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HILBERT — A MATLAB IMPLEMENTATION OF ADAPTIVE 2D-BEM

HILBERT IS A LOVELY BOUNDARY ELEMENT RESEARCH TOOL

MARKUS AURADA, MICHAEL EBNER, MICHAEL FEISCHL, SAMUEL FERRAZ-LEITE,
THOMAS FÜHRER, PETRA GOLDENITS, MICHAEL KARKULIK, MARKUS MAYR,

AND DIRK PRAETORIUS

Abstract. We report on the Matlab program package HILBERT. It provides an easily-
accessible implementation of lowest order adaptive Galerkin boundary element methods for
the numerical solution of the Poisson equation in 2D. The library was designed to serve sev-
eral purposes: The stable implementation of the integral operators may be used in research
code. The framework of Matlab ensures usability in lectures on boundary element methods
or scientific computing. Finally, we emphasize the use of adaptivity as general concept and
for boundary element methods in particular.

In this work, we summarize recent analytical results on adaptivity in the context of
BEM and illustrate the use of HILBERT. Various benchmarks are performed to empirically
analyze the performance of the proposed adaptive algorithms and to compare adaptive and
uniform mesh-refinements. In particular, we do not only focus on mathematical convergence
behavior but also on the usage of critical system resources such as memory consumption
and computational time. In any case, the superiority of the proposed adaptive approach
is empirically supported. boundary element methods and adaptive mesh-refinement and a
posteriori error estimation and Matlab implementation 65N38 and 65Y20 and 65N50

1. Introduction

In many applications, the (Galerkin) boundary element method (BEM) has established itself
as a possible strategy for the numerical solution of a certain class of partial differential
equations. One of the strengths of BEM is its potentially high order of convergence: For
smooth analytical solutions, the error of the lowest-order Galerkin BEM behaves like O(h3/2)
with respect to the natural energy norm, where h denotes the global mesh-size of a partition
of the boundary. Moreover, by means of the representation formula, one can obtain high-
order pointwise approximations of the solution of the underlying partial differential equation.
However, due to generic singularities of concentrations and/or fluxes on the boundary, these
high convergence rates are not observed with uniform meshes in practice.

The Matlab program package HILBERT has been designed to make adaptive BEM (ABEM)
more accessible to a broader audience. It provides stable implementations of the discrete
boundary integral operators corresponding to the Laplace operator in 2D. Various error
estimators, including the weighted-residual error estimator from [11, 12], (h − h/2)-type
error estimators from [5, 20, 16], and two-level estimators from [25, 27, 31, 32] are provided.
In addition, mesh-refining algorithms, functions for the discretization of given boundary
data, visualization routines, and many other functions necessary for the implementation and
use of ABEM for the Poisson problem are included.

Several benchmarks demonstrate and compare the behavior of adaptive and uniform BEM
in presence of different types of singularities. In our experiments, we observe that our

Date: 01.06.2012 (revised), 09.06.2011.
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adaptive algorithm resolves the singularities of both, analytical solution and given data.
Throughout, it shows the optimal order of convergence. Moreover, the reachable accuracy—
usually limited by system resources such as time and memory—is increased drastically by
use of adaptivity.

1.1. Model problem. As model problem, we consider the Poisson equation on some bounded
Lipschitz domain Ω ⊂ R

2 with polygonal boundary Γ = ∂Ω. By scaling of the domain Ω,
we assume diam(Ω) < 1 to ensure ellipticity of the simple-layer potential V , see Section 4
below. Each solution u ∈ H1(Ω) := {v ∈ L2(Ω) | ∇v ∈ L2(Ω)} of

−∆u = f in Ω(1)

can explicitly be written in the form

u(x) = Ñf(x) + Ṽ φ(x)− K̃g(x) for all x ∈ Ω,(2)

where g := u|Γ ∈ H1/2(Γ) := {v ∈ L2(Γ) | there is an extension ṽ ∈ H1(Ω) such that
ṽ|Γ = v} is the trace of u and φ := ∂nu ∈ H−1/2(Γ) := H1/2(Γ)∗ is the normal derivative of u
on Γ. For this fact and all other statements and details on the spaces and integral operators
involved, the reader is referred to the literature, e.g., the monographs [30, 33, 34, 37]. For
x ∈ Ω, the involved linear integral operators read

Ñf(x) := −
1

2π

∫

Ω

log(|x− y|) f(y) dy,(3)

Ṽ φ(x) := −
1

2π

∫

Γ

log(|x− y|)φ(y) dΓ(y),(4)

K̃g(x) := −
1

2π

∫

Γ

(y − x) · ny

|y − x|2
g(y) dΓ(y),(5)

where ny denotes the outer unit vector of Ω at some point y ∈ Γ and where
∫
Γ
dΓ(·) denotes

integration along the boundary. Put differently, the solution u of the Poisson problem (1) is
known as soon as its Cauchy data (u|Γ, ∂nu) are known on the entire boundary Γ.

If one considers the trace and the normal derivative of u, the so-called representation
formula (2) becomes the Calderón system

g = N0f + V φ− (K − 1/2)g,

φ = N1f + (K ′ + 1/2)φ+Wg.
(6)

It involves six linear integral operators acting only on Γ: The simple-layer potential V , the
double-layer potential K with adjoint operator K ′, the hypersingular integral operator W ,

which is the negative normal derivative of K̃, see (39) below, as well as the trace N0 and the

normal derivative N1 of the Newtonian potential Ñ . We stress that N0, V , and K formally

coincide with the operators Ñ , Ṽ , and K̃ from (3)–(5), but are now evaluated for x ∈ Γ
instead of x ∈ Ω. Moreover, the jump ±1

2
in (6) holds only almost everywhere on Γ, more

precisely, in all x ∈ Γ but corners, where ±1
2
becomes ±σ(x) := ± α

2π
with α the interior

angle. While this is important for collocation BEM, one can use the values ±1
2
for Galerkin

BEM throughout.
For direct BEM, the Poisson equation with given boundary data is equivalently stated in

terms of the Calderón system (6), which leads to a boundary integral equation (BIE) on Γ.
In order to solve this BIE, we discretize a variational formulation by a Galerkin method. To
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that end, let E1, . . . , EN be a partition of the boundary Γ into closed affine line segments.
We then use piecewise constant functions to discretize the fluxes ∂nu and piecewise linear
and globally continuous functions for the concentrations u|Γ. In a post-processing step, the
computed Cauchy data are then plugged into the representation formula (2) to obtain an
approximation of the solution u of the Poisson problem (1).

1.2. Outline of the paper. First, Section 2 deals with an abstract formulation of the
proposed adaptive algorithm. Preliminaries of practical relevance, such as mesh adminis-
tration with HILBERT and comments on the stable implementation of the discrete boundary
integral operators, are given in Section 3. In the following Sections 4–5, we give possible
choices of error indicators for the boundary integral formulation of the Dirichlet and the
Neumann problem. Finally, Section 6 deals with a mixed boundary value problem and
non-homogeneous volume forces f 6= 0. Sections 4–6 are supported each by its own set of
numerical experiments. A discussion and a summary of the functionality of HILBERT finally
conclude the paper in Section 7.

Throughout, we use the notation A . B to indicate that expression B gives an upper
bound A ≤ C · B up to some generic constant C that is independent of relevant unknown
data. The notation A ≃ B is used to express A . B . A.

2. Adaptive algorithm

Using a lowest order ansatz, BEM is known to converge optimally with order O(h3/2) with
respect to the energy norm if the data and unknown solution are sufficiently smooth, e.g.,
have piecewise regularity φ ∈ H1, g ∈ H2, f ∈ H1 [33]. However, fluxes and concentrations
on the boundary usually lack the regularity necessary to observe the optimal order with
uniform meshes. We therefore aim at providing a fully adaptive mesh-refining algorithm
that leads to more efficient use of available system resources.

2.1. Formulation of adaptive algorithm. Let H be a Hilbert space with corresponding
norm ||| · |||, which is made more precise in the Sections 4–6 below. For discrete subspaces
Xℓ corresponding to successively generated meshes Eℓ of Γ, let Uℓ ∈ Xℓ denote the computed
discrete approximation of the unknown solution u ∈ H. Furthermore, we assume that we can

compute a posteriori error bounds ρℓ =
(∑

E∈Eℓ
ρℓ(E)

2
)1/2

such that the local contributions
ρℓ(E) measure, at least heuristically, the error between u and Uℓ locally on the element
E ∈ Eℓ. Under these assumptions and given an initial mesh E0 as well as an adaptivity
parameter 0 < θ < 1, the usual adaptive algorithm reads as follows:

Algorithm 1.

