω + 〈φ0 +Wu0 , v〉Γ + 〈ψ , (1
2
− K)u0〉Γ(30)

for all (u,φ), (v,ψ) ∈ H. Then, the symmetric coupling (28) can also be written as follows:
Find (u,φ) ∈ H such that

b((u,φ), (v,ψ)) = F (v,ψ) holds for all (v,ψ) ∈ H.(31)

Note that b(·, ·) is nonlinear in u only, but linear in v,ψ, and φ. If we plug in the functions
(u,φ) = (v,ψ) = (r, 0) with r ∈ Rd into (29), we observe

b((r, 0), (r, 0)) = 0.(32)

Therefore, b(·, ·) is not elliptic and unique solvability of (31) cannot be shown directly. In
the following sections, we introduce an equivalent formulation of (31) which even has the
same solution. Since this equivalent formulation turns out to be uniquely solvable, also (31)
admits a unique solution.

The following two theorems are the main results of this section. With an additional
assumption on the model parameters cmon, λ

ext, µext these results also hold true for other
coupling methods, namely the Johnson-Nédélec coupling, cf. Section 4, and the Bielak-
MacCamy coupling, cf. Section 5.

Theorem 1. Let Hh := Xh×Yh be a closed subspace of H and assume that Y0 ⊆ Yh∩L
2(Γ)

satisfies

∀r ∈ Rd\{0}∃ξ ∈ Y0 〈ξ , r〉Γ 6= 0.(33)

Then, the symmetric coupling

b((u,φ), (v,ψ)) = F (v,ψ) for all (v,ψ) ∈ H(34)

as well as its Galerkin formulation

b((uh,φh), (vh,ψh)) = F (vh,ψh) for all (vh,ψh) ∈ Hh(35)

admit unique solutions (u,φ) ∈ H resp. (uh,φh) ∈ Hh. Moreover, there holds the Céa-type
quasi-optimality

‖(u,φ)− (uh,φh)‖H ≤ CCéa min
(vh,ψh)∈Hh

‖(u,φ)− (vh,ψh)‖H.(36)

The constant CCéa > 0 depends only on Ω, A, Y0, and on the Lamé constants λext, µext.

Assumption (33) is clearly satisfied if Y0 :=
(
P1(EΓ

h )
)d

denotes the space of affine functions

restricted to EΓ
h , since Rd ⊆

(
P1(EΓ

h )
)d

and one may thus choose ξ = r in (33). However,

we shall also show that the space Y0 :=
(
P0(EΓ

h )
)d

is sufficiently rich to ensure (33). This is
precisely the second theorem we aim to emphasize and prove. Note that the constant CCéa

does not depend on the mesh-size h if Y0 ⊆ Yh for all h.
8



Theorem 2. For d = 2, 3, the space Y0 :=
(
P0(EΓ

h )
)d

satisfies assumption (33).

The proof of Theorem 1 resp. Theorem 2 is carried out in Section 3.4 resp. Section 3.5.

3.2. Implicit theoretical stabilization. To prove Theorem 1, we shall add appropriate
terms to the linear form b(·, ·), which tackle the rigid body motions in the interior domain
Ω. These (purely theoretical) stabilization terms are chosen in such a way that they vanish
when inserting a (continuous resp. discrete) solution of (34). To be more precise, we will
use (28b) to stabilize the linear form b(·, ·).

Proposition 3. Let Hh = Xh × Yh be a closed subspace of H. Let {(ξj)Dj=1} ⊆ Yh, D ∈ N,
be a set of linearly independent functions. Define

b̃((u,φ), (v,ψ)) := b((u,φ), (v,ψ)) +

D∑

j=1

〈ξj , (1
2
−K)u+Vφ〉Γ〈ξ

j , (1
2
−K)v+Vψ〉Γ(37)

for all (u,φ), (v,ψ) ∈ Hh and

F̃ (v,ψ) := F (v,ψ) +

D∑

j=1

〈ξj , (1
2
− K)u0〉〈ξ

j , (1
2
− K)v +Vψ〉Γ(38)

for all (v,ψ) ∈ Hh. Then, there holds the following equivalence: A function (u,φ) ∈ Hh

solves

b((u,φ), (v,ψ)) = F (v,ψ) for all (v,ψ) ∈ Hh(39)

if and only if it also solves

b̃((u,φ), (v,ψ)) = F̃ (v,ψ) for all (v,ψ) ∈ Hh.(40)

Proof. Step 1. Assume that (u,φ) ∈ Hh solves (39). Firstly, by inserting the test-function
(0, ξj) in (39), we get

〈ξj , (1
2
− K)u+Vφ〉Γ = b((u,φ), (0, ξj)) = F (0, ξj) = 〈ξj , (1

2
− K)u0〉Γ

for all j = 1, . . . , D. Secondly, we multiply this equation with 〈ξj , (1
2
− K)v + Vψ〉Γ and

infer

〈ξj , (1
2
− K)u+Vφ〉Γ〈ξ

j , (1
2
− K)v +Vψ〉Γ = 〈ξj , (1

2
− K)u0〉Γ〈ξ

j , (1
2
− K)v +Vψ〉Γ

Last, we sum up these terms over all j = 1, . . . , D and add the sum to (39) to see that (u,φ)
solves (40).
Step 2. Assume that (u,φ) ∈ Hh solves (40). By choosing (v,ψ) = (0, ξℓ) as a test-
function in (40), we infer

