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HILBERT — A MATLAB IMPLEMENTATION OF ADAPTIVE BEM

MARKUS AURADA, MICHAEL EBNER, SAMUEL FERRAZ-LEITE, PETRA GOLDENITS,
MICHAEL KARKULIK, MARKUS MAYR, AND DIRK PRAETORIUS

Abstract. The Matlab BEM library HILBERT allows the numerical solution of the 2D Laplace
equation on some bounded Lipschitz domain with mixed boundary conditions by use of an
adaptive Galerkin boundary element method (BEM). This paper provides a documentation of
HILBERT. The reader will be introduced to the data structures of HILBERT and mesh-refinement
strategies. We discuss our approach of solving the Dirichlet problem (Section 5), the Neumann
problem (Section 6), and the mixed boundary value problem with Dirichlet and Neumann
boundary conditions (Section 7). Besides a brief introduction to these problems, their equivalent
integral formulations, and the corresponding BEM discretizations, we put an emphasis on
possible strategies to steer an adaptive mesh-refining algorithm. In particular, various error
estimators are discussed. Another notable feature is a complete and detailed description of our
Matlab implementation which enhances the reader’s understanding of how to use the HILBERT
program package.

1. Introduction

The boundary element method is a discretization scheme for the numerical solution of elliptic
differential equations. On an analytical level, the differential equation, stated in the domain,
is reformulated in terms of a certain integral equation called representation theorem or third

Green’s formula. For the Laplace equation on some bounded Lipschitz domain Ω ⊂ R
2, each

solution of

−∆u = f in Ω(1.1)

can explicitly be written in the form

u(x) = Ñf(x) + Ṽ φ(x) − K̃g(x) for all x ∈ Ω,(1.2)

where φ := ∂nu is the normal derivative and g := u|Γ is the trace of u on Γ := ∂Ω. The involved
linear integral operators read

Ñf(x) := −
1

2π

∫

Ω
log |x− y| f(y) dy,(1.3)

Ṽ φ(x) := −
1

2π

∫

Γ
log |x− y|φ(y) dΓ(y),(1.4)

K̃g(x) := −
1

2π

∫

Γ

(y − x) · ny

|y − x|2
g(y) dΓ(y),(1.5)

where ny denotes the outer unit vector of Ω at some point y ∈ Γ. Put differently, the solution
u of (1.1) is known as soon as the Cauchy data (∂nu, u|Γ) are known on the entire boundary Γ.

If one considers the trace of u, the representation formula (1.2) becomes

g = u|Γ = N0f + V φ− (K − 1/2)g.(1.6)

If one considers the normal derivative of u, the representation formula (1.2) becomes

φ = ∂nu = N1f + (K ′ + 1/2)φ +Wg.(1.7)

The two linear equations (1.6)–(1.7) are known as Calderón system. It involves six linear
integral operators acting only on Γ: the simple-layer potential V , the double-layer potential
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K with adjoint operator K ′, the hypersingular integral operator W , and the trace N0 and the

normal derivative N1 of the Newton potential Ñ .
For the boundary element method, the Laplace equation with given boundary data is equiv-

alently stated in terms of the Calderón system (1.6)–(1.7). This leads to a boundary integral
equation formulated on Γ. This integral equation is solved numerically to obtain (approxima-
tions of) the missing Cauchy data. In a postprocessing step, the computed Cauchy data are
then plugged into the representation formula (1.2) to obtain an approximation of the solution
u of the differential equation.

Examples for this approach are given in the subsequent sections: In Section 5, we consider the
Dirichlet problem, where g = u|Γ is known and where the unknown normal derivative φ = ∂nu
has to be computed. More precisely, we consider the weakly-singular integral formulation of

−∆u = 0 in Ω,

u = g on Γ.
(1.8)

In Section 6, we consider the Neumann problem, where the normal derivative φ is known and
where the unknown trace g has to be computed. More precisely, we consider the hypersingular
integral formulation of

−∆u = 0 in Ω,

∂nu = φ on Γ.
(1.9)

Finally, in Section 7, we consider a mixed boundary value problem, where Γ is split into two
disjoint parts ΓD and ΓN and where g is known only on ΓD ⊂ Γ, whereas φ is known only on
ΓN ⊂ Γ. More precisely, we consider the so-called symmetric integral formulation of

−∆u = 0 in Ω,

u = g on ΓD,

∂nu = φ on ΓN .

(1.10)

All of these integral formulations lead to first-kind integral equations with elliptic integral
operators so that the Lax-Milgram lemma applies and provides existence and uniqueness of
discrete solutions.

Whereas this documentation focusses on the implementation of the adaptive lowest-order
BEM only, we refer to the literature for details on the analysis and the numerics of BEM:
For instance, the analysis of boundary integral equations is completely presented in the mono-
graph [Mc]. For the state of the art in numerical analysis, we refer to [SS]. Fast BEM is discussed
in [RS]. These algorithms are, however, beyond the scope of Matlab and consequently beyond
the scope of HILBERT. Finally, an introductory overview on the analysis of elliptic boundary
integral equations and the boundary element method is best found in [S].

1.1. What is HILBERTHILBERTHILBERT. Throughout, Γ = ∂Ω is the piecewise affine boundary of a polygonal
Lipschitz domain Ω ⊂ R

2. Sometimes, Γ is partitioned into finitely many relatively open and
disjoint boundary pieces, e.g. in a Dirichlet boundary ΓD and a Neumann boundary ΓN , i.e.,
Γ = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅.

