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Abstract

We consider a coupled system of two singularly perturbed reaction-diffusion equations, with
two small parameters 0 < ¢ < p < 1, each multiplying the highest derivative in the equations.
The presence of these parameters causes the solution(s) to have boundary layers which overlap
and interact, based on the relative size of ¢ and u. We construct full asymptotic expansions
together with error bounds that cover the complete range 0 < ¢ < p < 1. For the present case
of analytic input data, we derive derivative growth estimates for the terms of the asymptotic
expansion that are explicit in the perturbation parameters and the expansion order.

1 Introduction

Singularly perturbed (SP) boundary value problems (BVPs), and their numerical approximation,
have received a lot of attention in the last few decades (see, e.g., the classical texts [13, 17] on



asymptotic analysis and the books [10], [11], [14], whose focus is more on numerical methods for
this problem class). One common feature that these problems share is the presence of boundary
layers in the solution. In order for a numerical method, designed for the approximation of the
solution to SP BVPs, to be considered robust it must be able to perform well independently of the
singular perturbation parameter(s). To achieve this, information about the regularity of the exact
solution is utilized, and in particular, bounds on the derivatives. Such information is available
in the literature for scalar SP BPVs of reaction- and convection-diffusion type in one- and two-
dimensions (see, e.g., [5, 7] for scalar versions of the problem studied in the present article). For
systems of SP BVPs, the bibliography is scarce, even in one-dimension; see the relatively recent
review article [4] and the references therein, for such results available to date. It is, therefore, the
purpose of this article to begin filling this void; in particular, we provide the regularity theory
for a system of two coupled SP linear reaction-diffusion equations, with two singular perturbation
parameters. Our analysis is complete for the problem under consideration in that we derive full
asymptotic expansions for all relevant cases of singular perturbation parameters and give explicit
control of all derivatives of all terms appearing in the expansions. Even though this is a linear,
one-dimensional problem, the methodology presented here can be the starting point for treating
more difficult problems.

The regularity results obtained here are used in the companion communication [9] to prove, for the
first time, exponential convergence of the hAp-FEM for problems with multiple singular perturbation
parameters. This exponential convergence result for the Ap-FEM relies on mesh design principles
firmly established for problems with a single singular perturbation parameter as discussed in [15,
16, 7, 5, 6]; the mathematical analysis of [9] shows that these mesh design principles extend to
problems with multiple singular perturbation parameters and confirms the numerical results of [18]
for the problem class under consideration here.

The rest of the paper is organized as follows: In Section 2 we present the model problem and discuss
the typical phenomena. In Sections 3—6 we address the regularity of the solution, as it depends on
the relationship between the singular perturbation parameters. The proofs of most of the results
presented in these sections are technical and are relegated to Appendices A-D.

In what follows, the space of square integrable functions on an interval I C R will be denoted by
L? (I), with associated inner product

(u,0); == / w(z)v(z)da.

1

We will also utilize the usual Sobolev space notation H* (I) to denote the space of functions on
I with 0,1,2, ...,k generalized derivatives in L?(I), equipped with norm and seminorm |||, , and

|7 4 » respectively. For vector functions U := (u1 (), us ()T, we will write

2 2 2
101k,r = lually g + lluallir -

We will also use the space

Hy (1) ={ue H (I): uly; =0},
where OI denotes the boundary of I. For z € C, we use 0B,(z) to denote the ball of radius r
centered at z. Finally, the letter C will be used to denote a generic positive constant, independent

of any discretization or singular perturbation parameters and possibly having different values in
each occurrence.



2 The Model Problem and Main Results

We consider the following model problem: Find a pair of functions (u,v)” such that

{ —&2u"(z) + ar1(z)u(z) + arz(z)v(z) = f(x) in I = (0,1), (2.1a)
120" (&) + az1 (@)u(x) + az(@)o(x) = g(x) in T = (0,1), |
along with the boundary conditions

u(0) =u(l) =0, v(0) =v(1) =0. (2.1b)

With the abbreviations

Go(). e (50) awe (B ) eo (1),

equations (2.1a)—(2.1b) may also be written in the following, more compact form:
L.,U:= -E**U"(z) + A(z)U =F, U(0) =U(1) = 0. (2.2)

The parameters 0 < ¢ < p < 1 are given, as are the functions f, g, and a;j, 4,5 € {1,2},
which are assumed to be analytic on I = [0,1]. Moreover we assume that there exist constants
Cr,v7,Cq,79, Cay Ya > 0 such that

Hf(n)HLOO(I) < Cffy;}n! vV n € Ny,
Hg(n)HLOO(I) < Cgfygn! vV n € Ny, (2.3)

Lo < Cyyin! ¥YneNg,i, je{1,2}

a?

|

The variational formulation of (2.1a)-(2.1b) reads: Find U := (u,v)" € [H} (I)]2 such that

B(U,V)=F(V) YV :=(u,v) € [H} ()], (2.4)

where, with (-, -); the usual L?(I) inner product,
B(U,V) = ¢ <u',ﬂ’>l + 2 <v’,6/>1 + (anu + agv,w); + (a21u + axwv,v);, (2.5)
F(V) = (fw;+{g.0);. (2.6)
The matrix-valued function A is assumed to be pointwise positive definite, i.e., for some fixed o > 0
E)TA? > 042?T? N E} € R? Vo el (2.7)

It follows that the bilinear form B (-,-) given by (2.5) is coercive with respect to the energy norm

2 _ 2 2 2 2 2
10130 = s o) o= 22l + i ol + 02 (Nl + ol ) (28)

ie.,

2
B(U,U) 2 |Ull, YU e [H )]

This, along with the continuity of B (+,-) and F' (-) , imply the unique solvability of (2.4). We also
have, by the Lax-Milgram lemma, the following a priori estimate

Al
101 < mae {1, 20 U7R L Tl (29)
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For the development of certain asymptotic expansions, it will be convenient to observe that our
assumption (2.7) implies (see Lemma A.2 for the proof )

app(r) > aVoel, k=1,2, (2.10)
det A(z) = a11(x)age(z) — a12(x)ag (x) > amax{ay (), amn(x)} > o? vz el. (2.11)

We note that the special case when the parameters are equal, i.e. € = p, was analyzed in [19]. In
the general case considered here, there are three scales (1 > p > ¢) and the regularity depends on
how the scales are separated. Correspondingly, there are 4 cases:

(I) The “no scale separation case” which occurs when neither /1 nor €/ is small.

(IT) The “3-scale case” in which all scales are separated and occurs when /1 is small and €/pu is
small.

(ITI) The first “2-scale case” which occurs when g /1 is not small and €/u is small.

(IV) The second “2-scale case” which occurs when p/1 is small and ¢/p is not small.

The concept of “small ” (or “not small”) mentioned above, is tied in two ways to our performing
regularity theory in terms of asymptotic expansions. First, on the level of constructing asymptotic
expansions, the decision which parameters are deemed small determines the ansatz to be made
and thus the form of the expansion. Second, on the level of applying asymptotic expansions, the
decision which parameters are deemed small depends on whether the remainder resulting from the
asymptotic expansion can be regarded as small.

We need to introduce some notation:

Definition 2.1. 1. We say that a function w is analytic with length scale v > 0 (and analyticity
parameters Cy,, Y ), abbreviated w € A(p, Cy, V), if

H’U)(n)HLoo(I) < Cpy? max{n, v 1}" Vn € Ny.

2. We say that that an entire function w is of L°°-boundary layer type with length scale v > 0
(and analyticity parameters Cy,, Yy ), abbreviated w € BL® (v, Cy, V), if for all x € T
|w(") ()] < Cyypr e dist(2,01)/v Vn € Np.
3. We say that that an entire function w is of L*-boundary layer type with length scale v > 0
(and analyticity parameters Cy,, Yy ), abbreviated w € BL(v, Cy, Vo), if for all x € T

||6dist(a:,81)/uw(n) HLQ(I) < Cwyl/zryg}y_n Vn € NO-

All three definitions extend naturally to vector-valued functions by requiring the above bounds com-
ponentwise.

In view of the length of the article, we collect the main result at this point; the four scale separation
cases (I)—(IV) listed above correspond to the four cases listed in the following theorem:



Theorem 2.2. There exist constants C, b, §, q, v > 0 independent of 0 < & < u <1 such that the
following assertions are true:

(I) U e Ae,Ce™/2 5).

(I1) U can be written as U = W+I~JBL+IAJBL+R, where W € A(1,C, ), Up. € BL>® (6, C,7)
Upr € BL>(0¢,C,7), and ||R|[z~@n + Rz < C [e7b/1 + e7tr/E] . Additionally, the
second component © of U satisfies the sharper estimate O € BL™(5e,C(e/p)?, 7).

(III) If ¢/p < q then U can be written as U = W + Upp, + R, where W € A(p,C,~), Upp, €
BL>(0¢e,C,7), and |R||p~or + IR £ < Ce=Y¢. Additionally, the second component v of

U satisfies the sharper estimate v € BL™®(de,C(g/1)?,7).

(IV) U can be written as U = W+Ugr+R, where W € A(1,C,~), Ugy, € BL® (511, C\/1fz, /<),
and |[R| o) + R e, < C (n/e)* e/

Proof. This result is obtained by combining Theorems 3.1, 4.1, 5.1, and 6.1 to be found in Sec-
tions 3-6. We emphasize that some results in these theorems are slightly sharper since they analyze
all terms of the asymptotic expansions whereas Theorem 2.2 is obtained from the asymptotic ex-
pansions by suitably selecting the expansion order. O

3 The no scale separation case: Case I

In this case neither p/1 nor €/p is small, which means that the boundary layer effects are not very
pronounced. By the analyticity of a;;, f and g, we have that v and v are analytic. Moreover, we
have the following theorem.

Theorem 3.1. Let (u,v) be the solution to (2.1a)—(2.1b) with 0 < € < u < 1. Then there exist
constants C' and K > 0, independent of € and p, such that U € A(E,Csfl/Q,K) satisfying the
sharper estimate

+ [lo™ < CK"max{n,e'}" Vn € Ny. (3.1)

Hum)
0,1

)

Proof. The L?-based estimate (3.1) was shown in [19] for the special case ¢ = u. The extension to
current situation € < y is straight forward. We note that the Sobolev embedding theorem in the
form HvH%w(I) < Cllvll2(pyllvll 1y allows us to infer from (3.1) the assertion U € A(e, Ce=1/2 ~)
for suitable C', v > 0 independent of ¢ and u. O

4 The three scale case: Case 11

In this case all scales are separated and it occurs when both p/1 and €/ are deemed small. This is
arguably the most interesting (and challenging from the approximation point of view) case, since
boundary layers of multiple scales appear. Additionally, this case shows most clearly the general



procedure for obtaining asymptotic expansions and error bounds for problems with multiple scales.
Before developing the asymptotic expansion, we formulate the main result:

Theorem 4.1. The solution U of (2.1) can be written as U = W + Up, + UBL + R, where
W e A1, Cw,yw), U € BL™® (6, CpL,VBL), Ue BL>®(de,Cpr,vBL) for suitable constants Cyy,
Csr, Yw, YBL, 0 > 0 independent of u and €. Furthermore, R satisfies

IRl on) + e pRllpey < C e 2],
for some constants C, b > 0 independent of i and . In particular, |R||p,r < C [e—b/u + e—bu/a].

Additionally, the second component v of U satisfies the sharper reqularity assertion

ve B‘coo(ég’ CBL (6/M)2’ rVBL)'
Proof. See Section 4.6. O

Anticipating that boundary layers of length scales O(u) and O(e) will appear at the endpoints
x =0 and x = 1, we introduce the stretched variables T = x/u , ¥ = x /e for the expected layers at
the left endpoint 2 = 0 and variables 7% = (1 — z)/u , #f = (1 — 2) /e for the expected behavior
at right endpoint x = 1. We make the following formal ansatz for the solution U:

U~ii<%)<%>] Uy(2) + U5 @) + U5 @) + UF @R + OFEY], @)

i=0 j=0

where the functions Ujj, UZLJ, UL Uf}, g- will be determined shortly. The decomposition of

Theorem 4.1 is obtained by truncatlng the asymptotic expansion (4.1) after a finite number of
terms:

UM () ::(“<””)):WM<m>+ﬁ%L<f>+V%L@R>+ﬁB<>+VBL< R4 Ry(a), (42)

where [P
1 2
uij ()
P < > < vij () > 43)
=0 j=0
denotes the outer (smooth) expansion,

-25w (5) (53) wmen-L3w (5) (W ). oo

=0 j=0 LY =0 j=0

<

denote the left and right inner (boundary layer) expansions associated with the variables z, 27,
respectively,

o580 () (49 oo - 50 () (4E). o

=0 j=0 =0 j=0



denote the left and right inner (boundary layer) expansions associated with the variables z, z7

respectively, and
Rus(o) = 740) ) = UG0) = (Warlo) + TR0 + VILE" + D) + VEGEY)  (00)

denotes the remainder. Theorem 4.1 will be established by selecting M; = O(1/u), My = O(u/e).

4.1 Derivation of the asymptotic expansion

In order to derive equations for the functions Uj;, UZLJ, UZLJ, Uﬁ, Uf}, the procedure is as follows:
first, the ansatz (4.1) is inserted in the differential equation (2.1a), then the scales are separated

and finally recursions are obtained by equating like powers of p and &/pu.

In order to perform the scale separation, we need to write the differential operator L. , in different
ways on the various scales. In particular, for the z and the Z-scales, the coefficient A is written,
by Taylor expansion, as

a11) (0) agg) (0)

Al) = Y A, Ap=AR(0) = (%) ag';]g!(m : (4.7)
= k! k!

A(z) = ,20 1k (%)k A", (4.8)

Corresponding representations are obtained for the variables 7' and Z% by expanding around the
right endpoint = = 1. Hence, the differential operator L. , applied to a function depending on = or
7 takes the following form:

on the Z-scale: —uPESFORU(T) + Z pF AU (D), (4.9)
k=0
e} N k

on the Z-scale: —e PErOU(E) + > <;> A ZMU(T). (4.10)

Clearly, analogous forms exist for the operator on the 2% and Z scales. We now insert the ansatz
(4.1) in the differential equation equation (2.1a), where the differential operator L. , takes the form
given above on the fast scales Z, Z, %, %, and we separate the scales, i.e., we view the variables

x, T, T, T, 1 as independent variables. Then, we obtain
1 <;> [_E&MU;} +A(z)U;| = F, (4.11)
i=0 j=0

© i
> o (%) [ B (UE) ”+ZukAkkaL] = 0, (4.12)

o0

i=0 j=0 k=0

Z Zlul <_> —QEE,M(UL " + ngAkkaL] — O, (413)
i=0 j=0 K k=0




and two additional equations for fJR, Uk corresponding to the scales z%, ' that are completely
analogous to (4.12), (4.13). We write

~L ~L
Wi s ~ us ~ us

vim (i) w=(F) w-(3).  ew
) )

and equate like powers of p and e/ in (4.11), (4.12), (4.13) to get the following recursions:

(P
_< ;}//2,] A2 ) +A@)U; = Fy, (4.15a)
1_27]
(@ 2"\ N~ A L
—( (%5)2,, >+2Akx Ul = 0 (4.15b)
I k=0
(Q/IAL‘)// min{%,5} or
— A + Az"U, . = 0 (4.15¢)
L k k.j—k )
( (Uz‘,j+2)” ) l;) B

where we adopt the convention that if a function appears with a negative subscript, then it is
assumed to be zero. Furthermore, we set

F00=<£>7 ;=0 if (i.)) # (0,0).

The procedure so far leads to a formal solution U of the differential equation (2.1a); further
boundary conditions are imposed in order to conform to the boundary conditions (2.1b), namely,

U;;(0) + INJZ 0) + ﬁé (0) =0, plus decay conditions for INJZLJ, ﬁzLj at +o00 (4.15d)

with analogous conditions at the right endpoint = 1, which couple U;, Uf}’», and ﬁg

4.2 Analysis of the functions U;;

Since the matrix A(x) is invertible for every = € I, equation (4.15a) may be solved for any i, j

yielding
V0,0 g

and for (i,7) # (0,0)
3 u’
v ] =an [ ], (417
Uij (K .
with, as mentioned above,
uij:O, vij:Oifi<Oorj<0.

