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Abstract

We report on the Matlab program package HILBERT. It provides an easy-accessible implementation

of lowest order adaptive Galerkin boundary element methods for the numerical solution of the Poisson

equation in 2D. The library was designed to serve several purposes: The stable implementation of

the integral operators may be used in research code. The framework of Matlab ensures usability in

lectures on boundary element methods or scientific computing. Finally, we aim at emphasizing the

use of adaptivity as general concept and for boundary element methods in particular.

In this work we summarize recent analytical results on adaptivity in the context of BEM and

give sample code to illustrate the use of HILBERT. Various benchmarks are performed to empirically

analyze the performance of the proposed adaptive algorithms and to compare adaptive and uniform

mesh-refinement. In particular, we do not only focus on mathematical convergence behavior but also

on the usage of critical system resources such as memory consumption and computational time. In

any case, the superiority of the proposed adaptive approach is empirically supported.

Keywords: boundary element methods, adaptive mesh-refinement, a posteriori error estimation,

Matlab implementation

Mathematics Subject Classification (2000): 65N38, 65Y20, 65N50

1 Introduction

In many applications, the (Galerkin) boundary element method (BEM) has established itself as possible
strategy for the numerical solution of a certain class of partial differential equations. One of the strengths
of BEM is its potentially high order of convergence: For smooth analytical solutions, the error of the
lowest-order approximation behaves like O(h3/2) with h denoting the global mesh-size of a partition
of the boundary. However, due to generic singularities of stresses and/or fluxes on the boundary, this
superlinear convergence is usually not observed with uniform meshes in practice.

The Matlab program package HILBERT has been designed to make adaptive BEM (ABEM) more
accessible to a broader audience. It provides stable implementations of the discrete boundary integral
operators corresponding to the Laplace operator in 2D. Various (h−h/2)-type error estimators as well as
mesh-refining algorithms, functions for the discretization of given boundary data, visualization routines,
and many other functions necessary for the implementation and use of ABEM for the Poisson problem
are provided.

Several benchmarks demonstrate and compare the behavior of adaptive and uniform BEM in presence
of different types of singularities. In our experiments, we observe that our adaptive algorithm resolves
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the singularities of both, analytical solution and given data. Throughout, it reveals the optimal order of
convergence. Moreover, the reachable accuracy – usually limited by system resources such as time and
memory consumption – is increased dramatically by use of adaptivity.

1.1 Model problem

As model problem, we consider the Poisson equation on some bounded Lipschitz domain Ω ⊂ R
2 with

polygonal boundary Γ = ∂Ω. Each solution u ∈ H1(Ω) := {v ∈ L2(Ω) | ∇v ∈ L2(Ω)} of

−∆u = f in Ω (1)

can explicitly be written in the form

u(x) = Ñf(x) + Ṽ φ(x) − K̃g(x) for all x ∈ Ω, (2)

where g := u|Γ ∈ H1/2(Γ) := {v ∈ L2(Γ) | there is an extension ṽ ∈ H1(Ω)} is the trace of u and
φ := ∂nu ∈ H−1/2(Γ) := H1/2(Γ)∗ is the normal derivative of u on Γ, see e.g. [17, 19, 20]. The involved
linear integral operators read

Ñf(x) := −
1

2π

∫

Ω

log |x− y| f(y) dy, (3)

Ṽ φ(x) := −
1

2π

∫

Γ

log |x− y|φ(y) dΓ(y), (4)

K̃g(x) := −
1

2π

∫

Γ

(y − x) · ny

|y − x|2
g(y) dΓ(y), (5)

where ny denotes the outer unit vector of Ω at some point y ∈ Γ and where
∫
Γ
dΓ(·) denotes integration

along the boundary. Put differently, the solution u of (1) is known as soon as the Cauchy data (u|Γ, ∂nu)
are known on the entire boundary Γ.

If one considers the trace and the normal derivative of u, the so-called representation formula (2)
becomes the Calderón system

g = N0f + V φ− (K − 1/2)g,

φ = N1f + (K ′ + 1/2)φ+Wg.
(6)

It involves six linear integral operators acting only on Γ: The simple-layer potential V , the double-layer
potential K with adjoint operator K ′, the hypersingular integral operator W , as well as the trace N0

and the normal derivative N1 of the Newtonian potential Ñ .
For symmetric BEM, the Poisson equation with given boundary data is equivalently stated in terms

of the Calderón system (6), which leads to a boundary integral equation (BIE) on Γ. In order to solve
this BIE, we discretize a variational formulation by a Galerkin method. To that end, let E1, . . . , En be a
partition of the boundary Γ. We then use piecewise constant functions to discretize fluxes and piecewise
linear and globally continuous functions for stresses. In a post-processing step, the computed Cauchy
data are then plugged into the representation formula (2) to obtain an approximation of the solution u
of the differential equation (1).

1.2 Outline of the paper

First, Section 2 deals with an abstract formulation of the proposed adaptive algorithm. Preliminaries of
practical relevance, such as mesh administration with HILBERT and comments on the stable implemen-
tation of the discrete boundary integral operators, are given in Section 3. In the following Sections 4–5,
we give possible choices of error indicators for the boundary integral formulation of the Dirichlet and the
Neumann problem. Finally, Section 6 deals with a mixed boundary value problem and non-homogeneous
volume forces f 6= 0. Sections 4–6 are supported each by its own set of numerical experiments. Some
conclusions and a summary of the functionality of HILBERT finally conclude the paper in Section 7.
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2 Adaptive algorithm

Using a lowest order ansatz, BEM is known to converge optimally with order O(h3/2) if the data and
unknown solution are sufficiently smooth, e.g., piecewise regularity φ ∈ H1, g ∈ H2, f ∈ H1 [19].
However, fluxes and stresses on the boundary usually lack the regularity necessary to observe the optimal
order with uniform meshes. We therefore aim at providing a fully adaptive mesh-refining algorithm that
leads to more efficient use of available system resources.

2.1 (h− h/2)-type error estimators

Let H be a Hilbert space with corresponding norm ||| · |||. Furthermore, given some discrete subspace
Xℓ corresponding to a mesh Eℓ of Γ, let Uℓ ∈ Xℓ denote the computed discrete solution approximating
the unknown solution u ∈ H. Let Êℓ denote the uniform refinement of Eℓ which is obtained by splitting
all segments E ∈ Eℓ at their midpoint. The associated discrete space is denoted by X̂ℓ. Clearly, the
Galerkin solution Ûℓ corresponding to the space X̂ℓ is a better approximation to the unknown solution
u ∈ H. In [13], we first analyzed the simple (h− h/2)-type error estimator

ηℓ := |||Ûℓ − Uℓ||| (7)

in the context of BEM. It always provides a lower bound for the Galerkin error

ηℓ ≤ |||u − Uℓ|||.

