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ADAPTIVE FEM WITH INHOMOGENEOUS DIRICHLET DATA:
CONVERGENCE AND QUASI-OPTIMALITY IN R¢

M. AURADA, M. FEISCHL, J. KEMETMULLER, M. PAGE, AND D. PRAETORIUS

ABSTRACT. We consider the solution of second order elliptic PDEs in R? with inhomoge-
neous Dirichlet data by means of an h-adaptive FEM with fixed polynomial order p € N.
As model example serves the Poisson equation with mixed Dirichlet-Neumann boundary
conditions, where the inhomogeneous Dirichlet data are discretized by use of a stable pro-
jection, for instance, the L2-projection for p = 1 or the Scott-Zhang projection for general
p > 1. For error estimation, we use a residual error estimator which includes the Dirichlet
data oscillations. We prove convergence of the adaptive algorithm even with quasi-optimal
convergence rate. Numerical experiments conclude the work.

1. INTRODUCTION

Recently, there has been a major breakthrough in the thorough mathematical understand-
ing of convergence and quasi-optimality of h-adaptive FEM for second-order elliptic PDEs.
However, the focus of the numerical analysis usually lies on model problems with homoge-
neous Dirichlet conditions, i.e. Au = f in Q with u =0 on ' = 99, see e.g. [CKNS, D, KS,
MNS, S07]. Instead, our model problem

—Au=f in ),
u=g onlp, (1)
Oou=¢ only

considers inhomogeneous mixed Dirichlet-Neumann boundary conditions. Here,  is a
bounded Lipschitz domain in R¢ with polyhedral boundary I' = 0 which is split into
two relatively open boundary parts, namely the Dirichlet boundary I'p and the Neumann
boundary I'y, i.e. [pN Ty = 0 and Tp UTx = I'. We stress that the surface measure of
the Dirichlet boundary has to be positive |I'p| > 0, whereas I'y is allowed to be empty. The
given data formally satisfy f € H-X(Q), g € HY/2(T'p), and ¢ € H™/2(T'y). As is usually
required to derive (localized) a posteriori error estimators, we assume additional regularity
of the given data, namely f € L*(Q), g € H'(I'p), and ¢ € L*(T'y).

We stress that —using results available in the literature— it is easily possible to gener-
alize the analysis from the Laplacian L = —A to general symmetric and uniformly elliptic
differential operators of second order. The reader is referred to the seminal work [CKNS]
which treats the case of homogeneous Dirichlet data g = 0 and provides the necessary tools
to cover general L.
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2000 Mathematics Subject Classification. 65N30, 65N50.
Key words and phrases. adaptive finite element method, convergence analysis, quasi-optimality, inhomo-
geneous Dirichlet data.
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Whereas certain work on a posteriori error estimation for (1) has been done, cf. [BCD, SV],
none of the proposed adaptive algorithms have been proven to converge. While the inclusion
of inhomogeneous Neumann conditions ¢ into the convergence analysis seems to be obvious,
incorporating inhomogeneous Dirichlet conditions ¢ is technically more demanding. First,
this is due to the fractional-order Sobolev space H'/?(I'p). However, we may use techniques
from adaptive boundary element methods [CMS, FKMP, KOP] to localize the non-local
H'?-norm in terms of a locally weighted H'-seminorm. Second, the given Dirichlet data
have to be discretized appropriately. In an earlier work [FPP], we considered lowest-order
finite elements p = 1 in 2D and nodal interpolation to discretize g. However, this situation
is very special in the sense that our entire analysis in [FPP] is strictly bound to the lowest-
order case and cannot be generalized to RY, since nodal interpolation is well-defined if and
only if d = 2. In this work, we consider finite elements of piecewise polynomial order p > 1
and dimension d > 2. We show that each uniformly H 1/2 (I'p)-stable projection Py onto the
discrete trace space will do the job. However, and in contrast to the case g = 0, the discrete
ansatz spaces V, are non-nested, i.e. V, Z V,,;. We therefore loose the orthogonality
in energy norm which seems to be a major problem. The remedy is to concentrate on a
quasi-Pythagoras theorem and a stronger marking criterion. The latter implies (quasi-local)
equivalence of error estimators for different discretizations of the Dirichlet data. To obtain
contraction of our AFEM, we may then consider (theoretically) the H'/?(T'p)-orthogonal
projection. To obtain optimality of the marking strategy, we may consider the Scott-Zhang
projection instead. Both auxiliary problems are somehow sufficiently close to the original
problem with projection Py, which is enforced by the marking strategy.

2. ADAPTIVE ALGORITHM

It is well-known that the Poisson problem (1) admits a unique weak solution v € H'(Q)
with uw = g on I'p in the sense of traces which solves the variational formulation

(Vu, Vu)g = (f, v)a + (¢, v)r, for allv e HLH(Q). (2)

Here, the test space reads Hj(Q) = {v € HY(Q) : v=0on I'p in the sense of traces}, and
(-, -) denotes the respective L?-scalar products. The proof relies essentially on a reformu-
lation of (1) as a problem with homogeneous Dirichlet data via a so-called lifting operator
L, ie L : HY*T) — HYQ) is a linear and continuous operator with (£g)|r = § for all
g € HY%(T) in the sense of traces. However, although £ is constructed analytically, it is
hardly accessible numerically in general and thus this approach is not feasible in practice.
This section provides an overview on this work and its main results. We analyze a common

adaptive mesh-refining algorithm of the type

[ solve | — [ estimate | — [mark | — [ refine |

which is stated in detail below in Section 2.5. We start with a discussion of its four modules.

2.1. The module solve. Let 7, be a regular triangulation of ) into simplices, i.e. tetra-
hedra for 3D resp. triangles for 2D, which is generated from an initial triangulation 7,. Let
&y be the set of facets, i.e. faces for 3D and edges for 2D, respectively. This set is split
into interior facets &5 = {E e&  ENQ # @}, i.e. each E € & satisfies E = T, NT_
for To € Ty, as well as boundary facets £ = &/\&?. We assume that the partition of

I into Dirichlet boundary I'p and Neumann boundary T'y is resolved, i.e. & is split into
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& ={Ec& : ECTp}and & = {E €& : E CTy}. Note that EP (resp. &)
provides a regular triangulation of the (d — 1)-dimensional manifold I'p, (resp. I'y).
We use conforming elements of fixed polynomial order p € N, where the ansatz space reads

SP(Te) = {Ve € C(Q) : V{|r is a polynomial of degree at most p on T" € T;}. (3)

Since a discrete function U, € SP(7T;) cannot satisfy general continuous Dirichlet conditions,
we have to discretize the given data g € H'(I'p). To this purpose, let P, : HY/2(I'p) —
SP(EP) be a projection onto the discrete trace space

SH(E’) = {Vilr,, + Ve € S(To)} (4)

As in the continuous case, it is well-known that there is a unique U, € SP(7;) with U, = Pyg
on I'p which solves the Galerkin formulation

Here, the test space is given by S5(T;) = SP(T)) N HL(Q) = {V, € S*(T¢) : Vo=0on I'p}.

We assume that solve computes the exact Galerkin solution of (5). Arguing as e.g. in [BM,
S07], it is, however, possible to include an approximate solver into our analysis.

Possible choices for P, include the L2-orthogonal projection for the lowest-order case p = 1,
which is considered in [BCD], or the Scott-Zhang projection from [SZ] which is proposed
in [SV]. Our analysis below will also theoretically use the H'/2(I"p)-orthogonal projection.

2.2. The module estimate. We start with the element data oscillations

oscsz = Z oscro(T)?, where oscyo(T)? := |T)¥4||(1 — Tp)(f + AUg)H%Q(T) (6)
TeT,

and where Il : L*(T) — PP YT) denotes the L2-orthogonal projection. These arise in
the efficiency estimate for residual error estimators. Moreover, the efficiency involves the
Neumann data oscillations

osc?w = Z oscyo(E)?, where oscy o(E)? := |T)Y4||(1 - HE)¢H%2(E) (7)

with T € 7T; being the unique element with £ C 9T and where 11y : L*(E) — PP~Y(E)
denotes the L2-orthogonal projection on the boundary. Finally, the approximation of the
Dirichlet data Pyg ~ g € H*(I'p) is controlled by the Dirichlet data oscillations

08Ch ¢ 1= Z oscp(E)?, where oscp o(F)? := |T|V4||(1 - 5)Vrgllizm, (8)

EeepP

where again T' € T, denotes the unique element with £ C 9T. Moreover, Vp(-) denotes the
surface gradient. We recall that up to shape regularity we have equivalence |T|"/¢ ~ diam(T)
as well as diam(7T") ~ diam(F) for all T' € T, and E € & with £ C OT.

We use a residual error estimator 17 = ¢j + osc}, , which is split into general contributions
and Dirichlet oscillations, i.e.

0 = olT) 9)
TeT,
3



with corresponding refinement indicators
ol(T)? = TP f + AU oy + 1T (110uUell 72000y + 16 = OuUillTaorrry))- (10)

The module estimate returns the elementwise contributions g,(7')* and oscp (E)? for all
TeT,and FE € EP.

2.3. The module mark. For element marking, we use a modification of the Dorfler
marking [D] proposed firstly in Stevenson [S07]. In each step of the adaptive loop, we mark
either elements or Dirichlet edges for refinement, where the latter is only done if oscp is
large when compared to g,. A precise statement of the module mark is part of Algorithm 1
below.

2.4. The module refine. Locally refined meshes are obtained by use of the newest
vertex bisection algorithm, see e.g. [S08, T], where 7,1 = refine(7;, M,) for a set M, C T,
of marked elements returns the coarsest regular triangulation 7,,; such that all marked
elements 7' € M, have been refined by at least one bisection. Arguing as in [KS], one may
also use variants of newest vertex bisection, where each T' € M, is refined by at least n
bisections with arbitrary, but fixed n € N.

2.5. Adaptive loop. With the aforegoing modules, the adaptive mesh-refining algorithm
takes the following form.

Algorithm 1. Let adaptivity parameters 0 < 01,05,9 < 1 and initial triangulation Ty be
gwen. For each { =0,1,2,... do:

(i) Compute discrete solution U, € SP(Ty).
(ii) Compute refinement indicators os(T) and oscp ¢(E) for all T € T, and E € EP.
(ili) Provided that osc},, < ¥ g7, choose My C Ty such that

01 07 < Z 0(T)?. (11)
TeM,

(iv) Provided that osc,, > ¥ gf, choose My C EP such that

0 0sc, , < Z oscp(E)? (12)
Eemp
and let My:={T €T, : IE e MP E COT}.
(v) Use newest vertex bisection to generate Tpiq1 = refine(Ty, My).
(vi) Update counter £ — ¢+ 1 and go to (i).