Note that (4.17) gives all the cases (7,0) and (0, 7) because the right-hand side in (4.17) is known.
Moreover, for each j, (4.17) allows us to compute wu;;, v;; V 4, thus (4.16)-(4.17) uniquely determine
ul-j, Uij \V/ Z,]

We have the following lemma concerning the regularity of the functions Uj;:



Lemma 4.2. Let f, g, and A satisfy (2.3) and (2.7). Let u;j, vi; be the solutions of (4.16), (4.17).
Then there exist positive constants C's and K and a complex neighborhood G of the closed interval
I independent of i and j such that

Ujj = Vij = 0 VJ > 1, (418)
uj =vi; =0  ifiorjis odd, (4.19)
luij(2)| + |vij (2)] < Cs6 K%'V 2 € G := {2z € G: dist(z,0G) > 6}. (4.20)

Proof. The proof is by induction on i, where the estimate (4.20) follows by arguments of the type
worked out in the proof of [5, Lemma 2]. For details, see Appendix D.1. O

4.3 Analysis of U~ [AJ'ZLJ

59
4.3.1 Properties of some solution operators

Lemma 4.3. Let a,a,b € RT. Then

o0 - 1 ! b\
—at bt Zdt < _epTom b —v [ Y
/ e (atbt) dt < —e Y (a+ba) (=)

v=0

Y —aT i 1 —ax X ib\"” . b ‘ i—v—~
/x /t e (a+br)drdt < 2¢ ZZ <a> ((z—y)a> (a+ bx) .

v=0¢=0

A

Proof. We have, after successive integrations by parts,

/xweat(amt)"dt = leaxzi:(aﬁ—bx)i_”i(i—1)---(i—y—|—1) <é>y

o — o
1 : (D)
< — ,—ax 1—v i
< e Z(a—l—bx) (oz) .
v=0
The statement about the double integral follows from this result. O

The above lemma can be formulated in the complex plane as follows.

Lemma 4.4. Let a ,a, b € RT and v be holomorphic in the half-plane Rez > 2y and assume
lv(2)] < e~ *Re) (a4 b|z|)!. Then for z with Rez > z:

1 —aRe(z) 2 Jj—v Jb Y
<
/Z v(t)dt‘ e g (a+bl|z|) ,

v=0

/j/twm)dmt‘ < %”Re(z)i)g <%>V(U—v)%)e(wb\zr)j‘”‘f-

v=0¢=0

N




Lemma 4.5. Leta >0, g € R, and f be entire satisfying

[ e—aRe(2) for Re(z) >0
<C J -
1f(2)] < AWHﬂ){gﬂwa for Re(z) <0

or some C¢, q, a, @, with (a+a)g>2j+1 and0<a<a<T.
f

Then the solution u of

—u"(2) + d*u(z) = f(2), u(0) =g, lim u(z) =0

Z2—00

satisfies the bound

1 ' 1 e—aRe(z)  for Re(z) >0
<Cp = (g+ |2y ——+ > @ -
\M@L_f<a@ |2) ) 9]\ —arece) for Re(z) < 0.

Proof. The proof follows from the appropriate modifications of [6, Lemma 7.3.6]. For details, see
Appendix D.2

O

Lemma 4.6. Let 0 < a < a. Let v be entire and satisfy for some a > 0, C,, b > 0, j € Ny, the
bound

. —aRe(z) >
lv(2)] < Cyla+ blz|)! € for Re(z) >0
e—aRe(2) for Re(z) <.

Assuming ZL—Z < 1, there holds

2
oo [ 1 1 - [emaRe()  for Re(z) >0
drdt| < Cy— | —— + b|z|)’ _ -
/z /t vir)dr ' T a? (1 - ﬂ) (a+ blzD) {e“Re(z) for Re(z) < 0.

aa

Proof. Follows essentially from Lemma 4.4. We sketch the argument for the case Re(z) < 0. By
linearity, we may assume C, = 1. We start with the single integral fzoo v(t) dt, by selecting as the
path of integration the line z 4+ 7, 7 € Ry, we get with the aid of Lemma 4.4,

quwa‘

IN

—Rez 00 )
e~ Re(2) / e (a4 blz| + b)) dr + e—aRe(2) / e Y (a+blz| + br)! dr
0 —Rez

_ 00 ) _ 1 J ) b\
< g aRe(z) / e “"(a+blz| +br)! dr < e_“Re(z)a Z(a +b|z])? ™" (‘%)
0 —v=0
_ 1 I ib v _ 1 :
—@Re(z) * j J < p—aRe(z) = J
‘ g(a+b|z|) Z<Q(a+b\z!)> = @(a+b|z|) 1—%°

v=0 aa

IN

Inspection of the above derivation shows that for Re(z) > 0, the same estimate holds with e~@Re(2)

replaced by e 2Re(?) We may therefore repeat the argument once more for the function z —
f;o v(t) dt to get the claimed estimate. O

10



Lemma 4.7. Let the entire function v satisfy the hypotheses stated in Lemma 4.6. Then

_ ] —aRe(z) R >0
" (2)] < 267 Ca+ b+ b)) 3 Jor Re(z) 2 Vz e C.
e~ @Re(2)  for Re(z) <0
Proof. Follows from Cauchy’s formula for derivatives by taking 0Bj(z) as the contour. O

Lemma 4.8. For C1, >0 and x > 0 the following estimates are valid with v = 2max{1,C%}:

O+ 52 < 2400% + 252 < A (e?f v a?f) : (4.21)
n_ —QB/4x dn\"
sg%x e < ) (4.22)
x
Proof. The result follow from elementary considerations. O

4.3.2 Regularity of the functions INJZL] and IAJZLJ

We turn our attention to equations (4.15b) and (4.15¢), which, after introducing appropriate bound-

ary conditions, determine ﬂiLj, @Lj and ﬂfj, @Lj, respectively. These equations turn out to be systems
of differential-algebraic equations (DAEs); however, their structure is such that the algebraic side
constraint of the DAE can be eliminated explicitly and, additionally, we will be able to solve for 4
scalar functions sequentially instead of having to consider the coupled system. We recall that the

functions Uj; = (u45, vij)T have been defined and studied in Section 4.2.

These equations may be solved by induction on j and i. For j = 0, we solve (4.15b) for any (z,0)
by first solving for ﬂ£0 and inserting it into the equation for 550. We have from (4.15b, 15¢ eqn)

al a12(0) -, 1 i [ ®) (0)al *) (95
o =7 Yi0 T =7 @11 (0)u g o + a1 (0)viZ g o 5 4.23
. ai1(0) *° an(O); At (0)u; 10 + ary (0)V7 10 (4.23)

which, upon inserted into (4.15b, 2nd eqn) gives

~L \" all(O)agg(O)—CL21(0)CL12(0)~L
— (Ti0) + ) o (4.24a)
: Tk a a
= S (2B 0 - o)) o+ (2Dal0) - 0)) i 4]
k=1

The above second order differential equation is now posed as an equation in (0, c0) and supplemented
with the two “boundary” conditions

50(0) = —v0(0),  TH(@) — 0 as T — 00. (4.24b)

So, solving (4.24) gives us Q‘L,o and then from (4.23) we get 1750. Inductively, we obtain 1750 and 'd£0
for all ¢ > 0.

11



Next, we set

ok =01 =0, (4.25)
and we solve with j = 0 (4.15¢, 15" eqn) for @50 (using 1750 = 0) with boundary conditions from
ULQI

— (@) +an(0)ug =0 (4.26)
ﬂ{jo(()) = —u, 0, ﬂﬁo(f) — 0 for 7 — oc.
Then, we solve (4.15¢, 2"4 eqn) for 172%2:
oo oo
= / / a21(0)ﬂ£0(7)d7dt. (4.27)

z t

In general, assume we have performed the previous steps and we have determined u uZ i T)Z-LJ», ﬂﬁj,

vy ] ..o for all © > 0 and second index up to j. To obtain the correspondlng functions (with j replaced

by j + 1) we proceed analogously. We first solve (4.15b, 15% eqn) for u ul i1

ol ~a12(0) L (Nl:_] 1)” 1 )Zl:~k

(k) L (k) o\ ~L
+ — — 0 1+ 0)v: ;. - , 4.28
Ui j41 = an(o) Vi j+1 a11(0) a11(0 1k! [an( ) k,j+1 ajy ( )vz—k,]—i—l ( )

and plug it into (4.15b, 274 eqn):

B (51‘L,j+1)” N a11(0)a22(?z)11—(g)21(0)a12(0)@LJH Zigg; (@, 1)//+

+Z . [ <a21 ©) o) - aé’?(o)) T g + (Zzlggga (0) - agg(o)) @-Lk,m] - (4.299)

a11(0) 11

The second order ODE, equation (4.29a), is supplemented with the boundary conditions

This gives us UZLJH and in turn %X, | from (4.28).

2,7+1

Next, we solve (4.15¢, 15¢ eqn) for uF ‘i41 with boundary conditions from u; ;41 and u uk gL

= ()" +an )ik, = an0)df, -
min{i,j+1}
-y (a9 0yt U (0)oF (4.30
L\ 411 Ui—k j+1—k — ajy ( Vi—k,j+1—k -30a)

k=1
aLJH(O) = - (ui,j+1(0) + ﬂiL,jJrl(O)) ) (4.30b)
U;1() — 0 for T — oo. (4.30¢)

Finally, we solve (4.15¢, 2" eqn) for ﬁ£j+3:

min{:,j+1}

~ k) y
”z’L,j+3(Z) = Z k'/ / a21 szk,jJrlfk(T)+a52)(0)vi€k,j+lfk(7)}det- (4.31)

~L ~L =L =L
ijr Uiljs Wiljs U

The following theorem establishes the regularity of the functions u ij> Uige

12



Theorem 4.9. Assume that f, g, and A satisfy (2.3) and (2.7). Let u J, NZLJ, ﬁ”, L be defined

recursively as above, i.e., they solve (4.23), (4.24), (4.26), (4.25), (4.27) for the case ] = 0 and,
for j>1 (4.28), (4.29), (4.30), (4.31). Set

@ = max {a11(0)7 an(O)aﬂ((gn_(g)zl(O)CLIQ(O)} >0,
a = min {au(o), all(o)@?((l)n—(gfl(0)a12(0)} >0,
e aRe(z)  for Re(z) >0
Exp(z) = {e“Re(z) for Re(z) <0

~L ~L ~L L

Then the functions Ui%, Uiz, U, Vysoare entire functions and there exist positive constants Cy, Cy,

Ca, Cs, Cy, K;, K;, i =1,...,4, independent of € and pu such that

ali(z)| < KK (Cali+ j)+|z|)2(i+j)mExp(2), (4.32)
T < CalTS (Coli+) + 1)) s B, (1.33)
aki(2)] < ch;;Fé(ca(w)+rz\>2<i+f‘>mExp<z>, (4.34)
[0 12(2)| < C4K2Fi(cﬁ(i+j)+’Z‘)2(i+j)ﬁEXp(z); (4.35)

furthermore, @z‘Lo =0k =0.

Proof. The proof is by induction on j and 4. After establishing the claims for the base cases
(4,7) = (0,0), (i,7) € {0} x N, (4,j) € N x {0} one shows it by induction on j with induction
arguments on ¢ as parts of the induction argument in j. The structure of the equations defining

al. ok ab @Lj 1o, 18 such that one can proceed successively in the induction argument on j by

i Vig Wi
providing estimates for vj j12, j, NZ-L]», AZLJ- in turn. In these estimates estimates, one relies on
~L

uk ., on Lemma 4.6 for o7 ‘j+2, and on Lemma 4.7 for u;;.

Lemma 4.5 for the estimates for v~ i

’l_]’

For details, see Appendix D.3. U

We conclude this section by showing that the boundary layer functions are in fact entire:

Corollary 4.10. The functions ULj and ULj are entire functions, and there exist constants C,
Y1, Y2, B > 0 independent of i, j, n, such that for all x > 0

[y @)+ 1007 @) + 180 (@)] + 50 (@)] < Ce P i+ )95 ¥n e N,

Proof. Theorem 4.9 already asserted that the boundary layer functions are entire. For the stated
bound, let n € Ny, x € (0,00) and use Cauchy’s integral theorem for derivatives with contour
0By 11(x). We illustrate the procedure for u; ;, the other cases being similar. Theorem 4.9 then
yields suitable constants C, v > 0 such that

~(n) < n! i+j 1 R 2(i45) a(n+1)
A @) < O™ iy (Cali )+ 4 126 Bp(a)e )

13



With the aid of Lemma 4.8, we obtain by suitably adjusting C' and -,

n |
(@) ()] < Oyt

(i 4 q 1)2(i+7) ga(n+1) ,—ax
(n+1)n7 (¢+j)!(C“(Z+‘7)+”+ ) e e

Using the observation ((i-+7)+n+1)2017) < (i45)200) (14 (n+1) /(i+5))20H) < (i45)20+0) 2041
allows us to conclude the proof. O

Corollary 4.10 shows that the terms defining the boundary layer contributions UgfL and U%L are
indeed of boundary layer type. A summation argument then shows that also UgfL and U%L have
this property provided M; and Mj are not “too large”, viz., My = O(u~!) and My = O((uu/e)™1):

Theorem 4.11. There exist constants C, 8, v, K > 0, independent of € and p, such that under
the assumptzons (M + DK <1 and ¢/u(Mz + 1)K < 1, there holds for the boundary layer
functions U B and UBL of (4.4) and (4.5), that, upon viewing U BL_ and U 5 as functions of

x (via the changes of variables T = x/u, T = x/e etc.), we have UBL € BLY(6p,C,y) and

U%L € BL>*(de,C,7). Furthermore, the second component v ofU%[L satisfies the stronger assertion
U € BL>(de,C(e/p)?,7)-

Proof. We do not work out the details here since structurally similar arguments can be found, for
example, in the proofs of [5, Thm. 3] or Lﬁ Thms. 7.2.2, 7.3.3]. Essentially, by inserting the bounds
of Corollary 4.10 in the sums defining UBL, UgfL and using the conditions p(M; + 1)K < 1 and
e/u(Ms+1)K <1 for K sufficiently large, one obtains upper estimates in the form of (convergent)
geometric series. We point out that the sharper estimates for the second component U of U

stems from the fact that v; 0 = v; 1 = 0. D

4.4 Remainder estimates

In this section, we analyze RM. This is done by estimating the residual L. MR — F and then
appealing to the stability estimate (2.9). We will estimate L. , Wy — F, L, MUBL, and L. MUBL

4.4.1 Remainder resulting from the outer expansion: control of L., W), — F

Theorem 4.12. Let U be the solution to the problem (2.1). Then there exist vy, C > 0 depending
only on f, g, and A such that the following is true: If My, Ms € N are such that uMyy < 1, then
with W s given by (4.3) we have

||L€,u (U - WM)HLoo(I) < C,u2

— (uMyy)™ + <§>M2+2]

14



Proof. We have

Ley(U—Wyy) =< ) %%” (%) ’“<%>

=0 j=0 Yig
M; Mo
_ < > ZZM <€> < —£? U +alluz] + 12045 )
i 1=0 7 ,UQU;; + ag1u;j + a22v;;
Defining the sets
I, = {(i,5):i< My, j< My, i>DM —1Vj>DM;—1}, (4.36)
I, = {(i,5): i< My, j< My, M —1<i<M}, (4.37)

we see, after some calculations, that (4.15a) and Lemma 4.2 imply

My Mo ]
(2) -2 GG ) (e )}
i=0 j=0 9ij Uz—Q,j K Uzy
Z(z,] EIU Z+2(6/1UJ) +2 ”
> (ig)el, M ”2(5/#)]@

Hence, with the aid of Lemma 4.2 and Cauchy’s Integral Theorem for derivatives, we get for a fixed
0 > 0 in the statement of Lemma 4.2,

L., (U-Wy)

My—2 ' Mo M, Mo ‘
JEep(U=Wapllpeqy < CCs[p? Y (ui6 7 K) S7 (/™2 +p® >0 (uio K S (e/py*?
i=0 j=Msy—1 i=M;—1 §=0
My A Mo A
it Y (s KT (=],
i=M;—1 §=0

Hence, by selecting v = § 'K /2 we get

Mo+1
1
2 Mi—1
HLE,M(U_WM)”LOO(I) < CCS|:,U, (;) + (uMyy)™ 1_8//J

2[( € Mt My L
< CCsp [(;) + (uMyy) 1M_J-

4.4.2 Remainder resulting from the inner expansion on the e-scale: LEMIAJ%/[L

We next consider the inner expansions We will only consider the contribution IAJ%L from the left
endpoint as the contribution V 1 from the right endpoint is treated completely analogously. To

simplify the notation, we drop the superscript L in uZLJ, @Z]jj

In order to simplify the ensuing calculations, we employ the convention that

aij:1/)\ij:0f0ri>M1 OI‘j>M2 and A, =0 Vk <0, (4.38)

15



and let the summation on ¢ and j in the definition of ﬁgfL run from 0 to co. We recall that the
differential operator L., takes the form (4.10) when applied to functions depending solely on Z,
and compute L. ,UY, (cf. (4.4) for the definition of U}, ):

oo 00 i ~a k ~
—~ . £ u Z Z Z 13 —~ (17
i=0 j=0 H i>0 §>0 k>0 4

1= =

’\I/
~ u
i>0 j>0 Yij+2 k>0 i=kj—k

where the fact that Uy 9 = Uy1 = 0 was used. We see that “equating like powers of p and ¢/p "
yields equation (4.15¢), hence there will be no contribution to the sums for when both i =0, ..., M;
and j = 0,..., My — 2. Moreover, the convention (4.38) implies the following restrictions on the
sums:

k < min{i, j}, i—k < My, j—k < M. (4.39)
Thus, we have

L., 0Y = (4.40)

j min{i,j} M, =~
§ : Mi E § /\kA uz k.j—k z : 2 : U; i,j
L 1% ] : Ui k,j—k 0
1,5:4>My+1 k=max{i—Mi,j— M2} =0 j=M>—1
or j>Ma—1