Let Eℓ = {E1, . . . , EN} be a finite set of affine line segments Ej ∈ Eℓ, i.e., there holds

Ej = [aj , bj ] := conv{aj , bj}(1.11)

with certain aj, bj ∈ R
2 with aj 6= bj . We say that Eℓ is a mesh (or triangulation) of Γ provided

that Γ =
⋃N

j=1Ej and |Ej ∩ Ek| = 0 for all Ej, Ek ∈ Eℓ with Ej 6= Ek. If Γ is partitioned
into ΓD and ΓN , we assume that this partition is resolved by Eℓ, i.e., Ej ∈ Eℓ satisfies either

Ej ⊆ ΓD or Ej ⊆ ΓN . Finally, Kℓ = {z1, . . . , zN} denotes the set of all nodes of the mesh Eℓ,
and we note that there holds #Eℓ = #Kℓ for the closed boundary Γ.

HILBERT [AEFMGKP] is a Matlab library for the solution of (1.8)–(1.10) by use of h-
adaptive lowest-order Galerkin BEM. In particular, missing Neumann data are approximated
by an Eℓ-piecewise constant function Φℓ ≈ φ, and missing Dirichlet data are approximated by
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an Eℓ-piecewise affine and continuous function Gℓ ≈ g. Given an initial coarse mesh E0 of Γ, the
adaptive loop generates a sequence of improved meshes Eℓ by iterative local mesh-refinement.
Throughout, HILBERT uses the canonical bases, i.e., characteristic functions χj associated with
elements Ej ∈ Eℓ to represent discrete fluxes Φℓ and nodal hat functions ζk associated with
nodes zk ∈ Kℓ to represent discrete stresses Gℓ.

1.2. Outline of Documentation. Section 2 recalls some analytical preliminaries like the
definition of boundary integrals and the arclength derivative. Moreover, some notation is intro-
duced which is used throughout the entire document. In Section 3, we give a concise overview
on all functions and functionality provided by HILBERT. Section 4 discusses our implementa-
tion of the local mesh-refinement and the marking strategy used in the adaptive mesh-refining
algorithms. The Dirichlet problem (1.8) and its numerical solution by use of HILBERT is dis-
cussed in Section 5, whereas Section 6 is concerned with the Neumann problem (1.9). Finally,
Section 7 treats the use of HILBERT for the numerical solution of the mixed boundary value
problem (1.10).

2. Preliminaries

2.1. Functions on the Boundary. With each element Ej = [aj , bj ] ∈ Eℓ, we associate the
affine mapping

γj : [−1, 1] → Ej, γj(s) =
1

2

(
aj + bj + s(bj − aj)

)
(2.1)

which maps the reference element [−1, 1] ⊂ R bijectively onto Ej.
Let Pp(Eℓ) be the space of all Eℓ-piecewise polynomials of degree p ∈ N0 with respect to the

arclength. By definition, this means that for all fℓ ∈ Pp(Eℓ) and all elements Ej ∈ Eℓ, the
function fℓ ◦ γj : [−1, 1] → R satisfies

fℓ ◦ γj ∈ Pp[−1, 1],(2.2)

i.e., fℓ ◦ γj is a usual polynomial of degree (at most) p. Note that functions fℓ ∈ Pp(Eℓ) are, in
general, not continuous, but have jumps at the nodes of Eℓ.

In particular, P0(Eℓ) is the space of all Eℓ-piecewise constant functions. If χj ∈ P0(Eℓ) denotes
the characteristic function of Ej ∈ Eℓ, the set {χ1, . . . , χN} is a basis of P0(Eℓ).

One particular example for a function in P0(Eℓ) is the local mesh-width hℓ ∈ P0(Eℓ) which
is defined Eℓ-elementwise by

hℓ|E := length(E) = |b− a| for all E = [a, b] ∈ Eℓ.(2.3)

Let S1(Eℓ) := P1(Eℓ) ∩ C(Γ) denote the set of all continuous and (with respect to the arc-
length) Eℓ-piecewise affine functions. For each node zj ∈ Kℓ of Eℓ, let ζj ∈ S1(Eℓ) be the
associated hat function, i.e., ζj(zk) = δjk. Then, the set {ζ1, . . . , ζN} is a basis of S1(Eℓ).

In HILBERT, we only consider the lowest-order Galerkin BEM, and the spaces P0(Eℓ) and
S1(Eℓ) will be of major interest.

2.2. Boundary Integrals. Let I ⊂ R be a compact interval in R. For Ej ∈ Eℓ, let πj : I → Ej

be a continuously differentiable and bijective mapping. For any function f : Ej → R, the
boundary integral is then defined via

∫

Ej

f dΓ =

∫

Ej

f(x) dΓ(x) :=

∫

I
(f ◦ πj)(t) |π

′
j(t)| dt.(2.4)

One can prove that this definition is independent of the parametrization πj. For the reference
parametrization γj , there holds

∫

Ej

f dΓ =
length(Ej)

2

∫ 1

−1
f ◦ γj dt,
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where length(Ej) := |bj − aj | denotes the Euclidean length of Ej = [aj , bj] ⊂ R
2. For the

arclength parametrization

βj : [0, length(Ej)] → Ej , βj(t) := aj +
t

length(Ej)
(bj − aj)

holds
∫

Ej

f dΓ =

∫ length(Ej)

0
f ◦ βj dt.

2.3. Arclength Derivative. Let I ⊂ R be a compact interval in R. For Ej ∈ Eℓ, let
πj : I → Ej be a continuously differentiable and bijective mapping with |π′j(t)| > 0 for all t ∈ I.