2.6. Main results. Throughout, we assume that the projections P, : H/3(T'p) — SP(EP)
are uniformly H'/2?(T'p)-stable, i.e. the operator norm is uniformly bounded

||[P>g . H1/2(FD) — H1/2(FD)|| S C1stab < o0 (13)

with some (-independent constant Cyap, > 0. This assumption is guaranteed for the H'/ 2(T'p)-
orthogonal projection with Cyp, = 1. Moreover, the L?(I'p)-orthogonal projection for the
lowest-order case p = 1 and newest vertex bisection is uniformly bounded [KPP], and so is
the Scott-Zhang projection [SZ] onto SP(EP) for arbitrary p > 1.
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First, our discretization is quasi-optimal in the sense of the Céa lemma. Note that esti-
mate (14) does not depend on the precise choice of P, and the minimum is taken over all
discrete functions. Unlike our observation, the result in e.g. [BCD, Theorem 6.1] takes the
minimum with respect to the affine space {Wg e S”(Ty) : Wilr, = ]ng} and for first-order
p =1 only.

Proposition 2 (Céa-type estimate in H'-norm). The Galerkin solution satisfies

[u = Upllm ) < Ccea L. [ = Well 1 (- (14)
The constant Ccg, > 0 depends only on ), U'p, shape regularity of Ty, the polynomial degree
p > 1, and the constant Csap, > 0.

Second, the considered error estimator provides an upper bound and, up to data oscilla-
tions, also a lower bound for the Galerkin error.

Proposition 3 (reliability and efficiency of n,). The error estimator nj = o} + osc},, is
reliable

lu = Uell3 ) < Cra i (15)
and efficient
Canm <|IV(u— Ug)||%z(9) + Osc%-! + osc?w + OSCQD’E. (16)

€

The constants Cie, Cog > 0 depend on €2 and I'p, on the polynomial degree p > 1, stability
Cstap > 0, the initial triangulation To, and on the use of newest vertex bisection.

Note that convergence of Algorithm 1 in the sense of lim, U, = u in H'(Q) is a priori
unclear since adaptive mesh-refinement does not guarantee that the local mesh-size tends
uniformly to zero. However, we have the following convergence result which is proved in the
frame of the estimator reduction concept from [AFP].

Theorem 4 (convergence of AFEM). (i) Suppose that the discretization of the Dirichlet
data guarantees some a priori convergence

}ggo |go0 — ]P)ﬁgHHl/Q(FD) =0 (17)

with a certain limit goo € HY?(T'p). Then, for any choice of the adaptivity parameters
0 < 6,605,090 <1, Algorithm 1 guarantees convergence

f—r00

and, in particular, goc = g.
(ii) Assumption (17) is satisfied for the HY/*(T'p)-orthogonal projection, the L*(T p)-projection
for p =1, and the Scott-Zhang projection for arbitrary p > 1.

Current quasi-optimality results on AFEM rely on the fact that the estimator n? =
07 + OSC%M is equivalent to some linear convergent quasi-error quantity A,. Whereas, the
convergence theorem (Theorem 4) also holds for the usual Dérfler marking, our contraction
theorem relies on Stevenson’s modification (11)-(12). Moreover, we stress that the con-
vergence theorem is constrained by the a priori convergence assumption (17), whereas the

following contraction result is not.
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Theorem 5 (contraction of AFEM). Let P, : HY?(Tp) — SP(EP) be the HY*(I'p)-

orthogonal projection. Let U, € SP(T;) the Galerkin solution of (5) with Uyr, = Pug and

n; = 0f + osch, be the associated error estimator from (9) with Uy replaced by Uy. Then,

for arbitrary 0 < 61,0, < 1 and sufficiently small 0 < ¥ < 1, Algorithm 1 guarantees the
existence of constants A\, ;u > 0 and 0 < k < 1 such that the combined error quantity

Ap = |V(u— [}Z)H%Z(Q) +Allg — PegHizl/z(rD) +pun; >0 (19)
satisfies a contraction property
Api1 < kAy forall £ € Np. (20)
Moreover, there are constants Cigy, Chigh > 0 such that
Clow A <1 < Chigh Ag. (21)
In particular, this implies convergence limy ||u — Up||grq) = 0 = limgn, of Algorithm 1

independently of the precise choice of the uniformly H'/?(T'p)-stable projection IP,.

To state our quasi-optimality result for Algorithm 1, we need to introduce further notation.
Recall that, for a given triangulation 7, and M, C Ty,

Tor1 = refine(Ty, M) (22)

denotes the coarsest regular triangulation such that all marked elements T' € M, have been
refined by (at least one) bisection. Moreover, we write

T, = refine(Ty) (23

if 7, is a finite refinement of 7, i.e., there are finitely many triangulations Tyi1,..., 7T,
and sets of marked elements M, C 7,,..., M,y C T,_; such that 7, = 7, and T;1; =
refine(7;, M;) for all j = ¢,...,n — 1. Finally, for a fixed initial mesh 7, let T = {71 :
T. = refine(T;)} be the set of all meshes which can be obtained by newest vertex bisection
as well as the set Ty = {7; eT : #T,—#To <N } of all triangulations which have at most
N more elements than the initial mesh 7.

Recall that Algorithm 1 only sees the error estimator 77 = o7 + osc}, ,, but not the error
| — Up|| 1 (- From this point of view, it is natural to ask for the best possible convergence
rate for the error estimator. This can be characterized by means of an artificial approximation
class Ag: For s > 0, we write

~—

(u, f,q,0) € Ag PN sup inf N°®n, < oo, (24)
NeN Tx€Ty

where 72 = 0?2 + OSCQD,* denotes the error estimator for the optimal mesh 7, € Tx. By
definition, this implies that a convergence rate 1, = O(N~*) is possible if the optimal meshes
are chosen. The following theorem states that Algorithm 1, in fact, guarantees n, = O(N )
for the adaptively generated meshes 7,.

Theorem 6 (quasi-optimality of AFEM). Suppose that the sets M, resp. MP in step (iii)-
(iv) of Algorithm 1 are chosen with minimal cardinality. Then, for sufficiently small 0 <
01,9 < 1, but arbitrary 0 < 0y < 1, Algorithm 1 guarantees the existence of a constant
Copt > 0 such that

(u, f,9,0) € Ay = VLeN 1 < Copt(#Te —#To)"", (25)
6



i.e. each possible convergence rate s > 0 is, in fact, asymptotically obtained by AFEM.

We stress that, up to now and as far as the error estimator is concerned, only reliability (15)
is needed for the analysis. Finally, the lower bound (16) for the error estimator allows to
characterize the approximation class A in terms of the regularity of the sought solution and
the given data.

Theorem 7 (characterization of Ay). It holds (u, f,g,®) € As if and only if the following
four conditions hold:

inf in N°|u—V, < 00, 26
sup inf | min [ = Villzr1 (o) < 00 (26)
inf N° < 27
sup inf Noser < oo, (27)
inf N* < 28
]svlg\)] Anf Nosey,. < oo, (28)
sup inf N®oscp. < 0o, (29)

NeN Tx€TN

i.e. the estimator —and according to reliability hence the Galerkin error— converges with
the best possible rate allowed by the reqularity of the sought solution and the given data.

2.7. Outline. Since our analysis is strongly built on properties of the Scott-Zhang pro-
jection, Section 3 collects the essential properties of the latter. This knowledge is used to
prove Proposition 2. Moreover, we prove that the Scott-Zhang error in a weighted H'(T'p)-
seminorm is equivalent to the Dirichlet oscillations. This allows to prove Proposition 3 with
an estimator 7, which does not explicitly contain the chosen projection P,. Section 4 is
concerned with the proof of Theorem 4. Section 5 gives the proof for the contraction result
of Theorem 5. Finally, the proof of the quasi-optimality results of Theorem 6 and Theorem 7
are found in Section 6. Some numerical experiments in Section 7 conclude the work.

In all statements, the constants involved and their dependencies are explicitly stated. In
proofs, however, we use the symbol < to abbreviate < up to a multiplicative constant.
Moreover, ~ abbreviates that both estimates < and 2 hold.

3. SCOTT-ZHANG PROJECTION

The main tool of our analysis is the Scott-Zhang projection
Jo: HY(Q) — S(Ty) (30)

from [SZ]. A first application will be the proof of the Céa-type estimate for the Galerkin error
(Proposition 2). Moreover, we prove that the Scott-Zhang interpolation error in a locally
weighted H'-seminorm is locally equivalent to the Dirichlet data oscillations (Proposition 8).
This will be the main tool to derive the bound [|(1 — P¢)g|| /20,y S 0sCp

3.1. Scott-Zhang projection. Analyzing the definition of J, in [SZ], one sees that J, can
be defined locally in the following sense:

e For an element 7' € 7Ty, the value (Jsw)|r on T depends only on the value of w.,
on some element patch

TCuwr C{T' €T : T'NT #0}. (31)
7



e For a boundary facet E € &, the trace of the Scott-Zhang projection (Jow)|g on E
depends only on the trace w|erE on some facet patch

ECw g C{E €& : ENE#0}. (32)

e In case of a Dirichlet facet E € SeD , one may choose w£ g C Tp.
Moreover, J; is defined in a way that the following projection properties hold:

o J,W,=W, for all W, € Sp(ﬁ),

e (Jow)|r = wr for all w € H'(Q) and W, € SP(T;) with w|r = W|r,

e (Jow)lr, = w|r, for all w € H'(Q) and W, € S(T;) with w|r, = Wir,,
i.e. the projection J, preserves discrete (Dirichlet) boundary data. Finally, J, satisfies the
following (local) stability property

HV(l - JE)UJHL?(T) < CSZ ||vaL2(wz,T) for all w € Hl(Q) (33)
and (local) first-order approximation property
||(1 - Jg)wHLQ(T) S CSZ ||hfvw||L2(We,T) for all w € HI(Q) (34)

where Cy, > 0 depends only on shape regularity of Ty, cf. [SZ]. Here, hy € L*°(Q2) denotes
the local mesh-width function defined by hy|p = |T|'/ for all T € T,. Moreover, since the
overlap of the patches is controlled in terms of shape regularity, the integration domains
in (33)—(34) can be replaced by €, i.e. (33)—(34) hold also globally.