Using the estimates (4.34), (4.35) for u; j, v; ; of Theorem 4.9, one can estimate this triple sum to
obtain the following result for the remainder on the positive real line:

Theorem 4.13. There exist C, v, K>0 depending only on A, f, g such that under the assump-
tions .
0<~ze<1 and pw(M;+1)y <1 and ;(Mg +1)y <1,

we have
L0l @ )‘ < Cem 2 (R (M + 1)) + (K (Mo + 1) /u) ™)

For vZe > 1 we have, under the same conditions on (M; + 1)p and (M + 1)e/u, that

L., O} (@)| < Ceme/2

Proof. The proof relies on using the estimates (4.34), (4.35) that are available for u;; and v;;. The
triple sum in (4.40) is estimated by using convexity of the function k +— v*(i — k)"=*(j — k)% and
k — k*y%(i — k)"=*(j — k)% and by considering the two following two cases separately:
(1
(1

For details, see Appendix D.4 O

Mi+1V j>My+1) N (i =M <j—M) N (j—My <k<i) AN (i <),

>
> Mi+1V j>My+1) AN (i—=M <j—M) AN (J—M<Ek<j) AN (j<i).
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4.4.3 Remainder resulting from the inner expansion on the p-scale: LE,MINJ%/[L

In a similar fashion we may treat the left inner (boundary layer) expansion associated with = =/

(cf. (4.4)), . o
=23 (5) (56) 4

where we have dropped the superscript L for notational convenience. We recall from (4.9) that
for functions U depending only on the variable z, the differential operator L., takes the form

Le,uﬁ = —u_2E57“I~J” + 300 ,ukkakINJ. In order to simplify the ensuing calculations, we employ
the convention that

'zlij:@-j:Ofori>M1 or j > Msand Ay, =0 Vk <0, (442)

and let the summation in (4.41) run from 0 to oo for both 7 and j. We calculate

L.,UY, = iiﬂi(a/ﬂ)j( (8/%6,; >+ZZZM (/) 15 A ( g:j >

=0 j=0 >0 j>0 k>0

_ 7 i ,] 2 ~k:A uz k,j

= K (5/M) ~// + x Tik )
i>0 7>0 k>0 i—k,j

where the convention iy 9 = U, 1 = 0 was used. As expected from the derivation of (4.15b),
“equating like powers of p and e/u” yields eqn.(4.15b), hence there will be no contribution to the
sums for when both ¢ = 0,...,M; and j =0,..., Ms. Moreover, the convention (4.42) implies the
following restrictions on the sums:

i < M, for the terms involving u;; o, v};, (4.43)
0<:1—k< M for the sum on k, (4.44)
j < My for the terms involving ; j, Ui j, U}, Ui—k.j» Vi—k.j» (4.45)
J<My—2 for the terms involving @ ;. (4.46)
Hence, we arrive at
L., UM, = (4.47)
[e'e) My Ms+2 —ﬂ” A
> 5 (E) 3 e (Er ) S ) ().
i=Mi+1 j=0 k=i—M, Vi, i=0 j=Mas+1

Using the bounds of Theorem 5.5, these sums will be estimated, when Z > 0, in the following;:

Theorem 4.14. There exists C, ~, K > 0 such that under the assumption

0 <~yzp <1, and yp(M;+1) <1 and E7(]\42 +1)<1
i

we have

Lo, UHL ()] < Cem22 (KM + 1))+ (R(My + 1)e/p) =+

For pzy > 1 and the same assumptions on u(M; + 1) and e/pu(Ma + 1), we have

Lo, Ul (@) < Ceo2
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Proof. The proof is split into two cases: for zuy > 1, one exploits the fact that G%L (and its
derivatives) is exponentially small. For the converse case Zuy < 1, one bounds the sums (4.47).
For details, see Appendix D.5

4.5 Boundary mismatch of the expansion

Theorem 4.15. There exist constants C, b, v > 0 such that under the assumptions

pu(My+1)y <1 and E(M2 + 1)y <1,
i

one has B R B R
WA+ Oy + Oy + Vi, + ViLleon) < C |77+ 0]
Proof. For Rjs(0) at the left endpoint, we note that U(0) = 0 gives
R (0) = U(0) — [W(0) + UYL (0) + TH(0) + VEL (1/) + VEL(1/e)]
The condition (4.15d) for the boundary conditions of the left endpoint for the terms [AJ'” and INJM,

produces WM (0) —i—ﬁgfL(O) + I/j%[L(O) = 0. Hence, it remains to estimate |\~/%/[L(1/,u)| + |{/%/[L(1/e)|
which can be done based on Theorem 4.9. O

4.6 Proof of Theorem 4.1

From the estimates for the residual L. ,Rps of Theorems 4.12, 4.13, 4.14 we infer the existence of
q > 0 such that under the assumption

r<q and

=1m
IN
R

the choice My ~ 1/ and My ~ p/e yields

| Lol poeqry < € |70 4 e7twle]
where C, b > 0 are independent of p and e. Hence, by stability and Theorem 4.15, we get that
IRM||Er < C [e_b/“ + e_b“/a]. The sharper result for the second component v of U follows from
the fact that @'70 = @'71 =0.
It remains to formulate a decomposition of U for the case that p > g or £/p > ¢. In this case, we

have e~/ e/ is O(1). Given that | U||g; = O(1), the trivial decomposition U = 0+0+0+Ry
provides the desired splitting.
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5 The first two scale case: Case III

In this case it is assumed that u/1 is not deemed small but /u is deemed small. The main result
of this section is the following regularity assertion:

Theorem 5.1. There exist constants Cw, yw, CpL, VBL, 0, b, ¢ > 0 independent of € and p
such that for e/u < q the solution U of (2.1) can be written as U = W + Upp + R, where
W e A(u, Cw,yw), U € BLX(de,Cpr,vBL). Furthermore, R satisfies

IR|| e or) + | LeyRllpey < Ce /e

In particular, |R| g < Ce /=,

Additionally, the second component U of U satisfies the sharper regularity assertion

v € BL®(de,Cpr(e/1)?,vBL)-

We employ again the notation of the outset of Section 4 concerning the stretched variables ¥ = x /e
and 2% = (1 — z)/e and make the formal ansatz

V) ~ Y (—) Ui(2) + OF@) + TFE™)) (5.1)

1=0 H

We proceed as in Section 4 by inserting the ansatz (5.1) in the differential equation (2.1a), separating
the slow (z) and the fast (z and z) variables and equating like powers of £/u. We also recall that
the differential operator L. , takes the form (4.10) on the Z-scale. The separation of the slow and
the fast variables leads to the following equations:

[ee} € i f
> <—> (-E°"U} + A(2)U;) = F= < ) ; (5.2a)
— \ [ g
1=0
o0 e '3 . o0 e k R
> (-) <—52E57“(UZL)” +) b (-) kakuf> = 0, (5.2b)
=0 K k=0 p
and an analogous equation for ﬁf% Writing again
~L
U = (" UL — ( %
o(2) w-(1)
we obtain from (5.2) by equating like powers of &/ u:
—,u2u;' o +anu; +apv; = f;, (5.3a)
,u2v” +anu; +axvi = g, (5.3b)

/\ /\ a ~

(k) (k)

/\L kak [ @ 0) asy' (0) .,
z+2 ”+Z:u' ( 21 U;— k+ 22]€| V;_
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where we employed the definition of Aj, the notation fo = f, go = g as well as f; = g; = 0
for ¢ > 0, and the convention that function with negative subscripts are zero. Corresponding
equations are satisfied the functions 4 and 9. The boundary condition (2.1b) is accounted for by
stipulating U;(0) + IAJZL(O) =0 and U;(1) + ﬁf(O) = 0 for all ¢ > 0 and suitable decay conditions
for I/jZL as T — oo and, correspondingly, for I/jZR as 2% — oo. Rearranging the above equations and
incorporating these boundary conditions, we get a a recursion of systems of DAEs in which the

algebraic constraints can be accounted for explicitly. We obtain for i =0, 1, 2,... :

—pvf + —(“”“lgfffl)vi =gi — %/\(fl + pPul_y) ’ (5.4)
vi(0) = =0f(0) , vi(1) = —0(0)
1 2.1
up = — (fi + pPui_y — arovy) (5.5)
ar
(L 0Vl = — d aﬁ)( 0) k/\k/\L o\ (0) ks kAL _ 0)5L
(ul) +an (0)ut = kzl prTRu TR a12(0)7! (5.6)
uk(0) = —u;(0), uF - 0as 7 — oo
i (k) (k‘)
o Py (0) oy
(o) =3 (At 4 B0 et ), 57
P ! !

with
W=t =0 =0"=0,u_;=0VYi>0,
p_f fii=0. [ giti=0,
© =\ 0otherwise ’ % T 1 0 otherwise

(The functions uft, 57 satisfy similar problems as (5.6) and (5.7), respectively.)

77

5.1 Analysis of the functions U;, U, UR
5.1.1 Properties of some solution operators

Lemma 5.2. Assume that the function c is analytic on I and ¢ > ¢ >0V z € I. Let u € (0,1].
Then there exists vo > 0 (independent of p) such that for all v > ~o and all Cy > 0 the following
s true: If g satisfies

llg¢ )HLOO < Oy max{n, u 1 }" Vn € Ny, (5.8)

then the solution u of the boundary value problem

{ 2" +eu=ginl
(0)—9—6R, u(l) =g+ €R

satisfies
[ [ ooy < Cy" max{n, u™"}" [Cy + 94| +1g-]  Vn €Ny,

for a constant C that depends solely on the function c.
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Proof. This follows by inspection of the proof of [5, Thm. 1] if one replaces the energy type argu-
ments by an appeal to the comparison principle to get L°°-estimates.

For details, see Appendix B.1. O

Lemma 5.3. Let m € Ny and g be a function analytic on I. Then there exist C', v > 0 depending
only on g such that the following is true: If v satisfies

||U ||L°° < Cv’}/v max{n M 1}” Vn € Ny,

for some Cy, 11> 0 and v, > 7o, then the function V = gv'™) satisfies

IV ooy < C'Coyp ™ max{n +m, p~ 13" ¥n € No.

Proof. Since g is analytic, there exist Cg, 74 > 0 such that
Hg(n)HLoo([) < Cyygn! Vn € N.
By Leibniz’ rule, we get for v, > 79 > v4e in view of v¥ < vle”:

WO ey < GGy 2( )fyguwm T

n

n! Yo\ _ _
< C.C.~A" ~ig I\n+m—v
=~ v Q’YUVZO(H_V)!<,YU> max{n+m71u }
LC&/}{} max{n + m, "},
1 —eyg/
]
Lemma 5.4. For 0 <6 < 1/(2¢) and i € N there holds
A ‘ -
igk <i>z < 2e.
Pt i+1—k
Proof. See Appendix B.2. O

5.1.2 Regularity of the functions U,, IAJZL, ﬁf

Theorem 5.5. Let vj,u;, @iL,@L be the solutions of (5.4)—(5.7), respectively. Let G C C be a
complex neighborhood of I and set = \/a11(0) € R. Then the functions iZZL and @L are entire and
the functions u;, v; are analytic in a (fixed) neighborhood of I. Furthermore, there exist positive

constants v, Cy, Cy, Cy, Ky, £ =1, ..., 4 independent of € and p, such that
o =0t =0, (5.9)

, 1 \'1 .
[072(2)] < C1K] (’”m) = (iCy + |2])" e 71, (5.10)
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-~ i 1 il . 1 —BRe(z
il cr) < Colh (G +m)p+1) 29" max{n, p~'}" VneNo, VieNo,  (5.12)
HUZ(N)HLOOU) < C4K: ((i+n)p+1)° z—"y" max{n, u 1 }" Vn € Ny, Vi€ Np. (5.13)

Furthermore, analogous estimates hold for uf and oF with B being now ai1(1).

Proof. The proof is by induction on 7. The general structure is to estimate v;, u;, U;, and ;49 in
turn using Lemmas 4.5, 4.6, 5.2, 5.3. For details, see Appendix B.3. U

We conclude this section by showing that the boundary layer functions are in fact entire:

Lemma 5.6. Let 8 > 0 be as in Theorem 5.5 (i.e., f = \/a11(0)). The functions [AJ'ZL are entire
functions and there exist constants C, v1, y2 > 0 independent of i, j, n such that for all x > 0

(@) + [855(@)] < CePPai(ip+1)95  Vn € No.

(2

Proof. Similar to the proof of Corollary 4.10. U

By a simple summation argument we get from Lemma 5.6

Theorem 5.7. Let 8 be as in Theorem 5.5 (i.e., = +/a11(0)). There exist constants C, v, K >0
such that for y{(M + 1)e + £} < 1 the function

e =3 (2) ve,

=0
satisfies for T > 0
~ (n) .
(O0) " @1 < 0 ®P K yneN,

An analogous result holds for \A/'g[L = Zﬁo(a/u)iﬁf with B given by = +/ai1(1).

Proof. See Appendix B.4 for details. O

5.2 Remainder estimates

We now turn to estimating the remainder obtained by truncating the formal expansion (5.1). We
write

U(z) = ( o) ) = W (2) + OM,(@) + V(@) + Rus (), (5.14)
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where |
o -£) (261

denotes the outer (smooth) expansion,

n@=2 ) Lo ) V@ =2 (0)  sh@m ) '
denote the left and right inner (boundary layer) expansions, respectively, and
ry(T SN s M A
Ruste) = ( 140) ) = Ua) = (Was(o) + TR0 + VH,2) (5.17)

denotes the remainder. Our goal is to show that the remainder Rj/(z) is exponentially (in ¢)
small. First, we need to obtain results on the other terms in (5.14). Note that by the linearity of
the operator L., we have

La,uRM - Le,u (U - WM) - LauﬁgL - La#v%/[L-

The terms on the right-hand side are treated separately.

5.2.1 Remainder resulting from the outer expansion: F — L. , W),

We have the following theorem.

Theorem 5.8. Let U be the solution to the problem (2.1). Then there exist C', v > 0 independent
of 1, €, and M such that for Wy, given by (5.15) we have

HL&M (U - WM)HLOO(I) <C

(WE)MH + (y(M + 1>e>M“] :

Proof. Using (5.2a) (5.4), (5.5) we obtain, after some calculations,

M c i+2 ) u!
[Leu (U =Wl poory = Z <_> a ( 6)

1=M-1 p

From Theorem 5.5 we therefore get, with the observation E(M w+1) = Me + ﬁ, the desired
result. O

5.2.2 Remainder resulting from the inner expansion: Lg#ﬁfgL

We now turn our attention to estimating LE,MIAJ%L. Since LE,M\AﬂgL is treated with similar argu-
ments, we will not work out the details. We have:
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Lemma 5.9. The functions ﬁgfL satisfy

i

~ € ~ N 0

L., UM = Y <_> 3 WE AR, + Z ( ) ( y ) : (5.18)
1>M+1 A i=M-1 2+2

Proof. In order to simplify the calculation of L€7M6%L7 we employ temporarily the convention that

aF =9 =0 Vi>M+1. (5.19)

With this convention, we calculate (cf. (5.3¢), (5.3d))

(k)

~ R 25(0)
>(5) ~(@EY -+ Ty et (et + o)

- 4 (k) (k)
ENARY/, i kak [ a3’ (0)~, ayy’ (0) ~1,
— (Vi) + Do T <—21k! U+ v

-2 (M) ZMWA’“U’ B Z ( >Z’“” <a23(0) O ) 51 )5

~L 4 “22
i>M+1 k=0 =M-1 B Wik T Viek

M
L. Upp =

1=0 H

here, we employed additionally (5.3c), (5.3d) to see that the terms corresponding to i € {0,..., M —
2} in the first sum are zero. Finally, our convention (5.19) and the fact that @]L = @]L =0forj<0
implies the restrictions

0<i—k<M

so that we obtain
> (5) Taant- X (5) 3 weact,
i>M+1 i>M+1 L

which produces the double sum in (5 18). Lifting now the convention (5.19) we can use (5.3¢) to

(k)
replace 37} oMkAk(amk—v(O)AzL Bt a22 (0) U y,) with =07, (Z). =

It remains to bound L. UM, . For that purpose, we need the following lemma:
w Y BL

Lemma 5.10. Assume 0 < Teyq < X < 1 with v4, X, C1, 8 > 0 known constants. Let 0 < ¢ <
w<1. Then

2 ( ) Z W <“+ ;+1>ik (z'—lk)!(cl(i‘ka)Q(ik)eﬁx

i>M+1 k=i—M

< O (e (M 1 1)) e,

where C', v > 0 are positive constants independent of € and .

Proof. The key ingredients of the proof are the estimates given in Lemma 4.8. For details, see
Appendix B.5. O
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Theorem 5.11. Let 8 > 0 be given by Theorem 5.5, i.e., § = \/a11(0) There exist constants C,
v > 0 such that, under the assumptions

<5(M+1)+%>’y§1 ey <1,

UM given by (5.16) satisfies

Lo UL @) < Cle(M + 1+ 1/ M 1e 2,

For the case Tey > 1 (but still assuming <6(M +1)+ ﬁ) v < 1), we have

Lo, Oy @)| < ce %,

Proof. For the case of Ze being sufficiently small, the starting point is (5.18), which is a sum of two
contributions, namely, the double sum and the single sum (consisting of merely two terms). For
the double sum, we recall that = /e, so that Lemma 5.10 produces the desired estimate. For
the single sum, we use the estimates of Theorem 5.5 for @LH. From Cauchy’s Integral Formula for
derivatives with contour being taken as 0B (x), we get

|(0F19)" ()] < C (C(i +3) + [7])2+De 7,

(i +2)!

