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Abstract A convergence analysis for time-splitting generalized-Laguerre—
Fourier-Hermite pseudo-spectral methods applied to time-dependent Gross—
Pitaevskii equations with rotation term is given. The space discretization
combines the generalized-Laguerre—Fourier spectral method with respect to
the (z,y)-variables and the Hermite spectral method with respect to the z-
direction. For the time integration exponential operator splitting methods are
studied. Under suitable regularity requirements on the problem data spectral
accuracy of the spatial discretization and the nonstiff convergence order for
the time integrator is retained. Essential ingredients are a general functional
analytic framework of abstract nonlinear evolution equations and fractional
power spaces defined by the principal linear part, Sobolev-type inequalities in
curved rectangles, and results on the asymptotical distribution of the nodes
and weights associated with Gaufl—-Laguerre quadrature. The theoretical con-
vergence estimate is confirmed by a numerical example.
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1 Introduction

Scope of applications. The realization of dilute gaseous Bose-Einstein conden-
sation in physical experiments has received great attention among physicists to
date. Current research activities aim for a better understanding of the creation
and evolution of quantized vortices in rotating Bose—Einstein condensates. The
extensive experimental work is supplemented by mathematical investigations,
see for instance [7,8] and references therein.

Time-dependent Gross—Pitaevskii equation with rotation term. At tempera-
tures significantly below the critical temperature of the condensate, the time
evolution of a rotating condensate is mathematically described by a nonlinear
Schrédinger equation for the macroscopic wave function 1 : R3 x [0,7] — C :
(x,t) = (z,y,2,t) = ¥(x,t), the time-dependent Gross—Pitaevskii equation
with additional rotation term

10ph(x,t) = ( — %A + Vext (x) — 2L, + B|Y(x, t)|2) P(x,t), (1a)

subject to asymptotic boundary conditions and an initial condition. Here,
Vext : R? — R denotes an external real-valued potential, which we assume to
comprise a scaled harmonic potential that is symmetric with respect to the
(x,y)-components and an additional sufficiently regular potential V : R — R,
and 8 € R the interaction constant. The rotation term involves the angular
momentum rotation speed {2 € R and the angular momentum operator

L,= fi(xﬁy — y@m). (1b)

For our purposes it is useful to employ the following formulation of (la) as
abstract evolution equation

i Lu(t) = Au(t) + Blu(t)] u(t), 0<t<T, (1c)
where the linear differential operator A is given by
(Au)(x) = (— LA+ 3~y (@® +y?) + 3. 22 — QL) u(x) (1d)
with weights 7,7, > 0 and B denotes a nonlinear multiplication operator
B = Blu] =V + Bu? (1e)

acting on a function v : R* — C as

(Blulv)(x) = V(%) v(x) + B [u(x)[* v(x). (1)



A discussion of the physical background of this model and numerical investi-
gation of its solution behavior is found for instance in [3], see also references
given therein. The favourable behavior of higher-order time-splitting pseudo-
spectral methods in accuracy, efficiency, and the conservation of physically
relevant quantities is confirmed by a variety of contributions; to mention a few
we refer to the works [3,4,6]. As detailed below, for our purposes it is useful
to first study the Gross—Pitaevskii equation in two space dimensions, where
x = (z,y) and (1d) is replaced by

(Au)(x) = (- 1A+ v (@® +9%) — 2L.) u(x). (1g)

Convergence analysis for full discretizations. In this paper our main objective
is to provide a convergence analysis for time-splitting generalized-Laguerre—
Fourier-Hermite pseudo-spectral methods applied to Gross—Pitaevskii equa-
tions with rotation term in order to justify the use of this class of numerical
methods for practical applications and to identify the regularity requirements
on the data of the problem. The space discretization relies on a combination of
the generalized-Laguerre-Fourier spectral method with respect to the (z,y)-
variables and the Hermite spectral method with respect to the z-direction,
and the time integration is realized by exponential operator splitting meth-
ods. Our approach extends the works [9,15] and the recent contributions [12,
20]. In the seminal work [15] the stability and error behavior of the second-
order Strang splitting method for nonlinear Schrodinger equations such as
the cubic Schrodinger equation is analyzed, and a convergence analysis for
full discretizations of the Gross—Pitaevskii equation (without rotation term)
based on the Hermite pseudo-spectral method and the Strang splitting method
is given in [9]. The error behavior of high-order splitting methods applied to
nonlinear evolutionary Schrédinger equations has been studied in [12] for semi-
discretizations in time. Our approach is closely related to [20], where a conver-
gence analysis for high-order time-splitting pseudo-spectral methods (Fourier,
Sine, Hermite) applied to the Gross—Pitaevskii equation is given. However, the
complexity of the spectral discretization considered in this work implies a con-
siderable increase of technicalities. For this reason, we focus on the case of two
space dimensions as this constitutes the main challenge and briefly comment
on the extension to three space dimensions based on Hermite basis functions
for the z-variable. Moreover, for the sake of simplicity, we include a detailed
analysis for the Strang splitting method and indicate the generalization to
high-order splitting methods, since this is then in the lines of [12,20].

Outline. The present manuscript has the following structure. In Section 2, we
collect prerequisites related to the spatial discretization by the generalized-
Laguerre-Fourier pseudo-spectral method. In particular, this includes funda-
mental results on scaled generalized-Laguerre functions such as relations for
partial derivatives of the basis functions involving four basis functions with
neighboring indices (Lemma 1), Sobolev-type inequalities on curved rectan-
gles (Lemma 5), the asymptotical distribution of the Gaufi-Laguerre quadra-
ture nodes and weights, and bounds for the spectral interpolant (Lemma 7).



A general functional analytic framework [20] exposes the similarities between
different pseudo-spectral methods. Section 3 is devoted to the derivation of
the convergence result for the Strang-splitting generalized-Laguerre-Fourier
pseudo-spectral method applied to the time-dependent Gross—Pitaevskii equa-
tions with rotation term. The theoretical error estimate is finally illustrated
by a numerical example in Section 4.

2 Fundamental preliminaries

In this section, we deduce basic auxiliary results that are related to the
generalized-Laguerre—Fourier—Hermite pseudo-spectral method for the spatial
discretization of Gross—Pitaevskii equations with rotation term. Henceforth,
we employ standard notations and results for Lebesgue and Sobolev spaces,
see also [2]. For notational convenience, we do not distinguish between the
spatial variables and the associated multiplication operators; for instance, we
write z f for the function z — x f(x,y).

2.1 Scaled generalized-Laguerre functions

Generalized-Laguerre  polynomials. The generalized-Laguerre polynomials
(k,m=0,1,2,...)

-m T k -7 m
L (r) = % r~Me %(e rht ) (2a)

obey the differential equation (k,m =0,1,2,...)
(rE + (m+1—7r) L)L (r) + KL (r) =0

and the orthogonality relations (k,I,m =0,1,2,...)

m

/ FM e LZL(T) le<7~) dr = C]Zn 5Icl7 Clzn = H(k + .7), (2b)
0

j=1

cf. for example [1,17] or [19, Section 7.1]. Furthermore, they satisfy the rela-
2

tions (k=1,2,..., m=0,1,2,...)
Lyt (r) = L™ (r) = L (), (2¢)
SL(r) = = L (), (2d)

and (k=0,1,2,..., m=1,2,...)

rL(r) = — (k+ OIS (r) + (k+m) L (r), (2e)
mL7(r) = rLP (r) + (k+ 1) L5 (). (2f)



Scaled generalized-Laguerre and related functions. Following [3], the scaled
generalized-Laguerre functions involving a positive weight v > 0 are given
by (k,m=0,1,2,...)

T m m —yr? m

Li(r) = \/%IT’V( B e U CT 3)
The related complex-valued functions £}, : R? — C are defined in terms of
polar coordinates

L] (rcosd,rsind) = Z;Y,,‘m‘(r) ™y (k,m) € M, (4a)
where the set of valid indices is introduced for convenience
M={(k,m):k=0,1,2,..., m=0,£1,£2,...}.

Clearly, in Cartesian coordinates it follows

L) = I, (Va7 1 ) (j%) C (hm)eM. (D)

Pointwise multiplication and partial derivatives. The following auxiliary result
is needed in order to establish relations between the norm in Sobolev and
fractional power spaces. We note that the amount of technicalities in the proof
is significantly reduced by the consideration of £} : R — C as a complex
function £} : C — C.

