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MULTISCALE MODELING IN MICROMAGNETICS:

WELL-POSEDNESS AND NUMERICAL INTEGRATION

F. BRUCKNER, M. FEISCHL, T. FÜHRER, P. GOLDENITS, M. PAGE, D. PRAETORIUS,
AND D. SUESS

Abstract. Various applications ranging from spintronic devices, giant magnetoresis-
tance (GMR) sensors, and magnetic storage devices, include magnetic parts on very
different length scales. Since the consideration of the Landau-Lifshitz-Gilbert equation
(LLG) constrains the maximum element size to the exchange length within the media,
it is numerically not attractive to simulate macroscopic parts with this approach. On
the other hand, the magnetostatic Maxwell equations do not constrain the element size,
but therefore cannot describe the short-range exchange interaction accurately. A combi-
nation of both methods allows to describe magnetic domains within the micromagnetic
regime by use of LLG and also considers the macroscopic parts by a nonlinear material
law using Maxwell’s equations. In our work, we prove that under certain assumptions on
the nonlinear material law, this multiscale version of LLG admits weak solutions. Our
proof is constructive in the sense that we provide a linear-implicit numerical integrator
for the multiscale model such that the numerically computable finite element solutions
admit weak H

1-convergence —at least for a subsequence— towards a weak solution.

1. Introduction

The understanding of magnetization dynamics, especially on a microscale, is of utter
relevance, for example in the development of magnetic sensors, recording heads, and
magneto-resistive storage devices. In the literature, a well accepted model for micro-
magnetic phenomena, is the Landau-Lifshitz-Gilbert equation (LLG), see (13). This
nonlinear partial differential equation describes the behaviour of the magnetization of
some ferromagnetic body under the influence of a so-called effective field. Existence (and
non-uniqueness) of weak solutions of LLG goes back to [3]. As far as numerical simu-
lation is concerned, convergent integrators can be found e.g. in the works [6, 7] or [5],
where even coupling to Maxwell’s equations is considered. For a complete review, we
refer to [9, 13, 20] or the monographs [17, 22] and the references therein. Recently, there
has been a major breakthrough in the development of effective and mathematically con-
vergent algorithms for the numerical integration of LLG. In [1], an integrator is proposed
which is unconditionally convergent and only needs the solution of one linear system per
timestep. The effective field in this work, however, only covers microcrystalline exchange
effects and is thus quite restricted. In the subsequent works [2, 14, 15, 16] the analysis
for this integrator was widened to cover more general (linear) field contributions while
still maintaing unconditional convergence.

In our work, we generalize the integrator from [1] even more and basically allow ar-
bitrary field contributions (Section 3). Under some assumptions on those contributions,
namely boundedness and some weak convergence property, cf. (31)–(32), our main theo-
rem still proves unconditional convergence towards some weak solution of LLG (The-
orem 7). In particular, our analysis allows to incorporate the approximate solution
resp. discretization of effective field contributions like e.g. the strayfield which cannot
be computed analytically in practice, but requires certain FEM-BEM coupling methods
(Section 4.5). Such additional approximation errors have so far been neglected in the
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previous works. In particular, we show that the hybrid FEM-BEM approach from [10]
for strayfield computations does not affect the unconditional convergence of the proposed
integrator (Proposition 17).

From the point of applications, the numerical integration of LLG restricts the maximum
element size for the underlying mesh to the (material dependent) exchange length in order
to numerically resolve domain wall patterns. Otherwise, the numerical simulation was
not able to capture the effects stemming from the exchange term and would lead to
qualitatively wrong and even unphysical results. However, due to limited memory, this
constraint on the mesh-size practically also imposes a restriction on the actual size of the
contemplated ferromagnetic sample. Considering the magnetostatic Maxwell equations
combined with a (nonlinear) material law instead, one does not face such a restriction on
the mesh-size (and thus on the computational domain). On the one hand, this implies
that such a rough model cannot be used to describe short-range interactions like those
driving LLG. On the other hand, this gives us the opportunity to cover larger domains
and still maintain a managable problem size.

In our work, we show how to combine microscopic and macroscopic domains to end up
with an appropriate multiscale problem (Section 2): On the microscopic part, where we
aim to simulate the configuration of the magnetization, we solve LLG. The influence of a
possible macroscopic part, where the magnetization is not the goal of the computation,
is described by means of the magnetostatic Maxwell equations in combination with some
(nonlinear) material law. This macroscopic part then gives rise to an additional non-
linear and nonlocal field contribution (Section 4.6) such that unconditional convergence
of the numerical integrator or even mere existence of weak solutions in this case is not
obvious. For certain practically relevant material laws, we analyze a discretization of the
multiscale contribution by means of the Johnson-Nédélec coupling and prove that the
proposed numerical integrator still preserves unconditional convergence (Proposition 28).

Outline The remainder of this paper is organized as follows: In Section 2, we give a
motivation and the mathematical modeling for our multiscale model. While Section 2.1
focuses on the new contribution to the effective field, Section 2.2 recalls the LLG equa-
tion used for the microscopic part. In Section 3, we introduce our numerical integrator
in a quite general framework and formulate the main result (Theorem 7) which states
unconditional convergence under certain assumptions (31)–(32) on the (discretized) ef-
fective field contributions. The remainder of this section is then dedicated to the proof
of Theorem 7. In Section 4, we consider different effective field contributions as well
as possible discretizations and show that the assumptions of Theorem 7 are satisfied.
Our analysis includes general anisotropy densities (Section 4.2) as well as contributions
which stem from the solution of operator equations with uniformly monotone operators
(Section 4.3). This abstract framework then covers, in particular, the hybrid FEM-BEM
discretization from [10] for the strayfield (Section 4.5) as well as the proposed multiscale
contribution to the effective field (Section 4.6).

2. Multiscale model

In our model, we consider two separated ferromagnetic bodies Ω1 and Ω2 as schematized
in Figure 1. Let Ω1,Ω2 ⊂ R

3 be bounded Lipschitz domains with Euclidean distance
dist(Ω1,Ω2) > 0 and boundaries Γ1 = ∂Ω1 resp. Γ2 = ∂Ω2. On the microscopic part Ω1,
we are interested in the domain configuration and thus solve the Landau-Lifshitz-Gilbert
equation (LLG) to obtain the magnetization M 1 : Ω1 → R

3. On Ω2, we will use the
macroscopic Maxwell equations with a (possibly nonlinear) material law instead.
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To motivate this setting, we consider a magnetic recording head (see Figures 1 and
2). The microscopic sensor element is based on the giant magnetoresistance (GMR)
effect, and it requires the use of LLG in order to describe the short range interactions
between the individual layers of the sensor accurately. On the other hand, the smaller
these sensor elements, the more important becomes the shielding of the strayfield of
neighbouring data bits. In practice, this is achieved by means of some macroscopic
softmagnetic shields located directly besides the GMR sensor. Describing these large
components by use of LLG would lead to very large problem sizes, because the detailed
domain structure within the magnetic shields would be calculated. As proposed in this
paper, macroscopic Maxwell equations allow to overcome this limitation and thus provide
a profound method to describe the influence of the shields in an averaged sense. While
this work focuses on the mathematical model and a possible discretization, we refer to [8]
for numerical simulations and the experimental validation of the model proposed.

Ωcoil

Ω1

Ω2

Figure 1. Example geometry which demonstrates model separation into LLG
region Ω1 and Maxwell region Ω2 (and in this case in an electric coil region Ωcoil).
Here, Ω1 represents one grain of a recording media and Ω2 shows a simple model
of a recording write head.

Figure 2. The example setup consists of a microscopic GMR sensor element
in between two macroscopic shields. Beyond the GMR sensor a magnetic storage
media is indicated. The multiscale algorithm is used to calculate the stationary
state of the GMR sensor for various applied external fields.

2.1. Magnetostatic Maxwell equations. The magnetostatic Maxwell equations read

∇ ×H = j and ∇ ·B = 0 in R
3, (1)
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where H : R3 → R
3 is the magnetic field strength and where the magnetic flux density

B : R3 → R
3 is given by

B = µ0(H +M) in R
3 (2)

with µ0 the permeability of vacuum. The current density j is the source of the magnetic
field strength H . The magnetization field M is non-trivial on the magnetic bodies
Ω1 ∪ Ω2, but vanishes in R

3\(Ω1 ∪ Ω2). The total magnetic field is split into

H = H1 +H2 +Happ, (3)

where Hj : R3 → R
3 is the magnetic field induced by the magnetization M on Ωj and

Happ is the field generated by the current density j in R
3\Ω1 ∪ Ω2. This implies

∇ ×Happ = j and therefore ∇ ×Hj = 0 in R
3. (4)

In particular, the induced fields are gradient fields Hj = −∇Uj with certain scalar
potentials Uj : R3 → R. We assume that Happ is induced by currents only, but not by
magnetic monopoles. Therefore,

∇ ·Happ = 0 in R
3. (5)

Moreover, the sources of Hj lie inside Ωj only and hence

∇ ·Hj = 0 in R
3\Ωj. (6)

From the magnetic flux B, we obtain

0 = ∇ ·B = µ0(∇ ·H + ∇ ·M ) = µ0(∇ ·Hj + ∇ ·M) on Ωj . (7)

Together with Hj = −∇Uj and (6), this reveals

∆Uj = ∇ ·M in Ωj , (8a)

∆Uj = 0 in R
3\Ωj . (8b)

For the micromagnetic body Ω1, the respective magnetization M 1 = M |Ω1
is computed

by LLG, see Section 2.2 below. The overall transmission problem (8) is supplemented by
boundary conditions as well as a radiation condition and reads

∆U1 = ∇ ·M 1 in Ω1, (9a)

∆U1 = 0 in R
3\Ω1. (9b)

U ext
1 − U int

1 = 0 on Γ1, (9c)

∂νU
ext
1 − ∂νU

int
1 = −M 1 · ν on Γ1, (9d)

U1(x) = O(1/|x|) as |x| → ∞. (9e)

Here, the superscripts int and ext indicate whether the trace is considered from inside
Ω1 (resp. Ω2 in (12) below) or the exterior domain R

3\Ω1 (resp. R
3\Ω2 in (12) below).

Moreover, ν denotes the outer unit normal vector on Γ1 (resp. Γ2 in (12) below), which
points from Ω1 (resp. Ω2 in (12) below) to the exterior domain. For the macroscopic
body Ω2, we assume a nonlinear material law

M = χ(|H|)H on Ω2 (10)

with a scalar function χ : R≥0 → R and | · | the modulus. Some examples for suitable χ
are listed below (see Remark 21).

For the computation of the potential U2, we introduce an auxiliary potential Uapp.
Recall that ∇ ×Happ = 0 in Ω2. If Ω2 is simply connected, we infer Happ = −∇Uapp on
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Ω2 with some potential Uapp : Ω2 → R. According to (5) and up to an additive constant,
U2 can be obtained as the unique solution of the Neumann problem

∆Uapp = 0 in Ω2, (11a)

∂νU
int
app = −H int

app · ν on Γ2, (11b)

with
∫

Ω2
Uapp dx = 0. The transmission problem for the total potential U = U1 + U2 +

Uapp of the total magnetic field H = −∇U in Ω2 and for the potential U2 in R
3\Ω2,

supplemented by a radiation condition, reads

∇ ·
(
(1 + χ(|∇U |))∇U

)
= 0 on Ω2, (12a)

∆U2 = 0 on R
3\Ω2, (12b)

U ext
2 − U int = −U int

1 − U int
app on Γ2, (12c)

∂νU
ext
2 − (1 + χ(|∇U int|))∂νU int = (Hext

1 +Hext
app) · ν on Γ2, (12d)

U2(x) = O(1/|x|) as |x| → ∞, (12e)

where (12a) follows from (1)–(6) and (10). The boundary conditions of (12) are derived
from (1), which leads to (Hext − H int) · ν = 0 on Γ2, and the continuity of U2 on Γ2.
Details on computation of the above quantities are postponed to section 4.