(i) compute discrete solution Uℓ ∈ Xℓ

(ii) compute refinement indicators ρℓ(E) for all E ∈ Eℓ
(iii) find set Mℓ of minimal cardinality such that

θ
∑

E∈Eℓ

ρℓ(E)
2 ≤

∑

E∈Mℓ

ρℓ(E)
2(7)

(iv) refine (at least) elements E ∈ Mℓ and obtain Eℓ+1

(v) update counter ℓ 7→ ℓ+ 1 and goto (1)
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2.2. (h − h/2)-type error estimators. Let Êℓ denote the uniform refinement of Eℓ which
is obtained by splitting all elements E ∈ Eℓ at their midpoint. The associated discrete space

is denoted by X̂ℓ. Under the Céa-type quasi-optimality

|||u− Ûℓ||| . min
V̂ℓ∈X̂ℓ

|||u− V̂ℓ|||,(8)

which is met in the applications at hand due to the uniform stability of the Galerkin BEM,

the Galerkin solution Ûℓ corresponding to the space X̂ℓ is a better approximation to the
unknown solution u ∈ H than Uℓ. In [20], we first analyzed the simple (h− h/2)-type error
estimator

ηℓ := |||Ûℓ − Uℓ|||(9)

in the context of BEM. It always provides a lower bound for the Galerkin error

ηℓ ≤ |||u− Uℓ|||.(10)

Moreover, an upper bound

|||u− Uℓ||| . ηℓ(11)

follows from the so-called saturation assumption

|||u− Ûℓ||| ≤ q |||u− Uℓ|||(12)

with some uniform constant q ∈ (0, 1). I.e., uniform mesh-refinement leads to a uniform
improvement of the discretization error. From a heuristic point of view, the saturation
assumption states that the BEM error exhibits asymptotics O(hα) for some α > 0, see the
discussion in [20].

Note that the saturation assumption (12) is even equivalent to the upper bound (11) in
case of symmetric problems, where ||| · ||| stems from an energy scalar product. Moreover,
we stress that (12) can, for instance, be proved for finite element model problems and up
to data approximation terms [14], see also [19, Section 2.3]. For BEM, however, (12) still
remains mathematically open although observed throughout academic experiments. In [3,

Prop. A.2], a weaker form of (12) is verified for Symm’s integral equation of Section 4 if Êℓ
is obtained from k ≥ 2 uniform refinements of Eℓ: There exists a constant k ∈ N≥2 which
depends only on Γ and the given data, such that the saturation assumption (12) holds up
to higher-order terms which involve the smooth parts of the solution u only.

Due to the non-local nature of the integral operators involved, the energy norm |||·|||, which
is equivalent to a fractional Sobolev norm ‖ · ‖H±1/2(Γ) (or a sum of those for mixed boundary
value problems), cannot be easily written as a sum of local contributions, as is, e.g., the case
for the L2-norm ‖ · ‖2L2(Γ) =

∑
E∈Eℓ

‖ · ‖2L2(E). Based on certain localization techniques the

works [8, 9, 15, 16, 20], for instance, give suitable error estimators µ̃2
ℓ =

∑
E∈Eℓ

µ̃ℓ(E)
2 which

satisfy ηℓ ≃ µ̃ℓ, but whose contributions µ̃ℓ(E), at least heuristically, measure the local error.
Moreover, based on recent results from [5], a compound error estimator ρℓ which additionally
controls data oscillations, is used for all problem settings discussed in this paper.
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2.3. State of the art. In practice, Algorithm 1 yields a sequence of discrete solutions
Uℓ ∈ Xℓ which converge towards the exact solution u ∈ H in the energy norm. Usually, one
empirically even observes a quasi-optimal decay of the energy error |||u−Uℓ||| with respect to
the number of elements #Eℓ. However, since Algorithm 1 does not enforce that the mesh-size
tends to zero everywhere, even plain convergence limℓ Uℓ = u is a mathematical issue. In this
section, we aim at a short overview on the state of the art of convergence of adaptive BEM.
We stress that the numerical analysis is still in its infancy in this respect, and all results are
so far tailored to the energy norm.

For Symm’s integral equation and lowest-order discretization, the first convergence result
on adaptive BEM was [10], where Algorithm 1 is extended and the (h−h/2)-error estimator
of [20] and the weighted-residual error of [11, 12] are combined to ensure the saturation
assumption (12) algorithmically. In [19], we prove that under the saturation assumption (12),
Algorithm 1 driven by the (h − h/2)-error estimator µ̃ℓ yields contraction of a quasi-error
quantity ∆ℓ ≃ µ̃ 2

ℓ in each step of the adaptive loop.
In [6], we introduced the estimator reduction principle to prove that, independently of the

saturation assumption (12), Algorithm 1 yields estimator convergence limℓ µ̃ℓ = 0. In [5],
we consider (h − h/2)-error estimation for a mixed boundary value problem with data ap-
proximation. Using the estimator reduction principle, we prove that Algorithm 1, driven
by a compound error estimator ρℓ which additionally controls data oscillations, guarantees
limℓ ρℓ = 0. Here, given Dirichlet data are discretized by nodal interpolation, whereas given
Neumann data are discretized by the L2-projection onto piecewise constants. In [23], we
extend the concept of fully-discrete adaptive BEM to 3D and the discretization of Dirichlet
data by means of the L2-projection onto the continuous and piecewise affine functions. Deal-
ing with discrete integral operators only, i.e. matrices, will be a starting point to combine
adaptive BEM with fast methods for the discrete integral operators, see e.g. [35] for a recent
overview on fast methods. This will, however, be a challenging topic for future research.

Very recently, it has been proved that also weighted-residual error estimators yield contrac-
tion of an appropriate quasi-error in each step of the adaptive loop. Moreover, for sufficiently
small 0 < θ < 1, i.e. strongly adapted meshes, it is proved that adaptive BEM leads to quasi-
optimal decay of the error with respect to certain approximation classes, see [17] for Symm’s
integral equation of Section 4 and [22] for the hypersingular integral equation of Section 5,
both for the respective lowest-order BEM. Furthermore, for technical reasons, the analysis
of [22] is restricted to C1,1-boundaries which formally excludes polygonal geometries. In [3],
the approximation class for the lowest-order BEM for Symm’s integral equation in 2D is
characterized in terms of the energy error |||u− Uℓ||| only. In particular, we derive that each
possible convergence rate 0 ≤ s ≤ 3/2 is in fact achieved by Algorithm 1 driven by the
weighted-residual error estimator.

In the ongoing work [4] the heart of the analysis of [17, 22], namely certain novel inverse-
type estimates for the boundary integral operators involved, are generalized to arbitrary
polynomial degree and polygonal (resp. polyhedral in 3D) boundaries. Therefore, conver-
gence and quasi-optimality of adaptive BEM driven by weighted-residual error estimators
also hold for general polynomial ansatz spaces. Since the boundary integral formulation of
the mixed boundary value problem (see Section 6) involves a non-symmetric operator, a
quasi-optimality result remains open in this context.
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Combining the techniques of [4, 17, 22] with the data approximation of [5, 23], convergence
of a fully discrete adaptive BEM follows, where Algorithm 1 is driven by the sum of a
weighted-residual error estimator and appropriate data oscillation terms. At the current
state of research, the proof of quasi-optimal rates requires a modified marking strategy in
step (iii) of Algorithm 1, see [18].

2.4. Benchmarks. To study the performance of our adaptive approach compared to a uni-
form mesh-refining strategy empirically, we propose two benchmarks. The first example
covers the Laplace equation, i.e. f = 0, and is constructed in such a way that Dirichlet and
Neumann data, both, have singularities. In particular, they lack smoothness properties suf-
ficiently to reveal optimal convergence with uniform mesh refinement. The second example
covers the case of nontrivial volume forces f 6= 0 and is designed such that our adaptive
algorithm needs to resolve singularities of Cauchy and volume data.

