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Abstract

An almost Pontryagin space can be written as the direct and orthogo-
nal sum of a Hilbert space, a finite-dimensional anti-Hilbert space, and a
finite-dimensional neutral space. In this paper various constructions with
such spaces are considered. In particular, orthogonal sums of almost Pon-
tryagin spaces and completions to almost Pontryagin spaces are treated
in detail.

AMS MSC 2010: Primary 46C20, Secondary 15A63

Keywords: almost Pontryagin space, degenerate space, orthogonal coupling,

completion.

1 Introduction

The notion of an almost Pontryagin space was introduced in [KWW] as a gener-
alization of the more familiar notion of a Pontryagin space. A Pontryagin space
is an inner product space which can be written as the direct and orthogonal
sum of a Hilbert space and a finite-dimensional anti-Hilbert space, whereas an
almost Pontryagin space can be written as the direct and orthogonal sum of a
Hilbert space, a finite-dimensional anti-Hilbert space, and a finite-dimensional
neutral space.

The introduction of these more general objects was motivated by several
classical interpolation and extrapolation problems. The following example may
be illuminating. Let the continuous function f : [−2a, 2a] → C be hermitian
(i.e., f(−t) = f(t)) with κ negative squares (i.e., the kernel f(t − s), s, t ∈
(−a, a) has κ negative squares). Then f has exactly one continuous hermitian
extension to R with κ negative squares or it has infinitely many continuous
hermitian extensions to R with κ negative squares. In the latter case f has also
infinitely many continuous hermitian extensions to R with κ1 negative squares
for every κ1 ≥ κ. This result originates from the usual operator theoretic
considerations involving the Pontryagin space induced by the problem. However,
in the first case of the alternative it turns out that there exists a number 0 <
∆ ≤ ∞ such that f has no continuous hermitian extensions to R with κ1
negative squares for κ < κ1 < κ+∆, and infinitely many continuous hermitian
extensions to R with κ1 negative squares for κ1 ≥ κ + ∆, cf. [KW1]. This
addition to the case where f has a unique extension originates from operator
theoretic considerations involving an almost Pontryagin space induced by the
problem. For other appearances of almost Pontryagin spaces (sometimes only
implicitly), see [W], [KW2], [KW3], [PT].

In order to treat a broad range of classical problems involving degenerate
cases it is necessary to develop an extension theory for symmetric operators or
relations in almost Pontryagin spaces. The theory of such extensions depends
on various geometric operations within the class of almost Pontryagin spaces. It
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is the purpose of the present paper to make available some such constructions.
Although we are mainly having in mind our needs in the forthcoming treatment
of exit space extensions of symmetric relations in [SW1], [SW2], [SW3], we
believe that the general geometric theory discussed in the present paper is also
of independent interest.

The paper is organized in six sections. After this introduction, in Section 2,
we recall some facts about almost Pontryagin spaces. In Section 3 we deal with
direct (but not necessarily orthogonal) sums of general inner product spaces,
the topic considered in Section 4 is orthogonal coupling of inner product spaces.
The problem to associate a Pontryagin space with a given almost Pontryagin
space can be solved via factorization or by extension. This topic is treated in
Section 5. In Section 6 we investigate almost Pontryagin space completions, a
topic which has already been adressed in [KWW]. In the present paper we use
a different approach, which gives more complete and structured results.

Our standard reference for the geometry of inner product spaces is [B]. For
Pontryagin space theory, we also refer the reader to [IKL].

2 Preliminaries on almost Pontryagin spaces

We start with recalling the definition of almost Pontryagin spaces and their
morphisms.

An inner product space is a pair consisting of a linear space L and an inner
product [., .] on L. We will usually not mention the inner product [., .] explicitly,
and speak of an inner product space L. The negative index of an inner product
space L is defined as

ind− L := sup
{
dimN : N negative subspace of L

}
∈ N0 ∪ {∞} ,

where a subspace N of L is called negative, if [x, x] < 0, x ∈ N \{0}. Moreover,
L◦ denotes the isotropic part of L, i.e. L◦ := L ∩ L⊥, and ind0 L := dimL◦ is
called the degree of degeneracy of L. If ind− L = 0, we speak of a nondegener-
ated inner product space, otherwise we call L degenerated.

2.1 Definition. An almost Pontryagin space (aPs, for short) is a triple
〈A, [., .], T 〉 consisting of a linear space A, an inner product [., .] on A, and
a topology T on A, such that

(aPs1) T is a Banach space topology on A;

(aPs2) [., .] is T -continuous;

(aPs3) There exists a T -closed linear subspace M of A with finite codi-
mension such that 〈M, [., .]〉 is a Hilbert space.

�

Again we will often suppress explicit notation of the inner product [., .] and
the topology T , and speak of an almost Pontryagin space A.

Note that the subspace M in (aPs3) is complemented in the Banach space
A. With help of the open mapping theorem, one can easily deduce that the
topology T is actually induced by some Hilbert space inner product on A.
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2.2 Remark. In order to provide a more concrete picture of almost Pontryagin
spaces, let us recall [KWW, Proposition 2.5].

(i) Let A be an almost Pontryagin space. Then there exist closed subspaces
A+ and A− of A, such that 〈A+, [., .]〉 is a Hilbert space, 〈A−,−[., .]〉 is a
negative subspace with dimA− = ind− A <∞, and

A = A+[+̇]A−[+̇]A◦ .

where ‘[+̇]’ denotes a direct and orthogonal sum.

(ii) Let 〈A+, [., .]+〉 be a Hilbert space, let 〈A−, [., .]−〉 be a finite dimensional
negative inner product space, and let A0 be a finite dimensional linear
space. Let A0 be endowed with the euclidean topology, and let A+ and
A− carry their natural topologies induced by the inner product.

We define a linear space A as

A := A+ ×A− ×A◦ ,

an inner product on A as

[
(x+, x−, x0), (y+, y−, y0)

]
:= [x+, y+]+ + [x−, y−],

(x+, x−, x0), (y+, y−, y0) ∈ A ,

and a topology on A as the product topology of A+, A−, and A0. Then
A is an almost Pontryagin space.

�

2.3 Remark. Pontryagin spaces form a subclass of almost Pontryagin spaces. In
fact, if 〈A, [., .], T 〉 is an aPs, then 〈A, [., .]〉 is a Pontryagin space if and only if
ind0 A = 0. Conversely, let 〈A, [., .]〉 be a Pontryagin space. If T denotes the
natural topology of A, then 〈A, [., .], T 〉 is an aPs. These facts have been shown
in [KWW, Corollar 2.7]. �

2.4 Definition. Let A1 and A2 be almost Pontryagin spaces. A map φ : A1 →
A2 is called a morphism from A1 to A2, if it is linear, isometric, continuous,
and maps closed subspaces of A1 onto closed subspaces of A2.

A morphism φ : A1 → A2 is called an isomorphism, if there exists a mor-
phism ψ : A2 → A1, such that ψ ◦ φ = idA1

and φ ◦ ψ = idA2
. �

Next we recall some basic results concerning almost Pontryagin spaces.
Proofs of these facts can be found in [KWW, §3].

2.5 Remark.

(i) Let L1 and L2 be inner product spaces, and let φ : L1 → L2 be linear and
isometric. Then φ−1

(
[ranφ]◦

)
= L◦

1. In particular, kerφ ⊆ L◦
1. Hence, if

L1 is nondegenerated, then φ is injective.

(ii) Let A1 and A2 be Pontryagin spaces with ind− A1 = ind− A2, and let
φ : A1 → A2 be a map. Then φ is a morphism if and only if φ is linear
and isometric.
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(iii) Let A1 and A2 be aPs and let φ : A1 → A2 be a map. If φ is linear,
isometric, continuous and surjective, then φ is a morphism.

(iv) Let A1 and A2 be aPs and let φ : A1 → A2 be a map. Then φ is an
isomorphism if and only if φ is linear, isometric, continuous, and bijective.

(v) Let A be an aPs and let A0 be a closed subspace of A. Then A0 is, with
the inner product and topology naturally inherited from A, an aPs. The
set-theoretic inclusion map ⊆: A0 → A is a morphism.

(vi) Let A be an aPs and let B be a linear subspace of A◦. Then A/B is, with
the inner product and topology naturally inherited from A, an aPs. The
canonical projection π : A → A/B is a morphism.