〈ξℓ , (1
2
− K)u+Vφ〉Γ +

D∑

j=1

〈ξj , (1
2
− K)u+Vφ〉Γ〈ξ

j , Vξℓ〉Γ = b̃((u,φ), (0, ξℓ))

= F̃ (0, ξℓ) = 〈ξℓ , (1
2
− K)u0〉Γ +

D∑

j=1

〈ξj , (1
2
− K)u0〉Γ〈ξ

j , Vξℓ〉Γ,
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which is equivalent to
D∑

j=1

〈ξj , (1
2
− K)(u− u0) +Vφ〉Γ〈ξ

j , Vξℓ〉Γ = −〈ξℓ , (1
2
− K)(u− u0) +Vφ〉Γ(41)

for all ℓ = 1, . . . , D. Next, we define a matrix A ∈ R
D×D
sym with entries Ajk := 〈ξk , Vξj〉Γ

and a vector x ∈ R
D with entries xk := 〈ξk , (1

2
− K)(u− u0) +Vφ〉Γ for all j, k = 1, . . . , d.

Then, we can rewrite (41) for all ℓ = 1, . . . , D simultaneously as

Ax = −x.(42)

Since V is elliptic, and (ξj)Dj=1 are linearly independent, the matrix A is positive definite
and thus only has positive eigenvalues. Therefore, (42) is equivalent to x = 0, which means

〈ξj , (1
2
− K)u+Vφ〉Γ = 〈ξj , (1

2
− K)u0〉Γ

for all j = 1, . . . , D. With these equalities and the definitions of b(·, ·) and b̃(·, ·), we get

b̃((u,φ), (v,ψ))− b((u,φ), (v,ψ)) =

D∑

j=1

〈ξj , (1
2
− K)u+Vφ〉Γ〈ξ

j , (1
2
− K)v +Vψ〉Γ

=
D∑

j=1

〈ξj , (1
2
− K)u0〉Γ〈ξ

j , (1
2
− K)v +Vψ〉Γ

= F̃ (v,ψ)− F (v,ψ).

In particular, (40) thus implies (39). This concludes the proof. �

3.3. Equivalent norm. To show that the equivalent bilinear form of Proposition 3 is, in
fact, stabilized and yields a strongly elliptic formulation, we will prove that the employed
stabilization term provides an equivalent norm on the energy space H.

Lemma 4. Let gj : H → R with j = 1, . . . , D denote linear and continuous functionals such
that

|g(r, 0)|2 :=
D∑

j=1

gj(r, 0)
2 6= 0 holds for all r ∈ Rd\{0}.(43)

Then, the definition

|||(u,φ)|||2 := ‖ǫ(u)‖2L2(Ω) + 〈φ , Vφ〉Γ + |g(u,φ)|2 for all (u,φ) ∈ H(44)

yields an equivalent norm on H, and the norm equivalence constant Cnorm > 0 in

C−1
norm ‖(u,φ)‖H ≤ |||(u,φ)||| ≤ Cnorm ‖(u,φ)‖H for all (u,φ) ∈ H(45)

depends only on Ω, λext, µext, and g.

Proof. Firstly, due to boundedness of g and ‖ǫ(u)‖L2(Ω) . ‖u‖H1(Ω) there holds |||(u,φ)||| .
‖(u,φ)‖H. Secondly, we argue by contradiction to prove the converse estimate: Assume that
there exist functions (un,φn) with ‖(un,φn)‖H > n|||(un,φn)||| for all n ∈ N. Define

(vn,ψn) :=
(un,φn)

‖(un,φn)‖H
.

10



Then, it follows |||(vn,ψn)||| < 1/n and thus ǫjk(vn) → 0 in L2(Ω) for j, k = 1, . . . , d as

well as ψn → 0 in H−1/2(Γ). By definition of (vn,ψn), there holds ‖(vn,ψn)‖H = 1 and
we may extract a weakly convergent subsequence with (vnℓ

,ψnℓ
) ⇀ (v,ψ) in H. Next, we

conclude that ψnℓ
→ ψ = 0 in H−1/2(Γ) and vnℓ

→ v in L2(Ω), where the latter follows

from weak convergence vnℓ
⇀ v in H1(Ω) and the Rellich compactness theorem. Weak

lower semi-continuity of |||(·, ·)||| implies |||(v,ψ)||| = 0 and thus ǫ(v) = 0 and |g(v, 0)| = 0.
Due to ker(ǫ) = Rd and (43), it follows that v = 0. Moreover, with Korn’s second inequality,
cf. e.g. [Ste08, Theorem 4.17], we infer

‖vnℓ
− v‖2

H1(Ω) . ‖ǫ(vnℓ
)− ǫ(v)‖2

L2(Ω) + ‖vnℓ
− v‖2

L2(Ω)

ℓ→∞
−−−→ 0

and therefore (vnℓ
,ψnℓ

) → (0, 0) in H, which contradicts ‖(vnℓ
,ψnℓ

)‖H = 1. This concludes
the proof. �

The following proposition provides the equivalent norm used to analyze the symmetric
coupling as well as the Johnson-Nédélec coupling (see Section 4 below).