Below, the results of all numerical experiments are visualized with three figures. Since we
prescribe the analytical solution, a reliable error bound can be computed and is shown for
reference along with the error estimators and data oscillations. In the first figure, we plot
all quantities over the number of boundary elements #Eℓ. We recall that the optimal rate

of convergence of lowest-order BEM is O(#E
−3/2
ℓ ), since hℓ ∼ (#Eℓ)

−1 for uniform meshes.
Second, we plot the quantities over the computational time. Since an adaptively generated

solution depends on the entire history of solutions, whereas this is not the case for uniform
meshes, the time consumption is measured differently for the uniform and the adaptive
approach. We define the computational time as follows:

• For uniform mesh-refinement, tℓ,unif is the time elapsed for ℓ uniform refinements of
the initial mesh E0, the assembly of the Galerkin data on Eℓ, and the computation of
the Galerkin solution Uℓ.

For adaptive mesh-refinement, the computational time is defined cumulatively:

• We define t−1,adap = 0.
• For ℓ ≥ 0, we set tℓ,adap = tℓ−1,adap plus the time elapsed for the assembly of the

Galerkin data on Êℓ, the computation of the Galerkin solution Ûℓ, the computation
of the error indicators, and the adaptive refinement of the mesh Eℓ to obtain Eℓ+1.

Finally, in a third figure, we plot the quantities over the memory consumption which is
understood as follows:

• For uniform mesh-refinement, we count the memory which is occupied by the data
structure for the mesh, the discrete integral operators, and the solution vector.

• For the adaptive version, we count the memory which is occupied by the data struc-
ture for the mesh, the integral operators, the solution vector, the error estimators,
and the data oscillations.

With these three different figures, we empirically evaluate the quality of a performed compu-
tation with respect to both, mathematical order of convergence and computational effectivity.
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Figure 1. Rotated L-shaped domain Ω. The initial boundary mesh E0 con-
sists of 8 boundary elements. In case of non-trivial volume forces, the initial
triangulation T0 (dashed) of Ω consists of 6 triangles. In Example 1, the
solution is prescribed such that the Neumann data φ = ∂nu has a generic sin-
gularity at the reentrant corner, the Dirichlet data g = u|Γ has a singularity
at the uppermost corner. For the mixed boundary value problem covered by
Example 2, the Dirichlet boundary consists of the two boundary elements that
share the reentrant corner as common point (indicated in blue). The Neumann
boundary is the remaining part of Γ (indicated in red). The corresponding
data structure is presented to the right of the picture.

2.4.1. Geometry. We choose Ω to be a rotated L-shaped domain with diam(Ω) < 1 as
shown in Figure 1. The initial boundary mesh E0 consist of #E0 = 8 elements. In the case of
non-vanishing volume forces, we discretize the given data f ∈ L2(Ω). To that end, we use a
regular triangulation Tℓ of Ω that satisfies Tℓ|Γ = Eℓ and approximate f by its L2-orthogonal
projection onto the piecewise constant functions. The initial triangulation T0 with #T0 = 6
elements is also plotted in Figure 1.

2.4.2. Example 1. For given δ > 0, we first define a function in polar coordinates vδ(r, ϕ) =
rδ cos(δϕ). An analytical solution u of the Laplace equation

∆u = 0 in Ω

is prescribed by

u(x) = v2/3(x) + v7/8(x− z),

where z denotes the uppermost corner of Γ. This choice of u effects that the Dirichlet data
g has a singularity at the uppermost corner, whereas the Neumann data φ has an additional
singularity at the reentrant corner, as in general arises for the reentrant corner with angle
3π/2.
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2.4.3. Example 2. Let z = (0.14, 0.14) ∈ Ω denote a point inside the domain. We then
prescribe the analytical solution

u(x) = |x− z|9/5 + v2/3(x).

The volume force f = −∆u has a singularity at the point z, and the normal derivative

N1 = ∂nÑf of the Newtonian potential as well as the Neumann data φ = ∂nu have a
singularity at the reentrant corner.

We aim at solving some mixed boundary value problem. To that end, we split the boundary
into Dirichlet and Neumann part as described and shown in Figure 1.

3. Implementation of mesh-refinement and integral operators

3.1. Discretization of the boundary. Throughout, Γ = ∂Ω is the piecewise affine bound-
ary of a polygonal Lipschitz domain Ω ⊂ R

2. If necessary, Γ is partitioned into finitely
many relatively open and disjoint boundary pieces, e.g. in a Dirichlet boundary ΓD and a
Neumann boundary ΓN , i.e., Γ = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅.

A triangulation or mesh of Γ is a finite set Eℓ = {E1, . . . , EN} such that the elements
Ej ∈ Eℓ are closed affine line segments and their intersection has vanishing measure, i.e., it
holds that Ej = [aj, bj ] := conv{aj, bj} for aj, bj ∈ Γ as well as

|Ei ∩ Ej| = 0 for i 6= j and Γ =
⋃

Ej∈Eℓ

Ej .(13)

Furthermore, if Γ is partitioned into ΓD and ΓN , one usually assumes that this partition is
resolved by Eℓ, i.e., Ej ∈ Eℓ satisfies either Ej ⊆ ΓD or Ej ⊆ ΓN . With Kℓ = {z1, . . . , zN}
the set of all nodes of the triangulation Eℓ, it holds that #Eℓ = #Kℓ for the closed boundary
Γ.

3.1.1. Data structure. The set of nodesKℓ = {z1, . . . , zN} of the triangulation Eℓ = {E1, . . . , EN}
is represented by an N × 2 array coordinates. The j-th row of coordinates stores the
coordinates of the j-th node zj = (xj , yj) ∈ R

2 as

coordinates(j,:) = [ xj yj ].

If Γ is not split into several parts, the triangulation Eℓ is represented by an N × 2 array
elements. The i-th boundary element Ei = [zj, zk] with nodes zj , zk ∈ Kℓ is stored as

elements(i,:) = [ j k ],

where the nodes are given in counterclockwise order, i.e., the parametrization of the boundary
element Ei ⊂ Γ is mathematically positive. This assumption allows to compute the exterior
unit normal vector of Ω on each element Ei ∈ Eℓ in a unique way.

If Γ is split into Dirichlet boundary ΓD and Neumann boundary ΓN , the triangulation Eℓ is
represented by an ND×2 array dirichlet and an NN ×2 array neumann which describe the
elements Ei ⊆ ΓD and Ei ⊆ ΓN , resp., as before. Then, elements = [dirichlet;neumann]

with N = ND +NN .

3.1.2. Mesh refinement. For boundary element meshes, HILBERT includes an optimal local
mesh-refinement function refineBoundaryMesh, where the sense of optimality is explained
in the subsequent Section 3.2.1 below. Let marked be an (M × 1)-column vector containing
the indices of marked elements, i.e. the set Mℓ in step (3) of Algorithm 1. Then,
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[coordinates fine,elements fine,father2son] ...

= refineBoundaryMesh(coordinates,elements,marked)

provides a mesh Eℓ+1 which is only refined locally in the sense that (at least) all elements
of Mℓ are refined. A marked element Ei ∈ Eℓ is bisected to certain sons ej , ek ∈ Eℓ+1. The
(N × 2)-matrix father2son provides a link between the element indices in the sense that

father2son(i, :) = [ j, k ] for Ei = ej ∪ ek.

If an element Ei ∈ Eℓ is not refined, one has Ei = ej ∈ Eℓ+1, where the link between these
indices is given by

father2son(i, :) = [ j, j ] for Ei = ej .

If the optional parameter marked is omitted, the uniformly refined mesh Êℓ = {e1, . . . , e2N}
is returned. If Γ is split into a Dirichlet boundary ΓD and a Neumann boundary ΓN , the
function call

[coordinates fine,dirichlet fine,neumann fine,dir2son,neu2son]

= refineBoundaryMesh(coordinates,dirichlet, ...

neumann,marked dirichlet,marked neumann)

provides an accordingly refined mesh. The parameters marked dirichlet and marked neumann

are optional and may again be omitted to obtain uniform refinement.

3.2. Discretization of the domain. In case of non-homogeneuous volume data, the eval-
uation of the Newtonian potential requires the discretization of Ω. To this end, we restrict
to a regular triangulation Tℓ of Ω into compact non-degenerate triangles T ∈ Tℓ. For the
data structure, we use a standard list format as is also done in [1, 21].

The set of vertices Vℓ = {v1, . . . , vm} of the triangulation Tℓ = {T1, . . . , Tn} is represented
by an m × 2 array vertices. The j-th row stores the coordinates of the j-th vertex vj =
(xj , yj) ∈ R

2 as

vertices(j,:) = [ xj yj ].