(vii) Let A1 and A2 be aPs and let φ : A1 → A2 be a morphism. Then there
exits a unique isomorphism φ̃ : A1/kerφ → ranφ, such that

A1
φ //

π

��

A2

A1/kerφ
φ̃

// ranφ

⊆

OO

�

3 Direct sums of inner product spaces

In this section we formalize decompositions of an inner product space into a
direct, but not necessarily orthogonal, sum. When considering just the inner
product structure, this construction is completely elementary, one might say
trivial, and is carried out only to provide the appropriate machinery. Things
change, however, when turning to almost Pontryagin spaces; including topolog-
ical aspects into the discussion makes matters significantly more involved.

In order to motivate the below definition, consider an inner product space
L and two linear subspaces L1,L2 of L. Then L1 and L2 are themselves inner
product spaces, namely with the inner product inherited from L. Each element
x1 ∈ L1 gives rise to a linear functional on L2, namely by [., x1]L : x2 7→
[x2, x1]L. Moreover, the map

c :

{
L1 → L∗

2

x1 7→ [., x1]L
(3.1)

where L∗
2 denotes the algebraic dual of L2, is conjugate linear. Clearly, the inner

product of arbitrary elements of L1 + L2 can be recovered as

[
x1 + x2, y1 + y2

]

L
= [x1, y1]L1

+ c(x1)y2 + c(y1)x2 + [x2, y2]L2
,

x1, y1 ∈ L1, x2, y2 ∈ L2 .
(3.2)

3.1 Definition. Let L1 and L2 be two inner product spaces, whose inner prod-
ucts are denoted by [., .]1 and [., .]2, respectively. Moreover, let

c : L1 → L∗
2
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be a conjugate linear map of L1 into the algebraic dual space of L2. Denote by
L1⋉c L2 the inner product space whose carrier vector space is equal to L1×L2

and whose inner product is defined as

[
(x1, x2), (y1, y2)

]

c
:= [x1, y1]1 + c(x1)y2 + c(y1)x2 + [x2, y2]2,

x1, y1 ∈ L1, x2, y2 ∈ L2

�

The fact that [., .]c actually is an inner product follows with a straightforward
computation using that c is conjugate linear.

3.2 Example. Let L1 and L2 be inner product spaces. The zero map 0 : L1 → L∗
2,

0(x1)x2 := 0, is conjugate linear. We have

L1 ⋉0 L2 = L1[+̇]L2 .

�

We have natural embeddings of Lj into L1 ⋉c L2, namely the maps ιc,j
defined as

ιc,1(x) := (x, 0), x ∈ L1, ιc,2(x) := (0, x), x ∈ L2 . (3.3)

These are injective and isometric, and

L1 ⋉c L2 = ran ιc,1+̇ ran ιc,2 ,

where ‘+̇’ denotes a direct sum. Hence, we may consider L1 and L2 as summands
in a direct sum decomposition of L1 ⋉c L2. Remembering our preliminary
computation (3.2), conversely, each decomposition of an inner product space L
into a direct sum gives rise to a representation L = L1 ⋉c L2 where c is as in
(3.1). This fact can be formulated in a slightly more general way.

3.3 Proposition. Let L1 and L2 be inner product spaces. Moreover, let L be

an inner product space together with isometric maps ι′j : Lj → L, j = 1, 2. Then
there exists a unique conjugate linear map c : L1 → L∗

2 such that

L1

ιc,1 //

ι′1 $$I
IIIIIIIII L1 ⋉c L2

φ

��

L2

ιc,2oo

ι′2zzuuuuuuuuuu

L

(3.4)

with some isometric linear map φ : L1 ⋉c L2 → L. Explicitly, c is given as

c :

{
L1 → L∗

2

x1 7→
(
x2 7→ [ι′2(x2), ι

′
1(x1)]L

) (3.5)

The map φ in the diagram (3.4) is uniquely determined. Explicitly, φ is given

as

φ :

{
L1 ⋉c L2 → L
(x1, x2) 7→ ι′1(x1)+ι

′
2(x2)

(3.6)

Moreover, we have

kerφ =
{
(x1, x2) : ι

′
1(x1) = −ι′2(x2)

}
, ranφ = ran ι′1 + ran ι′2 . (3.7)
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Proof. Let c and φ be defined by (3.5) and (3.6). A short calculation will show
that φ is isometric. By the definition of ιc,j , the diagram (3.4) commutes. We
have φ(x1, x2) = 0 if and only if ι′1(x1) = −ι′2(x2). Hence, the kernel of φ has
the asserted form. Moreover, clearly, ranφ = ran ι′1 + ran ι′2.

It remains to show uniqueness of c and φ. Assume that c′ : L1 → L∗
2 is

conjugate linear and that there exists an isometric map φ′ of L1 ⋉c′ L2 into L
which makes the diagram (3.4) commute. Then

c′(x1)x2 =
[
ιc′,2(x2), ιc′,1(x1)

]

c′
=

[
φ′(ιc′,2(x2)), φ

′(ιc′,1(x1))
]

L
=

=
[
ι′2(x2), ι

′
1(x1)

]

L
= c(x1)x2, x1 ∈ L1, x2 ∈ L2 ,

i.e. c′ = c. The map φ is uniquely determined by (3.4) since the ranges of ιc,1
and ιc,2 jointly span L1 ⋉c L2. ❑

3.4 Corollary. Let L1 and L2 be inner product spaces. Moreover, let c : L1 →
L∗
2 be conjugate linear. Then there exists a unique conjugate linear map ĉ :

L2 → L∗
1 such that

L1
ιĉ,1

xxpppppppp ιc,1

''NNNNNNNN

L2 ⋉ĉ L1
φ // L1 ⋉c L2

L2

ιĉ,2

ggNNNNNNNN ιc,2

88pppppppp

(3.8)

with some isometric linear map φ. Explicitly, c is given as

ĉ(x2)x1 = c(x1)x2 . (3.9)

The map φ in the diagrams (3.8) is uniquely determined. Explicitly, φ is given

as

φ
(
(x2, x1)

)
= (x1, x2) . (3.10)

The map φ is bijective.

Proof. Applying Proposition 3.3 with the spaces L2 and L1, and

L := L1 ⋉c L2, ι′1 := ιc,2, ι
′
2 := ιc,1 ,

gives the mappings ĉ and φ as asserted in (3.9) and (3.10). ❑

The next result gives some of information about the isotropic part of L1 ⋉c L2.
For a linear space L and a subset M of L∗, we denote by ⊥M its left annihilator
with respect to the natural duality between L and L∗, i.e.

⊥M :=
{
x ∈ L : f(x) = 0, f ∈M

}
.

3.5 Proposition. Let L1 and L2 be inner product spaces and let c : L1 → L∗
2

be conjugate linear. Then

ιc,1(L1) ∩
(
L1 ⋉c L2

)◦
= ιc,1

(
L◦
1 ∩ ker c

)
,

ιc,2(L2) ∩
(
L1 ⋉c L2

)◦
= ιc,2

(
L◦
2 ∩

⊥ran c
)
.
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Proof. Let y1 ∈ L1, then

[
(x1, x2), (y1, 0)

]

c
= [x1, y1]1 + c(y1)x2, x1 ∈ L1, x2 ∈ L2 .

Hence (y1, 0) ∈ (L1 ⋉c L2)
◦ if and only if

[x1, y1]1 = 0, x1 ∈ L1 and c(y1) = 0 .

Let y2 ∈ L2, then

[
(x1, x2), (0, y2)

]

c
= c(x1)y2 + [x2, y2]2, x1 ∈ L1, x2 ∈ L2 .

Hence (0, y2) ∈ (L1⋉cL2)
◦ if and only if c(x1)y2 = 0, x1 ∈ L1, and [x2, y2]2 = 0,

x2 ∈ L2. ❑

In general not much information on L1 ⋉c L2 can be obtained. Concerning
negative indices and degrees of degeneracy, we only have the following weak
estimates:

ind− L1 ⋉c L2 ≥ max
{
ind− L1, ind− L2

}
,

ind0 L1 ⋉c L2 ≥ max
{
dim(L◦

1 ∩ ker c), dim(L◦
2 ∩

⊥ran c)
}
.

It is easy to give examples which show that negative indices or degrees of de-
generacy may increase arbitrarily.

