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ADAPTIVE FEM WITH INHOMOGENEOUS DIRICHLET DATA:
CONVERGENCE AND QUASI-OPTIMALITY IN Rd

M. AURADA, M. FEISCHL, J. KEMETMÜLLER, M. PAGE, AND D. PRAETORIUS

Abstract. We consider the solution of second order elliptic PDEs in Rd with inhomoge-
neous Dirichlet data by means of an h-adaptive FEM with fixed polynomial order p ∈ N.
As model example serves the Poisson equation with mixed Dirichlet-Neumann boundary
conditions, where the inhomogeneous Dirichlet data are discretized by use of a stable pro-
jection, for instance, the L2-projection for p = 1 or the Scott-Zhang projection for general
p ≥ 1. For error estimation, we use a residual error estimator which includes the Dirichlet
data oscillations. We prove convergence of the adaptive algorithm even with quasi-optimal
convergence rate. Numerical experiments conclude the work.

1. Introduction

Recently, there has been a major breakthrough in the thorough mathematical understand-
ing of convergence and quasi-optimality of h-adaptive FEM for second-order elliptic PDEs.
However, the focus of the numerical analysis usually lies on model problems with homoge-
neous Dirichlet conditions, i.e. ∆u = f in Ω with u = 0 on Γ = ∂Ω, see e.g. [CKNS, D, KS,
MNS, S07]. Instead, our model problem

−∆u = f in Ω,

u = g on ΓD,

∂nu = φ on ΓN

(1)

considers inhomogeneous mixed Dirichlet-Neumann boundary conditions. Here, Ω is a
bounded Lipschitz domain in Rd with polyhedral boundary Γ = ∂Ω which is split into
two relatively open boundary parts, namely the Dirichlet boundary ΓD and the Neumann
boundary ΓN , i.e. ΓD ∩ ΓN = ∅ and ΓD ∪ ΓN = Γ. We stress that the surface measure of
the Dirichlet boundary has to be positive |ΓD| > 0, whereas ΓN is allowed to be empty. The

given data formally satisfy f ∈ H̃−1(Ω), g ∈ H1/2(ΓD), and φ ∈ H−1/2(ΓN). As is usually
required to derive (localized) a posteriori error estimators, we assume additional regularity
of the given data, namely f ∈ L2(Ω), g ∈ H1(ΓD), and φ ∈ L2(ΓN).

We stress that —using results available in the literature— it is easily possible to gener-
alize the analysis from the Laplacian L = −∆ to general symmetric and uniformly elliptic
differential operators of second order. The reader is referred to the seminal work [CKNS]
which treats the case of homogeneous Dirichlet data g = 0 and provides the necessary tools
to cover general L.

Date: January 20, 2012.
2000 Mathematics Subject Classification. 65N30, 65N50.
Key words and phrases. adaptive finite element method, convergence analysis, quasi-optimality, inhomo-

geneous Dirichlet data.
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Whereas certain work on a posteriori error estimation for (1) has been done, cf. [BCD, SV],
none of the proposed adaptive algorithms have been proven to converge. While the inclusion
of inhomogeneous Neumann conditions φ into the convergence analysis seems to be obvious,
incorporating inhomogeneous Dirichlet conditions g is technically more demanding. First,
this is due to the fractional-order Sobolev space H1/2(ΓD). However, we may use techniques
from adaptive boundary element methods [CMS, FKMP, KOP] to localize the non-local
H1/2-norm in terms of a locally weighted H1-seminorm. Second, the given Dirichlet data
have to be discretized appropriately. In an earlier work [FPP], we considered lowest-order
finite elements p = 1 in 2D and nodal interpolation to discretize g. However, this situation
is very special in the sense that our entire analysis in [FPP] is strictly bound to the lowest-
order case and cannot be generalized to Rd, since nodal interpolation is well-defined if and
only if d = 2. In this work, we consider finite elements of piecewise polynomial order p ≥ 1
and dimension d ≥ 2. We show that each uniformly H1/2(ΓD)-stable projection P` onto the
discrete trace space will do the job. However, and in contrast to the case g = 0, the discrete
ansatz spaces V` are non-nested, i.e. V` 6⊆ V`+1. We therefore loose the orthogonality
in energy norm which seems to be a major problem. The remedy is to concentrate on a
quasi-Pythagoras theorem and a stronger marking criterion. The latter implies (quasi-local)
equivalence of error estimators for different discretizations of the Dirichlet data. To obtain
contraction of our AFEM, we may then consider (theoretically) the H1/2(ΓD)-orthogonal
projection. To obtain optimality of the marking strategy, we may consider the Scott-Zhang
projection instead. Both auxiliary problems are somehow sufficiently close to the original
problem with projection P`, which is enforced by the marking strategy.

2. Adaptive Algorithm

It is well-known that the Poisson problem (1) admits a unique weak solution u ∈ H1(Ω)
with u = g on ΓD in the sense of traces which solves the variational formulation

〈∇u , ∇v〉Ω = 〈f , v〉Ω + 〈φ , v〉ΓN for all v ∈ H1
D(Ω). (2)

Here, the test space reads H1
D(Ω) =

{
v ∈ H1(Ω) : v = 0 on ΓD in the sense of traces

}
, and

〈· , ·〉 denotes the respective L2-scalar products. The proof relies essentially on a reformu-
lation of (1) as a problem with homogeneous Dirichlet data via a so-called lifting operator
L, i.e. L : H1/2(Γ) → H1(Ω) is a linear and continuous operator with (Lĝ)|Γ = ĝ for all
ĝ ∈ H1/2(Γ) in the sense of traces. However, although L is constructed analytically, it is
hardly accessible numerically in general and thus this approach is not feasible in practice.

This section provides an overview on this work and its main results. We analyze a common
adaptive mesh-refining algorithm of the type

solve −→ estimate −→ mark −→ refine

which is stated in detail below in Section 2.5. We start with a discussion of its four modules.

2.1. The module solvesolvesolve. Let T` be a regular triangulation of Ω into simplices, i.e. tetra-
hedra for 3D resp. triangles for 2D, which is generated from an initial triangulation T0. Let
E` be the set of facets, i.e. faces for 3D and edges for 2D, respectively. This set is split
into interior facets EΩ

` =
{
E ∈ E` : E ∩ Ω 6= ∅

}
, i.e. each E ∈ EΩ

` satisfies E = T+ ∩ T−
for T± ∈ T`, as well as boundary facets EΓ

` = E`\EΩ
` . We assume that the partition of

Γ into Dirichlet boundary ΓD and Neumann boundary ΓN is resolved, i.e. EΓ
` is split into
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ED` =
{
E ∈ E` : E ⊆ ΓD

}
and EN` =

{
E ∈ E` : E ⊆ ΓN

}
. Note that ED` (resp. EN` )

provides a regular triangulation of the (d− 1)-dimensional manifold ΓD (resp. ΓN).
We use conforming elements of fixed polynomial order p ∈ N, where the ansatz space reads

Sp(T`) =
{
V` ∈ C(Ω) : V`|T is a polynomial of degree at most p on T ∈ T`

}
. (3)

Since a discrete function U` ∈ Sp(T`) cannot satisfy general continuous Dirichlet conditions,
we have to discretize the given data g ∈ H1(ΓD). To this purpose, let P` : H1/2(ΓD) →
Sp(ED` ) be a projection onto the discrete trace space

Sp(ED` ) =
{
V`|ΓD : V` ∈ Sp(T`)

}
(4)

As in the continuous case, it is well-known that there is a unique U` ∈ Sp(T`) with U` = P`g
on ΓD which solves the Galerkin formulation

〈∇U` , ∇V`〉Ω = 〈f , V`〉Ω + 〈φ , V`〉ΓN for all V` ∈ SpD(T`). (5)

Here, the test space is given by SpD(T`) = Sp(T`) ∩H1
D(Ω) =

{
V` ∈ Sp(T`) : V` = 0 on ΓD

}
.

We assume that solve computes the exact Galerkin solution of (5). Arguing as e.g. in [BM,
S07], it is, however, possible to include an approximate solver into our analysis.

Possible choices for P` include the L2-orthogonal projection for the lowest-order case p = 1,
which is considered in [BCD], or the Scott-Zhang projection from [SZ] which is proposed
in [SV]. Our analysis below will also theoretically use the H1/2(ΓD)-orthogonal projection.

2.2. The module estimateestimateestimate. We start with the element data oscillations

osc2
T ,` :=

∑

T∈T`
oscT ,`(T )2, where oscT ,`(T )2 := |T |2/d ‖(1− ΠT )(f + ∆U`)‖2

L2(T ) (6)

and where ΠT : L2(T ) → Pp−1(T ) denotes the L2-orthogonal projection. These arise in
the efficiency estimate for residual error estimators. Moreover, the efficiency involves the
Neumann data oscillations

osc2
N,` :=

∑

E∈EN`

oscN,`(E)2, where oscN,`(E)2 := |T |1/d ‖(1− ΠE)φ‖2
L2(E) (7)

with T ∈ T` being the unique element with E ⊆ ∂T and where ΠE : L2(E) → Pp−1(E)
denotes the L2-orthogonal projection on the boundary. Finally, the approximation of the
Dirichlet data P`g ≈ g ∈ H1(ΓD) is controlled by the Dirichlet data oscillations

osc2
D,` :=

∑

E∈ED`

oscD,`(E)2, where oscD,`(E)2 := |T |1/d ‖(1− ΠE)∇Γg‖2
L2(E), (8)

where again T ∈ T` denotes the unique element with E ⊆ ∂T . Moreover, ∇Γ(·) denotes the
surface gradient. We recall that up to shape regularity we have equivalence |T |1/d ' diam(T )
as well as diam(T ) ' diam(E) for all T ∈ T` and E ∈ E` with E ⊆ ∂T .

We use a residual error estimator η2
` = %2

` + osc2
D,` which is split into general contributions

and Dirichlet oscillations, i.e.

%2
` =

∑

T∈T`
%`(T )2 (9)
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with corresponding refinement indicators

%`(T )2 := |T |2/d ‖f + ∆U`‖2
L2(T ) + |T |1/d

(
‖[∂nU`]‖2

L2(∂T∩Ω) + ‖φ− ∂nU`‖2
L2(∂T∩ΓN )

)
. (10)

The module estimate returns the elementwise contributions %`(T )2 and oscD,`(E)2 for all
T ∈ T` and E ∈ ED` .

2.3. The module markmarkmark. For element marking, we use a modification of the Dörfler
marking [D] proposed firstly in Stevenson [S07]. In each step of the adaptive loop, we mark
either elements or Dirichlet edges for refinement, where the latter is only done if oscD,` is
large when compared to %`. A precise statement of the module mark is part of Algorithm 1
below.

2.4. The module refinerefinerefine. Locally refined meshes are obtained by use of the newest
vertex bisection algorithm, see e.g. [S08, T], where T`+1 = refine(T`,M`) for a setM` ⊆ T`
of marked elements returns the coarsest regular triangulation T`+1 such that all marked
elements T ∈ M` have been refined by at least one bisection. Arguing as in [KS], one may
also use variants of newest vertex bisection, where each T ∈ M` is refined by at least n
bisections with arbitrary, but fixed n ∈ N.

2.5. Adaptive loop. With the aforegoing modules, the adaptive mesh-refining algorithm
takes the following form.

Algorithm 1. Let adaptivity parameters 0 < θ1, θ2, ϑ < 1 and initial triangulation T0 be
given. For each ` = 0, 1, 2, . . . do:

(i) Compute discrete solution U` ∈ Sp(T`).
(ii) Compute refinement indicators %`(T ) and oscD,`(E) for all T ∈ T` and E ∈ ED` .

(iii) Provided that osc2
D,` ≤ ϑ %2

` , choose M` ⊆ T` such that

θ1 %
2
` ≤

∑

T∈M`

%`(T )2. (11)

(iv) Provided that osc2
D,` > ϑ%2

` , choose MD
` ⊆ ED` such that

θ2 osc2
D,` ≤

∑

E∈MD
`

oscD,`(E)2 (12)

and let M` :=
{
T ∈ T` : ∃E ∈MD

` E ⊆ ∂T
}

.
(v) Use newest vertex bisection to generate T`+1 = refine(T`,M`).

(vi) Update counter ` 7→ `+ 1 and go to (i).