3.2. Scott-Zhang projection onto discrete trace spaces. We stress that J, induces
operators

I LA(T) — SP(&)) and JP: L*(T'p) — SP(EP) (35)
in the sense of JV (w|r) = (Jow)|r and J? (wlr,) = (JL (w|r))|r, for all w € H(). We will

thus not distinguish these operators notationally. Arguing as in [SZ], for v € {I',T'p,'n},
one sees that J, satisfies even (local) L2-stability

(1 = Jo)wl||r2m) < Cs, ||w||L2(w£E) for all w € L*(y), (36)
(local) H'-stability
1A = Jowllmr(e) < Col|Vrwll ey, forallwe H'(v), (37)
as well as a (local) first-order approximation property
11 = Je)wllraey < CollheVrwll 2,y for all w € H' (7). (38)

Here, Vr(+) denotes again the surface gradient, and hy € L>(I'p) denotes the local mesh-
width function restricted to I'p. According to shape regularity of 7;, the integration domains
in (36)—(38) can be replaced by 7, i.e. (36)—(38) hold also globally on ~.

By standard interpolation arguments applied to (36)—(37), one obtains stability

(1 = Je)wllgrr2(yy < C ||| g2,y for all w € HY2(%) (39)
in the trace norm. Moreover, it is proved in [KOP, Theorem 3] that the Scott-Zhang pro-

jection satisfies

(1 =Je)wl g2,y < Csp  min ||hz/2Vp(w — Wo)llz2yy for all w € H'(y). (40)
WeeSP(Tely)
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Throughout, the constant Cy, > 0 then depends only on shape regularity of 7, and on
v €{l,T'p,[n}.

3.3. Proof of Céa lemma (Proposition 2). According to weak formulation (2) and
Galerkin formulation (5), we have the Galerkin orthogonality relation

(V(u—Uyp), VVi)o =0 forall V, € SE(Ty).

Let £ : HY*T) — HYQ) be a lifting operator. Let §,g, € HY?*T) denote arbitrary
extensions of g = ulr, resp. Prg = Uy|r,. Note that (J,LJ:9)|r, = (Jou)|r, as well as
(JeLIege)Ir, = Uslr,,- For arbitrary V, € SV (T;), we thus have Uy — (V, + J,LJege) € SH(To),

whence
IV (u = U720y = (V(u—Ur), V(u— (Ve + JeLIiGe)))o
according to the Galerkin orthogonality. Therefore, the Cauchy inequality proves

IV(u = Upll2e) < i IV (u = (Ve + JeLIege)l| 220

We now plug-in Vy = Jou — J,LJ,g € S§(T;) and use stability of J, and L to see
IV (u—=Up)llr2e) < IV = Jeu+ JeLIe(g — Ge))l| 20)
SAIV(u = Jew)l 2 + 119 = Gell 2y
Since the extensions g, g, of ¢ and Pyg were arbitrary, we obtain
IV(u = U2 S N1V(u = Jew)lr2@) + |1 = Pe)gll iz,

According to the projection property J,W, = W, for W, € SP(T;) and H'-stability (33), it
holds that

IV (= Jewllzzey = | min IV = Jo)(u = W)z S | min [V (0 = Wo)l 2y

The same argument for P, with stability on H'/?(T") gives

(X =Po)gll e,y = w n (L =Pe)(g = Welrp) o) S Sy in lg = Welrp 2

Combining the last three estimates, we infer

IV (= Uz + (1 = P)g ey S min (IV (= Wo)llza@) + lg = Welrp iz ) -
Finally, the Rellich compactness theorem implies norm equivalence || - || 1) > ||V ()|l z2(0) +
1) epll e,y on H(Q). This concludes the proof. O

3.4. Scott-Zhang projection and Dirichlet data oscillations. We stress that the
newest vertex bisection algorithm guarantees that only finitely many shapes of elements
T e {T eT.: T, € T} can occur. In particular, only finitely many shapes of patches occur.
Further details are found in [V, Chapter 4] as well as in [S08, T|. This observation will be

used in the proof of the following lemma.
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Proposition 8. Let 1, : L*(T'p) — PP H(EP) denote the L*(T'p)-projection. Then,
1(1=T1) Vgl r2(m) < [Ve(1=Te)gllr2m) < Caicll(1=T1) Vgl por ) for all E € &7 (41)
and, i particular,
oscpe < > V(1 = T0)gllr2rp) < Cairoscpy (42)

The constant Cqiy > 1 depends only on I'p, the polynomial degree p, the initial triangulation
To, and the use of newest vertex bisection to obtain T, € T, but not on g.

Proof. Since I, is the piecewise L*-projection, the lower bound in (41)—(42) is obvious. To
verify the upper bound, we argue by contradiction and assume that the upper bound in (41)
is wrong for each constant C' > 0. For n € N, we thus find some g,, € H'(T") such that

IVe(L = Jo)gnll2ey > n|(1 = Te) Vegnl oy ) (43)

Let Qup : H'(wgp) — SP(&l,r, ) denote the H'-orthogonal prOJeCtIOIl on the patch wy 5
and define g, = (1 — Qur)gn. " Since the value of Jov on E depends only on the values
of v on sz, the projection property of J, reveals (1 — J,)Qrg, = 0 on E. Moreover,
VrQueg, € ’Pp_l(gg‘ng) so that (1 — II,)VrQygg, = 0 on ng. From the orthogonal

decomposition g, = Qr,rgn +g,, we thus see ||Vr(1 J0)7, |2y = IVr(1 = Je)gnll L2 (&) and
(1 — Hg)van||L2(w = [[(1 =) Vrgnllr2@r ). In partlcular We observe g, # 0 from (43)
so that we may deﬁne In = Gn/1Gnll i1 r) ThlS definition guarantees

gallirr,y =1 and go € S(Edy, ), (14)

where orthogonality is understood with respect to the H 1(wé7 )-scalar product. Moreover,
it holds that

11 = 1) Vegnll 2y, < — I\Vr(l —Jo)gnllzm) < — HVrgnHLz @y 0 (45)

due to the construction of g, and local H'-stability of J; : HI(FD) — HI(FD).

First, (45) implies that [|[IL;Vrgnl|f2(r, ) < C < oo is uniformly bounded as n — oco. Since
I, Vrg, € PP~ H(&
Weierstrass theorem to extract a convergent subsequence. Without loss of generality, we
may thus assume

|w ) belongs to a ﬁnlte dimensional space, we may apply the Bolzano-

I, Vg, —= &, € ’Ppil(gg‘w;E) in strong L*-sense. (46)
Second, this and (45) prove L*-convergence of Vrg, to @y,
IVegn = @l ror ) < N1 =) Vegnllp2wp ) + MeVrgn — Poll 2 ) —=0. (47

Third, orthogonality (44) implies [ - g,dl’ = 0 if we consider the constant function
E
1e8? (5g| ) Therefore, the Friedrichs inequality and (47) predict uniform boundedness

G0l £ eor (@F E) S IVrgallpzer ) < C < 0o as n — oo. According to weak compactness in

Hilbert spaces, we may thus extract a weakly convergent subsequence. Without loss of
generality, we may thus assume

n—oo

In =5 goo € HY (wz ) in weak H'-sense. (48)
10



Fourth, the combination of (47) and (48) implies Vrgs, = ®,. This follows from the fact

that |[®, — V()| z2ur ) is convex and continuous, whence weakly lower semicontinuous on

Hl(ngL i.e. ||q)g - vrgOOHLQ(sz) S lim ll’lfn ||q)[ - VFQ%HL?(w}ZE) =0.

Fifth, the Rellich compactness theorem proves that the convergence in (48) does also
hold in strong L%-sense. Together with (47) and ®; = Vrg.,, we now observe strong H'-
convergence

n—o0

Hgoo - gn"zl(w£E) = Hgoo - gn”iz(er) + ”(I)Z — VrgnHiz(sz) — 0,

L,

whence [|goo||g1(r,) = 1 as well as goo € Sf"(c‘fg]w[rE)L according to (44).

On the other hand, Vrg.,, = &, € Pp_1<5g|w£E) implies gos € SP(&l,r, ). This yields

Joo € SP(Elyr ) NSP(E,r )t = {0} and contradicts ||goo||% v | = 1.
0B 0B (Wi i)

This contradiction proves the upper bound in (41). A standard scaling argument verifies
that the constant Cy;, > 0 does only depend on the shape of w£ £ but not on the diameter. As
stated above, newest vertex bisection guarantees that only finitely many shapes of patches
ng may occur, i.e. Cg, > 0 depends only on 7y and the use of newest vertex bisection.
Summing (41) over all Dirichlet facets, we see

1/2 1/2
OSC%,Z = ||hz/ (1- H4>VF9H%2(FD) < ||he/ Vr(l - Jf)QH%Q(FD)

< bl (1~ ) Vgl e
Eegp ’
1/2
< 1h(1 =T Vegllzar,).
where the final estimate holds due to uniform shape regularity. 0

Corollary 9. It holds ||(1 — ]P)g)gHHl/Q(FD) < Cosec 05¢p g, where Cose > 0 depends on I'p, the
polynomial degree p > 1, stability Cyap > 0, the initial mesh Ty, and the use of newest vertex
bisection.