3.6 Example. Let L1 and L2 be two linear spaces with the same dimension.
Choose bases {b1j : j ∈ J} and {b2j : j ∈ J} of L1 and L2, and let L1 × L2 be
endowed with inner products [., .] and [., .]′ given by the Gram-matrices

G :=

(
0 I
I 0

)

, G′ :=

(
I I
I I

)

Explicitly, this means that

[∑

λib
1
i +

∑

µib
2
i ,
∑

λ′jb
1
j +

∑

µ′
jb

2
j

]

=
∑(

λiµ′
i + µiλ′i

)

[∑

λib
1
i +

∑

µib
2
i ,
∑

λ′jb
1
j +

∑

µ′
jb

2
j

]′

=
∑(

λiλ′i + λiµ′
i + µiλ′i + µiµ′

i

)

Define inner products [., .]j and [., .]′j on Lj by [x1, x2]j := 0, j = 1, 2, and

[∑

λib
j
i ,
∑

µib
j
i

]′

j
:=

∑

λiµi, j = 1, 2 .

Then 〈L1×L2, [., .]〉 and 〈L1×L2, [., .]
′〉 can be realized as 〈L1, [., .]1〉⋉c〈L2, [., .]2〉

and 〈L1, [., .]
′
1〉⋉c′ 〈L2, [., .]

′
2〉, respectively, with some appropriate mappings c, c′.

We see that

ind−〈L1, [., .]1〉 = ind−〈L2, [., .]2〉 = 0, ind−〈L1, [., .]1〉⋉c 〈L2, [., .]2〉 = |J |

ind0〈L1, [., .]
′
1〉 = ind0〈L2, [., .]

′
2〉 = 0, ind0〈L1, [., .]

′
1〉⋉c 〈L2, [., .]

′
2〉 = |J |

�

If one of the spaces L1 or L2 is finite dimensional, at least a rough upper
estimate on ind− L1 ⋉c L2 and ind0 L1 ⋉c L2 can be given.
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3.7 Remark. Let L1 and L2 be inner product spaces, and let c : L1 → L∗
2 be

conjugate linear.

(i) Assume that dimL1 <∞. Since, for each subspace K of L1⋉cL2 we have
dim(K ∩ L2) ≥ dimK − dimL1, it follows that

ind− L1 ⋉c L2 ≤ ind− L2 + dimL1, ind0 L1 ⋉c L2 ≤ ind0 L2 + dimL1

(ii) Assume that dimL2 < ∞. Then it is seen from Corollary 3.4 that analo-
gous inequalities hold.

�

Let us now turn our attention to the almost Pontryagin space situation.
Assume that 〈A1, [., .]1, T1〉 and 〈A2, [., .]2, T2〉 are aPs, and let c : A1 → A∗

2 be
conjugate linear. Since in general neither ind−(A1 ⋉c A2) <∞ nor ind0(A1 ⋉c

A2) < ∞ needs to hold, already the geometry of A1 ⋉c A2 will in general be
far from an aPs. Also topologically A1 ⋉c A2 does not behave that simple. Of
course, A1 ⋉c A2 carries a natural Banach space topology, namely the product
topology T := T1 × T2. However, the inner product [., .]c will in general not be
continuous.

If A is an aPs, we denote by A′ its topological dual space. Moreover, τw∗

denotes the weak-∗ topology on A′.

3.8 Proposition. Let 〈A1, [., .]1, T1〉 and 〈A2, [., .]2, T2〉 be aPs, and let c : A1 →
A∗

2 be conjugate linear. Then the inner product [., .]c : (A1 ⋉c A2)
2 → C is T -

continuous if and only if c(A1) ⊆ A′
2 and c is T1-to-τw∗–continuous.

Proof. Assume first that c maps A1 T1-to-τw∗–continuously into A′
2. Choose

norms ‖.‖1, ‖.‖2, which induce T1 and T2, respectively, and put ‖.‖ :=
max{‖.‖1, ‖.‖2}. Let M1,M2 > 0 be such that

∣
∣[xj , yj ]j

∣
∣ ≤Mj‖xj‖j‖yj‖j , xj , yj ∈ Aj , j = 1, 2 .

Since c is T1-to-τw∗–continuous, for each fixed x2 ∈ A2 there exists Mx2
> 0

such that
|c(y1)x2| ≤Mx2

, y1 ∈ A1, ‖y1‖1 ≤ 1 .

The Principle of Uniform Boundedness implies

M := sup
{
‖c(y1)‖ : y1 ∈ A1, ‖y1‖1 ≤ 1

}
<∞ .

For x1 + x2, y1 + y2 ∈ A1 ⋉c A2 with ‖x1 + x2‖, ‖y1 + y2‖ ≤ 1, we thus obtain
the estimate

∣
∣[x1+x2, y1+y2]c

∣
∣ ≤ |[x1, y1]1|+|c(x1)y2|+|c(y1)x2|+|[x2, y2]2| ≤M1+2M+M2 .

This shows that [., .]c is T -continuous.
Conversely, assume that [., .]c is T -continuous. We have

c(y1)x2 = [0 + x2, y1 + 0]c, y1 ∈ A1, x2 ∈ A2 .

Keeping y1 fixed and letting x2 vary through A2 shows that the functional c(y1)
belongs to A′

2. Keeping x2 fixed and letting y1 vary through A1 shows that c is
T1-to-τw∗–continuous. ❑

8



Let us explicitly point out the following fact: Proposition 3.8 says that, under
the stated conditions, [., .]c is continuous. It does not claim that A1 ⋉cA2 is an
aPs. However, if one of the summands A1 or A2 is finite dimensional, matters
simplify. Then we can conclude that A1 ⋉c A2 is an aPs.

3.9 Corollary. Let 〈A1, [., .]1, T1〉 and 〈A2, [., .]2, T2〉 be aPs, and let c : A1 →
A∗

2 be conjugate linear.

(i) Assume that dimA1 <∞. Then A1 ⋉c A2 is an almost Pontryagin space

if and only if c(A1) ⊆ A′
2.

(ii) Assume that dimA2 <∞. Then A1 ⋉c A2 is an almost Pontryagin space

if and only if c is continuous. Note here that, under the present hypothesis,
A′

2 = A∗
2 and the topology on A′

2 is just the euclidean topology.

Proof. Consider the case that A1 is finite dimensional. Assume first that
c(A1) ⊆ A′

2. Since c is conjugate linear, dimA1 < ∞ implies that c T1-to-
τw∗–continuous. By Proposition 3.8, [., .]c is T -continuous. Let M be a T2-
closed subspace of A2 which is a Hilbert space and has finite codimension in
A2. Then M is also T -closed and has finite codimension in A1 ⋉c A2. More-
over, [., .]c|M×M = [., .]2|M×M, and hence M is a Hilbert space with respect to
[., .]c. We see that A1 ⋉c A2 is an aPs. Conversely, if A1 ⋉c A2 is an aPs, then
Proposition 3.8 yields c(A1) ⊆ A′

2.
The case that A2 is finite dimensional is settled in the same manner. ❑

3.10 Remark. Let A1 and A2 be aPs, and c : A1 → A∗
2 be conjugate linear.

The embeddings ιc,j : Aj → A1 ⋉c A2 are continuous and map closed subsets
of Aj to closed subsets of A1 ⋉c A2. Hence, whenever A1 ⋉c A2 is an almost
Pontryagin space, then ιc,j will be morphisms. �

The analogs of Proposition 3.3 and Corollary 3.4 in the aPs-setting read as
follows.

3.11 Proposition. Let A1 and A2 be aPs.

(i) Let A be an aPs together with morphisms ι′j : Aj → A, j = 1, 2, and let

the conjugate linear map c : A1 → A∗
2 and isometry φ : A1 ⋉c A2 → A be

as in Proposition 3.3. Then A1 ⋉c A2 is an aPs and φ is a morphism if

and only if

dim
(
ran ι′1 ∩ ran ι′2

)
<∞ and ran ι′1 + ran ι′2 closed in A .

(ii) Let c : A1 → A∗
2 be a conjugate linear map, and let ĉ : A2 → A∗

1 and

φ : A2⋉ĉA1 → A1⋉cA2 be as in Corollary 3.4. Then A2⋉ĉA1 is an aPs

if and only if A1 ⋉c A2 is, and in this case φ is an isomorphism between

these aPs.