Proposition 5. Let Y0 ⊆ Y ∩ L2(Γ) be a subspace which satisfies assumption (33) of The-
orem 1. Let r1, . . . , rD with D = dim(Rd) denote a basis of the rigid body motions and let
Π0 : L2(Γ) → Y0 be the L2-orthogonal projection. Then, ξj := Π0(r

j) for j = 1, . . . , D are
linearly independent. Moreover, the functionals gj ∈ H∗ defined by

gj(u,φ) := 〈ξj , (1
2
− K)u+Vφ〉Γ for (u,φ) ∈ H(46)

fulfill assumption (43) of Lemma 4. In particular,

|||(u,φ)|||2 := ‖ǫ(u)‖2
L2(Ω) + 〈φ , Vφ〉Γ +

D∑

j=1

|〈ξj , (1
2
− K)u+Vφ〉Γ|

2(47)

is an equivalent norm on H, and the norm equivalence constant Cnorm > 0 in

C−1
norm ‖(u,φ)‖H ≤ |||(u,φ)||| ≤ Cnorm ‖(u,φ)‖H for all (u,φ) ∈ H(48)

depends only on Ω, Y0, λ
ext, and µext.

Proof. We work out an alternative formulation of (33). With 〈ξ , r〉Γ = 〈Π0ξ , r〉Γ =
〈ξ , Π0r〉Γ, condition (33) becomes

∀r ∈ Rd\{0}∃ξ ∈ Y0 〈ξ , Π0r〉Γ 6= 0.

Clearly, this is equivalent to Π0(r) 6= 0 for all r ∈ Rd\{0}, which yields that the functions
ξj := Π0(r

j), for j = 1, . . . , D, are linearly independent. Therefore, we can reformulate
condition (33) as

∀r ∈ Rd\{0}∃j ∈ {1, . . . , D} 〈ξj , r〉Γ 6= 0.(49)

The functionals gj are well-defined, linear, and bounded. To see (43), we stress that due to
ker(1

2
+ K) = Rd,

gj(r, 0) = 〈ξj , (1
2
− K)r〉Γ = 〈ξj , r〉Γ for j = 1, . . . , D and r ∈ Rd.
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From (49) we infer that there exists j ∈ {1, . . . , D} such that gj(r, 0) 6= 0. Therefore, (43)
holds for

|g(u,φ)|2 =
D∑

j=1

gj(u,φ)
2 =

D∑

j=1

|〈ξj , (1
2
− K)u+Vφ〉Γ|

2.

This concludes the proof. �

3.4. Proof of Theorem 1. As far as existence and uniqueness of solutions is concerned, it
suffices to consider the Galerkin formulation (35), since this covers the case Hh = H as well.
With assumption (33) and Y0 ⊆ Yh ∩ L

2(Γ), Proposition 5 allows to apply Proposition 3.
Hence, we may equivalently ask for the unique solvability of (40) instead of (39) resp. (35).

To this end, we define the nonlinear operator B̃ : Hh → H∗
h by

B̃(uh,φh) := b̃((uh,φh), ·).

First, we rewrite equation (40) as an equivalent operator equation: Find (uh,φh) ∈ Hh such
that

B̃(uh,φh) = F in H∗
h.(50)

Step 1 (Lipschitz continuity of B̃). Due to the Lipschitz continuity (24) of A and the

boundedness of the boundary integral operators, it clearly follows that B̃ is also Lipschitz
continuous. The Lipschitz constant Clip > 0 in

‖B̃(uh,φh)− B̃(vh,ψh)‖H∗ ≤ Clip‖(uh,φh)− (vh,ψh)‖H,(51)

for all (uh,φh), (vh,ψh) ∈ H, thus depends only on A,Ω, λext, and µext.

Step 2 (Strong monotonicity of B̃). We have to prove that, for all (uh,φh), (vh,ψh) ∈ H,

〈B̃(uh,φh)− B̃(vh,ψh) , (uh − vh,φh −ψh)〉 ≥ Cmon‖(uh − vh,φh −ψh)‖
2
H.(52)

To abbreviate notation, let (wh,χh) := (uh − vh,φh −ψh). Then, we get

〈B̃(uh,φh)− B̃(vh,ψh) , (wh,χh)〉

= 〈Aǫ(uh)− Aǫ(vh) , ǫ(wh)〉Ω + 〈Wwh , wh〉Γ + 〈(K′ − 1
2
)χh , wh〉Γ

+ 〈χh , (
1
2
− K)wh +Vχh〉Γ +

D∑

j=1

|〈ξj , (1
2
− K)wh +Vχh〉Γ|

2 =: I

Next, we use strong monotonicity (23) of A and positive semi-definiteness (20) of W to
estimate

I ≥ cmon‖ǫ(wh)‖
2
L2(Ω) + 〈χh , Vχh〉Γ +

D∑

j=1

|〈ξj , (1
2
− K)wh +Vχh〉Γ|

2

≥ min{cmon, 1}
(
‖ǫ(wh)‖

2
L2(Ω) + 〈χh , Vχh〉Γ +

D∑

j=1

|〈ξj , (1
2
− K)wh +Vχh〉Γ|

2
)

= min{cmon, 1} |||(wh,χh)|||
2.
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Finally, the norm equivalence of Proposition 5 yields strong monotonicity, where Cmon =
min{cmon, 1}C

−1
norm > 0 depends only on A, Ω, λext, µext and Y0.