2.6. Main results. Throughout, we assume that the projections P` : H1/2(ΓD)→ Sp(ED` )
are uniformly H1/2(ΓD)-stable, i.e. the operator norm is uniformly bounded

‖P` : H1/2(ΓD)→ H1/2(ΓD)‖ ≤ Cstab <∞ (13)

with some `-independent constant Cstab > 0. This assumption is guaranteed for theH1/2(ΓD)-
orthogonal projection with Cstab = 1. Moreover, the L2(ΓD)-orthogonal projection for the
lowest-order case p = 1 and newest vertex bisection is uniformly bounded [KPP], and so is
the Scott-Zhang projection [SZ] onto Sp(ED` ) for arbitrary p ≥ 1.
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First, our discretization is quasi-optimal in the sense of the Céa lemma. Note that esti-
mate (14) does not depend on the precise choice of P`, and the minimum is taken over all
discrete functions. Unlike our observation, the result in e.g. [BCD, Theorem 6.1] takes the
minimum with respect to the affine space

{
W` ∈ Sp(T`) : W`|ΓD = P`g

}
and for first-order

p = 1 only.

Proposition 2 (Céa-type estimate in H1-norm). The Galerkin solution satisfies

‖u− U`‖H1(Ω) ≤ CCéa min
W`∈Sp(T`)

‖u−W`‖H1(Ω). (14)

The constant CCéa > 0 depends only on Ω, ΓD, shape regularity of T`, the polynomial degree
p ≥ 1, and the constant Cstab > 0.

Second, the considered error estimator provides an upper bound and, up to data oscilla-
tions, also a lower bound for the Galerkin error.

Proposition 3 (reliability and efficiency of η`). The error estimator η2
` = %2

` + osc2
D,` is

reliable

‖u− U`‖2
H1(Ω) ≤ Crel η

2
` (15)

and efficient

C−1
eff η2

` ≤ ‖∇(u− U`)‖2
L2(Ω) + osc2

T ,` + osc2
N,` + osc2

D,`. (16)

The constants Crel, Ceff > 0 depend on Ω and ΓD, on the polynomial degree p ≥ 1, stability
Cstab > 0, the initial triangulation T0, and on the use of newest vertex bisection.

Note that convergence of Algorithm 1 in the sense of lim` U` = u in H1(Ω) is a priori
unclear since adaptive mesh-refinement does not guarantee that the local mesh-size tends
uniformly to zero. However, we have the following convergence result which is proved in the
frame of the estimator reduction concept from [AFP].

Theorem 4 (convergence of AFEM). (i) Suppose that the discretization of the Dirichlet
data guarantees some a priori convergence

lim
`→∞
‖g∞ − P`g‖H1/2(ΓD) = 0 (17)

with a certain limit g∞ ∈ H1/2(ΓD). Then, for any choice of the adaptivity parameters
0 < θ1, θ2, ϑ < 1, Algorithm 1 guarantees convergence

lim
`→∞
‖u− U`‖H1(Ω) = 0 (18)

and, in particular, g∞ = g.
(ii) Assumption (17) is satisfied for the H1/2(ΓD)-orthogonal projection, the L2(ΓD)-projection
for p = 1, and the Scott-Zhang projection for arbitrary p ≥ 1.

Current quasi-optimality results on AFEM rely on the fact that the estimator η2
` =

%2
` + osc2

D,` is equivalent to some linear convergent quasi-error quantity ∆`. Whereas, the
convergence theorem (Theorem 4) also holds for the usual Dörfler marking, our contraction
theorem relies on Stevenson’s modification (11)–(12). Moreover, we stress that the con-
vergence theorem is constrained by the a priori convergence assumption (17), whereas the
following contraction result is not.
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Theorem 5 (contraction of AFEM). Let P` : H1/2(ΓD) → Sp(ED` ) be the H1/2(ΓD)-

orthogonal projection. Let Ũ` ∈ Sp(T`) the Galerkin solution of (5) with Ũ`|ΓD = P`g and

η̃ 2
` = %̃ 2

` + osc2
D,` be the associated error estimator from (9) with U` replaced by Ũ`. Then,

for arbitrary 0 < θ1, θ2 < 1 and sufficiently small 0 < ϑ < 1, Algorithm 1 guarantees the
existence of constants λ, µ > 0 and 0 < κ < 1 such that the combined error quantity

∆` := ‖∇(u− Ũ`)‖2
L2(Ω) + λ ‖g − P`g‖2

H1/2(ΓD) + µ η̃ 2
` ≥ 0 (19)

satisfies a contraction property

∆`+1 ≤ κ∆` for all ` ∈ N0. (20)

Moreover, there are constants Clow, Chigh > 0 such that

Clow ∆` ≤ η2
` ≤ Chigh ∆`. (21)

In particular, this implies convergence lim` ‖u − U`‖H1(Ω) = 0 = lim` η` of Algorithm 1

independently of the precise choice of the uniformly H1/2(ΓD)-stable projection P`.

To state our quasi-optimality result for Algorithm 1, we need to introduce further notation.
Recall that, for a given triangulation T` and M` ⊆ T`,

T`+1 = refine(T`,M`) (22)

denotes the coarsest regular triangulation such that all marked elements T ∈M` have been
refined by (at least one) bisection. Moreover, we write

T? = refine(T`) (23)

if T? is a finite refinement of T`, i.e., there are finitely many triangulations T`+1, . . . , Tn
and sets of marked elements M` ⊆ T`, . . . ,Mn−1 ⊆ Tn−1 such that T? = Tn and Tj+1 =
refine(Tj,Mj) for all j = `, . . . , n − 1. Finally, for a fixed initial mesh T0, let T =

{
T? :

T? = refine(T0)
}

be the set of all meshes which can be obtained by newest vertex bisection

as well as the set TN =
{
T? ∈ T : #T?−#T0 ≤ N

}
of all triangulations which have at most

N more elements than the initial mesh T0.
Recall that Algorithm 1 only sees the error estimator η2

` = %2
` + osc2

D,`, but not the error
‖u−U`‖H1(Ω). From this point of view, it is natural to ask for the best possible convergence
rate for the error estimator. This can be characterized by means of an artificial approximation
class As: For s ≥ 0, we write

(u, f, g, φ) ∈ As
def⇐⇒ sup

N∈N
inf
T?∈TN

N sη? <∞, (24)

where η2
? = %2

? + osc2
D,? denotes the error estimator for the optimal mesh T? ∈ TN . By

definition, this implies that a convergence rate η? = O(N−s) is possible if the optimal meshes
are chosen. The following theorem states that Algorithm 1, in fact, guarantees η` = O(N−s)
for the adaptively generated meshes T`.
Theorem 6 (quasi-optimality of AFEM). Suppose that the sets M` resp. MD

` in step (iii)–
(iv) of Algorithm 1 are chosen with minimal cardinality. Then, for sufficiently small 0 <
θ1, ϑ < 1, but arbitrary 0 < θ2 < 1, Algorithm 1 guarantees the existence of a constant
Copt > 0 such that

(u, f, g, φ) ∈ As ⇐⇒ ∀` ∈ N η` ≤ Copt(#T` −#T0)−s, (25)

6



i.e. each possible convergence rate s > 0 is, in fact, asymptotically obtained by AFEM.

We stress that, up to now and as far as the error estimator is concerned, only reliability (15)
is needed for the analysis. Finally, the lower bound (16) for the error estimator allows to
characterize the approximation class As in terms of the regularity of the sought solution and
the given data.

Theorem 7 (characterization of As). It holds (u, f, g, φ) ∈ As if and only if the following
four conditions hold:

sup
N∈N

inf
T?∈TN

min
V?∈Sp(T?)

N s‖u− V?‖H1(Ω) <∞, (26)

sup
N∈N

inf
T?∈TN

N soscT ,? <∞, (27)

sup
N∈N

inf
T?∈TN

N soscN,? <∞, (28)

sup
N∈N

inf
T?∈TN

N soscD,? <∞, (29)

i.e. the estimator —and according to reliability hence the Galerkin error— converges with
the best possible rate allowed by the regularity of the sought solution and the given data.

2.7. Outline. Since our analysis is strongly built on properties of the Scott-Zhang pro-
jection, Section 3 collects the essential properties of the latter. This knowledge is used to
prove Proposition 2. Moreover, we prove that the Scott-Zhang error in a weighted H1(ΓD)-
seminorm is equivalent to the Dirichlet oscillations. This allows to prove Proposition 3 with
an estimator η` which does not explicitly contain the chosen projection P`. Section 4 is
concerned with the proof of Theorem 4. Section 5 gives the proof for the contraction result
of Theorem 5. Finally, the proof of the quasi-optimality results of Theorem 6 and Theorem 7
are found in Section 6. Some numerical experiments in Section 7 conclude the work.

In all statements, the constants involved and their dependencies are explicitly stated. In
proofs, however, we use the symbol . to abbreviate ≤ up to a multiplicative constant.
Moreover, ' abbreviates that both estimates . and & hold.

3. Scott-Zhang Projection

The main tool of our analysis is the Scott-Zhang projection

J` : H1(Ω)→ Sp(T`) (30)

from [SZ]. A first application will be the proof of the Céa-type estimate for the Galerkin error
(Proposition 2). Moreover, we prove that the Scott-Zhang interpolation error in a locally
weighted H1-seminorm is locally equivalent to the Dirichlet data oscillations (Proposition 8).
This will be the main tool to derive the bound ‖(1− P`)g‖H1/2(ΓD) . oscD,`.

3.1. Scott-Zhang projection. Analyzing the definition of J` in [SZ], one sees that J` can
be defined locally in the following sense:

• For an element T ∈ T`, the value (J`w)|T on T depends only on the value of w|ω`,T
on some element patch

T ⊆ ω`,T ⊆
{
T ′ ∈ T` : T ′ ∩ T 6= ∅

}
. (31)
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• For a boundary facet E ∈ EΓ
` , the trace of the Scott-Zhang projection (J`w)|E on E

depends only on the trace w|ωΓ
`,E

on some facet patch

E ⊆ ωΓ
`,E ⊆

{
E ′ ∈ E` : E ′ ∩ E 6= ∅

}
. (32)

• In case of a Dirichlet facet E ∈ ED` , one may choose ωΓ
`,E ⊆ ΓD.

Moreover, J` is defined in a way that the following projection properties hold:

• J`W` = W` for all W` ∈ Sp(T`),
• (J`w)|Γ = w|Γ for all w ∈ H1(Ω) and W` ∈ Sp(T`) with w|Γ = W`|Γ,
• (J`w)|ΓD = w|ΓD for all w ∈ H1(Ω) and W` ∈ Sp(T`) with w|ΓD = W`|ΓD ,

i.e. the projection J` preserves discrete (Dirichlet) boundary data. Finally, J` satisfies the
following (local) stability property

‖∇(1− J`)w‖L2(T ) ≤ Csz ‖∇w‖L2(ω`,T ) for all w ∈ H1(Ω) (33)

and (local) first-order approximation property

‖(1− J`)w‖L2(T ) ≤ Csz ‖h`∇w‖L2(ω`,T ) for all w ∈ H1(Ω) (34)

where Csz > 0 depends only on shape regularity of T`, cf. [SZ]. Here, h` ∈ L∞(Ω) denotes
the local mesh-width function defined by h`|T = |T |1/d for all T ∈ T`. Moreover, since the
overlap of the patches is controlled in terms of shape regularity, the integration domains
in (33)–(34) can be replaced by Ω, i.e. (33)–(34) hold also globally.

3.2. Scott-Zhang projection onto discrete trace spaces. We stress that J` induces
operators

JΓ
` : L2(Γ)→ Sp(EΓ

` ) and JD` : L2(ΓD)→ Sp(ED` ) (35)

in the sense of JΓ
` (w|Γ) = (J`w)|Γ and JD` (w|ΓD) = (JΓ

` (w|Γ))|ΓD for all w ∈ H1(Ω). We will
thus not distinguish these operators notationally. Arguing as in [SZ], for γ ∈ {Γ,ΓD,ΓN},
one sees that J` satisfies even (local) L2-stability

‖(1− J`)w‖L2(E) ≤ Csz ‖w‖L2(ωΓ
`,E) for all w ∈ L2(γ), (36)

(local) H1-stability

‖(1− J`)w‖H1(E) ≤ Csz ‖∇Γw‖L2(ωΓ
`,E) for all w ∈ H1(γ), (37)

as well as a (local) first-order approximation property

‖(1− J`)w‖L2(E) ≤ Csz ‖h`∇Γw‖L2(ωΓ
`,E) for all w ∈ H1(γ). (38)

Here, ∇Γ(·) denotes again the surface gradient, and h` ∈ L∞(ΓD) denotes the local mesh-
width function restricted to ΓD. According to shape regularity of T`, the integration domains
in (36)–(38) can be replaced by γ, i.e. (36)–(38) hold also globally on γ.