Using (4.21) and (4.22), we see that this contribution can be bounded by C(y(M + 1)e/u)™ =1 for
suitable C, v > 0.

For the case Tey > 1, we use the exponential decay of I/jg[L expressed in Theorem 5.7. The factors

€72, which arise when computing Le,uﬁg]L can be absorbed by the expontially decaying term since
71 <47 (see Lemma 4.8). O

5.3 Boundary mismatch of the expansion

Theorem 5.12. There exist constants C, b, v > 0 such that under the assumptions

(e(MHH%)ng

one has R R
Wi+ UYL+ VL egon) < Ce<.

Proof. We consider the left endpoint of I (the right endpoint is similar). By construction,
IRu() =[O0 = (War(0) + OFL0) + V(1)) | = [V¥ase)| . (520

The result now follows from Theorem 5.5. O
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5.4 Proof of Theorem 5.1

The result of Theorem 5.1 now follows from combining Theorems 5.8, 5.11, 5.12.

6 The second two scale case: Case IV

Recall that this occurs when p/1 is small but €/ is not small. The main result is:

Theorem 6.1. The solution U of (2.1) can be written as U = W + Upr + R, where W €
A, Cw,vyw) and U € BL*(0u,Cpr,vBL), for suitable constants Cyw, Cgr, Yw, V8L, 6 > 0
independent of u and €. Furthermore, R satisfies

IR ||z (o) + | LepRllz2y < C(pfe) e b/,

for some constants C, b > 0 independent of u and . In particular, |R| g < (u/e)?e b/

In this case we recall the stretched variables # = x/p and ¥ = (1 — 2)/p and make the formal
ansatz

U~y [Ui(az) +ULE) + fjﬁ(a;R)} , (6.1)
=0

U= "), ut@=( 50,
() (56)

and an analogous definition for U, We also recall that the differential operator L., takes the
form (4.9) on the Z-scale. The separation of the slow (x) and the fast variables (# and ') leads
to the following equations:

where again

Z,ui (-E°"U{ + A(2)U;) = F= < g ) , (6.2a)
=0
> i <—M_2E57“(ﬁf)” +) u’%’“AﬁJf) = 0, (6.2b)
=0 k=0

and an analogous system for U~ Next, for € appearing in (6.2) we write € = ,uﬁ and equate like

B/ — ( (5) o )

0 1

powers of u to get with the matrix

the following two recurrence relations:

—E/IUY 4+ A(x)U; = Fy, (6.3a)
—E/mN U+ 7 PALUE = 0, (6.3b)
k=0
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where, as usual functions with negative index are assumed to be zero and F; are defined by Fy =
(f,9)" and F; = 0 for i > 0. The terms of the outer expansion, U; are obtained immediately from

(6.30):
AU; = ( Ji > + ( (&/m)ui ) . (6.4)

9i Vi—2

The functions INJZL of the inner expansion are defined as the solutions of the following boundary
value problems:

i—1

—E/NUF) + A(O)Uf == F AL, UL, (6.52)
n=0

UX(0) = —U;(0), UK@) -0 asi — oo, (6.5b)

and an analogous system for UZR.

6.1 Properties of some solution operators

The functions UiL of the inner expansion are solutions to elliptic systems. In contrast to the
previous arguments, which were based on estimates for scalar problems (for which strong tools
such as maximum principles are readily available), we employ more general energy type arguments
here to deal with the case of systems. We start by introducing exponentially weighted spaces on
the half-line (0, 00), by defining the norm

o0
Jul2 5 = / ) e (6.6)
Tr=

with the obvious interpretation in case u is vector valued. The following lemma shows that elliptic
systems of the relevant type (6.5) can be solved in a setting of exponentially weighted spaces:

v? 0
0 1
' Bx > B2|z|? for all x € R2. Then the bilinear form

Lemma 6.2. Let v € (0,1] and set E := < > Let B € R? be positive definite, i.e.,

a(U,V) = U -EV' +U.-BVdz,
z=0

satisfies for a constant C' > 0 that depends solely on By, the following inf-sup condition for all
0< B < By: For any U € Hé(O,oo), where

Hé(O,oo) = {u : ||ul|1,8 < oo}, (6.7)

there exists V € HEB with 'V # 0 such that

1
a(U, V) > Ce—— U5V _s.
(U, V) ﬁo—ﬁ” 11,81 VI1,-5

Here, we define for o € R

[Ulto = [~ @ [U-BU+U-BU] d 68
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Proof. Given U € Hj(0,00) we set V := e?P*U. Then V'(z) = 28e2%*U(z) + 27U’ (z) and thus

5
Iz, < aa+Zyeope,
Bo
a(U, V) = |Ulig +25/ e?’*U’ - EU dz > (1 - |ﬁﬂ|> 1013 -
The result then follows. ]

Lemma 6.3. Let f satisfy ||f]|os < oo for some B € [0,50), and let g € R%. Then the solution U

of
—-EU” +BU =, U(0) =g,

satisfies for a C' > 0 independent of B, the estimate

U1, < CBo—B)"H lIEllos + Il -

Proof. Let 81 > By and set Uy = ge 1%, Then Uy, satisfies the desired estimates. The remainder
U — Uy satisfies an inhomogeneous differential equation with homogeneous boundary conditions at
x = 0. Hence, Lemma 6.2 is applicable and yields the desired result. ]

Lemma 6.4. There exist 69 > 0 and Cy > 0 such that for every 6 € (0,d] and every m € Ny,
there holds -

11— . ;
Z §i—1-n (n+m)" (i +n+1+m)trtitm <,

(i+m)t (2n+ 1+ m)2ntlitm  —

n=0

Proof. See Appendix C.1 O

6.2 Regularity of the functions U;, UL, UF
Lemma 6.5. The function U; defined by (6.4), are holomorphic in a neighborhood G of I and
satisfy for some C, K >0,

Ui(2)| < C0'K''  Vze Gyi={zecG|dist(z,0G) > 8},  Vi>0.
Additionally, Ug; 11 =0 for all i € Ny.

Proof. We note that ¢/p < 1. The arguments are then analogous to those of [5, Lemma 2]. The
arguments are also structurally similar to the more complicated case studied in Lemma 4.2. U

We now turn to estimates for the inner expansion functions UZ-L.

Theorem 6.6. The functions I~JZL defined by (6.5a), (6.5b) are entire functions and satisfy for all
B € (0,8y) (with By given as in Lemma 6.2),

[T [hs < CK (B — B)" @i VieN,. (6.9)
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Proof. The case i = 0 follows from Lemma 6.3 and Lemma 6.5. For i > 1, we proceed by induction.
In order to be able to apply Lemma 6.3, we define

i—1
F(@) =Y A3 "UL@).
n=0

Next, we estimate, for an arbitrary 3 € (0, 8) and 3 € (8, 8y), with the aid of Lemma 4.8,

/ TP Uk @) dE < / e 2P 205 UL (3) 2 d
0 0
< supe 2B-Bry2n—i) 1Th)2 5
>0 ’
. i—n 20
564WM(~ ) ITEI2
B—B ’
_ . 4 i—n )20
< C2K2nn2n(,80 _ 5)*2(2n+1)672(27n) < — > .
= p—_8

Selecting 3 = (Bo — B)k + B for some k € (0,1) to be chosen shortly, we get

/ TR UL (@) dF <
0
1

< CPRPr? (g — B) 2020 (- )20 K2 (1 — )20t D)

i—n
i+n+1

The choice k = yields

> 28T 32(—n) | TL ()2 de < C2K20(3n — B)—2(i+n+1) ,—2(i—n 200610
| IOk @ < Cacn sy — )2 e 2o E LD 10)
Hence,
i1 ) .
= ~ —9i i1 imnpen—itl —(i—m)P" (i 0+ 1) i—n—
IFllos < CCa(Bo—B) K™Y 4K Hlet >7( (2n+1))2n+1 (Bo—B) !
n=0
< CCACH(Bo— B ZK™, (6.11)

where we appealed to Lemma 6.4 and used implicitly that K is sufficiently large. Using Lemma 6.5
for a fixed §, we get from Lemma 6.3

1Tills < (80— B) [IF o+ C(R/0)'7]
-~ . . ~ _ 97> i
< C(Bo—B) * 'K |K71CaCo + %(50 - B) <W>

The expression in square brackets can be bounded by 1 uniformly in i and 3 € (0, Bo) if we assume
that C and K are sufficiently large. O

We next refine the argument to include bounds on all derivatives of le
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Theorem 6.7. There exist Cy, K1, Ko > 0, independent of 5, v, m and i, such that
(T ™ g5 < Cu(Bo — B)"FFH™ (i 4 m) KiKg'v™™.

Proof. The cases m = 0 and m = 1 are covered by the above lemma (note: [[E7!|| < v~2). The
remaining cases are obtained as usual by differentiating the equation satisfied by UZ-L and then
proceed by induction on m. For details, see Appendix C.2 U

We conclude this section by showing that the boundary layer functions
~ M ~
U%L = Z IU‘ZUzLa

are entire functions.

Theorem 6.8. Fiz 5 € (0,5y). There exist constants C, v, K > 0 such that under the assumption
w(M + 1)y <1 there holds

Proof. From Theorem 6.7, we see that for all m € Ny,

dm

v mUBL

<CK™py™™ vm € Np.
O7ﬂ

M
I(CH) ™ os < C(Bo—B) > pii+m)(Bo — B) X Ki Ky~
=0
M

< C(Bo—B) 'EFvT™ (280 — B) PKypi) + (2K pm)’

M

C(Bo — B) ' KF'v ™™ Y3 (2K M)’ <(5o -8 + (%)i) < R
1=0

IN

for an appropriate K, (depending on Sy — A!), if we assume that pM is sufficiently small. The key
observation for this fact is to note that for m > M we have

M (M-1)/m)m
' M+1 M+1 m
i< M _ M-1
Dm0 < (41D = m /AN < m (57=) ,
and n/" — 1 for n — oo. O

6.3 Remainder estimates
6.3.1 Remainder estimates for the outer expansion: F — L. , W,
As before, the formal expansion (6.1) is truncated after M terms to yield the decomposition
M .
U=> Uz +ZMUL +Z/ﬂUR )+ RM.
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A calculation shows u

F—L., Z pU; = pMPES Uy,
=0
We therefore get

Theorem 6.9. There exists v > 0 independent of €, i such that for (M + 1)y < 1, there holds

M
[P = Loy S WUy < ClR(M + 1)) 42,
=0
Proof. The proof is analogous to that of [5, Thm. 6]. O

6.3.2 Remainder estimates for the inner expansion: La#ﬁg]L

We consider only the contribution from the left endpoint and define ﬁgfL = le\i 0 ,ulfJZL A
calculation shows

U= > le kA, UF. (6.12)

i>M—+1 k=0

The following lemma provides an estimate (in an exponentially weighted space) for LEMINJ%[L near
the left endpoint:

Lemma 6.10. There exist C, §, >0, K > 0 such that

2

/ P S S T EAOHE)| 0 < O 4 1),
i>M+1 k=0

Proof. For fixed T > 0 we estimate

dow le kA, UE(Z <CAZ|Uk Z NiTkE R (6.13)

i>M+1 k=0 i=M+1
For uzvya < 1/2, we estimate further
S A RE R < 2 ) ) < 2 @M,
i=M+1

Inserting this in (6.13), we see that employing the estimate (6.10) we can reason in exactly the
same way as we have to reach (6.11), to get

2
/ 26T Z le kAZ kUk( ) digC(KM(M+1))2(M+1),

i>M—+1 k=0

which is the desired estimate. ]
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Lemma 6.10 provides an estimate for LE,MG%L near the left endpoint; the following result provides
an estimate on the whole interval I:

Theorem 6.11. There exist C, v, K, b > 0 such that for p(M + 1)y < 1, there holds

07 2
HLe,uUJgLHB(I) <Cyu [(M(M + 1) K)MFL 4 <§) eb/u} )

Proof. We merely consider the left boundary layer. Lemma 6.10 allows us to estimate for Le,uﬁng
on the interval (0,d) with the change of variables x = pz:

4 ~ 6/n ~
| O = g [0 D@ P 0 < O + Dur 0T

For the interval (9, 1), we note that

"

Lo, Ul = —E"' (U},) @)+ A) UY, (@),

Hence, we can estimate

1 - 00 - " - ~ " ~
/ e Y de < Cp / | (O8L) @P+OH,@)F &5 < oo [H CEANPERLATRE
r= T=0/1

With Theorem 6.8, we therefore arrive at
1w O lBay < Con [(u(M + 1)E)XHD 4 y~e298/n]

O

Remark 1. The factor (u/e)~2 in the second term on the right-hand side of Theorem 6.11 is likely
suboptimal.

6.4 Boundary mismatch of the expansion

Theorem 6.12. There exist constants C, b, v > 0 such that under the assumptions
p(M+1)y <1,

one has /2
Wi+ Ul + V]gLHL“’(aI) <C (g) e b,

Proof. Moreover, at the endpoints of the interval I, the remainder is small. To see this, consider
the left endpoint of I (the right endpoint is similar). By construction,

IRu() = ||O©) = (War(0) + TFL0) + VEL(/w) || = [V (/m|| . (619)

32



Theorem 6.8 informs us that V; is an entire function. In fact, from Theorem 6.8 and the Sobolev

embedding theorem in the form HvHioo(f) < CHUHLQ(DHUHHI(I") applied to the interval I = [1/p —
1,1/u] of unit length, allows us to infer

~ ~ ~ ~ /
HV%L(l/:u)Hioo(f) < CIVELllL [HVJZ_gLHL?(i) + 1l <VJJ\34L> Hp(i)]
~ ~ ~ !/
< OBV o [V¥los + 1| (VEL) o] < Ce29m,

where the constant C' > 0 depends only on the choice of  made in Theorem 6.8. Recalling the
definition of v concludes the argument. O

6.5 Proof of Theorem 6.1

The proof of Theorem 6.1 now follows by combining Theorems 6.9, 6.11, 6.12 with M = O(1/u)
and using the stability result (2.9).

Acknowledgements: The first author cordially thanks his colleagues W. Auzinger (Vienna) and
P. Szmolyan (Vienna) for fruitful discussions on the topics the paper.

A Some miscellaneous results

Lemma A.1. Let v >0 and n € (0,1). Then the function

r— f(z) =" (nr)",

is convez on (0,00) and monotone decreasing on (0,1/(nye)).

Proof. We only check the monotonicity assertion. To that end, we compute
d
o Inf(z)=Invy+ 1+ In(nz)
T

and see that - In f(z) < 0 for z € (0,1/(nve)). This proves the claim. O

The following lemma provides a proof for (2.11) and (2.10).

Lemma A.2. Let o> 0 and let B € R? be such that € - BE > a|€||2 for all € € R2. Then

Bk
det B

. k=12, (A1)

>«
Z OémaX{Bn,BQQ}. (A2)

Proof. Property (A.1) follows immediately from the choice E = €}, where € is the k-th unit vector.
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To see property (A.2), we start by noting that B~! is also positive definite:
o TB 1y "2 y'BTB 1By = y'BTy = (y'BTy)T = 4"By > 0.
Property (A.2) follows from properties of the representation of B~! in terms of the cofactor matrix.

From
_ 1 Bs2 —Bio
B 1 = C C =
detB <—Bz1 B

and (A.1), we see that det B is positive. The well-known fact that

B2 <o
allows us to conclude .
| IC1 = 1B <
which implies
1 ' < 1
det(B)| ~ a[|Cll2°
Estimating ||C|le > max{|Ci1|, |C22|} and recalling det B > 0 concludes the argument. O

B Proofs for Section 5

Lemma B.1. If u satisfies

Hu(") < CK"max{n,u '}" Vn € Ny,

oo,l

for some positive constants C, K independent of u, then its complex extension (denoted by u(z))

satisfies
[u(z)| < CeIDn,

provided dist(z, I) is sufficiently small.