Moreover, an upper bound (up to some multiplicative constant indicated by the symbol .)

|||u− Uℓ||| . ηℓ

is equivalent to the so-called saturation assumption

|||u − Ûℓ||| ≤ q |||u− Uℓ||| (8)

with some uniform constant q ∈ (0, 1). I.e., uniform mesh-refinement leads to a uniform improvement of
the discretization error. From a heuristic point of view, the saturation assumption states that the BEM
error exhibits asymptotics O(hα), see the discussion in [13].

We stress that this assumption is in some sense natural and can, for instance, be proven for the
finite element method [9], see also [12, Section 2.3]. For the boundary element method, however, (8) still
remains mathematically open although observed throughout academic experiments.

2.2 Formulation of adaptive algorithm

Due to the non-local nature of the integral operators involved, the energy norm ||| · ||| cannot be easily
written as sum of local contributions, as is, e.g., the case for the L2-norm ‖ · ‖2L2 =

∑
E∈Eℓ

‖ · ‖2L2(E).

Based on localization techniques from [6, 7, 11, 13], we give suitable error estimators µ̃2
ℓ =

∑
E∈Eℓ

µ̃ℓ(E)2

which are equivalent to ηℓ, but whose contributions µ̃ℓ(E), at least heuristically, measure the local error.
Moreover, based on recent results from [4, 2], a compound error estimator ρℓ which additionally controls
data oscillations, will be proposed for all problem settings discussed in this paper. Given an initial mesh
E0 and an adaptivity parameter 0 < θ < 1, our adaptive algorithm then reads as follows:

Algorithm 1.

1. compute discrete solution Uℓ ∈ Xℓ

2. compute error indicators ρℓ(E) for all E ∈ Eℓ

3. find (minimal) set Mℓ such that

θ
∑

E∈Eℓ

ρℓ(E)2 ≤
∑

E∈Mℓ

ρℓ(E)2 (9)

4. refine (at least) elements E ∈ Mℓ and obtain Eℓ+1

5. update counter ℓ 7→ ℓ + 1 and goto (1)
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2.3 Benchmarks

In order to empirically study the performance of our adaptive approach compared to a uniform mesh-
refining strategy, we propose two benchmarks. The first example covers the Laplace equation, i.e. f = 0,
and is constructed in such a way, that Dirichlet and Neumann data, both, have singularities. In particular,
they lack smoothness properties sufficient to reveal optimal convergence with uniform mesh refinement.
The second example covers the case of nontrivial volume forces f 6= 0 and is designed such, that our
adaptive algorithm needs to resolve singularities of Cauchy and volume data.

Below, the results of all numerical experiments are visualized within three figures. Since we prescribe
the analytical solution, a reliable error bound err can be computed and is shown for reference along
with the error estimators and data oscillations. In the first figure, we plot all quantities over the number
of boundary elements #Eℓ. We recall that the optimal rate of convergence of lowest-order BEM is

O(#E
−3/2
ℓ ), since hℓ ∼ (#Eℓ)−1 for uniform meshes. The examples are chosen in such a way that uniform

mesh-refinement can be predicted to yield a reduced order of convergence O(#E−α
ℓ ) with α < 3/2.

Second, we plot the quantities over the computational time. Since an adaptively generated solution
depends on the entire history of solutions, whereas this is not the case for uniform meshes, the time
consumption is measured differently for uniform and adaptive approach. We define the computational
time as follows:

• For uniform mesh-refinement, tℓ,unif is the time elapsed for ℓ uniform mesh-refinements of the initial
mesh E0, the assembly of the Galerkin data, and the computation of the Galerkin solution.

For adaptive mesh-refinement, the computational time is defined cumulatively:

• We define t−1,adap = 0.

• For ℓ ≥ 0, we set tℓ,adap = tℓ−1,adap plus the time elapsed for the assembly of the Galerkin data, the
computation of the Galerkin solution, the computation of the error indicators, and the adaptive
refinement of the mesh to obtain Eℓ+1.

Finally, we plot the quantities over the memory consumption which is understood as follows:

• For uniform mesh-refinement, we count the memory which is occupied by the data structure for
the mesh, the discrete integral operators, and the solution vector.

• For the adaptive version, we count the memory which is occupied by the data structure for the
mesh, the integral operators, the solution vector, the error estimators, and the data oscillations
which are needed for the adaptive mesh-refinement.

With these three different figures, we empirically evaluate the quality of a performed computation with
respect to both, mathematical order of convergence and computational effectivity.

2.3.1 Geometry

We choose Ω to be a rotated L-shaped domain as shown in Figure 1. The initial boundary mesh E0
consist of #E0 = 8 elements. In the case of non-vanishing volume forces, we discretize the given data
f ∈ L2(Ω). To that end, we use a regular triangulation Tℓ of Ω that satisfies Tℓ|Γ = Eℓ. The initial
triangulation T0 with #T0 = 6 elements is also plotted in Figure 1.

2.3.2 Example 1

For given δ > 0, we first define a function in polar coordinates vδ(r, ϕ) = rδ cos(δϕ). The analytical
solution u of the Laplace equation

∆u = 0 in Ω

is prescribed by

u(x) = v2/3(x) + v7/8(x − z),

where z denotes the uppermost corner of Γ. This choice of u effects that the Dirichlet data g have a
weak singularity at the uppermost corner, whereas the Neumann data φ have a generic singularity at
the reentrant corner.
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Figure 1: Rotated L-shaped domain Ω. The initial boundary mesh E0 consists of 8 boundary elements.
In case of non-trivial volume forces, the initial triangulation T0 (dashed) of Ω consists of 6 triangles. In
Example 1, the solution is prescribed such that the Neumann data φ = ∂nu has a generic singularity
at the reentrant corner, the Dirichlet data g = u|Γ has a singularity at the uppermost corner. For
the mixed boundary value problem covered by Example 2, the Dirichlet boundary consist of the two
boundary elements that share the reentrant corner as common point. The Neumann boundary is the
remaining part of Γ. The corresponding data structure is presented to the right of the picture.

2.3.3 Example 2

Let z = (0.14, 0.14) ∈ Ω denote a point inside the domain. We then prescribe the analytical solution

u(x) = |x− z|9/5 + v2/3(x).

The volume force f = −∆u has a weak singularity at the point z and the normal derivative of the
Newtonian potential ∂nÑf as well as the Neumann data φ = ∂nu have a generic singularity at the
reentrant corner.