Lemma 1 The following identities are wvalid for all (k,m) € M where
LYy i1 =0:

VE VEF
7ﬁ‘£z—l,m+1 + QWmEZ,m—l
+\/m£w _ mm
27 k,mA+1 27 “k+lm-1
Vk VEF1L
e _ﬁczfl,ﬂ"’ 24 Ly (50)
I kem \/mE’Y _ ﬂﬁ’Y =0 a
T2 Lr+1 T 2akk-1,-10 m =0,
Vi VE=
_ﬁczfl,mfl + 2ﬁm£z,m+1
+\/k7m+1 £"/ _ k41 E’Y
2 k,m—1 2\~ Tk+1l,m+1’

m <0,

WE Y s
+;ﬁ£’lz—l,m+l + : 2\/§m[”lz,m—1
ivk+m+1 ivk+1
_ iV 2}]/7[:;””14_1 _ 172\ﬁ £z+17m_1, m > 0,
ivk ivVEk+1
P N
Y&km = _i\/mEW _,'_ﬁcv ( )
27 “kAL T 2 55k-1,-1
ivk [”Y _ i\/kfmﬁ’y
2/ “k—1m—1 27 k,m+1
ivk—m+1 ivk+1
+* 2\/72 EZ m—1 1 12\ﬁ £Z+1,m+1v m <0,




k v y(k+m)
_@[‘:’lzfl,m+l + 2 L’lz,mfl
Vo (ktm+1) Vo (k+1)
- p) Ez,m-u + L, m >0,
_VAF oy _ V4D oy
5 2 ~k—1,41 2 k,—1
Ly, = JAETD (5¢)
y(k+1) k
) EZ,H - TW£Z—1,—1a m =0,
k V7 (k—m)
_@‘CZ—Lm—l + fﬁz,mﬂ
V(k—m+1) V(k+1)
- 2 Ez,mq + 3 £Z+1,m+1’ m <0,
ik i/~ (k+m)
\/Q’T[’Z—l,m-ﬁ-l + 2 £Z7m—1
i/~ (k+m+1) iy/v(k+1)
+’Yfﬁz,m+l + Fyfﬁz_i_l’m_l, m > 0,
/A oy _ WAGHD ey
o 2 ~k—1,41 p) k-1
i/v(k ik
+ 2 ﬁl,ﬂ - qﬁz—l,—v m =0,
_ Ak py _ Woak=m) py
2 k—1m—1 2 k,m+1
iv/v(k—m+1) in/v(k+1)
- p) ﬁl,m_l - p) £Z+1,m+1’ m < 0.
Proof We cousider the complex functions (k,m =0,1,2,...)
Fam(2) = 2™ e L2 L (4)2]7).
With z = 2 +iy = re'” it holds
L7 #{ﬁ ,y(m—H)/Q fl;ym(z)7 m 2 0,
o (2,9) = Ly mEDEEL (), m <,
Tk
where f (2) = 27”6_'7|Z|2/2LL”(7|Z|2) is the complex conjugate of f ().
Using (2¢) we obtain
2fi(2) = 2 (LR (32 )
_ e—’y|z|2/2 (2m+1LZL+1(’Y|Z|2) _ Zm+1LZL_+11 (’7|Z|2))
- f}lm.t,_l(z) - f/z_17m+1(z)a (63)

and, using (2e),
— — 2 —
2o (2) = 272 (3222 L (v]22))
— e I=/2 (*% Zm1 L?ﬁl(ﬂz\z) + LJ[YT” Zm 1 LZL_1(7|Z\2)>

= _% f13+1,m71(z)+ ’”Tmfl,mfl(ﬁ (6b)



With z = 3 (2 + 2) and y = — £ i(z — 2) the relations (5a) and (5b) follow
from (6a) and (6b) in the case m > 1. The cases m = 0 and m < 0 are proven
similarly.

In order to prove (5¢) and (5d) we consider the differential operators

0. =5(0:—10,), 0:=3(0:+19,).

These can be applied as if z and Z were independent variables, see [18, Sec-
tion 1.4]. Using the product rule for the differential operator 9, and the equa-
tion (2d) for the derivative of the Laguerre polynomial L} we obtain

O fi(2) = 0- (7 2L (322)
= e P2 (mam T L (y2P) - Fez T LR ()
—Vzézm_lLL”fll(ﬂzF)).
Here we substitute (2f) to obtain
mzm L (]2 ) = y2z2 LT (]2 ) + (k1) LY (]2,
and further
0. fn(z) = 2 (7222 T (L () - PR ) - S LEGle)
(k1) LR (1)),
where we first apply (2¢) and then substitute (2e),

3222 LR (131) = B LT (a1 + B LR (g 2P,

to obtain
2 —
0 [l (2) = e V2 (3222 L (420%) + (k 4+ D)2 L (v12))
_ e—’y\z\2/2 (% Zm—lL;CnJ:ll(,y|Z|2) + k-gm Zm_lL?71(7|Z‘2))
= % le+1,m—1(Z) + @ f]z,m—l(z)' (GC)

Using the product rule for the differential operator J; together with equation
(2d), and then (2c¢) we have

O fim(2) = 0 (e 2L (722)
— z 2 m m m m
= e 2 (LR (y]2P) = 2T L (11
— z 2 m m m m
= e R (2L () - 2L (=)
=—3 flzfl,erl(z) - %flz,mﬂ(z)' (6d)
With 9, = 0. + 0; and 9, =i (0. — 0;) the relations (5¢) and (5d) follow from
(6¢) and (6d) in the case m > 1. Again, the cases m = 0 and m < 0 are shown
similarly. O



2.2 Functional analytic framework

Complete orthonormal system. The considered time-splitting generalized-
Laguerre—Fourier pseudo-spectral method for the discretization of the two-
dimensional Gross—Pitaevskii equation (1) relies on the fact that the eigen-
functions (£),,) (k,m)em associated with the densely defined self-adjoint oper-
ator A : D(A) C L?(R?) — L%*(R?) form a complete orthonormal system of
the Lebesgue space L?(R?), see [3] for further details and recall (4a). That is,
the eigenvalue relation

ALL, = (—3A4+37@" +y%) - QL) L], = Xem L],

km>
7
Now =7 2k | +1) —m2,  (kvm) € M, (7e)

the orthogonality relation

o o sy = [ Bon@28) £ ,9) drdy

/%/ L g (r) L () €1 a9
= Ok O » (k,m), (K',m'") € M, (7b)
and for any u € L?(R?) the spectral representation
u= D WLl cm(u) = (L)) oy, (kym) €M,
(k,m)emM
are valid. Furthermore, by Parseval’s identity, for u € L?(R?) it follows

||UH%2(R2)= Z |t () 2.

(k,m)eM

Fractional power spaces. Throughout, we employ the assumption
12| <, (8)

which implies that all eigenvalues are positive and thus the linear operator A
is positive-definite. Consequently, for arbitrary exponents a € R the fractional
powers A* : X, = D(A®) C L*(R?) — L?(R?), defined by

A% = Z Com (W) Ay L7
(k,m)emM

%((, = ‘|Aau||%2(R2) = Z |Chm (1) |2 )\km7
(k,m)eM
Xo={ue L*(R?) : ||ul|x, < oo},

are again linear, self-adjoint, and positive-definite operators. The spaces X,
are called fractional power spaces associated with the operator A; in particular,
it holds Xo = L?(R?) and X; = D(A).



2.3 Estimates in fractional power spaces

In this section, we derive estimates for products of functions in fractional power
spaces. A first auxiliary result relates estimates with respect to Sobolev-norms
to estimates in fractional power spaces.

Lemma 2 For any o > 0 it holds
lzullx, + llyullxa + 10wullx, +10yullx, < Cllullx,, ;. u€Xapy,
with a constant C that is independent of u.

Proof From equations (5a) and (5d) it follows that FL]

km> F e {wvya amvay}7
can be represented in the form

Y o km Y _ km ¥
Fﬁkm = E ALty ﬁk'm’ - E Aty ‘Ck’m"
(k' \m")eMm k'=k—1,k,k+1
m/=m=1

where for given (k,m) € M, af, # 0 only holds for k' € {k — 1,k,k + 1}
and m’ € {m — 1,m + 1}. Conversely, for given (k',m') € M, af , # 0 only
holds for k € {k' — 1,k’, k' + 1} and m € {m’ — 1, m/ + 1}. Therefore,

A%Fu = A® Z Cem(uw) F L]

(k,m)emM
= Aa Z Ckm (u) E a’g%/ EZ/m/
(k,m)eM k'=k—1,k,k+1

m/=m=1

= E E Ckm (U) aﬁ%/ )\a/,m/ EZIm/ .

(k'm")eM k=k'—1,k' k' +1
m=m'=+1

From the explicitly given values of a¥ , in (5a) and (5d) and the estimate

Akm = Y(2k + [m| + 1) — £m >~ (2k + 1) + (v — [£2]) [m]
= (v = 192]) (k+|m[+1) (9a)

we obtain

’Yil

v — 18]

lafm ) < Ly (k4 |m|+1) < L Mem < C Mo

where v = 4*! for F € {0,,0,} and v*' = 47! for F € {x,y}; recall
|2] <. Using

lar+ - enP SN (al’ +-- +lanf?), 21,...,28 €C, (9b)
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which follows easily from the arithmetic-geometric mean inequality,’ we obtain

2
2 2 k
A Fule, = Y M| Y cmlwali
(k' m’)EM k=k'—1,k" k' +1
m=m'+1
<C )\Za 2)\
> k'm/ |k (W)™ Ao
(k',m’)eM k=k'—1,k" k' +1
m=m'+1
§ 2 § 2
=C |Ck;m (u)| )\km )\k(/xm/,
(k,m)emM k'=k—1,k,k+1
m/=m=1

where in the last step we changed the order of summation. Now it is easily seen
that Agrpm < CAgp, holds for all &' € {k—1,k,k+1} and m’ € {m—1,m+1}.
Therefore, finally, the stated result

IFulk, = IA*Full%, <C > lexm(u)]® Ao
(k,m)eM
1
=Cl|A* 2|k, =C ||U||§<a+%

is obtained. O

The following estimates result from the application of a Sobolev imbedding
theorem [5] and Lemma 2. Within our general analytic framework its proof is
independent of the considered spectral space discretisation, see [20] for details
of the proof.