By standard interpolation arguments applied to (36)–(37), one obtains stability

‖(1− J`)w‖H1/2(γ) ≤ Csz ‖w‖H1/2(γ) for all w ∈ H1/2(γ) (39)

in the trace norm. Moreover, it is proved in [KOP, Theorem 3] that the Scott-Zhang pro-
jection satisfies

‖(1− J`)w‖H1/2(γ) ≤ Csz min
W`∈Sp(T`|γ)

‖h1/2
` ∇Γ(w −W`)‖L2(γ) for all w ∈ H1(γ). (40)
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Throughout, the constant Csz > 0 then depends only on shape regularity of T` and on
γ ∈ {Γ,ΓD,ΓN}.

3.3. Proof of Céa lemma (Proposition 2). According to weak formulation (2) and
Galerkin formulation (5), we have the Galerkin orthogonality relation

〈∇(u− U`) , ∇V`〉Ω = 0 for all V` ∈ SpD(T`).

Let L : H1/2(Γ) → H1(Ω) be a lifting operator. Let ĝ, ĝ` ∈ H1/2(Γ) denote arbitrary
extensions of g = u|ΓD resp. P`g = U`|ΓD . Note that (J`LJ`ĝ)|ΓD = (J`u)|ΓD as well as
(J`LJ`ĝ`)|ΓD = U`|ΓD . For arbitrary V` ∈ SpD(T`), we thus have U`− (V` + J`LJ`ĝ`) ∈ SpD(T`),
whence

‖∇(u− U`)‖2
L2(Ω) = 〈∇(u− U`) , ∇(u− (V` + J`LJ`ĝ`))〉Ω

according to the Galerkin orthogonality. Therefore, the Cauchy inequality proves

‖∇(u− U`)‖L2(Ω) ≤ min
V`∈SpD(T`)

‖∇(u− (V` + J`LJ`ĝ`))‖L2(Ω).

We now plug-in V` = J`u− J`LJ`ĝ ∈ SpD(T`) and use stability of J` and L to see

‖∇(u− U`)‖L2(Ω) ≤ ‖∇(u− J`u+ J`LJ`(ĝ − ĝ`))‖L2(Ω)

. ‖∇(u− J`u)‖L2(Ω) + ‖ĝ − ĝ`‖H1/2(Γ).

Since the extensions ĝ, ĝ` of g and P`g were arbitrary, we obtain

‖∇(u− U`)‖L2(Ω) . ‖∇(u− J`u)‖L2(Ω) + ‖(1− P`)g‖H1/2(ΓD).

According to the projection property J`W` = W` for W` ∈ Sp(T`) and H1-stability (33), it
holds that

‖∇(u− J`u)‖L2(Ω) = min
W`∈Sp(T`)

‖∇(1− J`)(u−W`)‖L2(Ω) . min
W`∈Sp(T`)

‖∇(u−W`)‖L2(Ω).

The same argument for P` with stability on H1/2(Γ) gives

‖(1− P`)g‖H1/2(ΓD) = min
W`∈Sp(T`)

‖(1− P`)(g −W`|ΓD)‖H1/2(ΓD) . min
W`∈Sp(T`)

‖g −W`|ΓD‖H1/2(ΓD).

Combining the last three estimates, we infer

‖∇(u− U`)‖L2(Ω) + ‖(1− P`)g‖H1/2(ΓD) . min
W`∈Sp(T`)

(
‖∇(u−W`)‖L2(Ω) + ‖g −W`|ΓD‖H1/2(ΓD)

)
.

Finally, the Rellich compactness theorem implies norm equivalence ‖·‖H1(Ω) ' ‖∇(·)‖L2(Ω) +
‖(·)|ΓD‖H1/2(ΓD) on H1(Ω). This concludes the proof. �

3.4. Scott-Zhang projection and Dirichlet data oscillations. We stress that the
newest vertex bisection algorithm guarantees that only finitely many shapes of elements
T ∈

{
T ∈ T? : T? ∈ T

}
can occur. In particular, only finitely many shapes of patches occur.

Further details are found in [V, Chapter 4] as well as in [S08, T]. This observation will be
used in the proof of the following lemma.
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Proposition 8. Let Π` : L2(ΓD)→ Pp−1(ED` ) denote the L2(ΓD)-projection. Then,

‖(1−Π`)∇Γg‖L2(E) ≤ ‖∇Γ(1−J`)g‖L2(E) ≤ Cdir‖(1−Π`)∇Γg‖L2(ωΓ
`,E) for all E ∈ ED` (41)

and, in particular,

oscD,` ≤ ‖h1/2
` ∇Γ(1− J`)g‖L2(ΓD) ≤ Cdir oscD,` (42)

The constant Cdir ≥ 1 depends only on ΓD, the polynomial degree p, the initial triangulation
T0, and the use of newest vertex bisection to obtain T` ∈ T, but not on g.

Proof. Since Π` is the piecewise L2-projection, the lower bound in (41)–(42) is obvious. To
verify the upper bound, we argue by contradiction and assume that the upper bound in (41)
is wrong for each constant C > 0. For n ∈ N, we thus find some g̃n ∈ H1(Γ) such that

‖∇Γ(1− J`)g̃n‖L2(E) > n ‖(1− Π`)∇Γg̃n‖L2(ωΓ
`,E). (43)

Let Q`,E : H1(ωΓ
`,E) → Sp(E`|ωΓ

`,E
) denote the H1-orthogonal projection on the patch ωΓ

`,E

and define gn = (1 − Q`,E)g̃n. Since the value of J`v on E depends only on the values
of v on ωΓ

`,E, the projection property of J` reveals (1 − J`)Q`,E g̃n = 0 on E. Moreover,

∇ΓQ`,E g̃n ∈ Pp−1(E`|ωΓ
`,E

) so that (1 − Π`)∇ΓQ`,E g̃n = 0 on ωΓ
`,E. From the orthogonal

decomposition g̃n = Q`,E g̃n + gn, we thus see ‖∇Γ(1−J`)gn‖L2(E) = ‖∇Γ(1−J`)g̃n‖L2(E) and
‖(1−Π`)∇Γgn‖L2(ωΓ

`,E) = ‖(1−Π`)∇Γg̃n‖L2(ωΓ
`,E). In particular, we observe gn 6= 0 from (43)

so that we may define gn := gn/‖gn‖H1(ωΓ
`,E). This definition guarantees

‖gn‖H1(ωΓ
`,E) = 1 and gn ∈ Sp(E`|ωΓ

`,E
)⊥, (44)

where orthogonality is understood with respect to the H1(ωΓ
`,E)-scalar product. Moreover,

it holds that

‖(1− Π`)∇Γgn‖L2(ωΓ
`,E) <

1

n
‖∇Γ(1− J`)gn‖L2(E) .

1

n
‖∇Γgn‖L2(ωΓ

`,E)
n→∞−−−→ 0 (45)

due to the construction of gn and local H1-stability of J` : H1(ΓD)→ H1(ΓD).
First, (45) implies that ‖Π`∇Γgn‖L2(ωΓ

`,E) ≤ C <∞ is uniformly bounded as n→∞. Since

Π`∇Γgn ∈ Pp−1(E`|ωΓ
`,E

) belongs to a finite dimensional space, we may apply the Bolzano-

Weierstrass theorem to extract a convergent subsequence. Without loss of generality, we
may thus assume

Π`∇Γgn
n→∞−−−→ Φ` ∈ Pp−1(E`|ωΓ

`,E
) in strong L2-sense. (46)

Second, this and (45) prove L2-convergence of ∇Γgn to Φ`,

‖∇Γgn − Φ`‖L2(ωΓ
`,E) ≤ ‖(1− Π`)∇Γgn‖L2(ωΓ

`,E) + ‖Π`∇Γgn − Φ`‖L2(ωΓ
`,E)

n→∞−−−→ 0. (47)

Third, orthogonality (44) implies
∫
ωΓ
`,E
gn dΓ = 0 if we consider the constant function

1 ∈ Sp(E`|ωΓ
`,E

). Therefore, the Friedrichs inequality and (47) predict uniform boundedness

‖gn‖H1(ωΓ
`,E) . ‖∇Γgn‖L2(ωΓ

`,E) ≤ C < ∞ as n → ∞. According to weak compactness in

Hilbert spaces, we may thus extract a weakly convergent subsequence. Without loss of
generality, we may thus assume

gn
n→∞−−−→ g∞ ∈ H1(ωΓ

`,E) in weak H1-sense. (48)
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Fourth, the combination of (47) and (48) implies ∇Γg∞ = Φ`. This follows from the fact
that ‖Φ` −∇Γ(·)‖L2(ωΓ

`,E) is convex and continuous, whence weakly lower semicontinuous on

H1(ωΓ
`,E), i.e. ‖Φ` −∇Γg∞‖L2(ωΓ

`,E) ≤ lim infn ‖Φ` −∇Γgn‖L2(ωΓ
`,E) = 0.

Fifth, the Rellich compactness theorem proves that the convergence in (48) does also
hold in strong L2-sense. Together with (47) and Φ` = ∇Γg∞, we now observe strong H1-
convergence

‖g∞ − gn‖2
H1(ωΓ

`,E) = ‖g∞ − gn‖2
L2(ωΓ

`,E) + ‖Φ` −∇Γgn‖2
L2(ωΓ

`,E)

n→∞−−−→ 0,

whence ‖g∞‖H1(ωΓ
`,E) = 1 as well as g∞ ∈ Sp(E`|ωΓ

`,E
)⊥ according to (44).

On the other hand, ∇Γg∞ = Φ` ∈ Pp−1(E`|ωΓ
`,E

) implies g∞ ∈ Sp(E`|ωΓ
`,E

). This yields

g∞ ∈ Sp(E`|ωΓ
`,E

) ∩ Sp(E`|ωΓ
`,E

)⊥ = {0} and contradicts ‖g∞‖2
H1(ωΓ

`,E)
= 1.

This contradiction proves the upper bound in (41). A standard scaling argument verifies
that the constant Cdir > 0 does only depend on the shape of ωΓ

`,E but not on the diameter. As
stated above, newest vertex bisection guarantees that only finitely many shapes of patches
ωΓ
`,E may occur, i.e. Cdir > 0 depends only on T0 and the use of newest vertex bisection.

Summing (41) over all Dirichlet facets, we see

osc2
D,` = ‖h1/2

` (1− Π`)∇Γg‖2
L2(ΓD) ≤ ‖h1/2

` ∇Γ(1− J`)g‖2
L2(ΓD)

.
∑

E∈ED`

h`|E ‖(1− Π`)∇Γg‖2
L2(ωΓ

`,E)

. ‖h1/2
` (1− Π`)∇Γg‖2

L2(ΓD),

where the final estimate holds due to uniform shape regularity. �

Corollary 9. It holds ‖(1− P`)g‖H1/2(ΓD) ≤ Cosc oscD,`, where Cosc > 0 depends on ΓD, the
polynomial degree p ≥ 1, stability Cstab > 0, the initial mesh T0, and the use of newest vertex
bisection.

Proof. By use of the projection property and stability of P`, one sees ‖(1− P`)g‖H1/2(ΓD) =
‖(1 − P`)(1 − J`)g‖H1/2(ΓD) . ‖(1 − J`)g‖H1/2(ΓD). The approximation estimate (40) and

Proposition 8 conclude ‖(1− J`)g‖H1/2(ΓD) . ‖h1/2
` ∇Γ(1− J`)g‖L2(ΓD) ' oscD,`. �

3.5. Proof of reliability and efficiency (Proposition 3). We consider a continuous
auxiliary problem

−∆w = 0 in Ω,

w = (1− P`)g on ΓD,

∂nw = 0 on ΓN ,

(49)

with unique solution w ∈ H1(Ω). We then have norm equivalence ‖w‖H1(Ω) ' ‖(1 −
P`)g‖H1/2(ΓD) as well as u− U` − w ∈ H1

D(Ω). From this, we obtain

‖u− U`‖H1(Ω) . ‖∇(u− U` − w)‖L2(Ω) + ‖(1− P`)g‖H1/2(ΓD).
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The first term on the right-hand side can be handled as for homogeneous Dirichlet data, i.e.
use of the Galerkin orthogonality combined with approximation estimates for a Clément-type
quasi-interpolation operator (e.g. the Scott-Zhang projection). This leads to

‖∇(u− U` − w)‖L2(Ω) . %`

Details are found e.g. in [BCD]. The H1/2(ΓD)-norm is dominated by the Dirichlet data
oscillations oscD,`, see Corollary 9.