Remark 1. In case of a linear material law χ(|H|) = χ ∈ R>0 in (10), the transmission
problem (12) simplifies to (1 + χ)∆U2 = 0 in Ω2, U ext

2 − U int
2 = 0 on Γ2, and ∂νU

ext
2 −

(1 + χ)∂νU
int
2 = (Hext

1 + Hext
app) · ν on Γ2 in (12a), (12c), and (12d), respectively. In

particular, the Neumann problem (11) does not have to be solved. Moreover, we do not
have to assume that Ω2 is simply connected.

2.2. Landau-Lifshitz-Gilbert equation. Let α ≥ 0 denote a dimensionless empiric
damping parameter, called Gilbert damping constant, and let the magnetization of the
ferromagnetic body Ω1 be characterized by the vector valued function

M 1 : (0, tend) × Ω1 →
{
x ∈ R

3 : |x| = Ms

}
,

in ampere per meters [A/m] where the constant Ms > 0 in [A/m] refers to the saturation
magnetization. Then, the Landau-Lifshitz-Gilbert equation reads

∂M 1

∂t
= − γ0

1 + α2
M 1 ×Heff − αγ0

(1 + α2)Ms

M 1 × (M 1 ×Heff), (13a)

supplemented by according initial and boundary conditions

M 1(0) = M 0 in Ω1, (13b)

∂νM 1 = 0 on (0, tend) × ∂Ω1. (13c)

Here, γ0 = 2, 210173 · 105 in [m/As] denotes the gyromagnetic ratio and M 0 : Ω1 → R
3

with |M 0| = Ms in Ω1 is a given initial magnetization. The effective field Heff in [A/m]
depends on M 1 and the magnetic field strength H , and is given as the negative variation
of the Gibbs free energy

Heff = −δE(M 1)

δM 1
. (14)

In this work, the bulk energy E(·) consists of exchange energy, anisotropy energy as well
as magnetostatic energy

E(M 1) =
A

M2
s

∫

Ω1

|∇M1|2 +K
∫

Ω1

φ(M 1/Ms) dx− µ0

∫

Ω1

H ·M 1 dx, (15)
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The exchange constant A > 0 in [J/m] and anisotropy constant K > 0 in [J/m3] depend
on the ferromagnetic material. Moreover, φ refers to the crystalline anisotropy density
and µ0 = 4π · 10−7[Tm/A] denotes the permeability of vacuum. The effective field is thus
given by

Heff =
2A

µ0M2
s

∆M 1 − K

µ0M2
s

Dφ(M 1) +H in [A/m]. (16)

Note that the microscopic LLG equation and the macroscopic Maxwell equations are
coupled through the magnetic field strength H and hence through the effective field
Heff . Altogether, we will thus solve the multiscale problem by solving LLG on Ω1 and
incorporating the effects of Ω2 via this coupling.

3. General LLG equation

In this section, we consider the non-dimensional form of LLG with a quite general effective
field heff which covers the multiscale problem from the previous section. We recall some
equivalent formulations of LLG and then state our notion of a weak solution, which has
been introduced by Alouges & Soyeur, see [3], for the small-particle limit heff = ∆m and
which is now extended to the present situation. We then formulate a linear-implicit time
integrator in the spirit of [1, 2, 14, 15, 16].

3.1. Nondimensional form of LLG. We set m := M 1/Ms, m
0 := M 0/Ms, heff :=

Heff/Ms and perform the substitution τ = γ0Mst with τ being the so-called reduced time.

With Ωτ = [0, τend] × Ω1 the space-time cylinder and m : Ωτ → S :=
{
x ∈ R

3 : |x| = 1
}

the (sought) magnetization, the nondimensional form of LLG reads

∂τm = − 1

1 + α2
m× heff − α

1 + α2
m× (m× heff) (17a)

supplemented by initial and boundary conditions

m(0) = m0 in Ω1, (17b)

∂νm = 0 in (0, τ) × ∂Ω1. (17c)

The effective field reads

heff =
2A

µ0M2
s

∆m− K

µ0M2
s

Dφ(m) + f − ∇u1 − ∇u2,

where u1 is obtained from (9) with M 1 being replaced by m and where u2 is obtained
from (12) with e.g. Happ replaced by f , H1 replaced by −∇u1 etc. For the nonlinearity
χ, we introduce some χ̃ in the nondimensional formulation. Details are elaborated in
Section 4.6. We stress that the intrinsic unit of this formulation is [m] for the spatial
domain Ω1 ⊂ R

3. Moreover, 1/(γ0Ms) corresponds to 1 second.

Remark 2. Note that (17a) implies 0 = m · ∂τm = ∂τ |m|2/2, i.e. the time derivative
∂τm belongs to the tangent space of m and the modulus constraint |m| = 1 a.e. in Ωτ

also follows from the PDE formulation.

3.2. Notation and function spaces involved. In this brief section, we want to collect
necessary notation as well as the relevant spaces that will be used in the remainder of the
manuscript. By L2, we denote the usual Lebesgue space of square integrable functions and
by H1 the Sobolev space of functions in L2 that additionally admit a weak derivative in
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L2. For vector fields and corresponding spaces, we use bold symbols, e.g. for f : Ω1 → R
3,

we write

‖f‖2
L2(Ω1) =

3∑

i=1

‖fi‖2
L2(Ω1).

For the space-time cylinder Ωτ , we consider the spaces L2(L2) := L2
(
[0, τend],L2(Ω1)

)
=

L2(Ωτ ), L2(H1) := L2
(
[0, τend],H1(Ω1)

)
, and H1(Ωτ ) which are associated with the

norms

‖f‖2
L2(L2) := ‖f‖2

L2(Ωτ ) =
∫ τend

0
‖f (t)‖2

L2(Ω1) dt,

‖f‖2
L2(H1) := ‖f‖2

L2([0,τend],H1(Ω1)) =
∫ τend

0
‖f(t)‖2

L2(Ω1) + ‖∇f(t)‖2
L2(Ω1) dt,

‖f‖2
H1(Ωτ ) =

∫ τend

0
‖f(t)‖2

L2(Ω1) + ‖∇f(t)‖2
L2(Ω1) + ‖∂tf(t)‖2

L2(Ω1) dt,

respectively. Finally, we denote by (·, ·) the scalar product in L2(Ωτ ) and by 〈·, ·〉 the
scalar product in L2(Ω1), respectively. The Euclidean scalar product of vectors x,y ∈ R

3

is denoted by x · y.

3.3. Equivalent formulations of LLG and weak solution to general LLG. The
dimensionless formulation of LLG that is usually referred to, has already been stated
in (17). Supplemented by the same initial and boundary conditions (17b)–(17c), the
equation can also equivalently be stated by

αmt +m×mt = heff(m) −
(
m · heff(m)

)
m (18)

and

mt − αm×mt = heff(m) ×m. (19)

In this work, (18) is exploited for the construction of our numerical scheme. For the
notion of a weak solution, we use the so-called Gilbert formulation (19). A rigorous proof
for the equivalence of the above equations can be found e.g. in [14, Section 1.2].

As far as numerical analysis is concerned, our integrator is an extension of that of
Alouges, cf. [1], for the small-particle limit with exchange energy only, to the case under
consideration. Independently, the preceding works [2, 14] generalized the approach of
[1] to an effective field, which consists of exchange energy, strayfield energy, uniaxial
anisotropy, and exterior energy, where only the first term is dealt with implicitly, whereas
the remaining lower-order terms are treated explicitly. In this work, we extend this
approach to certain nonlinear contributions of the effective field. For this purpose, we
introduce a general energy contribution π(·, ·) that depends on the magnetization m and
may depend on an additional given quantity ζ ∈ L2(Y ) = L2([0, τend], Y ) for some Banach
space Y . For the multiscale model from the introduction, ζ will simply be the applied
external field f , whereas for the strayfield and anisotropy contribution, ζ will vanish.
The forthcoming analysis, however, even allows more general ζ . We now write heff in the
form

heff = Cexch∆m− π(m, ζ) + f , (20a)

where the exchange contribution and the exterior field f are explicitly given, while stray-
field contribution, material anisotropy, and the induced field from the macroscopic part
are concluded in the operator π(·, ·). Our analysis thus particularly includes the case

π
(
m(t), ζ(t)

)
:= ∇u1 + Cani Dφ

(
m(t)

)
+ ∇u2, (20b)
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but also holds true for general contributions π, which only act on the spatial variable, as
long as they fulfill certain properties, i.e. (31)–(32) below. In (20a)–(20b), the constants
are given by

Cexch :=
2A

µ0M2
s

resp. Cani :=
K

µ0M2
s

. (20c)

With this notation, our notion of a weak solution reads as follows:

Definition 3. A function m is called a weak solution to LLG in Ωτ , if

(i) m ∈ H1(Ωτ ) with |m| = 1 a.e. in Ωτ and m(0) = m0 in the sense of traces;
(ii) For all φ ∈ C∞(Ωτ ), we have

∫

Ωτ

mt · φ− α
∫

Ωτ

(m×mt) · φ =

− Cexch

∫

Ωτ

(∇m×m) · ∇φ−
∫

Ωτ

(
π(m, ζ) ×m

)
·φ+

∫

Ωτ

(f ×m) · φ
(21)

(iii) for almost all t ∈ (0, τ), we have

‖∇m(t)‖2
L2(Ω1) + ‖mτ ‖2

L2(Ωt) ≤ C, (22)

for some constant C > 0 which depends only on m0 and f .

The existence (and non-uniqueness) of weak solutions has first been shown in [3] for
the small particle limit, where π(·, ·) and f are omitted. We stress, however, that our
convergence proof is constructive in the sense that the analysis does not only show con-
vergence towards, but also existence of weak solutions without any assumptions on the
smoothness of the quantities involved.

Remark 4. Under certain assumptions on π(·, ·) and its upcoming discretization πh(·, ·),
the energy estimate (22) can be improved. We refer to Lemma 29 in the appendix.

3.4. Linear-implicit integrator. We discretize the magnetization m and its time de-
rivative v = mτ in space by lowest-order Courant finite elements

Vh := S1(T Ω1

h )3 =
{
nh : Ω1 → R

3 continuous : nh|T affine for all T ∈ T Ω1

h

}
, (23)

where T Ω1

h is a conforming triangulation of Ω1 into compact and non-degenerate tetrahe-
dra T ∈ T Ω1

h with spatial mesh-size h . Let Nh denote the set of nodes of T Ω1

h . For fixed
time τj , the discrete magnetization is sought in the convex set

m(τj) ≈ m
j
h ∈ Mh :=

{
nh ∈ Vh : |nh(z)| = 1 for all nodes z ∈ Nh

}
, (24)

whereas the discrete time derivative is sought in the discrete tangent space

v(τj) ≈ v
j
h ∈ K

m
j
h

:=
{
nh ∈ Vh : nh(z) ·mj

h(z) = 0 for all nodes z ∈ Nh

}
. (25)

For time discretization, we impose a uniform partition Ik with 0 = τ0 < τ1 < . . . < τN =
τend of the time interval [0, τend]. The time step is denoted by k = kj := τj+1 − τj for
j = 0, . . . , N − 1, i.e. τj = jk.

