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Convergence of adaptive FEM for elliptic obstacle problems

Michael Feischl1,, Marcus Page1,∗, andDirk Praetorius1,

1 Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstraße 8-10, A-1040
Wien, Austria

We treat the convergence of adaptive lowest-order FEM for some elliptic obstacle problem with affine obstacle. For error
estimation, we use a residual error estimator which is an extended version of the estimator from [2] and additionally controls
the data oscillations. The main result states that an appropriately weighted sum of energy error, edge residuals, and data
oscillations satisfies a contraction property that leads to convergence. In addition, we discuss the generalization to the case of
inhomogeneous Dirichlet data and non-affine obstaclesχ ∈ H2(Ω) for which similar results are obtained.

1 Introduction and Model Problem

In the past decades, adaptive finite element methods for elliptic boundary value problems have been intensively studied and
are now a popular tool in science and engeneering, see [1] and the references therein. In recent years, the analysis has been
extended to cover more general applications, such as mixed methods, non-conforming elements, and obstacle problems [2].
The latter is a classic introductory example to study nonlinear problems characterized by variational inequalities. The aim
of our work is twofold: First, we provide a numerical scheme for variational inequalities that arise from many physical
phenomena [5]. Second, by extending the mathematical analysis to new problems, we contribute to the understanding of the
method itself.

Throughout, we consider the following model problem: LetΩ ⊂ R
2 be a bounded domain with polygonal boundary

Γ := ∂Ω. We prescribe an obstacle onΩ by an affine functionχ with χ ≤ 0 onΓ. The setA of admissible functions reads

A := {v ∈ H1
0 (Ω) : v ≥ χ a.e. inΩ}. (1)

It is closed, convex, and non-empty. For givenf ∈ L2(Ω), we consider the energy functionalJ (v) = 〈〈v , v〉〉/2 − (f, v),
where the energy scalar product reads〈〈u , v〉〉 =

∫
Ω
∇u · ∇v dx for all u, v ∈ H1

0 (Ω) and where(f, v) =
∫
Ω
fv dx denotes

theL2-scalar product. By||| · |||, we denote the energy norm onH1
0 (Ω) induced by〈〈· , ·〉〉. The obstacle problem then reads:

Find u ∈ A such that

J (u) = min
v∈A

J (v). (2)

It is well known, that this problem admits a unique solution that is equivalently characeterized by the variational inequality

〈〈u , u− v〉〉 ≤ (f, u− v) for all v ∈ A. (3)

For discretization of (3), we consider conforming and shape regular triangulationsTℓ of Ω and denote the standard P1-FEM
space of globally continuous and piecewise affine functions byS1(Tℓ). The finite dimensional problem then reads:Find
Uℓ ∈ Aℓ := A ∩ S1(Tℓ) such thatJ (Uℓ) = min

Vℓ∈Aℓ

J (Vℓ). Again, this problem can equivalently be stated in terms of a

variational inequality (3).

2 Reliable Error Estimator and Convergence of adaptive FEM

Now, letEΩ
ℓ (resp.Eℓ) denote the set of all interior (resp. all) edges ofTℓ. ForE ∈ EΩ

ℓ , the patch is defined byΩℓ,E := T+∪T−

with T± ∈ Tℓ andT+∩T− = E. To steer the adaptive mesh-refinement, we use some residual-based error estimator that has
basically been introduced in [2]

η2ℓ := ρ2ℓ + osc2ℓ with ρ2ℓ =
∑

E∈EΩ

ℓ

ρℓ(E)2 and osc2ℓ =
∑

E∈Eℓ

oscℓ(E)2. (4)

First, ρℓ(E)2 := hE‖[∂nUℓ]‖
2
L2(E) for E ∈ Eℓ denotes the weightedL2-norm of the normal jump, wherehE = diam(E)

and[·] the jump over an interior edge. Second,oscℓ(E)2 := |Ωℓ,E |‖f − fΩℓ,E
‖2L2(Ωℓ,E) are the oscillations off overE, for
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Fig. 1 Numerical results for uniform and adaptive mesh
refinement with adaptivity parameterθ = 0.6
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Fig. 2 Numerical results for
√
εℓ for uniform and adaptive

mesh refinement withθ ∈ {0.2, 0.4, 0.6, 0.8}

E ∈ Eℓ, wherefΩℓ,E
denotes the corresponding integral mean. Finally, for edgesE on the boundary,ηℓ involves the weighted

element residualsoscℓ(E)2 := |T |‖f‖L2(T )2 for E ∈ Eℓ\E
Ω
ℓ , whereT ∈ Tℓ is the unique element withE ⊆ ∂T ∩ Γ. It is

already observed in [2] thatηℓ is reliable.
We can now state our main result from [6] for a standard P1-AFEM algorithm of the form

Solve 7−→ Estimate 7−→ Mark 7−→ Refine

Theorem 2.1 Using the strategy proposed by Dörfler [4] for marking, i.e. determine (minimal) setMℓ ⊆ Eℓ s.t.

θη2ℓ ≤
∑

E∈EΩ

ℓ
∩Mℓ

ρℓ(E)2 +
∑

E∈Eℓ∩Mℓ

oscℓ(E)2 (5)

for some fixed adaptivity parameter0 < θ < 1 and halving at least the marked edgesE ∈ Mℓ, the adaptive algorithm
guarantees the contraction property

∆ℓ+1 ≤ κ∆ℓ for all ℓ ∈ N, where∆ℓ := J (Uℓ)− J (u) + γη2ℓ . (6)

The constants0 < γ, κ < 1 depend only onθ and the shape of elements inT0. In particular, this implieslim
ℓ→∞

J (Uℓ) = J (u)

as well as lim
ℓ→∞

|||u− Uℓ||| = 0 = lim
ℓ→∞

ηℓ.

Remark 2.2 In the case of non-homogeneous Dirichlet boundary data or non-affine obstaclesχ ∈ H2(Ω), we get the
slightly weaker result̃∆ℓ+1 ≤ κ ∆̃ℓ +αℓ for a certain zero sequenceαℓ ≥ 0 with limℓ αℓ = 0. Elementary calculus then also
proveslim ∆̃ℓ = 0. Here,∆̃ℓ denotes a similar combined error quantity that additionally involves estimator terms that control
the approximation of the given Dirichlet data, see [7].

3 Numerical Experiment

We consider an example from [2,6] with constant obstacleχ ≡ 0 on the L-shaped domainΩ := (−2, 2)2\[0, 2)×(−2, 0]with
a corner singularity at the origin. In Figure 1, we compare errorεℓ :=

(
J (Uℓ)−J (u)

)
, estimatorηℓ, and oscillationsoscℓ of

uniform and adaptive refinement forθ = 0.6. Figure 2 additionally shows a comparison of the errors of adaptive refinement,
whereθ varies between0.2 and0.8, and uniform refinement. We can see that the convergence rate for adaptive refinement
almost coincides for all choices ofθ.
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