Step 3 (Unique solvability and Céa lemma). The main theorem on strongly monotone
operators, see e.g. [Zei90, Section 25], states that the operator formulation (50) and thus
the Galerkin formulation (35) admits a unique solution (uh,φh) ∈ Hh. For Hh = H, we
see that also the symmetric formulation (34), admits a unique solution (u,φ) ∈ H. Finally,
standard theory [Zei90, Section 25] also proves the validity of Céa’s lemma (36), where
CCéa = Clip/Cmon > 0 depends only on Ω, A, λext, µext and Y0. �

Remark. Our analysis unveils that (28b) tackles the rigid body motions in the interior
domain. We have seen in (32) that this information is lost when trying to prove ellipticity
of b(·, ·), but can be reconstructed by adding appropriate terms to b(·, ·). We stress that the
radiation condition (6e) fixes the rigid body motion in the exterior Ωext, see also Section 2.3.
Since the interior and exterior solution are coupled via equation (28b) this information is
transferred by (28b) from the exterior to the interior. Thus, adding terms to b(·, ·) that
satisfy (28b) for fixed test-functions seems to be a natural approach. �

3.5. Proof of Theorem 2. Let r1, . . . , rD be a basis of the rigid body motions Rd and let
Π0 : L

2(Γ) → P0(EΓ
h ) denote the L

2-projection. We shall use the observation from the proof
of Proposition 5 that assumption (33) is equivalent to the fact that Π0(r

j), for j = 1, . . . , D
are linearly independent.

Proof of Theorem 2 for d = 2. Let

r1 :=

(
1
0

)
, r2 :=

(
0
1

)
, r3 :=

(
−x2

x1

)

denote the canonical basis of R2, and let α1, α2, α3 ∈ R fulfill

α1Π0(r
1) + α2Π0(r

2) + α3Π0(r
3) = 0.(53)

We stress that Π0(r
1) = r1 and Π0(r

2) = r2. For E ∈ EΓ
h , we get

Π0(r
3)|E =

1

|E|

(
−
∫
E
x2 dΓx∫

E
x1 dΓx

)
=

(
−sE2
sE1

)
,

where sE = (sE1 , s
E
2 )

T denotes the midpoint of a boundary element E. Therefore, (53) can
be written as (

α1

α2

)
+ α3

(
−sE2
sE1

)
= 0 for all E ∈ EΓ

h .(54)

Altogether, we thus obtain α3s
E = α3s

E′

for all E,E ′ ∈ EΓ
h , which can only hold for α3 = 0.

This implies α1r
1 + α2r

2 = 0 and hence α1 = 0 = α2. Therefore, Π0(r
j), j = 1, . . . , 3 = D,

are linearly independent which is equivalent to (33). �

Proof of Theorem 2 for d = 3. Let

r1 :=



1
0
0


 , r2 :=



0
1
0


 , r3 :=



0
0
1


 , r4 :=



−x2

x1

0


 , r5 :=




0
−x3

x2


 , r6 :=



x3

0
−x1
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denote the canonical basis of R3. We stress that Π0(r
j) = rj for j = 1, 2, 3, and

Π0(r
4)|E =



−sE2
sE1
0


 , Π0(r

5)|E =




0
−sE3
sE2


 , Π0(r

6)|E =



sE3
0

−sE1




for all faces E ∈ EΓ
h , where s

E = (sE1 , s
E
2 , s

E
3 )

T ∈ R
3 denotes the center of mass of an element

E ∈ EΓ
h . The main ingredient for the proof is the geometric observation of Lemma 7 from

the Appendix: There are at least three elements A,B,C ∈ EΓ
h such that the corresponding

centers of mass a, b, c do not lie on one line. Let α1, α2, α3, α4, α5, α6 ∈ R fulfill

α1Π0(r
1) + α2Π0(r

2) + α3Π0(r
3) + α4Π0(r

4) + α5Π0(r
5) + α6Π0(r

6) = 0,

which is equivalent to



α1

α2

α3



+




−sE2 0 sE3
sE1 −sE3 0
0 sE2 −sE1








α4

α5

α6



 =




0
0
0



(55)

for all E ∈ EΓ
h . We take the third equation of (55) for the three elements A,B,C corre-

sponding to a, b, c and get


1 a2 −a1

1 b2 −b1
1 c2 −c1






α3

α5

α6


 = 0,

which is only satisfied if α3 = α5 = α6 = 0 or if the vectors


1
1
1


 ,



a2

b2
c2


 ,



−a1

−b1
−c1


 are linearly dependent.(56)

Case 1 (α3 = α5 = α6 = 0). We insert α3, α5, α6 into the first two equations of (55) and
infer for all E ∈ EΓ

h

(
α1

α2

)
+ α4

(
−sE2
sE1

)
= 0 or equivalently

α4

(
sE1
sE2

)
= α4

(
sE

′

1

sE
′

2

)
for all E,E ′ ∈ EΓ

h ,

which can only hold if α4 = 0. Otherwise, all centers of mass would lie on a straight line
which would contradict the choice of A,B,C. Therefore, we first get α3 = α4 = α5 = α6 = 0,
and this also implies α1 = α2 = 0.