We assume that π is a spatial operator which maps the magnetization m(τ) ∈ L2(Ω1)

and ζ(τ) ∈ Y at given time t to some field
(
π(m, ζ)

)
(τ) = π

(
m(τ), ζ(τ)

)
∈ L2(Ω1).

For given h > 0, let πh be a numerical realization which maps m(τj) ≈ m
j
h ∈ Mh and

ζ(τj) ≈ ζj
h to some πh(mj

h, ζ
j
h) ∈ L2(Ω1). Finally, let f j

h be an approximation of f (τj)
specified below. Then, our numerical time integrator reads as follows:
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Algorithm 5. Input: Initial approximation m0
h ∈ Mh and Gilbert damping parameter

α > 0, parameter θ ∈ [0, 1]. Then, for i = 0, 1, 2, . . . , N − 1 do:

(i) Compute vi
h ∈ Kmi

h
such that for all ψh ∈ Kmi

h
holds

α
∫

Ω1

vi
h ·ψh + Cexch kθ

∫

Ω1

∇vi
h · ∇ψh +

∫

Ω1

(mi
h × vi

h) ·ψh

= −Cexch

∫

Ω1

∇mi
h · ∇ψh −

∫

Ω1

πh(mi
h, ζ

i
h) ·ψh +

∫

Ω1

f i
h ·ψh.

(26)

(ii) Define mi+1
h ∈ Mh by mi+1

h (z) =
mi

h(z) + kvi
h(z)

|mi
h(z) + kvi

h(z)| for all nodes z ∈ Nh.

Output: Discrete time derivatives vi
h and magnetizations mi+1

h , for i ≥ 0.

Lemma 6. Algorithm 5 is well-defined, and the definitions

mhk(τ, x) :=
τ − ik

k
mi+1

h (x) +
(i+ 1)k − τ

k
mi

h(x) (27)

m−
hk(τ, x) := mi

h(x), m+
hk(τ, x) := mi+1

h (x), (28)

for x ∈ Ω1 and τi ≤ τ < τi+1 provide discrete magnetizations mhk ∈ S1(Ik; Vh) ⊂
H1(Ωτ ) and m±

hk ∈ P0(Ik; Vh) ⊂ L2(H1) with ‖mhk‖L∞(Ωτ ) = ‖m±
hk‖L∞(Ωτ ) = 1, which

are continuous and piecewise affine in time (denoted by S1) resp. piecewise constant in
time (denoted by P0).

Proof. Problem (26) can be rewritten as: Find vi
h ∈ Kmi

h
, such that

a(vi
h,ψh) + bi(vi

h,ψh) = Li(ψh),

with

a(φh,ψh) = α
∫

Ω1

φh ·ψh + Cexchθk
∫

Ω1

∇φh · ∇ψh

bi(φh,ψh) =
∫

Ω1

(mi
h × φh) ·ψh

Li(ψh) = −Cexch

∫

Ω1

∇mi
h · ∇ψh −

∫

Ω1

πh(mi
h, ζ

i
h) ·ψh +

∫

Ω1

f i
h ·ψh.

For fixed k > 0, α > 0, and θ > 0, the bilinear form a(·, ·) is equivalent to the H1-scalar
product. Moreover, the bilinear form b(·, ·) is skew symmetric and hence b(φh,φh) = 0.
Altogether, a(·, ·)+b(·, ·) thus is a positive definite bilinear form on the finite dimensional
space Kmi

h
. Therefore, (26) admits a unique solution vi

h ∈ Kmi
h

in each step of the

iteration. By definition of the discrete tangent space of mi
h it holds |mi

h + kvi
h|2 =

1 + k2 |vi
h|2 ≥ 1 nodewise. Therefore, the normalization step in the above algorithm is

well-defined. By use of barycentric coordinates, an elementary calculation finally proves
the pointwise estimates |mhk(τ,x)|, |m±

hk(τ,x)| ≤ 1, see e.g. [1]. �

3.5. Main theorem. The following theorem is the main result of this work. It states
convergence of the numerical integrator towards a weak solution of the general LLG equa-
tion and hence, in particular, mathematical well-posedness of the problem. Afterwards,
we will show that the operator π and its discretization πh of the multiscale LLG equation
satisfy the general assumptions posed. In particular, the concrete problem is thus covered
by the general approach.
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Theorem 7. (a) Let θ ∈ (1/2, 1] and suppose that the spatial meshes T Ω1

h are uniformly
shape regular and satisfy the angle condition

∫

Ω1

∇ηi · ∇ηj ≤ 0 for all basis functions ηi, ηj ∈ S1(T Ω1

h ) with i 6= j. (29)

Define functions f−
hk ∈ P0

(
Ik;L2(Ω1)

)
and ζ−

hk ∈ P0(Ik;Y ) by f−
hk(τ) := f

j
h, ζ−

hk(τ) := ζj
h

for τj ≤ τ < τj+1. We suppose that

f−
hk ⇀ f weakly convergent in L2(Ωτ ) (30)

Moreover, we suppose that the spatial discretization πh(·, ·) of π(·, ·) satisfies

‖πh(n, y)‖L2(Ω1) ≤ C1 (31)

for all h, k > 0 and all n ∈ L2(Ω1) with |n| ≤ 1 almost everywhere in Ω1 and y ∈ Y with
‖y‖Y ≤ C2 for some y-independent constant C2 > 0. Here, C1 > 0 denotes a constant
that is independent of h, k,n, and y, but may depend on C2 and Ω1. We further assume
‖ζj

h‖Y ≤ C2 for all j = 1, . . . , N . Under these assumptions, we have strong L2(Ωτ )-
subconvergence of m−

hk towards some function m.

(b) In addition to the above, we assume m0
h ⇀m0 weakly in L2(Ω) and

πh(m−
hk, ζ

−
hk) ⇀ π(m, ζ) weakly subconvergent in L2(Ωτ ). (32)

Then, the computed FE solutions mhk are weakly subconvergent in H1(Ωτ ) to a weak
solution m ∈ H1(Ωτ ) of general LLG.

Remark 8. (i) Suppose that the applied exterior field is continuous in time, i.e. f ∈
C([0, τ ];L2(Ω1)). Let f j

h = f (τj) denote the evaluation of f at time τj. Then, assump-
tion (30) is satisfied since f−

hk → f strongly in L∞(L2).
(ii) Suppose that the applied exterior field is continuous in space-time, i.e. f ∈ C(Ωτ ).
Let f j

h denote the nodal interpolant of f(τj) ∈ C(Ω1) in space. Then, assumption (30) is
satisfied since f−

hk → f strongly in L∞(Ωτ ).
(iii) Suppose ζ is continuous in time, i.e. ζ ∈ C([0, τ ], Y ) and let ζj

h = ζ(τj) denote the

evaluation of ζ at time τj. Then, we have ζ−
hk → ζ strongly in L∞(Y ) and ‖ζj

h‖Y ≤
supt∈[0,τ ] ‖ζ(τ)‖Y =: C̃.

Remark 9. The angle condition (29) is a technical but crucial ingredient for the con-
vergence analysis. It is automatically fulfilled for tetrahedral meshes with dihedral angles
that are smaller than π/2. If the condition is satisfied by the initial mesh T0, it can be
ensured for the refined meshes as well, provided that, for instance, the mesh refinement
strategy from [28, Section 4.1] is used.

In the following, we aim to prove Theorem 7. For sake of readability, the proof is split
into three lemmata that roughly cover the following steps:

(i) Boundedness of the discrete quantities and energies.
(ii) Existence of weakly convergent subsequences.
(iii) Identification of the limits with weak solutions of LLG.

Lemma 10. The discrete quantities mj
h and vj

h fulfill the energy estimate

‖∇mj
h‖2
L2(Ω1) + C1k

j−1∑

i=0

‖vi
h‖2
L2(Ω1) + (θ − 1/2)k2

j−1∑

i=0

‖∇vi
h‖2
L2(Ω1) ≤ ‖∇m0

h‖2
L2(Ω1) + C2

(33)

10



for some h and k independent constant C1, C2 > 0 and for any j = 0, . . . , N .

Proof. In (26), we use the special test function ψh = vi
h ∈ Kmi

h
and get

α〈vi
h,v

i
h〉 +

〈
(mi

h × vi
h),vi

h)
〉

︸ ︷︷ ︸
=0

= −Cexch

〈
∇(mi

h + θkvi
h),∇vi

h

〉
+ 〈f i

h,v
i
h〉 −

〈
πh(mi

h, ζ
i
h),vi

h

〉

whence

α‖vi
h‖2
L2(Ω1) + Cexchθ k‖∇vi

h‖2
L2(Ω1) = −Cexch〈∇mi

h,∇vi
h〉 + 〈f i

h,v
i
h〉 −

〈
πh(mi

h, ζ
i
h),vi

h

〉
.

Exploiting the angle condition (29), we see that ‖∇mi+1
h ‖2

L2(Ω1)
≤ ‖∇(mi

h + kvi
h)‖2

L2(Ω1)
,

cf. [1, 2, 14] and thus get

1

2
‖∇mi+1

h ‖2
L2(Ω1) ≤ 1

2
‖∇mi

h‖2
L2(Ω1) + k〈∇mi

h,∇vi
h〉 +

k2

2
‖∇vi

h‖2
L2(Ω1)

≤ 1

2
‖∇mi

h‖2
L2(Ω1) − (θ − 1/2)k2‖∇vi

h‖2
L2(Ω1)

− α k

Cexch

‖vi
h‖2
L2(Ω1) +

k

Cexch

〈f i
h,v

i
h〉 − k

Cexch

〈
πh(mi

h, ζ
i
h),vi

h

〉
.

(34)

Next, we sum up over i = 0, . . . , j − 1 to see

1

2
‖∇mj

h‖2
L2(Ω1) ≤ 1

2
‖∇m0

h‖2
L2(Ω1) − (θ − 1/2)k2

j−1∑

i=0

‖∇vi
h‖2
L2(Ω1) − αk

Cexch

j−1∑

i=0

‖vi
h‖2
L2(Ω1)

+
k

Cexch

j−1∑

i=0

(
〈f i

h,v
i
h〉 −

〈
πh(mi

h, ζ
i
h),vi

h

〉)
.

Using the inequalities of Young and Hölder, this can be further estimated by

1

2
‖∇mj

h‖2
L2(Ω1) +

k

Cexch

(α− ε)
j−1∑

i=0

‖vi
h‖2
L2(Ω1)

≤ 1

2
‖∇m0

h‖2
L2(Ω1) − (θ − 1/2)k2

j−1∑

i=0

‖∇vi
h‖2
L2(Ω1)

+
k

4Cexchε

j−1∑

i=0

(
‖f i

h‖2
L2(Ω1) + ‖πh(mi

h, ζ
i
h)‖2

L2(Ω1)

)

≤ 1

2
‖∇m0

h‖2
L2(Ω1) − (θ − 1/2)k2

j−1∑

i=0

‖∇vi
h‖2
L2(Ω1) + C,

for any ε > 0. Here, we have used the boundedness of ‖πh(mi
h, ζ

i
h)‖2

L2(Ω1)
, as well as the

boundedness of ‖f−
hk‖2

L2(Ω1)
which holds due to the convergence in (30). Choosing ε < α

concludes the proof. �

Using this energy estimate, we immediately conclude the existence of weakly conver-
gent subsequences. So far, we have only used boundedness of π resp. πh, i.e. (31). The
upcoming statement thus holds independently of (32) and concludes the proof of Theo-
rem 7 (a).