Proof. Fix x € I and let B,(z) be the ball of radius r centered at . Then, by Taylor’s theorem,
we have for z € B, ()

) u(k)(x) N [1/p] Mik . 00 ik -
h=0 k=0 k=[1/n)

[1/p] k 0o

=0 N C k=11/u)

If r < 1/(2eK) then the second sum above is bounded and we get

lu(z)] < Cef/m ¢ < CerB/m,
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B.1 Proof of Lemma 5.2

We work out the details here: We reduce to the case of homogeneous boundary conditions by
introducing the linear function ug with up(0) = g— and up(1) = g+. Then the difference @ := u—wug
solves

2 ci=g—cug=:3  @(0)=7a(1)=0
with (||l pee(r) < Cy + |g-| + |g+|- By the comparison principle (see, e.g., [2, Lemma 2.1] for the
present form), we have

- 1
]| oo (1) < EHQHLOO(I)- (B.1)
From the differential equation, we furthermore get
- —2)(~ el ey | - —9y~
6" | oo 1y < 120Gl poo () + 7()”9”L°°(1) < O |Gl poe (1) (B.2)

where C' is a constant that depends solely on ¢. By an interpolation inequality in Holder spaces
(see [3, Thm. 3.2.1]) we get from (B.1), (B.2), the estimate

17N ooy < Cu™ )l oo (1), (B.3)

for a constant C > 0 that depends only on ¢. Combining the above estimates together with
u = % + ug and recalling that ug is linear, we have

™| oo (1) < Cumax{n, ™'}, ne{0,1,2}, (B.4)

where C, = CCj for a constant C' that depends solely on the function c. Higher order estimates for
u are obtained from the differential equation in the standard way. Differentiating the differential
equation satisfied by w yields

) = g 3 (“) ), ) (B.5)

v
v=0
The analyticity of ¢ implies the existence of C., . > 0 such that
1™ || oo (ry < Ceviin! - Vn € N. (B.6)
We claim
[u™ || oo (1) < Cuy™ max{n, p '} Vn € Ny. (B.7)

This estimate is valid for n € {0,1,2} by (B.4). To see that it is valid in general, one proceeds by
induction on n. From (B.5) we get in view (B.6)

n
— n v —v - —v
1" P ooy < Cony™ max{n, '+ <V> Ceyl ()ICA™ ™ max{v, =" }"
v=0
n
< Cyy"max{n,pu '}" + C.C, Z n’ %y max{v, p 1}
v=0
n v
< Cyy"max{n, p~1}" + CuCymax{n, p~ 117" (”—)
~y
v=0
1
< Cyy"max{n, u~'}" + C.C, max{n, p ' }"y" ——
1=/
Cj C
< Cyy? ™M max{n, p 11" [ _2{—9—%76}} )
< Cuy {n. "} | o g
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Since the expression in square brackets is bounded by 1 for v > ~q, if we make 7y sufficiently large,
we have the desired estimate (B.7) for u.

B.2 Proof of Lemma 5.4

~ . i—k
Set § := 26 < 1/e. Define F : k + 6* <Z+ZJ{—E,€>Z and note that

In(F)=klno+ (i —k)(In(i +2) —In(i + 1 — k)),

ik
m(F)Y) = mé—In(i+2)+nGE+1—Fk) +——"
(n(F) = b= (i +2) + G+ 1K)+
1k
< ln5+ln<l+,7>+1§1+ln5.
7+ 2

Since § < 1/e we have (In(F))' <0, and F is monotone decreasing which gives

! i+2 7P <
S5 <7) <Y o ke <
i+1—k —

k=0

B.3 Proof of Theorem 5.5

We will only consider the inner expansions iZiL, QL at the left endpoint of I, since for the expansions

at the right endpoint the arguments are almost identical. The proof is by induction on ¢. For ¢ =0
we have from (5.4)—(5.7),

—MZU&' + (a22a11a:1¢112a21)v0 =g %f | B8)
vo(0) =wo (1) =0
1
ug = — (f — arzvo), (B.9)
ail
SN ~
{ — (&) +an(0)ig =0 (B.10)
g (0) = —uo(0) ’
ok — — / / asn (0YaL (7) dr dt. (B.11)
z t

Combining Lemmas 5.3 and 5.2, we can find a constant Cy > 0 such that vy satisfies (5.13), which
in turn shows that ug satisfies (5.12) by Lemma 5.3. The solution formula for 4§ then shows that
(5.11) is valid. Finally, Lemma 4.6 establishes the desired bound (5.10) for vs.

So, assume (5.10)—(5.13) hold for up to ¢ > 0 and establish them for i + 1. We will choose the

constants C; such that the ratios Cy/Cy, C3/C5, and Cy/Cs5 are sufficiently small. Furthermore,
the constants K; and C,, C, are sufficiently large and are selected such that

K1 == K2 K3 == K4, Cu == Cv (B12a)

C’Ky=K; C,=0C,>2/min{1/a11(0),1/a1;(1)}. (B.12b)
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We start by bounding v;1; and w;41. We first consider v;41, which satisfies (see eq. (5.4)):

{ oy + Ry = 2
0i1(0) = =55,1(0) , visa(1) = =05, (0)

To that end, we assume, as we may, that ~ is sufficiently large for Lemma 5.3 to be applicable
for the function w;—;. Together with the induction hypothesis, it then yields Vn € Ny (with the
constant C’ of Lemma 5.3 for the function g = a1 /a11)

(n) ; i—1
a 1 “1n
W(aiu;' ) ey < WC'CSEG (4 1+ n)u+ 1) 1%7 ?max{n + 2,57 ",

From
p?max{n + 2, 1}"2 < max{n,p1}" (nT—|—2>n+2 max{(n + 2)u, 1}>
< O maxfn, (G Dt 12,
for some C” > 0 independent of n, we get Vn € Ny

(n) ; i—1
a 1 1 1 n
| 12 (—aiu;’1> Iy < C37°C'C"EPKLT((i+ 1+ n)u+1) H%V max{n, u~'}".

The induction hypothesis for @L_H and i}\ﬁ_l and Lemma 5.2 therefore produce (with C of Lemma 5.2),
for all n € Ny

(i— 1)1
(i — 1)!

i—1
CsKE (i + 14+ n)p+1)7 2 4 20, K11 (u + %) (i — 1)t~ 2=

IN

0 ey < On" max{n, =1}

) n —1\n - 7 (Z + 1)(i+1)
CaE M max{n, ="} (u(i + 1) + 1) +1W

IN

C2K.) Ci
i1 (i + 1)+
(i+1)

C(IV)CC3 22 4 90UVIE 1’
C C2K1

2
4

IN

CyK iy max{n, =" (u(i +n) + 1)

(-1t 1v) (i)
o = ot G+1)!
between the constants K in (B.12). For the induction argument to work, we have to require that

the expression in square brackets is bounded by 1:

where we made use of

" and the simplifying assumptions on the relations

- - 2l
C(Iv)cﬁ,yzfqz +20UV)C <021K ) ] <1. (B.13)
1

We will collect further conditions on the constants C; and K; and see at the end of the proof that
these conditions can be met.
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Next, we turn to to u;4+1, which is given by (5.5):

1

an(z)

ui+1(z) = = [P0 (2) + ar2(2)visa ()] -
Lemma 5.3, the induction hypothesis and the just proved bounds for v;1; then give for a constant
C that depends solely on the coefficients a;; of the differential operator,

(n) < Co KT (i +1 )it N
luii ey < C3K3™ (p(i+14n)+ 1) max{n, u }7(2.+1)!

Cs

C it+1
CY K72+ 022 <—> .
In view of K3 = K4 by (B.12), we recognize a second condition for the induction argument, namely,
O] !
[072K§2 + C?“] <1 (B.14)
3

Next, we consider i, which satisfies (see (5.6)):

. I . . i+1 *) g N ®) o o
= (@) + an(0)if, = —a2(0)of, - kZ_:I <a11 ( )Nkl“kuzLH kT amk!( )kak”ﬁrkk
fy1(0) = —ui41(0) , @y — 0 as T — oo
(B.15)
We will estimate the right-hand side of (B.15). To that end, since 1 < k <1+ 1, we start with the
observation
1 i+1-k 1 i+1-k i+ 2 i+1-k
- < F e
<'u+z+2—k:> = <“+z‘+2> <i+2—k>
1 i+1 i+ 2 i+1-k
< [ —
= <”+i+2> <i+2—k> ’
so that we can estimate
i+1 ’ 1 i+1 1 )
Z E ‘k k‘/\erl L < C CzKlJrl <M+ ﬂ) Z_'(CU(Z+ 1)+ ‘Z’)Zz—l—le—ﬁRe(z)
P K5 i+2—-k '

If K5 is sufficiently large, then the sum is bounded by 2?(—‘126 by Lemma 5.4. Analogously, we get
(note that the case i = 0 leads to empty sums)

i+l | (k) =1 (k)
|a15 (0)] N |a15°(0)] N
Z 12]{:, |Z|kﬂk|UzL+1fk| = Z Hk! |Z|k:uk|viL+lfk|

k=0 ’ k=0

- 1\ 2it 5 Re(2) k i i—1—k
< i— - _ 1—1 _—BRe(z
< C,C1 K] (u—i— z> 2'(0 (i—1)+1z]) g < 1) <2—k>

) 1 i+1 1 )
< K2C"C.Ch K (u + ;> F(Coli 1) |2 PRe),
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where we appealed again to Lemma 5.4 and used that K; = K> is sufficiently large to bound the
sum by 2e, and noticed additionally that

1\ i1 1N iyt 1\ i+l , i1 o\2 /iga\ it
z < 41
(5) =lrmz) () =(ems) eovm(E) (F)

—.C" /(2€)

where the last supremum is finite.

These estimates allow us to bound iIiL_H with the aid of Lemma 4.5 to arrive at

) 1 +1
()] < oK (m—) R L0 4 1) 4 22D

+2 (i +1)!
i+1 i+1
ooy Ky 201 (K G (K .
K2 CQ 02 C2K1

Together with the simplifying assumptions (B.12) we see that for the induction argument to work,
we need to require

X

Ya L,C1 O3] !
— + K7 — 4+ —=| <1. B.1
o2 e rppCe ] -

Finally, for v}, ; we have from (5.7)

T k ~koL ag;)(o) kokL

» ¢ k=0

L1 k ~
< ZH max{‘agl)(())‘ a22 //7’ ak drdt| + //Tksz Rdrdt
k=0

Proceeding analogously as before, we find that this last sum can be bounded as

Cy [ Ky \ »
2 (22 K
-~ (K) 1 CK;

< i+1 : 2(i+1) ,.—BRe(z)
Irhs(z)] < Ci1Kj <u+i+2> (i+1)!(C’U(Z+1)+|z|) e

where the constant C' > 0 is suitably chosen. Lemma 4.6 then gives

i+1 H—l —BRe(z)
0hs(z)| < K <“+¢+2> (i+1)!(C(z+1)+|z|)

C2 K2 i+1 .
—2 (22 K
c <K> L oK,

# (e
Cy 2N = 26+ 1)/(BC(i+1)))

Hence, by our assumption (B.12), we see that we can find C’ (depending solely on 3) such that our
induction argument will work if we can satisfy

c’ {022 +CK] } (B.17)

In total, we have completed the induction argument if we can select the constants C; and K; such
that (B.13), (B.14), (B.16), and (B.17) are satisfied. Inspection shows that this is the case by
taking the K; sufficiently large and appopriately controlling the ratios Co/C1, C3/Co, and Cy/Cs.

39




B.4 Proof of Theorem 5.7

From Lemma 5.6 and the estimates (4.21), (4.22), we get
~ (n)

(O%)" @

where, in the last step we have used the assumption that e(M + 1 + ¢/u) is sufficiently small so
that the sum can be estimated by a convergent geometric series.

M c 7 ' M c 7
< CePPyy (—) (i +1)" ) < Ceyy <Me + —) 71 < Oy,
=0 H =0 H

B.5 Proof of Lemma 5.10

We start by noting that the change of summation index k to £ = i — k leads us to having to estimate

¢
1 1 =
Si= ) ( > ZMZ Ay g(“*e“) (Ot + ),
i>M+1
We start with the elementary observation (cf. Lemma 4.8)
(CLl+ B2 < 2°(C10)% + 272 < (£2z+§2z)’

for suitable v > 0. Next, we estimate

_ 1 _ ~ _
i (C'1€+3:) 67[3:1: < C,yé[géef + E£256715/4]673B:v/4 < 05/6667361/4,

where we suitably chose 4 independent of ¢ and z. We therefore conclude

A £zt 1 \“1 % 7
_ 1— Z Z CE —bx
i>§+1 <M> gu <M+€+1> 5'( b+ z)"e

M L
~ . 1
Ce 354 N~ (eBya)' Y 71y <1+7> o5
(€574) — T4 u(l+1)

i>M+1

IN

IN

M ‘
_383% 1 . ~y 1y .
Ce 3ﬁx/4m(€x,yA)M+l Zx z,yAz <€+;> 5t
=0

C

<
- 1-X

M
e—ﬁﬁ/QeM-i-l Z(’YA/x\)M—H_ze_ﬁ%Mﬁz(g + 1/,[1,)6.

(=0
Again, elementary considerations (cf. Lemma 4.8) show ZM+1-¢e=B2/4 < A ML= pp 4 q _ p)M+1-¢
for suitable v; > 0, so that we arrive at

M
C _

—BE/2 M+1 MA+1—¢ M+1—€40 ¢
S < 1T-x°¢ e ;('YA%) (M+1-1) Y +1/p)

C _
< g _MX6761/26M+17§4+1(M+ 14 1/p)M+L

where, in the last step we have used the convexity of the function
0 MM +1 — )M 01 /)
on the intervall [0, M] — see also the related Lemma D.1.
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C Proofs for Section 6

C.1 Proof of Lemma 6.4

The proof consists of showing that the terms of the sum can be bounded by the terms of a convergent
geometric series if ¢ is sufficiently small. To simplify some notation, we restrict our attention to
the case i > 2 (the cases i = 0 and i = 1 being easily seen). We denote the terms of the sum by
F(n) and note that it suffices to study the sum ZZ ! 1 F(n) since the case n = 0 produces the term

F(0)=6"" (i 41 +m) _ 51 i+14+m\' (i4+1+m\" < 5Ll

B i4+m)i(m 4+ 1)m+l i+m m+ 1 = ee,
( )( )

which is bounded uniformly in i if § < 6y < e™!

We define, for n € [1,i — 1],
fn) = InF(n)
= (i—1=-n)lnd+nln(n+m)+(i+n+1+m)n(i+n+1+m)—
—iln(i+m)—(2n+1+m)In(2n +1+m)
and compute
41
) = In (n+m)(n+i+1+m) Cms_14 "
(2n 414 m)? n+m
It is easy to see that f’(n) > —1 —In4 —In¢é for n > 1 so that we can find a constant ¢ > 0 with
f'(n) > ¢ > 0for all n > 1 by taking ¢ sufficiently small. By the mean value theorem, we therefore
get for each n, that In gz:l = f(n+1) — f(n) > c. Hence, F(n) < e “F(n + 1). Iterating this
estimate, we get

F(n) < e 0717mep(j — 1),

Hence,

. 1
—(i—1-n)crp(; < .
ZF Z F(i—1) < ——F(i-1).

n=1

The argument is Concluded by noting that F'(i —1) is bounded uniformly in ¢ and m as the following
rearrangement shows:

(i—l—l—m)Fl (21’+m)2i+m _2i+m i—14+m i—1 2% +m 2i4+m—1
(i+m)t (2 +m—1)2tm=1 1y i+m 2 +m—1 '

Fi—1)=

C.2 Proof of Theorem 6.7

Specifically, differentiating m times yields (we write U; instead of INJZL ) with B = A(0)
- (m)
B0 = B+ $ (o)
BUM 4 iA min{mz’in} (m) <z — n) T ) (C.1)
n=0 =0 J J
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We abbreviate

min{m,i—n} .
m 7T—N . .~ .
F, = o N R Pl Vi
Z <] > < J )J

J=0

and we proceed as in the proof of Theorem 6.6. The induction hypothesis yields, for any 3 € (8, Bo),

|F@ "Il J)HOB < supi " e (B- Az |olm= J)H

>0
. .\ t—n—jJ
< o (SR I) T Gy By R
BB
For j < i—n, we select 3 = 8+ k(8y — ) with k = anfﬁ and get
[T 5 < ©2)

“(i4n—j1+m) R —j+ 1+ m) o atam
(27’L + 1 +m)2n+1+m

CU(BO - ﬁ) (n +m — j)nK{LK;n—jV*(m*j);

the induction hypothesis shows that the estimate (C.2) is also true for j = ¢ — n. Therefore, by
estimating n +m — j < n + m, we get

(n+m)"
(2n + 14 m)?ntitm

min{i—n,m} .
x D <m> <Z j n)J'!(ﬂo — BY Ky V(i n— j 4 1 m) I,
=0

[Fullos < ColBo—B)~ "+ K K™

J

With the estimates (’;ﬂ)j' < mJ we bound

m> <Z — n)]'(,ﬁo _ ﬁ)jK;jl/j(i tn—j+1+ m)i+nfj+1+m
J J

i—n

min{i—n,m} <

IN

( > (Bo — BY K377 (i + n+ 1+ m) trrttm

( 50 . 1)i—n (Z. 414 m)i+n+1+m,

where we have recognized a binomial sum in the last equality. Hence,

Z”Ai—n\bHFnHoﬁ < CyCava(Bo— ) F KT Ky
=0

i—1

% Z,Yil—l—nK{L—i-H (1 + (8o — ﬁ)sz—l)i—
n=0

< CyCoCayalBo — B)~ B KISV R, =™(j 4 m)’,

(2n +1+ m)2n+1+m

where we appealed to Lemma 6.4 and implicitly used that K; and K> are such that y4 K| 1(1 +
(Bo — B)vK5 ') is sufficiently small. Using [|[E~Y||2 < v~2, we therefore get from (C.1)

U205 < w200 (B0 — B)" B (i 4 m) KiKF'v " [|Blla + CoCavaK; ]
< Cu(Bo — B)~ M (i 4 m) KIKy 20~ m+2) [K72|B| + Ky 'CoCavaKi ']

the expression in square brackets can be bounded by 1 if K; and K» are sufficiently large.
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D Proofs for Section 4

D.1 Proof of Lemma 4.2

The proof is by induction on i. For i = 0, equation (4.17) gives all the assertions (trivially). So,
assume (4.18)—(4.20) hold and establish them for i + 1.