Case 2 ((56) holds). There exist constants γ′, δ′ ∈ R such that


a1

b1
c1


 = γ′



a2

b2
c2


 + δ′



1
1
1


 .(57)
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Next, we take the first equation of (55) for the three elements corresponding to a, b, c and
get



1 −a2 a3

1 −b2 b3
1 −c2 c3






α1

α4

α6


 = 0,

which is only fulfilled if α1 = α4 = α6 = 0 or if the vectors


1
1
1


 ,



−a2

−b2
−c2


 ,



a3

b3
c3


 are linearly dependent.(58)

Case 2a (α1 = α4 = α6 = 0). We insert α1, α4, α6 into equation two and three in (55)
and infer for all E ∈ EΓ

h
(
α2

α3

)
+ α5

(
−sE3
sE2

)
= 0 or equivalently

α5

(
sE2
sE3

)
= α5

(
sE

′

2

sE
′

3

)
for all E,E ′ ∈ EΓ

h ,

which implies α5 = 0 as in Case 1. Arguing as above, we first get α1 = α4 = α5 = α6 = 0
and finally also α2 = α3 = 0.

Case 2b ((58) holds). There exist constants λ, µ ∈ R such that


a2

b2
c2


 = λ



a3

b3
c3


+ µ



1
1
1


 .

Together with (57), we get

a = a3



γ
λ
1


+



δ
µ
0


 , b = b3



γ
λ
1


 +



δ
µ
0


 , c = c3



γ
λ
1


 +



δ
µ
0


 ,

where γ = γ′λ and δ = γ′µ + δ′. This means that a, b, c lie on one line which contradicts
our choice of the elements A,B,C. In particular, case 2b cannot occur.

Altogether, we have shown α1 = α2 = α3 = α4 = α5 = α6 = 0 in (55), and therefore
the orthogonal projections Π0(r

j), j = 1, . . . , 6 = D, are linearly independent. Since this is
equivalent to (33), we conclude the proof. �

4. Johnson-Nédélec coupling

This section deals with the Johnson-Nédélec coupling, see e.g. [JN80, ZKB79] for linear
Laplace problems and [GHS12, Ste12] for linear elasticity problems. In contrast to [GHS12]
resp. [Ste12] we avoid the use of interior Dirichlet boundaries resp. an explicit stabilization
of the coupling equations. The derivation of the variational formulation (59) of the Johnson-
Nédélec coupling and the proof of equivalence to the model problem (6) are done as for the
Laplace problem, see e.g. [AFF+12, GH95] for the derivation.
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4.1. Variational formulation. The Johnson-Nédélec coupling reads as follows: Find
(u,φ) ∈ H =H1(Ω)×H−1/2(Γ) such that

〈Aǫ(u) , ǫ(v)〉Ω − 〈φ , v〉Γ = 〈f , v〉Ω + 〈φ0 , v〉Γ(59a)

〈ψ , (1
2
− K)u+Vφ〉Γ = 〈ψ , (1

2
− K)u0〉Γ(59b)

holds for all (v,ψ) ∈ H. Note that the second equation of the Johnson-Nédélec equations
(59) is the same as for the symmetric coupling (28). We define a mapping b : H ×H → R

and a continuous linear functional F ∈ H∗ by

b((u,φ), (v,ψ)) := 〈Aǫ(u) , ǫ(v)〉Ω − 〈φ , v〉Γ + 〈ψ , (1
2
− K)u+Vφ〉Γ(60)

as well as

F (v,ψ) := 〈f , v〉Ω + 〈φ0 , v〉Γ + 〈ψ , (1
2
− K)u0〉Γ(61)

for all (u,φ), (v,ψ) ∈ H. Problem (59) can equivalently be stated as follows: Find (u,φ) ∈
H such that

b((u,φ), (v,ψ)) = F (v,ψ) holds for all (v,ψ) ∈ H.(62)

We infer from (60) that

b((r, 0), (r, 0)) = 0 for r ∈ Rd.(63)

Therefore, the mapping b(·, ·) cannot be elliptic, and we proceed as in Section 3 to prove
well-posedness of (59) and its Galerkin discretization.

4.2. Main result. According to [SW01], there exists a constant 1/2 ≤ cK < 1 such that

‖(1
2
+ K)v‖V−1 ≤ cK‖v‖V−1 for all v ∈H1/2(Γ),(64)

where ‖v‖2V−1 = 〈V−1v , v〉 denotes an equivalent norm on H1/2(Γ) induced by the inverse
of the simple-layer potential. The following theorem is the main result of this section.

Theorem 6. Let cK < 1 denote the contraction constant (64) of the double-layer potential
and assume that 2cmon > cK(3λ

ext + 2µext). Then, the assertions of Theorem 1 hold for the
Johnson-Nédélec coupling accordingly.