Lemma 11. In addition and analogously to (27)–(28), we define a function v−
hk by

v−
hk(τ,x) := v

j
h(x) for τ ∈ [τj, τj+1). (35)

11



Then, there exist functions m ∈ H1(Ωτ ) and v ∈ L2(Ωτ ) such that

mhk,m
±
hk ⇀m in L2(H1(Ω1)), mhk ⇀m in H1(Ωτ )

mhk,m
±
hk → m in L2(Ωτ )

v−
hk ⇀ v in L2(Ωτ )

(36)

as (h, k) → (0, 0) independently of each other. Here, the convergence is to be understood
for one particular subsequence that is successively constructed.

Proof. From the boundedness of the discrete quantities, i.e. Lemma 10 for θ ∈ [1/2, 1],
we immediately get weakly convergent subsequences of all of those sequences. It thus
only remains to show, that the limits coincide, i.e.

limm+
hk = limm−

hk = limmhk = m in L2(Ωτ ),L2(H1),

where m := limmhk in H1(Ωτ ). By definition, mhk converges to m in L2(Ωτ ) as well
as L2(H1). Due to the Rellich compactness theorem, the convergence in L2(Ωτ ) is even
strong. As for the piecewise constant approximations, we rewrite mhk for τ ∈ [τj , τj+1)
as

mhk = m
j
h +

τ − τj

k
(mj+1

h −mj
h)

to see

‖mhk −m−
hk‖2

L2(Ωτ ) =
N−1∑

j=0

∫ τj+1

τj

‖mj
h +

τ − τj

k
(mj+1

h −mj
h) −mj

h‖2
L2(Ω1)

≤
N−1∑

j=0

∫ τj+1

τj

k2‖m
j+1
h −mj

h

k
‖2
L2(Ω1)

.
N−1∑

j=0

∫ τj+1

τj

k2‖vj
h‖2
L2(Ω1)

= k3
N−1∑

j=0

‖vj
h‖2
L2(Ω1) → 0.

Here, we have used
∣∣∣∣∣
m

j+1
h −mj

h

k

∣∣∣∣∣ ≤ |vj
h|

which follows from geometric considerations, see [1, 2], and [14]. Analogously, we get

‖mhk −m+
hk‖2

L2(Ωτ ) =
N−1∑

j=0

∫ τj+1

τj

‖mj
h +

τ − τj

k
(mj+1

h −mj
h) −mj+1

h ‖2
L2(Ω1)

≤
N−1∑

j=0

∫ τj+1

τj

4k2‖m
j+1
h −mj

h

k
‖2
L2(Ω1)

. k3
N−1∑

j=0

‖vj
h‖2
L2(Ω1) → 0.

This proves the result for L2(Ωτ ). From the uniqueness of weak limits and the continuous
inclusion L2(H1) ⊆ L2(Ωτ ), we thus even conclude the result for L2(H1).

�
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The remainder of this section is dedicated to proving the second part of our main result.
We start by identifying the limit function v.

Lemma 12. It holds v = mτ almost everywhere in Ωτ .

Proof. The proof is technical but straightforward and we therefore only sketch it. Using
the fact that

∣∣∣∣∣
m

j+1
h −mj

h

k
− vj

h

∣∣∣∣∣ ≤ 1

2
k|vj

h|2, (37)

we proceed as in [1, 14] to see that

‖∂τmhk − vhk‖L1(Ωτ ) . k‖vhk‖2
L2(Ωτ ).

Exploiting weak semi-continuity of ‖ · ‖L1(Ωτ ), this yields

‖mτ − v‖L1(Ωτ ) ≤ lim inf ‖∂τmhk − vhk‖L1(Ωτ ) = 0

and thus the desired result. �

With these results, we can finally prove our main theorem.

Proof of Theorem 7 (b). Let φ ∈ C∞(Ωτ ) be arbitrary. We define test functions by

φh(t, ·) :=
(
Ih(m−

hk × φ)
)
(t, ·). From (26) we thus get

α
∫ τend

0
〈v−

hk,φh〉 + Cexchkθ
∫ τend

0
〈∇v−

hk,∇φh〉 +
∫ τend

0

〈
(m−

hk × v−
hk),φh

〉

= −Cexch

∫ τend

0
〈∇m−

hk,∇φh〉 −
∫ τend

0

〈
πh(m−

hk, ζ
−
hk),φh

〉
+

∫ t

0
〈f−

hk,φh〉.

Exploiting the shape of φh and using the approximation properties of the nodal interpo-
lation operator Ih, we get

∫ T

0

〈
(αv−

hk +m−
hk × v−

hk),(m−
hk × φ)

〉
+ Cexchkθ

∫ τend

0

〈
∇v−

hk,∇(m−
hk × φ)

〉

+ Cexch

∫ τend

0

〈
∇m−

hk,∇(m−
hk × φ)

〉

+
∫ τend

0

〈
πh(m−

hk, ζ
−
hk), (m−

hk × φ)
〉

−
∫ τend

0

〈
f−

hk, (m
−
hk × φ)

〉

= O(h).

Next, we proceed as in [1, 14] to see that
∫ τend

0

〈
(αv−

hk +m−
hk × v−

hk), (m−
hk × φ)

〉
−→

∫ τend

0

〈
(αmt +m×mt), (m× φ)

〉
,

k θ
∫ τend

0

〈
∇v−

hk,∇(m−
hk × φ)

〉
−→ 0, and (38)

∫ τend

0

〈
∇m−

hk,∇(m−
hk × φ)

〉
−→

∫ τend

0

〈
∇m,∇(m× φ)

〉
.

Here, we have used the boundedness of
√
k‖∇v−

hk‖L2(Ωτ ), which follows from (33) for

j = N , and thus θ ∈ (1/2, 1]. From the convergence (m−
hk × φ) → (m× φ) strongly in

13



L2(Ωτ ) and the assumptions (30) and (32) on f−
hk and πh(m−

hk, ζ
−
hk), we conclude

∫ τend

0

〈
πh(m−

hk, ζ
−
hk), (m−

hk × φ)
〉

−→
∫ τend

0

〈
π(m, ζ), (m× φ)

〉
, and

∫ τend

0

〈
f−

hk, (m
−
hk × φ)

〉
−→

∫ τend

0

〈
f , (m× φ)

〉
.

Altogether we have now shown

α
∫ τend

0

〈
mt, (m× φ)

〉
+

∫ τend

0

〈
(m×mt), (m× φ)

〉
= −Cexch

∫ τend

0

〈
∇m,∇(m× φ)

〉

−
∫ τend

0

〈
π(m, ζ), (m× φ)

〉

+
∫ τend

0

〈
f , (m× φ)

〉
.

Using the identities

(m×mt) · (m× φ) = mt · φ,
∇m · ∇(m× φ) = ∇m · (m× ∇φ),

as well as the property a · (b× c) = (a× b) · c of the cross product, we conclude (21). It
remains to show the energy estimate (22) and the modulus constraint of m. From the
discrete energy estimate (33), we get for any t′ ∈ [0, τend] with t′ ∈ [τj, τj+1)

‖∇m+
hk(t′)‖2

L2(Ω1) + C1‖v−
hk‖2

L2(Ωt′ ) = ‖∇m+
hk(t′)‖2

L2(Ω1) + C1

∫ t′

0
‖v−

hk(t)‖2
L2(Ω1)

≤ ‖∇m+
hk(t′)‖2

L2(Ω1) + C1

∫ τj+1

0
‖v−

hk(t)‖2
L2(Ω1)

= ‖∇m+
hk(t′)‖2

L2(Ω1) + C1k
j∑

i=0

‖vi
h‖2

L2(Ω1)

≤ ‖∇m0
h‖2

L2(Ω1) + C2.

Integration in time thus yields for any Borel set T ∈ [0, τend]
∫

T

‖∇m+
hk(t′)‖2

L2(Ω1) + C1

∫

T

‖v−
hk‖2

L2(Ωt′ ) ≤
∫

T

‖∇m0
h‖2

L2(Ω1) +
∫

T

C2.

Hence, weak semi-continuity of
∫
T

‖ · ‖2
L2(Ω1)

leads to
∫

T

‖∇m‖2
L2(Ω1) + C1

∫

T

‖mτ ‖2
L2(Ωt′ ) ≤

∫

T

‖∇m0‖2
L2(Ω1) +

∫

T

C2.

From

‖|m| − 1‖L2(Ωτ ) ≤ ‖|m| − |m−
hk|‖L2(Ωτ ) + ‖|m−

hk| − 1‖L2(Ωτ )

and

‖|m−
hk(t, ·)| − 1‖L2(Ω1) ≤ hmax

τj
‖∇mj

h‖L2(Ω1),

we finally deduce |m| = 1 almost everywhere in Ωτ . The equality m(0, ·) = m0 in the
trace sense follows from weak H1(Ωτ ) convergence of mhk and thus weak convergence
of the traces. Using the weak convergence m0

h ⇀ m0 identifies the sought limit. This
concludes the proof. �

Remark 13. Note that in case of the Crank-Nicholson scheme (θ = 1/2) one needs an
additional bound for ∇v−

hk in (38). As in [1, 2], [14] this can be done by using an inverse
estimate. In this case, however, we end up with a (weak) coupling of h and k but can still
proof convergence as long as k/h tends to 0.
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4. Effective Field Contributions for Multiscale LLG Equation

In this section, we aim to give examples for contributions π and corresponding discretiza-
tions πh which guarantee the assumptions (31)–(32) of our main result in Theorem 7. In
particular, we will see that the contributions of our multiscale LLG model satisfy these
assumptions.

4.1. Function spaces. Let T Ωj

h denote a conforming triangulation of Ωj (j = 1, 2) into

compact and non-degenerate tetrahedra T ∈ T Ωj

h . Let H1
∗ (Ωj) be the Hilbert space of

all functions v ∈ H1(Ωj) satisfying
∫

Ωj
v dx = 0 and let H1

0 (Ωj) be the Hilbert space

of all functions v ∈ H1(Ωj) with vint = 0 on Γj, where Γj = ∂Ωj denotes the cor-
responding boundary. By H(div ,Ωj) we denote those functions on Ωj whose diver-

gence is in L2(Ωj). We define the discrete function spaces S1
∗ (T Ωj

h ) ⊆ H1
∗ (Ωj) resp.

S1
0 (T Ωj

h ) ⊆ H1
0 (Ωj) by S1

∗ (T Ωj

h ) = H1
∗ (Ωj) ∩ S1(T Ωj

h ) resp. S1
0 (T Ωj

h ) = H1
0 (Ωj) ∩ S1(T Ωj

h ),

where, analogously to (23), S1(T Ωj

h ) denotes the space of piecewise affine and glob-

ally continuous functions on T Ωj

h . The triangulation T Ωj

h induces a conforming trian-

gulation of the boundary EΓj

h := T Ωj

h |Γj
. Additionally, we define the discrete space

P0(EΓj

h ) =
{
ψ : ψ|E constant for all E ∈ EΓj

h

}
of all piecewise constant functions on

the boundary.