Proof. By use of the projection property and stability of Py, one sees |[(1 —Pr)gl| g1/2(r,) =
(1 =P (1 = Jo)gllgrrzeryy S N1 = Te)gll g2y The approximation estimate (40) and

Proposition 8 conclude |[(1 — Jo)gl|grr2rp) S ||h;/2Vp(1 —J0)gll 2,y =~ oscpy. O

3.5. Proof of reliability and efficiency (Proposition 3). We consider a continuous
auxiliary problem

—Aw =0 in €,
w=(1-P)g onTlp, (49)
d,w =0 on I'y,

with unique solution w € H'(2). We then have norm equivalence |[wl/pi) =~ (1 —
Po)gll gz, as well as u — Uy —w € H},(€). From this, we obtain

[ = Utllme) S IV(w = U = w)l2@) + (1 = Pe)gll gz
11



The first term on the right-hand side can be handled as for homogeneous Dirichlet data, i.e.
use of the Galerkin orthogonality combined with approximation estimates for a Clément-type
quasi-interpolation operator (e.g. the Scott-Zhang projection). This leads to

IV (u— U, — w)HLQ(Q) S o

Details are found e.g. in [BCD]. The H?(I'p)-norm is dominated by the Dirichlet data
oscillations oscp ¢, see Corollary 9.
By use of bubble functions and local scaling arguments, one obtains the estimates

TN f + AUy S 1V (0 = Up) |32y + 0scr6(T)? + 0sene (0T N Ty),
IT1Y 102U 2200y S 1V (1w~ Ue>||L2<ne 5 T osere(wee)’,
716 = 0Vl 2wy S IV (= Ud)llZ2q, ) + 05cTe(wep)? + osew(E N Ty)?,

where Qg = T7 U T~ denotes the facet patch of T, NT_ = E € &. Details are found
e.g. in [AO, V]. Summing these estimates over all elements, one obtains the efficiency
estimate (16). O

4. CONVERGENCE

In this section, we aim to prove Theorem 4. Our proof of the convergence theorem relies
on the estimator reduction principle from [AFP], i.e. we verify that the error estimator is
contractive up to some zero sequence.

4.1. Estimator reduction estimate. Note that the estimator 17 = ¢} + osc,, can be
localized over elements via

i =Y (T with 7(T)* = 0o(T)° + TV | (1 = W) Vel ieorar,y  (50)
TeT,
with II, : L*(Tp) — PP~Y(EP) the (even EP-piecewise) L*(T'p)-orthogonal projection.
Lemma 10 (modified marking implies Dérfler marking). For 0 < 6;,09,9 < 1 in Algo-

rithm 1, there is some parameter 0 < 6 < 1 such that the error estimator nj = g} + osc},
satisfies

On; < > m(T), (51)
TeM,

and all elements T € My are refined by at least one bisection.

Proof. First, assume osc}, , < ¢ o7 and let M, C Ty satisfy (11). Then,

01(0; + osch ) < O1(1+9)g; < (1+10) Y oT)*.
TeM,

Therefore, the Dorfler marking (51) holds with § < 6;(1 + ) !
Second, assume osc}, , > ¥ of and let M C £F satisfy (12). Then,

05 (07 + osc%je) <O(1+097! )OSCDK (14097 Z oscp(E)2.
EempP

Therefore, the Dorfler marking (51) holds with # < 65(1 + 971)~!, and all elements which

have some facet E € Mf are refined. O
12



Proposition 11 (estimator reduction). Let T, = refine(T;) be an arbitrary refinement of
Te and My C T\ T, a subset of the refined elements which satisfies the Déorfler marking (51)
for some 0 < 6 < 1. Then,

7]3 S Qred 7]? + Cred HV(U2+1 - UE)H%P(Q) (52>

with certain constants 0 < qrea < 1 and Cireq > 0 which depend only on the parameter
0 < 0 < 1, shape regularity of T, and the polynomial degree p > 1.

Sketch of proof. For the sake of completeness, we include the idea of the proof of (52) al-
though our proof is only a minor extension of the proof from [CKNS, Cor. 3.4, Proof of
Theorem 4.1], where all details are found. First, we employ a triangle inequality and the
Young inequality to see for arbitrary ¢ > 0

n2 < (14 0) (D0 TP F + AU s + 1T 10aUel 2 0r7mmy
T eTx

F T 6 = BuUnl oy + T 11 = TL)Vrg ooy

+ (1407 ( > TPAWUL = U Gaey + 1T 102U, = Uo)llIz2 (o100

T'eTx
1T 00 (U = U)oy )

A scaling argument proves that the second bracket is bounded by C' ||V (U, —Uy)||32 (), Where
C > 0 depends only on shape regularity of 7,. The first contribution of the first bracket is
estimated as follows

DTS + AUy = D TP + AU o)

TeTx T'eTNTe
+ Y TP+ AU e
T'eT\Te

Since a refined element T € T,\7, is the (essentially disjoint) union of its sons 7" € T,\7T;
and |T"| < |T'|/2, the second sum is estimated by

Yo TP+ AU ey <270 Y TP f + AU Zery.
T'eT:\Te TETAT
This yields
DTS + AU G2y < D ITPNf + AU ey

T eTx TeT,

— (=271 N TP f 4+ AU
TeT\Tx

where the sums on the right-hand side only involve contributions of 7,(T")%. We employ the
same type of argument for the other contributions. Together with the estimate

||(1 — H*)vFg”L2(8T’ﬂFD) S ||(1 — HZ)VFQHLQ([)T’I’]FD) for all T, € 7;
13



which follows from the fact that the L?-projection onto PP~1(EP) is even piecewise orthog-
onal, we are led to

(3 1P 17 + AUy + TP 10U o
TeTs

H[T1 ¢ = 0uUel F2orrmiryy + 1TV I1(1 = H*)VFQH%Q(BT’QFD))
<D (T = (=27 3 g (T)?

TeT, TeT\Tx
< (1—(1—2790) .

The final estimate follows from M, C T,\7, and the Dorfler marking (51), i.e. we subtract
less. With 0 < ¢ :=1 — (1 — 27%/4)9, we have thus proved

W< (1+0) g+ (1+6)C VU, = U220

Finally, we choose § > 0 sufficiently small such that 0 < geq := (1 + )¢ < 1 and define
Cea=(1+61HC. OJ

4.2. A priori convergence of Scott-Zhang projection. We assume that (Jo10)|r =
(Jev)|r for all T € T, N Tppr with wer € J(Te N Tey1) which can always be achieved by
an appropriate choice of the dual basis functions in the definition of Jy ;. In this section,
we prove that under the aforegoing assumptions and for arbitrary refinement, i.e. 7, =
refine(7;, 1) for all ¢ € N, the limit of the Scott-Zhang interpolants Jyv exists in H'(Q)
as { — oo. In particular, this provides the essential ingredient to prove that, under the
same assumptions, the limit of Galerkin solutions Uy exists in H*({2). For 2D and first-order
elements p = 1, this result has first been proved in [FPP|. Although the proof transfers
directly to the present setting, we include it for the sake of completeness.

Proposition 12. Let v € H'(Q). Then, the limit Joov := lim;Jov exists in H'(Q) and
defines a continuous linear operator Joo : H'(2) — H'(S).

Proof. If the limit J, v exists for all v € H*(Q), it is a consequence of the Banach-Steinhaus
theorem that J., defines, in fact, a linear and continuous operator. Hence, it remains to
prove the existence of Jov in H'(Q) for fixed v € H*(2). To that end, we follow the ideas
from [MSV] and define the following subsets of €:

Q=U{TeT:: w(TcU (UZO m;iz,ﬁ)}a

Qp:=|{T € Ty : There exists k > 0 s.t. wy(7T) is at least uniformly refined in Ty 4},

QF =0\ (Qu)),
where wy(w) :={T € T, : T Nw # (0} denotes the patch of w C Q with respect to 7;. In
other words, 29 is the set of all elements whose patch is not refined anymore and thus stays
the same in Ty for all k£ > ¢, whereas €2, denotes the set of elements whose patch is uniformly

refined at least once after k steps. According to [MSV, Corollary 4.1] and uniform shape
regularity, it holds that

Jim fxo feellzeo0) = 0= Im [[Xewy 00 e[z ) (53)

14



where xq, : 2 = {0,1} denotes the characteristic function with respect to Q, and x.,q,)
the characteristic function of the patch of €2,. Now, let € > 0 be arbitrary. Since the space
H?*(Q) is dense in H'(Q), we find v. € H?*(Q) such that |[v — v:||g1q) < €. Due to local
approximation and stability properties of J, (see (33) and (34)), we obtain

11 = Te)vllarry S N1 = Je)vellmey +e < lhe D*velL2gugin) + &,

where the last estimate is a consequence of the Bramble-Hilbert lemma. By use of (53),
we may choose ¢, € N sufficiently large to guarantee the estimate ||hy D*v.| 12w, <
el oo o0 | D?ve || r2(q) < € for all £ > €. Then, there holds

||<1 - JZ)UHHl(QZ) § e forall ¢ > 60. (54)

According to [MSV, Proposition 4.2], it holds lim,|2;| = 0. This provides the existence of
¢; € N such that

||U||H1(w£(gz;)) <ge¢ foralll>1¢ (55)

due to the non-concentration of Lebesgue functions and uniform shape regularity, i.e. |we(€2)| <
|€27]. With these preparations, we finally aim at proving that Jyv is a Cauchy sequence in
H'(Q): Let ¢ > max{ly,¢;} and k > 0 be arbitrary. First, we use that for any T € Ty,
(Jev)|r depends only on vl,, ) because wyr C we(T). Then, by definition of Q) and our
assumption on the definition of J, and Jy 5 on 7, N Ty x, we obtain

||J£U - Jg+kU||H1(Q(2) = 0. (56)
Second, due to the local stability of J, and (55), there holds
[Jev = Jerwvllzyy < IJevllar@n + [[Jenvllmarer
S vlla ) + 10l @) (57)
S 2||U||H1(WZ(QZ)) S 26.
Third, we proceed by exploiting (54). We have
[ Jev = Jesrvllmey < 1Tev = vllargy) + 10 = Jesrvll e, S & (58)
Combining the estimates from (56)-(58), we conclude [|Jov — Jpxv| g1y S €, ie. (Jpv) is a

Cauchy sequence in H'(Q) and hence convergent. O

Corollary 13. Under the assumptions of Proposition 12, the limit go = lim, Jog exists in
HY2(I'p).

Proof. Let g € H'?(T') denote an arbitrary extension of g. With some lifting operator L,
we define v := Lg and note that (Jv)|r, = (Ji9)|r, = Jrg. Since Joov = limy J,v exists in
H'(Q), we obtain

l—o0

[Ty = Jegllmrewp) < [Tov)le = Jegll g2@y < ([Tt — Jevl|gr) — 0.

This concludes the proof with (Joov)|r, = goo- O

4.3. A priori convergence of orthogonal projections. In this subsection, we recall an
early observation from [BV, Lemma 6.1] which will be applied several times. We stress that
the original proof of [BV] is based on the orthogonal projection. However, the argument

also works for (possibly nonlinear) projections with PP, = P, for ¢ < k which satisfy a
15



Céa-type quasi-optimality. Since the Scott-Zhang projection satisfies J,Ji # Jy, in general,
Proposition 12 is not a consequence of such an abstract result.