We first consider (4.18) and assuming
"
- 7 uf g .
0 — |: uZ_] :| — A—l |: 27/27j—2 :| v] > 7/,
Vij Vi—2,j
we want to show that
— 1. uy_q .
0= [ Uil ] =A"! [ b2 } Viji>i+1
Vi+1,j i—1,j

By the induction hypothesis and j > i+ 1 > ¢ — 1, we have v;_1; = 0. Also, from j > i+ 1 we
get j —2=7—1-1>14—1, so that the induction hypothesis implies u;_1 ;_2 = 0. Therefore, the
right-hand side of (4.17) vanishes and thus the induction step for (4.18) is accomplished.

For (4.19) let M(Z) :={(i,j) € Zx Z: i < I, i odd or j odd}. We proceed by induction on Z by
assuming (4.19) to be true up to Z. For i <Z with (i,j) € M(Z), we have that (i+1,7) € M(Z+1)
implies (i — 1,j) € M(Z) (either i + 1 is odd and then ¢ — 1 is odd or j is odd) and additionally
(1—1,5—2) € M(Z). Hence, for (i+1,j) € M(Z+1), by the induction hypothesis, the right-hand
side of (4.17) vanishes, which proves the induction step.

We finally consider (4.20) and we want to show
[wi1,5(2)] + |vig1,5(2)] < Cs6™ T+ 1)V 2 € Gy,

We set
Ca = sup [A™} (z)|n,
xel
where ||(z1,22)|[, := |21]|+ |22| denotes the usual £!-norm and ensure that K satisfies 2C4/K? < 1.

Let x € (0,1). By (4.17), the induction hypothesis with G(;_.); C Gs and Cauchy’s Integral
Theorem, we have

luir1,(2)| + i1 (2)] < Ca (Juf_1j_o(2)] + |vi1,(2)])
2 4 . 4
< _f (1= —i+1 Ki-1; 1 (i—1)
< CSCA(M)Q (1= ~r)d) (1—1)
L A 11 20 i— 1\t
< —z—lKH—l ] (i+1) A ' )
< Cso (i+1) K2(i+1)2r2(1—r)—1 \i+1

. _ L .
The choice k = 7 gives

Ca

s, (2)] + Jvigr(2)] < Ced PV R (G 4 1)+ [ﬁ

} < Cgo~ D g+ 4 1)@HD
by the choice of K.
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D.2 Proof of Lemma 4.5

We provide some details for the case Rez < 0. For z € (0,00), the use of a Green’s function gives
the following representation of the solution wu(z):

ue) = g [y [T sga iy

e / eV f(/aydy) + ge .
0

Analytic continuation then removes the restriction to (0,00). In order to get the desired bound, we
estimate each of these four terms separately. We restrict here our attention to the case of Re z < 0.

For the first integral, we use as the path of integration the straight line connecting 0 and az to get

e—az/ eyf(y/a) dy' < —Re(az / Cf q—i—t\ ’) ’az‘ Re(taz) Re(taz) dt
0

< e Rel@) / Cylq + t]2])az| eRG-05@=a)) gt
0

< Cfe—Re(Ez)_{(q_i_‘ ’]—l—l +1}

Jj+1

For the third integral, we calculate with [1, eq. 8.353.5] and the incomplete Gamma-function I'(-,-),

/ e ty/a) dy\ <of e va/a( 4y 0 dy

= Cra7(1+ a/a)” 0D e+2/9D (G 4 1 ag(1 4 a/a))
= Crala+a)” UtDedleta)p (5 41 g(a + a)).

In view of the assumption (a + a)q > 2j + 1 > j, we may employ the estimate

[e~*¢°]
€l —ao’
(see, e.g., [12, Chap. 4, Sec. 10]) to arrive at

‘ [ et

Hence, the third integral can be estimated by

‘F(a7§)‘ < Qo = max {a - 170}7 Re(f) >0, ‘5’ > o,

1

<Caj+1
=T T a) -

, 1 _
<C aqj""li‘e_a Re(z)‘
0 qla+a)—j

/0 e (y/a)

We now turn to the second integral in the representation formula for u. We split the integral as

e | T e f(y/a) dy' <

z

& /0 " eV i(y/a) dy‘ +

o /0 T e viy/a) dy‘ .
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We recognize that the second integral can be estimated using (D.1). The first integral is treated as
follows:

az 1
e’ / eyf(y/a)d?/‘ < Cyelel) / et RO |z |t RET (g 4 1]2)) dt
0 0

1
< CfeERe(z)/ (q+t’Z‘)ja’Z‘e(lft)(aJra)Rezdt
0

< CfefaRe(z) [(q_|_ |Z|)j+1 _ qurl] )

Jj+1
Combining the above estimates and recalling g(a +a) —j > 2j+1—j > j+ 1, we conclude

o0

e“z/o e’ f(y/a) dy + e** /az eV f(y/a) dy—e‘”/o eV f(y/a) dy' =<

20 efRe(Ez) 4z j+1.L‘
f (q+12]) e

Combining this estimate with the obvious one for the fourth term, we arrive at the desired bound.

D.3 Proof of Theorem 4.9

We begin by setting
r_ det A(O) . a11(0)a22(0) — a12(0)a21 (0)

an(O) - a11(0) ’
and choose the constants Cy, Cy, Cq, Cs, Cy, Ki, K;, i = 1, ..., 4 to satisfy the following:

Kl = K2 = Kg = K4 2 1, (D2a)
K =Koy=K3=K;>1, (D.2b)
Co=0Cr=0;=0C>1. (D.2¢)

Furthermore, the following requirements have to be satisfied: with the constants C's, K of Lemma 4.2
(we assume for notational simplicity that § = 1 is admissible in Lemma 4.2) and ~, the constant
of analyticity of the data (see (2.3)):
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Cy
K=Ky

Y AV AVARLV,

v

Y v

v

v Y Y Y

v

4

Ca <1+

| Cy
Cs
Cs

é(%ﬂ B

|az1(0)]
a11(0) >

02 |a12(0)| Ca

1 Cl 1 Ya
— |1 — =
CL’( +02> 1—’)/a/K2K2+

Cs
Cy

)]

a 1

Cl CL11 0

olw)

[Cs |az1(0)] 1

a11( )Kl 1 —a/K1

<1+

Ca
Ch
—2CYy

K, s —la12(0 )!] ;

@)

Q2

&)

1- 2/(03@)} ’

+Eq } I/ (KiKy)

4 4
—laz (0 )!—Jr =K, 2azs(0),
K—ch 26a’a21 L —_2% @ g+l
1 CQ aa220 7 4 CQ 71 ’
[!am( NG | Foh 26 }
a;1(0) C ai1(0
la21(0)| ) 7C1 ( |21 >% 1 <C1 >
2 = —+1
{ 11(0) ‘ 2 a11(0) ) K11 —r,/K;1 \Cs
CS( > ) me () ()
Cy \ K» K, 0y \ Ky K, ’
[N I WA A
a11(0) Cl 1 a11(0) a11(0) 1—’)/@/[(1 K1 Cl
1 C4— Ya Cq < Ci— )}
C,—K, —|— —K,
[all(o) { C3 4 K3K3 1 —’}/a/(KgKg) Cs 4
2@ @ 2 ®
C3 \ K3 K3 C3 \ K3 K '

46

(D.10)
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(D.14)
(D.15)
(D.16)

(D.17)
(D.18)

(D.19)

—~

D.20)
(D.21)

(D.22)



Before we proceed with the proof, we make sure that the requirements (D.3)—(D.22) can be satisfied.
We make the following simplifying assumptions in addition to (D.2):

Cy =Cy=0Cz=0C5>8/a, (D.23a)
Ya _ Ya _ Ya _ Ya 1
2 =2 = < .
TR TR (D.23b)
K S Kl = K2 = Kg = K4, (D23C)
-Q, =0 (3=0Q° Ci=Q" (D.23d)

Here, @ > 0 will be selected sufficiently large below. Then, the requirements (D.3)—(D.22) are
satisfied if:

@ = O (D.24)
o = G (D.25)
2 la12(0)|
v = a11(0) ? (D.26)
2 |laz1(0)]
v = az2(0) @ (D.27)
Q' = |a2;§0)|Q3’ (D.28)
i |a21(0)] Q? o
b= _Ca (1 - a11(0) ) a < * 6) E T 6} (D.29)
[ Q Ja12(0)] | Ca 274 Q
b= _@ all(o) + all(O) (1 + Q2>:| ’ (D.30)
- ) !
1> gg - gg +K4283\a12( )y] (D.31)
b= _g?'aij?( N]’ (D.32)
b= % (D.33)
Lz {Q?’*K ] (D34)
- Q4 4 ) )
3
> i2|a21< )|g4 + AR an(0), 035)
-2 Q% 2e|ag (0 )| Cys o Q*
1 > K, Qm+6+l{4 Q" (D.36)
[a12(0)] @ o 2¢
be a11(0) Q au(oJ (D.37)
|a2 Olym Q- L lan (0] 27 (@2 Cs | 2@
L - an (0) R G ( a11(0) > K (6 +1> +6 tEy Q ]’ (D38)
\a12(0)lg -2 2¢° 20, ﬁ< Q)]
R OK: o T o )] (D.39)
1 : %4 . s C
2 o {C gsK‘* s (“%Kﬁ)}w—?w—él (D.40)
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It is now easy to see that by first selecting @) sufficiently large and then choosing the parameters
K; and K; sufficiently large, ensures the above requirements.

We now turn to the induction argument.

(Base) Case i = j = 0:

The functions ﬂao,'ﬁéo, 17&0,6&2 (6&0 = 0) satisfy the following:

~ " ~
— (¥50)" + 0% = 0 (D.41)
0§0(0) = —v0,0(0) , fo(T) »0as T — o0 '
a12(0)
uéO - all(o) UO 0 (D42)
/ ~
o)+ an(igo =9 (D.43)
uéo(O) —10,0(0) 7“00( Z)—>0asZ— o0 ’
U / / ag (0)ag o (7)drdt. (D.44)

Solution formulas for '6&0 and 4, u070 and Lemma 4.2 (recall that we assume that 6 = 1 is admissible
in Lemma 4.2) give us the desired result for T)OLp and 17&0 in view of the requirements (D.3), (D.4),
while (D.42) gives it for 17&0, in view of requirement (D.6). For 170L72(z) we have from (D.44), the
just proven result for 17&0, and Lemma 4.6 (with j = 0)

|06.2(2)| < laz1 (0 )|C3 Exp(z) < Cy Exp(z),
by the choice of Cy in (D.7).
(Base) Case j =0, i > 0:
The functions ﬂﬁo, 52%0, ﬂﬁo, @%2 satisfy equations (4.23)—(4.27), respectively, for up to i. We proceed
by induction on i. First, 62‘L+1,0 satisfies (4.24) with ¢ replaced by i+ 1. The right hand side of that

boundary value problem satisfies, in view of the induction hypothesis and the choices K1 = Ko,

Ca=0C5>1,

i+1
|RHS(4.240)| < Ca (1 * ‘ai%’) Z WPl {1 ro(@)] + [05 r0(2)]}

i+1
a O . i+1—
gca<1 ‘210 >Zva! e T Gali L= R) + )00

x (clfq'ﬂ—k + CgK%H_k) Exp(z)

|a21(0)] 1 Yol o
<Co |1+ —= | (C1+Cy)————— K3 =(Cy i+l g 7
a < i a11(0) (Gt 2)1—%/1(2 Ky 2 i!( i+ 12) xp(2)
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where we used the fact that K; = Ky > 7, by (D.8). Lemma 4.5 and Lemma 4.2 yield, for the
solution 52%0 of the boundary value problem (4.24),

_ 0)] 1 1 Ya
L < 1 |a21( L - KH—l
05 0(2)| < <Ca ( + 1 (0) —(C1+Co)g TR K2

+OsK (i + 1)“1) Exp(2)

(’L + 1)| (Cfﬂ + ‘Z’)Q +2

, 1
< OR G (Cali 1) 4 12 Bxp(2)

0\ 1 C 1 Cs (( K\
(O L ) 1 ()
a11(0) ) a Cy) 1—7,/Ks Ky  Cy \ Ky
The expression in square brackets is bounded by 1 by our requirement (D.9). Next, we consider

az‘L+1,0 which satisfies (4.23) with ¢ replaced by i + 1. We have by the induction hypothesis and
(D.45),

X

(D.45)

|a12(0)] i1 , 2(i+1)
< — OO KT ——— (C5 1
o)l < {7GEg R Gy G+ D+ D 4
i+1
$D b fa s [ RTTH (Ol + 1) o+ [£]) 2V
k:lan(o) (Z +1-— kﬁ)'

+ ORI (O +1) + =) 0] Exp(z)

) 1 )
C1K! (Cali + 1) + [2])0FD x

IN

(i+1)!
Cs |a12(0)] Co Ya 1 Cy
[01 a11(0) + all(O)El_%/Kl <1+a>] Exp(z),

since K1 = Ky > 7, by (D.8). Again, the expression in square brackets is bounded by 1 by our
requirement (D.10).

For ﬂiLH’O, we have by Lemma 4.5, (4.26), and Lemma 4.2,

‘uZJrl 0 ‘ < e*all(o) Re(2) ‘ui-i-l,O(O)’ < CSKiJrl(Z' + 1)(2+1) EXp(Z)
C K i+1
Fi (73) ] Exp(z). (D.46)

In view of our requirement (D.14), the expression in square brackets is bounded by 1.

IN

Finally, for 62‘L+1,2 we have from (4.27), (D.46) and Lemma 4.6, in view of K3 = K, and C; = Cj,

//a21 (O)QZL_FLO (7)drdt

|6iL+1,2(Z)| <
2
< O (i) CORECali+ 1)+ ) B
< Cg ‘agl(O)’ 1

CaK(Cai + 1) + 2% Bxp(z )[54 a2 1-2/(Cqa)
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The expression in square brackets is bounded by 1 by our requirements (D.13), (D.12).
(Base) Case i =0, j > 0:

. ~L ~L /\L /\L 5 . .
The functions Ug 41500 415 U0 41> V0 43 satisfy the following:

~I " 1~L __a21(0) (~L "
B <”0,j+1> T V41 = T ar(0) <“0,j—1> (D.47)
0 (1)’
~I a19 ~1, J—
= — . D.48
UQ,j4+1 a11(0) vo,j+1 T an(0) ( )
"
- <a0Lj+1> + all(o)agj-i-l = _a12(0)60Lj+1
. ’ L ’ . ’ , (D.49)
u07]~+1(0) =— (u07j+1(0) + uo,j+1(0)) ; ug; — 0 as @ — 00
’Ué:]+3 // a21 UO]+1( ) + GQQ(O)UOJ+1( ):| drdt. (D50)
z t

To establish the desired claims, we proceed by induction on j noting that the case j =0 and i =0
has been proved already. Assuming that the bounds are valid for s = 0 and up to j, we show them
for j + 1.

We start with @\é j+3e By the induction hypothesis, Lemma 4.6, and the assumption Cza > 4 (see
requirement (D.12)) we have

1
G+

—i_ ) 1
+an(O)CAT (Caj = 1) + a0 ) B

4 —j+1
BEus)| < 5 (laan O)ICSTE (Calj +1) + |2])20+

In view of C; = Cy and K3 = K4 we get

1
7+ 1)

by requirement (D.16), the expression in square brackets is bounded by 1 as required.

Cs 4

~ —j+1 . ; 4 R —
[0543(2)] < Cu4Ky (Co(j + 1) + |2[)20 Exp(2) [@\021(0)!?4 + g\am(o)!fﬁ ;

We next turn our attention to T)é j+1 which satisfies (D.47) and right-hand side (RHS) satisfying

|RHS(p.a7)| < ’“21(0)‘ [(@;-1)"). (D.51)

|a11(0)]

We first study the case j = 0. Then ﬂéj_l =0, and Lemma 4.5 yields, together with Lemma 4.2,

—d' Re(z —j+1 C 1
[96.+1(2)le MM%S@K?EWU[;K#+W
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Since we assume Ko > 1, our requirement (D.3) implies the desired bound. Returning to (D.51)
for the case j > 1, the induction hypothesis and Lemma 4.7 produce

(RS p.an(2)] < 1922 Olg e, (Calj — 1) + 2] + 1207 Exp(2).

1
a11(0) (j—1)!

Therefore, Lemma 4.5 together with Lemma 4.2 yields

{UOJ-H {
—i1
11 7z la21(0)| KJ ~ 2(j—1)+1 , ~L
— 1 .
< j+1 (o 2(5+1)
< R gy (G + 1) +1e)

— 2C126%an(0)] | Cs (1 VT — a0 (Ko
Kl Kl

E D.52
02 a/GQQ(O) 02 4 02 Xp(Z), ( 5 )

where, again, the expression square brackets is bounded by 1 due to our requirement (D.17).