By use of bubble functions and local scaling arguments, one obtains the estimates

|T |2/d ‖f + ∆U`‖2
L2(T ) . ‖∇(u− U`)‖2

L2(T ) + oscT ,`(T )2 + oscN,`(∂T ∩ ΓN),

|T |1/d ‖[∂nU`]‖2
L2(E∩Ω) . ‖∇(u− U`)‖2

L2(Ω`,E) + oscT ,`(ω`,E)2,

|T |1/d ‖φ− ∂nU`‖2
L2(E∩ΓN ) . ‖∇(u− U`)‖2

L2(Ω`,E) + oscT ,`(ω`,E)2 + oscN,`(E ∩ ΓN)2,

where Ω`,E = T+ ∪ T− denotes the facet patch of T+ ∩ T− = E ∈ E`. Details are found
e.g. in [AO, V]. Summing these estimates over all elements, one obtains the efficiency
estimate (16). �

4. Convergence

In this section, we aim to prove Theorem 4. Our proof of the convergence theorem relies
on the estimator reduction principle from [AFP], i.e. we verify that the error estimator is
contractive up to some zero sequence.

4.1. Estimator reduction estimate. Note that the estimator η2
` = %2

` + osc2
D,` can be

localized over elements via

η2
` =

∑

T∈T`
η`(T )2 with η`(T )2 = %`(T )2 + |T |1/d ‖(1− Π`)∇Γg‖2

L2(∂T∩ΓD) (50)

with Π` : L2(ΓD)→ Pp−1(ED` ) the (even ED` -piecewise) L2(ΓD)-orthogonal projection.

Lemma 10 (modified marking implies Dörfler marking). For 0 < θ1, θ2, ϑ < 1 in Algo-
rithm 1, there is some parameter 0 < θ < 1 such that the error estimator η2

` = %2
` + osc2

D,`

satisfies

θ η2
` ≤

∑

T∈M`

η`(T )2, (51)

and all elements T ∈M` are refined by at least one bisection.

Proof. First, assume osc2
D,` ≤ ϑ %2

` and let M` ⊆ T` satisfy (11). Then,

θ1(%2
` + osc2

D,`) ≤ θ1(1 + ϑ)%2
` ≤ (1 + ϑ)

∑

T∈M`

%`(T )2.

Therefore, the Dörfler marking (51) holds with θ ≤ θ1(1 + ϑ)−1.
Second, assume osc2

D,` > ϑ%2
` and let MD

` ⊆ ED` satisfy (12). Then,

θ2(%2
` + osc2

D,`) ≤ θ2(1 + ϑ−1)osc2
D,` ≤ (1 + ϑ−1)

∑

E∈MD
`

oscD,`(E)2.

Therefore, the Dörfler marking (51) holds with θ ≤ θ2(1 + ϑ−1)−1, and all elements which
have some facet E ∈MD

` are refined. �
12



Proposition 11 (estimator reduction). Let T? = refine(T`) be an arbitrary refinement of
T` and M` ⊆ T`\T? a subset of the refined elements which satisfies the Dörfler marking (51)
for some 0 < θ < 1. Then,

η2
? ≤ qred η

2
` + Cred ‖∇(U`+1 − U`)‖2

L2(Ω) (52)

with certain constants 0 < qred < 1 and Cred > 0 which depend only on the parameter
0 < θ < 1, shape regularity of T?, and the polynomial degree p ≥ 1.

Sketch of proof. For the sake of completeness, we include the idea of the proof of (52) al-
though our proof is only a minor extension of the proof from [CKNS, Cor. 3.4, Proof of
Theorem 4.1], where all details are found. First, we employ a triangle inequality and the
Young inequality to see for arbitrary δ > 0

η2
? ≤ (1 + δ)

( ∑

T ′∈T?
|T ′|2/d ‖f + ∆U`‖2

L2(T ′) + |T ′|1/d ‖[∂nU`]‖2
L2(∂T ′∩Ω)

+ |T ′|1/d ‖φ− ∂nU`‖2
L2(∂T ′∩ΓN ) + |T ′|1/d ‖(1− Π?)∇Γg‖2

L2(∂T ′∩ΓD)

)

+ (1 + δ−1)
( ∑

T ′∈T?
|T ′|2/d‖∆(U? − U`)‖2

L2(T ′) + |T ′|1/d‖[∂n(U? − U`)]‖2
L2(∂T ′∩Ω)

+ |T ′|1/d‖∂n(U? − U`)‖2
L2(∂T ′∩ΓN )

)
.

A scaling argument proves that the second bracket is bounded by C ‖∇(U?−U`)‖2
L2(Ω), where

C > 0 depends only on shape regularity of T?. The first contribution of the first bracket is
estimated as follows

∑

T ′∈T?
|T ′|2/d ‖f + ∆U`‖2

L2(T ′) =
∑

T ′∈T?∩T`

|T ′|2/d ‖f + ∆U`‖2
L2(T ′)

+
∑

T ′∈T?\T`

|T ′|2/d ‖f + ∆U`‖2
L2(T ′)

Since a refined element T ∈ T`\T? is the (essentially disjoint) union of its sons T ′ ∈ T?\T`
and |T ′| ≤ |T |/2, the second sum is estimated by

∑

T ′∈T?\T`

|T ′|2/d ‖f + ∆U`‖2
L2(T ′) ≤ 2−2/d

∑

T∈T`\T?

|T |2/d ‖f + ∆U`‖2
L2(T ).

This yields
∑

T ′∈T?
|T ′|2/d ‖f + ∆U`‖2

L2(T ′) ≤
∑

T∈T`
|T |2/d ‖f + ∆U`‖2

L2(T )

− (1− 2−2/d)
∑

T∈T`\T?

|T |2/d ‖f + ∆U`‖2
L2(T ),

where the sums on the right-hand side only involve contributions of η`(T )2. We employ the
same type of argument for the other contributions. Together with the estimate

‖(1− Π?)∇Γg‖L2(∂T ′∩ΓD) ≤ ‖(1− Π`)∇Γg‖L2(∂T ′∩ΓD) for all T ′ ∈ T?
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which follows from the fact that the L2-projection onto Pp−1(ED? ) is even piecewise orthog-
onal, we are led to

( ∑

T ′∈T?
|T ′|2/d ‖f + ∆U`‖2

L2(T ′) + |T ′|1/d ‖[∂nU`]‖2
L2(∂T ′∩Ω)

+ |T ′|1/d ‖φ− ∂nU`‖2
L2(∂T ′∩ΓN ) + |T ′|1/d ‖(1− Π?)∇Γg‖2

L2(∂T ′∩ΓD)

)

≤
∑

T∈T`
η`(T )2 − (1− 2−1/d)

∑

T∈T`\T?

η`(T )2

≤
(
1− (1− 2−1/d)θ

)
η2
` .

The final estimate follows from M` ⊆ T`\T? and the Dörfler marking (51), i.e. we subtract
less. With 0 < q := 1− (1− 2−1/d)θ, we have thus proved

η2
? ≤ (1 + δ) q η2

` + (1 + δ−1)C ‖∇(U? − U`)‖2
L2(Ω).

Finally, we choose δ > 0 sufficiently small such that 0 < qred := (1 + δ) q < 1 and define
Cred = (1 + δ−1)C. �

4.2. A priori convergence of Scott-Zhang projection. We assume that (J`+1v)|T =
(J`v)|T for all T ∈ T` ∩ T`+1 with ω`,T ⊆

⋃
(T` ∩ T`+1) which can always be achieved by

an appropriate choice of the dual basis functions in the definition of J`+1. In this section,
we prove that under the aforegoing assumptions and for arbitrary refinement, i.e. T` =
refine(T`−1) for all ` ∈ N, the limit of the Scott-Zhang interpolants J`v exists in H1(Ω)
as ` → ∞. In particular, this provides the essential ingredient to prove that, under the
same assumptions, the limit of Galerkin solutions U` exists in H1(Ω). For 2D and first-order
elements p = 1, this result has first been proved in [FPP]. Although the proof transfers
directly to the present setting, we include it for the sake of completeness.

Proposition 12. Let v ∈ H1(Ω). Then, the limit J∞v := lim` J`v exists in H1(Ω) and
defines a continuous linear operator J∞ : H1(Ω)→ H1(Ω).

Proof. If the limit J∞v exists for all v ∈ H1(Ω), it is a consequence of the Banach-Steinhaus
theorem that J∞ defines, in fact, a linear and continuous operator. Hence, it remains to
prove the existence of J∞v in H1(Ω) for fixed v ∈ H1(Ω). To that end, we follow the ideas
from [MSV] and define the following subsets of Ω:

Ω0
` :=

⋃{T ∈ T` : ω`(T ) ⊆ ⋃
(⋃∞

i=0

⋂∞
j=i Tj

)
},

Ω` :=
⋃{T ∈ T` : There exists k ≥ 0 s.t. ω`(T ) is at least uniformly refined in T`+k},

Ω∗` := Ω \ (Ω` ∪ Ω0
`),

where ω`(ω) :=
⋃{T ∈ T` : T ∩ ω 6= ∅} denotes the patch of ω ⊆ Ω with respect to T`. In

other words, Ω0
` is the set of all elements whose patch is not refined anymore and thus stays

the same in Tk for all k ≥ `, whereas Ω` denotes the set of elements whose patch is uniformly
refined at least once after k steps. According to [MSV, Corollary 4.1] and uniform shape
regularity, it holds that

lim
`→∞
‖χΩ`h`‖L∞(Ω) = 0 = lim

`→∞
‖χω`(Ω`)h`‖L∞(Ω), (53)
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where χΩ` : Ω → {0, 1} denotes the characteristic function with respect to Ω` and χω`(Ω`)
the characteristic function of the patch of Ω`. Now, let ε > 0 be arbitrary. Since the space
H2(Ω) is dense in H1(Ω), we find vε ∈ H2(Ω) such that ‖v − vε‖H1(Ω) ≤ ε. Due to local
approximation and stability properties of J` (see (33) and (34)), we obtain

‖(1− J`)v‖H1(Ω`) . ‖(1− J`)vε‖H1(Ω`) + ε ≤ ‖h`D2vε‖L2(ω`(Ω`)) + ε,

where the last estimate is a consequence of the Bramble-Hilbert lemma. By use of (53),
we may choose `0 ∈ N sufficiently large to guarantee the estimate ‖h`D2vε‖L2(ω`(Ω`)) ≤
‖h`‖L∞(ω`(Ω`))‖D2vε‖L2(Ω) ≤ ε for all ` ≥ `0. Then, there holds

‖(1− J`)v‖H1(Ω`) . ε for all ` ≥ `0. (54)

According to [MSV, Proposition 4.2], it holds lim` |Ω∗` | = 0. This provides the existence of
`1 ∈ N such that

‖v‖H1(ω`(Ω
∗
` )) ≤ ε for all ` ≥ `1 (55)

due to the non-concentration of Lebesgue functions and uniform shape regularity, i.e. |ω`(Ω∗`)| .
|Ω∗` |. With these preparations, we finally aim at proving that J`v is a Cauchy sequence in
H1(Ω): Let ` ≥ max{`0, `1} and k ≥ 0 be arbitrary. First, we use that for any T ∈ T`,
(J`v)|T depends only on v|ω`(T ) because ω`,T ⊆ ω`(T ). Then, by definition of Ω0

` and our
assumption on the definition of J` and J`+k on T` ∩ T`+k, we obtain

‖J`v − J`+kv‖H1(Ω0
` )

= 0. (56)

Second, due to the local stability of J` and (55), there holds

‖J`v − J`+kv‖H1(Ω∗` ) ≤ ‖J`v‖H1(Ω∗` ) + ‖J`+kv‖H1(Ω∗` )

. ‖v‖H1(ω`(Ω
∗
` )) + ‖v‖H1(ω`+k(Ω∗` ))

≤ 2‖v‖H1(ω`(Ω
∗
` )) ≤ 2ε.

(57)

Third, we proceed by exploiting (54). We have

‖J`v − J`+kv‖H1(Ω`) ≤ ‖J`v − v‖H1(Ω`) + ‖v − J`+kv‖H1(Ω`) . ε. (58)

Combining the estimates from (56)–(58), we conclude ‖J`v − J`+kv‖H1(Ω) . ε, i.e. (J`v) is a
Cauchy sequence in H1(Ω) and hence convergent. �

Corollary 13. Under the assumptions of Proposition 12, the limit g∞ := lim` J`g exists in
H1/2(ΓD).

Proof. Let ĝ ∈ H1/2(Γ) denote an arbitrary extension of g. With some lifting operator L,
we define v := Lĝ and note that (J`v)|ΓD = (J`ĝ)|ΓD = J`g. Since J∞v = lim` J`v exists in
H1(Ω), we obtain

‖(J∞v)|ΓD − J`g‖H1/2(ΓD) ≤ ‖(J∞v)|Γ − J`ĝ‖H1/2(Γ) ≤ ‖J∞v − J`v‖H1(Ω)
`→∞−−−→ 0.