We aim at solving some mixed boundary value problem. To that end we split the boundary into
Dirichlet and Neumann part as shown in Figure 1.

3 Implementation of mesh-refinement and integral operators

3.1 Discretization of the boundary

Throughout, Γ = ∂Ω is the piecewise affine boundary of a polygonal Lipschitz domain Ω ⊂ R
2. If

necessary, Γ is partitioned into finitely many relatively open and disjoint boundary pieces, e.g. in a
Dirichlet boundary ΓD and a Neumann boundary ΓN , i.e., Γ = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅.

A triangulation or mesh of Γ is a finite set Eℓ = {E1, . . . , EN} such that the elements Ej ∈ Eℓ are affine
line segments and their intersection has vanishing measure, i.e., it holds that Ej = [aj , bj] := conv{aj , bj}
as well as

|Ei ∩ Ej | = 0 for i 6= j and Γ =
⋃

Ej∈Eℓ

Ej . (10)

Furthermore, if Γ is partitioned into ΓD and ΓN , one usually assumes that this partition is resolved by
Eℓ, i.e., Ej ∈ Eℓ satisfies either Ej ⊆ ΓD or Ej ⊆ ΓN . With Kℓ = {z1, . . . , zN} the set of all nodes of the
triangulation Eℓ, it holds that #Eℓ = #Kℓ for the closed boundary Γ.

3.1.1 Data structure and mesh-refinement

The set of nodes Kℓ = {z1, . . . , zN} of the triangulation Eℓ = {E1, . . . , EN} is represented by an N × 2
array coordinates . The j-th row of coordinates stores the coordinates of the j-th node zj =
(xj , yj) ∈ R

2 as
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coordinates( j, :) = [ xj yj ].

If Γ is not split into several parts, the triangulation Eℓ is represented by an N × 2 array elements . The
i-th boundary element Ei = [zj, zk] with nodes zj, zk ∈ Kℓ is stored as

elements( i,:) = [ j k ],

where the nodes are given in counterclockwise order, i.e., the parametrization of the boundary element
Ei ⊂ Γ is mathematically positive.

If Γ is split into Dirichlet boundary ΓD and Neumann boundary ΓN , the triangulation Eℓ is represented
by an ND × 2 array dirichlet and an NN × 2 array neumann which describe the elements Ej ⊆ ΓD

and Ek ⊆ ΓN as before. Then, elements = [dirichlet;neumann] with N = ND +NN .
For boundary element meshes, HILBERT provides an efficient local mesh-refinement algorithm imple-

mented in the function refineBoundaryMesh . Let marked be an (M × 1)-column vector containing
the indices of marked elements, i.e. the set Mℓ in step (3) of Algorithm 1. Then,

[coordinates fine,elements fine,father2son] ...
= refineBoundaryMesh(coordinates,elements,marked)

provides a mesh Eℓ+1 which is only refined locally in the sense that all elements of Mℓ are refined. A
marked element Ei ∈ Eℓ is bisected to certain sons ej , ek ∈ Eℓ+1. The (N × 2)-matrix father2son
provides a link between the element indices in the sense that

father2son (i, :) = [ j, k ] for Ei = ej ∪ ek.

If an element Ei ∈ Eℓ is not refined, one has Ei = ej ∈ Eℓ+1, where the link between these indices is
given by

father2son (i, :) = [ j, j ] for Ei = ej .

If the optional parameter marked is ommited, the uniformly refined mesh Êℓ = {e1, . . . , e2N} is returned.
If Γ is split into a Dirichlet boundary ΓD and a Neumann boundary ΓN , the function call

[coordinates fine,dirichlet fine,neumann fine, ...
dir2son,neu2son] ...

= refineBoundaryMesh(coordinates,dirichlet, ...
neumann,marked dirichlet,marked neumann)

provides an accordingly refined mesh. The parameters marked dirichlet and marked neumann are
optional and may again be ommited to obtain the uniform refinement.

3.1.2 Boundedness of K-mesh constant

Many estimates in numerical analysis depend on local quantities of the mesh, e.g., on an upper bound
of the K-mesh constant

κ(Eℓ) := sup{length(Ej)/length(Ek) |Ej , Ek ∈ Eℓ with Ej ∩Ek 6= ∅} ≥ 1 (11)

which is the maximal ratio of the element widths of neighboring elements. To avoid the blow-up of the
K-mesh constant, the mesh-refinement algorithm implemented in refineBoundaryMesh guarantees

sup
ℓ∈N

κ(Eℓ) ≤ 2 κ(E0) (12)

by refinement of all elements in a certain superset Rℓ ⊇ Mℓ.
As is proven in [4, Theorem 2.5], our mesh-refinement algorithm ensures that the number of refined

elements does not exceed the number of marked elements arbitrarily. For high-quality initial meshes
with κ(E0) < 2, our refinement rule guarantees

#Eℓ −#E0 .

ℓ−1∑

j=0

#Mj , (13)

i.e. the set Rj is generically of the same size as Mj . The constant hidden in the symbol . only depends
on the initial mesh E0.
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3.2 Integral operators

3.2.1 Discrete function spaces

Let Pp(Eℓ) be the space of all Eℓ-piecewise polynomials of degree p ∈ N0 with respect to the arc-length.
Note that functions fℓ ∈ Pp(Eℓ) are, in general, not continuous, but have jumps at the nodes of Eℓ. In
particular, P0(Eℓ) denotes the space of all Eℓ-piecewise constant functions. If χj ∈ P0(Eℓ) denotes the
characteristic function of Ej ∈ Eℓ, the set {χ1, . . . , χN} is the basis of P0(Eℓ) which is used throughout
our implementation.

One particular example for a function in P0(Eℓ) is the local mesh-width hℓ ∈ P0(Eℓ) which is defined
Eℓ-elementwise by

hℓ|E := length(E) for all E ∈ Eℓ. (14)

Let S1(Eℓ) := P1(Eℓ) ∩ C(Γ) denote the set of all continuous and (with respect to the arc length)
Eℓ-piecewise affine functions. For each node zj ∈ Kℓ of Eℓ, let ζj ∈ S1(Eℓ) be the hat function associated
with the node zj ∈ Kℓ, i.e., ζj(zk) = δjk. Then, the set {ζ1, . . . , ζN} is a basis of S1(Eℓ), which is used
throughout our implementation.

In the following, we only consider the lowest-order BEM, where the spaces P0(Eℓ) and S1(Eℓ) are
used to discretize fluxes and stresses.