Lemma 14. Let H be a Hilbert space and X, be a sequence of closed subspaces with X, C

Xyiq forall £ > 0. Let Py: H— X, denote the H-orthogonal projection onto X,. Then, for

each x € H, the limit xo, := elim Pyx exists in H. ]
—00

Since the discrete trace spaces SP(EF) are finite dimensional and hence closed subspaces
of H'/2(I'p), the lemma immediately applies to the H'/?(I'p)-orthogonal projection.

Corollary 15. Let P, : HY?(Tp) — SP(EP) denote the HY*(I'p)-orthogonal projection.
Then, the limit go := elim Pyg exists in HY/*(T'p). O
— 00

Corollary 16. Let m; : L*(I'p) — S*(EP) denote the L*(T' p)-orthogonal projection. Then,
the limit goo := Zlim meg exists weakly in H'(T'p) and strongly in H*(T'p) for all 0 < o < 1.
—00

Proof. According to Lemma 14, the limit g, = lim, 7,9 exists strongly in L*(T'p). Moreover
and according to [KPP, Theorem 8], the 7, are uniformly stable in H'(T'p), since we use
newest vertex bisection. Hence, the sequence (7g) is uniformly bounded in H*(T'p) and thus
admits a weakly convergent subsequence (7, ¢g) with weak limit g, € H*(I'p), where weak
convergence is understood in H'(I'p). Since the inclusion H'(I'p) C L*(I'p) is compact,
the sequence (7, g) converges strongly to g, in L*(I'p). From uniqueness of limits, we
conclude o, = goo. Iterating this argument, we see that each subsequence of (m,g) contains a
subsequence which converges weakly to g, in H'(I'p). This proves that the entire sequence
converges weakly to go, in H'(I'p). Strong convergence in H*(I'p) follows by compact
inclusion H'(T'p) € H*(T'p) for all 0 < o < 1. O

4.4. A priori convergence of Galerkin solutions. We now show that the limit of
Galerkin solutions U, exists as { — oo provided that the meshes are nested, i.e. Tp 1 =
refine(7,).

Proposition 17. Under Assumption (17) that go := limyPyg exists in HY/*(T), also the
limit Uy, := lim, Uy of Galerkin solutions exists in H(£2).
Proof. We consider the continuous auxiliary problem

—Aw, =0 in Q,

wy =Pyg on I'p,
Opywy =0 on I'y.
Let w, € H'(Q) be the unique (weak) solution and note that the trace g, := wy|r € HY?*(I)
provides an extension of Pyg with
||§€||H1/2(F) < ||w€||H1(Q) N ||P€9||H1/2(1“D) < ||/9\€||H1/2(1“)-
For arbitrary k,¢ € N, the same type of arguments proves
1Ge — ﬁkHHW(F) ~ ||(P, — Pk)g”Hl/Q(FD)'

According to Assumption (17), (P.g) is a Cauchy sequence in HY/2(I'p). Therefore, (g;) is a

Cauchy sequence in H'/?(T"), whence convergent with limit g, € H'/?(I'). Next, note that
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(JeLGe)|r, = Pug, where £ : HY/?(I') — H'(Q) denotes some lifting operator. Therefore,

Up:=Uy — Jo LGy € S7(Ty) is the unique solution of the variational formulation
(VU , VVi)o = (Vu, VVi)a — (VILGe, VVi)a  for all V, € SY(Ty). (59)

Finally, we need to show that (7@ and J,Lg, are convergent to conclude convergence of
Ug=Ur+ 1LYy
With convergence of (gy) to g and Proposition 12, we obtain

1JeLGe — JooLGoo |l 1 (0) < NTe(LGe — LGoo) | 1() + [|1TeLGo0 — JooLGooll 1 (02)
~ ~ ~ ~ {—0
S 9e = Goollro ey + 13eLGo0 — Joo LGoo || 110 —= 0.
Ihis proves convergence of JyLg, to JooLgs as ¢ — oo. To see convergence of [7@, let
Usoo € ST (Ty) be the unique solution of the discrete auxiliary problem

(VUi , Vi = (Vu, VVi)g — (VLo , Vi) forall V; € S5(T;).  (60)

Due to the nestedness of the ansatz spaces Sh(7;), Lemma 14 predicts a priori convergence

Upoo =25 Us € HY(Qp). With the stability of (59) and (60), we obtain

L—00

IV (Uroo — U0l 220y S 13eLGe = Joo Lol 110y —= 0,

and therefore Uy =% U, in HY(Qp).
Finally, we now conclude

~ f£—00

Up = Us + J0LGe == Uno + JocLGoc =t U € H'(9),
which concludes the proof. 0

4.5. Proof of convergence theorem (Theorem 4). (i) Since the limit Uy = lim, Uy
exists in H'(€2), we infer limy || V(U1 — Up)||12() = 0. In view of this and Lemma 10, the
estimator reduction estimate (52) takes the form

771?+1 < Gred 773 +ap forall? >0

with some non-negative oy > 0 such that limy, a, = 0, i.e. the estimator is contractive up to
a non-negative zero sequence. It is a consequence of elementary calculus that lim,n, = 0,
see e.g. [AFP, Lemma 2.3]. Finally, reliability ||u — U||s1(q) < ne thus concludes the proof.

(ii) The verification of Assumption (17) is done in Corollary 13 for the Scott-Zhang projec-
tion, Corollary 15 for the H'/2?(I"p)-orthogonal projection, and Corollary 16 for the L?(I'p)-
orthogonal projection. 0

5. CONTRACTION

In principle, the convergence rate of lim, U, = u from Theorem 4 could be slow. Moreover,
Theorem 4 restricts the Dirichlet projection P, by Assumption (17). In this section, we aim
to show linear convergence for some quasi-error quantity A, >~ 77 = of + osc}, , with respect
to the step ¢ of Algorithm 1 and independently of the projection P, chosen. The essential
observation is that the marking step in Algorithm 1 is in some sense independent of the P,

chosen.
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5.1. Implicit Dérfler marking. Let U, € SP(7;) be a Galerkin solution of (5) with
different Dirichlet data U, = P,g on I'p, where P, : HY%(I'p) — SP(EP) is a uniformly
stable projection onto SP(£/) in the sense of (13). Let 77 = 97 + osc}, , be the associated
error estimator. In the following, we prove that marking in Algorithm 1 with 7 = 07 +o0sc%,,
and sufficiently small 0 < 9 < 1 implicitly implies the simple Dérfler marking (51) for 7,. ’

Lemma 18 (local equivalence of error estimators for different projections). For arbitrary
Uy C Ty, it holds that

C’_ql Z 00(T)? < Z 00(T)? —|—OSC2D’€ and C'e_q1 Z 00(T)? < Z 00(T)? +osc%7[ (61)
TeU, TelUy TeU,y TeU,

The constant Ceq > 1 depends only on shape reqularity of Ty and on Cgyap > 0. In particular,
this implies equivalence

(Ceq+ 1) mp <0 < (Coq + 1) 17 (62)

Proof. Arguing as for the estimator reduction, it follows from the triangle inequality and
scaling arguments that

0e(T)? S (T + IV (Up = Uo)3ogyiryy  for all T € T,

where wy(T) = J{T" € T : T'NT # 0} denotes the element patch of T. Consequently, a
rough estimate gives

Z T)* S Z 0(T)* +||V(U, — Ug)||%z(9) for all U, C T,.

Tel, TelU,

Recall the Galerkin orthogonality
(V(U, — [7@), VVi) =(V(u— [75), VVi) = (V(u—=U,), VVi) =0 for all V;, € SH(Ty).

Let § € HY2(T) be an arbitrary extension of (U; — Uy)|r, = (P, — P)g € HY*(I'p). We
choose the test function V; = (U, — Uy) — J,Lg € SH(Ty) to see

IV (U = U132y = (VU = Th) . VIiLG)a.
Stability of Scott-Zhang projection J, and lifting operator £ thus give
IV(Ue = Ul 20) < IVILGN L2 ) S NGl a2
Since g was an arbitrary extension of (P, — F;)g, we end up with

IV(Ue = Uo)llz2) S N (Pe = Po)gllgrzwpy < NP = D)gll vz + 1= Pogllgrze,)
SJ OSCD,€7

where we have used Corollary 9. This proves the first estimate in (61), and the second follows
with the same arguments. U

The following lemma is the main reason, why we stick with Stevenson’s modified Dorfler

marking (11)—(12) instead of simple Dorfler marking (51).
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Lemma 19 (modified Dorfler marking implies Dorfler marking for different projection). For
arbitrary 0 < 01,0, < 1 and sufficiently small 0 < ¥ < 1, there is some 0 < 6 < 1 such that
the marking criterion (11)—~(12) for n? = o0} + osc2D7£ implies the Dorfler marking

0 < > m(T)? (63)

TeM,

for 7 = o7 +oscp . The parameter 0 < 6 < 1 depends on 0 < 01,62,9 <1 and on Ceq > 0.

Proof. We argue as in the proof of Lemma 10. First, assume osc, , < 9 g7 and let M, C T,
satisfy (11). According to Lemma 18, we see

b1 <011+ 0)0f < (1+9) > 0(T)* < Ceq(1+ 19)( > w(T)? + oscge)

TeM, TeM,

< Cog(149)( X BT +02}).

TeM,

This proves

GO A+ =) 2 < > Gl(T)2
TeM,
Together with (Ceq + 1)1 57}2 < n?, we thus obtain the Dorfler marking (63) with 0 < 6 <
(Coq+ 1)~ (910 L(1+9)"' —=¥) <1, provided that 0 < ¥ < 1 is sufficiently small compared
to0 <6, <1.
Second, assume osc}, , > ¥ of and let M C £F satisfy (12). Then,

Oom; < 05(1 4+ 9 Hosch, < (1+97 Z oscp(E)? < (1+971) Z (T)?,
EeMpP TeM,

where M, = {T' € T, : 3E € MP E C 9T} is defined in step (iv) of Algorithm 1. As
before (Ceq +1)7' 77 < 17 thus proves (51) with 0 < 0 < Cil6(1+97") 7" < 1. O

5.2. Quasi-Pythagoras theorem. To prove Theorem 5, we consider a theoretical auxiliary
problem: Throughout the remainder of Section 5, U, € SP(7;) denotes the Galerkin solution
of (5) with Dirichlet data U, = P,g on I'p, where P, : H/?(I'p) — SP(£F) denotes the
H'Y2(T'p)-orthogonal projection. Associated with Uy is the error estimator N7 = 07 +0sch
where gy is defined in (10) with Uy replaced by Uj.