Proof. For the proof of (i) let A and Aj , ι
′
j , j = 1, 2, be given. Since ι′1 and

ι′2 are continuous, the map c is explicitly given by (3.5), it maps A1 into A′
2

and is T1-to-τw∗–continuous. Thus [., .]c is continuous. In order to get hands on
geometric properties, we make a preliminary observation: Namely that

dimkerφ <∞ ⇐⇒ dim
(
ran ι′1 ∩ ran ι′2

)
<∞ (3.11)
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To see this, let π1 : A×A → A denote the projection onto the first component,
and consider the map µ := π1◦(ι

′
1×(−ι′2)) : A1⋉cA2 → A. By (3.7), µ(kerφ) =

ran ι′1 ∩ ran ι′2. Moreover, ker(µ|kerφ) = ker ι′1 × ker ι′2. Since ker ι′j ⊆ A◦
j , and

hence dimker(µ|kerφ) <∞, (3.11) follows.
Assume that A1⋉cA2 is an aPs and φ : A1⋉cA2 → A is a morphism. Then

ran ι′1 + ran ι′2 = ranφ is closed in A since φ maps closed subspaces to closed
subspaces. Moreover, since kerφ ⊆ (A1 ⋉c A2)

◦, we must have dimkerφ < ∞,
and (3.11) gives dim(ran ι′1 ∩ ran ι′2) <∞.

Conversely, assume that dim(ran ι′1∩ran ι′2) <∞ and ran ι′1+ran ι′2 is closed
in A. Then, by (3.11), kerφ is finite dimensional. Moreover, since [ranφ]◦ is a
neutral subspace of A, dim([ranφ]◦) ≤ ind− A+ ind0 A. Since φ−1([ranφ]◦) =
(A1 ⋉c A2)

◦, it follows that

dim(A1 ⋉c A2)
◦ <∞ .

The map φ is isometric, and hence clearly ind−(A1 ⋉c A2) ≤ ind− A <∞.
Since dimkerφ < ∞, the space kerφ is complemented in the Banach

space A1 ⋉c A2, i.e. we may choose a closed subspace M1 of A1 ⋉c A2 with
M1+̇ kerφ = A1 ⋉c A2. Then φ|M1

is a continuous bijections between the Ba-
nach spaces M1 and ranφ, and hence a homeomorphism. Let N be a closed
subspace of ranφ with finite codimension which is a Hilbert space with respect
to the inner product of A. Then M := (φ|M1

)−1(N ) is a closed subspace of
M1 with finite codimension and, since φ is isometric, is a Hilbert space with
respect to the inner product of A1 ⋉c A2. Since M1 itself is closed and has
finite codimension in A1 ⋉c A2, M is a subspace with the properties required
in (aPs3). Let L be a closed subspace of A1⋉cA2, then φ(L) = φ|M1

(L∩M1),
hence is closed in ranφ and thus also in A. As a closed subspace of an aPs, the
space ranφ is itself an aPs.

The second item is immediate, since φ is, besides being bijective and isomet-
ric, in any case a homeomorphism. ❑

4 Orthogonal coupling of inner product spaces

Let 〈L1, [., .]1〉 and 〈L2, [., .]2〉 be inner product spaces. Their direct and orthog-
onal sum L1[+̇]L2 is defined as the linear space L1×L2 endowed with the inner
product

[
(x1, x2), (y1, y2)

]
:= [x1, y1] + [x2, y2], (x1, y1), (x2, y2) ∈ L1[+̇]L2 .

Properties of L1 and L2 immediately transfer to L1[+̇]L2, for example we have

ind− L1[+̇]L2 = ind− L1 + ind− L2, ind0 L1[+̇]L2 = ind0 L1 + ind0 L2 .

In fact, (L1[+̇]L2)
◦ = L◦

1 × L◦
2. Moreover, remember that, with the notation

of the previous section, we can write L1[+̇]L2 = L1 ⋉0 L2, where 0 : L1 → L∗
2

denotes the zero map.
The following observation is the starting point for our present considerations.

4.1 Remark. If L1 and L2 are nondegenerated inner product spaces, then the
direct and orthogonal sum L1[+̇]L2 is (up to isomorphisms) the unique inner
product space containing L1 and L2 isometrically as orthogonal subspaces which
together span the whole space. �
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If we move from the nondegenerated to the degenerated situation, then a
space with this property will not be unique anymore.

4.2 Definition. Let L1 and L2 be inner product spaces, and let α be a linear
subspace of L◦

1 × L◦
2. Define

L1 ⊞α L2 :=
(
L1[+̇]L2

)/

α .

We refer to L1⊞α L2 as the orthogonal coupling of L1 and L2 with overlapping
relation α.

Moreover, if ιj be the canonical embedding of Lj into L1[+̇]L2, and πα
the canonical projection of L1[+̇]L2 onto (L1[+̇]L2)/α, we set ια1 := πα ◦ ι1,
ια2 := πα ◦ ι2, that is

L1[+̇]L2

πα

��
Lj

ιj
;;vvvvvvvvv

ιαj

// L1 ⊞α L2

�

4.3 Remark. Let L1 and L2 be inner product spaces, and let α be a linear
subspace of L◦

1 × L◦
2.

(i) Since L◦
1 × L◦

2 = (L1[+̇]L2)
◦, the mappings ια1 : L1 → L1 ⊞α L2 and

ια2 : L2 → L1 ⊞α L2 are both isometric. Moreover,

ια1 (L1) ⊥ ια2 (L2) and L1 ⊞α L2 = ran ια1 + ran ια2 .

(ii) The mappings ια1 and ια2 are both injective if and only if the linear subspace
α is the graph of a bijective map α : domα → ranα between some linear
subspaces domα ⊆ L◦

1 and ranα ⊆ L◦
2. In order to see this, note that

(0, x2) ∈ α ⇐⇒ ια2 (x2) = 0, (x1, 0) ∈ α ⇐⇒ ια1 (x1) = 0 .

�

4.4 Proposition. Let L1 and L2 be inner product spaces. Moreover, let L be

an inner product space together with isometric maps ι′j : Lj → L, j = 1, 2, such
that ι′1(L1) ⊥ ι′2(L2). Then there exists a unique linear subspace α ⊆ L◦

1 × L◦
2,

such that

L1

ια1 //

ι′1 $$J
JJJJJJJJJ L1 ⊞α L2

ψ

��

L2

ια2oo

ι′2zztttttttttt

L

(4.1)

with some injective and isometric linear map ψ. Explicitly, α is given as

α =
{
(x1, x2) ∈ L1 × L2 : ι′1(x1) = −ι′2(x2)

}
.

The map ψ in the diagram (4.1) is uniquely determined. Explicitly, ψ is given

as

ψ
(
(x1, x2)/α

)
= ι′1(x1) + ι′2(x2) .

The map ιαj is injective if and only if ι′j has this property. Moreover, if ran ι′1 +
ran ι′2 = L, then ψ is bijective.

11



Proof. The map φ(x) := ι′1(x) + ι′2(x) is an isometry of L1[+̇]L2 into L. It
satisfies

L1
ι1 //

ι′1 ##H
HHHHHHHHH L1[+̇]L2

φ

��

L2
ι2oo

ι′2{{vvvvvvvvvv

L

(4.2)

and kerφ = {(x1, x2) ∈ L1[+̇]L2 : ι′1(x) = −ι′2(x)}. We are going to show that
kerφ ⊆ (L1[+̇]L2)

◦. To this end, let (x1, x2) ∈ kerφ be given. If y1 ∈ L1, then

[
(x1, x2), (y1, 0)

]

L1[+̇]L2
= [x1, y1]L1

=
[
ι′1(x1), ι

′
1(y1)

]
=

[
− ι′2(x2), ι

′
1(y1)

]
= 0 .

An analogous computation will show that [(x1, x2), (0, y2)] = 0 for all y2 ∈ L2.
Hence, the linear subspace α := kerφ qualifies as being used to define L1⊞αL2.

Let ψ be the isometry which makes the diagram

L1[+̇]L2
φ //

πα

��

L

(L1[+̇]L2)/α

ψ

::

commute.
Clearly, the map ψ is injective and the diagram (4.1) commutes. Moreover,

ranψ = ranφ = ran ι′1 + ran ι′2 .

From the injectivity of ψ it also follows that ιαj is injective if and only if ι′j has
this property.

In order to show uniqueness, assume that (4.1) holds with some α′ ⊆ L◦
1×L◦

2

and ψ′ : L1 ⊞α′ L2 → L. Then we have

L1[+̇]L2

πα′

��
L1

ι1

::uuuuuuuuu ια
′

1 //

ι′1 %%J
JJJJJJJJJJ L1 ⊞α′ L2

ψ′

��

L2

ι2

ddIIIIIIIII
ια

′

2oo

ι′2yyttttttttttt

L

By uniqueness in Proposition 3.3, recall that L1[+̇]L2 can be viewed as L1⋉0L2,
we must have ψ′ ◦ πα′ = φ. Since ψ′ is injective, this implies

α′ = kerπα′ = ker
(
ψ′ ◦ πα′

)
= kerφ = α .