Now, consider ﬂg,jﬂa which satisfies (D.48). By (D.52) and Lemma 4.7, we have

a12(0)| ~ 7 . .
@i < (LGOI (Gt + 1 a0
2e° 1 1
* a11(0 )ClK] ﬁ(ﬁ(] —1) 41+ |2])%U ) Exp(2) )
< oK ; i 1)!(05(]' +1) + |2])20FD [|Zi§8;| gi —12a1216(0)] Exp(e):

in view of requirement (D.18), the expression in square brackets is bounded by 1 as required .

Finally, for ﬂé j+1 which satisfies (D.49) we have by Lemma 4.5 (the case j = 0 needs special
treatment in that the third term in the following estimate is not present)

|u0]+1 |
1

(19051000 + 200 + e OICHRS i35 (€ + 1) + =120 ) Bl

Cs /1N o (BT e
- pr— - pr— K E .
() +2(3) +EGen0)] B0

(Cali +1) + |22+

. 1
<CK]+1
= Gy Cs Cs

Again, in view of our requirement (D.11), the expression in square brackets is bounded by 1

Induction Step: We proceed by induction on j, the induction hypothesis being that the estimates
(4.32)—(4.35) have been shown for all i € Ny up to j and will establish them for all i € Ny and j+1.

We start with estimating o7 In view of the definition (4.31), we estimate with the induction

1,7+3" v
hypothesis (recall K3 = K; and K3 = K4; we also point out that for the case j = 0, the terms
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stemming from v;_j, j41— are in fact not present)

MOk ()
H (a21 (0) Uik, j4+1— k( ) + a9y (O)E}\iLfk,jJrl—k(Z))

k=0
A ik lal* ( )
<c, k(o ik (i i1 — ok 2(i+j+1—2k
<C ;% KR, T Ty Cali+ g+ 1= 28) + |2
C Kz;kfjflfk |Z|k C(iti—1—9%k 2(i+j-2k=1) | g
FOBGT K oy (Gali ) +12]) xp(2)
=41 (Coli + j + 1) + |2])20H+D ¢ Ca
T I L Y3
i+j+1)! 4 1 —7a/(K4Ky)

here, we employed observations of the form (note that i +j — 2k —1 > 0)

1 .. 2(i4+j—2k—1) 1 o i j2h)
- 1 ; _ i N
(Z'+J'—1—21€)!(C“(Z+‘7 L= 20l - (z‘+j—1—2k)!(0u(z+y+1)+|z|)
1 ; 1 2k+2 o
I D (Calich -+ 1)+ a9
I o . N
B ﬁ(cﬂ@ 1)+ [2) (a4 G+ 1) + [2]) 2R
. i+ 2(i-) ! .y i)
< —— (C> i) « 1 (e Pt
< (¢+j+1)1(0u(z+,7 +1) + |z]) < (z’+j+1)!(0“(1 +i+1)+|2])

From (4.31) and Lemma 4.6, we therefore get

(Co(i+j + 1) + |2])20H+D)
(i+j+1)

_ Y

1 1 2 [03 _2] 1
X 5|l Co| 5+ K =
a’ <1 - 2/(%@)) LG T 1 - /(KK )
By requirement (D.15), this is the desired estimate.

We now consider T)Z-LJ 41 Which satisfies (4.29a)—(4.29b). The required estimate is proved by induction
in 4, the case ¢ = 0 having been studied previously. The right-hand side of the boundary value
problem satisfies

| RH S(4.990)— (1.295)| < la21(0) ‘(aL,_ )// (2)

a21(0
a<1+’a%§0§‘>z Bl (T s 2(2) 4+ 0 1y ()

an) [ -~
The induction hypothesis and Lemma 4.7 produce
(3 7 1
|RHS(4.29(1)_(4_291))| CQ (Z I j)' (Cu(l + j) + ’Z‘) i+J +1K K]+ Exp( ) (D53)
|a21(0)] —2C1 ( |a21(0)|> Ya 1 <01 )}
X 2K, — + C, +1
|: a11(0) 2 (s 011(0) Ki1-— 'Ya/Kl
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Lemma 4.5 and the already proven estimates for v; j+1 and vF ‘41 lead to
() < Corm—(Cali+) + X VRIRS Bxp(z)
wr (i+j+1)!
|a21(0)],, aC1 7= ( !a21(0)\> Yo 1 <01 >
X 26" LK, + Oy (14 — — +1
[an( 0) Cy Ky ¢ a11(0) ) K11 —7,/K1 \ Co

L Cs < >< 1 )J’+1+f204 <K4> <m>]’“}
02 Ky KQ 4 02 Ky KQ ,
where the expression in square brackets is bounded by 1 due to our requirement (D.19).

Next we look at

k ~
apy (0)u zL kjt+1 T 052)(0)%‘{&%1 :

w; - = — + —
BT TG (0) T T a0 (0) a11(0) &= k!

) a12(0) -1 (NL,J 1>H Lyt { (k)

Again, we proceed by induction on ¢, the case ¢ = 0 having been handled already. From Lemma 4.7
and the induction hypotheses we get

1 . . i+
@n@)| < CRiGy K (Calit i+ 1)+ 12D Exp(z)
a12(0)| Cy | —=—2 2¢° Ca 1 Ya ( Cz)]
+ K, + Ja (1422,
a11(0) C4 a11(0)  a11(0) 1 —~,/K1 Ky Ch

Again, the expression in square brackets is bounded by 1 in view of our requirement (D.21).

Finally, we consider u;" , ; which satisfies (4.30). The right-hand side of the boundary value problem

2]+
satisfies
min{s,j+1} i
|RHS(1300)] < Caltfji1(2)| + Ca Z va || (il g el + BF i}
k=1
=il 1 o i
< GKIR m(%(% +3) £l Exp(z)
Cy— Ya C, < Cy— ﬂ
C,—K, — = +—K, .
“Cy +K:%K:al—’Ya/(K?,K?,) oyt

Lemma 4.5 together with the induction hypotheses, therefore gives us for the solution iZZL] 41 of
(4.30),

~ i+1 1
i 1(2)| < C3KiEKS (ES TS

1 Cy— o Ya C, < C4——2>}
X | ——=Car K, + I+ K
[au(O) { Cg 4 K3K3 1-— ’ya/(KgKg) C3 4

fSE) G e E)
C3 \ K3 K3 C3 \ K3 K3 '

By our requirement (D.22), the expression in square brackets is bounded by 1.

(Cali+j + 1) + |2])FH+Y Exp(z)
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D.4 Proof of Theorem 4.13

We first prove two auxiliary lemmas.

Lemma D.1. For every v > 0 the functions

filk) = M= k)G = kY
falk) = K= R) TG = k)
are convex on (0, min{i, j}).
Proof. Tt is easy to check that de In f1(k) and 4 de In fo(k) > 0. O

Lemma D.2. Let a <b<c¢<d. Let f be non-negative and convex on [a,d]. Then

£ 1|z (b,c) = max{min{f(a), f(b)}, min{f(c), f(d)}}.

Proof. We restrict our attention to the case a < b < ¢ < d — the general case can be proved using
similar arguments. By convexity, we have || f||zo(,.) = max{f(b), f(c)}. We claim that

max{min{f(a), f(b)}, min{f(c), f(d)}} = max{f(b), f(c)}. (D.54)
Suppose max{min{f(a), f(b)}, min{f(c), f(d)}} < max{f(b), f(c)}. Then
min{f(a), f(b)} < max{f(b), f(c)} ~ and  min{f(c), f(d)} < max{f(b),f(c)}.  (D.55)
If £(a) < f(b), then we write b = Aa + (1 — A)c for some A € (0,1), and use convexity to get
f0) = f(ha+ (1= X)e) < Af(a) + (1= N)f(e) < Af(B) + (1= A)f(o),
from which we conclude f(b) < f(c). Thus
fla) < f(b) < f(o).

The second condition in (D.55) then produces min{f(c), f(d)} < f(c), from which we get f(d) <
f(c). On the other hand, convexity implies upon writing ¢ = Aa + (1 — X)d for some X € (0,1),

fle) = fRa+ (1 =Ad)) <Af(a) + (1 = A)f(d) <Af(e) + (1 =N f(e) = (o),

which is a contradiction. We conclude that f(a) > f(b).

Next, we investigate the possibility f(d) < f(c). We proceed analogously. Convexity (for the points
b, ¢, d) implies

f(d) < f(e) < f(b).
The first condition in (D.55) then produces min{ f(a), f(b)} < f(b) from which we get f(a) < f(b).

Using again convexity for the points a, b, ¢, yields f(b) < f(c), which is the desired contradiction.
We conclude that f(c) < f(d).

Combining the above, have f(a) > f(b) and f(c) < f(d) and therefore (D.54). O
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Proof of Theorem 4.13: We have to estimate the terms on the right-hand side of (4.40). A
direct check shows that the estimate is valid for the special case My = 0. Hence, we will assume
My > 1.

Throughout the proof, we will use that 7 is real and strictly positive.

First, we estimate the double sum
My
5w (E)
7]
=0 j=M2—1

Using the bounds of Theorem 4.9 and the Cauchy integral theorem for derivatives (with contour
0B (z)), we get with the aid of Lemma 4.8,

[ (x)| < CF i (5 + )7,
for a suitable constant 5. Therefore, if py(M; + 1) < 1/2, then
Ml € M2—1
> 5 (e mise(2)"
i=0 j=Ma—1 H

Hence, the double sum in (4.40) can be estimated in the desired fashion by requiring v > /2.

We now turn to the triple sum in (4.40). We start by writing the conditions (4.39) on the indices
i, j, and k appearing in the triple sum (4.40) in a more compact form, by setting

Z:={(i,5,k): ¢ >M +1Vj>My—1) Amax{i — My,j — M} < k <min{i,j}}. (D.56)
Thus, the triple sum can be written as
S= Y pie/nyitA, ( Yimhij =k ) (D.57)
- Vi—k,j—k
(i,5,k)€T

Using (4.34), (4.35) and [|Ag|lp < Cav¥, where Cy := 2C,, we obtain with K > max{K3, K,},
K > max{Ks, K4}, C > max{Cy, C5} for > 0, with the aid of Lemma 4.8,

(GG—kti-wy+)" "

i— k L J v —az

CCy Z p(e/p) T8k K MR ki) e ¢
(i,5,k)€T J ’

~

IN

&pu~ BL

. ok k) ) A ‘ R
< CCA Z Ml(é./u)szKﬂ %71_k+j_k(i _ k)z—k(j _ k)j—ke—ngM
(i.d.k)ET K K*k

< OOy Z i— (6/#)] szK]( ) r)/a z k+j— k:( k)ifk(j_k)jfkef?;gf/ll;
(i,5,k)eT K Kk

here, we selected v > 0 suitable in dependence on C and a. It is convenient to abbreviate
P05, k) = e/ my R RRRE @ea) = k)G - RY T,
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with K = K ~ and Ky = K~. Hence, we wish to estimate
eI N f (i g, k). (D.58)

Next, in order unify the presentation, we consider the cases j = My — 1 and j = M, separately.
That is, we write

T c TU7li,
I, = {(i,5,k): j € {My—1, Mo} ANmax{i — M;,0} <k < min{i,j}},
T = {(i,j,k): (1> M +1Vj>My+1)Amax{i— My,j — Mo} < k < min{i,j}},

and estimate the sums over Z; and Z separately.

The structure of the remainder of the proof is as follows:

e In Step 1, we estimate e %/4 Z(zyj,k)eIl fli,5,k);
e In Step 2, we estimate e~ %%/4 Z(m‘,k)ef fli,75,k);

e Finally, in Step 3, we consider the case Te > ¢ and show that then |L€,ﬂﬁg]L(§5)| < Ce P2,

Step 1: We estimate

M, min{i,j} min{i,j}
Z f(l’ja Z Z Z fZ], Z Z Z flja =: Sl+S2’
(4,9,k)€Tq 1=0 j=Mz—1 k=0 i=Mi1+1 j=Ma—1 k=i— M,

using the convexity properties of the function f. Specifically, in order to estimate Sy, we first
consider the case My < My — 1.

Step 1a: Assume M7 < My — 1. Then by convexity of the function k — f(i,7, k) (cf. Lemma D.1),

M, i My
= S S YRS S D madfG.0). 4.1}

1=0 j=Mo—1 k=0 1=0 j=Mo—1

My
< nEDY S [ RS + R e G - ]
1= 0_] Mo—1

< C(My+ 1)(e/uKz(My = 1)1 4 C(My + 1)° max{ (Kae/u(Ma — 1)1, (Zey,) 1},

where we employed the assumption that pM; and e/u(My — 1) are sufficiently small and the
convexity of the second term (as a function of ¢). From Lemma D.2, we can bound

e e AgME < O (M),

for suitable 7, so that we obtain together with M; < Ms — 1 and the trivial bound ¢ < p,

e 918 < C

. Ma—1
(;(Mz - 1)7) + (MMW)Ml] ; (D.59)
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for suitable constants C, v > 0.

Step 1b: Analogous reasoning covers the case M1 = M. More precisely, we write in this case

M min{i,j} Mi—1 My i Mo J
Z Z Z f { j? Z Z Zf(Z,],k)—i- Z Zf(Mh]ak) = 51,1+Sl,2-
1=0 j=Ma—1 = i=0 j=Ms—1 k=0 j=Ms—1 k=0

For Si 1, the reasoning of the above case (“Step 1a”) is applicable, since M; —1 < M — 1, and

yields
My—1
<C ( -1 *y> ,
u( 2—1)

where in the last step, we used the trivial bound ¢ < ¢/p in view of p < 1 and the fact that
My = M. For S1, we use convexity of f in the third argument to arrive at

Mo—1
e /g, <C <M(M2 - 1)7) +(e(My = 1yt

Mo

Si2 < (My+1) ) max{f(M,},0), f(M,],)}.
j=Ms—1

EStimaﬁng max{f(M17j7O)7f(M17jaj)} < f(Mlvj7O) + f(M17j7j)7 we get
F(My,3,0) + (M, 5, j) < p™ (/) KK MM 7 4 pMd K0 (B (My — 5)M .
Using the fact that pM; and e/uM, are sufficiently small and that M; = My, we get

Mo

> max{f(M,3,0), f(Mi,j,§)} <

j=Ms—1
Mso—1
~ £ ~ —~ =~ _
(uI My )M (EKQ(M2 — 1)) + (Zeya) M + pK (Bevy,) M2 L.

Upon writing

N Mo—1 N Mo—1
M(§€7a)M2_1 = <§;7a> NM2 S <§_7a> )

we can use (D.59) to argue as in Step Ia.

Step 1c: We now consider Sp for the case My > My + 1. We write

Mo—1 Mo %

S-S S Y+ S S S .

i=0 j=My—1 k=0 i=Ms j=Ms—1 k=0
Checking the arguments for the case My < My — 1 of Step 1a, we see that we can bound

Mo—1 Mo %

Y S Y fagk < C

e Ms—1
(—<M2 - m) T (e(My — 1))
i=0 j=Ma—1k=0 K

which has the desired form in view of p < 1.
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It therefore remains to estimate ZZ Mo Z =M1 i:o f(i,7,k), which we do again by exploiting
convexity of the function k — f(i,j, k). We get

M, My
> Z qu, < ¥ Z (j + 1)y max{f (i, 4,0), f (i, 5,5)}

i=Mas j=M2—1 k=0 i=Mao j=M>—1
My
< (Mp+1) Y Z [K (e/py K3i'57 + ' Ky (Beva) (i — §)' }
i=Ms j=Mo—1
< C(Mz+1) [(e/p(My = )M 4 pu(My + 1) (Feya) 27 + (@eva) ]

< C(M2 + 1) [(6/,[1,(M2 — 1),}/)M271 + (Ev\e,ya)Mg—l] ,

where we exploited again the assumption that (M + 1) and €/u(Msz + 1) are sufficiently small so
that sums can be estimated by convergent geometric series. The contribution Ms(Zevy,)M2~! can
now be estimated as before using (D.59).

Step 1d: We now turn to Sy and start with assuming My + 1 > Ms. Then Sy takes the form

oo Mo J Mi+Ma
i=Mi1+1 j=M>—1 k=i— M i=Mi1+1 j=Mo—1 k=i—M;

Convexity of k +— f(i,7, k) allows us to infer

s 03RS R G ey R G e ahy e

+ K (@eva ) (i — 5)

Since 0 < j — i+ M; < M,, we can exploit that e/u(Ms + 1) is sufficiently small and since
0 <i—j < M, we can use that puM; is sufficiently small to conclude

My+Ma _ ' My '
So < C(Mz+1) Z (LI MM (Beyg) ™M + Z (Teva)’
i=Mi+1 j=Mz—1

With Lemma 4.8, we therefore get for suitable v/, since i — M7 < My,

N - Mi+Mo> A Mo ‘
e Sy < C(My+1) | (M E)M™ > (eMyy )M+ > (eMyy')
i=M71+1 j=Mo—1

< C(MQ + 1) (/’LMlkl)MIEMQ + (EMQWI)M271:| :

where, in the last step, we exploited again that puM; and €M, are sufficiently small. Since My <
M;j + 1, this last estimate has the desired form.