Recall that the aforegoing statements of Section 3 and Section 4 hold for any uniformly
H'/2(I'p)-stable projection P, and thus apply to 77 = 97 + OSC%’E. We shall need relia-
bility ||u — (7(”125(1(9) < n# as well as the estimator reduction (52) from Proposition 11 for
2, which is a consequence of Lemma 19. Our concept of proof of Theorem 5 goes back
o [CKNS, Proof of Theorem 4.1]. Therein, however, the proof relies on the Pythagoras
theorem ||V (u — Ug)||%2(m =||V(u— U4+1)H%Q(Q) +|IV(Ups1 — Ug)||%2(m which does not hold
in case of inhomogeneous Dirichlet data and Pyg # Py, 19, in general. Instead, we rely on a

perturbed Pythagoras theorem which will be used for the auxiliary problem.
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Lemma 20 (quasi-Pythagoras theorem). Let T, = refine(T;) be an arbitrary refinement of

T with the associated auziliary solution U, € SP(T,), where U, = P,g on T'p. Then,

(1= ) IV (u = U,z < IV(u = U F2) = IV(Us = Ud)llz2ey (64)
+a™! Gy (P — PZ)QH?{IM(FD)

for all o > 0. The constant Cpyn > 0 depends only on the shape regularity of o(T;) and
o(Ts) and on Q and T'p.

Proof. We recall the Galerkin orthogonality

(V(u—=U,), VVi)q=0 forall V, € SL(T,).

Now, let U¢ € 87(7;) be the unique Galerkin solution of (5) with Uf|r, = Ppg. We use the
Galerkin orthogonality with V, = Uf — U, € S} (T,). This and the Young inequality allow
to estimate the L2-scalar product

2(V(u—T,), V(U, = Up))al = 2(V(u—T.), V(U = U))el
< afV(u-— U*)H%?(Q) + a_1||V(U* - Uf)“%?(sz)

for all & > 0. To estimate the second contribution on the right-hand side, we choose an
arbitrary extension § € HY2(T') of (P, — P;)g € H/?*(T'p). Then, we use the test function
V, = (U,—UY—=1,LG € S(T;), where £ : HY2(T') — H'() again denotes a lifting operator.
Recall that the choice of the Scott-Zhang projection J, guarantees that this function has zero
Dirichlet data on I'p since glr, = (P, — P)g € SP(EP). Now, the Galerkin orthogonalities

for U,, U’ € S*(T;) yield
0=(V(u—-"T)), VVi)a— (V(u—"T.), VVi)o = (V(U, = U), VV;)a.

By the above choice of V, € 87,(7,) and stability of J, and £, this yields

IV(U, = U2y = (VU = UL), VILG) o S IV(Te = UD | 2@ 1G]l mr2ry-
Since § was an arbitrary extension of (P, — P;)g € H'/?(I'p) to H'/?(T'), this yields

IV (T, = U)oy S NP = Pl vy
So far, we have thus derived
2/(V(u—T.), V(U, = U)ol < allV(u—T)l[72@) + " Coyn [I(Pe = P)gl3nrze):

To verify (64), we use the identity

IV (= Oz = 1V ((u = 0) + (Us = U0)) 120

= [ V(u = U)llZ2() + 2(V(u=U.), V(U. = Up))a + IV (U, = U))l72(0)-

Rearranging the terms accordingly and use of the estimate for the scalar product, we conclude

the proof. 0
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5.3. Proof of contraction theorem (Theorem 5). Using the quasi-Pythagoras theo-
rem (64) with 7, = Tpy1, we see

(1= a) [V(u = Uni)l729) < IV (u = U200 — IV (Uerr = Uo7
+ o™ Coyn (Pt — P)gll3r2 0 -
The use of the HY/ 2(F p)-orthogonal projection provides the orthogonality relation
10 = Pet) gl + 1 Prst = PaliZn ey, = 11— Pgl2rary
Combining the last two estimates, we obtain
(1= ) [V (u = Ups1)[1320) + & Coynll(1 — Pe))gl g,
< |IV(u=TU0)}20) + 0 Coymll (1 — PN, = IV Ukt = Ue)l 72y

Applying Lemma 19, we see that Algorithm 1 for n? = Q?—FOSC%’ , implicitly implies the Dorfler
marking (63) (resp. (51)) for 77 = 07 + osc},,. Therefore, the estimator reduction (52) of
Proposition 11 applies to the auxiliary problem and provides

Ni < Grea Tli + Coed||V (Ups1 — (72)“%2(9) for all £ > 0.
Now, we add the last two estimates to see, for § > 0,
(1= ) [V (u = Ues1)[F20) + @ Coyanll (1 = Pes) gl sz, + BT
< [Vt = T By + 0 Copanll(L = PG ey, + Beeca T
+ (BCkea = 1) |V (Uesr = Un)lI72 (0

We choose 3 > 0 sufficiently small to guarantee 5Creqa —1 < 0, i.e. the last term on the right-
hand side of the last estimate can be omitted. Then, we use the reliability ||u— Ue”%p(m Sf
and the estimate [|(1 — Pg)g||Hl/2 o) S S oscp, < 7 from Corollary 9 in the form

IV (= Ol + 10 = P,y < O
to see, for arbitrary v, > 0
(1=) IV (= Urs1) 20y + " Coynll (1 = Pex1) gl 2y + B0
< IV (= )220 + 0~ Coyinll (L = PGl s2q0y, + Bthea 7
< (1=4BC™) |V (u = Tp)lI72(0) + (1 = 68C )™ Coyan [|(1 — Po)gll /2w
+ B(drea + v + 6™ Cpyun) 7

For 0 < a < 1, we may now rearrange this estimate to end up with

~ Chyth B -
IV (= Uei) |20y + ﬁ 11 = Pe1)glliprery + 1—a i
1 —~yBC~! _ h
< g, V- Un)72(0) + (1 = 68C )a( P o) (1 = Po)gll 3,
+ <Qred + Y + 5a_lcpyth) % 7762'
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It remains to choose the free constants 0 < «a,7v,0 < 1, whereas > 0 has already been
fixed:

e First, choose 0 < v < 1 sufficiently small to guarantee 0 < qeq +7 < 1 and 0 <
yBC—t < 1.
e Second, choose 0 < a < 1 sufficiently small such that 0 < (1 —~8C~1)/(1—a) < 1.
e Third, choose § > 0 sufficiently small with greq + 7 + 0™ Cpym < 1.
With p = 8/(1 — a), X := o 'Cpymn/(1 — @), and 0 < £ < 1 the maximal contraction
constant of the three contributions, we end up with the contraction estimate (20).
It thus only remains to prove equivalence (21): According to the definition of A, in (20), we
have equivalence A, ~ 772, Finally, Lemma 18 implies 77 ~ n? and concludes the proof. [

Remark. For P, = P, the HY?(I'p)-orthogonal projection, the proof reveals that Theo-
rem 5 holds without any restriction on the adaptivity parameters and even for simple Dorfler
marking (51). O

6. QUASI-OPTIMALITY

In this section, we aim to prove Theorem 6-7. In some sense, the heart of the matter
of the quasi-optimality analysis is the discrete local reliability of Proposition 21. This is,
however, only proved for discrete Dirichlet data obtained by the Scott-Zhang projection. We
therefore consider this as an auxiliary problem: Let U, € SP(7T;) denote the Galerkin solution
of (5) with respect to the Scott-Zhang projection, i.e. U, = Jvg on I'p. Finally and as above,
1; = 07 +osc , denotes the error estimator for this auxiliary problem. Although the discrete
local reliability of 77, does not imply discrete local reliability of the error estimator n, for the
primal problem, we will see that nevertheless discrete local reliability of an equivalent error
estimator is sufficient for quasi-optimality.

6.1. Optimality of Dorfler marking. Throughout, we assume that the Scott-Zhang
projections are chosen with respect to the assumptions of Section 4.2.

Proposition 21 (discrete local reliability for Scott-Zhang projection). Let T, = refine(7T;)
be an arbitrary refinement of T, and U, € SP(7T,) the corresponding Galerkin solution (5)

with (7* = J,g on I'p. Then, there is a set R, C T, which contains the refined elements,
TA\T. € Ry such that

U, = Ul < Can >, (T)?*  and  #Ry < Coor #(T\T5). (65)

TeER,

The constants Cqy, Cref > 0 depend only on Ty and the use of newest vertex bisection.

Proof. We consider a discrete auxiliary problem

(VW,, VVi)a =0 forallV, € S(T;)

with unique solution W, € SP(7;) with W,|r, = (J. — J¢)g. Then, ([7* - (75 - W, €
SP(T:), and the H'-norm is bounded by the H'-seminorm. Moreover, arguing as in [CKNS,
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Lemma 3.6], we see
I8, = T = Wl S 19, = T = Wollagy S 30 @M< 3 al1)?
TeT\T TETNTx

According to the triangle inequality, it thus only remains to bound ||W, || z1(0) by Y rer, 1e(T)?
with some appropriate R; 2 T;\7.. To that end, let £ : HY?(I') — H'(Q) be a lift-
ing operator and § € H'Y?(I') an arbitrary extension of (J, — J)g € HY?(I'p). With
Vi, =W, = J.Lg € S)(T.), we obtain

Wil < [IVillzz@) + 10:L31 2 @) S 1VVille2 @) + 10LG ]l 20
S IVWallzz@) + 13LGl| 1 (0
Moreover, the variational formulation for W, € SP(7,) yields
= <VW* y VV;>Q = ”VW*H%2(Q) - <VW* s VJ*£/9\>Q, whence HVW*HLQ(Q) < HVJ*‘C/Q\HLQ(Q)
Combining the last two estimates, we obtain
Wl S 1Ly < 1l
Since g was an arbitrary extension, this proves
IWillz@) S 1T = T)gllmz,,)-

To abbreviate the notation in the remainder of the proof, let RY := EP\E; denote the refined
Dirichlet facets. We define inductively

=UR?, wp=U{E€&’ : Enw}) " #0} forn>1,

i.e. w} denotes the region of the refined Dirichlet facets plus n layers of (non-refined) Dirichlet
facets with respect to £F. Note that w} is nothing but the usual patch of RY. Due to the
local definition of J, and J,, we observe

J,—J)g=0 onTp\w. (66)

Let (. € S'(EP) denote the hat function associated with some node z € K of EP. Clearly,
the hat functions {C&Z Dz € IC?} provide a partition of unity Zzelc,{? Ce. = 1 on I'p resp.