For any function f : Ej → R, the arclength derivative f ′ is then defined by

(f ′ ◦ πj)(t) =
1

|π′j(t)|
(f ◦ πj)

′(t) for all x = πj(t) ∈ Ej .(2.5)

Again, one can show that this definition is independent of the chosen parametrization. For the
reference parametrization γj , we obtain

(f ′ ◦ γj)(t) =
2

length(Ej)
(f ◦ γj)

′(t) for all x = γj(t) ∈ Ej ,

whereas the arclength parametrization βj leads to

f ′ ◦ βj = (f ◦ βj)
′.

3. Overview on Hilbert

3.1. Tree Structure and Installation. The BEM library HILBERT is contained in a zip-file
hilbert.zip. Unzipping this zip-archive, you obtain the following tree structure

hilbert/

examples/

example01/

example02/

example03/

example04/

general/

lib/

source/

visualization/

The root directory hilbert/ contains this documentation documentation.pdf as well as the li-
cence agreement license.pdf. Besides this, it contains installation files Makefile, Makefile.m,
and make.m to build the integral operators from the UNIX shell or the Matlab command line.

The m-files of HILBERT are contained in the folder lib/, whereas the C-source codes of the
integral operators are contained in source/. The folder examples/ contains various examples
and demo files which demonstrate the use of HILBERT. The discrete solutions obtained can be
visualized via functions from the folder visualization/.

To install HILBERT, unpack the zip-archive, change to the root folder, start Matlab, and
type make at the Matlab command line. In UNIX, you may type make in the shell and start
Matlab afterwards. Both will create certain MEX-files in the folder lib/. You may then test
the installation by running some example from the examples/ folder.

3.2. Data Structure. The set of nodes Kℓ = {z1, . . . , zN} of the mesh Eℓ = {E1, . . . , EN}
is represented by the (N × 2)-array coordinates . The j-th row of coordinates stores the
coordinates of the j-th node zj = (xj , yj) ∈ R

2 as

coordinates( j,:) = [ xj yj ].
4



If Γ is not split into several parts, the mesh Eℓ is represented by the (N × 2)-(formally integer)
array elements . The i-th boundary element Ei = [zj , zk] with nodes zj , zk ∈ Kℓ is stored as

elements( i,:) = [ j k ],

where the nodes are given in counterclockwise order, i.e., the parametrization of the boundary
element Ei ⊂ Γ is mathematically positive. Put differently, the outer normal vector ni ∈ R

2

of Γ on a boundary element Ei = [zj , zk] reads

ni =
1

|zk − zj |

(
yk − yj

xj − xk

)
with zj = (xj , yj), zk = (xk, yk).

If Γ is split into Dirichlet boundary ΓD and Neumann boundary ΓN , the mesh Eℓ is represented
by the (ND×2)-array dirichlet and the (NN×2)-array neumann which describe the elements
Ej ⊆ ΓD and Ek ⊆ ΓN as before. Then, there formally holds

elements = [dirichlet;neumann]

with N = ND + NN . The array elements , however, is not explicitly built or stored in this
case.

3.3. Overview on Functions and Functionality. In this section, we list all functions
provided by HILBERT, describe their input and output parameters, provide a short overview on
their functionality, and give links to a detailed description within this documentation.

Throughout, let Eℓ = {E1, . . . , EN} be a given mesh of Γ with nodes Kℓ = {z1, . . . , zN}
described in terms of coordinates and elements . Recall that χj denotes the characteristic
function associated with Ej ∈ Eℓ and that ζk denotes the hat function associated with zk ∈ Kℓ.

3.3.1. General Functions. For marking elements in an adaptive mesh-refining strategy, we
use the Dörfler marking introduced in [D]. This is realized in a generalized way by the function

[marked [,marked2,..]] = markElements(theta [,rho], indicator1 [,indicator2,..]);

see Section 4.1 for details.
For the local mesh-refinement of the boundary mesh, we realize an Algorithm from [AGP]

which is proven to be optimal with respect to the number of generated elements. For a mesh
Eℓ described in terms of coordinates and elements and a vector marked containing the
indices of elements Ej ∈ Tℓ to be refined, the function call reads

[coord,elem,father2son] = refineBoundaryMesh(coordinates,elements,marked);

where the generated mesh Eℓ+1 is described by coord and elem . Moreover, father2son
returns a link between the meshes Eℓ+1 and Eℓ. Further optional arguments of the function are
discussed in Section 4.2.

3.3.2. Discrete Integral Operators. The discrete simple-layer potential matrix

V ∈ R
N×N
sym , Vjk = 〈V χk , χj〉L2(Γ)(3.1)

is returned by call of

V = buildV(coordinates,elements [,eta]);

Note that V is a dense matrix. Since Matlab does not easily allow matrix compression
techniques like hierarchical matrices [H] or the fast multipole method, the assembly of V (and
the other discrete integral operators below) as well as the storage is of quadratic complexity. To
lower the computational time in Matlab, the computation is done in C via the Matlab-MEX
interface. We stress that all matrix entries can be computed analytically by use of analytic
anti-derivatives derived, e.g., in [M]. If numerical stability is concerned, it is, however, better
to compute certain entries by use of numerical quadrature instead, see [Ma]. The optional
admissibility parameter eta determines whether certain entries Vjk are computed by numerical
quadrature instead of analytic integration. Details are found in Section 5.1.