Step 1e: Next, we consider the case My + 1 < My. We write

min{i,j}

Sy = Z Z Zf%%

i=M1+1 j=Ms—1 k=i—M;

Mo—1 Moy 00 Mo J
= Z Z Z [, g k) + Z Z Z f(i,7,k) =: Sa1 + Sa0.
i=M;y j=Mas—1 k=i—M, i=Ma j=Ma—1 k=i— M
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We note that
Mi+Mo  Ma J

S2,2: Z Z Z f(l’]ak)

i=Mo j=M>o—1k=i—M;
We may bound Sp 2 using arguments similar to those of Step 1d. The convexity of k — f(i,j, k)
yields

Lomax  f(ig k) < ptE @eye) M (e/p) TR MIN ( — i My )T 4
=t M1,

+ (Teya)'-
Since 0 < j —i+ My < My < M,, we can estimate by convexity

€~ . . Jmim M T Mo
(;KQ(] —i— M1)> < <1 + (¢/pKoM>) ) <C,

since we assume that /Mo is sufficiently small. Hence, we get

My+Mas _ ' '
So2 < C(My+1) > (ki MM (Teya) ™ + (Teya)”
i=M>
With Lemma 4.8 we therefore get
~ Mi+Mz A A
e G0 SC(My+1) Y (uEK M) (e (i — M) M + (7,
i=M>

for suitable 4/ > 0. Recalling that M; < Ms, we obtain by assuming that M5 is sufficiently small,
with the aid of geometric series arguments,

6—@55/451272 < C(M2 + 1) [(M_[}lMl)Ml + (67,(M2 + 1))M2] .

For S5 1 we note
L, k) <
e fi.g,k) <
(e/uy R — 1P Fea) + RV (e M (B, RGN i Ay,
We note 7 and j in the definition of the sum S3 1 are such that 0 < j—i < My and M; < j—i+M; <
Ms. Hence, this setting simplifies under the assumption that pM; and /Mo are sufficiently small:

Lomax  f(ig k) < (@eva)’ + (K M) @ena) M (o pMa Eo) M
1= M1y

< (Feva)' + (uKy MM (Zery, )M

With the aid of Lemma 4.8, we estimate with suitable v/ > 0 ,

Mo—1
e ¥/ < (M +1) Y (i) + (B MM (e (8 = M)
i=M

< O(M; +1) [(aMﬂ’)Ml+(uf{1M1)M1 ,
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where we employed again suitable geometric series arguments. Using € = (¢/u)u, we get

6_255/452,1 < C(M1 + 1)

My
8 ~
n (;Mﬂ’> + (MKlMl)Mll :
which has the desired form since ¢/uMs is assumed to be sufficiently small.

Step 2: Before proceding, we point out that we make the assumption

~ 1
Tey, < 3 (D.60)

as the converse case is covered in Step 3 below. We estimate the contribution arising from the sum
over Z and show

—az .o €
RS f(w,k)SC[;(eMﬂ)M“ru(uMw)Ml ; (D61)
(i,4,k)€T

in fact, the reasoning below shows a slightly sharper estimate.

Noting the appearance of max{i— M, j — Ms}, we have to study the cases i — My > j — Ms and the
reverse case ¢ — My < j — Ms separately. We restrict our attention here to the case i — My < j— Mo,
since the reverse case is easily obtained using the same arguments (effectively, My and My and p

and €/u reverse their roles). In this situation, we consider the following two subcases separately:
(i > My+1V j>My+1) A (i-M <j—M) A (j—My<k<i) A (i<j), (D.62)
(1t > Mi+1V j>Me+1) AN (i—M; <j—My) AN (j—Ma<k<j) A (j<i). (D.63)

A key ingredient of our proof is the convexity assertion given in Lemma D.1. We recall that a
non-negative convex function attains its maximum at the boundary (i.e., in the univariate case, at
the endpoints of an interval).

Step 2a: We consider the case (D.62), which can be further subdivided into the cases ¢ > M; + 1

and j > Mo + 1.

Step 2a1: We consider the case (D.62) with the further assumption ¢ > M; + 1. We get
(iZM1+1) A (ZSJ) A (’L.gj—MQ‘i‘Ml) A (]—MQSkSZ)

That is, we have to estimate the triple sum

71<i+M>
=2 X Z F(isgi k)
i>Mi+1 j>i k=j—Ms
j>i+Mo—Mq

where the summation index is ¢ for the outermost sum, j for the middle sum, and & for the innermost
sum. This triple sum is estimated using convexity of the argument. The innermost sum has at
most i — j + Ms + 1 terms and k — f(,7, k) is convex by Lemma D.1. Hence, we obtain

J<i+Mas
o< > Y =i+ M+ D) max{f(i, i), f(i,5,5 — Ma)}
i>My+1 Jj=i
j>i+Ma—M;
J<i+M>
< M1+1 Z Z maX{f(’L,],’L),f(’L,j,] _M2)}a
i>My+1 j>i
j>i+Mo—My
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where, in the second step we have used the restrictions on the sum on j to bound ¢ — j + My +1 <
M + 1. Writing out f(i,7,7) and f(i,7,j — Ms), we have
fgy0) = K37 (e/n) ™ @era)' (G = 1),
Flidu = Mo) = e Ry oM R o M),
which are again convex functions of j by Lemma D.1. Turning now to the sum on j, we see that
it has at most Ms + 1 terms. In view of Lemma D.2, we bound for the relevant j:

[l g,1) < A= max{f(i, ], 1) j=ita, [ (i, 5, 0)|j=i} = max{f(i,i + My, 1), f(i,4,7)}, (D.64a)
f(za.],] - M2) <B:= max{f(z,j,] - M2)|j=i+M2’ f(za.],] - M2)|j=i+M2*M1}
= max{f(i,i + Mo,i), f(i,i + My — My,i — M;)}. (D.64b)
More explicitly, these are
A < (@era) max{l, K% (e ) M0,
B < (/w2 My Ky max{(@eva)’, (nEy M) (Tera) Y.

Writing out the sum and using convexity of the argument, we can estimate

71<i+M>
Sam ) Y S Y e i - M)
i>Mq+1 j>i k=j—M>
j>i+Mo—M;

< (My+1)(min{M;, Mp} +1) > A+B.
i=Myp+1

Using the facts that My and e/uM, are sufficiently small, we can estimate with geometric series
arguments, in view of our assumption (D.60):

S < C(My + 1) (min{ My, My} + 1) [(fma)Mlﬂ + (E/MMQI?Q)M%E%} :

~Mi+1

Hence, usmg Lemma 4.8 to control & in the first term and 7 in the second term, gives with

suitable v/,

e /1S < C(My + 1)(min{M;, My} + 1) {(e(Ml +1)y)MiH €(€/MI?2M2)M2:|
< O[O + 17 P4 E e b

where, in the second step, we selected 7" suitable and used the fact that puM; can be controlled.
Since € < p, we obtain the desired estimate (D.61).
Step 2a2: The other case is j > Ms + 1. This leads to
(j=Ma+1) AN (i<j) N ([E<j—Ma+ M) AN (j— M <k <i).
Writing out the sum, we have

i<j
1<j—Ma+M;y i

TI = Z Z Z f(Z,],]C)

J>Ma+1l  i>j—Ms  k=j—M,
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The innermost sum has at most My + 1 terms which, by convexity, can be estimated by
max{f(i,7,4), f(i,4,j — M2)}.
Writing out f(i,7,4) and f(i,7,j — Ma), we have
i) = (e/wy = K @ena)' (G — iy,
FliG,5 = My) = p IR G g M) M (e f ) M2 K (e, )M MG
which are again convex as functions of 7. Hence, by Lemma D.2, we bound for the relevant j:

flig,9) < A= max{f (i, 4, 0)limj—ny» £0, 5,9)i=; }
= max{(e/pMaK2)M2 (Ten, ) M2 (e, ),
f(i,5,5 — M) < B':=max{f(i,5,j — Ma)|izj—nsy, [ (i, 7, ) — Mo)|izj— 111, }
< (e/uMyKo)™ (Feya) ™ max(1, (uMy Ky)M .

The middle sum in 7" has at most min{M;, M5} + 1 terms. Hence, we arrive at

T < (Mp+1)(min{My, My} +1) Y (e/uMaKo) (Zeya ) ™2 + (Teya )’
j=>Msa+1

< C(M2 + 1)(min{M1, MQ} + 1) [(E/MMQ}'?Z)MQ (/1'\5')’11) 4 (/x\g,ya)M2+1} ’

where, in the second step we have employed geometric sum arguments, which are applicable in view
of (D.60). Reasoning as at the end of Step 2a1, we get for suitable 7/,

e—g&:\/4Tl

IN

C(Ms + 1)(min{ My, Mo} + 1) [6(6/,&M2]~{2)M2 + (e(M;y + 1)7/)M2+1}
C [8(5//1,M2’)/”)M2 + (e(My + 1)’//)M2+1] ;

IN

where, we employed the assumption that pM; and e/puMs are sufficiently small and, in the second
step, 7" is selected appopriately. This leads to the desired estimate (D.61).

Step 2b: The case (D.63) is further subdivided into the cases i > M; + 1 and j > My + 1.

Step 2b1: In the fist case, ¢ > M1 + 1, we get
(=M +1) A (G<i) A (<j—My+M) A (G— M <k<j).

We immediately see that we need
My < My,

for this set of indices to be non-empty.

Writing out the sum and using convexity of the argument, we get
J<i J

"= > > fing.k).

i>Mi+41 j>i+Mo— M1 k=j— Mo
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As before, the innermost sum has Ms+ 1 terms and convexity yields, for the terms of the innermost
sum, the upper bound max{f(i,7,7), f(i,5,7 — M2)}. More explicitly,

fd.d) = p K @) (i 9)
F0,5,5 = Mo) = TR RTIEN (@ )T M2 (/) M KR MG (i — 4 M),
Again, we recognize the functions to be convex in j, so that for the relevant indices j we have
fG,3,3) < A" =max{f(i,],)|j=i: F (i, J, )| j=itM—n1, }
< max{(Zena)’, (Teya) M (u(My — M) Ky )M MY,

f(Z7jaj - MZ) < B” = max{f(z,j,] - MZ)‘]':% f(%ju? - MQ)’j:i+M2—M1}
< max{(uMa K1) (Zeva) M2 (/uMoK2) M2, (uMy K1 )M (Zeva)' ™ (e/ Mo Kq) 2},

The middle sum of 7" has at most M7 — M, + 1 terms. Therefore, we get with our assumption
that pM; and e/ulMs are sufficiently small and the assumption (D.60),

T" < (My—M;+1)(My+1) [(ffﬁ%t)m+1 + (Beya) 2T (M — Ma) Ky) MM
+ (WMo Ky )M (Zeya) MM () u My Ko )M 4 (uMy )M (Bea) (e/ Mo Ko) M2 |
Since M7 > M>, we can estimate further with the aid of Lemma 4.8,
e~/ < C(My — M+ 1)(M; + 1) [(s(Ml F 1)) M+
+ (e(Ma + 1)y)M2 L (u(My — My) Ky)Mr =2
+ (eMy Ky Ko)M2 (e(My — My + 1)y)M =M e (uy Ky )M (e nMa K ) M

< C <e<M1+1>v’>M1“+§<e<M2+1>v’>Mﬂ,

where we used again that puM; and e/uMs are sufficiently small. This leads to the desired estimate
(D.61).

Step 2b2: The last case is j > My + 1. This reads:
(G>My+1) A (j<i) A (i<j—My+M) A (j— My <k <j).

We see again that
My < My,

is a necessary condition for the set of indices to be non-trivial.

Writing out the sum we have

Jj—Ma+My J

T”/ = Z Z Z f(Z,j,k?)

J>Mo+1l > k=j—M;
Again, we use convexity of k — f(i, 7, k) and observe the estimates
f(za.]’j) Hz_]f{viij(&?\&’ya)j(z — ])2_]’
Pl = Ma) = MR @y )M () M KT MR (i — - M) I,
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Since these functions are convex functions of i, we can estimate for the relevant indices j:

f,5,5) < A" :=max{f(i,],5)li=j, f(i,J,5)li=j— Mot ar, }
< (Feva)’ max{l, ((My — Mp) K1) =2y
fi,3,5 — M) < B":=max{f(i,j,j — Ma)|i=j, f(3, 4,5 — Ma)|i=j—nrr+ 21, }
< (@eva) M (e/ pMa Ko) ™ max{ (uMp K1 )M, (uhy K1)}

Furthermore, in the triple sum 7" the number of terms in the innermost sum is Ms + 1 whereas
the number of terms of the middle sum is bounded by M; — M5 + 1. Hence, we can bound with
geometric series arguments, in view of the assumption (D.60),

T" < C(My+1)(My — My +1)|(Beva) " + (Beva) (6/ pMa o)™ max{(uMy K1)™2, (M K1)}

Since My < Mj, we can estimate uMgf(l < MM1I~(1 < 1, where we appea}ved in the lasyvstep to our
standing assumption that puM; is sufficiently small. Hence, max{(uMoK1)M2, (uM; K1)} < 1.
Thus, we can simplify
T < C(My+1)(My = My +1)| (@) H! + (Fera) (e/ubp )M
Hence, with the aid of Lemma 4.8
CEAT < C(My+ 1)(My = My + 1) ((Ma + 1)7) M 4 o(e/uMp o)™
< CE[(eMa+ 17 + (/b))
i

This leads to the desired estimate (D.61).

Step 8: We now cover the case when Ze is bounded away from zero. Specifically, let ¢ > 0 be fixed
and consider the case Te > ¢. Then we have the pointwise estimate

My Mo
OH@| < YD wie/wy (a5@)|+ 05 @)
i=0 j=0
~ 0\ 26+7)
MMy (G ) +1al) )
< YD e/ KR il e e
i=0 j=0 J):
My M3 )
< D> ey KR e
i=0 j=0
Ml . P M2 . - .
< e—3gx/4 Zusz,yziz Z(g/u)jfjfyjj]
i=0 j=0
M,  Ma '
< e AN (WA M) ((e/ ) Ky M)
i=0 j=0

from which the desired result follows, provided pKyM; < 1 and (g/ W) K~yMsy < 1. Completely
analogously, we get bounds for the derivatives of U%[L.
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In view of the form of the differential operator L. , applied to functions of Z (see (4.10)), we get in
view of u > ¢,

L, UM (@)] < [62 + p?] €720 7393/ < OpPe2e308/4 < Oe=2emeat/4,

From the assumption Ze > ¢, we see that €72 < ¢7222, and the factor Z can again be absorbed by
the exponentially decaying e 327/, O

D.5 Proof of Theorem 4.14

We first study the case
0<@u<1/2. (D.65)

The starting point is the expression for L. ﬂU 5 in (4.47). It consists of a double sum and a triple
sum. We first consider the double sum. From the bounds on w;; of Theorem 4.9 and Cauchy’s
integral theorem for derivatives as well as Lemma 4.8, we get for suitable v/ > 0,

My Ma+2 N My A A
D0 Wi/l @) < Ce Y i+ My + 1)y )M (/)Mo
i=0 j=Ma+1 =0

< CeF(Re/u(My + 1)V,
where, in the second step we used Lemma 4.8 again.

We next turn to the triple sum in (4.47). From (4.32), (4.33), Lemma 4.8 and ||Ag|| < Cavh, we
obtain with K > max{K1, K}, K > max{K1, K2}, C > max{Cy, C5}:

; =~ . 0\ 2(i—k+j)
=M = k k=K - (C(Z —k+a)+ m) —aRe(®)
LeyOl| < coa 3 Z Z e/ TR G—Fk+7) e
i= M1+1g 0 k=i My
< CCyp Z Z Z “e/m) iK' KJNk Ik (G g — )R a3E/A

i=M;+1 j=0 k=i— M

The argument is a convex function of k. Hence, we can bound for suitable v > 0,

Mo
L., UY ( < Ce /(M +1) Z S e/ (KAY [F7 + 7 MR (G4 My
i=Mi1+1 7=0

In view of our assumption Zu < 1/2, the outer summation on ¢ leads to a convergent geometric
series. For the inner summation, we use (j + M)/ T < j]MlM1 eIt M1 the assumptions that uM;
and e/uMy are sufficiently small and convergent geometric series arguments to get, with appropriate
7 >0,

L., Ul | < Cem®/4 My +1) [(ud)" ! + ()M ]
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which can be estimated in the desired fashion with the aid of Lemma 4.8:
L., Ul < Ce (M + 1) [(u@)™ ! + (uMyA)M 1]

< Cen 2 [y (My+ 1)MH 4 (u(My + D7),

which has the appropriate form.

We now consider the converse case Ty > 1 /2. Here, we need to exploit the fact that the functions
U%[L are exponentially decaying. We observe that the same reasoning as in Step 3 of the proof of
Theorem 4.13 yields

Ul.@)] < ceat,

and, by Cauchy’s integral theorem for derivatives, estimates for the derivatives. The arguments of
Step 3 of the proof of Theorem 4.13 therefore, yield

LWfJAgL(f)‘ < O [e2 + 2] p2e 39T/ < O80T/,
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