4.3. Auxiliary results. We stress that the results of Section 3.2–3.3 also apply to the
Johnson-Nédélec coupling without further modifications. Additionally, the proof needs some
properties of the boundary integral operators and some results from the works [OS11, Ste12],
which are stated in the following. First, we introduce the interior Steklov-Poincaré operator
S :H1/2(Γ) →H−1/2(Γ) defined by

S := V−1(1
2
+ K),

see e.g. [HW08]. Note that V and K are still defined with respect to the exterior Lamé
constants λext, µext. We use the estimate

‖(1
2
+ K)w‖2V−1 ≤ cK〈Sw , w〉Γ for all w ∈H1/2(Γ)

from [OS11, Ste12], which involves the contraction constant (64) of the double-layer potential
K. The last estimate yields

〈χ , (1
2
+ K)w〉Γ ≤ ‖(1

2
+ K)w‖V−1‖χ‖V ≤

√
cK〈Sw , w〉Γ‖χ‖V for all (w,χ) ∈ H.(65)
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For w ∈H1(Ω) we next introduce the splitting

w0 := w −wD,(66)

where wD ∈H1(Ω) is the unique weak solution of

divσext(wD) = 0 in Ω,

wD = w on Γ.

Then, there holds w0|Γ = 0 as well as the orthogonality relation 〈σext(wD) , ǫ(w0)〉Ω = 0 =
〈σext(w0) , ǫ(wD)〉Ω. Consequently, we see

〈σext(w) , ǫ(w)〉Ω = 〈σext(wD) , ǫ(wD)〉Ω + 〈σext(w0) , ǫ(w0)〉Ω.(67)

Moreover, wD fulfills γint
1 w

D = SwD. Together with Betti’s first formula (22), we infer

〈σext(wD) , ǫ(wD)〉Ω = 〈γint
1 w

D , wD〉Γ = 〈SwD , wD〉Γ.(68)

4.4. Proof of Theorem 6. Note that Proposition 3 holds true with b(·, ·) resp. F (·)

replaced by definition (60) resp. (61). We define the nonlinear operator B̃ : H → H∗ by

〈B̃(uh,φh) , (·, ·)〉 := b̃((uh,φh), (·, ·)).

Step 1 (Lipschitz continuity of B̃). Arguing as in (51) in the proof of Theorem 1, we

prove Lipschitz continuity of B̃, where the Lipschitz constant Clip > 0 depends only on A,
λext, µext, and Ω.

Step 2 (Strong monotonicity of B̃). We have to prove that, for all (uh,φh), (vh,ψh) ∈ H,

〈B̃(uh,φh)− B̃(vh,ψh) , (uh − vh,φh −ψh)〉 ≥ Cmon‖(uh − vh,φh −ψh)‖
2
H.(69)

To abbreviate notation, let (wh,χh) := (uh − vh,φh −ψh). By use of monotonicity (23) of
A, we see

〈B̃(uh,φh)− B̃(vh,ψh) , wh〉Γ

= 〈Auh − Avh , wh〉Ω − 〈χh , wh〉Γ + 〈χh , (
1
2
− K)wh +Vχh〉Γ

+
D∑

j=1

|〈ξj , (1
2
− K)wh +Vχh〉Γ|

2

≥ cmon‖ǫ(wh)‖
2
L2(Ω) − 〈χh , (

1
2
+ K)wh〉Γ + 〈χh , Vχh〉Γ

+

D∑

j=1

|〈ξj , (1
2
− K)wh +Vχh〉Γ|

2

=: I1 − I2 + I3 + I4.

Next, we use the splitting (66) for wh = w0 + wD. Together with (67) and (25), where
C1 = 6λext + 4µext, we get

I1 ≥
cmon

C1
〈σext(wh) , ǫ(wh)〉Ω =

cmon

C1
〈σext(w0) , ǫ(w0)〉Ω +

cmon

C1
〈σext(wD) , ǫ(wD)〉Ω

=: I11 + I12.
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Estimate (65) and Young’s inequality yield for δ > 0

I2 = 〈χh , (
1
2
+ K)wD〉Γ ≤

√
cK〈SwD , wD〉Γ‖χh‖V ≤

δ

2
cK〈Sw

D , wD〉Γ +
δ−1

2
‖χh‖

2
V.

With the last inequality and (68), we get

I2 ≤
δ

2
cK〈σ

ext(wD) , ǫ(wD)〉Ω +
δ−1

2
‖χh‖

2
V.

Now, we can further estimate the terms I1 − I2 + I3 by

I1 − I2 + I3 ≥ I11 +
(cmon

C1
−

δ

2
cK

)
〈σext(wD) , ǫ(wD)〉Ω +

(
1−

δ−1

2

)
‖χh‖

2
V

≥
(cmon

C1
−

δ

2
cK

)
〈σext(wh) , ǫ(wh)〉Ω +

(
1−

δ−1

2

)
〈χh , Vχh〉Γ,

where we used (67) again. The assumption 2cmon > cK(3λ
ext + 2µext) is equivalent to

cmon/C1 > cK/4 with C1 = 6λext + 4µext. Therefore, there exists δ > 0 such that C :=
min{cmon/C1 − cKδ/2, 1− δ−1/2} > 0. Altogether, we infer with (67) and (26)

I1 − I2 + I3 + I4 ≥ C
(
〈σext(wh) , ǫ(wh)〉Ω + 〈χh , Vχh〉Γ +

D∑

j=1

|〈ξj , (1
2
− K)wh +Vχh〉Γ|

2
)

≥ C̃
(
‖ǫ(wh)‖

2
L2(Ω) + 〈χh , Vχh〉Γ +

D∑

j=1

|〈ξj , (1
2
− K)wh +Vχh〉Γ|

2
)

= C̃|||(wh,χh)|||
2 ≥ C̃C−1

norm‖(wh,χh)‖
2
H,

where C̃ = Cmin{1, C2}. The constant Cmon := C̃C−1
norm > 0 depends only on Ω,A,Y0, and

on the Lamé constants λext, µext.
Step 3 (Unique solvability and Céa lemma). This step is essentially the same as Step 3

in the proof of Theorem 1. We thus omit the details.