> .exPrwt Gte = 1 on wy. Exploiting (66), we see

13 = 3glm iy = || D Ga@—T0g

zG’CDﬂwe

H1/2 (67)

We now adapt the arguments of [CMS, FKMP]| to our setting. Analogously to the proof
of [CMS, Theorem 3.2] resp. [FKMP, Proposition 4.3|, we obtain

| > . Jeg\w S R [ A 1 A
zEK?ﬂw,} zEIC?F‘Iw,%

N Z €.z (Jx = Je)gll20p) IS0, (T — Je) gl 2 (01

zGK?ﬁw}

where the final estimate is just the interpolation estimate. As above, let
wp, ={z}, wp,=U{Ee&’ : Enuw/ ' #0} forn>1,
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ie. wy, = U{E € & : z € E} denotes the node patch of z € K which is just the
support of the hat function ¢y, on I'p. To proceed, we apply the Friedrichs inequality to the
summands on the right-hand side of the estimate above and derive

2

| X 30, 5 D daml)I Ve~ 309 ae

zEICgDﬂwt} zelCéDﬂwl}

~ ) ||h;/2VF(C£,z(J*—Jg)g)HiQ(w}’z).

zGICéDﬂwt}

(68)

Here, hy € L®(I'p) denotes the local mesh-width function hy|p = |T|*/¢ for E € £P and
T € 7T, the unique element with £ C 0T. Formally, the constants in the Friedrichs inequality
depend on the shape of wl},z’ Note, however, that there are only finitely many shapes of
patches due to the use of newest vertex bisection. Next, we use the estimate |Vr(p.|g| ~

diam(E)™! ~ h,!|p for E € £P. This and the product rule yield

10>V (Cen (B — T0)9) 12wt )
< My (VeGea) B = T)all3ay ) + 0> Ve @ = T)glay
S0 2@ = 30gliagr  + 10> Ve(@ = 309l 1ey

= [|hy 0.1 - JE)QHQH(W;YZ) + ||hy AV, (1 — JZ)QHQLQ(W}JY
Finally, the local stability of J, and the local approximation property of J, yield
17V (e (B = 30)9) 32y y S I (1= T0)gllZaz ) + e * Ve (L = Jgl7cer
S g * V(1 = 30gllfaey (69)
S by (1 = ) Vgl -

where we have finally used Estimate (41) of Proposition 8. Now, let RP := {Fe&f :EC

wj } denote the set of Dirichlet facets which lie in wj and note that HRP ~ 4#RP < #(T\T)
up to shape regularity. The combination of (67)-(69) yields

1/2
Wy S 10 = 30glnaryy & 3 121 = ) Viegl2ags
zeKP Nw}
~ [|hy* (1 = 1) Vg3
< Z oscp(E)?,
E€RP
due to (41)—(42) in Proposition 8 Defining the set

Re=T\LU{T €T, : 3IEcRP EcaT},
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we observe T\T, C Ry as well as #R,; < #(T:\T.). Moreover, the definition of the local
contributions of 7, in (50) shows

This concludes the proof. 0

Corollary 22 (optimality of Dorfler marking for Scott-Zhang projection). For arbitrary
0 < Ky < 1, there is a constant 0 < 0, < 1 such that for all ¢ € Ny and all meshes
T. = refine(T;) with 2 < k.07, the set Ry C Ty from Proposition 21 satisfies the Dorfler

marking
07 < > n(T)? (70)

for all 0 < 0 < 0,.

Proof. We split the estimator into the contributions on the non-refined resp. refined elements

= m(T)?= Y T+ ) ml(T)

TeT: TeTNT: TET\T:

Arguing as for the estimator reduction in Proposition 11 with § = 1, we see

ST <2 S T+ Ca VT, = Tl < 202 + Croa IV (e = T0) 220y,

TeTNTx TeTNTx

We now combine both estimates and use 772 < k, 77 as well as the discrete local reliability

with Ry 2 T,\T. to see
775 < 2 + Cred ||V(U U( ||L2 + Z TM S 2 Ry ﬁ; + (Credcdlr + 1) Z HK(T)Q

TET\Tx TeER,

Rearranging this estimate, we obtain

(CreaCan + 1) M1 =260 52 < > T(T)?,

TER,
so that 0 < 0, := (CreqCair + 1)1 (1 — 2k,) < 1 concludes the proof. O

6.2. Optimality of newest vertex bisection. The quasi-optimality analysis of AFEM
requires two properties of the mesh-refinement which are satisfied for newest vertex bisection:
First, for two triangulations 77, 7" € T, let T'&T" € T be the coarsest common refinement
of both. Since newest vertex bisection is a binary refinement rule, it can be proved that

"@ T" is just the overlay of both meshes, see [S07, Proof of Lemma 5.2] for 2D and the
generalization to arbitrary dimension in [CKNS, Lemma 3.7]. Moreover, the number of
elements of the overlay is controlled by

#(T &T") <H#T +#T" = #To, (71)

since both meshes are generated from the initial mesh 7.
Second, we need the optimality of the mesh-closure, i.e. the definition 7y, = refine(7;, My)

leads at least to refinement of all marked elements T' € M,. In addition, further elements
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T € T\ M, have to be refined to ensure conformity of the mesh. It has been proved in [BDD,
Theorem 2.4] for 2D that

¢

#Toi1 — #To < Cow, Y _#M; forall £ >0, (72)

5=0

i.e. the number of elements in 7,1 is bounded by the number of marked elements. The
constant C,1, > 0 depends only on 7y in the sense that the initial reference edge distribution
had to satisfy a certain assumption. Very recently [KPP], it could be proved that (72)
holds without any further assumptions on 7y. For arbitrary dimension, (72) has been proved
in [SO8, Theorem 6.1] and 7, has to satisfy a certain assumption on the initial reference edge
distribution.

6.3. Proof of quasi-optimality of AFEM (Theorem 6). In a first step, we prove that

#M, < A;l/ 29 To that end, let ¢ > 0 be a free parameter which is determined later.
According to the definition of the approximation class A, there is some triangulation 7; € T
with
n.<e and #T. —#T Se V"

where the hidden constant depends only on A,. We consider the overlay 7, := 7. & Ty.
Arguing as for the estimator reduction (52) and use of the discrete local reliability for 7,, we
obtain

e S e+ I V(Us = Ud)l[120) S e = me < ¢,
where we have finally used the equivalence of both error estimators provided by Lemma 18.
Choosing ¢ = d np ~ d n, with sufficiently small § > 0, we thus infer

ﬁ* S E*ﬁf

with some appropriate 0 < k, < k,, where arbitrary 0 < k, < 1 in Proposition 22 fixes 0 <

6, < 1. The constant %, will be determined later. Together with the overlay estimate (71),
we infer

#HRe = #(T\T) < #T. — #T < #T. — #To S e /e
as well as the Dorfler estimate
e*ﬁfz < Z ﬁé(T)Q-
TeER,

We now need to show that this implies Stevenson’s modified Dorfler marking. To that end,
we again employ Lemma 18:
e In case of osc},, < ¥ of, we employ Lemma 18 twice to see

0.0f S 0.7 < Z m(T)? +osch, S Z 0e(T)? + osch, < Z 0e(T)* +Joj.
TERy TeERy TER,
Put differently, we obtain
((Coq+ )20, =) 0] < Y a(T),
TeERy

i.e. for 0 < 9,6, < 1 sufficiently small, the set R, C 7, satisfies the marking criterion (11).
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e In case of osc}, , > 1 o7, we use that the Dirichlet oscillations are locally determined, i.e.
Z oscp(E)? = Z oscp4(E)? < OSCQDV* < N2 <R ~Ranp < R(14971) osc%w.
EegPneP EegPnepP
This estimate yields
(1 =R+ 07" (Ceq + 1)) 08¢, < Z oscp(E)?
EegP\ep

For arbitrary 0 < 6, < 1 and sufficiently small 0 < %, < 1, we infer that EP\EP satisfies the
marking criterion (12).

In the first case, minimal cardinality of M, C 7, in step (iii) of Algorithm 1 implies
#HM, < #Ry =~ #(T\T.). In the second case, minimal cardinality of MP C £P and the
definition of M, C T; in step (iv) of Algorithm 1 imply #M, < #MP < #(EP\EP) <
#(T\T). In either case, we thus conclude

UM, S HTAT) Se VoM~ A7) for all £> 0.

We now conclude the proof as e.g. in [S07, CKNS]: By use of the closure estimate (72),
we obtain

~

-1 -1

HT—#T0 <Y #M; <5 ATYE)

J

~

<

I
)

Il
=)

J

Note that the contraction property (20) of A; implies A, < k77 A;, whence A;l/(%) <

r(E=9)/(25) A;l/ (29) " According to 0 < & < 1 and the geometric series, this gives

/—1
BT — #To S A0 Y7 RUE) S ATHED o i,

=0
Altogether, we may therefore conclude that (u, f, g, ¢) € Ay implies n, < (#7T¢ — #7To)~*° for
all £ > 0. The converse implication is obvious by definition of A,. O

6.4. Characterization of approximation class (Theorem 7). First, note that for a
given mesh 7T, € T the estimator 7, dominates all oscillation terms, i.e.

0SCT % < My, OSCDx <My, OSCN 4 < Ny

We assume (u, f, g, ¢) € Ag for some s > 0. For each N € N it exists 7, € T such that

Néoscr . < N°n, < C:=sup inf N°p, < oo. (73)
NeNT+€Tn
Analogously, we have
Néoscy, < C <oo and Néoscp, < C < o0. (74)

The reliability result in Proposition 3 yields

V*glsg(lﬁ)N | = Villar o) £ N¥|lu = Udlgro) £ CralN 1, < CraC < 00. (75)

Because N € N was arbitrary, the estimates (73)—(75) prove (26)—(29).
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Now, we assume that (26)—(29) hold for (u, f, g,¢). We aim to prove (u, f,g,¢) € A;. By
use of the efficiency estimate in Proposition 3 and the Céa-type estimate in Proposition 2,
we derive

sup inf N°n, < C.gsup inf NS(C . min |lu— Vi
NEI:I\)I,K(GTN 77 - ff Neljz]ﬁETN Céa V*Esp(ﬁ) ” HHI(Q) (76)
+ OSC%—’* + osc?\h* + OSC2D7*>.