Lemma 3 For any a > 1 it holds

||UHL00(]R2) <C ||u||H2(R2) <C ||u||Xa, u € Xa, (10&)
luvlx, < Cllullx, [vllx.,  uw€Xo, veXa. (10b)

For any a € N with o > 1 it holds

[uvllx, <Cllullx,[lvlx.,  uveXa (10¢)

1 From
§R(Z'n Em) = §R((5’771 + iyn) (Cvm - ly'm)) =ZTnTm +YnYm < \/ $% $3n + \/ y727, y'?n
< 5 (2 + o +un +um) = 5 (12nl? + 1zml?)

it follows

N 5 N N
|3 o] =Dl +2 3 Rnzm) SN f2nl

n=1 n=1 n#Em n=1
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2.4 Sobolev-type inequalities

In this section, we derive Sobolev-type inequalities, which hold on finite subsets
of the line and the plane, respectively. We note that the constants appearing
in the bounds could be given explicitly in all cases.

Lemma 4 (i) For any v € H'(a,b) with a < b it holds

< = )| d )| d

e 0] < ot [ a1 da
= 525 lullpi e + 356l Lt o) (11a)
< o= lull 2wy + Vo= allfrull 22 ap)- (11b)

(it) Let 2 = (a,b) x (¢,d) with a < b and ¢ < d. For any v € H?(£21) with
21 D 2 a bounded Lipschitz domain it holds

max_[u(z, y)|
(zy)en
< t=ai@=9 ||UHL1(Q) + 2 10sull ) + 525 18y ull i)
#2lonlunc (11¢)

< \/W ” ||L2(Q) + b = Ha UHL2
(@)t 2 (b—a)(d—c)||OuyullL2(2).- (11d)

Proof (i) This result is also given in [19]. Since the proof of (ii) proceeds
similarly, however, we also give a proof for (i). For any u € H'(a,b) it holds
u € Cla, b] by the Sobolev imbedding theorem? and thus there exists z.. € [a, b]
with |u(z)| = mingepq p) [u(x)|. Clearly, the minimum is not greater than the
mean value

y

b
()] < gL / fu(@)|de = 2 [[ull 1 (a)-
Together with

b
u(@)] = lu(z)] < fu(z) —u(z.)] < / | u@)] do = (15 ullr o)

this implies (11a), and (11b) follows by Schwarz’s inequality.
(ii) For any u € H?({2;) it follows u € C(§21) by the Sobolev imbedding
theorem. For fixed y1,y2 € [c, d] the function

Y2
= / dyu(z,y) dy
Y1

2 Tn 1D this is easy to prove: For any z1, 2 € [a,b] it holds

2
lu(z1) — u(zz)] < / la5u(@)] do < ez —a1] | 7o ull 2 (a,p)-

z1
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is in H'(a,b), so by (11a)

ju(er. ) — (e, )| = [o(en)] € mas fo(a)

Sf/w |d$+/|8v )| dz
d
b%// Iayu(z,y)ldydz+// 10ayu(z, )| dy da

= ﬁ”ay“”Ll(ﬂ) + [0yl L1 (2)-

Note that the final estimate does not depend on y1, yo. Similarly, it follows
lu(z1,y2) — w(@2,y2)| < 7102wl L1 (2) + [|0ayull L1 (2),
and thus

[u(z1,y1) — u(ze, y2)| < |u(z1,y1) — ulzy, y2)| + [u(z1, y2) — u(z2, Y2)|
< 7= 10aull o) + 525 10yull (o) + 2 10zyull L (o) (12)

for (x1,41), (z2,y2) € 2. Applying the above estimate with (z2,y2) = (2, y«)
for which |u(x., y«)| = min{|u(x,y)| : (x,y) € 2} we obtain (1lc) using the
fact that the mean value Wl(d_c)ﬂuﬂ £1() is not less than the minimum,
similarly as in part (i). Finally, (11d) follows by Schwarz’s inequality. O

The following result provides an estimate for the maximum of a function
on a curved rectangle

R={(z,y) = (rcosd,rsind) : r € (ra,rp),d € (94,98)}, (13)
where 0 <714 <rp, 94 <Up,and Ip — V4 < 27.
Lemma 5 For any u € H?(R?) the estimate
Jnax, u(z,y)| < co llull 2w
+ (cr1 + ez + eas) (10zull L2y + 10yull 22m)) (14a)
+ ez (105ullc2(ry + 105ull 22 (r) + 10syull 2Ry ) »

is valid on a curved rectangle of the form (13) with constants

— 1 _ 1
€= VVolR \/%(TQB_TzA)(’&B_'&A)7 (14b)

_ 1 i 1 [rh—rS
C11 = =04 10g Ta S V05 —0a 2T2A ) (14C)

erz = —“’B;z’;z)_(:z)*”% (144)
13 =2 \/ (05 —0a)log 2 U5 — U4 374 (14e)

¢2 = 2VVolR = \/2(r} — 13) (05 — D). (14f)
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Proof We set _
R = {(T,ﬁ) L re (’I"A,TB),19 S (ﬂA,ﬂB)}

and for some bounded Lipschitz domain Ri D R define a function @ on Ry by
u(r,9) = u(rcosd,rsind), (r,9) € Ry.
Then @ € H2(R;) and thus by equation (12) it follows

lu(z1,y1) — u(@2,y2)] (15a)
S (193£19A) HaTaHLl(E) + m HaﬂaHLl(Fz) +2 HarﬁaHLl(ﬁ)
for all (Q?l,yl), (ch,yg) c R.

From |9,u| = | cos 90, u+sin 90, u| < |0yu|+|0yu]| it follows using Schwarz’s
inequality

~ Un B ~ ~
10l 11 :/ / 10, drdﬁ:/ 110,@ dady
da Jra R

§/ 110, u dxdy+/ 110yu| dz dy
R R

< W (10l ry + 19yl z(m))

9B rB
- / / U drdd (10l o + 10yl o)
YA TA

= /(95 —V.)log 22 (|0,ullp2(r) + |9yull2(m) - (15D)

Similarly, from
|0pu| = | — rsin® Oyu + rcosV Oyu| < r|0zu| + r|Oyul

it follows

193 B
100l :/ﬂ / 10y drdﬁz/R%k%m dz dy
A TA

S/ |01 da:dy—i—/ |0yu| dz dy
R R

</ / 1 dedy (100l 2r) + 19yull o)
R

= /305 —92) (% — 1%) (10l 2r) + 10yullz2cy) (150)

and, using
|0rotu| = |- sin ) Opu + cos V) dyu — 7 cos ¥ sind) Dyu
+7 cos ¥ sin ¢ 8§u + 7 (cos® ¥ — sin® ¥) Dyl

< |Opul + |Oyul + r|07ul + 7 |05u| + r |Dpyul,
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we obtain

10207l 1 ity < /@ — D) log 22 (10l 2y + [19yul2m) (15d)

+\/% (g —Da) (rg —73) (Hazu”H(R) + HaiuHL?(R) + |02y ull L2(R)) -
Substituting (15b), (15¢), and (15d) in (15a) we obtain

lu(z1,y1) — u(z2,y2)| < (€11 + c12 + 13) (HaquL?(R) + ||ayu||L2(R)>
+eo (103ull L2(ry + 105ull 2Ry + [[0zyull L2(r))

for all (z1,1), (72,72) € R. Applying this estimate with (72,y2) = (24, y«)
for which |u(z.,ys)| = min{|u(z,y)| : (z,y) € R} we obtain (14a) using the
fact that the mean value <=lullz1(p) < \/ﬁﬂuﬂp(m is not less than the
minimum.
The inequalities in (14c) and (14e) follow by the mean value theorem
T2 —T2
log :—i = % (logr% —logry) < %737% A

Altogether, this yields the stated estimates. O

2.5 Estimates in a discrete L2-norm related to GauB~Laguerre quadrature

In the following, we deduce a bound with respect to a discrete L?-norm involv-
ing Gau3—Laguerre quadrature nodes and weights, needed for the estimation
of the generalized-Laguerre—Fourier spectral interpolant. For this purpose, we
first discuss the asymptotical distribution of the Gau—Laguerre quadrature
nodes and weights.