This concludes the proof with (J∞v)|ΓD =: g∞. �

4.3. A priori convergence of orthogonal projections. In this subsection, we recall an
early observation from [BV, Lemma 6.1] which will be applied several times. We stress that
the original proof of [BV] is based on the orthogonal projection. However, the argument
also works for (possibly nonlinear) projections with P`Pk = P` for ` ≤ k which satisfy a
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Céa-type quasi-optimality. Since the Scott-Zhang projection satisfies J`Jk 6= J`, in general,
Proposition 12 is not a consequence of such an abstract result.

Lemma 14. Let H be a Hilbert space and X` be a sequence of closed subspaces with X` ⊆
X`+1 for all ` ≥ 0. Let P` : H → X` denote the H-orthogonal projection onto X`. Then, for
each x ∈ H, the limit x∞ := lim

`→∞
P`x exists in H. �

Since the discrete trace spaces Sp(ED` ) are finite dimensional and hence closed subspaces
of H1/2(ΓD), the lemma immediately applies to the H1/2(ΓD)-orthogonal projection.

Corollary 15. Let P` : H1/2(ΓD) → Sp(ED` ) denote the H1/2(ΓD)-orthogonal projection.
Then, the limit g∞ := lim

`→∞
P`g exists in H1/2(ΓD). �

Corollary 16. Let π` : L2(ΓD) → S1(ED` ) denote the L2(ΓD)-orthogonal projection. Then,
the limit g∞ := lim

`→∞
π`g exists weakly in H1(ΓD) and strongly in Hα(ΓD) for all 0 ≤ α < 1.

Proof. According to Lemma 14, the limit g∞ = lim` π`g exists strongly in L2(ΓD). Moreover
and according to [KPP, Theorem 8], the π` are uniformly stable in H1(ΓD), since we use
newest vertex bisection. Hence, the sequence (π`g) is uniformly bounded in H1(ΓD) and thus
admits a weakly convergent subsequence (π`kg) with weak limit g̃∞ ∈ H1(ΓD), where weak
convergence is understood in H1(ΓD). Since the inclusion H1(ΓD) ⊂ L2(ΓD) is compact,
the sequence (π`kg) converges strongly to g̃∞ in L2(ΓD). From uniqueness of limits, we
conclude g̃∞ = g∞. Iterating this argument, we see that each subsequence of (π`g) contains a
subsequence which converges weakly to g∞ in H1(ΓD). This proves that the entire sequence
converges weakly to g∞ in H1(ΓD). Strong convergence in Hα(ΓD) follows by compact
inclusion H1(ΓD) ⊂ Hα(ΓD) for all 0 ≤ α < 1. �

4.4. A priori convergence of Galerkin solutions. We now show that the limit of
Galerkin solutions U` exists as ` → ∞ provided that the meshes are nested, i.e. T`+1 =
refine(T`).
Proposition 17. Under Assumption (17) that g∞ := lim` P`g exists in H1/2(Γ), also the
limit U∞ := lim` U` of Galerkin solutions exists in H1(Ω).

Proof. We consider the continuous auxiliary problem

−∆w` = 0 in Ω,

w` = P`g on ΓD,

∂nw` = 0 on ΓN .

Let w` ∈ H1(Ω) be the unique (weak) solution and note that the trace ĝ` := w`|Γ ∈ H1/2(Γ)
provides an extension of P`g with

‖ĝ`‖H1/2(Γ) ≤ ‖w`‖H1(Ω) . ‖P`g‖H1/2(ΓD) ≤ ‖ĝ`‖H1/2(Γ).

For arbitrary k, ` ∈ N, the same type of arguments proves

‖ĝ` − ĝk‖H1/2(Γ) ' ‖(P` − Pk)g‖H1/2(ΓD).

According to Assumption (17), (P`g) is a Cauchy sequence in H1/2(ΓD). Therefore, (ĝ`) is a
Cauchy sequence in H1/2(Γ), whence convergent with limit ĝ∞ ∈ H1/2(Γ). Next, note that
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(J`Lĝ`)|ΓD = P`g, where L : H1/2(Γ) → H1(Ω) denotes some lifting operator. Therefore,

Ũ` := U` − J`Lĝ` ∈ SpD(T`) is the unique solution of the variational formulation

〈∇Ũ` , ∇V`〉Ω = 〈∇u , ∇V`〉Ω − 〈∇J`Lĝ` , ∇V`〉Ω for all V` ∈ SpD(T`). (59)

Finally, we need to show that Ũ` and J`Lĝ` are convergent to conclude convergence of

U` = Ũ` + J`Lĝ`.
With convergence of (ĝ`) to ĝ∞ and Proposition 12, we obtain

‖J`Lĝ` − J∞Lĝ∞‖H1(Ω) ≤ ‖J`(Lĝ` − Lĝ∞)‖H1(Ω) + ‖J`Lĝ∞ − J∞Lĝ∞‖H1(Ω)

. ‖ĝ` − ĝ∞‖H1/2(Γ) + ‖J`Lĝ∞ − J∞Lĝ∞‖H1(Ω)
`→∞−−−→ 0.

This proves convergence of J`Lĝ` to J∞Lĝ∞ as ` → ∞. To see convergence of Ũ`, let

Ũ`,∞ ∈ SpD(T`) be the unique solution of the discrete auxiliary problem

〈∇Ũ`,∞ , ∇V`〉Ω = 〈∇u , ∇V`〉Ω − 〈∇J∞Lĝ∞ , ∇V`〉Ω for all V` ∈ SpD(T`). (60)

Due to the nestedness of the ansatz spaces SpD(T`), Lemma 14 predicts a priori convergence

Ũ`,∞
`→∞−−−→ Ũ∞ ∈ H1(ΩD). With the stability of (59) and (60), we obtain

‖∇(Ũ`,∞ − Ũ`)‖L2(Ω) . ‖J`Lĝ` − J∞Lĝ∞‖H1(Ω)
`→∞−−−→ 0,

and therefore Ũ`
`→∞−−−→ Ũ∞ in H1(ΩD).

Finally, we now conclude

U` = Ũ` + J`Lĝ` `→∞−−−→ Ũ∞ + J∞Lĝ∞ =: U∞ ∈ H1(Ω),

which concludes the proof. �

4.5. Proof of convergence theorem (Theorem 4). (i) Since the limit U∞ = lim` U`
exists in H1(Ω), we infer lim` ‖∇(U`+1 − U`)‖L2(Ω) = 0. In view of this and Lemma 10, the
estimator reduction estimate (52) takes the form

η2
`+1 ≤ qred η

2
` + α` for all ` ≥ 0

with some non-negative α` ≥ 0 such that lim` α` = 0, i.e. the estimator is contractive up to
a non-negative zero sequence. It is a consequence of elementary calculus that lim` η` = 0,
see e.g. [AFP, Lemma 2.3]. Finally, reliability ‖u− U`‖H1(Ω) . η` thus concludes the proof.

(ii) The verification of Assumption (17) is done in Corollary 13 for the Scott-Zhang projec-
tion, Corollary 15 for the H1/2(ΓD)-orthogonal projection, and Corollary 16 for the L2(ΓD)-
orthogonal projection. �

5. Contraction

In principle, the convergence rate of lim` U` = u from Theorem 4 could be slow. Moreover,
Theorem 4 restricts the Dirichlet projection P` by Assumption (17). In this section, we aim
to show linear convergence for some quasi-error quantity ∆` ' η2

` = %2
` + osc2

D,` with respect
to the step ` of Algorithm 1 and independently of the projection P` chosen. The essential
observation is that the marking step in Algorithm 1 is in some sense independent of the P`
chosen.
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5.1. Implicit Dörfler marking. Let Ũ` ∈ Sp(T`) be a Galerkin solution of (5) with

different Dirichlet data Ũ` = P`g on ΓD, where P` : H1/2(ΓD) → Sp(ED` ) is a uniformly
stable projection onto Sp(ED` ) in the sense of (13). Let η̃ 2

` = %̃ 2
` + osc2

D,` be the associated

error estimator. In the following, we prove that marking in Algorithm 1 with η2
` = %2

` +osc2
D,`

and sufficiently small 0 < ϑ < 1 implicitly implies the simple Dörfler marking (51) for η̃`.

Lemma 18 (local equivalence of error estimators for different projections). For arbitrary
U` ⊆ T`, it holds that

C−1
eq

∑

T∈U`
%`(T )2 ≤

∑

T∈U`
%̃`(T )2 + osc2

D,` and C−1
eq

∑

T∈U`
%̃`(T )2 ≤

∑

T∈U`
%`(T )2 + osc2

D,`. (61)

The constant Ceq > 1 depends only on shape regularity of T` and on Cstab > 0. In particular,
this implies equivalence

(Ceq + 1)−1 η2
` ≤ η̃ 2

` ≤ (Ceq + 1) η2
` . (62)

Proof. Arguing as for the estimator reduction, it follows from the triangle inequality and
scaling arguments that

%`(T )2 . %̃`(T )2 + ‖∇(U` − Ũ`)‖2
L2(ω`(T )) for all T ∈ T`,

where ω`(T ) =
⋃{

T ′ ∈ T` : T ′ ∩ T 6= ∅
}

denotes the element patch of T . Consequently, a
rough estimate gives

∑

T∈U`
%`(T )2 .

∑

T∈U`
%̃`(T )2 + ‖∇(U` − Ũ`)‖2

L2(Ω) for all U` ⊆ T`.

Recall the Galerkin orthogonality

〈∇(U` − Ũ`) , ∇V`〉 = 〈∇(u− Ũ`) , ∇V`〉 − 〈∇(u− U`) , ∇V`〉 = 0 for all V` ∈ SpD(T`).

Let ĝ ∈ H1/2(Γ) be an arbitrary extension of (U` − Ũ`)|ΓD = (P` − P`)g ∈ H1/2(ΓD). We

choose the test function V` = (U` − Ũ`)− J`Lĝ ∈ S1
D(T`) to see

‖∇(U` − Ũ`)‖2
L2(Ω) = 〈∇(U` − Ũ`) , ∇J`Lĝ〉Ω.

Stability of Scott-Zhang projection J` and lifting operator L thus give

‖∇(U` − Ũ`)‖L2(Ω) ≤ ‖∇J`Lĝ‖L2(Ω) . ‖ĝ‖H1/2(Γ).

Since ĝ was an arbitrary extension of (P` − P`)g, we end up with

‖∇(U` − Ũ`)‖L2(Ω) . ‖(P` − P`)g‖H1/2(ΓD) ≤ ‖(P` − 1)g‖H1/2(ΓD) + ‖(1− P`)g‖H1/2(ΓD)

. oscD,`,

where we have used Corollary 9. This proves the first estimate in (61), and the second follows
with the same arguments. �

The following lemma is the main reason, why we stick with Stevenson’s modified Dörfler
marking (11)–(12) instead of simple Dörfler marking (51).
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Lemma 19 (modified Dörfler marking implies Dörfler marking for different projection). For
arbitrary 0 < θ1, θ2 < 1 and sufficiently small 0 < ϑ < 1, there is some 0 < θ < 1 such that
the marking criterion (11)–(12) for η2

` = %2
` + osc2

D,` implies the Dörfler marking

θ η̃ 2
` ≤

∑

T∈M`

η̃`(T )2 (63)

for η̃ 2
` = %̃ 2

` + osc2
D,`. The parameter 0 < θ < 1 depends on 0 < θ1, θ2, ϑ < 1 and on Ceq > 0.

Proof. We argue as in the proof of Lemma 10. First, assume osc2
D,` ≤ ϑ %2

` and let M` ⊆ T`
satisfy (11). According to Lemma 18, we see

θ1 η
2
` ≤ θ1(1 + ϑ)%2

` ≤ (1 + ϑ)
∑

T∈M`

%`(T )2 ≤ Ceq(1 + ϑ)
( ∑

T∈M`

%̃`(T )2 + osc2
D,`

)

≤ Ceq(1 + ϑ)
( ∑

T∈M`

%̃`(T )2 + ϑ %2
`

)
.

This proves
(
θ1C

−1
eq (1 + ϑ)−1 − ϑ

)
η2
` ≤

∑

T∈M`

%̃`(T )2.