The map ψ is uniquely determined by (4.1), since ran ια1 and ran ια2 together
span L1 ⊞α L2. ❑

Combining Proposition 4.4 with Remark 4.3, (ii), we obtain the following
corollary.
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4.5 Corollary. Let L1 and L2 be inner product spaces. An inner product space

contains isomorphic copies of L1 and L2 as orthogonal subspaces which span the

whole space, if and only if it is isomorphic to L1⊞α L2 with some bijective map

α between subspaces of L◦
1 and L◦

2. ❑

4.6 Remark. Let A1 and A2 be aPs, and let α be a linear subspace of A◦
1 ×A◦

2,
then also A1 ⊞α A2 is an aPs. Moreover, we have

ind−
(
A1 ⊞α A2

)
= ind− A1 + ind− A2 ,

ind0
(
A1 ⊞α A2

)
= ind0 A1 + ind0 A2 − dimα .

�

The aPs-version of Proposition 4.4 now reads as follows.

4.7 Proposition. Let A1 and A2 be aPs. Moreover, let A be an aPs together

with morphisms ι′j : Aj → A, j = 1, 2, such that ι′1(A1) ⊥ ι′2(A2). Then the

isometry ψ : A1 ⊞α A2 → A in Proposition 4.4 is a morphism.

Proof. We wish to apply Proposition 3.11, (i), with the presently given data
A,Aj , ι

′
j , c := 0, and the map φ in (4.2). To this end note first that ran ι′1∩ran ι

′
2

is, as a neutral subspace of A, finite dimensional. Since ran ι′1 and ran ι′2 are, as
closed subspaces of the aPs A, themselves aPs, we may choose closed subspaces
Mj of ran ι′j , j = 1, 2, which are closed, have finite codimension in ran ι′j , and
are Hilbert spaces with respect to the inner product inherited from A. Clearly,
they are orthogonal to each other. This also implies that M1 ∩ M2 = {0}.
Their sum M := M1[+̇]M2 is thus also a Hilbert space in the inner product
of A. Since moreover M is, as the orthogonal sum of two uniformly positive
subspaces, itself uniformly positive, M is closed in the norm of A. Clearly, M
has finite codimension in ran ι′1 + ran ι′2, and we conclude that ran ι′1 + ran ι′2 is
closed in the norm of A.

Proposition 3.11 implies that the map φ in (4.2) is an aPs-morphism. Hence,
also ψ is such. ❑

4.8. Concrete realization of A1 ⊞α A2: Let A1 and A2 be almost Pontryagin
spaces, and let α be a bijective map between some subspaces domα and ranα
of A◦

1 and A◦
2, respectively. The space A1⊞αA2 can also be described explicitly.

To this end choose closed subspaces A1,r and A2,r such that

A1 = A1,r[+̇]A◦
1, A2 = A2,r[+̇]A◦

2 ,

choose D1 and D2 such that

A◦
1 = D1+̇ domα, A◦

2 = D2+̇ ranα ,

and set D := ranα. Consider the almost Pontryagin space

A := A1,r[+̇]
(
D1+̇D+̇D2

)
[+̇]A2,r (4.3)

where the inner product and topology on A1,r and A2,r is the one inherited
from A1 and A2, respectively, and where D1+̇D+̇D2 is neutral and endowed
with the euclidean topology. Moreover, define ι′1 : A1 → A by

ι′1|A1,r+̇D1
:= id, ι′1|domα := −α ,
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and let ι′2 : A2 → A be the identity map. Then ι′1 and ι′2 are morphisms.
Moreover, it is apparent from their definition that ι′1(A1) ⊥ ι′2(A2) and ι

′
1(A1)+

ι′2(A2) = A.
By Proposition 4.4 there exist α̂ ⊆ A◦

1 ×A◦
2 and an isomorphism ψ : A1 ⊞α̂

A2 → A with

A1

ια̂1 //

ι′1 %%KKKKKKKKKKK A1 ⊞α′ A2

ψ

��

A2

ια̂2oo

ι′2yysssssssssss

A

Thereby the linear subspace α̂ is given as α̂ = {(x1, x2) ∈ A◦
1 × A◦

2 : ι′1(x1) =
ι′2(x2)}. Write x1 = a1 + b1 according to the decomposition A◦

1 = D1+̇ domα,
and let x2 = a2 + b2 according to A◦

2 = D2+̇ ranα. Then ι′1(x1) = a1 − α(b1)
and ι′2(x2) = a2 + b2. Hence we have ι′1(x1) = ι′2(x2) if and only if a1 = a2 = 0
and b2 = α(b1). This, in turn, is equivalent to (x1, x2) ∈ α.

We see that α̂ = α, and hence ψ is actually an isomorphism betweenA1⊞αA2

and A, i.e. A can be regarded as a concrete realization of A1 ⊞α A2. �

5 The canonical Pontryagin space extension of

an almost Pontryagin space

There is a natural way to associate with a given almost Pontryagin space a
Pontryagin space by means of a factorization process. Namely, for an almost
Pontryagin space A we define

P(A) := A/A◦

There is also another natural way to associate with a given almost Pontryagin
space a Pontryagin space by means of an extension process; and this construction
has turned out important.

5.1 Definition. Let A be an aPs. A pair (ι,P) is called a canonical Pontryagin
space extension of A, if P is a Pontryagin space, ι : A → P is an injective
morphism, and

dimP/ι(A) = ind0 A .

We also sometimes say that P is a canonical Pontryagin space extension of A
with extension embedding ι. �

Let us note that, for each canonical Pontryagin space extension P of A,

ind− P = ind− A+ ind0 A .

Canonical Pontryagin space extensions are in some sense minimal among all
Pontryagin spaces which contain A as an isometric subspace: If P is a Pon-
tryagin spaces which contains A as an isometric subspace, then certainly
dimP/A ≥ ind0 A and ind− P ≥ ind− A+ ind0 A.

5.2. Existence of canonical Pontryagin space extensions: Let A be an almost
Pontryagin space. Choose a closed subspace B of A such that A = B[+̇]A◦, and
let C be a linear space with dimC = dimA◦. Consider the linear space

Pext(A) := A+̇C = B+̇A◦+̇C ,
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and define on this linear space an inner product [., .] by the requirements

[., .]|A×A = [., .]A, B ⊥ C, A◦#C .

Here we use the notation A#B to express that A and B are skewly linked, i.e.
that A and B are neutral, dimA = dimB, and A+̇B is nondegenerated, cf. [B,
§I.10] or [IKL, §I.3].

It is easy to see that Pext(A) is a Pontryagin space. Moreover, the set-
theoretic inclusion map ιext of A into Pext(A) is a morphism. Clearly, ιext is
injective and dimPext(A)/A = dimA◦. �

We will see in Corollary 5.6 below, that canonical Pontryagin space exten-
sions are unique up to isomorphism.

a. Extension of morphisms.

It is important to see how morphisms between almost Pontryagin spaces can be
extended to morphisms between canonical Pontryagin space extensions. First
we deal with concrete extensions as constructed in 5.2.

5.3 Proposition. Let A1,A2 be almost Pontryagin spaces, and let φ : A1 → A2

be a morphism. Let spaces Pext(A1/ kerφ) and Pext(A2) be constructed as in

5.2 from some choices of subspaces B1 ⊆ A1/ kerφ and B2 ⊆ A2, respectively.

Then there exists a morphism φ̃ : Pext(A1/ kerφ) → Pext(A2), such that

A1

φ

��

π // A1/ kerφ
ιext // Pext(A1/ kerφ)

φ̃

��
A2 ιext

// Pext(A2)

(5.1)

Proof. There exists an injective morphism φ′ : A1/ kerφ→ A2 such that

A1
π //

φ

��

A1/ kerφ

φ′

zz
A2

cf. Remark 2.5, (vii). Obviously, it is enough to prove the assertion for φ′.
Hence, we may assume without loss of generality that φ is injective.