3.2.2 Discrete integral operators

The Calderón-System (6) essentially involves the boundary integral operators V , K, W , and N0. The
remaining operators K ′ and N1 can then be expressed in terms of the first four. Following our lowest-
order ansatz, HILBERT provides a C-implementation of integral operators for discrete fluxes and stresses:

• the simple-layer potential matrix V : P0(Eℓ) → P0(Eℓ) given by

Vij = −
1

2π

∫

Ej

∫

Ei

log |x− y| dΓ(y) dΓ(x),

• the double-layer potential matrix K : S1(Eℓ) → P0(Eℓ) given by

Kij = −
1

2π

∫

Ei

∫

supp(ζj)

ζj(y)
(y − x) · ny

|x− y|2
dΓ(y) dΓ(x),

• the hypersingular integral operator matrix W : S1(Eℓ) → S1(Eℓ) given by

Wij =
1

2π
∂nx

∫

supp(ζj)

∫

supp(ζi)

ζj(y)
(y − x) · ny

|x− y|2
ζi(x) dΓ(y) dΓ(x),

• Given a regular triangulation Tℓ of the domain Ω, the trace of the Newtonian potentialN : P0(Tℓ) →
P0(Eℓ) reads

Nij = −
1

2π

∫

Ei

∫

Tj

log |x− y| dy dΓ(x).

Antiderivatives for the integrals of V and K are taken from [15]. With similar techniques, we
developed antiderivatives for the computation N. The computation of W is implemented by use of
Nédélec’s formula

〈Wu, v〉 = 〈V u′, v′〉,

where (·)′ denotes the arc-length derivative. However, for adaptive meshes, the analytical computation
leads to instabilities due to cancellation effects. Given some fixed parameter η > 0, we call two boundary
elements Ei, Ej admissible if they satisfy

min{length(Ei), length(Ej)} ≤ η distance(Ei, Ej).
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Figure 2: Speed up of operators using parallelization. The computation time is plotted in a double
logarithmic scale over the number of cores. Computations were performed for a uniform mesh with 4096
number of boundary elements. For reference, the function 100/x with x representing the number of cores
is plotted.

In this case, the outer integration is replaced by Gaussian quadrature. Moreover, in case of diam(Ej) <
diam(Ei), the order of integration is swapped ensuring that the outer integration is performed over the
smaller boundary part. For admissible elements Ei, Ej , there holds exponential convergence of the semi-
analytic quadrature used with respect to the order of the Gaussian quadrature rule chosen, see [16] or
[14] in the context of hierarchical matrices.

In HILBERT, the discrete integral operators are provided by the following mex-functions:

• V = buildV(coordinates,elements[,eta])

• K = buildK(coordinates,elements[,eta])

• W = bulldW(coordinates,elements[,eta])

• N = buildN(coordinates,elements,vertices,triangles[,eta])

The optional parameter eta may be omitted, a sane default value is used in that case. The assembly of
the discrete boundary integral operators is significantly time consuming. Therefore, HILBERT uses simple
parallelization paradigms to increase efficiency on multi-core systems. In our experiments, runtime scales
properly with number of cores, see Figure 2.

4 The Dirichlet problem

4.1 Continuous model problem

In this section, we discuss the Dirichlet problem with vanishing volume forces

−∆u = 0 in Ω with u = g on Γ. (15)

With the simple-layer potential

V φ(x) = −
1

2π

∫

Γ

φ(y) log(|x− y|) dΓ(y) for x ∈ Γ, (16)
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and the double-layer potential

Kg(x) = −
1

2π

∫

Γ

g(y)
(y − x) · ny

|y − x|2
dΓ(y) for x ∈ Γ, (17)

the first equation of the Calderón system (6) yields Symm’s integral equation

V φ = (K + 1/2)g on Γ, (18)

which is an equivalent formulation of (15). The exact solution φ ∈ H−1/2(Γ) of (18) is the normal
derivative φ = ∂nu of the solution u ∈ H1(Ω) of (15).

Formally, the Dirichlet data satisfy g ∈ H1/2(Γ). However, we assume additional regularity g ∈
H1(Γ) ⊂ H1/2(Γ) so that g is, in particular, continuous.

Note that (18) can equivalently be written in variational form

〈V φ , ψ〉Γ = 〈(K + 1/2)g , ψ〉Γ for all ψ ∈ H−1/2(Γ), (19)

where 〈· , ·〉Γ denotes the extended L2(Γ)-scalar product 〈φ , ψ〉Γ =
∫
Γ φψ dΓ for φ, ψ ∈ L2(Γ). Provided

that diam(Ω) < 1, one can show that the left-hand side

〈〈φ , ψ〉〉V := 〈V φ , ψ〉Γ for φ, ψ ∈ H−1/2(Γ) (20)

of (19) defines a scalar product and that the induced norm |||φ|||V := 〈〈φ , φ〉〉
1/2
V is an equivalent norm on

H−1/2(Γ). In particular, the variational form (19) has a unique solution φ ∈ H−1/2(Γ) which depends
continuously on the data g with respect to the H1/2(Γ)-norm.

4.2 Galerkin discretization

To discretize (19), we first replace the continuous Dirichlet data g ∈ H1(Γ) by its nodal interpolant

Gℓ :=

N∑

j=1

g(zj)ζj ∈ S1(Eℓ) ⊂ H1(Γ). (21)

Second, we replace the function space H−1/2(Γ) in (19) by the finite-dimensional space P0(Eℓ). Since
the discrete space P0(Eℓ) is a subspace of H−1/2(Γ), 〈〈· , ·〉〉V from (20) is also a scalar product on P0(Eℓ).
Consequently, there is a unique Galerkin solution Φℓ ∈ P0(Eℓ) of

〈V Φℓ , Ψℓ〉Γ = 〈(K + 1/2)Gℓ , Ψℓ〉Γ for all Ψℓ ∈ P0(Eℓ). (22)

Let x ∈ R
N denote the coefficient vector of the ansatz

Φℓ =
N∑

j=1

xjχj (23)

and let g ∈ R
N be defined by gj := g(zj) for all zj ∈ Kℓ. With the matrices V,K ∈ R

N×N defined in
Section 3.2.2 and the mass matrix M ∈ R

N×N defined by

Mkj = 〈ζj , χk〉Γ for all j, k = 1, . . . , N,

the Galerkin formulation (22) is equivalently stated in terms of the linear system

Vx = Kg +
1

2
Mg. (24)

We stress that V is symmetric and positive definite since it stems from a scalar product.
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4.3 Error indicators