5



The discrete double-layer potential matrix

K ∈ R
N×N , Kjk = 〈Kζk , χj〉L2(Γ)(3.2)

is returned by call of

K = buildK(coordinates,elements [,eta]);

see Section 5.1. The discrete hypersingular integral operator matrix

W ∈ R
N×N
sym , Wjk = 〈Wζk , ζj〉L2(Γ)(3.3)

is returned by call of

W = buildW(coordinates,elements [,eta]);

see Section 6.1. As above, the optional parameter eta in both functions determines whether
all matrix entries are computed analytically via anti-derivatives from [M] or whether certain
entries are computed by numerical quadrature.

3.3.3. Numerical Solution of Dirichlet Problem. The Laplace problem with Dirichlet
boundary condition (1.8) is equivalently recast in Symm’s integral equation

V φ = (K + 1/2)g

with g being the known Dirichlet data and φ being the unknown Neumann data. We refer to
Section 5 for details. In the Galerkin formulation, we replace the Dirichlet data g by its nodal
interpolant Gℓ. The right-hand side vector then takes the form

b ∈ R
N with bj = 〈(K + 1/2)Gℓ , χj〉L2(Γ)(3.4)

and is computed by

b = buildSymmRHS(coordinates,elements,g);

where g is a function handle for the given Dirichlet data, see Section 5.2.
By approximation of g, we introduce an additional error which is controlled by the so-called

Dirichlet data oscillations

osc2
ℓ =

∑

E∈Eℓ

oscℓ(E)2 with oscℓ(E)2 = length(E)‖(g −Gℓ)
′‖2

L2(E),(3.5)

cf. [AGP]. The function call

osc = computeOscDirichlet(coordinates,elements,g);

returns a column vector with osc(j) = oscℓ(Ej)
2, cf. Section 5.3.

In academic experiments, the exact solution φ ∈ L2(Γ) is known, and

err2ℓ + osc2
ℓ =

∑

E∈Eℓ

(
errℓ(E)2 + oscℓ(E)2

)
with errℓ(E)2 = length(E)‖φ− Φℓ‖

2
L2(E)(3.6)

is an upper bound for the Galerkin error |||φ−Φℓ|||
2
V with respect to the energy norm ||| · |||V . The

function call

err = computeErrNeumann(coordinates,elements,x,phi);

returns a column vector with err(j) = errℓ(Ej)
2. Here, phi is a function handle for the

known exact solution and x is the coefficient vector of the Galerkin solution Φℓ =
∑N

j=1 xjχj.
We refer to Section 5.4 for details.

For a posteriori error estimation and to steer an adaptive mesh-refinement, HILBERT includes
four (h−h/2)-based error estimators from [FP, EFFP], discussed in Section 5.5 in detail: With

Φ̂ℓ an improved Galerkin solution with respect to a uniformly refined mesh Êℓ, the a posteriori
error estimators

ηℓ = |||Φ̂ℓ − Φℓ|||V and µ2
ℓ =

∑

E∈Eℓ

µℓ(E)2 with µℓ(E)2 = length(E) ‖Φ̂ℓ − Φℓ‖
2
L2(E)(3.7)
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can be computed by

eta = computeEstSlpEta(father2son,V fine,x fine,x coarse);

and

mu = computeEstSlpMu(coordinates,elements,father2son,x fine,x coarse);

respectively. Here, V fine is the Galerkin matrix for the uniformly refined mesh Êℓ, and x
and x fine are the coefficient vectors for Φℓ and Φ̂ℓ, respectively. Then, eta = η2

ℓ and mu is
a column vector with mu(j) = µℓ(Ej)

2. The additional field father2son describes how to

obtain Êℓ from the given mesh Eℓ, cf. Section 4.2.
The computation of Φℓ can be avoided by taking the L2-projection onto P0(Eℓ). This leads

to a posteriori error estimators

η̃ℓ = |||(1 − Πℓ)Φ̂ℓ|||V and µ̃ 2
ℓ =

∑

E∈Eℓ

µ̃ℓ(E)2 with µ̃ℓ(E)2 = length(E) ‖(1 − Πℓ)Φ̂ℓ‖
2
L2(E)(3.8)

which are computed by

eta tilde = computeEstSlpEtaTilde(father2son,V fine,x fine);

and

mu tilde = computeEstSlpMuTilde(coordinates,elements,father2son,x fine);

Then, eta tilde = η̃ 2
ℓ and mu tilde is a column vector with mu tilde(j) = µ̃ℓ(Ej)

2.
An adaptive algorithm based on µ̃ℓ is realized in the Matlab script adaptiveSymm found

in the folder examples/. Details are given in Section 5.6.1.
Finally, certain examples are contained in the folders examples/exampleXX/ , e.g., in

examples/example01/ the function

exampleSymm01(Nmax)

computes sequences of discrete solutions based on uniform and adaptive mesh-refinement until
in both cases meshes Eℓ with #Eℓ > Nmax elements have been created. On-the-fly, the decay
of the error bound (err2ℓ + osc2

ℓ )
1/2 as well as the decay of all error estimators ηℓ, η̃ℓ, µℓ, and µ̃ℓ

is plotted over the number of elements as well as over the runtime of the adaptive algorithm
realized in adaptiveSymm.

3.3.4. Numerical Solution of Neumann Problem. The Laplace problem with Neumann
boundary condition (1.9) is equivalently recast in the hypersingular integral equation

Wg = (1/2 −K ′)φ

with g being the unknown Dirichlet data and φ being the known Neumann data. We refer to
Section 6 for details. Since the hypersingular integral operator W is only semi-elliptic with
kernel being the constant functions, we use the Galerkin matrix

W + S ∈ R
N×N
sym with Sjk =

( ∫

Γ
ζj dΓ

)( ∫

Γ
ζk dΓ

)
.