4.2. Pointwise operators and anisotropy energy contribution. With B :=
{
x ∈

R
3 : |x| ≤ 1

}
the compact unit ball in R

3, let φ : B → R be a Lipschitz continuous

anisotropy density. Possible examples include the uniaxial density φ(x) = −1
2

(x · e)2

with a given easy axis e ∈ S :=
{
x ∈ R

3 : |x| = 1
}

as well as the cubic density

φ(x) = K1(x
2
1x

2
2 + x2

2x
2
3) + K2x

2
1x

2
2x

2
3 with certain constants K1, K2 ≥ 0. According

to Rademacher’s theorem, φ is differentiable pointwise almost everywhere with Dφ ∈
L∞(B). Therefore, the anisotropy contribution to the effective field reads

(
π(n, ζ)

)
(x) =

(
π(n)

)
(x) = Dφ

(
n(x)

)
for n ∈ L2(Ω1) and almost all x ∈ Ω1, (39)

and πh(·) = π(·). Note that in this case, we neglected a possible dependence on ζ , i.e.
formally Y = {0} and ζ−

hk denotes the constant zero sequence.

Proposition 14. Suppose that Φ ∈ L∞(B), e.g. Φ(x) = Dφ(x), and πh(n) := π(n) :=
Φ ◦ n. Then, the assumptions (31)–(32) of Theorem 7 are satisfied.

Proof. Clearly, (31) holds with C1 = ‖Φ‖L∞(Ω1). Part (a) of Theorem 7 thus predicts

strong subconvergence m−
hk → m in L2(Ωτ ). Now, choose sequences hℓ → 0, kℓ → 0

such that mℓ := m−
hℓkℓ

converges strongly in L2(Ωτ ) to m. By extracting a subsequence,
we may in particular assume that mℓ converges to m even pointwise almost everywhere
in Ωτ . This implies π(mℓ) → π(m) pointwise almost everywhere in Ωτ . In particular,
|mℓ| ≤ 1 also implies |m| ≤ 1 almost everywhere. Moreover and because of (31),
|π(m)−π(mℓ)| ≤ 2C1 is uniformly bounded inL∞(Ωτ ). Finally, the Lebesgue dominated
convergence theorem thus applies and proves even strong convergence of π(mℓ) to π(m)
in L2(Ωτ ). �

4.3. Uniformly monotone operators. We consider the frame of the Browder-Minty
theorem, see [29, Section 26.2]: Let X be a separable Hilbert space, A : X → X∗ be
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a uniformly monotone, coercive, and hemicontinuous (nonlinear) operator, and b ∈ X∗.
Under these assumptions, the Browder-Minty theorem states that the operator equation

Aw = b (40)

has a unique solution w ∈ X. Arguing as in the original proof, one has the following: For
h > 0, let Xh ⊆ X be finite dimensional subspaces of X with Xh ⊆ Xh′ for h > h′ and⋃

h>0 Xh = X. Let bh ∈ X∗
h. Then, the Galerkin formulation

〈Awh, vh〉X∗

h
×Xh

= 〈bh, vh〉X∗

h
×Xh

for all vh ∈ Xh (41)

admits a unique solution wh ∈ Xh. Provided ‖bh‖X∗

h
≤ M < ∞ for all h > 0, the

sequence of Galerkin solutions is bounded, i.e. ‖wh‖Xh
≤ C < ∞ for all h > 0, and

the h-independent constant C > 0 depends only on M and the coercivity of A. In
particular, the sequence (wh) is weakly subconvergent in X towards some limit w ∈ X.
If limh→0 ‖b − bh‖X∗

h
= 0, this limit solves the operator equation (40). Finally, uniform

monotonicity implies that there even holds strong convergence limh→0 ‖w −wh‖X = 0 of
the entire sequence.

This framework is now used in the following lemma which guarantees the assump-
tions (31)–(32) of Theorem 7 for certain energy contributions:

Lemma 15. Let Y be a Banach space and let S, Sh ∈ L
(
X,L2(Ω1)

)
, and T, Th ∈

L
(
L2(Ω1) × Y,X∗

)
with

Shx ⇀ Sx weakly in L2(Ω1) for all x ∈ X, (42)

Th(n, y) → T (n, y) strongly in X∗ for all n ∈ L2(Ω1), y ∈ Y , (43)

and π(·) := SA−1T : L2(Ω1) × Y → L2(Ω1). For h > 0, n ∈ L2(Ω1), and y ∈ Y , define
the approximate operator πh(n, y) := Shuh, where uh is the unique Galerkin solution of

〈Auh, vh〉X∗

h
×Xh

= 〈Th(n, y), vh〉X∗

h
×Xh

for all vh ∈ Xh. (44)

Under the foregoing assumptions, it holds that

‖πh(n, y)‖L2(Ω1) ≤ C4 (45)

for all n ∈ L2(Ω1) with |n| ≤ 1 almost everywhere and all y ∈ Y with ‖y‖Y ≤ C3 for
some constant C3 > 0, and for all h > 0. The constant C4 > 0 does not depend on y
and n, but only on Ω and C3. Moreover, strong subconvergence (m−

hk, ζ
−
hk) → (m, ζ) in

L2
(
[0, τ ]; (L2(Ω1) × Y )

)
= L2(L2(Ω1) × Y ) for some sequence ζ−

hk ∈ L∞(Y ) implies weak

subconvergence πh(m−
hk, ζ

−
hk) ⇀ π(m, ζ) in L2(Ωτ ) as (h, k) → (0, 0).

Proof. The Banach-Steinhaus theorem implies uniform boundedness CS := suph>0 ‖Sh‖ <
∞ and CT := suph>0 ‖Th‖ < ∞ of the respective operator norms. For fixed n ∈ L2(Ω1)
with |n| ≤ 1 almost everywhere, y ∈ Y with ‖y‖Y ≤ C3, and bh := Th(n, y), this implies

‖bh‖L2(Ω1) ≤ CT ‖(n, y)‖L2(Ω1)×Y ≤ CT

(
|Ω1| + C2

3

)1/2
=: M < ∞.

Thus, we infer ‖uh‖X ≤ C < ∞, where C > 0 does neither depend on h nor on (n, y),
but only on M . Consequently, this proves (45) with C4 = CCS.

Next, we aim to show that πh(nh, yh) ⇀ πh(n, y) weakly in L2(Ω1) as h → 0 provided
that (nh, yh) → (n, y) strongly in L2(Ω1) × Y . By assumption (43) on Th, we have
Th(n, y) → T (n, y) strongly in X∗ as h → 0. Together with uniform boundedness of

Th, this implies Th(nh, yh) = Th(n, y) − Th

(
(n − nh, y − yh)

)
→ T (n, y) strongly in X∗

as h → 0. Therefore, the Browder-Minty theorem for uniformly monotone operators
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guarantees uh → u strongly in X, where u = A−1T (n, y) and uh ∈ Xh solves (44)
with (n, y) replaced by (nh, yh). The convergence assumption (42) and the uniform
boundedness of Sh thus show πh(nh, yh) = Shuh = Shu − Sh(u − uh) ⇀ Su = π(n, y)
weakly in L2(Ω1) as h → 0.

Finally, we prove weak subconvergence πh(m−
hk, ζ

−
hk) ⇀ π(m, ζ) in L2(Ωτ ) as (h, k) →

(0, 0). To that end, we choose sequences hℓ → 0, kℓ → 0 such that (mℓ, ζℓ) :=

(m−
hℓkℓ

, ζ−
hℓkℓ

) converges strongly in L2
(
L2(Ω1) × Y

)
to (m, ζ). By extracting a fur-

ther subsequence, we may assume that mℓ(t) → m(t) strongly in L2(Ω1) as well as
ζℓ(t) → ζ(t) in Y , for almost all times t. Define πℓ := πhℓ

and let φ ∈ L2(Ωτ ). Then,
(
πℓ

(
(mℓ, ζℓ)

)
− π

(
(m, ζ)

)
,φ

)
=

∫ τend

0
〈πℓ

(
(mℓ(t), ζℓ(t))

)
− π

(
(m(t), ζ(t)

)
,φ(t)〉 dt.

From weak convergence πℓ

(
(mℓ(t), ζℓ(t))

)
⇀ π

(
(m(t), ζ(t))

)
as ℓ → ∞ for almost all

times t, we see pointwise convergence of the integrand to zero. According to (45) and the
assumption ζ−

hk ∈ L∞(Y ), the Lebesgue dominated convergence theorem thus proves
(
πℓ

(
(mℓ, ζℓ)

)
− π

(
(m, ζ)

)
,φ

)
→ 0 as ℓ → ∞.

This concludes the proof. �

Remark 16. (i) Similar arguments as in the proof of Lemma 15 reveal that strong con-
vergence Shx → Sx in (42) also results in strong convergence πh(m−

hk, ζ
−
hk) → π(m, ζ)

in L2(Ωτ ) as h, k → 0.
(ii) The abstract framework applies, in particular, to linear contributions πh(·) = Sh of
the effective field heff, where X = L2(Ω1), Y = {0}, and the operators A = Ah as well as
T = Th are just the identities. In this case, ζ−

hk = 0 for all (h, k) > 0. In particular, we
may therefore write πh(m−

hk, ζ
−
hk) = πh(m−

hk).
(iii) For the multiscale approach, we use Y = H(div ; Ω2), ζ−

hk = f−
hk, and ζ = f , respec-

tively.

4.4. Integral operators and mapping properties. The following applications need
two integral operators for either Γi, namely the double-layer potential K̃i and the simple-
layer potential Ṽi, which formally read

(K̃iv)(x) =
1

4π

∫

Γi

(x− y) · ν(y)

|x− y|3 v(y) dΓ(y), (46)

(Ṽiφ)(x) =
1

4π

∫

Γi

1

|x− y|φ(y) dΓ(y), (47)

for all x ∈ R
3\Γi. These operators may be extended to bounded, linear operators K̃i :

H1/2(Γi) → H1(R3\Γi) and Ṽi : H−1/2(Γi) → H1(R3), see e.g. [18, 21, 24]. There holds

∆K̃iv = ∆Ṽiφ = 0 on R
3\Γi and K̃iv, Ṽiφ ∈ C∞(R3\Γi). (48)

Via restriction to the boundary Γi, one obtains

(K̃iv)int = (Ki − 1/2)v and (Ṽiφ)int = Viφ, (49)

where the operators Ki : H1/2(Γi) → H1/2(Γi) and Vi : H−1/2(Γi) → H1/2(Γi) coincide

formally with K̃i and Ṽi, but are evaluated on the boundary Γi. There hold the following
jump properties across the boundary Γi, cf. e.g. [24, Theorem 3.3.1]:

(K̃iv)ext − (K̃iv)int = v, ∂ext
ν K̃iv − ∂int

ν K̃iv = 0, (50)

(Ṽiφ)ext − (Ṽiφ)int = 0, ∂ext
ν Ṽiφ− ∂int

ν Ṽiφ = −φ. (51)
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4.5. Application: Hybrid FEM-BEM approach for strayfield contribution. In
the following, we present the approach of Fredkin and Koehler, see [10], for the
approximate computation of the strayfield contribution and show that it satisfies the
desired properties to apply Lemma 15.

4.5.1. Continuous formulation of Fredkin-Koehler approach. Given any m ∈ L2(Ω1), the
non-dimensional form of (9) reads

∆u1 = ∇ ·m in Ω1,
∆u1 = 0 in R

3\Ω1,
uext

1 − uint
1 = 0 on Γ1,

∂νu
ext
1 − ∂νu

int
1 = −m · ν on Γ1,

u1(x) = O(1/|x|) as |x| → ∞.