The p-th triangle Tp = [zi, zj , zk] with vertices zi, zj , zk ∈ Vℓ is stored as

triangles(p,:) = [ i j k ],

where the nodes are given in counterclockwise order, i.e., the parametrization of the element’s
boundary Tp is mathematically positive.
HILBERT contains functions for the local mesh-refinement of the volume triangulation Tℓ

and for the extraction of the induced boundary partition Eℓ = Tℓ|Γ. Finally, by use of the
same data structure as in [1, 21], it is easily possible to link HILBERT to existing MATLAB

finite element codes to realize, e.g., the (adaptive) coupling of FEM and BEM.

3.2.1. Boundedness of K-mesh constant. Many estimates in numerical analysis depend on
local quantities of the mesh, e.g., on an upper bound of the K-mesh constant

κ(Eℓ) := sup{diam(Ej)/diam(Ek) |Ej, Ek ∈ Eℓ with Ej ∩ Ek 6= ∅} ≥ 1(14)

which is the maximal ratio of the element widths of neighboring elements. To avoid the blow-
up of the K-mesh constant, the mesh-refinement algorithm implemented in refineBoundaryMesh
guarantees

sup
ℓ∈N

κ(Eℓ) ≤ 2 κ(E0)(15)
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by one bisection of all elements in a certain superset Rℓ ⊇ Mℓ. To that end, the function
refineBoundaryMesh implements a mesh-refinement strategy analyzed in [3].

Note that #Mℓ ≤ #Rℓ = #Eℓ+1 − #Eℓ, whereas the converse estimate #Eℓ+1 − #Eℓ .
#Mℓ cannot hold under the additional constraint (15). However, as is proven in [3, The-
orem 3], our mesh-refinement algorithm ensures that the overall number of refined ele-
ments does not exceed the overall number of marked elements arbitrarily. More precisely,
refineBoundaryMesh ensures

#Eℓ −#E0 .
ℓ−1∑

j=0

#Mj .(16)

The constant hidden in the symbol . depends only on the initial mesh E0. The validity
of such an estimate is crucial for proving quasi-optimal convergence rates for residual-based
ABEM in [17, 22].

3.3. Integral operators.

3.3.1. Discrete function spaces. Let Pp(Eℓ) be the space of all Eℓ-piecewise polynomials of
degree p ∈ N0 with respect to the arc-length. Note that functions Ψℓ ∈ Pp(Eℓ) are, in
general, not continuous, but have jumps at the nodes of Eℓ. In particular, P0(Eℓ) denotes
the space of all Eℓ-piecewise constant functions. If χj ∈ P0(Eℓ) denotes the characteristic
function of Ej ∈ Eℓ, the set {χ1, . . . , χN} is the basis of P0(Eℓ) which is used throughout our
implementation.

One particular example for a function in P0(Eℓ) is the local mesh-width hℓ ∈ P0(Eℓ) which
is defined Eℓ-elementwise by

hℓ|E := diam(E) for all E ∈ Eℓ.(17)

Let S1(Eℓ) := P1(Eℓ) ∩ C(Γ) denote the set of all continuous and (with respect to the
arc-length) Eℓ-piecewise affine functions. For each node zj ∈ Kℓ of Eℓ, let ζj ∈ S1(Eℓ)
be the nodal “hat function” associated with the node zj ∈ Kℓ, i.e., ζj(zk) = δjk with
Kronecker’s delta. Then, the set {ζ1, . . . , ζN} is the basis of S1(Eℓ), which is used throughout
our implementation.

In the following, we only consider the lowest-order BEM, where the spaces P0(Eℓ) and
S1(Eℓ) are used to discretize fluxes and concentrations, respectively.

3.3.2. Discrete integral operators. The Calderón system (6) essentially relies on four linear
integral operators V , K, W , and N0. The remaining two operators K ′ and N1 can then
be expressed in terms of the other four, see (56) below for N1. Following our lowest-order
ansatz, HILBERT provides a C-implementation of integral operators for discrete fluxes and
concentrations:

• the simple-layer potential matrix V for P0(Eℓ) ansatz and test functions is given by

Vij = −
1

2π

∫

Ei

∫

Ej

log(|x− y|) dΓ(y) dΓ(x),
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• the double-layer potential matrix K for S1(Eℓ) ansatz and P0(Eℓ) test functions is
given by

Kij = −
1

2π

∫

Ei

∫

supp(ζj)

ζj(y)
(y − x) · ny

|x− y|2
dΓ(y) dΓ(x),

• the hypersingular integral operator matrix W for S1(Eℓ) ansatz and test functions
is given by

Wij =
1

2π

∫

supp(ζi)

ζi(x)∂nx

∫

supp(ζj)

ζj(y)
(y − x) · ny

|x− y|2
dΓ(y) dΓ(x).

• Given a regular triangulation Tℓ of the domain Ω, the trace of the Newtonian potential
N for P0(Tℓ) ansatz and P0(Eℓ) test functions reads

Nij = −
1

2π

∫

Ei

∫

Tj

log |x− y| dy dΓ(x).

Antiderivatives, i.e. explicit formulas, for the integrals of V and K are taken from [26].
With similar techniques, we developed antiderivatives for the computation of N. The com-
putation of W is implemented by use of Maue’s formula [28]

〈Wu, v〉 = 〈V u′, v′〉,

where (·)′ denotes the arc-length derivative. However, for adaptive meshes, the analytical
computation of the integrals leads to instabilities due to cancellation effects when using

the closed formulas for the (continuous) antiderivatives, e.g.
∫ b

a
f ′ dt = f(b) − f(a) for

a ≈ b. For two boundary elements Ei and Ej , we change the order of integration in case of
diam(Ej) < diam(Ei) to ensure that the outer integration is performed over the the smaller
boundary element. Given some fixed parameter η > 0, we call two boundary elements Ei, Ej

admissible if they satisfy

min{diam(Ei), diam(Ej)} ≤ η distance(Ei, Ej).

In this case, the outer integration is replaced by Gaussian quadrature. In particular, this
guarantees that the matrices V and W related to the symmetric operators V and W are
symmetric as well. For admissible elements Ei, Ej, there holds exponential convergence of
the semi-analytic quadrature used with respect to the order of the Gaussian quadrature rule
chosen, see [29] or [24] in the context of hierarchical matrices.

In HILBERT, the discrete integral operators are provided by the following mex-functions:

• V = buildV(coordinates,elements[,eta])

• K = buildK(coordinates,elements[,eta])

• W = buildW(coordinates,elements[,eta])

• N = buildN(coordinates,elements,vertices,triangles[,eta])

The optional admissibility parameter eta may be omitted, a sane default value is used
in that case. The assembly of the Newtonian potential N requires a volume mesh for the
quadrature over the domain Ω. To that end, we use the standard format as described in [1]
and buildN uses mesh-manipulation routines as described in [21]. The assembly of the dis-
crete boundary integral operators is significantly time consuming. Therefore, HILBERT uses
POSIX-threads, a simple parallelization library, to increase efficiency on multi-core systems.
In our experiments, runtime scales properly with number of cores, see Figure 2.
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Figure 2. Speed up of operators using parallelization. The computation time
is plotted in a double logarithmic scale over the number of cores. Computa-
tions were performed for a uniform mesh with 4096 boundary elements. For
reference, the function 100/k with k = 1, 2, . . . , 8 the number of cores, is plot-
ted.

3.3.3. Evaluation of integral operators. Additionally to the discrete integral operator matri-

ces, we provide routines for the evaluation of the boundary integral operators Ṽ , K̃,K ′,W ,
and N0 introduced in Section 1.1. The approximate evaluation of N1 can be performed by

postprocessing of the other evaluation functions, see (56) below. The operators Ṽ , K̃, N0 can
be evaluated in the whole plane R

2, whereas the operators K ′,W , and N1 can be evaluated
on Γ. In HILBERT, the evaluation routines of the integral operators are provided by the
following mex-functions:

• V x = evaluateV(coordinates,elements,phih,x[,eta])

• K x = evaluateK(coordinates,elements,gh,x[,eta])

• N0 x = evaluateN(vertices,volumes,fh,x)

• Kadj x = evaluateKadj(coordinates,elements,phih,x,nx[,eta])

• W x = evaluateW(coordinates,elements,gh,x,nx[,eta])

For an (M × 2) matrix x containing the evaluation points, these function calls return an
(M × 1) vector of evaluations of the associated integral operators. As usual, the boundary
mesh Eℓ is described by coordinates and elements, whereas vertices and volumes describe
the volume mesh Tℓ. The optional admissibility parameter etamay be omitted, a sane default
value is used in that case. The vectors phih, gh, and fh represent the data Φℓ ∈ P0(Eℓ),
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Gℓ ∈ S1(Eℓ), and Fℓ ∈ P0(Tℓ), respectively. The (M × 2) matrix nx describes the outer
normal unit vector of Γ, i.e., if x(k,:) corresponds to a point x ∈ Γ, then nx(k,:) is
nx. For the implementation, we write the boundary integrals as sum over the elements
Ej , for j = 1, . . . , N . For an evaluation point x and an element Ej , the evaluation of the
corresponding integral is carried out by quadrature in case of admissibility,

diam(Ej) ≤ η distance(x, Ej),

and by analytical formulas otherwise. The parameter η can be specified by providing eta to
the functions.