The stabilization matrix S is provided by

S = buildHypsingStabilization(coordinates,elements);

cf. Section 6.2. In the Galerkin formulation, we further replace the Neumann data φ by its
L2-projection Φℓ. The right-hand side vector then takes the form

b ∈ R
N with bj = 〈(1/2 −K ′)Φℓ , ζj〉L2(Γ)(3.9)

and is computed by

b = buildHypsingRHS(coordinates,elements,phi);

7



where phi is a function handle for the given Neumann data, see Section 6.3.
Similar to above, the additional approximation error is controlled by the so-called Neumann

data oscillations

osc2
ℓ =

∑

E∈Eℓ

oscℓ(E)2 with oscℓ(E)2 = length(E)‖φ − Φℓ‖
2
L2(E).(3.10)

The function call

osc = computeOscNeumann(coordinates,elements,phi);

returns a column vector with osc(j) = oscℓ(Ej)
2, cf. Section 6.4.

In academic experiments, the exact solution g ∈ H1(Γ) is known, and

err2ℓ + osc2
ℓ =

∑

E∈Eℓ

errℓ(E)2 + oscℓ(E)2 with errℓ(E)2 = length(E)‖(g −Gℓ)
′‖2

L2(E)(3.11)

is an upper bound for the Galerkin error |||g−Gℓ|||
2
W+S with respect to the energy norm ||| · |||W+S.

The function call

err = computeErrDirichlet(coordinates,elements,x,g);

returns a column vector with err(j) = errℓ(Ej)
2. Here, g is a function handle for the known

exact solution and x is the nodal vector of the Galerkin solution Gℓ =
∑N

j=1 xjζj. We refer to
Section 6.5 for details.

For a posteriori error estimation and to steer an adaptive mesh-refinement, HILBERT includes
four (h − h/2)-based error estimators from [EFGP], discussed in Section 5.5 in detail: These
read

ηℓ = |||Φ̂ℓ − Φℓ|||W+S and µ2
ℓ =

∑

E∈Eℓ

µℓ(E)2 with µℓ(E)2 = length(E) ‖Φ̂ℓ − Φℓ‖
2
L2(E)

η̃ℓ = |||(1 − Iℓ)Φ̂ℓ|||W+S and µ̃ 2
ℓ =

∑

E∈Eℓ

µ̃ℓ(E)2 with µ̃ℓ(E)2 = length(E) ‖((1 − Iℓ)Φ̂ℓ)
′‖2

L2(E)

with Iℓ the nodal interpolation onto S1(Tℓ). These are computed by

eta = computeEstHypEta(elem fine,elements,father2son,WS fine,x fine,x);

eta tilde = computeEstHypEtaTilde(elem fine,elements,father2son,WS fine,x fine);

and

mu = computeEstHypMu(elem fine,elements,father2son,x fine,x);

mu tilde = computeEstHypMuTilde(elem fine,elements,father2son,x fine);

Then, eta = η2
ℓ as well as eta tilde = η̃ 2

ℓ , and mu as well as mu tilde are column vectors
with mu(j) = µℓ(Ej)

2 and mu tilde(j) = µ̃ℓ(Ej)
2, respectively. As input, these functions

take elements and elem fine which describe Eℓ and Êℓ, respectively, as well as the link

between both meshes given by father2son . WSfine is the Galerkin matrix for Êℓ. The

vectors x and x fine are the nodal vectors of the Galerkin solutions Gℓ and Ĝℓ, respectively.
An adaptive algorithm based on µ̃ℓ is implemented in the Matlab script adaptiveHypsing

in the folder examples/, cf. Section 6.7.1. Moreover, the folders examples/exampleXX/ contain
various examples like exampleHypsing01(Nmax) in examples/example01/.

3.3.5. Numerical Solution of Mixed Boundary Value Problem. The Laplace prob-
lem with mixed boundary condition (1.10) is equivalently recast in an integral equation which
involves the Calderón projector, see Section 7. Our implementation is based on the func-
tions provided for the Dirichlet and Neumann problem. Note that Eℓ is now given in terms of
coordinates , dirichlet , and neumann.

In the problem formulation, the Dirichlet data g are only known on ΓD. For the integral
formulation, one has to fix some extension g to Γ. We replace g by its nodal interpolation Gℓ.
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Since g is only implicitly built on the initial mesh E0, we need to guarantee that Gℓ|ΓN
= g|ΓN

.
This is done by

gh = buildMixedDirichlet(coordinates,dirichlet,neumann, ...

father2neumann,neumann old,gh old,g);

where gh is the nodal vector of Gℓ, gh old is the nodal vector of Gℓ−1, and g is a function
handle for the Dirichlet data on ΓD. Details are found in Section 7.2

To re-use the functions implemented for the hypersingular integral equation from the previous
section, we have to guarantee that the first n nodes of Kℓ belong to ΓN . This needs some
possible reordering of coordinates as well as some corresponding update of dirichlet and
neumann which is done by

[coordinates,dirichlet,neumann] = buildMixedElements(coordinates,dirichlet,neumann);

We stress that the ordering of dirichlet and neumann, i.e., the numbering of the elements
Eℓ = {E1, . . . , EN} is not affected. Details are found in Section 7.3.