(52)

In a first step, let u11 ∈ H1
∗ (Ω1) be the unique solution of the Neumann problem

∆u11 = ∇ ·m in Ω1,
∂νu11 = m · ν on Γ1.

(53)

Next, consider u11 extended by zero to the entire space R
3\Ω1. The remainder u12 =

u1 − u11 satisfies

∆u12 = 0 in Ω1,
∆u12 = 0 in R

3\Ω1,
uext

12 − uint
12 = uint

11 on Γ1,
∂νu

ext
12 − ∂νu

int
12 = 0 on Γ1,

u12(x) = O(1/|x|) as |x| → ∞.

(54)

The unique solution u12 ∈ H1(R3\Γ1) of the transmission problem (54) is the double-layer
potential

u12(x) = (K̃1u
int
11 )(x). (55)

Due to harmonicity of K̃1u
int
11 in Ω1, see (48) and the definition of K1 in (49), u12 is

characterized by the inhomogeneous Dirichlet problem

∆u12 = 0 in Ω1,
uint

12 = (K1 − 1/2)uint
11 on Γ1,

(56)

and we have u1 = u11 + u12 and hence ∇u1 = ∇u11 + ∇u12 in Ω1.

4.5.2. Discrete formulation and convergence analysis. To discretize the equations (53)
and (56), we use lowest-order Courant finite elements: First, let u11h ∈ S1

∗ (T Ω1

h ) be the
unique FE solution of

∫

Ω1

∇u11h · ∇vh dx =
∫

Ω1

m · ∇vh dx for all vh ∈ S1
∗ (T Ω1

h ). (57)

Since an FE solution u12h ∈ S1(T Ω1

h ) of (56) cannot satisfy continuous Dirichlet data
(K1 −1/2)uint

11h, we need to discretize the Dirichlet data. To that end, let IΩ1

h : H1(Ω1) →
S1(T Ω1

h ) be the Scott-Zhang projection from [26]. Since IΩ1

h is H1-stable and preserves
discrete boundary data, it induces a stable projection IΓ1

h : H1/2(Γ1) → S1(T Ω1

h |Γ1
) with

(IΩ1

h v)int = IΓ1

h (vint) for all v ∈ H1(Ω1). Then, we let u12h ∈ S1(T Ω1

h ) with uint
12h =

IΓ1

h (K1 − 1/2)uint
11h be the unique solution of the inhomogeneous Dirichlet problem

∫

Ω1

∇u12h · ∇vh dx = 0 for all vh ∈ S1
0 (T Ω1

h ). (58)
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Input: m

Input: f

Solve (53) to obtain
u11 on Ω1

Solve (59) to obtain
u1 on Ω2

Solve (62) to obtain
u on Ω2

Solve (70) to obtain
u2 on Ω1

Solve (60) to obtain
uapp on Ω2

Output: π(m, f) = ∇u2 on Ω2

Figure 3. Overview on the computation of π(m,f) = ∇u2 on Ω1.

The next statement proves that indeed the strayfield contribution is covered by our
approach.

Proposition 17. The operator πh(m) = Sh(m) := ∇u11h + ∇u12h defined via (57)–
(58) satisfies πh ∈ L(L2(Ω1);L2(Ω1)), and convergence (42) towards π(m) = S(m) :=
∇u1 holds even strongly in L2(Ω1). In particular, Lemma 15 applies and guarantees the
assumptions (31)–(32) of Theorem 7.

Proof. First, note that the FE solution u11h of (57) is a Galerkin approximation of (53).
Therefore, stability proves ‖∇u11h‖L2(Ω1) ≤ ‖∇u11‖L2(Ω1) ≤ ‖m‖L2(Ω1) as well as ‖∇(u11−
u11h)‖L2(Ω1) → 0 as h → 0 by density arguments.

Second, we exploit the Céa-type estimate for inhomogeneous Dirichlet problems which
states

‖∇(u12 − u12h)‖L2(Ω1) ≤ min
wh∈S1(T

Ω1
h

)

wh|Γ=I
Γ1
h

(K1−1/2)uint
11h

‖∇(u12 − wh)‖L2(Ω1).

We now plug in u12 = K̃1(uint
11 ) and wh = IΩ1

h K̃1(u
int
11h) to see

‖∇(u12 − u12h)‖L2(Ω1) ≤ ‖K̃1(u
int
11 ) − IΩ1

h K̃1(u
int
11h)‖H1(Ω1)

≤ ‖(1 − IΩ1

h )K̃1(u
int
11 )‖H1(Ω1) + ‖IΩ1

h K̃1(u
int
11 − uint

11h)‖H1(Ω1).

From the projection property and stability of IΩ1

h we get

‖(1 − IΩ1

h )K̃1(u
int
11 )‖H1(Ω1) . min

wh∈S1(T
Ω1

h
)

‖K̃1(u
int
11 ) − wh‖H1(Ω1)

h→0−−→ 0.

For the other term, we use continuity of IΩ1

h and K̃1 as well as Poincaré’s estimate to
conclude

‖IΩ1

h K̃1(u
int
11 − uint

11h)‖H1(Ω1) . ‖u11 − u11h‖H1(Ω1) . ‖∇(u11 − u11h)‖L2(Ω1)
h→0−−→ 0

with the above estimate. Since this analysis was particularly independent of m, the
triangle inequality finally yields

‖Shm− Sm‖L2(Ω1) ≤ ‖∇(u11 − u11h)‖L2(Ω1) + ‖∇(u12 − u12h)‖L2(Ω1) → 0

for all m ∈ X = L2(Ω1). The first part of Lemma 15 thus yields the boundedness
‖πh(n)‖L2(Ω1) for all n ∈ L2(Ω1) with |n| ≤ 1 almost everywhere. Hence, from part

(a) of Theorem 7 we get strong L2(Ωτ ) subconvergence of the operands. Application of
Lemma 15 finally concludes the proof. �
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4.6. Application: Multiscale approach for total magnetic field. Our aim is to
apply Proposition 15 to the model problem posed in Section 1, i.e. the computation of
π(m,f ) = ∇u2 on Ω1. In the following we consider the subproblems needed for the
computation of ∇u2 as well as their discretizations. An overview illustration is given in
Figure 3.

4.6.1. Continuous formulation. The computation of the total potential u, and therefore
of u2, relies on the computation of the auxiliary potential uapp and the strayfield potential
on Ω2. For a magnetization m ∈ L2(Ω1), we compute u1 ∈ H1(Ω1) via Section 4.5.1 as

solution of the strayfield operator on the microscopic part. Recall u1 = u12 = K̃1u
int
11 is

defined in Section 4.5.1 on R
3\Ω1 with u11 ∈ H1

∗ (Ω1) being the solution of (53). According
to (48), u1 on Ω2 solves the inhomogeneous Dirichlet problem

−∆u1 = 0 in Ω2,

uint
1 =

(
K̃1u

int
11

)int
on Γ2.

(59)

For the auxiliary potential uapp, the non-dimensional version of (11) reads

∆uapp = 0 in Ω2,
∂νu

int
app = −f · ν on Γ2,

(60)

with ∇uapp = −f in Ω2. With respect to the abstract notation of Lemma 15, we introduce
the continuous linear operator

T̃ : L2(Ω1) ×H(div; Ω2) → H1/2(Γ2) ×H−1/2(Γ2),

T̃ (m,f ) = (uint
1 + uint

app,f · ν − ∂νu
int
1 ).

(61)

The space Y from Lemma 15 is thus given by H(div; Ω2).
In the next step, we then compute the total magnetostatic potential u = u1 +u2 +uapp

related to the macroscopic domain Ω2. With χ̃(|∇u|) = χ
(
Ms|f − ∇u1 − ∇u2|

)
, the

non-dimensional form of (12) is equivalently stated by means of the Johnson-Nédélec
coupling from [19],

∫

Ω2

(1 + χ̃(|∇u|))∇u · ∇v −
∫

Γ2

φv = −
∫

Γ2

(f · ν − ∂νu
ext
1 ) v,

V2φ− (K2 − 1/2)uint = −(K2 − 1/2)(uint
1 + uint

app),
(62)

for all v ∈ H1(Ω2), see [4] for the nonlinear case and [19, 25] for the linear one. In the
second equation, V2 : H−1/2(Γ2) → H1/2(Γ2) and K2 : H1/2(Γ2) → H1/2(Γ2) denote the
simple-layer potential and the double-layer potential with respect to Γ2. The coupling
formulation provides the total potential u on Ω2 as well as the exterior normal derivative
φ = ∂νu

ext
2 of u2 on Γ2.

Recall that the dual space H−1/2(Γ2) of the trace space H1/2(Γ2) is continuously em-

bedded into the dual space H̃−1(Ω2) of H1(Ω2) by means of the trace operator which

maps H1(Ω2) onto H1/2(Γ2). Therefore, the operator T̃ from (61) can also be consid-

ered as an operator to H1/2(Γ2) × H̃−1(Ω2). With respect to the abstract notation of
Lemma 15, the coupling formulation (62) gives rise to the nonlinear operator

Ã : H−1/2(Γ2) ×H1(Ω2) → H1/2(Γ2) × H̃−1(Ω2)

Ã(φ, u) = (uint
1 + uint

app,f · ν − ∂νu
ext
1 ).

(63)
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Solvability of the Johnson-Nédélec coupling equations (62)–(63) hinges strongly on the
material law χ. The following lemma characterizes sufficient conditions such that the
nonlinear part of (62) is strongly monotone and Lipschitz continuous.

Lemma 18. Let χ̃ : R≥0 → R be a continuous function such that the function

g : R≥0 → R, g(t) = t+ χ̃(t)t

is differentiable and fulfills

g′(t) ∈ [γ, L] for all t ≥ 0 (64)

with constants L ≥ γ > 0. Then, the (nonlinear) operator

A : L2(Ω2) → L2(Ω2), Aw = (1 + χ̃(|w|))w (65)

is Lipschitz continuous and strongly monotone, i.e. there holds

‖Au − Av‖L2(Ω2) ≤ L‖u − v‖L2(Ω2)

〈Au − Av ; u − v〉Ω2
≥ γ‖u − v‖2

L2(Ω2)

for all u,v ∈ L2(Ω2). �

We stress that the operator Ã is not uniformly monotone as e.g. the left-hand side
of (62) is zero for u = 1, φ = 0. Therefore, the Browder-Minty theorem is not applicable
directly. In the following, we introduce an equivalent formulation of equation (62)–(63),
which turns out to fit into the setting of uniformly monotone operators. To that end, we
need the linear operator L : X∗ → X∗ defined via

Lx∗ = x∗ + 〈x∗, (1, 0)〉X∗×X〈Ã(·, ·), (1, 0)〉X∗×X for all x∗ ∈ X∗, (66)

where 1 ∈ P0(EΓ2

h ) denotes the constant function. As observed in [4, Section 4], the
Johnson-Nédélec coupling equations can then be equivalently rewritten as follows:

Lemma 19. The operator L : X∗ → X∗ from (66) is well-defined, linear, and continuous.
Moreover, the pair (φ, u) ∈ X solves the operator formulation

Ã(φ, u) = T̃ (m,f) (67)

of (62) if and only if

A(φ, u) = T (m,f ), (68)

where A = LÃ and T = LT̃ . In particular, Ã−1T̃ = A−1T , and the operator T is linear,
well-defined, and continuous. Under the assumptions of Lemma 18 with γ > 1/4, the

operator A = LÃ is Lipschitz continuous and strongly monotone. In particular, it fulfills
the assumptions of the Browder-Minty theorem for uniformly monotone operators. �

So far, we have computed the total potential u and by simple postprocessing u2 =
u− u1 − uapp on Ω2. The effective field heff , however, relies on the gradient of u2 on the
microscopic part Ω1. Since u2 solves −∆u2 = 0 in R

3\Ω2, u2 can be computed by means
of the representation formula, cf. e.g. [24, Theorem 3.1.6],

u2 = −Ṽ2(∂νu
ext
2 ) + K̃2(uext

2 ) in R
3\Ω2 ⊃ Ω1. (69)

To lower the computational cost for an implementation, we will, however, not use the
representation formula on Ω1, but only on Γ1 and solve an inhomogeneous Dirichlet
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problem instead. With uext
2 = uint

2 = uint − uint
1 − uint

app as well as φ = ∂νu
ext
2 on Γ2, we

obtain

−∆u2 = 0 in Ω1,

uint
2 =

(
− Ṽ2φ+ K̃2(u

int − uint
1 − uint

app)
)int

on Γ1,
(70)

according to (48). Put into the abstract frame, we consider the linear and continuous
operator

S : H−1/2(Γ2) ×H1(Ω2) → L2(Ω1)

S(φ, uint) = ∇u2.
(71)

Overall, the computation of π(m,f) = SÃ−1T̃ (m,f) = SA−1T = ∇u2 on Ω1 is therefore
done in five steps: First, we compute u11 on Ω1 as solution of (53). Second, (59) is solved
to compute ∇u1 on Ω2. Third, (60) is solved to compute uapp on Ω2. Fourth, (62) is
solved to provide u and φ = ∂νu

ext
2 on Γ2. Finally, (70) is solved to provide ∇u2 on Ω1.

Remark 20. Note that the formal definition of the operator S once again requires the
solution of (59)–(60) to provide uint

1 + uint
app. Theoretically, this can be dealt with by

considering the extended operators

T̂ (m,f ) = (uint
1 + uint

app,f · ν − ∂νu
ext
1 , uint

1 + uint
app),

Â(φ, u, uint
1 + uint

app) = (uint
1 + uint

app,f · ν − ∂νu
ext
1 , uint

1 + uint
app),

Ŝ(φ, u, uint
1 + uint

app) = ∇u2.

Then, Ŝ and T̂ are still linear and continuous. Provided A is uniformly monotone, the
inverse of A is well-defined and continuous so that (an obvious extension of) Lemma 15
still applies.

Remark 21. Finally, we give some examples of material laws χ̃, covered by Lemma 19:
(i) Consider the material law

χ̃(t) = C5 tanh(C6t)/t for t > 0, χ̃(0) = C5C6

with dimensionless constants C5, C6 > 0. Then, g(t) = t + C5 tanhC6t fulfills (64) with
γ = 1 and L = 1 + C5C6.
(ii) According to [23], it is reasonable to approximate the magnetic susceptibility in terms
of a rational function, i.e.

χ̃(t) =
C7 + C8t

1 + C9t+ C10t2

with certain, material-dependent constants C7, C8, C9, C10 > 0. For typical materials, it
holds (64) with γ = 1 and some L > 1 that depends on C7, C8, C9, C10, cf. [23, Table 1].

4.6.2. Discretization of T̃ . As for the strayfield, we solve (57) to obtain an approximation
u11h ∈ S1

∗ (T Ω1

h ) of u11. Next, we proceed as in Section 4.5 and discretize the given Dirichlet

data by means of the Scott-Zhang operator. Note that u1 = K̃1u
int
11 ∈ C∞(R3\Ω1) ⊂

H2(Ω2). Therefore, the discretization of (59) then reads: Find u1h ∈ S1(T Ω2

h ) such that
∫

Ω2

∇u1h · ∇vh dx = 0 for all vh ∈ S1
0 (T Ω2

h ) with u1h|Γ2
= IΓ2

h K1u
int
11h. (72)

Arguing as in the proof of Proposition 17, one obtains the following result:
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Lemma 22. The operator Bh : L2(Ω1) → S1(T Ω2

h ) with Bhm := u1h, which uses the
discrete solution of (57) to compute the solution u1h ∈ S1(T Ω2

h ) of (72), is well-defined,
linear, and continuous. Moreover, there holds strong convergence Bhm → Bm in H1(Ω2)
as h → 0 for all m ∈ L2(Ω1). Here, B : L2(Ω1) → H1(Ω2) denotes the linear and
continuous solution operator of (59). �

The discrete version of (60) reads as follows: Let uapp,h ∈ S1
∗ (T Ω2

h ) solve
∫

Ω2

∇uapp,h · ∇vh dx = −
∫

Γ2

f · ν dΓ2 for all vh ∈ S1
∗ (T Ω2

h ). (73)

The following result is well-known.

Lemma 23. Let Ω1 be convex. Then, the operator Bh : H(div; Ω2) → S1
∗ (T Ω2

h ) which
maps f to the discrete solution of (73) is well-defined, linear, and continuous. Moreover,
there holds strong convergence Bhf → Bf in H1(Ω2) as h → 0 for all f ∈ H(div,Ω2).
Here, B : H(div; Ω2) → H1

∗ (Ω2) denotes the linear and continuous solution operator
of (60). �

Recall that u1 ∈ C∞(R3\Ω1) ⊆ H2(Ω2), cf. (48). Therefore, we can replace ∂νu
ext
1

by ∂νu
int
1 on the right-hand side of (62). With respect to the definition of the operator

T̃ in (61), it remains to prove convergence ∂νu
int
1h → ∂νu

int
1 strongly in H−1/2(Γ2) as

h → 0. To that end, let u⋆
1h be the discrete solution of (72) with boundary data u⋆

1h|Γ2
=

IΓ2

h K1u
int
11 . As in Section 4.5.2, IΓ2

h : H1/2(Γ2) → S1(T Ω2

h |Γ2
) denotes the projection

induced by the Scott-Zhang projection IΩ2

h : H1(Ω2) → S1(T Ω2

h ), now considered on Ω2

instead of Ω1. As is the proof of Proposition 17, the Céa lemma proves

‖u1 − u⋆
1h‖H1(Ω2) . ‖u1 − IΩ2

h u1‖H1(Ω2) = O(h).

For the term ‖u1h − u⋆
1h‖H1(Ω2), we get due to convexity of Ω1 and thus u1 ∈ H2(Ω1)

‖u⋆
1h − u1h‖H1(Ω2) . ‖uint

11 − uint
11h‖H1/2(Γ1) . ‖u11 − u11h‖H1(Ω1) = O(h),

where we have used stability of IΩ2

h and K̃1. Altogether, we see

‖u1 − u1h‖H1(Ω2) ≤ ‖u1 − u⋆
1h‖H1(Ω2) + ‖u⋆

1h − u1h‖H1(Ω2) = O(h).

The desired result now follows from the next lemma and ‖Ψ‖H−1/2(Γ2) ≤ ‖Ψ‖L2(Γ2) for all

Ψ ∈ L2(Γ2).

Lemma 24. Let w ∈ H2(Ω2) with ∂νw ∈ L2(Γ2) and let wh ∈ S1(T Ω2

h ) be a sequence
with

‖∇(w − wh)‖L2(Ω2) ≤ C11h
1/2+ε for all h > 0

for some h-independent constants C11 > 0 and ε > 0. Then, there holds

‖∂ν(w − wh)‖L2(Γ2) ≤ C12h
ε for all h > 0

and a constant C12 > 0 which is independent of h > 0.

Proof. According to the trace-inequality (e.g. [12, Lemma 3.4]), it holds for any face
E ⊂ Γ2 with corresponding element T ∈ T Ω2

h (i.e. E ⊂ ∂T )

‖∂ν(w − wh)‖2
L2(∂T ∩Γ2) . h−1‖∇(w − wh)‖2

L2(T ) + ‖∇(w − wh)‖L2(T )‖D2(w − wh)‖L2(T )
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With D2wh = 0 on T and by summing over all faces E in the boundary Γ2, we end up
with

‖∂ν(w − wh)‖2
L2(Γ2) . h−1‖∇(w − wh)‖2

L2(Ω2) + ‖∇(w − wh)‖L2(Ω2)‖D2w‖L2(Ω2)

= O(hε).

This concludes the proof. �

Combining Lemma 22–24, we obtain the following proposition.

Proposition 25. With X = H−1/2(Γ2) ×H1(Ω2) and Y = H(div ; Ω2), the operator

T̃h : L2(Ω1) ×H(div ; Ω2) → P0(EΓ2

h ) × S1(T Ω2

h ) ⊆ X∗,

T̃h(m,f) = (uint
1h + uint

app,h,f · ν − ∂νu
int
1h )

(74)

is well-defined, linear, and continuous and satisfies (43) with (Th, T ) replaced by (T̃h, T̃ ).
�

4.6.3. Discretization of Ã and equivalent formulation. For the numerical solution of (62),
we use lowest-order finite elements combined with lowest-order boundary elements. The
numerical approximation of the Johnson-Nédélec equations reads as follows: Find (φh, uh) ∈
Xh := P0(EΓ2

h ) × S1(T Ω2

h ) such that
∫

Ω2

(1 + χ̃(|∇uh|))∇uh · ∇vh −
∫

Γ2

φhv
int
h = −

∫

Ω2

(f · ν − ∂νu
int
1h )vh,

∫

Γ2

(V2φh − (K2 − 1/2)uint
h )ψh = −

∫

Γ2

(K2 − 1/2)(uint
1h + uint

app,h)ψh

(75)

for all (ψh, vh) ∈ Xh, where (uapp,h, u1h) is the output of Th. With the operator Ã
from (63), the Galerkin formulation (75) can be rewritten as

〈Ã(φh, uh), (ψh, vh)〉X∗

h
×Xh

= 〈T̃h(m,f), (ψh, vh)〉X∗

h
×Xh

for all (ψh, vh) ∈ Xh. (76)

It is proved in [4, Section 4] that Lemma 19 does not only cover the continuous setting,
but also applies for the Galerkin formulation. In particular (76) is equivalent to

〈A(φh, uh), (ψh, vh)〉X∗

h
×Xh

= 〈Th(m,f), (ψh, vh)〉X∗

h
×Xh

for all (ψh, vh) ∈ Xh, (77)

with A = LÃ, Th = LT̃h and L from (66). Consequently, Th satisfies assumption (43).

Remark 26. The equivalent formulations introduced in Proposition 19 are only used for
theoretical considerations. In practice, (75) is solved directly.

4.6.4. Discretization of S. In analogy to (72), we use the Scott-Zhang operator IΓ1

h to
discretize the Dirichlet data in (70). The corresponding discretization thus reads: Find

u2h ∈ S1(T Ω1

h ) with u2h|Γ1
= IΓ1

h

(
− Ṽ2φh + K̃2(u

int
h − uint

1h − uint
app,h)

)int
such that

∫

Ω1

∇u2h · ∇vh = 0 for all vh ∈ S1
0 (T Ω1

h ). (78)

In complete analogy to the previous results, we get the following:

Lemma 27. The operator Sh : X = H−1/2(Γ2) × H1(Ω2) → P0(T Ω1

h )3 ⊆ L2(Ω1), which
computes the gradient of the solution of (78) is well-defined, linear, and continuous.
Moreover, there holds strong convergence Shx → Sx strongly in L2(Ω1) as h → 0 for all
x ∈ X. Here, S : X → L2(Ω1) denotes the exact solution operator of (70). �

Altogether, we get the following result:
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Proposition 28. Assume that the microscopic domain Ω1 is convex, that the macro-
scopic domain Ω2 is simply connected, and that the material law χ fulfills the conditions of
Lemma 18. Let Y := H(div ; Ω2) and ζ−

hk := f−
hk. Assume further that f |Ω2

is sufficiently

smooth, such that f−
hk → f strongly in L2

(
H(div ; Ω2)

)
and f−

hk ∈ L∞
(
H(div ; Ω2)

)
.