Instead of discretizing the correct variational form (19), in fact, we solve

〈V φℓ , ψ〉Γ = 〈(K + 1/2)Gℓ , ψ〉Γ for all ψ ∈ H−1/2(Γ) (25)

with perturbed right-hand side, where we use the approximation Gℓ ≈ g. For nodal interpolation, it is
an analytical observation that the error between the exact solution φ ∈ H−1/2(Γ) of (19) and the exact
solution φℓ ∈ H−1/2(Γ) of the perturbed formulation (25) is controlled by

|||φ− φℓ|||V . ‖h
1/2
ℓ (g −Gℓ)

′‖L2(Γ) =: oscD,ℓ, (26)

where (·)′ denotes the arc-length derivative, cf. [4, Theorem 3.4].
With φℓ ∈ H−1/2(Γ) the exact solution of (25), the (h− h/2)-error estimator ηℓ from (7) now reads

ηℓ = |||Φ̂ℓ − Φℓ|||V ≃ |||φℓ − Φℓ|||V (27)

and controls the discretization error. Altogether, (26)–(27) result in

|||φ − Φℓ|||V ≤ |||φ − φℓ|||V + |||φℓ − Φℓ|||V . oscD,ℓ + ηℓ (28)

according to the triangle inequality.
As already mentioned, the non-locality of the integral operators leads to difficulties measuring the

local contribution of a function to its norm. In [13, Theorem 3.4], we prove that

ηℓ ≃ µ̃D,ℓ := ‖h
1/2
ℓ (Φ̂ℓ −ΠℓΦ̂ℓ)‖L2(Γ), (29)

where ≃ indicates equivalence up to general multiplicative constants. Here, Πℓ : L
2(Γ) → P0(Eℓ) is the

L2-orthogonal projection onto the space of piecewise constants, which is just the piecewise integral mean

Πℓψ|Ej =
1

|Ej |

∫

Ej

ψ dΓ.

Moreover, the estimator µ̃D,ℓ is stated in a weighted L2-norm and may thus be used to steer the local
mesh-refinement.

If we plot ηℓ and µ̃D,ℓ over the number of elements, from the equivalence (29) of estimators, one
can predict that the corresponding curves, for a sequence of arbitrarily refined meshes, are parallel,
cf. [10, 13].

The equivalence (29) as well as the error control (28) lead to the choice of ρℓ(Ej)
2 := µ̃D,ℓ(Ej)

2 +
oscD,ℓ(Ej)

2 as error indicator to steer Algorithm 1. Based on results from [12, 3], one can prove that this
choice of ρℓ and the Dörfler marking criterion (9) guarantee limℓ ρℓ = 0, see [4, Theorem 4.2]. Therefore,
if the saturation assumption (8) holds (at least in infinitely many steps), we obtain convergence of Φℓ to
φ.

Remark. We originally stated the saturation assumption (8) for the non-perturbed problem (19). We
stress that this already implies (28), i.e., no additional assumption on the perturbed problem is posed, cf.
[4, Theorem 3.4].

Listing 1: Implementation of Adaptive Algorithm

1 % adaptiveSymm provides the implementation of an adaptive
2 % algorithm for Symm's integral equation.
3

4 %* ** maximal number of elements
5 nEmax = 100;
6

7 %* ** adaptivity parameter
8 t heta = 0.25;
9 percentage = 0.25;

10



10

11 %* ** adaptive mesh −refining algorithm
12 while size (elements,1) < nEmax
13 %* ** build uniformly refined mesh
14 [ coordinates fine,elements fine,father2son] ...
15 = refineBoundaryMesh(coordinates,elements);
16 %* ** discretize Dirichlet data and compute data oscillations
17 [ uDh fine,osc fine] = discretizeDirichletData(coordinates fine, ...
18 elements fine,@g);
19 osc = osc fine(father2son(:,1)) + osc fine(father2son(:,2));
20 %* ** compute fine −mesh solution
21 V fine = buildV(coordinates fine,elements fine);
22 b fine = buildSymmRHS(coordinates fine,elements fine,uDh fine);
23 x fine = V fine \b fine;
24 %* ** compute (h −h/2) −error estimator tilde −mu
25 mu tilde = computeEstSlpMuTilde(coordinates,elements, ...
26 f ather2son,x fine);
27 %* ** mark elements for refinement
28 marked = markElements(theta,percentage,mu tilde + osc);
29 %* ** generate new mesh
30 [ coordinates,elements] = refineBoundaryMesh(coordinates, ...
31 elements,marked);
32 end

4.4 Implementation of adaptive algorithm (Listing 1)

The given Dirichlet data g is provided by a Matlab-function g.m. Recall that we discretize g ≈ Gℓ in
order to provide a black-box algorithm for the computation of the right-hand side (K + 1/2)Gℓ.

The Matlab script of Listing 1 realizes the adaptive algorithm.

• We use the adaptivity parameter θ = 1/4 in (9) and mark at least the 25% of elements with the
largest indicators (Line 8–9).

• Inside the adaptive loop, we first build a uniformly refined mesh for the computation of Φ̂ℓ (Line 14–
15).

• Then, we discretize the given boundary data (Line 17–18).

• The function buildSymmRHS computes the right-hand side (K+1/2)Gℓ in (24). Therefore, the lines

21–23 compute the coefficient vector corresponding to the fine mesh solution Φ̂ℓ.

• The return values of the functions computeEstSlpMuTilde and discretizeDirichletData
are the quadratic error estimator contributions µ̃D,ℓ(E)2 and oscD,ℓ(E)2, respectively. The marking
criterion (9) is provided by means of the function markElements (Line 28).

4.5 Numerical experiment

We perform Example 1 as benchmark and compare the results obtained by the proposed adaptive al-
gorithm with those from a uniform approach. The Dirichlet data g = u|Γ is given, and the missing
information φ = ∂nu is computed by solving Symm’s integral equation. Figure 3 shows error, error
estimators, and data oscillations with respect to the number of boundary elements, the computational
time, and the memory consumption. The singularities of the analytical solution lead to a reduced order

of convergence O(#E
−2/3
ℓ ) when using uniform meshes. The adaptive algorithm, however, resolves the

singularities of the solution φ as well as of the given data g and reveals the optimal convergence behavior.
The more interesting information for practitioners is effectivity with respect to computational resources.
Figure 3 clearly shows that, in our experiment, the overhead introduced by the adaptive algorithm is
soon overcome due to higher order of convergence.
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Figure 3: Example 1 computed with given Dirichlet and unknown Neumann data. For uniform mesh-

refinement, the singularity of φ leads to a reduced order of convergence O(#E
−2/3
ℓ ), whereas the adaptive

strategy recovers the optimal order of convergence O(#E
−3/2
ℓ ). Moreover, the adaptive scheme is also

superior with respect to computational time and memory consumption.