Gaufi—-Laguerre quadrature nodes and weights. We recall the definition (2a) of
the generalized-Laguerre polynomials. The zeros of the (standard) Laguerre
polynomial Ly = L%, and the corresponding weights associated with the
Gaufi-Laguerre quadrature formula of order 2N are denoted by

QjN
N +1)2 (Ly+1(wiy))?

ooN < 01N <+ < ON-2,N < ON-1,N, WjN = (

The smallest zero satisfies the relation
C1 Nil < oon < (Cy N71 (16&)

with constants C1,Cs > 0 independent of N, cf. [13, Theorem 1.4 (1.22)], and
the largest zero satisfies the bound

oN-1,N < 4N, (16b)
cf. for example [17, §18.16.13]. Following [13, eq. (1.18)] we define the function

Vr+4N-1 (8N — 1)
SON(T): )
NVAN + 4N1/3 — ¢

r € [0,4N].
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Then, for N > Ny the quadrature weights satisfy the relation
Cion(ojn) Swjne®N <Capn(ojn), §=0,...,N—1, (17a)

with constants C1,Cs independent of N and j, cf. [13, Theorem 1.3 (1.19)].
Furthermore, for N > 1 it holds

Cion(ojn) < ojn —0j—1,v < Caon(ojn), j=1,...,N—1, (17b)

with constants Cy,Cy independent of N and j, cf. [14, Theorem 1.4]. By ele-
mentary calculus it follows that ¢ (r) has no local extremum in (0,4N) for all
N > 2. Hence, the minimum and maximum are attained at r = 0 and r = 4N,
respectively,

8 -1
@N(T)ZSDN(O)—WZ‘“@N , 1 €[0,4N], (18a)
VN + N1
en(r) S@N(4N):4WS4\/§N1/37 r € [0,4N]. (18b)
Moreover, due to the fact that the function r — ﬁ%
maximum in (0,4N) and thus attains its maximum at one of the boundary

points 7 = 0 or r = 4N, the estimate

has no local

s (LAY (8N —1)?
~ N2(4N +4N1/3 —7)
_ 2
<c (8N r)!
=7 N2(4N +4N1/3 —7)

L on(r)

(19)

<CN-/3 CN~!' <r <4N,

is valid. Also, by means of (16a) it follows

8N/(Co + 4) N1 N-1/2
¢n(oon) < (C214) SC—5 =CN7'. (20)
N /AN +4N1/3 —C,N-1 N

Discrete L*-norm. Following [3, eq. (2.29)], we introduce scaled Gauf}-
Laguerre nodes and weights

9jiN
¥ )

win = mwinye®N, j=0,2,...,N—1, (21)

TiN = ~

and for even integer M > 0 we consider the equidistant nodes

I =25, 5s=0,...,M—1,

associated with the trapezoidal rule. For functions v € H?(R?) C C(R?) we
define a discrete L?-norm through
N—1M-1
lullZ s = &= Z win [u(rjn cosVsar, i sinIsar)|?. (22)
j=0 =0

The following result relates discrete L2-norms to L2-norms and Sobolev-
seminorms.
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Lemma 6 For any u € H?(R?) the bound
lullvar <€ (Hu||L2(R2) + (N0 MTINY2) Jul i gy
H(MTINY 4 NT) fulgaeey) - (23)
<C (Hu||L2(R2) + MY Ju| g g2y + M2 |U\H2(R2)) (23b)
is valid, where in the second estimate N is chosen proportional to M.

Proof We first estimate the summands in (22) by (j = 1,...,N -1, s =
0,...,M—1)

ﬁij |u(rjn cosVsar, 7N sinﬂsM)|2 < ﬁwﬂv max |u(9:,y)|27 (24)

where R%M denotes the curved rectangle
Rj]\;M ={(z,y) = (rcosv,rsind) : r € (rj_1,n,7jn),9 € (Vsar, Osy1,0m)}-

The remaining summands for j =0, s =0, ..., M —1 will be treated separately.
We apply Lemma 5 and the above estimates (16a) and (16b) as well as (17a)—
(18b), which in terms of the scaled quadrature nodes and weights (21) yields
CGN'<riy<CN, j=0,...,N—1, (25a)

C3N™H < Cowjn < C5(ry — 751 n)
<Cowjy <C;NY3  j=1,...,N—1, (25b)

with constants Cy,...,C7 independent of N. Furthermore, it holds

2
TiN —Tj-1,N <c on(ojN) <c on(0j-1,N)
Ti 1N 0j—1,N 0j—1,N (25¢)
<CgN7Y3, j=1,... N-1

’ij

9 )

where we applied the estimate ¢n(g;n) < Con(0j—1,n) which follows from
[13, eq. (7.14) in the proof of Theorem 7.3(c)] and then (19). We need the
following estimates involving the expressions (14b)—(14f). By (25b) and (25c¢)
it follows

1 WwiN

2 2
(Vst1, — Vs )M TiN T TN

1 2
wincg <C

<,

2
1 TiN T Ti-1N _
wj;N ! D) I < CN 1/33
(Ds1,m — I )M T5_1,N
P2 2
1 2 1 JN Jj—1LN —2 pA7—1/3
2wy G < C oy Dupnar = Vo) wyy 2y < e NS,
j—1,N

1 2
aWin e <C
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and by (25b) and then (25a) we obtain

Ti—1,N +7T;j
1 2 1 Jj-1LN JN
77 Win €12 < C 57 (Wst1,m — Fsm) win E—

j j—1,
_ Tji—1,N + TjN
<CM Q(T?’N—rffl,N)ij J
TiN —Tj—1,N

=CM™? (Tj—l,N —|—’I“jN)2 < CM™2N.
Finally, by (25b) we have
G win 3 < C 37 Dsr1m — Ysnr) win (rin =751 n) SCM 2 N2/3,

Using these estimates together with (9b) in (24) and (14a), summing up, and
applying the following relation for disjoint domains (27, {25,

Il + Nullaiay = [ tP+ [ 1= [l = ulae,00,
21 £2 21U825

we obtain the estimate

N—-1M-1

% Z Z win |[u(rjn cosVsar,mjn Sirn?sM)\2
j=1 s=0

<C (llull2 ey + (N3 + M—2N) |ulF1 gey + M2 N3 |u| g2 (mey). (262)

The remaining summands for j =0, s =0,..., M — 1 are easily estimated by
using (17a) together with (20) and the Sobolev inequality,

M-—1
ﬁu& Z |u(r1 COS’L9$,7"1 sinﬁs)|2 S w1 Hu||Loo(R2) S CNil ||UHH2(R2)~ (26b)
s=0

Finally, the relations (26a) and (26b) imply (23a). O

2.6 Estimates for generalized-Laguerre-Fourier spectral interpolants

In the following, we state an estimate for the generalized-Laguerre-Fourier
spectral interpolant. Together with Lemma 6 this fundamental result is needed
in order to deduce a stability bound for the fully discrete evolution operator.

Orthogonal projection and spectral interpolant. For even integer M > 2 and
integer K > 1 we define the subspace

Xrm =span{L]  : (k,m) € Mg},
Mgy ={(k,m)eM:k=0,..., K—1m=-23 . 1}

2
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The orthogonal projection Pras : Xo = L?(R?) — Xg is given by

Pru(u) = > crm(u) L],

(kym)EM K M

ckm () = (L, u) L2 (R2)

27 e’}
= / / 7L (T) e MYy (r cos ¥, rsin ) dr ddd. (27)
o Jo ’

For N = K + % we denote by
=T : =0,.... K+4 —1
s =Tjrk+M, Wjg M, 7 ey 5 ,

scaled Gaufi-Laguerre nodes and weights, cf. (21), and further set

According to [3], in (27) we substitute » = 4/p/v, approximate the inner
integral by the Gaufl—-Laguerre quadrature formula, and the outer integral by
the trapezoidal rule to obtain the spectral interpolant

Orxmu= Z Cem(u) L], (28a)

(k,m)eEM g m
where we employ the abbreviations

Kev={(,s):j=0,.... K+ —-1,s=0,...,M -1},
Tjs =rjcosVs, Yjs =1;jsind,, (4, s) € Krm,s
)s

Gm(w) =2 D> wi L] (e yie) ul@je yis),  (kym) € Mg, (28b)

(4,8)ELK M

Evidently, the spectral interpolant is well-defined for any function u € C(R?)
and in particular for u € X, with o > 1, see also Lemma 3. We point out that
the interpolation property at the quadrature nodes only holds approximately

U(zj37yjs) ~ (QKMU)(Ijsvyjs)v (]a S) € ICKM?

since the number of interpolation points #Kxn = (K + %) M exceeds the
number of basis functions #M gy = KM. However, choosing N = K + %
(and not merely N = K) Gaufi-Laguerre quadrature nodes is needed in order
to ensure exact quadrature.
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Basic relations for spectral interpolants. Basic relations and a first estimate
for the generalized-Laguerre—Fourier spectral interpolant is provided by the
following result.