Then, the operator πh(m,f ) = ShA
−1Th(m,f) = ∇u2h defined via the previous sec-

tion satisfies all assumptions of Lemma 15. In particular, the assumptions (31)–(32) of
Theorem 7 are satisfied. �

Appendix A. Energy estimate

The following energy estimate can be obtained under certain assumptions on the general
energy contributions πh(·). Independently of the concrete multiscale setting, this might
be of general interest. Note that in this section, we neglect a possible dependence of π(·)
on a second quantity ζ .

Lemma 29 (improved energy estimate). Let πh(·) be uniformly Lipschitz continuous and

let the applied field f ∈ L4(Ωτ ) be constant in time, i.e. f j
h = f for all time steps in Al-

gorithm 5. Furthermore, let πh(·) satisfy ‖πh(n)‖L4(Ω1) ≤ C13, with C13 > 0 independent

of h > 0 and n ∈ L2(Ω1) with |n| ≤ 1 almost everywhere. Then, the energy

E
(
m(t)

)
:= Cexch‖∇m(t)‖2

L2(Ω1) + 〈π(m(t)),m(t)〉 − 〈f(t),m(t)〉 (79)

satisfies

E
(
m(t)

)
+ 2(α− ε)‖mτ ‖2

L2(Ωt) ≤ E
(
m(0)

)
+
C14

ε
‖f‖L2(Ωτ ) +

C15

ε
(80)

for any ε > 0 and almost every t ∈ [0, τend]. Here, the constants C14, C15 > 0 depend only
on the Lipschitz constant of πh and |Ω1|. In addition, for vanishing applied field f and
self-adjoint operators πh(·), it even holds that

E
(
m(t)

)
+ 2α‖mτ ‖2

L2(Ωt) ≤ E
(
m(0)

)
(81)

for almost every t ∈ [0, τend].

Proof. To abbreviate notation, we define

Hh(mi
h) := πh(mi

h) − f i
h = πh(mi

h) − f .
From the stability estimate (34), we get

E(mi+1
h ) − E(mi

h)

= Cexch‖∇mi+1
h ‖2

L2(Ω1) + 〈Hh(mi+1
h ),mi+1

h 〉 − Cexch‖∇mi
h‖2
L2(Ω1) − 〈Hh(mi

h),mi
h〉

≤ Cexch‖∇mi
h‖2
L2(Ω1) − 2Cexch(θ − 1/2)k2‖∇vi

h‖2
L2(Ω1) − 2αk‖vi

h‖2
L2(Ω1)

− 2k〈Hh(mi
h),vi

h〉 + 〈Hh(mi+1
h ),mi+1

h 〉 − Cexch‖∇mi
h‖2
L2(Ω1) − 〈Hh(mi

h),mi
h〉

= −2Cexch(θ − 1/2)k2‖∇vi
h‖2
L2(Ω1) − 2αk‖vi

h‖2
L2(Ω1) − 2k〈Hh(mi

h),vi
h〉

+ 〈Hh(mi+1
h ) +Hh(mi

h),mi+1
h −mi

h〉 + 〈Hh(mi+1
h ),mi

h〉 − 〈Hh(mi
h),mi+1

h 〉.
Straightforward calculations now show

−2k〈Hh(mi
h),vi

h〉 + 〈Hh(mi+1
h ) +Hh(mi

h),mi+1
h −mi

h〉
= 2〈Hh(mi

h),mi+1
h −mi

h − kvi
h〉 + 〈Hh(mi+1

h ) −Hh(mi
h),mi+1

h −mi
h〉.
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Exploiting uniform boundedness of Hh(mi
h) in L4(Ω1) in combination with |mi+1

h −mi
h −

kvi
h| ≤ k2|vi

h|2/2, cf. (37), we get

2〈Hh(mi
h),mi+1

h −mi
h − kvi

h〉 ≤ k2‖Hh(mi
h)‖L4(Ω1)‖(vi

h)2‖L4/3(Ω1)

. k2‖vi
h‖2
L8/3(Ω1)

≤ k2‖vi
h‖2
L3(Ω1).

Next, we make use of the Sobolev embedding (see [11])

‖vi
h‖2
L3(Ω1) . ‖vi

h‖H1(Ω1)‖vi
h‖L2(Ω1)

and see

2〈Hh(mi
h),mi+1

h −mi
h − kvi

h〉 . k2‖vi
h‖L2(Ω1)

(
‖vi

h‖L2(Ω1) + ‖∇vi
h‖L2(Ω1)

)
.

Using Lipschitz-continuity of Hh(·), i.e. of πh(·) and the fact that f j+1
h = f

j
h, we further

estimate

〈Hh(mi+1
h ) −Hh(mi

h),mi+1
h −mi

h〉 ≤ ‖Hh(mi+1
h ) −Hh(mi

h)‖L2(Ω1)‖mi+1
h −mi

h‖L2(Ω1)

. ‖mi+1
h −mi

h‖2
L2(Ω1) . k2‖vi

h‖2
L2(Ω1).

Altogether, we thus have shown

E(mi+1
h ) − E(mi

h) ≤ −Cexch2(θ − 1/2)k2‖∇vi
h‖2
L2(Ω1)

+ Ck2
(
‖vi

h‖L2(Ω1)‖∇vi
h‖L2(Ω1) + ‖vi

h‖2
L2(Ω1)

)

− 2αk‖vi
h‖2
L2(Ω1) + 〈Hh(mi+1

h ),mi
h〉 − 〈Hh(mi

h),mi+1
h 〉,

(82)

for some constant C > 0 which depends only on C13 and the Lipschitz constant of πh.
Summation over i = 0, . . . , j − 1 reveals for any j = 0, . . . , N and for θ ∈ [1/2, 1]

E(mj
h) − E(m0

h) + 2αk
j−1∑

i=0

‖vi
h‖2
L2(Ω1)

≤ Ck
(
‖v−

hk‖L2(Ωτ )‖∇v−
hk‖L2(Ωτ ) + ‖v−

hk‖2
L2(Ωτ )

)
+

j−1∑

i=0

〈Hh(mi+1
h ),mi

h〉

−
j−1∑

i=0

〈Hh(mi
h),mi+1

h 〉

= Ck
(
‖v−

hk‖L2(Ωτ )‖∇v−
hk‖L2(Ωτ ) + ‖v−

hk‖2
L2(Ωτ )

)

+
j−1∑

i=0

(
〈Hh(mi+1

h ) −Hh(mi
h),mi

h〉 − 〈Hh(mi
h),mi+1

h −mi
h〉

)
.

Next, we again exploit Lipschitz continuity and Young’s inequality to see, for any ε > 0,

j−1∑

i=0

(
〈Hh(mi+1

h ) −Hh(mi
h),mi

h〉 − 〈Hh(mi
h),mi+1

h −mi
h〉

)

≤ 2CL

j−1∑

i=0

‖kvi
h‖L2(Ω1)

(
(CL + C13)|Ω1|1/2 + ‖f j

h‖L2(Ω1)

)

. 2εk
j−1∑

i=0

‖vi
h‖2
L2(Ω1) +

C14k

ε

j−1∑

i=0

‖f i
h‖2
L2(Ω1) +

C15

ε
.
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Here, CL > 0 denotes the Lipschitz constant of πh and C14 =
2C2

L

4
. Therefore, we get

E(mj
h) + 2k(α − ε)

j−1∑

i=0

‖vi
h‖2
L2(Ω1) ≤ E(m0

h) + Ck
(
‖v−

hk‖L2(Ωτ )‖∇v−
hk‖L2(Ωτ ) + ‖v−

hk‖2
L2(Ωτ )

)

+
C14

ε
‖f‖2

L2(Ωτ ) +
C15

ε
.

For any measurable set T ⊆ [0, τ ], we thus conclude
∫

T

E
(
m+

hk(t)
)

+ 2(α − ε)
∫

T

‖v−
hk‖2

L2(Ωt) ≤
∫

T

E(m0
h) + Ck

∫

T

‖v−
hk‖L2(Ωτ )‖∇v−

hk‖L2(Ωτ )

+ Ck
∫

T

‖v−
hk‖2

L2(Ωτ ) +
∫

T

C14

ε
‖f‖2

L2(Ωτ ) +
∫

T

C15

ε
.

Passing to the limit as (h, k) → (0, 0), we finally see
∫

T

E
(
m(t)

)
+ 2(α− ε)

∫

T

‖mt‖2
L2(Ωt) ≤

∫

T

E
(
m(0)

)
+

∫

T

C14

ε
‖f‖2

L2(Ωτ ) +
∫

T

C15

ε
.

where we have used weak lower semi-continuity on the left-hand side and strong limits
on the right-hand side. In addition, we have used the boundedness of

√
k‖∇v−

hk‖L2(Ωτ )

and ‖v−
hk‖L2(Ωτ ). Since T ⊆ [0, T ] was arbitrary, we derive the desired result (80). The

extended estimate (81) finally follows from the fact that for vanishing field f and self-
adjoint operators πh, the term

〈Hh(mi+1
h ),mi

h〉 − 〈Hh(mi
h),mi+1

h 〉
in (82) vanishes. This concludes the proof. �

Remark 30. (i) In a 2D setting, the assumption on the boundedness of πh(·) in L4(Ω1)
can be avoided due to the better Sobolev embedding ‖vi

h‖L4(Ω1) . ‖vi
h‖H1(Ω1)‖vi

h‖L2(Ω1).

In this case, one thus only needs boundedness in L2(Ω1).
(ii) The operator πh(·) is, in particular, self-adjoint for a uniaxial anisotropy density,
for the strayfield contribution of Section 4.5 as well as for the multiscale contribution of
Section 4.6 with linear material law.
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[25] F.-J. Sayas The validity of Johnson-Nédélec’s BEM-FEM coupling on polygonal interfaces, SIAM

J. Numer. Anal. 47 (2009), 3451–3463.
[26] L.R. Scott, S. Zhang: Finite element interpolation of nonsmooth functions satisfying boundary

conditions, Math. Comp., 54 (1990), 483–493.
[27] O. Steinbach: Numerical approximation methods for elliptic boundary value problems: Finite and

boundary elements, Springer, New York, 2008.
[28] R. Verfürth: A review of a posteriori error estimation and adaptive mesh-refinement techniques,

Teubner, Stuttgart, 1996.
[29] E. Zeidler: Nonlinear functional analysis and its applications, part II/B, Springer, New York,

1990.

Institute of Solid State Physics, Vienna University of Technology, Wiedner Haupt-

straße 8-10, A-1040 Wien, Austria

E-mail address: {Florian.Bruckner,Dieter.Suess}@tuwien.ac.at

Institute for Analysis and Scientific Computing, Vienna University of Technology,

Wiedner Hauptstraße 8-10, A-1040 Wien, Austria

E-mail address: {Michael.Feischl,Thomas.Fuehrer,Marcus.Page,Dirk.Praetorius}@tuwien.ac.at

28


	titelseite34-12
	multiscale (2)