Remark. (i) In the linear case A = σint, we may also use an estimate from [Ste12] in
Step 2 of the proof of Theorem 6 and replace the assumption 2cmon > cK(3λ

ext + 2µext) from
Theorem 6 with

η := min{λint/λext, µint/µext} >
cK
4
.

(ii) The assumption 2cmon > cK(3λ
ext + 2µext), is an assumption on the monotonicity con-

stant cmon and the Lamé constants λext, µext in the exterior domain. As we have seen for
the symmetric coupling the assumption cmon > 0 suffices to prove unique solvability. Since
the Johnson-Nédélec coupling is equivalent to the model problem, we stress that at least
the continuous formulation of the Johnson-Nédélec coupling equations is uniquely solvable.
In [OS11], Of and Steinbach have shown that the Johnson-Nédélec coupling equations may
become indefinite (and hence non-elliptic) for special choices of the model parameters. How-
ever, the numerical experiments from [AFF+12] show at least numerically that the Laplace
transmission problem also allows for unique Galerkin solutions in the indefinite regime.
(iii) Assume a nonlinear Hencky-Von Mises stress-strain relation, i.e. the operator from (27),
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with µ̃(·) ≥ α > 0 and µ̃(·) ≤ Kd/2 − β for some α, β > 0. Then we may replace the as-
sumption 2cmon > cK(3λ

ext + 2µext) from Theorem 6 with

η >
cK
4
,

where η := min{infx∈R+
{(K − 2/dµ̃(x)}/λext, infx∈R+

{µ̃(x)}/µext}. �

5. Bielak-MacCamy coupling

In this section we investigate the non-symmetric Bielak-MacCamy one-equation coupling,
see e.g. [AFF+12, BM84, CES91] for the Laplace problem. The derivation of the variational
formulation (70) as well as the proof of equivalence to the model problem (6) essentially
follow as for the Johnson-Nédélec coupling resp. symmetric coupling, cf. e.g. [AFF+12,
CFS97, GH95].

5.1. Variational formulation. The variational formulation of the Bielak-MacCamy cou-
pling reads as follows: Find (u,φ) ∈ H =H1(Ω)×H−1/2(Γ) such that

〈Aǫ(u) , ǫ(v)〉Ω + 〈(1
2
− K′)φ , v〉Γ = 〈f , v〉Ω + 〈φ0 , v〉Γ(70a)

〈ψ , Vφ− u〉Γ = −〈ψ , u0〉Γ(70b)

holds for all (v,ψ) ∈ H. We sum up the left-hand side and the right-hand side of (70) and
define the mapping b : H×H → R as well as the linear functional F ∈ H∗ by

b((u,φ), (v,ψ)) := 〈Aǫ(u) , ǫ(v)〉Ω + 〈(1
2
− K′)φ , v〉Γ + 〈ψ , Vφ− u〉Γ(71)

as well as

F (v,ψ) := 〈f , v〉Ω + 〈φ0 , v〉Γ − 〈ψ , u0〉Γ(72)

for all (u,φ), (v,ψ) ∈ H. Then, problem (70) can equivalently be stated as follows: Find
(u,φ) ∈ H such that

b((u,φ), (v,ψ)) = F (v,ψ) holds for all (v,ψ) ∈ H.(73)

As for the other coupling formulations b(·, ·) is not uniformly elliptic, and unique solvability
cannot be shown directly. We follow the ideas of Section 3 resp. Section 4 to overcome these
difficulties. Moreover, with bJN(·, ·) denoting the mapping defined in (60), we stress that

bJN((u,φ), (u,φ)) = b((u,φ), (u,φ)) for all (u,φ) ∈ H.(74)

Thus, there is a strong relation between the one-equation Bielak-MacCamy and Johnson-
Nédélec coupling. In fact, for linear and symmetric A : L2(Ω) → L2(Ω), there holds

bJN((u,φ), (v,ψ)) = b((v,ψ), (u,φ)) for all (u,φ), (v,ψ) ∈ H.

5.2. Main result. As in Section 3.2, we add appropriate terms to b(·, ·) to tackle the rigid
body motions in the interior domain Ω. In particular, we use (70b) to stabilize the linear

19



form b(·, ·). We stress that Proposition 3 holds with b̃(·, ·) resp. F̃ (·) replaced by

b̃((u,φ), (v,ψ)) := b((u,φ), (v,ψ)) +
D∑

j=1

〈ξj , Vφ− u〉Γ〈ξ , Vv −ψ〉Γ,(75)

F̃ (v,ψ) := F (v,ψ)−
D∑

j=1

〈ξj , u0〉Γ〈ξ , Vv −ψ〉Γ(76)

for all (u,φ), (v,ψ) ∈ H. Furthermore, the assertions of Proposition 5 also hold true if (46)
is replaced by

gj(u,φ) := 〈ξ , Vφ− u〉Γ for (u,φ) ∈ H.(77)

With these observations, Theorem 6 holds true for the Bielak-MacCamy coupling. Details
are left to the reader.