The subspace (ιext◦φ)(B1) of Pext(A2) is closed and nondegenerated. More-
over, (ιext ◦ φ)(A

◦
1) is a neutral subspace of (ιext ◦ φ)(B1)

⊥. Hence there exists
a subspace C ′ of (ιext ◦ φ)(B1)

⊥, such that (ιext ◦ φ)(A◦
1)#C

′, cf. [B, §I.10].
The space Pext(A1) is defined as B1[+̇](A◦

1+̇C) with A◦
1#C. Choose a basis

{δ1, . . . , δn} of A◦
1, and let {ǫ1, . . . , ǫn} be a basis of C with

[δj , ǫk] =

{

0 , j 6= k

1 , j = k

Since ιext ◦ φ is injective, the set {(ιext ◦ φ)(δ1), . . . , (ιext ◦ φ)(δn)} is a basis of
(ιext ◦ φ)(A

◦
1). Hence there exists a basis {ǫ′1, . . . , ǫ

′
n} of C ′ such that

[
(ιext ◦ φ)(δj), ǫ

′
k

]
=

{

0 , j 6= k

1 , j = k
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With these notations define φ̃ : Pext(A1) → Pext(A2) by

φ̃|ιext(A1) := ιext ◦ φ ◦ ι−1
ext, φ̃(ǫj) := ǫ′j , j = 1, . . . , n .

It is straightforward to check that φ̃ is isometric. Moreover, the fact that (5.1)
commutes is built into the definition. ❑

5.4 Remark. The extension φ̃ in Proposition 5.3 is in general not unique. In
fact, whenever P is a Pontryagin space with

(ιext ◦ φ)(A1) ⊆ P ⊆ Pext(A2) ,

the choice of φ̃ can be made such that ran φ̃ ⊆ P. �

5.5 Corollary. Let A be an almost Pontryagin space, and let (ι,P) be a canon-

ical Pontryagin space extension of A. Moreover, let (ιext,Pext(A) be the canon-

ical Pontryagin space extension constructed in 5.2 from some subspace B. Then

there exists an isomorphism of λ : Pext(A) → P such that

A
ιext //

ι

��

Pext(A)

λ
{{

P

Proof. Since P is a Pontryagin space, we have Pext(P) = P and ιext = id.
Proposition 5.3 applied with the map ι : A → P gives a morphism λ : Pext(A) →
P. Since a morphism between Pontryagin spaces is injective, we conclude from
λ(ιext(A)) = ι(A) and

dimP/ι(A) = dimA◦ = dimPext(A)/ιext(A) ,

that λ is an isomorphism. ❑

This fact has some immediate, but important, consequences.

5.6 Corollary.

(i) Let A be an almost Pontryagin space. If (ι1,P1) and (ι2,P2) are canonical

Pontryagin space extension of A, then there exists an isomorphism λ :
P1 → P2 with

A
ι1

~~}}
}}

}}
}

ι2

  A
AA

AA
AA

P1
λ

// P2

(ii) Let A1,A2 be almost Pontryagin spaces, and let φ : A1 → A2 be a

morphism. Let (ι1,P1) and (ι2,P2) be canonical Pontryagin space ex-

tensions of A1/ kerφ and A2, respectively. Then there exists a morphism

φ̃ : P1 → P2, such that

A1

φ

��

π // A1/ kerφ
ι1 // P1

φ̃

��
A2 ι2

// P2
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b. Compatibility with orthogonal coupling.

The following result, although a fairly simple consequence of Proposition 5.3,
turns out useful.

5.7 Proposition. Let A1 and A2 be almost Pontryagin spaces and let α be a

bijective function between subspaces of A◦
1 and A◦

2. Then there exist morphisms

ι̃α1 and ι̃α2 , such that

A1

ια1 //

ιext

��

A1 ⊞α A2

ιext

��

A2

ια2oo

ιext

��
Pext(A1)

ι̃α1

// Pext(A1 ⊞α A2) Pext(A2)
ι̃α2

oo

(5.2)

The choice of ι̃α1 and ι̃α2 can be made such that ran ι̃α1 ∩ran ι̃
α
2 is a nondegenerated

subspace of Pext(A1⊞αA2) with dimension 2 dim(domα) which contains (ιext ◦
ια1 )(dom(α)).

Proof. By Remark 4.3, (ii), the maps ια1 and ια2 are injective. Hence Proposition
5.3 guarantees existence of ι̃α1 and ι̃α2 which satisfy (5.2). We have to show that
they can be chosen so to satisfy the stated additional requirement. To this
end we use the concrete realization of orthogonal couplings given in 4.8, the
concrete form of canonical Pontryagin space extensions given in 5.2, and trace
the construction of ι̃α1 and ι̃α2 in the proof of Proposition 5.3.

Choose closed subspaces Aj,r of Aj with Aj = Aj,r[+̇]A◦
j , j = 1, 2, choose

Dj with A◦
1 = D1+̇ domα and A◦

2 = D2+̇ ranα, and set D := ranα. We then
have

A1 = A1,r[+̇](D1+̇ domα), A2 = A2,r[+̇](D2+̇D) .

Then we can identify

A1 ⊞α A2
∼= A1,r[+̇](D1+̇D+̇D2)[+̇]A2,r .

In this identification, the embeddings ια1 and ια2 act as

ια1 (xr + x1 + xd) = xr + x1 + α(xd), xr ∈ A1,r, x1 ∈ D1, xd ∈ domα ,

ια2 (x) = x, x ∈ A2 ,

and the isotropic part of A1 ⊞α A2 is given as

(
A1 ⊞α A2

)◦
= D1+̇D+̇D2 ,

For the construction of Pext(A1), Pext(A2), and Pext(A1 ⊞α A2), we use
the closed nondegenerated subspaces A1,r, A2,r, and A1,r[+̇]A2,r, respectively.
Then we can write (note that dimdomα = dim ranα)

Pext(A1) = A1,r [+̇]
(

(D1+̇C1)[+̇](domα+̇C)
)

Pext(A2) = A2,r [+̇]
(

(D2+̇C2)[+̇](D+̇C)
)

Pext(A1 ⊞α A2) = A1,r [+̇]
(

(D1+̇C1)[+̇](D+̇C)[+̇](D2+̇C2)
)

[+̇]A2,r
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with neutral spaces C1, Cd, C, C2 satisfying C1#D1, C#domα, C2#D2, C#D,
and the extension embeddings are the respective set-theoretic inclusion maps.
The maps constructed in Proposition 5.3 act as

ι̃α1
(
xr + (x1 + y1) + (xd + y)

)
= xr + (x1 + y1) + (α(xd) + y),

xr ∈ A1,r, x1 ∈ D1, y1 ∈ C1, xd ∈ domα, y ∈ C ,

ι̃α2 (x) = x, x ∈ Pext(A2) .

From this we see that
ran ι̃α1 ∩ ran ι̃α2 = D+̇C .

❑

5.8 Remark. In the situation of Proposition 5.7, the mappings ια1 and ια2 are
both injective, all extension embeddings ιext are by definition injective, and
ι̃α1 , ι̃

α
1 are morphisms with nondegenerated domain and are thus also injective.

Hence, we can think of Pext(A1 ⊞α A2) as the biggest of the six spaces in (5.2)
which contains the other ones.

If we supress the distinction between domα and ranα, and think of them
both as being equal to the space D, we can picture the situation as follows:

A1 ⊞α A2

A1

A2

[+̇] [+̇] [+̇] [+̇]A1,r A2,rD1 D D2

Pext(A1 ⊞α A2)

Pext(A1)

Pext(A2)

[+̇] [+̇] [+̇] [+̇]

+̇ +̇ +̇

A1,r A2,rD1 D D2

C1 C C2

�

We will in our later discussions encounter the situation that domα = A◦
1

and ranα = A◦
2 in Proposition 5.7. In fact, the computation of inner products

given in Lemma 5.9 below plays an important role in [SW3]. Hence, we shall
now discuss this case in some more detail.

Note that, due to domα = A◦
1 and ranα = A◦

2, we have D1 = D2 = C1 =
C2 = 0 and (A1 ⊞α A2)

◦ = D = A◦
1 = A◦

2. Denote by PD, PC , PA1,r[+̇]A2,r
and

PA1⊞αA2
the projections of the space Pext(A1 ⊞α A2) onto the space denoted

as index according to the above pictured direct sum decomposition. Thus, e.g.,
we have ranPD = D and kerPD = A1,r[+̇]C[+̇]A2,r.

5.9 Lemma. Assume that in the situation of Proposition 5.7 we have domα =
A◦

1 and ranα = A◦
2. Then the following hold:

(i) We have

PA1,r[+̇]A2,r
+ PD + PC = I, PA1⊞αA2

+ PC = I

PA1,r[+̇]A2,r

(
Pext(Aj)

)
= Aj,r, PA1⊞αA2

(
Pext(Aj)

)
= Aj , j = 1, 2
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Let elements x1 ∈ Pext(A1) and x2 ∈ Pext(A2) be given.