Lemma 7 (i) The spectral basis functions satisfy the following discrete or-
thogonality relation for all (k,m), (kK',m') € Mgar:

i > Wi L (@ Yss) L (s, Yjs) = O O (292)
(4,5)EK KM
(ii) For any u € Xo = L*(R?) it holds
Qrm Pryvu=Pry u. (29b)

(iii) For any u € C(R?) and in particular for any u € X, with a > 1 the
following bound is valid:

1QkmullL2ey = 1Qkmull gy 2z ar < Null yar ar (29¢)

Proof (i) In the following, we denote by g; = QjK4M, Wj = WM,
73 =0,...., K + % — 1, the zeros of the (standard) Laguerre polynomial
L?(JFN/Q(T) = Lginy/2(r) and the corresponding weights associated with
GauB-Laguerre quadrature. Using the definition (21) of the scaled Gauf—~
Laguerre points and weights 7; = 7; g\ ar, w; = w; gy u, the definition (3)

of the scaled generalized-Laguerre functions sz (r), the exactness property
of GauB-Laguerre quadrature, and the orthogonality relations (2b) for the

generalized-Laguerre polynomials L}*(r) we obtain (k,k' = 0,...,K — 1,
m=20,..., %)
K+4 -1 K+4 -1
Y wi Ly, () Ly, (ry) = & wj e Lo, (\/2) Lo (/%)
7=0 =0
K+ -1
1 m rm m
= ——— w; 0" L L (o0,
Nezem jz::() i 07 L' (e5) L (05)

o0
1 m . —Tr rm m
= ———— rme” " L (r) L (r) = Ok -
Tt | P LE ()
Together with the corresponding discrete orthogonality relations for the

Fourier spectral method

M-1

ﬁ Z e—i7m95 eim/ﬂs :5mm’> m7m/:_%"”7%_17

s=0

and the definition (4a) of the spectral basis functions this yields (29a).
(ii) It remains to show that for a function of the form

u = Z Ckm(u) ‘CZm

(k,m)eEM K m
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it holds Crm(u) = crm(u), see (28b). Due to linearity it is sufficient to consider
w=L], , for (k',m') € Mgpr. Then by (28b) (29a), (7b), and (27) we obtain

Com (L) = Ok Omms = (L L) 122y = Cem (L],,)

for (k,m), (kK',m’) € Mg

(iii) For a given function u € C(R?) we collect the values of u at the
interpolation points in a column vector with indices (j,s) occurring in the
order (0,0),...,() +% —1,0),(0,1),..., (K + & —1,M - 1),

u= (. @) yss),. )T e RETDM g — (L G (u),...)" e REM,

and in a similar manner the Fourier coefficients (28b) in the order
(0,0),...,(K —1,0),(0,1),...,(K —1,M — 1). Then the transformation to
frequency space (28b) can be written in the compact form

= LW,

. K+ Mx(K+Y)M
Wzﬁdlag(...,wo,...,wK+%_1,...)E]R( )M (K+5)M

L= (‘Cz:m('rj&yjs)) c RKMX(K"'%)M’

where the sequence wy, . .. JWpy My Oceurs M times, and with indices (j, s)
indexing columns, and indices (k,m) indexing rows in the same orders as in
the vectors u and i, respectively; LT denotes the conjugate transpose of the
matrix L. In compact matrix notation, the discrete orthogonality relation (29a)
becomes

L'WL=1. (30)
As transformation to physical space, that is, evaluation of a spectral interpolant
at the interpolation points, corresponds to the mapping G — L, the vector
comprising the values of the spectral interpolant (28a) at the interpolation
points is given by

Qu=La=LL"Wu=(...,Qxnu(zjsyjs),...)" € RE+ZIM
Moreover, the discrete L?-norm of u equals
2
”u”KJr%’M = uTWU7

recall also (22), and thus by Parseval’s identity and and (30) it follows

1QknulFzgey = > [k (w)? = 0T = ' WLLTWu
(k,m)EMKM
— _ 2
=u'WLL'WLL Wu = 1Qrarullie s ar oy (31)
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Applying (31) and the identity W LLTW (I — LLTW) = 0 resulting from (30),
we finally obtain
lull e az ar = 1Qraru+ (Id — Quear)ullZe o
— ul (LL'W + (I = LLIW)) "W ((LL'W + (I = LLTW))u
= HQKMUH?;H%,M + [|(1d — QKM)“||§<+%7M
+2R(W'WLLTW (I — LLTW)u)

> |‘QKMUH§(+%7M = HQKMUH%Q(RQ)?

which yields the stated bound (29¢). O

Estimates for spectral interpolants in fractional power spaces. The following
result provides estimates for the generalized-Laguerre—Fourier spectral inter-
polant in fractional power spaces.

Lemma 8 (i) For all u,v € X, with o > 1 it holds

Qramrullx, < Anax [1Qxarullx,, (32a)

1@k m(wv)llxo < lull oo geiean ol 2z ar < Cllullx, [0l gqar ars (32b)
where |[ul| oo (k) = max{|u(zjs, yjs)| 2 (4,8) € Kxm} and

Amax = max e, < max 2k+2m+ 1) <C(K+ M
BT emyeMuns T (k,m)eMKMfY( ) ( )

denotes the maximum eigenvalue in the index set Mg .
(i) Provided that K is proportional to M, for any u € X, with a« > 1 and
for 0 < ¢ < a the estimates

19k mullx, < llullgyar ar (32¢)

< C(llullxo + M7YC ullx, , + MY Jlullx,) < Cllullx,,

1(Qrar = Td) ullx, < CAZET (14 AE M TY0 4 A M™Y2) JJul|x,, (32d)
< CM O |y (32e)

are valid.
Proof We recall the general assumption (8) on the angular momentum rotation

speed.
(i) The first statement follows from the relation

1Qrmullx, = H Z Chim () X L
(k,m)eEMK M

< Ahax [1@rmullx,,
Xo



22

as well as
1Qrar (o) 1%, = 1 Qcar (wo) e as s
=5 > wylulee )P o, v
(4,9)EK K, M
<

e ey N0y e < Clluliie 0%y e as

where for the last inequality we used Lemma 3 (10a).
(ii) Relation (32¢) follows easily from (23b), (29¢), and (10a). For u € X,
with @ > 1 and for 0 < { < «, due to

AS Py — Id)u = — > cem(U) N, L7
(k,m)EM\MK]u

we obtain the estimate

|AS(Prar — 1d) ul%, = S lamW)PA,
(k,m)e M\Mk m
A2 ST e ()P A,

(k,m)eEM\ Mk m
<A™ Y ek A, = Al lullk,

max max
(k,m)em

Using the identity (cf. (29b))

Ornm —1d = (Qxap —Pru) + (Prxm —1d) = Qrar (Id = Prar) + (Pra — 1d),

and previous statements of this lemma, we obtain (32d),

1(Qrnm —Id)ullx, < [[Qxm(Id —Prar) ullx, + [[(Prm —1d) ull x,
< N 1 Qrear(1d = Prcar) o + Al [l x,
< C Ay (10d = Prers) ullxo + MY ||(Id — Preas) ullx,
+ M7V (1d = Prea) ullx, ) + Anls ™ Jlul x.,
SCALTD (1 + MM YO 4 A M) |Ju x,

from which (32e) follows using that Apnax < C M if K is proportional to M. O

3 Convergence analysis

This section is devoted to the derivation of a convergence result for full dis-
cretizations of Gross—Pitaevskil equations with rotation term (1) by time-
splitting generalized-Fourier—Laguerre—Hermite pseudo-spectral methods. As
an illustration of the global error estimate for the fully discrete solution, stated
in Section 3.1, a numerical example for a two-dimensional problem is given in
Section 4 below.
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Our approach in the lines of [9,15,20] in particular utilises the stability and
error analysis for semi-discretizations in time given therein. In the derivation of
the convergence result, to reduce the amount of technicalities and to keep the
manuscript at a reasonable length, we restrict ourselves to the second-order
Strang splitting method. However, it is clear that the result extends to higher-
order splittings by using the preliminary results from the previous sections.
Moreover, in Section 3.2 we do not specify the local error expansion for the
Strang splitting found in literature [15]. We meanwhile focus on the case of
two space dimensions and indicate the extension to the three-dimensional case
in Section 3.4.

Full discretization (Strang). For integer K > 1, even integer M > 2, and
a time-step At > 0 the Strang time-splitting generalized-Fourier—Laguerre—
Hermite pseudo-spectral method yields numerical approximations u’%,, to the
exact solution values at times t,, = n At through the recurrence relation

uichr = Frea (At) ufeps
. . _j At n .
= o719 A Qpepp e 1ABleT 2 A Quenuin] i3t A g ufcprs (33a)
see Section 2.6 and in particular (28a) for the definition of the spectral inter-
polation operator.