5 The neumann problem

5.1 Continuous model problem

In this section, we discuss the Neumann problem with vanishing volume forces

−∆u = 0 in Ω with ∂nu = φ on Γ. (30)
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We assume that Γ is connected, i.e. Ω das no holes. Note that due to the Gauss divergence theorem
there holds

∫

Γ

φdΓ =

∫

∂Ω

∂nu dΓ =

∫

Ω

∆u dx = 0.

The second equation of the Calderón system (6) yields the hypersingular integral equation

Wg = (1/2−K ′)φ on Γ, (31)

with

Wg(x) =
1

2π
∂nx

∫

Γ

(y − x) · ny

|x− y|2
g(y) dy dx

the hypersingular integral operator and K ′ the adjoint double layer potential defined by 〈Kφ,ψ〉 =
〈φ,K ′ψ〉. We stress that (31) is an equivalent formulation of (30).

Formally, the Neumann data satisfy φ ∈ H
−1/2
∗ (Γ), where the subscript abbreviates the constraint

〈φ , 1〉Γ = 0. We will, however, assume additional regularity φ ∈ L2(Γ) and piecewise continuity φ ∈
C(Ej) for all Ej ∈ Eℓ. The exact solution g ∈ H1/2(Γ) of the integral formulation (31) are the Dirichlet
data u|Γ of the solution u ∈ H1(Ω) of (30).

Due to Wc = 0 for all constant functions c ∈ R, the solutions of (30) and (31) are only unique up to
additive constants. To fix the additive constant, we consider the bilinear form

〈〈g , v〉〉W+S := 〈Wg , v〉Γ +
(∫

Γ

g dΓ
)(∫

Γ

v dΓ
)

for all g, v ∈ H1/2(Γ), (32)

which leads to the following variational form: Find g ∈ H1/2(Γ) such that

〈〈g , v〉〉W+S = 〈(1/2−K ′)φ , v〉Γ for all v ∈ H1/2(Γ). (33)

One can prove that 〈〈· , ·〉〉W+S from (32) defines a scalar product such that the induced norm ||| · |||W+S is
an equivalent norm on H1/2(Γ). Consequently, (33) has a unique solution g which depends continuously

on the Neumann data φ. Moreover, the solution automatically satisfies g ∈ H
1/2
∗ (Γ).

5.2 Galerkin discretization

To discretize (33), we first replace the Neumann data φ ∈ L2(Γ) by its L2-projection Φℓ ∈ P0(Eℓ),

Φℓ|Ej =
1

length(Ej)

∫

Ej

φdΓ =: pj for all Ej ∈ Eℓ. (34)

According to this definition,

∫

Γ

Φℓ dΓ =
∑

E∈Eℓ

∫

E

Φℓ dΓ =
∑

E∈Eℓ

∫

E

φdΓ =

∫

Γ

φdΓ = 0,

i.e. Φℓ ∈ H
−1/2
∗ (Γ). Second, we replace the function space H1/2(Γ) in (33) by the finite-dimensional

space S1(Eℓ). Since S1(Eℓ) is a subspace of H1/2(Γ), consequently, there exists a unique Galerkin solution
Gℓ ∈ S1(Eℓ) of the discretized problem

〈〈Gℓ , Vℓ〉〉W+S = 〈(1/2−K ′)Φℓ , Vℓ〉Γ for all Vℓ ∈ S1(Eℓ). (35)

As in the continuous case, the discrete solution Gℓ automatically satisfies
∫
Γ
Gℓ dΓ = 0.

Recall the definition of p ∈ R
N from (34) and let x ∈ R

N denote the coefficient vector of the ansatz

Gℓ =

N∑

j=1

xjζj . (36)
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We recall the definition of the mass matrix M ∈ R
N×N from Section 4 as well as the definition of the

matrices K,W ∈ R
N×N from Section 3.2.2. With the rank-1 stabilization matrix S ∈ R

N×N defined by

Skj =
(∫

Γ

ζj dΓ
)( ∫

Γ

ζk dΓ
)

for all j, k = 1, . . . , N,

the Galerkin system (35) is equivalently stated in terms of the linear system

(W + S)x =
1

2
MTp−KTp. (37)

Finally, we stress that the matrix W+S from (37) is symmetric and positive definite since it stems from
a scalar product.

5.3 Error indicators

Instead of solving the correct variational form (33), we solve

〈〈gℓ , v〉〉W+S = 〈(1/2−K ′)Φℓ , v〉Γ for all v ∈ H1/2(Γ) (38)

with perturbed right-hand side, where we use the approximation Φℓ ≈ φ. Analytically, the error be-
tween the exact solution g ∈ H1/2(Γ) of (33) and the exact solution gℓ ∈ H1/2(Γ) of the perturbed
formulation (38) is controlled by the data oscillations

|||g − gℓ|||W+S . ‖h
1/2
ℓ (φ− Φℓ)‖L2(Γ) =: oscN,ℓ, (39)

see [2].
As for Symm’s integral equation, the error estimator ηℓ from (7) controls the discretization error by

|||gℓ −Gℓ|||W+S ≈ |||Ĝℓ −Gℓ|||W+S = |||Ĝℓ −Gℓ|||W =: ηℓ. (40)

This again leads to

|||g −Gℓ|||W+S ≤ |||g − gℓ|||W+S + |||gℓ −Gℓ|||W+S . oscN,ℓ + ηℓ (41)

according to the triangle inequality and (39).
We stress that we are now dealing with different norms than in the case of the Dirichlet problem. In

[11], it is proven that

ηℓ ∼ µ̃N,ℓ := ‖h
1/2
ℓ (Ĝℓ − IℓĜℓ)

′‖L2(Γ). (42)

The nodal interpolation operator Iℓ : C(Γ) → S1(Eℓ) is defined as in (21).
We need to estimate both, the Galerkin error and the data-discretization error which leads to the

choice of ρℓ(Ej)
2 := µ̃N,ℓ(Ej)

2 + oscN,ℓ(Ej)
2 as error indicator to steer Algorithm 1. As discussed in

Section 4.4, and similar to [4, Theorem 4.2], we prove that our adaptive algorithm guarantees limℓ ρℓ = 0
for the hypersingular integral equation. Therefore, if the saturation assumption holds (at least in infinitely
many steps), we obtain convergence of Gℓ to g.