(ii) [x1, x2] = [PDx1, PCx2] + [PCx1, PDx2].

(iii) We have PCx1 = PCx2 if and only if

[x1, h] = [x2, h], h ∈ D .

In this case x1 + PA1⊞αA2
x2 = PA1⊞αA2

x1 + x2.

Let, moreover, elements y1 ∈ Pext(A1) and y2 ∈ Pext(A2) be given.

(iv) If PCx1 = PCx2 and PCy1 = PCy2, then

[x1 + PA1⊞αA2
x2, y1 + PA1⊞αA2

y2] = [x1, y1] + [x2, y2] .

Proof. The formulas in (i) are immediate from the definitions of the correspond-
ing projections. In order to see the equality asserted in (ii) we compute

[x1, x2] =
[
(PA1,r[+̇]A2,r

+ PD + PC)x1, (PA1,r [+̇]A2,r
+ PD + PC)x2

]
=

=
[
PA1,r[+̇]A2,r

x1, PA1,r[+̇]A2,r
x2

]
+

[
(PD + PC)x1, (PD + PC)x2

]
=

= [PDx1, PCx2] + [PCx1, PDx2]

We come to the proof of (iii). We have, for each h ∈ D,

[x1, h] =
[
(PA1⊞αA2

+ PC)x1, h
]
= [PCx1, h]

[x2, h] =
[
(PA1⊞αA2

+ PC)x2, h
]
= [PCx2, h]

Since D#C, the asserted equivalence follows. Moreover, in case that PCx1 =
PCx2, we have

x1 + PA1⊞αA2
x2 = PA1⊞αA2

x1 + PCx1 + PA1⊞αA2
x2 =

= PA1⊞αA2
x1 + PCx2 + PA1⊞αA2

x2 = PA1⊞αA2
x1 + x2

Finally, assume that we are in the situation given in (iv). We first compute

[x2, y2] =
[
(PA1⊞αA2

+ PC)x2, (PA1⊞αA2
+ PC)y2

]
=

= [PA1⊞αA2
x2, PA1⊞αA2

y2] + [PA1⊞αA2
x2, PCy2] + [PCx2, PA1⊞αA2

y2] =

= [PA1⊞αA2
x2, PA1⊞αA2

y2] + [PA1⊞αA2
x2, PCy1] + [PCx1, PA1⊞αA2

y2]

Hence we obtain that

[x1 + PA1⊞αA2
x2, y1 + PA1⊞αA2

y2] =

=[x1, y1]+[PA1⊞αA2
x2, y1]+[x1, PA1⊞αA2

y2]+[PA1⊞αA2
x2, PA1⊞αA2

y2]=

=[x1, y1]+[PA1⊞αA2
x2, PCy1]+[PCx1, PA1⊞αA2

y2]+[PA1⊞αA2
x2, PA1⊞αA2

y2]=

= [x1, y1] + [x2, y2]

❑
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6 Almost Pontryagin space completions

In the context of almost Pontryagin spaces, completions have been investigated
in [KWW]; some basic ideas going back to [JLT]. In these papers existence of
completions was shown, and it was seen that completions are related to linear
functionals.

In this section we give a much more complete treatment of this topic. As a
byproduct we also obtain an alternative proof of the uniqueness part in [KWW,
Proposition 4.4], where a more ‘basis dependent’ approach was used. Recall the
definition of almost Pontryagin space completions.

6.1 Definition. Let 〈L, [., .]〉 be an inner product space. A pair (ι,A) is called
an aPs-completion of L, if A is an aPs, and ι is an isometric map of L onto a
dense subspace of A. �

Two aPs-completions of an inner product space L might be ‘the same’, or
one might be ‘larger’ than the other. This is made precise by the following
notions.

6.2 Definition. Let (ι1,A1) and (ι2,A2) be two aPs-completions of an inner
product space L.

(i) We call (ι1,A1) and (ι2,A2) isomorphic, and write (ι1,A1) ∼= (ι2,A2), if
there exists an isomorphism φ of A1 onto A2, such that φ ◦ ι1 = ι2, i.e.

L
ι1

yyrrrrrr ι2

%%LLLLLL

A1
∼=
φ // A2

(ii) We write (ι1,A1) � (ι2,A2), if there exists a surjective morphism π1
2 of

A1 onto A2, such that π1
2 ◦ ι1 = ι2, i.e.

L
ι1

yyrrrrrr ι2

%%LLLLLL

A1
π1
2

// // A2

�

Obviously, isomorphism is an equivalence relation on the set of all aPs-
completions of L, and the relation � is reflexive and transitive. Moreover, a
short argument will show that

(

(ι1,A1) � (ι2,A2) ∧ (ι2,A2) � (ι1,A1)
)

⇐⇒ (ι1,A1) ∼= (ι2,A2)

We conclude that � induces a partial order on the set of all aPs-completions of
L modulo isomorphism.

6.3 Remark. If (ι1,A1) is an aPs-completion of L, A2 is an aPs, and π is a
surjective morphism of A1 onto A2, then (π ◦ ι1,A2) is an aPs-completion of L
and (ι1,A1) � (π ◦ ι1,A2). �

Let L be an inner product space. If in some aPs-completion (ι,A) of L the
space A is nondegenerated, i.e. a Pontryagin space, we will speak of (ι,A) as a
Pontryagin space completion of L.
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6.4 Remark. It is well-known, see e.g. [B, §V.2,§I.11], that L admits a Pontryagin
space completion if and only if ind− L < ∞. Moreover, in this case, each two
Pontryagin space completions are isomorphic. Since ind− L < ∞ is obviously
a necessary condition for existence of an aPs-completion, we conclude that L
admits an aPs-completion if and only if ind− L <∞. �

Let L be an inner product space with ind− L <∞, and consider the map L

which assigns to each aPs-completion (ι,A) of L the linear subspace

L(ι,A) := ι∗A′

of the algebraic dual L∗ of L. Here ι∗ denotes the (algebraic) adjoint of ι, that
is ι∗ : A∗ → L∗ and ι∗f = f ◦ ι.

The next statement already contains a good portion of our description of
aPs-completions.

6.5 Lemma. Let L be an inner product space with ind− L <∞, and let (ι1,A1)
and (ι2,A2) be two aPs-completions of L with (ι1,A1) � (ι2,A2). Then

L(ι1,A1) ⊇ L(ι2,A2) and dim
(
L(ι1,A1)

/

L(ι2,A2)
)
= ind0 A1 − ind0 A2 .

Proof. Let π : A1 → A2 be a surjective morphism with π ◦ ι1 = ι2. Passing to
adjoints yields

L
ι1

~~}}
}}

}}
}} ι2

  A
AA

AA
AA

A

A1 π
// A2

///o/o/o/o/o

L∗

A∗
1

ι∗1

>>||||||||
A∗

2
π∗

oo

ι∗2

``BBBBBBBB

Since π is continuous, we have π∗A′
2 ⊆ A′

1. It readily follows that

L(ι2,A2) = ι∗2A
′
2 = ι∗1π

∗A′
2 ⊆ ι∗1A

′
1 = L(ι1,A1) .

We need to compute codimension. Since ran ι1 is dense in A1, the restriction of
ι∗1 to A′

1 is injective. Thus

dim
(
L(ι1,A1)

/

L(ι2,A2)
)
= dim

(
ι∗1A

′
1

/

ι∗1π
∗A′

2

)
= dim

(
A′

1

/

π∗A′
2

)
.

Since π is surjective, by the Closed Range Theorem, π∗A′
2 is a w∗-closed sub-

space of A′
1. It follows that

π∗A′
2 = π∗A′

2

w∗

= (kerπ)⊥ ,

and hence

dim
(
A′

1

/

π∗A′
2

)
= dim

(
A′

1

/

(kerπ)⊥
)
= dim (kerπ)′ .

Since π is isometric, we have kerπ ⊆ A◦
1. In particular, kerπ is finite dimen-

sional, and hence
dim (kerπ)′ = dimkerπ .

The relation kerπ ⊆ A◦
1 also shows that kerπ = ker(π|A◦

1
). Since π is surjective,

we have π−1(A◦
2) = A◦

1, and hence π|A◦

1
maps A◦

1 surjectively onto A◦
2. It follows

that
dimkerπ = dimker(π|A◦

1
) = dimA◦

1 − dimA◦
2 .