Remark. Our techniques developed in Section 3–5 can also be used for the (quasi-) sym-
metric Bielak-MacCamy coupling schemes [BM84, GHS12] applied to nonlinear elasticity
problems. �

Appendix A. Elementary geometric observation

Lemma 7. Let d = 3 and EΓ
h be a regular triangulation of the closed boundary Γ = ∂Ω into

flat surface triangles. Then, there are at least three triangles A,B,C ∈ EΓ
h such that the

centers of mass a, b, c corresponding to these elements do not lie on one line, i.e. c − a /∈
{t(b− a) : t ∈ R}.

Proof. We argue by contradiction. Assume that all centers of mass lie on one line g. Let
x ∈ KΓ

h denote an arbitrary node of the triangulation EΓ
h . Recall that Γ = ∂Ω is the

closed boundary of the polyhedral Lipschitz domain Ω. Therefore, there are k ≥ 3 triangles
D1, . . . , Dk ∈ EΓ

h such that x is a corner of Dj for j = 1, . . . , k. Moreover, let {x,x1, . . . ,xk}
denote the set of all nodes of the triangles D1, . . . , Dk. We stress that we can permute the
indices of x1, . . . ,xk and the indices of D1, . . . , Dk such that Dj = conv {x,xj,xj+1}, where
we define xk+1 := x1 and xk+2 := x2, see Figure 1 for an illustration in the case k = 6. Let
s1, . . . , sk denote the centers of mass of the triangles D1, . . . , Dk. Because of our assumption
that all centers of mass lie on one line g, we infer that

sj+1 − sj =
xj+2 + xj+1 + x

3
−
xj+1 + xj + x

3
=
xj+2 − xj

3

is proportional to the directional vector d 6= 0 of the line g. Therefore, xj+2 − xj is also
proportional to d. Moreover, we observe td = sj+3 − sj+2 + sj+1 − sj = (xj+4 − xj)/3 for
some t ∈ R. By iterating this process, we get with appropriate tm, tn ∈ R

tmd =
2m∑

j=1

(−1)jsj = (x2m+1 − x1)/3 for all m with 2m ≤ k,

tnd =
2n−1∑

j=2

(−1)j+1sj = (x2n − x2)/3 for all n with 2n− 1 ≤ k.
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x

D1

D2

D3

D4

D5

D6

x1

x2

x3

x4

x5

x6

Figure 1. For any node x ∈ KΓ
h in a regular triangulation EΓ

h of a closed
boundary Γ, there exist k ≥ 3 different nodes x1, . . . ,xk ∈ KΓ

h and triangles
D1, . . . , Dk such that Dj = conv {x,xj,xj+1} for all j = 1, . . . , k. Moreover,
there holds Dj ∩Dj+1 = conv {x,xj+1} for j = 1, . . . , k with xk+1 = x1. Here,
an example for k = 6 is shown.

Altogether, we see that all nodes with even indices lie on one line h, and all nodes with odd
indices lie on one parallel line f, i.e.

x2j ∈
{
x2 + td : t ∈ R

}
=: h and

x2j−1 ∈
{
x1 + td : t ∈ R

}
=: f

for all j ∈ N with 2j ≤ k resp. 2j − 1 ≤ k. For the remainder of the proof, we distinguish
whether k is odd or even.

Case 1 (k is odd). The observations above show that x1,x3, . . . ,xk ∈ f and x2 − xk =
xk+2 − xk = td for some t ∈ R. Then, x2 ∈ f and since f and h are parallel, there holds
h = f, which means that all nodes x1, . . . ,xk lie on one line. This contradicts a regular
triangulation.

Case 2 (k is even). If h = f we can argue as in Case 1. Otherwise h 6= f, and we stress

that all edges xjxj+1 of the triangles are connected, i.e.

xjxj+1 ∩ xnxn+1 =





{xj} if j = n+ 1

{xj+1} if j + 1 = n

∅ otherwise.

Moreover, every edge xjxj+1 connects the lines h and f. Thus, we can infer that there are
two edges xmxm+1, xnxn+1 which intersect each other, i.e.

xmxm+1 ∩ xnxn+1 = {y} with y 6= xn and y 6= xn+1,

see also Figure 2 for an illustration. Altogether this contradicts a regular triangulation. �
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h

f

x2n

x2n+1

x2m

x2m+1

Figure 2. Let x ∈ KΓ
h be an arbitrary node in the regular triangulation EΓ

h

and let x1, . . . ,xk denote the neighboring nodes. Under the assumption that
all centers of mass of the triangles in EΓ

h lie on a line g, the proof of Lemma 7
unveils that the nodes x2j−1 lie on a line f and the nodes x2j lie on a line
h, which is parallel to f. Since all xj are connected by the segments xjxj+1,
we can conclude that there are indices n,m with 2n ≤ k, 2m ≤ k such that
x2nx2n+1 ∩ x2mx2m+1 = {y} and y /∈ KΓ

h .
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