Listing 2: Implementation of Adaptive Algorithm

1 % adaptiveHypsing provides the implementation of an adaptiv e
2 % algorithm for the hypersingular integral equation.
3

4 %* ** maximal number of elements
5 nEmax = 100;
6

7 %* ** adaptivity parameter
8 t heta = 0.25;
9 percentage = 0.25;

10

11 %* ** adaptive mesh −refining algorithm
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12 while size (elements,1) < nEmax
13 %* ** build uniformly refined mesh
14 [ coordinates fine,elements fine,father2son] ...
15 = refineBoundaryMesh(coordinates,elements);
16 %* ** discretize Neumann data and compute data oscillations
17 [ phih fine,osc fine] ...
18 = discretizeNeumannData(coordinates fine,elements fine,@phi);
19 osc = osc fine(father2son(:,1)) + osc fine(father2son(:,2));
20 %* ** compute fine −mesh solution
21 Wfine = buildW(coordinates fine,elements fine) ...
22 + buildHypsingStabilization(coordinates fine, ...
23 elements fine);
24 b fine = buildHypsingRHS(coordinates fine,elements fine, ...
25 phih fine);
26 x fine = W fine \b fine;
27 %* ** compute (h −h/2) −error estimator tilde −mu
28 mu tilde = computeEstHypMuTilde(elements fine,elements, ...
29 f ather2son,x fine);
30 %* ** mark elements for refinement
31 marked = markElements(theta,percentage,mu tilde + osc);
32 %* ** generate new mesh
33 [ coordinates,elements] = refineBoundaryMesh(coordinates, ...
34 elements,marked);
35 end

5.4 Implementation of adaptive algorithm (Listing 2)

The Neumann data φ is provided by a Matlab-function phi.m. Recall that we discretize the given
Neumann data in order to provide a black-box algorithm for the computation of right-hand side (1/2−
K ′)Φℓ.

The Matlab script of Listing 2 realizes the adaptive Algorithm1 by use of HILBERT.

• We use the adaptivity parameter θ = 1/4 in (9) and mark at least the 25% of elements with the
largest indicators (Line 8–9).

• Inside the adaptive loop, we first build a uniformly refined mesh for the computation of Ĝℓ (Line 14–
15).

• Then, we discretize the given boundary data (Line 17–18).

• To solve (37), we need to compute the stiffness matrix W as well as the stabilization matrix S
(Line 21–23).

• The function buildHypsingRHS computes the right-hand side (1/2 − K ′)Φℓ in (37). Therefore,

Lines 24–25 compute the coefficient vector corresponding to the fine mesh solution Ĝℓ.

• The reaturn values of the functions computeEstHypMuTilde and discretizeNeumannData
are vectors of the quadratic error estimator contributions µ̃N,ℓ(E)2 and oscN,ℓ(E)2, respectively.
The marking criterion (9) is provided by means of the function markElements (Line 31).

5.5 Numerical experiment

We perform Example 1 as benchmark and compare the results obtained by the proposed adaptive al-
gorithm with those from a uniform approach. The Neumann data φ = ∂nu is given, and the missing
information g = u|Γ is computed by solving the hypersingular integral equation. Figure 4 shows error,
error estimators, and data oscillations with respect to the number of boundary elements, the compu-
tational time, and the memory consumption. The singularities of the Cauchy data lead to a reduced

order of convergence O(#E
−2/3
ℓ ) when using uniform meshes. Again, the adaptive algorithm reveals the

optimal convergence behavior. Moreover, the adaptive approach in our experiment is clearly superior to
a uniform strategy in the sense that available computational resources are used more efficiently.
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Figure 4: Example 1 computed with given Neumann and unknown Dirichlet data. For uniform mesh-

refinement, the singularities of the Cauchy data lead to a reduced order of convergence O(#E
−2/3
ℓ ),

whereas the adaptive strategy recovers the optimal order of convergence O(#E
−3/2
ℓ ). Moreover, the

adaptive scheme is also superior with respect to computational time and memory consumption.

6 A mixed boundary value problem for the poisson equation

In this section, we use the techniques introduced in Section 4–5 to solve a mixed boundary value problem.
Additionally, we consider non-vanishing volume forces:

−∆u = f in Ω,

u = uD on ΓD,

u = φN on ΓN ,

(43)
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where ΓN is assumed to be connected. For the equivalent integral formulation of (43), we choose (and
fix) arbitrary extensions uD ∈ H1/2(Γ) and φN ∈ H−1/2(Γ) of the given data from ΓD and ΓN , resp., to
the entire boundary Γ. The missing boundary data, which have to be computed, are

uN := u|Γ − uD and φD := ∂nu− φN . (44)

With Γ∗ ⊆ Γ, we consider Sobolev spaces H1/2(Γ∗) = {v|Γ∗
| v ∈ H1/2(Γ)} and its dual H̃−1/2(Γ∗) :=

H1/2(Γ∗)
∗. Moreover, let H̃1/2(Γ∗) := {v|Γ∗

| v ∈ H1/2(Γ) and v|Γ\Γ∗
= 0}. With the so-called Calderón

projector

A =

(
−K V
W K ′

)
, (45)

the unknown data uN ∈ H̃1/2(ΓN ) and φD ∈ H̃−1/2(ΓD) then satisfy the system of integral equations

A

(
uN
φD

)
= (1/2−A)

(
uD
φN

)
−

(
N0f
N1f

)
=: F on ΓD × ΓN . (46)

The definition

|||(uN , φD)|||2A := 〈〈(uN , φD) , (uN , φD)〉〉A = 〈WuN , uN 〉ΓN + 〈V φD , φD〉ΓD (47)

provides a norm on H = H̃1/2(ΓN )× H̃−1/2(ΓD) which is equivalent to the usual product norm.
In order to provide black-box schemes to solve (46), we do not only discretize the given boundary

data, but also the volume forces. To that end, let Tℓ denote a triangulation of the domain Ω with
Tℓ|Γ = Eℓ. We then replace N0f by N0Fℓ with Fℓ = πℓf ∈ P0(Tℓ) the L

2-orthogonal projection of f onto
the space of piecewise constants over Tℓ. To compute an approximation of N1f , we use the well-known
identity

N1 = (−1/2 +K ′)V −1N0,

see [17, 20, 19]. The discrete scheme now reads as follows: First, we solve Symm’s integral equation

〈V Λℓ , Ψℓ〉=〈N0Fℓ , Ψℓ〉 for all Ψℓ ∈ P0(Eℓ) (48)

to obtain an approximation Λℓ ≈ V −1N0f . In the next step, we seek a solution Uℓ = (GN,ℓ,ΦD,ℓ) ∈
S1(Eℓ|ΓN )× P0(Eℓ|ΓD ) of the mixed problem

〈〈Uℓ ,Vℓ〉〉A = 〈Fℓ , Vℓ〉H⋆×H for all Vℓ ∈ S1(Eℓ|ΓN )× P0(Eℓ|ΓD ),

where

Fℓ := (1/2−A)

(
IℓuD
ΠℓφN

)
−

(
N0Fℓ

(−1/2 +K ′)Λℓ.