Semi-discretization in time (Strang). For our error analysis of full discretiza-
tions it is useful to introduce the approximation values obtained from a Strang
splitting semi-discretization in time

_ At s —ilta g _ i At
un+1:S(At>un:e12Ae iAtBle™ "2 “u"] igtA

which will be studied in Section 3.2.

e u”, (33b)

3.1 Main result

Global error estimate. A standard idea in the derivation of a global error
bound for the fully discrete solution is to interpose the time-discrete solution
to obtain the estimate

lwkens — wltn)llxo < llufens — u"llxo + [lu™ = utn)l x,,

by the triangle inequality. A bound for the contribution of the semi-
discretization in time (33b) is provided by Theorem 2, see Section 3.2. The
difference u}, ,; — u™ is rewritten by means of a telescopic identity

whieyy —u" = (Qrym —Id)u™ + ufpy — Qrar u”
= (Qrar — Id) u" + Frar(A)" u® — Qpepr u™
(Qrar —Id)u” (34)

n—1

+ Z]:KM(At)nijil (-FKM(At) ul — Orm S(At) uj)
j=0
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and estimated with the help of the auxiliary results given in Section 3.3 for the
Strang splitting method. Altogether, we are able to establish the following con-
vergence result, where p = 2 for the second-order Strang splitting method. The
generalization to higher-order time-splitting methods follows the arguments
detailed in [20] for space discretzations based on the Fourier, Sine, and Her-
mite pseudo-spectral methods, respectively. In order to simultaneously capture
the cases of two and three space dimensions, we suppose the additional space
discretization parameters K, L to be proportional to M and write u}, = uj,,
or uhy; = Ul s, respectively, for short, see also Section 3.4.

Theorem 1 Assume that the potential V' and the values of the exact solution
to the Gross—Pitaevskii equation (1) remain bounded in the fractional power
space X,, where p > 1 denotes the nonstiff order of the considered time-
splitting method. Then the global error estimate

[ufs —ultn)]|x, SC((AP +M77),  0<t, <T,

is valid with constant C depending in particular on the upper bounds for |V | x,
and max{[|u(t)||x, : 0 <t < T}. In two space dimensions, that is, for the
generalized-Laguerre—Fourier pseudo-spectral method it holds ¢ = p—% = p—%,
and in three space dimensions, that is, for the generalized-Laguerre—Fourier—

Hermite pseudo-spectral method it follows ¢ = p — 16—1

Remark We note that the corresponding result for the Hermite pseudo-
spectral method involves the exponents ¢ = p — % =p— % in two space

dimensions and ¢ = p — 2 in three space dimensions, see [20].

3.2 Semi-discretization in time

In order to establish a convergence estimate for the Strang time-splitting
method applied to (1), we pursue the standard approach of combining sta-
bility bounds and local error estimates. We note that our approach is general
and permits to cover different spectral methods; the particular choice of the
specific spectral method enters in the definition of the operators A, B and the
auxiliary results deduced in Section 2.

3.2.1 Stability

Estimates for the evolution operator associated with B. Bounds for the action
of the operator B and the associated evolution operator in fractional power
spaces are provided by the following result. By means of the auxiliary estimates
results deduced in Section 2 the corresponding results given in [20] carry over
literally, see also [9,15]; however, for the sake of completeness and for the
convenience of the reader we include the proof of Lemma 9 below.
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Lemma 9 Let o € N with a > 1 and set ( =0 or { = «, respectively. Then
foru € X, and v € X the bounds

1Blu]vlix, < CUVIx, + 8lHulk,) Iv]lx. (35a)

le Bl )y, < oC IV llxo +1Blllull%, )t o]l x.» (35b)
are valid. Furthermore, for u,v,w € X, it holds
[(B[u] — Blv]) wl[x, < C|B] (ullx, + [vllx.) [wlx, lu—vlx,.  (35¢)
Proof By Lemma 3 and relations (10b), (10c) we obtain (35a),
IBlu]vllx, < ClIBlulllx. [vllx, < C(IVIx. + 18l lul%,) vl x,-

Similarly, rewriting the difference as

(Blu] = Blv]))w = (vt — v0) w = B((u — v) U+ (u — v)v) w

the bound (35¢) follows. As ¥(t) = e Pl ¢ is the solution of the initial value
problem

i 45(t) = Blu]5(t), 9(0) = v,

integration and an application of (35a) yields
t
158)1x, = Hv—i/o Blu)(r) dr]|
t
< lollxe +CUVIlx. + 18] ||U||§(a)/0 [o(7)l x dr.
A Gronwall-type inequality finally implies the stated bound (35b). O

Stability bound for the Strang semi-discretization in time. As before, for the
sake of completeness we recapitulate arguments given in [9,15,20] to obtain
a stability bound for the Strang semi-discretization in time; we note that the
latter contribution also covers the case of high-order time-spitting methods.

Lemma 10 For any u,v € X, with « > 1 and for ( =0 or { = «a, respec-
tively, it holds

IS(t)u — S(t) v]|x, < eCCVHCalAt |y —yl|x,,

where Cy denotes an upper bound for ||V | x., Co denotes an upper bound for
lullx., and ||v||x,, and where C depends on «, additionally to its dependence
on vy and (2.
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Proof For any a > 0 Parseval’s identity implies

. . 2
lem ul, = || X0 crm() A e £,
(k,m)eM ’
= Y lem@PAE, = [l
(k,m)emM

Thus, the application of the linear operator e 4 in S(t) preserves the X,
norm. Hence, it only remains to show that for ( = 0 and ¢ = «, respectively,
it holds

Ji(t) = ()1 x, < lle™* P u— e 7B o, < CCVHEI |y — o] x . (36)

Here, with a slight mabuse of notation, we denote by u(t) = e *5 y and
7(t) = e~ *B[ y the solutions to the initial value problems

i 45(t) = Bl a(t), a(0)=u, i3t =Bp]3(t), B(0)=v.

Evidently, the difference satisfies
i §; (@ —0)(t) = Blu]u(t) — Blv]o(t)

= Blu] (u(t) —v(t)) + (B[u] — B[v]) v(t),
(u—"20)(0) =u—wv.

Hence, an application of the variation-of-constants formula yields
t

(T —0)(t) = e B (4 —v) +/ e =Bl (Bu] — Bv]) e "Bl y dr. (37)

0

Using Lemma 9 (35b)-(35¢) and then (35b) we obtain the following bound for
the integral

t
H/ e~it="Bll (B[] — BJv]) e~ "Bl ’Ud’T"
0

X¢

t
</ CUVIxa+Blull%,, ) (=) H(B[u]—B[v])e_”B[”]vHX dr
=, .

< Bl (lullx. + llvllx.) llu = vllx
t
x [ UV lxatlBllulie, 6= || =Bl | a7

0

<C|B| (lullxo + vl x.) Juw— U”X( vl x..
t
x| CUVIxa+IBllulli,)t=T+7) 4,

0
= C 18| (lullx. + [lollx.) [v]lx, ¢ eSOV Ixa+ BN |y — |«

Together with the estimate (35b) of the first term,

||efitB[u] (u—)|x, < CUVIlxa+IBlul%, )t llu — ]|,
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and 1 4+ x < e” for x > 0 this gives

[u(t) — o)l x, < (1 +CIB] (Jullx, + [vllx.) 1]l x,t)

x oSV o HBINIRLE |y — ],

2
< CCvHIBICOL ||y, — vl xe

which proves (36) and thus the statement of the lemma. O

3.2.2 Local error

Commutator bounds. Essential ingredients in local error estimates for time-
splitting methds are bounds for iterated Lie-commutators. The following result
provides estimates for the first and second iterated Lie-commutators needed
in connection with the second-order Strang splitting. We note that in its proof
the iterated commutators are expressed in terms of the linear operator A and
the potential V' and that the specific form of A is not exploited; in the case
of a nonlinear operator B defining the problem this simplification is useful,
however, in the linear case, in order to obtain bounds which are optimal with
respect to the required regularity properties of u, the cancellation of terms
has to be taken into account. Following [20] an analogous result for higher
iterated Lie commutators arising in the local error analysis of higher-order
time-splitting methods applied to (1) can be obtained.

Lemma 11 Let A(u) = —idu and B(u) = —iBlulu = —i(V + B |u?) u.
Then for u € X1 with integer exponent a > 1 the bounds
A, Bl(w)lix.. < C (18l llullk,,, + IVIxow lullxa)s  (382)

A, TA, Bll()lxo < C (18] lulik.,, + 1V Ixws lulxa),  (38D)

are valid with constant C > 0 depending on «, additionally to its dependence
on vy and {2.

Proof The Fréchet derivatives of A and B are given by
A(u)v = —idv, B'(w)v=—i(Vo+28ul?v+Bu?v),
respectively, so that
(A, B)(u) = A'(w) Bu) - B'(u) A(u)

=AWV u+Blufu)+VAu+28|ul* Au — Bu* Au
= —[A,V]u— B (A(Jul*u) — 2 |u]*Au + v* Au).

Applying the definition of the norm in the fractional power space X, and
Lemma 3 (10c) it follows
o¢+17

||A (Jul?u) — 2|ul?Au + u? EHX < Cllull3%
1A, V]ullx, <CIVIixap llullxas
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which proves (38a). As by assumption o > 1, the first term in

[A,[A, B])(w) = A'(w)([A, B)(w)) — [4, B (u)(Au)
is estimated by means of (38a),
14" (w) ([A, Bl(w)lx, = I[4, Bl(w)llx, < 1A, B](w)l|x...

which is compatible with (38b). In order to estimate the second term we de-
termine the Fréchet derivative of [A, B](u) as

(A, BY (w) v = — [4,V]v— B (A (2]u*0 + u?D)
—2uv Au—2uv Au — 2 |u|* Av + u® Av + 2uv Au),

and thus

[A, BY (u)(Au) = i[A, V] Au+15 (A (2 |u]* Au — u® Au)
+2u|Au)? — 20 (Au)? — 2 |u* A%u — u® A2u + 2u|Aul?).