4. Dirichlet problem

4.1. Continuous model problem. In this section, we discuss the Dirichlet problem with
vanishing volume forces

−∆u = 0 in Ω with u = g on Γ.(18)

With the simple-layer potential

V φ(x) = −
1

2π

∫

Γ

φ(y) log(|x− y|) dΓ(y) for x ∈ Γ,(19)

and the double-layer potential

Kg(x) = −
1

2π

∫

Γ

g(y)
(y − x) · ny

|y − x|2
dΓ(y) for x ∈ Γ,(20)

the first equation of the Calderón system (6) yields Symm’s integral equation

V φ = (K + 1/2)g on Γ,(21)

which is an equivalent formulation of (18). The exact solution φ ∈ H−1/2(Γ) of (21) is the
normal derivative φ = ∂nu of the solution u ∈ H1(Ω) of (18). Recall that V : H−1/2+s(Γ) →
H1/2+s(Γ) and K : H1/2+s(Γ) → H1/2+s(Γ) are linear and continuous operators for all
−1/2 ≤ s ≤ 1/2.

Formally, the Dirichlet data satisfy g ∈ H1/2(Γ). However, we assume additional regularity
g ∈ H1(Γ) ⊂ H1/2(Γ) so that g is, in particular, continuous.

Note that (21) can equivalently be written in variational form

〈V φ , ψ〉Γ = 〈(K + 1/2)g , ψ〉Γ for all ψ ∈ H−1/2(Γ),(22)

where 〈· , ·〉Γ is the duality pairing between H1/2(Γ)×H−1/2(Γ) that reduces to 〈φ , ψ〉Γ =∫
Γ
φψ dΓ for φ, ψ ∈ L2(Γ). Provided that diam(Ω) < 1, one can show that the left-hand side

〈〈φ , ψ〉〉V := 〈V φ , ψ〉Γ for φ, ψ ∈ H−1/2(Γ)(23)

of (22) defines a scalar product and that the induced norm |||φ|||V := 〈〈φ , φ〉〉
1/2
V is an equivalent

norm on H−1/2(Γ). In particular, the variational form (22) has a unique solution φ ∈
H−1/2(Γ) which depends continuously on the data g with respect to the H1/2(Γ)-norm. It
can be shown that V : H−1/2+s(Γ) → H1/2+s(Γ) is an isomorphism so that our assumption
on g yields additional regularity φ ∈ L2(Γ).
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4.2. Galerkin discretization. To discretize (22), we first replace the continuous Dirichlet
data g ∈ H1(Γ) by its nodal interpolant

Gℓ :=
N∑

j=1

gjζj ∈ S1(Eℓ) ⊂ H1(Γ) with gj := g(zj).(24)

Alternatively, g can be discretized by means of the L2-projection onto S1(Eℓ), i.e.,

Gℓ :=
N∑

j=1

gjζj ∈ S1(Eℓ) ⊂ H1(Γ)(25)

with ∫

Γ

Gζ dΓ =

∫

Γ

gζ dΓ for all ζ ∈ S1(Eℓ).

Second, we replace the function space H−1/2(Γ) in (22) by the finite-dimensional space
Xℓ = P0(Eℓ). Since the discrete space P0(Eℓ) is a subspace of H = H−1/2(Γ), 〈〈· , ·〉〉V
from (23) is also a scalar product on P0(Eℓ). Consequently, there is a unique Galerkin
solution Φℓ ∈ P0(Eℓ) of

〈V Φℓ , Ψℓ〉Γ = 〈(K + 1/2)Gℓ , Ψℓ〉Γ for all Ψℓ ∈ P0(Eℓ).(26)

Let x ∈ R
N denote the coefficient vector of the ansatz

Φℓ =
N∑

j=1

xjχj(27)

and let g ∈ R
N be defined by gj := Gℓ(zj) for all zj ∈ Kℓ. With the matrices V,K ∈ R

N×N

defined in Section 3.3.2 and the mass matrix M ∈ R
N×N defined by

Mkj = 〈χk , ζj〉Γ for all j, k = 1, . . . , N,

the Galerkin formulation (26) is equivalently stated in terms of the linear system

Vx = Kg +
1

2
Mg.(28)

We stress that V is symmetric and positive definite since it stems from a scalar product,
i.e., Vij = 〈〈χi , χj〉〉V and hence y · Vy = 〈〈Ψℓ ,Ψℓ〉〉V > 0 with Ψℓ =

∑
j yjχj 6= 0 for

y ∈ R
N \ {0}.

4.3. (h− h/2)-error estimation and refinement indicators. Instead of discretizing the
correct variational form (22), in fact, we discretize

〈V φℓ , ψ〉Γ = 〈(K + 1/2)Gℓ , ψ〉Γ for all ψ ∈ H−1/2(Γ)(29)

with perturbed right-hand side, where we use the approximation Gℓ ≈ g. It is an analytical
observation that the error between the exact solution φ ∈ H−1/2(Γ) of (22) and the exact
solution φℓ ∈ H−1/2(Γ) of the perturbed formulation (29) is controlled by

|||φ− φℓ|||V . ‖h
1/2
ℓ (g −Gℓ)

′‖L2(Γ) =: oscD,ℓ,(30)

where (·)′ denotes the arc-length derivative, cf. [5, Section 4] for nodal interpolation and
[23, Section 3] for the L2-projection, respectively.
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With φℓ ∈ H−1/2(Γ) the exact solution of (29), the (h− h/2)-error estimator ηℓ from (9)
now reads

ηD,ℓ = |||Φ̂ℓ − Φℓ|||V .(31)

Under the saturation assumption (12), it controls the discretization errors

ηD,ℓ ≤ |||φℓ − Φℓ|||V . ηD,ℓ + oscD,ℓ(32)

where only the upper bound depends on the saturation assumption for the non-perturbed
problem, see [5, Section 4]. Altogether, (30)–(32) result in

|||φ− Φℓ|||V ≤ |||φ− φℓ|||V + |||φℓ − Φℓ|||V . oscD,ℓ + ηD,ℓ(33)

according to the triangle inequality.
As already mentioned, the non-locality of the integral operators leads to difficulties mea-

suring the local contribution of a function to its norm. In [20, Theorem 3.4], we prove
that

ηD,ℓ ≃ µ̃D,ℓ := ‖h
1/2
ℓ (Φ̂ℓ − ΠℓΦ̂ℓ)‖L2(Γ),(34)

Here, Πℓ : L2(Γ) → P0(Eℓ) is the L2-orthogonal projection onto the space of piecewise
constants, which is just the piecewise integral mean

Πℓψ|Ej
=

1

|Ej|

∫

Ej

ψ dΓ.

The estimator µ̃D,ℓ is stated in a weighted L2-norm and may thus be used to steer the local
mesh-refinement.

If we plot ηℓ and µ̃D,ℓ over the number of elements, from the equivalence (34) of estimators,
one can predict that the corresponding curves, for a sequence of arbitrarily refined meshes,
are parallel, cf. [15, 20].

The equivalence (34) as well as the error control (33) lead to the choice of ρℓ(Ej)
2 :=

µ̃D,ℓ(Ej)
2 + oscD,ℓ(Ej)

2 as error indicator to steer Algorithm 1. Based on results from [5, 6],
one can prove that this choice of ρℓ and the Dörfler marking criterion (7) guarantee limℓ ρℓ =
0, see [5, Theorem 5.4]. Therefore, if the saturation assumption (12) holds (at least for the
meshes generated), we obtain convergence of Φℓ to φ.