For N € N, the assumption (26)-(29) guarantee meshes 7, ., Ta, Trn: Txp € Ty such that
N 4 S 3 — V < : f . NS _ V —- Cu < :
(N, min = Vel < sup o miy ) Nl = Vil =

(N/4)? oscr ., < sup inf Nooscr, =: Coger < 00,
N>0 Tx€TN

(N/4)*oscn sy < sup inf N¥oscy, =: Coscy < 00,
N>0T+€TN

(N/4)*0scp4, < sup inf N°oscp, =: Coscp, < 00.
N>0T+€TN

Now, we consider the overlay 7. := T,, ® T., ® Tiy © T+,. The overlay estimate (71) gives
#T. < N —3#7,, whence #7, —#7Ty < N. Due to the fact that IIg and Il are projections,
we get immediately by definition of the oscillation terms and SP(7,) 2 S?(7,,)

V.esH(T.) lu = Vel < Vi, e8H(T) e = Vel

0SCT 4 < OSCT 4wy, OSCN 4« < OSCN 4y, and 0scp. < 0SCp .-

Together with (76), we prove

inf N°n, <C NS(C' ., min |lu—Vi|? 0sc2 0sc2 o0sc? >
Tty The = Ceff Céa V.ESP(T2) | *“Hl(Q) + 0SCT , + 08Cyy , + 0SCp

s : 2 2 2 2
< Cet N (OCea Ve R ) [w = Vel (@) + 05€T . +08C 0 + OSCD,w)

S Ceff4_s(CCéaCu + Cvosc7— + OoscN + C1oscD) < 00,

where the constants are independent of N € N. Taking the supremum over N € N, we
conclude (u, f, g, ¢) € A,. O

7. NUMERICAL EXPERIMENT

In this section, we provide numerical results for mixed boundary value problems in two
and three space dimensions for the lowest-order case p = 1. In both examples we choose
¥ = 01 = 0y in Algorithm 1. For comparison of the individual contributions g,, we further
define the jump terms

o€ =D T [0.U) |72 (77)
Ee&d
the volume terms
0% = TP fll32cr) (78)
TeT,
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Error estimator g, for L2-orthogonal projection in 2D

I - uniform ) |
! ®-0=1/4 |]
-0 =1/8
1072 - |
103 10* 10° 106
number of elements N = #7,
Error estimator g, for Scott-Zhang projection in 2D
I - uniform | |
i w0=1/4 ||
-0 =1/8
1071 | ——0 =1/16 ||
1072 - |
103 10 10° 108

number of elements N = #7,

F1GURE 1. Numerical results for g, for uniform and adaptive mesh-refinement
using 6 € {1/4,1/8,1/16} and L*-orthogonal projection and Scott-Zhang pro-
jection in 2D, respectively, plotted over the number of elements N = #7,.
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Individual contributions of g, for Scott-Zhang projection in 2D

r T T T .

1071} e ey o . |
s T T o)) |
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102) % o O(N-1/2) Jooe L 7000 0 D
i MO SN \\‘\\ X S > ]

10_3 ; Y Vs S —o \\N‘~~\\\\ o \ 75

1074} e . -4
I ~©- 0,(E) (unif.) —0-go(EN) (unif.) -6-oscp, (unif.) |

1075 | ——0(E5Y) (adap.) o= 0,(EN) (adap.) ——oscp, (adap.) .
-l L L | L L L | L L L ] N
10° 10 10° 106

number of elements N = #7,

FIGURE 2. Numerical results for o/(£5}), 0,(EYN) and oscp, for uniform and
adaptive mesh-refinement using § = 0.25 and Scott-Zhang projection in 2D,
plotted over the number of elements N = #7,.

and the Neumann terms
o(EX) =D |T1" ¢ — 0.Uel132m)- (79)
Eegl

for the respective space dimension d € 2, 3.

7.1. 2D example on Z-shape. In our first example, we consider the Z-shaped domain
Q = (=1,1)*\conv{(0,0),(—1,—1),(0,—1)}, see Figure 3, where also the partition of the
boundary I' = 0f) into Dirichlet boundary I'p and Neumann boundary I'y as well as the
initial mesh is shown. We prescribe the exact solution

u(z) = 7 cos(4p/7) (80)

of problem 1 in polar coordinates x = r(cos ¢, sin ¢) and compute the Neumann and Dirichlet
data thereof. Note, that f is harmonic so that

—Au=f=0.

The solution u as well as the Dirichlet data g = u|r show a generic singularity at the reentrant

corner r = 0.
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%
<

FIGURE 3. Z-shaped domain with initial mesh 7y and adaptively generated
mesh 7T;; with N = 9.864 for # = 0.25. The Dirichlet boundary I'p is marked
red, whereas the blue parts denote the Neumann boundary I'\I'p.

Figure 1 shows a comparison between uniform and adaptive mesh refinement, where the
adaptivity parameter 6 varies between 1/4 and 1/16 and where the Dirichlet data are dis-
cretized by means of the L2-projection and the Scott-Zhang projection, respectively. It is
easily seen that both discretizations lead to the optimal convergence rate O(N~1/2) for all
parameters ¢, whereas uniform refinement leads only to suboptimal convergence behaviour
of approximately O(N=2/7). Note that due to f = 0, we have no volume contributions in
this example.

In Figure 2, we compare the jump terms, the Neumann terms, as well as the Dirichlet
oscillations oscp, for uniform and adaptive refinement, where we have chosen the Scott-
Zhang projection to discretize the boundary data. Even here, we observe better convergence
rates with adaptive refinement. Due to the corner singularity of the exact solution at r = 0,
uniform refinement leads to a suboptimal convergence behaviour, even for the oscillations.
Finally, in Figure 3, the initial mesh 7, and the adaptively generated mesh 7;; with N = 9.864
Elements are visualized. As expected, adaptive refinement is essentially concentrated around
the reentrant corner r = 0.

7.2. 3D example on the Fichera cube. As computational domain serves the Fichera
cube Q = (—1,1)3\[0, 1]*> which has a concave corner and three reentrant edges. The partition
of the boundary I' = 992 into Dirichlet boundary I'p and Neumann boundary I'y, as well as
the initial surface mesh is shown in Figure 6. We solve problem (1) with right-hand side

5}
fly,2) = =16 (@ + 0" + 22) T,

The boundary data are prescribed by the trace resp. normal derivative of the exact solution
u(w,y,2) = (&% + g% + 25)1°
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Error estimator g, for L?-orthogonal projection in 3D

100.2 - T T T T 17 T T T T -1
-8 uniform
-0=1/4
100 | -o-0=1/8 |]
——0 =1/16
10702 - :
1070.4 | |
10706 | :
10—0.8 - B
103 104 10°
number of elements N = #7,
Error estimator g, for Scott-Zhang projection in 3D
100.2 - T T T T 17 T T T T -1
-8 uniform
o-0=1/4
100 | o-0=1/8 |]
——0 =1/16
10—0.2 - B
1070.4 | |
10706 | :
10708 - :

103 10* 10°
number of elements N = #7,

FIGURE 4. Numerical results for g, for uniform and adaptive mesh-refinement
using 6 € {1/4,1/8,1/16} and L*-orthogonal projection and Scott-Zhang pro-
jection in 3D, respectively, plotted over the number of elements N = #7,.
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Individual contributions of g, for L?-orthogonal projection in 3D

10°

1071

1072

1077 i+ 00(Q) (unit.) -8 0,(E2) (unif.) 0 oo(EY) (unif.) - oscp, (unit.) }
4 0,(Q) (adap.) - 0,(EF) (adap.) —o— 0,(EYN) (adap.) =—oscp, (adap.)

10 10* 10°
number of elements N = #7,

FIGURE 5. Numerical results for 0,(€2), 0s(E), 00(EYN) and oscp, for uniform
and adaptive mesh-refinement using # = 1/4 and L?-orthogonal projection in
3D, plotted over the number of elements N = #7,.

which has a singular gradient at the reentrant corner at the origin. Similar to the 2D case,
we provide comparisons for various adaptivity parameters as well as for different choices for
the discretization of the boundary data.

In Figure 4, we compare uniform and adaptive mesh refinement where the Dirichlet data
are discretized by means of the L?-orthogonal projection or the Scott-Zhang projection,
respectively. The adaptivity parameter is varied between 1/4 and 1/16. We observe that
either discretization g, of the Dirichlet data g leads to the optimal convergence rate O(N~1/3)
for all choices of . Due to the generic singularity at the center, uniform refinement leads
only to suboptimal convergence rate of O(N~2/?).

In Figure 5, we compare each contribution of the estimator separately for uniform and
adaptive refinement with § = 1/4. For this comparison, we chose the L?*-orthogonal pro-
jection to discretize g. For adaptive refinement, we observe optimal order of convergence
even for o(E), 00(Q), 0¢(E}), and oscp . Uniform refinement, on the other hand, leads to

suboptimal convergence rate also for the individual contributions.
33



=
= ;Ivi"gk
AV AV A

x
4

NSRRI
‘V‘# (°5
I A OSE
,;,wupmv&\y@m; RN
!A,AM@:\\
iiﬁ!mm

O
V7
W
7

\Z

N

N
A\

%
X

"
A
XD

AN

™

A\
N

R
R

==
N

DA
A

oK
ZANNVANNWANNN

N
X

ZaN

\V4

O
N

“'V&

2NE
S22
ZZas

>
£

&
=

7 ——aV/

N
N
N
N

S&=

RN
0

4
&z
=

Z=<

FIGURE 6. Fichera cube with boundary of the initial mesh 7y and 739 with
N = 200.814 for # = 0.25. The Dirichlet boundary I'p = {—1} x [—1,1]? is
marked red, whereas the blue parts denote the Neumann boundary I'\I'p.

The computational domain, with initial (surface) mesh 7, as well as the adaptively gener-
ated mesh T3y with #7350 = 200.814 elements is finally shown in Figure 6. As expected, the
refinement is basically concentrated around the singularity at the origin.
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