The right-hand side vector b for the Galerkin formulation, split into contributions on ΓN and
contributions on ΓD, is computed by

[bN,bD] = buildMixedRHS(coordinates,dirichlet,neumann,gh,V,K,W,g,phi);

Here, gh is the nodal vector of the extended Dirichlet data and g is a function handle for
the Dirichlet data on ΓD. The function handle phi provides the Neumann data on ΓN . The
matrices V, K, and Ware the discrete integral operators associated with Eℓ.

An adaptive algorithm from [AGKP] based on the µ̃ℓ-estimators from the previous sections,
is provided by adaptiveMixed in the folder examples/. Various examples are found in the
folders examples/exampleXX/, e.g., exampleMixed01a(Nmax) in examples/example01/.

3.4. Visualization of Discrete Solutions. Provided that Γ is connected, the function

plotArclengthP0(coordinates,elements,phih [,phi], [,f igure])

plots a discrete solution Φℓ ∈ P0(Eℓ) over the arclength. The elementwise values of Φℓ are
provided by the column vector phih . With the optional function handle phi the exact solution
φ can be plotted into the same plot for comparison. With the function

plotArclengthS1(coordinates,elements,gh [,g], [,figur e])

one can plot a discrete solution Gℓ ∈ S1(Eℓ) over the arclength. The nodal values of Gℓ are
provided by the column vector gh. With the optional function handle g the exact solution g
can be plotted into the same plot for comparison.

For both functions, the optional parameter figure prescribes the figure number for the plot.

3.5. Numerical Examples. So far, HILBERT contains four different examples, where the
exact solution u of

−∆u = 0 in Ω(3.12)

is prescribed.
In examples/example01/, the exact solution reads in polar coordinates

u(r, ϕ) = r2/3 cos(2ϕ/3),(3.13)

and Ω is a rotated L-shaped domain with diam(Ω) < 1 and reentrant corner with angle 3π/2.
The rotation is done in a way that the Dirichlet data g = u|Γ are smooth, whereas the Neumann
data φ = ∂nu have a generic singularity at the reentrant corner.

In examples/example02/, the exact solution reads in polar coordinates

u(r, ϕ) = r4/7 cos(4ϕ/7),(3.14)
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and Ω is a Z-shaped domain with diam(Ω) < 1 and reentrant corner with angle 7π/4. Then,
the Dirichlet data g as well as the Neumann data φ have generic singularities at the reentrant
corner.

In examples/example03/, the exact solution reads

u(x, y) = sinh(2π x) · cos(2π y)(3.15)

on the cube Ω = (0, 1/2)2 . Now, the Dirichlet data g as well as the Neumann data φ are smooth
so that uniform mesh-refinement is theoretically predicted to be optimal.

In examples/example04/ taken from [AGP], we consider the rotated L-shaped domain from
the first example. The exact solution is chosen in a way such that the Dirichlet data g have a
weak singularity at the uppermost corner, whereas the Neumann data φ have a generic singular-
ity at the reentrant corner. Therefore, the adaptive algorithm has to resolve two singularities.

For Symm’s integral equation, the hypersingular integral equation, and the symmetric formu-
lation of the mixed boundary value problem, the example files, e.g. for example/example01/ ,
are run by

exampleSymm01(Nmax)

exampleHypsing01(Nmax)

exampleMixed01a(Nmax)

where Nmaxdefines the stopping criterion for the adaptive and uniform mesh-refinement. More
precisely, the functions compute sequences of discrete solutions based on uniform and adaptive
mesh-refinement until in both cases meshes Eℓ with #Eℓ > Nmax elements have been created.
On-the-fly, the decay of the error bounds (err2ℓ + osc2

ℓ )
1/2 as well as the decay of all error

estimators ηℓ, η̃ℓ, µℓ, and µ̃ℓ is plotted over the number of elements as well as over the runtime
of the corresponding µ̃ℓ-steered adaptive algorithm.
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4. Mesh-Refinement

Listing 1
1 function varargout = markElements(theta, varargin )

2 %*** check whether optional parameter rho is given or not

3 if nargin == nargout +1

4 rho = 0;

5 else

6 rho = varargin {1};

7 varargin = varargin (2: end);

8 end

9

10 %*** enforce input parameters to be column vectors and count thei r length

11 nE = zeros (1, nargout +1);

12 for j = 1: nargout

13 nE(j+1) = length ( varargin {j });

14 varargin {j } = reshape ( varargin {j },nE(j+1),1);

15 end

16

17 %*** generate set of all indicators

18 indicators = cat(1, varargin {: });

19 nE = cumsum(nE);

20

21 %*** realization of Doerfler marking

22 [indicators,idx] = sort(indicators, 'descend' );

23 sum indicators = cumsum(indicators);

24 ell = max(ceil(rho * nE( end )), find (sum indicators >=sum indicators( end ) * theta,1));

25 marked = idx(1:ell);

26

27 %*** split subset marked into subsets with respect to input vecto rs

28 for j = 1: nargout

29 varargout {j } = marked( marked >nE(j) & marked <=nE(j+1) ) − nE(j);

30 end

4.1. Dörfler Marking (5.28) for Local Mesh-Refinement (Listing 1). We realize the
marking criterion proposed by Dörfler [D] in a generalized form which is suitable even for

mixed boundary value problems or the FEM-BEM coupling. Suppose that E
(1)
ℓ , . . . , E

(n)
ℓ are

pairwise disjoint meshes which provide indicators ̺
(k)
ℓ (E) for all E ∈ E

(k)
ℓ . We formally define

Eℓ :=
⋃n

j=1 E
(j)
ℓ and ̺ℓ(E) := ̺

(k)
ℓ (E) for all E ∈ E

(k)
ℓ and k = 1, . . . , n. For given 0 < θ < 1, we

then aim to find the minimal set Mℓ ⊆ Eℓ such that

θ
∑

E∈Eℓ

̺ℓ(E) ≤
∑

E∈Mℓ

̺ℓ(E).(4.1)

Finally, we define and return M
(k)
ℓ := Mℓ ∩ E

(k)
ℓ for all k = 1, . . . , n.