4.4. Implementation of adaptive algorithm. The Matlab script adaptiveSymm.m which
is contained in examples/laplace demonstrates the use of HILBERT. The adaptive loop
merely contains eight command lines. The discretization of the boundary data is performed
by the functions computeOscDirichlet and computeOscDirichletL2, which besides com-
puting the data oscillations, also return the coefficient vector of the discretized data Gℓ

from (24) or (25), respectively. The function buildSymmRHS computes the right-hand side
vector of (28) which corresponds to (K + 1/2)Gℓ. The linear system is solved with the
Matlab backslash-operator. The function computeEstSlpMuTilde provides the local quan-
tities µ̃D,ℓ(E)

2. The marking criterion (7) is implemented in markElements.
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Figure 3. Example 1 computed with given Dirichlet and unknown Neumann
data. For uniform mesh-refinement, the singularity of φ leads to a reduced

order of convergence O(#E
−2/3
ℓ ), whereas the adaptive strategy recovers the

optimal order of convergence O(#E
−3/2
ℓ ). Moreover, the adaptive scheme is

also superior with respect to computational time and memory consumption.

4.5. Numerical experiment. We perform Example 1 from Section 2.4.2 as benchmark and
compare the results obtained by the proposed adaptive algorithm with those obtained from a
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uniform approach. The Dirichlet data g = u|Γ is given, and the missing information φ = ∂nu
is computed by solving Symm’s integral equation. Figure 3 shows errors, error estimators,
and data oscillations with respect to the number of boundary elements, the computational
time, and the memory consumption, where we use nodal interpolation (24) of the Dirichlet
data. Since the Galerkin error in the energy norm can hardly be computed, we use the
additional regularity φ ∈ L2(Γ) and argue as in [5, Section 7] to prove the upper bound

|||φ− Φℓ|||V . ‖h
1/2
ℓ (φ− Φℓ)‖L2(Γ) + oscD,ℓ =: errD,ℓ + oscD,ℓ.

We stress that the inequalities

µ̃D,ℓ + oscD,ℓ . |||φ− Φℓ|||V + oscD,ℓ . errD,ℓ + oscD,ℓ

hold without appealing to the saturation assumption (12) and may thus serve to check
(12) numerically. The singularities of the analytical solution lead to a reduced order of

convergence O(#E
−2/3
ℓ ) when using uniform meshes. The adaptive algorithm, however,

resolves the singularities of the solution φ as well as of the given data g and reveals the optimal
convergence behavior. The more interesting information for practitioners is effectivity with
respect to computational resources. Figure 3 clearly shows that, in our experiment, the
overhead introduced by the adaptive algorithm is soon overcome due to higher order of
convergence. Using the L2-projection (25) to discretize the Dirichlet data, we observe the
same results (not displayed).

As mentioned in the introduction, a particular strength of the boundary element method
is that the representation formula (2) admits the definition of an approximate solution

Uℓ(x) = Ṽ Φℓ(x)− K̃Gℓ(x) for x ∈ Ω(35)

which, under certain assumptions, exhibits a high order pointwise convergence towards the
solution u of (18), see e.g. [34, Section 12.1]: More precisely, for smooth solution φ = ∂nu,
lowest-order boundary elements Φℓ ∈ P0(Eℓ), and exact Dirichlet data g = Gℓ, theory allows
for

|Uℓ(x)− u(x)| = O(h3ℓ) for x ∈ Ω

for uniform meshes Eℓ with mesh-size hℓ. For nodal interpolation (24) of the Dirichlet data,
this order is reduced to

|Uℓ(x)− u(x)| = O(h2ℓ) for x ∈ Ω,

while L2-projection of the Dirichlet data (25) onto S1(Eℓ) preserves third-order convergence,
cf. [34].

Although, the current theory of adaptive BEM is tailored to the energy norm, it might be
of interest how the adaptive algorithm behaves with respect to the pointwise error. To that
end, we compare uniform and adaptive mesh-refinement for both, nodal interpolation (24)
and L2-projection (25) of the Dirichlet data, in Figure 4. We plot the energy errors as well as
the point error for an example point x = (0.2, 0.13) ∈ Ω. Whereas the discretization of the
Dirichlet data does essentially not influence the convergence order of the energy errors, the
influence on the point error is visible. Moreover, the proposed adaptive algorithm recovers the
optimal orders even for the point error, i.e. we observe O(#E−3

ℓ ) in case of the L2-projection
and O(#E−2

ℓ ) in case of nodal interpolation.
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Figure 4. Example 1 for uniform and adaptive mesh-refinement, where the
given Dirichlet data are discretized by either nodal interpolation or the L2-
projection onto S1(Eℓ). Besides the error estimator ηD,ℓ, we plot the point
error errΩ,ℓ := |Uℓ(x) − u(x)| between the exact solution of (18) and its ap-
proximation (35) at the example point x = (0.2, 0.13) ∈ Ω. For uniform

mesh-refinement, the point error behaves like O(#E
−4/3
ℓ ), i.e. twice the order

of the energy error. Even for the point error, adaptivity recovers the theo-
retically optimal orders O(#E−2

ℓ ) and O(#E−3
ℓ ) for nodal interpolation resp.

L2-projection.

5. Neumann problem

5.1. Continuous model problem. In this section, we discuss the Neumann problem with
vanishing volume forces

−∆u = 0 in Ω with ∂nu = φ on Γ.(36)
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We assume that Γ is connected, i.e. Ω has no holes. Note that the PDE formulation (36)
implies a side constraint on φ, namely

∫

Γ

φ dΓ =

∫

∂Ω

∂nu dΓ =

∫

Ω

∆u dx = 0.(37)

The second equation of the Calderón system (6) yields the hypersingular integral equation

Wg = (1/2−K ′)φ on Γ,(38)

with

Wg(x) =
1

2π
∂nx

∫

Γ

(y − x) · ny

|x− y|2
g(y) dΓ(y)(39)

the hypersingular integral operator and K ′ the adjoint double layer potential defined by
〈Kφ, ψ〉 = 〈φ,K ′ψ〉. We stress that (38) is an equivalent formulation of (36). Recall that
W : H1/2+s(Γ) → H−1/2+s(Γ) and K ′ : H−1/2+s(Γ) → H−1/2+s(Γ) are linear and continuous
operators for all −1/2 ≤ s ≤ 1/2. Moreover, if the constant functions are factored out,
W : H1/2+s(Γ)/R → H−1/2+s(Γ)/R is even an isomorphism.

Formally, the Neumann data satisfy φ ∈ H
−1/2
∗ (Γ), where the subscript abbreviates the

constraint 〈φ , 1〉Γ = 0. We will, however, assume additional regularity φ ∈ L2(Γ). The exact
solution g ∈ H1/2(Γ) of the integral formulation (38) is the Dirichlet data u|Γ of the solution
u ∈ H1(Ω) of (36). Moreover, the additional regularity φ ∈ L2(Γ) of the data provides
additional regularity g ∈ H1(Γ) of the trace.

Due to Wc = 0 for all constant functions c ∈ R, the solutions of (36) and (38) are only
unique up to additive constants. To fix the additive constant, we consider the bilinear form

〈〈g , v〉〉W+S := 〈Wg , v〉Γ +
(∫

Γ

g dΓ
)(∫

Γ

v dΓ
)

for all g, v ∈ H1/2(Γ),(40)

which leads to the following variational form: Find g ∈ H1/2(Γ) such that

〈〈g , v〉〉W+S = 〈(1/2−K ′)φ , v〉Γ for all v ∈ H1/2(Γ).(41)

One can prove that 〈〈· , ·〉〉W+S from (40) defines a scalar product such that the induced
norm ||| · |||W+S is an equivalent norm on H1/2(Γ). Consequently, (41) has a unique solution g
which depends continuously on the Neumann data φ. Moreover, the solution automatically

satisfies g ∈ H
1/2
∗ (Γ), which follows from the constraint (37) on φ, and therefore also solves

(37).