Together with (Ceq + 1)−1 η̃ 2
` ≤ η2

` , we thus obtain the Dörfler marking (63) with 0 < θ ≤
(Ceq + 1)−1

(
θ1C

−1
eq (1 +ϑ)−1−ϑ

)
< 1, provided that 0 < ϑ < 1 is sufficiently small compared

to 0 < θ1 < 1.
Second, assume osc2

D,` > ϑ%2
` and let MD

` ⊆ ED` satisfy (12). Then,

θ2 η
2
` ≤ θ2(1 + ϑ−1)osc2

D,` ≤ (1 + ϑ−1)
∑

E∈MD
`

oscD,`(E)2 ≤ (1 + ϑ−1)
∑

T∈M`

η̃`(T )2,

where M` =
{
T ∈ T` : ∃E ∈ MD

` E ⊂ ∂T
}

is defined in step (iv) of Algorithm 1. As
before (Ceq + 1)−1 η̃ 2

` ≤ η2
` thus proves (51) with 0 < θ ≤ C−1

eq θ2(1 + ϑ−1)−1 < 1. �

5.2. Quasi-Pythagoras theorem. To prove Theorem 5, we consider a theoretical auxiliary

problem: Throughout the remainder of Section 5, Ũ` ∈ Sp(T`) denotes the Galerkin solution

of (5) with Dirichlet data Ũ` = P`g on ΓD, where P` : H1/2(ΓD) → Sp(ED` ) denotes the

H1/2(ΓD)-orthogonal projection. Associated with Ũ` is the error estimator η̃ 2
` = %̃ 2

` + osc2
D,`,

where %̃` is defined in (10) with U` replaced by Ũ`.
Recall that the aforegoing statements of Section 3 and Section 4 hold for any uniformly

H1/2(ΓD)-stable projection P` and thus apply to η̃ 2
` = %̃ 2

` + osc2
D,`. We shall need relia-

bility ‖u − Ũ`‖2
H1(Ω) . η̃ 2

` as well as the estimator reduction (52) from Proposition 11 for

η̃ 2
` , which is a consequence of Lemma 19. Our concept of proof of Theorem 5 goes back

to [CKNS, Proof of Theorem 4.1]. Therein, however, the proof relies on the Pythagoras
theorem ‖∇(u−U`)‖2

L2(Ω) = ‖∇(u−U`+1)‖2
L2(Ω) + ‖∇(U`+1−U`)‖2

L2(Ω) which does not hold

in case of inhomogeneous Dirichlet data and P`g 6= P`+1g, in general. Instead, we rely on a
perturbed Pythagoras theorem which will be used for the auxiliary problem.
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Lemma 20 (quasi-Pythagoras theorem). Let T? = refine(T`) be an arbitrary refinement of

T` with the associated auxiliary solution Ũ? ∈ Sp(T?), where Ũ? = P?g on ΓD. Then,

(1− α) ‖∇(u− Ũ?)‖2
L2(Ω) ≤ ‖∇(u− Ũ`)‖2

L2(Ω) − ‖∇(Ũ? − Ũ`)‖2
L2(Ω)

+ α−1Cpyth ‖(P? − P`)g‖2
H1/2(ΓD)

(64)

for all α > 0. The constant Cpyth > 0 depends only on the shape regularity of σ(T`) and
σ(T?) and on Ω and ΓD.

Proof. We recall the Galerkin orthogonality

〈∇(u− Ũ?) , ∇V?〉Ω = 0 for all V? ∈ SpD(T?).

Now, let Ũ `
? ∈ Sp(T?) be the unique Galerkin solution of (5) with Ũ `

?|ΓD = P`g. We use the

Galerkin orthogonality with V? = Ũ `
? − Ũ` ∈ SpD(T?). This and the Young inequality allow

to estimate the L2-scalar product

2|〈∇(u− Ũ?) , ∇(Ũ? − Ũ`)〉Ω| = 2|〈∇(u− Ũ?) , ∇(Ũ? − Ũ `
?)〉Ω|

≤ α‖∇(u− Ũ?)‖2
L2(Ω) + α−1‖∇(Ũ? − Ũ `

?)‖2
L2(Ω)

for all α > 0. To estimate the second contribution on the right-hand side, we choose an
arbitrary extension ĝ ∈ H1/2(Γ) of (P? − P`)g ∈ H1/2(ΓD). Then, we use the test function

V? = (Ũ?−Ũ `
?)−J?Lĝ ∈ SpD(T?), where L : H1/2(Γ)→ H1(Ω) again denotes a lifting operator.

Recall that the choice of the Scott-Zhang projection J? guarantees that this function has zero
Dirichlet data on ΓD since ĝ|ΓD = (P? − P`)g ∈ Sp(ED? ). Now, the Galerkin orthogonalities

for Ũ?, Ũ
`
? ∈ Sp(T?) yield

0 = 〈∇(u− Ũ `
?) , ∇V?〉Ω − 〈∇(u− Ũ?) , ∇V?〉Ω = 〈∇(Ũ? − Ũ `

?) , ∇V?〉Ω.

By the above choice of V? ∈ SpD(T?) and stability of J? and L, this yields

‖∇(Ũ? − Ũ `
?)‖2

L2(Ω) = 〈∇(Ũ? − Ũ `
?) , ∇J?Lĝ〉Ω . ‖∇(Ũ? − Ũ `

?)‖L2(Ω)‖ĝ‖H1/2(Γ).

Since ĝ was an arbitrary extension of (P? − P`)g ∈ H1/2(ΓD) to H1/2(Γ), this yields

‖∇(Ũ? − Ũ `
?)‖L2(Ω) . ‖(P? − P`)g‖H1/2(ΓD).

So far, we have thus derived

2|〈∇(u− Ũ?) , ∇(Ũ? − Ũ`)〉Ω| ≤ α‖∇(u− Ũ?)‖2
L2(Ω) + α−1Cpyth ‖(P? − P`)g‖2

H1/2(ΓD),

To verify (64), we use the identity

‖∇(u− Ũ`)‖2
L2(Ω) = ‖∇

(
(u− Ũ?) + (Ũ? − Ũ`)

)
‖2
L2(Ω)

= ‖∇(u− Ũ?)‖2
L2(Ω) + 2〈∇(u− Ũ?) , ∇(Ũ? − Ũ`)〉Ω + ‖∇(Ũ? − Ũ`)

)
‖2
L2(Ω).

Rearranging the terms accordingly and use of the estimate for the scalar product, we conclude
the proof. �

20



5.3. Proof of contraction theorem (Theorem 5). Using the quasi-Pythagoras theo-
rem (64) with T? = T`+1, we see

(1− α) ‖∇(u− Ũ`+1)‖2
L2(Ω) ≤ ‖∇(u− Ũ`)‖2

L2(Ω) − ‖∇(Ũ`+1 − Ũ`)‖2
L2(Ω)

+ α−1Cpyth ‖(P`+1 − P`)g‖2
H1/2(ΓD).

The use of the H1/2(ΓD)-orthogonal projection provides the orthogonality relation

‖(1− P`+1)g‖2
H1/2(ΓD) + ‖(P`+1 − P`)g‖2

H1/2(ΓD) = ‖(1− P`)g‖2
H1/2(ΓD).

Combining the last two estimates, we obtain

(1− α) ‖∇(u− Ũ`+1)‖2
L2(Ω) + α−1Cpyth‖(1− P`+1)g‖2

H1/2(ΓD)

≤ ‖∇(u− Ũ`)‖2
L2(Ω) + α−1Cpyth‖(1− P`)g‖2

H1/2(ΓD) − ‖∇(Ũ`+1 − Ũ`)‖2
L2(Ω).

Applying Lemma 19, we see that Algorithm 1 for η2
` = %2

`+osc2
D,` implicitly implies the Dörfler

marking (63) (resp. (51)) for η̃ 2
` = %̃ 2

` + osc2
D,`. Therefore, the estimator reduction (52) of

Proposition 11 applies to the auxiliary problem and provides

η̃ 2
`+1 ≤ qred η̃

2
` + Cred‖∇(Ũ`+1 − Ũ`)‖2

L2(Ω) for all ` ≥ 0.

Now, we add the last two estimates to see, for β > 0,

(1− α) ‖∇(u− Ũ`+1)‖2
L2(Ω) + α−1Cpyth‖(1− P`+1)g‖2

H1/2(ΓD) + β η̃ 2
`+1

≤ ‖∇(u− Ũ`)‖2
L2(Ω) + α−1Cpyth‖(1− P`)g‖2

H1/2(ΓD) + βqred η̃
2
`

+ (βCred − 1) ‖∇(Ũ`+1 − Ũ`)‖2
L2(Ω).

We choose β > 0 sufficiently small to guarantee βCred−1 ≤ 0, i.e. the last term on the right-

hand side of the last estimate can be omitted. Then, we use the reliability ‖u−Ũ`‖2
H1(Ω) . η̃ 2

`

and the estimate ‖(1− P`)g‖2
H1/2(ΓD)

. osc2
D,` ≤ η̃ 2

` from Corollary 9 in the form

‖∇(u− Ũ`)‖2
L2(Ω) + ‖(1− P`)g‖2

H1/2(ΓD) ≤ C η̃ 2
`

to see, for arbitrary γ, δ > 0

(1−α) ‖∇(u− Ũ`+1)‖2
L2(Ω) + α−1Cpyth‖(1− P`+1)g‖2

H1/2(ΓD) + β η̃ 2
`+1

≤ ‖∇(u− Ũ`)‖2
L2(Ω) + α−1Cpyth‖(1− P`)g‖2

H1/2(ΓD) + βqred η̃
2
`

≤ (1− γβC−1) ‖∇(u− Ũ`)‖2
L2(Ω) + (1− δβC−1)α−1Cpyth ‖(1− P`)g‖2

H1/2(ΓD)

+ β(qred + γ + δα−1Cpyth) η̃ 2
` .

For 0 < α < 1, we may now rearrange this estimate to end up with

‖∇(u− Ũ`+1)‖2
L2(Ω) +

Cpyth

α(1− α)
‖(1− P`+1)g‖2

H1/2(ΓD) +
β

1− α η̃
2
`+1

≤ 1− γβC−1

1− α ‖∇(u− Ũ`)‖2
L2(Ω) + (1− δβC−1)

Cpyth

α(1− α)
‖(1− P`)g‖2

H1/2(ΓD)

+ (qred + γ + δα−1Cpyth)
β

1− α η̃
2
` .
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It remains to choose the free constants 0 < α, γ, δ < 1, whereas β > 0 has already been
fixed:

• First, choose 0 < γ < 1 sufficiently small to guarantee 0 < qred + γ < 1 and 0 <
γβC−1 < 1.
• Second, choose 0 < α < 1 sufficiently small such that 0 < (1− γβC−1)/(1− α) < 1.
• Third, choose δ > 0 sufficiently small with qred + γ + δα−1Cpyth < 1.

With µ := β/(1 − α), λ := α−1Cpyth/(1 − α), and 0 < κ < 1 the maximal contraction
constant of the three contributions, we end up with the contraction estimate (20).

It thus only remains to prove equivalence (21): According to the definition of ∆` in (20), we
have equivalence ∆` ' η̃ 2

` . Finally, Lemma 18 implies η̃ 2
` ' η2

` and concludes the proof. �

Remark. For P` = P` the H1/2(ΓD)-orthogonal projection, the proof reveals that Theo-
rem 5 holds without any restriction on the adaptivity parameters and even for simple Dörfler
marking (51). �

6. Quasi-optimality

In this section, we aim to prove Theorem 6–7. In some sense, the heart of the matter
of the quasi-optimality analysis is the discrete local reliability of Proposition 21. This is,
however, only proved for discrete Dirichlet data obtained by the Scott-Zhang projection. We

therefore consider this as an auxiliary problem: Let Ũ` ∈ Sp(T`) denote the Galerkin solution

of (5) with respect to the Scott-Zhang projection, i.e. Ũ` = J`g on ΓD. Finally and as above,
η̃ 2
` = %̃ 2

` +osc2
D,` denotes the error estimator for this auxiliary problem. Although the discrete

local reliability of η̃` does not imply discrete local reliability of the error estimator η` for the
primal problem, we will see that nevertheless discrete local reliability of an equivalent error
estimator is sufficient for quasi-optimality.

6.1. Optimality of Dörfler marking. Throughout, we assume that the Scott-Zhang
projections are chosen with respect to the assumptions of Section 4.2.

Proposition 21 (discrete local reliability for Scott-Zhang projection). Let T? = refine(T`)
be an arbitrary refinement of T` and Ũ? ∈ Sp(T?) the corresponding Galerkin solution (5)

with Ũ? = J?g on ΓD. Then, there is a set R` ⊆ T` which contains the refined elements,
T`\T? ⊆ R` such that

‖Ũ? − Ũ`‖H1(Ω) ≤ Cdlr

∑

T∈R`
η̃`(T )2 and #R` ≤ Cref #(T`\T?). (65)

The constants Cdlr, Cref > 0 depend only on T0 and the use of newest vertex bisection.