A second generalization is concerned with the minimal cardinality of Mℓ. For analytical
convergence results, the minimal set Mℓ with (4.1) is sufficient. However, small sets Mℓ lead to
many iterations in the adaptive loop and may thus lead to a large runtime. With an additional
parameter 0 < ρ < 1, one remedy for this drawback can be to determine the minimal superset
Mℓ ⊆ Mℓ ⊆ Eℓ with

#Mℓ

#Eℓ
≥ ρ and ̺ℓ(E) ≥ ̺ℓ(E

′) for all E ∈ Mℓ and E′ ∈ Eℓ\Mℓ.(4.2)
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From an analytical point of view, any superset Mℓ of Mℓ also leads to a convergent adaptive
algorithm. Our definition of Mℓ guarantees that at least a fixed percentage of elements is
refined and that these elements have the largest associated refinement indicators. Note that the
parameter ρ gives a lower bound for the percentage of elements which are refined.

Our implementation of the marking criterion includes (optionally) the generalizations (4.1)–
(4.2) of the original strategy from [D]:

• In the simplest case, the function markElements is called by
marked = markElements(theta,indicator)

where indicator is a column vector, where indicator(j) corresponds to some element
Ej ∈ Eℓ. The function markElements then returns the indices corresponding to the
minimal set Mℓ.

• Alternatively, the function can be called by
marked = markElements(theta,rho,indicator)

and returns the indices corresponding to the minimal set Mℓ ⊇ Mℓ with (4.2).
• For the general formulation described above, the function is called by

[marked1,marked2, . . . ] = markElements(theta [,rho], ind1,ind2, . . . )
where, e.g., ind1 is the vector of indicators ̺ℓ(E

(1)
j ) for all E

(1)
j ∈ E

(1)
ℓ = {E

(1)
1 , . . . , E

(1)

N(1)}.

The function returns the indices corresponding to the sets M
(k)
ℓ ⊆ E

(k)
ℓ (or M

(k)
ℓ if ρ is

given).
• First, we check whether the parameter ρ is given. If not, it is set to 0 (Line 3–8).
• The given indicator vectors are reshaped into column vectors, and their length is stored in

the vector nE (Line 11–15).
• We build the vector of all indicators ̺ℓ(Ej) (Line 18) which corresponds to the ordered

set Eℓ = {E1, . . . , EN}. Moreover, nE becomes a vector of pointers so that nE( j) +1 and

nE( j + 1) give the start and the end of E
(j)
ℓ with respect to indicators (Line 19).

• To determine the minimal set Mℓ we sort the vector indicators (Line 22). Mathe-
matically, this corresponds to finding a permutation π such that ̺ℓ(Eπ(j)) ≥ ̺ℓ(Eπ(j+1)).

We then compute the vector sum indicators of sums
∑k

j=1 ̺ℓ(Eπ(j)) (Line 23). Note

that sum indicators( end) contains
∑N

j=1 ̺ℓ(Eπ(j)) =
∑N

j=1 ̺ℓ(Ej). Finding the min-

imal set Mℓ is thus equivalent to finding the minimal index k with θ
∑N

j=1 ̺ℓ(Eπ(j)) ≤∑k
j=1 ̺ℓ(Eπ(j)), and there holds Mℓ = {Eπ(1), . . . , Eπ(k)}. If ρ is specified, we choose the

minimal index k ≥ k with k ≥ ρN . Altogether, Line 24–25 thus determines the indices of
elements in Mℓ and Mℓ, respectively.

• Finally, we use the pointer vector nE to determine the indices of M
(k)
ℓ with respect to

E
(k)
ℓ = {E

(k)
1 , ..., E

(k)

N(k)} (Line 28–30).

Listing 2
1 function [coordinates, varargout ] = refineBoundaryMesh(coordinates, varargin )

2 %*** fix the blow −up factor for the K −mesh constant,

3 %*** where we assume C(Mesh 0) = 1, i.e., the initial mesh is uniform

4 kappa = 2;

5

6 %*** count number of boundary parts from input

7 %*** nB will hold this number

8 nB = 0;

9

10 for iter = 1 : ( nargin − 1)

11

12 if size ( varargin {iter },2) == 2

13 nB = nB + 1;
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14 nE boundary(iter) = size ( varargin {iter },1);

15 else

16 break ;

17 end

18

19 end

20

21 %*** check the correct number of input parameters

22 if ∼( ( nargin == (nB+1)) | | ( nargin == (2 * nB+1)) )

23 error( 'refineBoundaryMesh: Wrong number of input arguments!' );

24 end

25

26 %*** check the correct number of output parameters

27 if ∼( ( nargout == (nB+1)) | | ( nargout == (2 * nB+1)) )

28 error( 'refineBoundaryMesh: Wrong number of output arguments!' );

29 end

30

31 %*** check, if user asks for father2son fields in output

32 if nargout == (2 * nB+1)

33 output father2son = true;

34 else

35 output father2son = false;

36 end

37

38 %*** obtain set of all elements of the boundary partition

39 elements = cat(1, varargin {1 : nB });