Using Lemma 3 (10c) the Xg-norm of the terms in parentheses can be esti-

mated by C [|ull%, < C|ul%,,,, and similarly

1A VIulx, < ClIVIx, [lullx, <CIVIIxanl[ullxa-

Altogether we obtain the estimate (38b). O

Local error estimate. By means of the local error expansion for the Strang-
splitting method deduced in [15] and the Lie-commutator bounds provided by
Lemma 11, it is straightforward to obtain the following local error bound with
p = 2. We omit the specification of the local error expansion deduced in [15]
and refer to [20] for a generalization to high-order splitting methods.

Lemma 12 Let u(At) denote the exact solution to the evolution equation (1c)
at time At with initial value ug. For a splitting method of nonstiff order p > 1,
the local error estimates

18(At) uo — u(At)[x, < C(A)?,
IS(At) uo — u(At)|x, < C (A",

are wvalid with constant C > 0 depending in particular on upper bounds
for Juollx, and [|V|x,-
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3.2.3 Global error

Global error estimate. A standard approach based on a telescopic identity
yields an estimate of the global error in terms of stability bounds and local
error estimates as provided by Lemmas 10 and 12. We omit a detailed proof
and refer to [15] for the case of the Strang splitting method, where p = 2.
The generalization to high-order splitting methods is given in [20]; the error
analysis shows that the nonstiff order of convergence is retained under suitable
regularity requirements on the exact solution. For simplicity, we henceforth
assume that the starting value ug coincides with the exact initial value u(0).

Theorem 2 For a splitting method of nonstiff order p > 1 the global error
estimate
[un = ultn)||y, <CAOP,  0<t, <T,

is valid with constant C > 0 depending in particular on upper bounds for
max{[|u(t)||x, : 0 <t < T} and |V x,.

3.3 Full discretization

In this section, we deduce stability estimates and bounds for the defect that
are needed for the estimation of (34).

3.8.1 Stability

Estimates for the evolution operator associated with B. A first stability result
for the composition of the spectral interpolation operator and the evolution
operator associated with B is provided by the following result.

Lemma 13 For all u,v € X, with o € N such that o > 1 the estimate
—i —i 2
HQKM (e tBlu] o _ =itB[v] ’U)HXO < ClCvHCalBNt Hu—v||K+%7M (39a)

is valid with Co, and Cy denoting upper bounds for ||u||x., ||v|x., and ||V x,,
respectively. In particular, if u,v € Xgp, that is, Pxyu = Qgypu = u and
Prxmv = OQrnv =, the relation

HQKM (efitB[u] U — e itBl] v) ||X0 < oCCv+C2IBNt Ju — vl x, (39b)
follows.

Proof For simplicity, we assume V' = 0 and refer to [20] for the case V' # 0. Let
u(t) = e Bl 4 and 9(t) = e *B] y be defined as in the proof of Lemma 10.
From (37) we obtain

19 (U(t) — ()l xo < [1Qxns e Pl (u = v)]|x,

t
+H QKM/ et Bl (B[] — B[u]) e 7Bl g dr‘
0

Xo



30

Here we estimate the two terms on the right separately. Using Lemma 7 (29¢)
and the definition of the norm || - || ar 5, we obtain

1Qxcas P (u — v) %, < fle™ P (u - O[Ty
_ ﬁ Z wj |e—itB[u](ﬂfjs,yjs)
(4,8)EK KM

=5 D willu—v) () = llu- U||§<+%,M-
(4,8)EK KM

% (u— ) (@5, yjs)

Similarly, it follows

t
HQKM/ efi(tf‘r)B[u] (B[u} _ B[,U])efi'rB[v] v dT‘
0

Xo

t
< / e TIB (Blu) - Blo])e 0 v dr
0 K+%,M

dr

t
< / le= =P (Blu] = Bl e Pl o]y
0 >

t
- /O |(Blu) = Blel) v, g pyl7
=91 (= )+ @D el
< UBIE ([ull Lo (regensy + 10l oo (ierenr)) 101 Loe (i) 1 — Ol gqs pr
< CIBIt (lullxa + llvllxg) vllx, 1w = vl ey ar o

<cc |»3|t||u_v||K+%,M» (40)

where the norm || - || (ky,,) is defined in Lemma 8, and the inequal-
ity |lullpoe(xciny < llullx, follows from Lemma 3(10a). Altogether, using
1+ x < €” this proves (39a). For u,v € X the stated relation (39b) then
follows from Lemma 7 (29c¢). O

Stability of the discrete evolution operator. An analogous stability bound to
Lemma 10 is provided by the following auxiliary result. The statement fol-
lows at once from Lemma 13 (39b), noting that the evolution operator e~
preserves the Xg-norm and that e 4y € Xg s for any u € Xgar.

Lemma 14 For all u,v € Xk the estimate
1Frens (8) w — Frear () vl xo < eCCVFTERIENT [y — oy, (41)

is valid with Co and Cy depending on upper bounds for |ullx., ||[v|lx,, and
IV lx,, respectively, where o € N such that a > 1.
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3.8.2 Local error

Estimate for the defect. A bound for the difference Fg ps(At) u— Qg ar S(AL) u
is given in Lemma 18. Several auxiliary estimates are provided by the following
results. We recall the assumption that the integers K, M are proportional.
Lemma 15 For any u € X, with a > 1 it holds

1Qxns e ™ (Qrear — 1d) ul|x, < Ct M3/ ||y x . (42)

Proof Let v(t) = Qr e 4 Qraru = e 4 Qpeps uw and w(t) = e #4 4. Then
i do(t) = Av(t) and

i%(QKM w(t)) = QKMA’LU(t) = AQum w(t) — [A, QKM} w(t)

such that n(t) = Qe ™ (Qrar — Id) u = v(t) — Qrar w(t) is the solution
of

i8n(t) = An(t) + [A, Qraw(t), n(0) =v(0) — Qxar w(0) = 0.

By the variation of constants formula it holds

t t
n(t) = / e i(t—m)A [A, O p]w(r) dr = / e i(t=m)A [A, Ok ] e Ty dr.
0 0

From Lemma 8 (32¢) we obtain

I[A, Qrarlullx, = |AQrn u — Au+ Au — Qs Aul|x,
<N A(Qrm —1d) ulx, + [[(Qra — 1d) Aul x,
<CM=T3 | x,

for u € X, and hence

t
In®)lx, < / 1A, Qrenrl e A ull, dr < Ct M@/ [l
0

which yields the stated result. O

Lemma 16 For any u € X, with o € N such that a > 1 the estimate

1(1d — Qgear) e P Qe s i) x,

<CC, (Cv-i-Ci |ﬁ|)eC(CV+Ci|5DttM—(a—1/2) (43)

holds, where C, denotes an upper bound for ||Qxaru|x, and Cy denotes an
upper bound for ||V x,, .
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Proof Set v = Qg pu. By Lemma 8(32e) it holds

1(Id — Qrar) e Py x, = [|(1d — Qgenr) (e7 P —1d) v]| x,
S CMf(afl/Q) ”(efitB[v] _ Id)’UHXa
=C M2 ()]

Xao
where 7(t) = (e~ *Bl*] —1d) v is the solution to the initial value problem
i §en(t) = Blvln(t) + Blv]v,  n(0) =0.

By the variation-of-constants formula, it follows

t t
n(t)z/ ei(t—T)B[v]B[,U],UdT:/ Blo]6t-7B0 y dr,
0 0

so that by Lemma 9 (35a)—(35b) we have

¢
In(®lx, <CCv+Ca Iﬁl)/ e (CvHCaldlT o]y, dr
0
< CCa (Cy +C2IB)) eCCV el y,
from which (43) follows. O

Lemma 17 For u € X, with a € N such that o > 1 it holds

[ Quear (e 21— P12 Q)

<CC, (Cy +C2I8]) eC(CerCilﬁl)tth(afSﬂ)’ (44)

Xa and CV

where Co denotes an upper bound for ||u|x, as well as ||Qxarul

denotes an upper bound for ||V x, -
Proof In the following, we set v(t) = e By, w(t) = e #BIQxrmul Qpeoy

and n(t) = Qrm (v(t) — w(t)). Then n(t) is the solution of the initial value
problem

+Qrn (Blu] — B[Qraru]) w(t)

with initial value n(0) = 0. By the variation-of-constants formula,

n(t) = / e~E=TBI (—[Blu], Qgen] (u(r) — w(r))
+Qxm (Blu] — B[Qg pu]) w(r)) dr.
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Noting that n(t) = Qg n(t) and using Lemma 7 (29¢) and the fact that the
operator e (*=7) Bl is unitary with respect to the norm || - HK+%7M it follows