5.2. Galerkin discretization. To discretize (41), we first replace the Neumann data φ ∈
L2(Γ) by its L2-projection Φℓ ∈ P0(Eℓ),

Φℓ|Ej
=

1

length(Ej)

∫

Ej

φ dΓ =: pj for all Ej ∈ Eℓ.(42)

According to this definition and φ ∈ H
−1/2
∗ (Γ), we see

∫

Γ

Φℓ dΓ =
∑

E∈Eℓ

∫

E

Φℓ dΓ =
∑

E∈Eℓ

∫

E

φ dΓ =

∫

Γ

φ dΓ = 0,
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i.e. Φℓ ∈ P0(Eℓ) ∩H
−1/2
∗ (Γ). Second, we replace the function space H = H1/2(Γ) in (41) by

the finite-dimensional space Xℓ = S1(Eℓ). Since S
1(Eℓ) is a subspace of H1/2(Γ), there exists

a unique Galerkin solution Gℓ ∈ S1(Eℓ) of the discretized problem

〈〈Gℓ , Vℓ〉〉W+S = 〈(1/2−K ′)Φℓ , Vℓ〉Γ for all Vℓ ∈ S1(Eℓ).(43)

As in the continuous case, the discrete solution Gℓ automatically satisfies
∫
Γ
Gℓ dΓ = 0, i.e.,

Gℓ ∈ S1(Eℓ) ∩H
1/2
∗ (Γ).

Recall the definition of p ∈ R
N from (42) and let x ∈ R

N denote the coefficient vector of
the ansatz

Gℓ =

N∑

j=1

xjζj.(44)

We recall the definition of the mass matrix M ∈ R
N×N from Section 4 as well as the

definition of the matrices K,W ∈ R
N×N from Section 3.3.2. With the rank-1 stabilization

matrix S ∈ R
N×N defined by

Skj =
( ∫

Γ

ζj dΓ
)(∫

Γ

ζk dΓ
)

for all j, k = 1, . . . , N,

the Galerkin system (43) is equivalently stated in terms of the linear system

(W + S)x =
1

2
MTp−KTp.(45)

Finally, we stress that the matrix W + S from (45) is symmetric and positive definite since
it stems from a scalar product, i.e., (W + S)ij = 〈〈ζi , ζj〉〉W+S and hence y · (W + S)y =
〈〈Vℓ , Vℓ〉〉W+S > 0 with Vℓ =

∑
j yjζj 6= 0 for y ∈ R

N \ {0}.

5.3. (h− h/2)-error estimation and refinement indicators. Instead of discretizing the
correct variational form (41), we discretize

〈〈gℓ , v〉〉W+S = 〈(1/2−K ′)Φℓ , v〉Γ for all v ∈ H1/2(Γ)(46)

with perturbed right-hand side, where we use the approximation Φℓ ≈ φ. Analytically, the
error between the exact solution g ∈ H1/2(Γ) of (41) and the exact solution gℓ ∈ H1/2(Γ) of
the perturbed formulation (46) is controlled by the data oscillations [5, Section 4],

|||g − gℓ|||W+S . ‖h
1/2
ℓ (φ− Φℓ)‖L2(Γ) =: oscN,ℓ,(47)

As for Symm’s integral equation, the error estimator ηN,ℓ = |||Ĝℓ−Gℓ|||W from (9) controls
the discretization error by

ηN,ℓ := |||Ĝℓ −Gℓ|||W = |||Ĝℓ −Gℓ|||W+S

≤ |||gℓ −Gℓ|||W+S . ηN,ℓ + oscN,ℓ,
(48)

where the upper bound relies of the saturation assumption for the non-perturbed problem.
This again leads to

|||g −Gℓ|||W+S ≤ |||g − gℓ|||W+S + |||gℓ −Gℓ|||W+S . oscN,ℓ + ηN,ℓ(49)

according to the triangle inequality and (47).
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We stress that we are now dealing with different norms than in the case of the Dirichlet
problem. In [16], it is proven that

ηN,ℓ ≃ µ̃N,ℓ := ‖h
1/2
ℓ (Ĝℓ − IℓĜℓ)

′‖L2(Γ).(50)

The nodal interpolation operator Iℓ : C(Γ) → S1(Eℓ) is defined as in (24).
We need to estimate both, the Galerkin error and the data-discretization error which leads

to the choice of ρℓ(Ej)
2 := µ̃N,ℓ(Ej)

2+oscN,ℓ(Ej)
2 as error indicator to steer Algorithm 1. As

discussed in Section 4.4, and similar to [5, Section 5], we prove that our adaptive algorithm
guarantees limℓ ρℓ = 0 for the hypersingular integral equation. Therefore, if the saturation
assumption holds (at least for the meshes Eℓ generated), we obtain convergence of Gℓ to g.

5.4. Implementation of adaptive algorithm. The Matlab script adaptiveHypsing.m
which is contained in examples/laplace demonstrates the use of HILBERT. The adaptive loop
merely contains 9 command lines. The discretization of the boundary data is performed by
the function computeOscNeumann which besides computing the data oscillations also returns
the coefficient vector of the discretized data. The stabilization matrix S is computed by
the function buildHypsingStabilization. The function buildHypsingRHS computes the
right-hand side (1/2−K ′)Φℓ in (45). The linear system is solved with the Matlab backslash
operator. The function computeEstHypsingMuTilde provides the local quantities µ̃N,ℓ(E)

2.

5.5. Numerical experiment. We perform Example 1 as benchmark and compare the re-
sults obtained by the proposed adaptive algorithm with those from a uniform approach. The
Neumann data φ = ∂nu is given, and the missing information g = u|Γ is computed by solving
the hypersingular integral equation. Since the Galerkin error in the energy norm can hardly
be computed, we use the additional regularity g ∈ H1(Γ) and argue as in in the case of the
Dirichlet problem to obtain the upper bound

|||g −Gℓ|||W+S . ‖h
1/2
ℓ (g −Gℓ)

′‖L2(Γ) + oscN,ℓ =: errN,ℓ + oscN,ℓ.

We stress that the inequalities

µ̃N,ℓ + oscN,ℓ . |||g −Gℓ|||W+S + oscN,ℓ . errN,ℓ + oscN,ℓ

hold without appealing to the saturation assumption (12) and may thus serve to check (12)
numerically. Figure 5 shows error, error estimators, and data oscillations with respect to
the number of boundary elements, the computational time, and the memory consumption.

The singularities of the Cauchy data lead to a reduced order of convergence O(#E
−2/3
ℓ )

when using uniform meshes. Again, the adaptive algorithm reveals the optimal convergence
behavior. Moreover, the adaptive approach in our experiment is clearly superior to a uniform
strategy in the sense that available computational resources are used more efficiently.

6. A mixed boundary value problem for the Poisson equation

In this section, we use the techniques introduced in Section 4–5 to solve a mixed boundary
value problem. Additionally, we consider non-vanishing volume forces:

−∆u = f in Ω,

u = gD on ΓD,

∂nu = φN on ΓN ,

(51)
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Figure 5. Example 1 computed with given Neumann and unknown Dirichlet
data. For uniform mesh-refinement, the singularities of the Cauchy data lead

to a reduced order of convergence O(#E
−2/3
ℓ ), whereas the adaptive strategy

recovers the optimal order of convergence O(#E
−3/2
ℓ ). Moreover, the adaptive

scheme is also superior with respect to computational time and memory con-
sumption.
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where ΓN is assumed to be connected. For the equivalent integral formulation of (51), we
choose (and fix) arbitrary extensions gD ∈ H1/2(Γ) and φN ∈ H−1/2(Γ) of the given data
from ΓD and ΓN , resp., to the entire boundary Γ. The missing boundary data, which have
to be computed, are

gN := u|Γ − gD and φD := ∂nu− φN .(52)

With Γ∗ ⊆ Γ, we consider Sobolev spaces H1/2(Γ∗) = {v|Γ∗
| v ∈ H1/2(Γ)} and its dual

H̃−1/2(Γ∗) := H1/2(Γ∗)
∗. Moreover, let H̃1/2(Γ∗) := {v|Γ∗

| v ∈ H1/2(Γ) and v|Γ\Γ∗
= 0} with

dual space H−1/2(Γ∗) := H̃1/2(Γ∗)
∗. With the so-called Calderón projector

A =

(
−K V
W K ′

)
,(53)

the unknown data gN ∈ H̃1/2(ΓN) and φD ∈ H̃−1/2(ΓD) then satisfy the system of integral
equations

A

(
gN
φD

)
= (1/2−A)

(
gD
φN

)
−

(
N0f
N1f

)
=: F on ΓD × ΓN .(54)

The definition

|||(gN , φD)|||
2
A := 〈〈(gN , φD) , (gN , φD)〉〉A

= 〈WgN , gN〉ΓN
+ 〈V φD , φD〉ΓD

(55)

provides a norm on H = H̃1/2(ΓN) × H̃−1/2(ΓD) which is equivalent to the usual product
norm, i.e., the bilinear form on the right-hand side is continuous and elliptic, but now lacks
symmetry.