Proof. We consider a discrete auxiliary problem

〈∇W? , ∇V?〉Ω = 0 for all V? ∈ SpD(T?)

with unique solution W? ∈ Sp(T?) with W?|ΓD = (J? − J`)g. Then, (Ũ? − Ũ` − W?) ∈
SpD(T?), and the H1-norm is bounded by the H1-seminorm. Moreover, arguing as in [CKNS,
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Lemma 3.6], we see

‖Ũ? − Ũ` −W?‖2
H1(Ω) . ‖∇(Ũ? − Ũ` −W?)‖2

L2(Ω) .
∑

T∈T`\T?

%̃`(T )2 ≤
∑

T∈T`\T?

η̃`(T )2.

According to the triangle inequality, it thus only remains to bound ‖W?‖H1(Ω) by
∑

T∈R` η̃`(T )2

with some appropriate R` ⊇ T`\T?. To that end, let L : H1/2(Γ) → H1(Ω) be a lift-
ing operator and ĝ ∈ H1/2(Γ) an arbitrary extension of (J? − J`)g ∈ H1/2(ΓD). With
V? := W? − J?Lĝ ∈ SpD(T?), we obtain

‖W?‖L2(Ω) ≤ ‖V?‖L2(Ω) + ‖J?Lĝ‖L2(Ω) . ‖∇V?‖L2(Ω) + ‖J?Lĝ‖L2(Ω)

. ‖∇W?‖L2(Ω) + ‖J?Lĝ‖H1(Ω).

Moreover, the variational formulation for W? ∈ Sp(T?) yields

0=〈∇W? , ∇V?〉Ω =‖∇W?‖2
L2(Ω)−〈∇W? , ∇J?Lĝ〉Ω, whence ‖∇W?‖L2(Ω) ≤ ‖∇J?Lĝ‖L2(Ω).

Combining the last two estimates, we obtain

‖W?‖H1(Ω) . ‖J?Lĝ‖H1(Ω) . ‖ĝ‖H1/2(Γ).

Since ĝ was an arbitrary extension, this proves

‖W?‖H1(Ω) . ‖(J? − J`)g‖H1/2(ΓD).

To abbreviate the notation in the remainder of the proof, letRD
` := ED` \E?` denote the refined

Dirichlet facets. We define inductively

ω0
` =

⋃RD
` , ωn` =

⋃{
E ∈ ED` : E ∩ ωn−1

` 6= ∅
}

for n ≥ 1,

i.e. ωn` denotes the region of the refined Dirichlet facets plus n layers of (non-refined) Dirichlet
facets with respect to ED` . Note that ω1

` is nothing but the usual patch of RD
` . Due to the

local definition of J` and J?, we observe

(J? − J`)g = 0 on ΓD \ ω1
` . (66)

Let ζ`,z ∈ S1(ED` ) denote the hat function associated with some node z ∈ KD` of ED` . Clearly,
the hat functions

{
ζ`,z : z ∈ KD`

}
provide a partition of unity

∑
z∈KD`

ζ`,z = 1 on ΓD resp.∑
z∈KD` ∩ω1

`
ζ`,z = 1 on ω1

` . Exploiting (66), we see

‖(J? − J`)g‖H1/2(ΓD) =
∥∥∥

∑

z∈KD` ∩ω1
`

ζ`,z(J? − J`)g
∥∥∥
H1/2(ΓD)

. (67)

We now adapt the arguments of [CMS, FKMP] to our setting. Analogously to the proof
of [CMS, Theorem 3.2] resp. [FKMP, Proposition 4.3], we obtain

∥∥∥
∑

z∈KD` ∩ω1
`

ζ`,z(J? − J`)g
∥∥∥

2

H1/2(ΓD)
.

∑

z∈KD` ∩ω1
`

‖ζ`,z(J? − J`)g‖2
H1/2(ΓD)

.
∑

z∈KD` ∩ω1
`

‖ζ`,z(J? − J`)g‖L2(ΓD)‖ζ`,z(J? − J`)g‖H1(ΓD),

where the final estimate is just the interpolation estimate. As above, let

ω0
`,z := {z}, ωn`,z :=

⋃{
E ∈ ED` : E ∩ ωn−1

`,z 6= ∅
}

for n ≥ 1,
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i.e. ω1
`,z =

⋃{
E ∈ ED` : z ∈ E

}
denotes the node patch of z ∈ KD` which is just the

support of the hat function ζ`,z on ΓD. To proceed, we apply the Friedrichs inequality to the
summands on the right-hand side of the estimate above and derive

∥∥∥
∑

z∈KD` ∩ω1
`

ζ`,z(J? − J`)g
∥∥∥

2

H1/2(ΓD)
.

∑

z∈KD` ∩ω1
`

diam(ω1
`,z)‖∇Γ

(
ζ`,z(J? − J`)g

)
‖2
L2(ω1

`,z)

'
∑

z∈KD` ∩ω1
`

‖h1/2
` ∇Γ

(
ζ`,z(J? − J`)g

)
‖2
L2(ω1

`,z).
(68)

Here, h` ∈ L∞(ΓD) denotes the local mesh-width function h`|E = |T |1/d for E ∈ ED` and
T ∈ T` the unique element with E ⊂ ∂T . Formally, the constants in the Friedrichs inequality
depend on the shape of ω1

`,z. Note, however, that there are only finitely many shapes of
patches due to the use of newest vertex bisection. Next, we use the estimate |∇Γζ`,z|E| '
diam(E)−1 ' h−1

` |E for E ∈ ED` . This and the product rule yield

‖h1/2
` ∇Γ

(
ζ`,z(J? − J`)g

)
‖2
L2(ω1

`,z)

≤ ‖h1/2
` (∇Γζ`,z)(J? − J`)g‖2

L2(ω1
`,z) + ‖h1/2

` ∇Γ(J? − J`)g‖2
L2(ω1

`,z)

. ‖h−1/2
` (J? − J`)g‖2

L2(ω1
`,z) + ‖h1/2

` ∇Γ(J? − J`)g‖2
L2(ω1

`,z)

= ‖h−1/2
` J?(1− J`)g‖2

L2(ω1
`,z) + ‖h1/2

` ∇ΓJ?(1− J`)g‖2
L2(ω1

`,z).

Finally, the local stability of J? and the local approximation property of J` yield

‖h1/2
` ∇Γ

(
ζ`,z(J? − J`)g

)
‖2
L2(ω1

`,z) . ‖h
−1/2
` (1− J`)g‖2

L2(ω2
`,z) + ‖h1/2

` ∇Γ(1− J`)g‖2
L2(ω2

`,z)

. ‖h1/2
` ∇Γ(1− J`)g‖2

L2(ω3
`,z)

. ‖h1/2
` (1− Π`)∇Γg‖2

L2(ω4
`,z),

(69)

where we have finally used Estimate (41) of Proposition 8. Now, let R̃D
` :=

{
E ∈ ED` : E ⊆

ω5
`

}
denote the set of Dirichlet facets which lie in ω5

` and note that #R̃D
` ' #RD

` . #(T`\T?)
up to shape regularity. The combination of (67)–(69) yields

‖W?‖2
H1(Ω) . ‖(J? − J`)g‖2

H1/2(ΓD) .
∑

z∈KD` ∩ω1
`

‖h1/2
` (1− Π`)∇Γg‖2

L2(ω4
`,z)

' ‖h1/2
` (1− Π`)∇Γg‖2

L2(ω5
` )

.
∑

E∈R̃D`

oscD,`(E)2,

due to (41)–(42) in Proposition 8 Defining the set

R` := T`\T? ∪
{
T ∈ T` : ∃E ∈ R̃D

` E ⊂ ∂T
}
,
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we observe T`\T? ⊆ R` as well as #R` . #(T`\T?). Moreover, the definition of the local
contributions of η̃` in (50) shows

∑

E∈R̃D`

oscD,`(E)2 ≤
∑

T∈R`
η̃`(T )2.

This concludes the proof. �

Corollary 22 (optimality of Dörfler marking for Scott-Zhang projection). For arbitrary
0 < κ? < 1, there is a constant 0 < θ? < 1 such that for all ` ∈ N0 and all meshes
T? = refine(T`) with η̃ 2

? ≤ κ? η̃
2
` , the set R` ⊆ T` from Proposition 21 satisfies the Dörfler

marking

θ η̃ 2
` ≤

∑

T∈R`
η̃`(T )2 (70)

for all 0 < θ ≤ θ?.

Proof. We split the estimator into the contributions on the non-refined resp. refined elements

η̃ 2
` =

∑

T∈T`
η̃`(T )2 =

∑

T∈T`∩T?
η̃`(T )2 +

∑

T∈T`\T?

η̃`(T )2.

Arguing as for the estimator reduction in Proposition 11 with δ = 1, we see
∑

T∈T`∩T?
η̃`(T )2 ≤ 2

∑

T∈T`∩T?
η̃?(T )2 + Cred ‖∇(Ũ? − Ũ`)‖2

L2(Ω) ≤ 2η̃ 2
? + Cred ‖∇(Ũ? − Ũ`)‖2

L2(Ω).

We now combine both estimates and use η̃ 2
? ≤ κ? η̃

2
` as well as the discrete local reliability

with R` ⊇ T`\T? to see

η̃ 2
` ≤ 2η̃ 2

? + Cred ‖∇(Ũ? − Ũ`)‖2
L2(Ω) +

∑

T∈T`\T?

η̃`(T )2 ≤ 2κ? η̃
2
` + (CredCdlr + 1)

∑

T∈R`
η̃`(T )2.

Rearranging this estimate, we obtain

(CredCdlr + 1)−1(1− 2κ?) η̃
2
` ≤

∑

T∈R`
η̃`(T )2,

so that 0 < θ? := (CredCdlr + 1)−1(1− 2κ?) < 1 concludes the proof. �

6.2. Optimality of newest vertex bisection. The quasi-optimality analysis of AFEM
requires two properties of the mesh-refinement which are satisfied for newest vertex bisection:
First, for two triangulations T ′, T ′′ ∈ T, let T ′⊕T ′′ ∈ T be the coarsest common refinement
of both. Since newest vertex bisection is a binary refinement rule, it can be proved that
T ′ ⊕ T ′′ is just the overlay of both meshes, see [S07, Proof of Lemma 5.2] for 2D and the
generalization to arbitrary dimension in [CKNS, Lemma 3.7]. Moreover, the number of
elements of the overlay is controlled by

#(T ′ ⊕ T ′′) ≤ #T ′ + #T ′′ −#T0, (71)

since both meshes are generated from the initial mesh T0.
Second, we need the optimality of the mesh-closure, i.e. the definition T`+1 = refine(T`,M`)

leads at least to refinement of all marked elements T ∈ M`. In addition, further elements
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T ∈ T`\M` have to be refined to ensure conformity of the mesh. It has been proved in [BDD,
Theorem 2.4] for 2D that

#T`+1 −#T0 ≤ Cnvb

∑̀

j=0

#Mj for all ` ≥ 0, (72)

i.e. the number of elements in T`+1 is bounded by the number of marked elements. The
constant Cnvb > 0 depends only on T0 in the sense that the initial reference edge distribution
had to satisfy a certain assumption. Very recently [KPP], it could be proved that (72)
holds without any further assumptions on T0. For arbitrary dimension, (72) has been proved
in [S08, Theorem 6.1] and T0 has to satisfy a certain assumption on the initial reference edge
distribution.

6.3. Proof of quasi-optimality of AFEM (Theorem 6). In a first step, we prove that

#M` . ∆
−1/(2s)
` . To that end, let ε > 0 be a free parameter which is determined later.

According to the definition of the approximation class As, there is some triangulation Tε ∈ T
with

ηε ≤ ε and #Tε −#T0 . ε−1/s,

where the hidden constant depends only on As. We consider the overlay T? := Tε ⊕ T`.
Arguing as for the estimator reduction (52) and use of the discrete local reliability for η̃`, we
obtain

η̃? . η̃` + ‖∇(Ũ? − Ũ`)‖L2(Ω) . η̃` ' η` ≤ ε,

where we have finally used the equivalence of both error estimators provided by Lemma 18.
Choosing ε = δ η` ' δ η̃` with sufficiently small δ > 0, we thus infer

η̃? ≤ κ̃?η̃`

with some appropriate 0 < κ̃? ≤ κ?, where arbitrary 0 < κ? < 1 in Proposition 22 fixes 0 <
θ? < 1. The constant κ̃? will be determined later. Together with the overlay estimate (71),
we infer

#R` ' #(T`\T?) ≤ #T? −#T` ≤ #Tε −#T0 . ε−1/s

as well as the Dörfler estimate

θ?η̃
2
` ≤

∑

T∈R`
η̃`(T )2.

We now need to show that this implies Stevenson’s modified Dörfler marking. To that end,
we again employ Lemma 18:
• In case of osc2

D,` ≤ ϑ %2
` , we employ Lemma 18 twice to see

θ?%
2
` . θ?η̃

2
` ≤

∑

T∈R`
η̃`(T )2 + osc2

D,` .
∑

T∈R`
%`(T )2 + osc2

D,` ≤
∑

T∈R`
%`(T )2 + ϑ%2

` .