)

The algorithm for solving a mixed problem with volume force thus sketched as follows:

• Input: volume mesh Tℓ, boundary mesh Eℓ = Tℓ|Γ.

• Compute g = UD,ℓ = IℓuD, p = ΦN,ℓ = ΠℓφN and f = Fℓ = πℓf .

• Solve the linear system

Vy = Nf . (49)

• Solve the linear system
(
W|ΓN×ΓN KT |ΓN×ΓD

−K|ΓD×ΓN V|ΓD×ΓD

)
x =

((
1
2 p

TM− pTK− gTW
)T

− (12 M
T −KT )y|ΓN(

1
2 Mg+Kg−Vp−Nf

)
|ΓD

)
.

(50)

For details, the reader is refered to [2]
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6.1 A posteriori error estimate for mixed problem

Note that the energy norm ||| · |||A induced by the Calderón projector A can be written in terms of the

energy norms |||·|||V (ΓD) and |||·|||W (ΓN ) induced by the simple-layer potential V ∈ L(H̃−1/2(ΓD);H1/2(ΓD))

and the hypersingular integral operator W ∈ L(H̃1/2(ΓN );H−1/2(ΓN )). According to (47), there holds

|||(uN , φD)|||2A = |||uN |||2W (ΓN ) + |||φD |||2V (ΓD).

For a posteriori error estimation of the Galerkin error and the data oscillations on the boundary, we may
therefore use the estimators introduced above for the Dirichlet and Neumann problem.

To include the discretization error introduced by solving (49), we use the local error estimator

µ̃2
V,ℓ = ‖h

1/2
ℓ (1 −Πℓ)Λ̂ℓ‖

2
L2(Γ),

where Λ̂ℓ is the solution of (48) with respect to the fine mesh Êℓ.
To steer an adaptive mesh-refining algorithm, it is therefore natural to use the combined error esti-

mator

ρ2ℓ := µ̃2
ℓ + osc2ℓ = (µ̃2

ℓ + osc2ℓ) + (µ̃2
V,ℓ + osc2V,ℓ),

where osc2V,ℓ := ‖hℓ(Fℓ − f)‖2L2 denote the data oscillations of the volume forces. The estimator µ̃ℓ(E)
and oscℓ(E) are either µ̃D,ℓ(E), oscD,ℓ(E) or µ̃N,ℓ(E), oscN,ℓ(E) in the case of E ⊆ ΓD or E ⊆ ΓN ,
respectively. We refer to the HILBERT documentation [1] for details.

6.2 Numerical experiment

We compute the numerical solution of Example 2. The results of the numerical experiment are visualized
in Figure 5. For the refinement of the volume mesh we use newest-vertex bisection where marked triangles
are bisected, see e.g. [21, Chapter 5]. Further refinements are performed to ensure regularity of the
volume mesh and the constraint Tℓ|Γ = Eℓ. The last condition has turned out to increase stability of the
integral operators as implemented in HILBERT.

In case of uniform mesh-refinements, we simply perform three bisections per triangle, i.e. all edges
of Tℓ are halved.

Recall that the volume forces have a weak singularity at (0.14, 0.14). However, the data oscillations
of f seem to decay fast enough in the sense that the order of convergence with respect to the number
of boundary elements is not limited by resolution of volume data in practice. However, strong generic
singularities of φ and ∂nÑf at the reentrant corner limit the convergence behavior to approximately

O(#E
−4/7
ℓ ) in the case of uniform mesh-refinement.

Our adaptive algorithm now additionally measures the error due to the approximation of ∂nÑf and

data oscillations of f over Tℓ. It recovers the mathematically optimal order of convergence O(#E
−3/2
ℓ ).

Moreover, as in the other case studies, the accuracy of the computation is increased with respect to
computational time. Since Example 2 includes the computation of the Newtonian potential Ñf |Γ, the
figure showing the error and estimators with respect to memory consumption now also takes the storage
requirements of N into account. It is remarkable that the adaptive approach is significantly superior to
a uniform approach in this respect.

7 Conclusions and remarks

Features. TheMatlab program package HILBERT provides stable implementations of the discrete integral
operators corresponding to the 2D Laplacian as well as many other functions necessary for an easy
accessible implementation of adaptive BEM. In this paper, only a short presentation of the library is
possible. However, HILBERT is distributed with a full documentation [1] and many example benchmarks,
some of which have gently been proposed at conferences by colleagues in order to stress-test our proposed
adaptive approach under difficult conditions. Besides the features presented here, HILBERT comes along
with many visualization tools, further error estimators, and different marking strategies.
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Figure 5: Example 2 computed with mixed boundary data. For uniform mesh-refinement, the singu-

larities of φ and ∂nÑf lead to reduced order of convergence O(#E
−4/7
ℓ ), whereas the adaptive strategy

recovers the optimal order of convergence O(#E
−3/2
ℓ ). Even though the volume data f has a weak

singularity, a reduction of order of convergence due to bad resolution of f in the uniform case is not
observed.

The Listings 1 and 2 included in Section 4 and 5 illustrate that adaptive BEM may be easily imple-
mented by use of HILBERT. This makes the tool not only interesting for scientists, but also for lecturers
planning classes on BEM or scientific computing. The package is under constant development, and
updates are released continuously. In the near future, functionality for the numerical solution of trans-
mission problems by use of adaptive FEM-BEM coupling as well as linear elasticity will be included (visit
http://www.asc.tuwien.ac.at/abem/hilbert for detailed information on the ongoing development).

The recent progress in the analytical understanding of adaptivity in general and in the context of
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BEM specifically, allows to implement mathematically justified adaptive algorithms, which automatically
resolve the singularities of both, analytical solution and given data. We observe that our proposed
algorithm — based on easy-to-implement (h − h/2)-type error estimators — empirically succeeds to
recover the optimal order of convergence in all benchmarks performed so far. One of the aims of the
authors is to emphasize the use of adaptivity and to make the concept more accessible to practitioners.

Restrictions. HILBERT is academic code in the sense that a Matlab implementation generically might
be to slow for use in industrial applications. Moreover, HILBERT currently only provides implementations
of the integral operators associated with the 2D Laplacian. It is restricted to lowest order elements and
the canonical basis functions.

The most important restriction for practitioners might be that resolution of geometry is, so far,
not included in the error estimation. In particular, all analytical results as well as the implementation
demand Ω to be a polygonal domain, and boundary elements are chosen to be affine line segments.
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