In®llx, < / 1Blul, Quear] (0(7) — w(r)llics a1 A
+ [ 1Bl = BlQxard) w(r) ey dre (49
0

As in the proof of Lemma 13 (see formula (40)) for the second integral in (45)
we obtain

t
/0 I(Blu] — B[Qraru]) e TPIKa ] Qe ullgpar n dr

<CCIBIH(Qrar —1d) ull gy 22 5
<CC Bt M~ (7312 < ¢, (Cy + |BIC2) CCvHIBIC ¢ pp—(a=3/2),

where we used
1(Qrens = 1d) wll ey ar pr < CII(Qrenr — 1) ullx, < C M~ ju|x,, (46)

which follows from Lemma 8, egs. (32¢), (32e).
To estimate the first integral in (45) we first note that for v € X, it holds

I[Blu], Qxmrlvll ey aa ar < I Blu] (Qucar = 1d) vl gy az a
+|(Qra — 1d) Blu] U||K+%,M
< C(IVllxa + 18l 3e) 1(Quear —1d) vll gy 2z ps
+C M~ 732 || Blulv| x,
<CMOT3R([V|x, + 18] ullk.) vl x.
<cM 32 ey +c218)) |Iv]lx..,

where in the second line we used Lemma 8 (32b) and (46), and in the third
line we used (46) and Lemma 9 (35a). By Lemma 9 (35b),

lo(7) = w(n)llx, < e ™M ullx, + [le7 PO Quens | x,,

< QCaeC(Cv-FCg\Bl)T’
so that for the first integral in (45) we obtain
¢
/ I1Blul, Q] (0(7) = w(T))ll gy 2z pr AT
0

< CCq(Cy +18IC%) oCCv+IBIC)E 4 py—(a=3/2)

Together with the estimate for the second integral this proves (44). O
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Lemma 18 For u € X, with o € N such that o > 1 the estimate
| Frear (At) u — Qrenr S(AL) ul| x, 47
<CCq(Cy + C§|B|) eC(Cv-s-Cilﬁl)At At M—(a=3/2) (47)

is valid, where C,, denotes an upper bound for ||u|lx., ||Qra vl x.,, as well as
|Q K ar efi%AuHXa, and Cy denotes an upper bound for |V x,, -

Proof Set z; = e~ 1AtB[z2] Zo, 29 = e—igtA 23, z3 = u. Then we have
Frm(At)u — Qum S(At)u = — (Z1 + Zo + Z3),

where

7y = Qe 3 (Id — Qrm) 21,

Zy = Qrame 34 Qrenr (e_iAtB[z2] g — e 1ABOrMEl 9,y ),

Zy = Qrare T4 Qe (e7iAtBlQrm SR Qrpre 34 2

— e_iAtB[e_i%AQKMZS] e oA Ox M 2’3).

We estimate Z1, Zs, and Zs separately. First, by applying Lemma 15 and then

Lemma 9 (35¢) and the fact that et g unitary with respect to the norm
I - |lx, we obtain

1Z1]1x, < C At M~©@=3/2|2 || x.. < CCqeCCvHBICHAL Ap pr—(a=8/2),

Second, by noting ||QKMe’i%AQKMv||XO = ||Qkxmv||x, and applying
Lemma 17 we obtain

1Zs)| x5, < CCa (Cvr +|BIC2) CCVHIBICAL Ay pp—(a=3/2),
Here we used ||z2||x, = |Jullx, < Cq. Finally, again by noting
_jAt
1Qka e =4 Qrearvllx, = [|Qxar vl x,
and applying first Lemma 13 (39b) and then Lemma 15 we obtain
2 (At
1Z5]|x, < e“CalP12 [ Qpenr e (Td — Quenr) | x,
< CcaeCAtm\Cg At Mf(a73/2)'

Note that here in the first step we need that C, is a bound for || Qs vl x,,
and || Qg ar e 2 4 || x... Altogether, these bounds imply (47). O

3.4 Extension to three space dimensions

In this section, we study the generalized-Laguerre-Fourier-Hermite pseudo-
spectral method for the space discretization of the three-dimensional Gross—
Pitaevskii equation with rotation term (1). As our error analysis for the two-
dimensional case naturally carries over to the case of three space dimensions,
we only indicate where definitions and estimates have to be extended with
some care.
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Basic relations. In the present situation, the discretization of the (x,y)-
variables relies on the generalized—Laguerre—Fourier spectral method analyzed
before, and the discretization of the z-variable uses scaled Hermite functions
involving the Hermite polynomials H, (¢ =0,1,2,...)

V. e—wzz2/2 Hl( 7z2)7

HZZ (Z) - \/21276‘ V=

see also [3] for further details. Hence, the eigenfunctions and associated eigen-
values of the linear operator A defined in (1d) are given by

B (x,y,2) = L], (v,y) H)* (), (k,m)eM, £=0,1,2,...,
)\kmg:(2k+|m|+1)’y—m(2+(€+%)%.

Similarly to before, we assume the discretization parameters K and L to be
proportional to M, and introduce the index sets

MKML:{(k7m7€) : (kam) EMKM,EZO,...,L—l},
Ky =4(r,s,q9): (r,8) € Kxnryg=0,...,L—1}.

Consequently, the maximum eigenvalue in the set M s, satisfies the relation

)\max: max AkaSC(K+M+L)§CM7
(k,m,0)EMEg L

see Lemma 8. The spectral interpolant now also involves scaled Gauf3—Hermite
quadrature nodes and weights

Ormr(u) = Z Chme(w) Bloi

(k,ml)eMKmrL

Ekmf(u) = ﬁ Z wr{qu BZ;;ZZ (Irsa Yrs, Zq) U(Irm Yrs, Zq)-
(r8,9)ELK ML

Error analysis. By means of well-known recurrence relations for scaled Her-
mite functions, analogous to Lemma 1, arguments in the lines of the proof of
Lemma 2 yield the estimate

1z ullxo + [[0zullx, < Cllullx u € Xat1/2,

at1/2)
see also [9,20]. In order to extend the estimate (23b) we utilise the bound

L-1

S @ o(z) P < C / (W) + M3 0.0(2)2) dz, v e H(R),

q=0
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deduced in [10]. As a consequence, we obtain the relation

—1M-1

lulieare = 37 Z 3 oy e s )
q=0 r

s=0

<cC / u(x,y, 29) |2 + M3 (|8 u(z, y,zq)\ + \8yu(x,y,zq)|2)

;J;M

“H|02u(z, y, zg)|* + \asu(x,y,zq)|2 + |(9wyu(a:,y,zq)\2)) d(z,y)
<c [ (juP+ 3175 (0.l +10,0))
R3
+ M (102l + 020l + [Dayul?) ) d(z,y, 2)

+ CM-1/3/

(100l + M7 (1052l + 10,.u])
R3

+ M (Dl + 1020l + 0nyuf?) ) Ay, 2)
<C <||U||2L2(R3) + M7 ul G gy + M7 [uffa oy + MY IU|H3(R3))7
which implies the following analogue to (32e)
1(Qrarr —1d) ufx, < C M~ ju]|x, .

As a consequence, in the three-dimensional case the factors M—(®=1/2) and
M—(@=3/2) arising in the auxiliary results derived in Section 3.3 have to be
replaced by M—(@=5/6) and M —(«=11/6) respectively. Altogether, this proves
the statement of Theorem 1.

4 Numerical example

In the following we confirm the theoretical global error bound of Theorem 1 by
a numerical example. Furthermore we include the reference to a movie, which
illustrates the time evolution of the solution to a related problem that was
considered in [3, Ex. 1].

Global error bound. We consider the time-dependent Gross—Pitaevskii equa-
tion with rotation term (1) in two space dimensions, where we set v = 0.8,
2=0.5,V =0, and g8 = 100, and

u(z,y,0) = ﬁ e~ 3@ +y%) (x+1y).

The problem is discretized in space by the generalized-Laguerre—Fourier
pseudo-spectral method. For the time integration we apply splitting methods
of (nonstiff) orders p = 1,2, 4, the Lie-Trotter (order 1), Strang (order 2), and
Yoshida (order 4) splitting methods, see for instance [11,16]. In Figure 1 (left)
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Fig. 1 Global error versus time stepsize At (left) and spatial discretization parameter M
(right).

we display the global error at time ¢ = 1 as a function of the time discretiza-
tion parameter At for fixed spatial discretization parameters M = 512 and
K = M + 1. As expected, for the chosen sufficiently regular initial condition
the nonstiff temporal orders are retained. Furthermore, we display the global
error in dependence of the space discretization parameter M = 2™ for integer
3 < m < 8, where again K = M + 1, with time stepsize fixed to At = ﬁ.
The numerical results confirm the spectral accuracy in space. We note that
the global error is in general dominated by the temporal error; in particular,

this behavior is observed for the first-order Lie—Trotter splitting method.

Time evolution. A movie illustrating the evolution of the solution to the spec-
ified problem on the time interval [0, 10], but with additional potential

Vig,y) =30 -7y =12
is available at

http://www.othmar-koch.org/fwf-project2011.html.
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