In order to provide black-box schemes to solve (54), we do not only discretize the given
boundary data, but also the volume forces. To that end, let Tℓ denote a triangulation of
the domain Ω with Tℓ|Γ = Eℓ. We then replace N0f by N0Fℓ with Fℓ = πℓf ∈ P0(Tℓ) the
L2-orthogonal projection of f onto the space of piecewise constants over Tℓ. To compute an
approximation of N1f , we use the well-known identity

N1 = (−1/2 +K ′)V −1N0,(56)

see [34, Lemma 6.20], which follows from the idempotency of the Calderón system (6) for
f = 0. The discrete scheme now reads as follows: First, we solve Symm’s integral equation

〈V Λℓ , Ψℓ〉=〈N0Fℓ , Ψℓ〉 for all Ψℓ ∈ P0(Eℓ)(57)

to obtain an approximation Λℓ ≈ V −1N0f . In the next step, we seek a solution Uℓ =
(GN,ℓ,ΦD,ℓ) ∈ S1(Eℓ|ΓN

)× P0(Eℓ|ΓD
) of the mixed problem

〈〈Uℓ ,Vℓ〉〉A = 〈Fℓ , Vℓ〉H⋆×H for all Vℓ ∈ S1(Eℓ|ΓN
)× P0(Eℓ|ΓD

),

where

Fℓ := (1/2− A)

(
IℓuD
ΠℓφN

)
−

(
N0Fℓ

(−1/2 +K ′)Λℓ

)
.

The algorithm for solving a mixed problem with volume force may be sketched as follows:

• Input: volume mesh Tℓ, boundary mesh Eℓ = Tℓ|Γ.
• Compute g = UD,ℓ = IℓuD, p = ΦN,ℓ = ΠℓφN and f = Fℓ = πℓf .
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• Solve the linear system

Vy = Nf .(58)

• Solve the linear system
(
W|ΓN×ΓN

KT |ΓN×ΓD

−K|ΓD×ΓN
V|ΓD×ΓD

)
x =

((
1
2
pTM− pTK− gTW

)T
− (1

2
MT −KT )y|ΓN(

1
2
Mg +Kg −Vp−Nf

)
|ΓD

)
.

(59)

For details, the reader is referred to [5, Section 6].

6.1. A posteriori error estimate for the mixed problem. Note that the energy norm
||| · |||A induced by the Calderón projector A can be written in terms of the energy norms

||| · |||V (ΓD) and ||| · |||W (ΓN ) induced by the simple-layer potential V ∈ L(H̃−1/2(ΓD);H
1/2(ΓD))

and the hypersingular integral operator W ∈ L(H̃1/2(ΓN);H
−1/2(ΓN)) with respect to the

boundary parts ΓN and ΓD, respectively. According to (55), there holds

|||(uN , φD)|||
2
A = |||uN |||

2
W (ΓN ) + |||φD|||

2
V (ΓD).

For a posteriori error estimation of the Galerkin error and the data oscillations on the bound-
ary, we may therefore use the estimators introduced above for the Dirichlet and Neumann
problem.

To include the discretization error introduced by solving (58), we use the local error
estimator

µ̃2
V,ℓ = ‖h

1/2
ℓ (1−Πℓ)Λ̂ℓ‖

2
L2(Γ),

where Λ̂ℓ is the solution of (57) with respect to the fine mesh Êℓ.
To steer an adaptive mesh-refining algorithm, it is therefore natural to use the combined

error estimator

ρ2ℓ := µ̃2
ℓ + osc2ℓ = (µ̃2

Γ,ℓ + osc2Γ,ℓ) + (µ̃2
V,ℓ + osc2V,ℓ),

where osc2V,ℓ := ‖hℓ(Fℓ − f)‖2L2 denote the data oscillations of the volume forces. The
estimator µ̃Γ,ℓ(E) and oscΓ,ℓ(E) are either µ̃D,ℓ(E), oscD,ℓ(E) or µ̃N,ℓ(E), oscN,ℓ(E) in the
case of E ⊆ ΓD or E ⊆ ΓN , respectively. The complexity of the implementation of the
adaptive algorithm for the mixed boundary value problem is significantly higher than in the
simpler cases discussed earlier. The example file adaptiveMixedVol.m, which is contained in
the examples/laplace folder, demonstrates how the adaptive scheme can be implemented
with HILBERT. The adaptive loop still only contains 33 command lines.

6.2. Numerical experiment. We compute the numerical solution of Example 2. The
results of the numerical experiment are visualized in Figure 6. For the refinement of the
volume mesh we use newest-vertex bisection where marked triangles are bisected, see e.g.
[36, Chapter 5]. Further refinements are performed to ensure regularity of the volume mesh
and the constraint Tℓ|Γ = Eℓ. The last condition has turned out to increase stability of the
integral operators as implemented in HILBERT.

In case of uniform mesh-refinements, we simply perform three bisections per triangle, i.e.
all edges of Tℓ are halved.
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Figure 6. Example 2 computed with mixed boundary data. For uniform
mesh-refinement, the singularities of φ and N1f lead to reduced order of con-

vergence O(#E
−4/7
ℓ ), whereas the adaptive strategy recovers the optimal order

of convergence O(#E
−3/2
ℓ ). Even though the volume data f has a weak sin-

gularity, a reduction of order of convergence due to bad resolution of f in the
uniform case is not observed.

Recall that the volume forces have a weak singularity at (0.14, 0.14). However, the data
oscillations of f seem to decay fast enough in the sense that the order of convergence with
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respect to the number of boundary elements is not limited by resolution of volume data in
practice. However, strong generic singularities of φ and N1f at the reentrant corner limit the

convergence behavior to approximately O(#E
−4/7
ℓ ) in the case of uniform mesh-refinement.

Our adaptive algorithm now additionally measures the error due to the approximation
of N1f and data oscillations of f over Tℓ. It recovers the mathematically optimal order

of convergence O(#E
−3/2
ℓ ). Moreover, as in the other case studies, the accuracy of the

computation is increased with respect to computational time. Since Example 2 includes the
computation of the Newtonian potential N0f , the figure showing the error and estimators
with respect to memory consumption now also takes the storage requirements of N into
account. It is remarkable that the adaptive approach is significantly superior to a uniform
approach even then.

7. Conclusions and remarks

Features. The Matlab program package HILBERT provides stable implementations of
the discrete integral operators corresponding to the 2D Laplacian as well as many other
functions necessary for an easily accessible implementation of adaptive BEM. In this paper,
only a short presentation of the library is possible. However, HILBERT is distributed with
a full documentation [2] and many example benchmarks. Some of these have gently been
proposed at conferences by colleagues in order to stress-test our proposed adaptive approach
under difficult conditions. Besides the features presented here, HILBERT comes along with
many visualization tools, further error estimators, and different marking strategies.

The program package includes several example files like e.g. adaptiveSymm,
adaptiveHypsing, and adaptiveMixedVol, to illustrate that adaptive BEM may be eas-
ily implemented by use of HILBERT. This makes the tool not only interesting for scien-
tists, but also for lecturers planning classes on BEM or scientific computing. The software
is under constant development, and updates are released continuously. In the near fu-
ture, functionality for the numerical solution of transmission problems by use of adaptive
FEM-BEM coupling as well as linear elasticity will be included (visit the project webpage
http://www.asc.tuwien.ac.at/abem/hilbert for detailed information on the ongoing de-
velopment).

The recent progress in the analytical understanding of adaptivity in general and in the
context of BEM specifically, allows to implement mathematically justified adaptive algo-
rithms, which automatically resolve the singularities of both, analytical solution and given
data. We observe that our proposed algorithm — based on easy-to-implement (h−h/2)-type
error estimators — empirically succeeds to recover the optimal order of convergence in all
benchmarks performed so far. One of the aims of the authors is to emphasize the use of
adaptivity and to make the concept more accessible to practitioners.

Restrictions. HILBERT is academic code in the sense that a Matlab implementation
generically might be too slow for use in industrial applications. Moreover, HILBERT currently
only provides implementations of the integral operators associated with the 2D Laplacian.
It is restricted to lowest order elements and the canonical basis functions.

The most important restriction for practitioners might be that resolution of geometry is,
so far, not included in the error estimation. In particular, all analytical results as well as the
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implementation demand Ω to be a polygonal domain, and boundary elements are chosen to
be affine line segments.
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