Putting together these relations, the desired formula follows. ❑
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Lemma 6.5 shows, in particular, that

(ι1,A1) ∼= (ι2,A2) =⇒ L(ι1,A1) = L(ι2,A2) . (6.1)

Since each two Pontryagin space completions of L are isomorphic, the following
notion is well-defined.

6.6 Definition. Let L be an inner product space with ind− L <∞. Choose a
Pontryagin space completion (ι,P) of L, and let a linear subspace L′ of L∗ be
defined as

L′ := L(ι,P), (ι,P) Pontryagin space completion of L .

�

6.7 Remark. The choice of the notation L′ is not accidentially. In fact, using the
terminology of [B, §IV.6], the space L(ι,P) is nothing else but the topological
dual space of L with respect to the unique decomposition majorant which L
carries as inner product space with finite negative index. �

The map L is defined on the set of all aPs-completions of L, and maps an
aPs-completion to a linear subspace of the algebraic dual L∗. Due to (6.1), it
induces a map from equivalence classes of aPs-completions modulo isomorphisms
to linear subspaces of L∗; we denote this map again by L. It acts between two
partially ordered sets. In the next result we show that it is an injective order
homomorphism and determine its range.

6.8 Theorem. Let L be an inner product space with ind− L < ∞. Then L

induces an order-isomorphism of the set of all aPs-completions of L modulo

isomorphism onto the set of all linear subspaces of L∗ which contain L′ with

finite codimension. Thereby,

dim
(
L(ι,A)

/

L′
)
= ind0 A . (6.2)

Proof.

Step 1: Let (ι,A) be an aPs-completion of L. Denote by π : A → A/A◦ the
canonical projection, then π is a surjective morphism. Hence, (π ◦ ι,A/A◦) is
also an aPs-completion and (ι,A) � (π ◦ ι,A/A◦), cf. Remark 6.3. However,
since A/A◦ is nondegenerated, (π ◦ ι,A/A◦) actually is a Pontryagin space
completion of L. Thus L(π ◦ ι,A/A◦) = L′, and we obtain from Lemma 6.5
that L(ι,A) contains L′ with codimension ind0 A◦.

Step 2: Assume next that (ι1,A1) and (ι2,A2) are aPs-completions of L such
that L(ι1,A1) ⊇ L(ι2,A2). Therefore, for each given f ∈ A′

2, there exists
f̃ ∈ A′

1 with ι∗1f̃ = ι∗2f . Since ι∗1|A′

1
is injective, this element f̃ is uniquely

determined. Hence, a map Λ : A′
2 → A′

1 is well-defined by the requirement

ι∗1(Λf) = ι∗2f, f ∈ A′
2 .

Clearly, Λ is linear.
We are going to apply the Closed Graph Theorem. To check its hypothesis,

let a sequence (fn)n∈N of functionals fn ∈ A′
2 be given, and assume that fn →
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f in A′
2 and Λfn → g in A′

1. Since convergence in the norm implies w∗-
convergence, we have for each x ∈ L

(ι∗2fn)x = fn(ι2x) → f(ι2x) = (ι∗2f)x = ι∗1(Λf)x

=

ι∗1(Λfn)x = (Λfn)(ι1x) → g(ι1x) = (ι∗1g)x

Since ι∗1|A′

1
is injective, this implies that Λf = g. It follows that Λ is bounded.

Let ‖.‖1 and ‖.‖2 be norms on A1 and A2 which induce their respective
topologies. Moreover, let ‖.‖′1 and ‖.‖′2 be the corresponding operator norms on
A′

1 and A′
2. We compute for x ∈ L

‖ι2x‖2 = sup
{
| f(ι2x)
︸ ︷︷ ︸

=

(ι∗2f)x=ι
∗

1(Λf)x=(Λf)(ι1x)

| : f ∈A′
2, ‖f‖

′
2 ≤ 1

}
=

= sup
{
|f̃(ι1x)| : f̃ ∈ Λ

(
{f ∈A′

2 : ‖f‖′2 ≤ 1}
)

︸ ︷︷ ︸

⊆{f̃∈A′

1: ‖f̃‖
′

1≤‖Λ‖}

}
≤ ‖Λ‖ · ‖ι1x‖1 .

It follows that ker ι1 ⊆ ker ι2, so that ι2 ◦ ι
−1
1 is a well-defined map. Moreover, it

follows that ι2 ◦ ι
−1
1 is bounded. Let π : A′

1 → A′
2 be its extension by continuity.

Then π is isometric and has dense range in A′
2.

Let πj : Aj → Aj/A
◦
j , j = 1, 2 denote the canonical projections. Since

(π1 ◦ ι1,A1/A◦
1) and (π2 ◦ ι2,A2/A◦

2) are both Pontryagin space completions of
L, there exists an isomorphism φ of A2/A

◦
2 onto A1/A

◦
1 with φ◦(π2◦ι2) = π1◦ι1.

Thus, in the following diagram, each outer triangle commutes.

A1
π //

π1

��

A2

π2

��

L

ι1

ccFFFFFFFFF ι2

;;xxxxxxxxx

π1◦ι1

||xx
xx

xx
xx

x
π2◦ι2

""F
FF

FF
FF

FF
##

#

#

A1/A◦
1 A2/A◦

2φ
oo

Passing to adjoints, gives the outer triangles in

A′
1

ι∗1 $$H
HHHHHHHHH

A′
2

π′

oo

ι∗2zzvvvvvvvvvv

L ##

#

#

(A1/A
◦
1)

′

ι∗1◦π
′

1

::vvvvvvvvv

φ′

//

π′

1

OO

(A2/A
◦
2)

′

π′

2

OO

ι∗2◦π
′

2

ddHHHHHHHHH

Injectivity of ι∗1|A′

1
implies π′

1 = π′ ◦π′
2 ◦φ

′. In particular, ranπ′
1 ⊆ ranπ′ ⊆ A′

1.
However, as we saw in the proof of Lemma 6.5, ranπ′

1 is a closed subspace of
A′

1 with finite codimension. Hence, also ranπ′ is closed in A′
1. By the Closed

23



Range Theorem, ranπ is closed in A1, and hence π is surjective. Thus π is a
morphism and we have shown that (ι1,A1) � (ι2,A2)

Step 3: So far, we have seen that L maps aPs-completions into the set of all
subspaces of L∗ which contain L′ with finite codimension, that (6.2) holds, and
that

(ι1,A1) � (ι2,A2) ⇐⇒ L(ι1,A1) ⊇ L(ι2,A2) .

In particular, L(ι1,A1) = L(ι2,A2) if and only if (ι1,A1) and (ι2,A2) are iso-
morphic.

It remains to show that, for each given subspace M with L′ ⊆ M and
dimM/L′ < ∞, there exists an aPs-completion (ι,A) of L with L(ι,A) = M.
The construction of one such completion goes back to [JLT] and was formu-
lated and proved in the aPs-context in [KWW]. Therefore, let us only briefly
indicate the method. Put n := dimM/L′ and choose f1, . . . , fn ∈ L∗ such that
M = span(L′ ∪ {f1, . . . , fn}). Moreover, let (ιP ,P) be the Pontryagin space
completion of L. Define

 A := P[+̇]Cn, and T the product topology on A,

 [x+ ξ, y + η]A := [x, y]P , x, y ∈ P, ξ, η ∈ C
n,

 ιx := x+ (f1(x), . . . , fn(x)), x ∈ L.

Then one can show that (ι,A) is an aPs-completion of L with L(ι,A) = M. ❑

6.9 Corollary. Let (ι1,A1) and (ι2,A2) be two aPs-completions of an inner

product space L. Then (ι1,A1) � (ι2,A2) if and only if ker ι1 ⊆ ker ι2 and

ι2 ◦ ι
−1
1 : ran ι1 → ran ι2 is bounded.

Proof. If (ι1,A1) � (ι2,A2), then the map π1
2 guaranteed by the definition of �

is linear, bounded, and satisfies π1
2 ◦ ι1 = ι2. The required properties of ι1 and

ι2 follow. Conversely, assume that ker ι1 ⊆ ker ι2 and ι2 ◦ ι
−1
1 : ran ι1 → ran ι2

is bounded. Let π : A1 → A2 be the extension by continuity of ι2 ◦ ι
−1
1 , then

ι∗2 = ι∗1 ◦ π
′ and hence

L(ι2,A2) = ι∗2A
′
2 =

(
ι∗1 ◦ π

′
)
A′

2 ⊆ ι∗1A
′
1 = L(ι1,A1) .

❑
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