Put differently, we obtain
(
(Ceq + 1)−2θ? − ϑ

)
%2
` ≤

∑

T∈R`
%`(T )2,

i.e. for 0 < ϑ, θ1 < 1 sufficiently small, the set R` ⊆ T` satisfies the marking criterion (11).
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• In case of osc2
D,` > ϑ%2

` , we use that the Dirichlet oscillations are locally determined, i.e.
∑

E∈ED` ∩ED?

oscD,`(E)2 =
∑

E∈ED` ∩ED?

oscD,?(E)2 ≤ osc2
D,? ≤ η̃ 2

? ≤ κ̃?η̃
2
` ' κ̃?η

2
` ≤ κ̃?(1 + ϑ−1) osc2

D,`.

This estimate yields
(
1− κ̃?(1 + ϑ−1)(Ceq + 1)

)
osc2

D,` ≤
∑

E∈ED` \ED?

oscD,`(E)2

For arbitrary 0 < θ2 < 1 and sufficiently small 0 < κ̃? < 1, we infer that ED` \ED? satisfies the
marking criterion (12).

In the first case, minimal cardinality of M` ⊆ T` in step (iii) of Algorithm 1 implies
#M` ≤ #R` ' #(T`\T?). In the second case, minimal cardinality of MD

` ⊆ ED` and the
definition of M` ⊆ T` in step (iv) of Algorithm 1 imply #M` ≤ #MD

` ≤ #(ED` \ED? ) .
#(T`\T?). In either case, we thus conclude

#M` . #(T`\T?) . ε−1/s ' η
−1/s
` ' ∆

−1/(2s)
` . for all ` ≥ 0.

We now conclude the proof as e.g. in [S07, CKNS]: By use of the closure estimate (72),
we obtain

#T` −#T0 .
`−1∑

j=0

#Mj .
`−1∑

j=0

∆
−1/(2s)
j .

Note that the contraction property (20) of ∆j implies ∆` ≤ κ`−j ∆j, whence ∆
−1/(2s)
j ≤

κ(`−j)/(2s) ∆
−1/(2s)
` . According to 0 < κ < 1 and the geometric series, this gives

#T` −#T0 . ∆
−1/(2s)
`

`−1∑

j=0

κ(`−j)/(2s) . ∆
−1/(2s)
` ' η

−1/s
` .

Altogether, we may therefore conclude that (u, f, g, φ) ∈ As implies η` . (#T` −#T0)−s for
all ` ≥ 0. The converse implication is obvious by definition of As. �

6.4. Characterization of approximation class (Theorem 7). First, note that for a
given mesh T? ∈ T the estimator η? dominates all oscillation terms, i.e.

oscT ,? ≤ η?, oscD,? ≤ η?, oscN,? ≤ η?.

We assume (u, f, g, φ) ∈ As for some s > 0. For each N ∈ N it exists T? ∈ TN such that

N soscT ,? ≤ N sη? ≤ C := sup
N∈N

inf
T?∈TN

N sη? <∞. (73)

Analogously, we have

N soscN,? ≤ C <∞ and N soscD,? ≤ C <∞. (74)

The reliability result in Proposition 3 yields

min
V?∈Sp(T?)

N s‖u− V?‖H1(Ω) ≤ N s‖u− U?‖H1(Ω) ≤ CrelN
sη? ≤ CrelC <∞. (75)

Because N ∈ N was arbitrary, the estimates (73)–(75) prove (26)–(29).
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Now, we assume that (26)–(29) hold for (u, f, g, φ). We aim to prove (u, f, g, φ) ∈ As. By
use of the efficiency estimate in Proposition 3 and the Céa-type estimate in Proposition 2,
we derive

sup
N∈N

inf
T?∈TN

N sη? ≤ Ceff sup
N∈N

inf
T?∈TN

N s
(
CCéa min

V?∈Sp(T?)
‖u− V?‖2

H1(Ω)

+ osc2
T ,? + osc2

N,? + osc2
D,?

)
.

(76)

For N ∈ N, the assumption (26)–(29) guarantee meshes T?u , T?Ω
, T?N , T?D ∈ TN/4 such that

(N/4)s min
V?u∈Sp(T?u )

‖u− V?u‖H1(Ω) ≤ sup
N>0

inf
T?∈TN

min
V?∈Sp(T?)

N s‖u− V?‖H1(Ω) =: Cu <∞,

(N/4)s oscT ,?Ω
≤ sup

N>0
inf
T?∈TN

N soscT ,? =: CoscT <∞,

(N/4)s oscN,?N ≤ sup
N>0

inf
T?∈TN

N soscN,? =: CoscN <∞,

(N/4)s oscD,?D ≤ sup
N>0

inf
T?∈TN

N soscD,? =: CoscD <∞.

Now, we consider the overlay T∗ := T?u ⊕ T?Ω
⊕ T?N ⊕ T?D . The overlay estimate (71) gives

#T∗ ≤ N −3#T0, whence #T∗−#T0 ≤ N . Due to the fact that ΠE and ΠT are projections,
we get immediately by definition of the oscillation terms and Sp(T∗) ⊇ Sp(T?u)

min
V∗∈Sp(T∗)

‖u− V∗‖H1(Ω) ≤ min
V?u∈Sp(T?u )

‖u− V?u‖H1(Ω),

oscT ,∗ ≤ oscT ,?Ω
, oscN,∗ ≤ oscN,?N , and oscD,∗ ≤ oscD,?D .

Together with (76), we prove

inf
T?∈TN

N sη? ≤ CeffN
s
(
CCéa min

V∗∈Sp(T∗)
‖u− V∗‖2

H1(Ω) + osc2
T ,∗ + osc2

N,∗ + osc2
D,∗

)

≤ CeffN
s
(
CCéa min

V?u∈Sp(T?u )
‖u− V?u‖2

H1(Ω) + osc2
T ,?T + osc2

N,?N
+ osc2

D,?D

)

≤ Ceff4−s(CCéaCu + CoscT + CoscN + CoscD) <∞,
where the constants are independent of N ∈ N. Taking the supremum over N ∈ N, we
conclude (u, f, g, φ) ∈ As. �

7. Numerical Experiment

In this section, we provide numerical results for mixed boundary value problems in two
and three space dimensions for the lowest-order case p = 1. In both examples we choose
ϑ = θ1 = θ2 in Algorithm 1. For comparison of the individual contributions %`, we further
define the jump terms

%`(EΩ
` )2 :=

∑

E∈EΩ
`

|T |1/d‖[∂nU`]‖2
L2(E), (77)

the volume terms

%`(Ω)2 :=
∑

T∈T`
|T |2/d‖f‖2

L2(T ) (78)
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Figure 1. Numerical results for %` for uniform and adaptive mesh-refinement
using θ ∈ {1/4, 1/8, 1/16} and L2-orthogonal projection and Scott-Zhang pro-
jection in 2D, respectively, plotted over the number of elements N = #T`.
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` ) (adap.) oscD,` (adap.)

Figure 2. Numerical results for %`(EΩ
` ), %`(EN` ) and oscD,` for uniform and

adaptive mesh-refinement using θ = 0.25 and Scott-Zhang projection in 2D,
plotted over the number of elements N = #T`.

and the Neumann terms

%`(EN` )2 :=
∑

E∈EN`

|T |1/d‖φ− ∂nU`‖2
L2(E). (79)

for the respective space dimension d ∈ 2, 3.

7.1. 2D example on Z-shape. In our first example, we consider the Z-shaped domain
Ω = (−1, 1)2\conv{(0, 0), (−1,−1), (0,−1)}, see Figure 3, where also the partition of the
boundary Γ = ∂Ω into Dirichlet boundary ΓD and Neumann boundary ΓN as well as the
initial mesh is shown. We prescribe the exact solution

u(x) = r4/7 cos(4ϕ/7) (80)

of problem 1 in polar coordinates x = r(cosϕ, sinϕ) and compute the Neumann and Dirichlet
data thereof. Note, that f is harmonic so that

−∆u = f = 0.

The solution u as well as the Dirichlet data g = u|Γ show a generic singularity at the reentrant
corner r = 0.
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Figure 3. Z-shaped domain with initial mesh T0 and adaptively generated
mesh T11 with N = 9.864 for θ = 0.25. The Dirichlet boundary ΓD is marked
red, whereas the blue parts denote the Neumann boundary Γ\ΓD.

Figure 1 shows a comparison between uniform and adaptive mesh refinement, where the
adaptivity parameter θ varies between 1/4 and 1/16 and where the Dirichlet data are dis-
cretized by means of the L2-projection and the Scott-Zhang projection, respectively. It is
easily seen that both discretizations lead to the optimal convergence rate O(N−1/2) for all
parameters θ, whereas uniform refinement leads only to suboptimal convergence behaviour
of approximately O(N−2/7). Note that due to f ≡ 0, we have no volume contributions in
this example.

In Figure 2, we compare the jump terms, the Neumann terms, as well as the Dirichlet
oscillations oscD,` for uniform and adaptive refinement, where we have chosen the Scott-
Zhang projection to discretize the boundary data. Even here, we observe better convergence
rates with adaptive refinement. Due to the corner singularity of the exact solution at r = 0,
uniform refinement leads to a suboptimal convergence behaviour, even for the oscillations.
Finally, in Figure 3, the initial mesh T0 and the adaptively generated mesh T11 withN = 9.864
Elements are visualized. As expected, adaptive refinement is essentially concentrated around
the reentrant corner r = 0.

7.2. 3D example on the Fichera cube. As computational domain serves the Fichera
cube Ω = (−1, 1)3\[0, 1]3 which has a concave corner and three reentrant edges. The partition
of the boundary Γ = ∂Ω into Dirichlet boundary ΓD and Neumann boundary ΓN , as well as
the initial surface mesh is shown in Figure 6. We solve problem (1) with right-hand side

f(x, y, z) := − 5

16
(x2 + y2 + z2)−7/8.

The boundary data are prescribed by the trace resp. normal derivative of the exact solution

u(x, y, z) = (x2 + y2 + z2)1/8
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Figure 4. Numerical results for %` for uniform and adaptive mesh-refinement
using θ ∈ {1/4, 1/8, 1/16} and L2-orthogonal projection and Scott-Zhang pro-
jection in 3D, respectively, plotted over the number of elements N = #T`.

32



103 104 105

10−3

10−2

10−1

100

O
(
N−2/9

)

O
(
N−1/3

)

number of elements N = #T`

Individual contributions of %` for L2-orthogonal projection in 3D

%`(Ω) (unif.) %`(EΩ
` ) (unif.) %`(EN

` ) (unif.) oscD,` (unif.)

%`(Ω) (adap.) %`(EΩ
` ) (adap.) %`(EN

` ) (adap.) oscD,` (adap.)

Figure 5. Numerical results for %`(Ω), %`(EΩ
` ), %`(EN` ) and oscD,` for uniform

and adaptive mesh-refinement using θ = 1/4 and L2-orthogonal projection in
3D, plotted over the number of elements N = #T`.

which has a singular gradient at the reentrant corner at the origin. Similar to the 2D case,
we provide comparisons for various adaptivity parameters as well as for different choices for
the discretization of the boundary data.

In Figure 4, we compare uniform and adaptive mesh refinement where the Dirichlet data
are discretized by means of the L2-orthogonal projection or the Scott-Zhang projection,
respectively. The adaptivity parameter is varied between 1/4 and 1/16. We observe that
either discretization g` of the Dirichlet data g leads to the optimal convergence rate O(N−1/3)
for all choices of θ. Due to the generic singularity at the center, uniform refinement leads
only to suboptimal convergence rate of O(N−2/9).

In Figure 5, we compare each contribution of the estimator separately for uniform and
adaptive refinement with θ = 1/4. For this comparison, we chose the L2-orthogonal pro-
jection to discretize g. For adaptive refinement, we observe optimal order of convergence
even for %`(EΩ

` ), %`(Ω), %`(EN` ), and oscD,`. Uniform refinement, on the other hand, leads to
suboptimal convergence rate also for the individual contributions.
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ΓD

Figure 6. Fichera cube with boundary of the initial mesh T0 and T30 with
N = 200.814 for θ = 0.25. The Dirichlet boundary ΓD = {−1} × [−1, 1]2 is
marked red, whereas the blue parts denote the Neumann boundary Γ\ΓD.

The computational domain, with initial (surface) mesh T0 as well as the adaptively gener-
ated mesh T30 with #T30 = 200.814 elements is finally shown in Figure 6. As expected, the
refinement is basically concentrated around the singularity at the origin.
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