40

41 %*** indices of a boundary part w.r.t. entire field elements

42 ptr boundary = cumsum([0,nE boundary]);

43

44 %*** 1. determine whether uniform or adaptive mesh −refinement

45 %*** 2. in case of adaptive mesh −refinement compute vector marked

46 %*** of marked elements w.r.t. entire field elements

47 if (nB+1) == nargin

48 refinement = 'uniform' ;

49 else

50 refinement = 'adaptive' ;

51 marked = zeros (0,1); % marked elements w.r.t. entire field elements

52

53 for iter = 1 : nB

54 marked = [marked; varargin {iter + nB } + ptr boundary(iter)];

55 end

56

57 end

58

59 nC = size (coordinates,1); % number of coordinates

60 nE = size (elements,1); % number of elements

61

62 if strcmp(refinement, 'adaptive' )

63

64 %*** if element Ej is marked and if its neighbour Ek satisfies

65 %*** hk >= kappa * hj, we (recursively) mark Ek for refinement as well

66

67 %*** marked elements Ej will be refined, i.e., flag(j) = 1

68 flag = zeros (nE,1);

69 flag(marked) = 1;

70
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71 %*** determine neighbouring elements

72 node2element = zeros (nC,2);

73 node2element(elements(:,1),2) = (1:nE)';

74 node2element(elements(:,2),1) = (1:nE)';

75 element2neighbour = [ node2element(elements(:,1),1), ...

76 node2element(elements(:,2),2) ];

77

78 %*** compute (squared) local mesh −size

79 h = sum((coordinates(elements(:,1),:) −coordinates(elements(:,2),:)).ˆ2,2)';

80

81 %*** the formal recursion is avoided by sorting elements by mesh −size

82 [tmp,sorted elements] = sort(h);

83 for j = sorted elements

84 if flag(j)

85 neighbours = element2neighbour(j,:);

86 neighbours = neighbours( find (neighbours) );

87 flag( neighbours(h(neighbours) >= kappa * h(j)) ) = 1;

88 end

89 end

90

91 %*** obtain vector of marked elements

92 marked = find (flag);

93 nM = length (marked);

94

95 %*** compute and add new nodes

96 coordinates = [coordinates; zeros (nM,2)];

97 coordinates((1:nM)+nC,:) = ( coordinates(elements(mark ed,1),:) ...

98 + coordinates(elements(marked,2),:) ) * 0.5;

99

100 %*** refinement of mesh iterates over each boundary part

101 for iter = 1:nB

102

103 %*** determine which marked elements belong to boundary part

104 idx = find ( (ptr boundary(iter) < marked) ...

105 & (marked <= ptr boundary(iter+1)) );

106 nM boundary = length (idx);

107

108 %*** allocate new elements

109 new elements = [ varargin {iter }; zeros (nM boundary,2)];

110

111 %*** generate new elements

112 new elements((1:nM boundary)+nE boundary(iter),:) ...

113 = [ nC + idx, elements(marked(idx),2) ];

114 new elements( marked(idx) − ptr boundary(iter),2 ) = nC + idx;

115

116 %*** add new elements and father2son to output

117 varargout {iter } = new elements;

118

119 %*** compute father2son only if desired

120 if output father2son == true

121

122 %*** generate father2son

123 father2son = repmat ((1:nE boundary(iter))',1,2);

124 father2son( marked(idx) − ptr boundary(iter),2 ) ...

125 = (1:nM boundary)' + nE boundary(iter);

126

127 %*** add new elements and father2son to output
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128 varargout {nB+iter } = father2son;

129 end

130

131 end

132

133 elseif strcmp(refinement, 'uniform' )

134

135 %*** compute and add new nodes

136 coordinates = [coordinates; zeros (nE,2)];

137 coordinates((nC+1): end ,:) = ( coordinates(elements(:,1),:) ...

138 + coordinates(elements(:,2),:) ) * 0.5;

139

140 %*** uniform refinement of mesh iterates over each boundary part

141 for iter = 1:nB

142

143 %*** generate new elements

144 idx = (ptr boundary(iter)+1):ptr boundary(iter+1);

145 varargout {iter } = [ varargin {iter }(:,1),nC + idx' ; ...

146 nC + idx', varargin {iter }(:,2) ];

147

148 %*** compute father2son only if desired

149 if output father2son == true

150

151 %*** build father2son

152 varargout {nB+iter } ...

153 = [(1:nE boundary(iter))', ...

154 (1:nE boundary(iter))' + nE boundary(iter)];

155 end

156

157 end

158 end

4.2. Local Refinement of Boundary Element Mesh (Listing 2). In many cases, one is
not interested in computing only one approximation U with respect to a fixed given boundary el-
ement mesh E , but in computing a sequence of more and more accurate approximations Uℓ corre-
sponding to a sequence Eℓ of boundary element meshes with decreasing mesh-sizes. To that end,
our software package HILBERT provides an efficient mesh-refinement refineBoundaryMesh
for boundary element meshes, which covers the following tasks:

• uniform refinement of a given mesh
• refinement of certain marked elements, specified by the user
• linkage between elements of the input mesh with elements of the refined mesh
• handling of meshes that are split into finitely many distinct parts, e.g., Γ = ΓD ∪ ΓN

• guaranteed boundedness of the K-mesh constant

Throughout, refinement of an element means that Ei is bisected into two elements ej , ek of half
length. We now discuss certain aspects of our implementation from Listing 2, where the data
structure of coordinates , elements , dirichlet , and neumann is described in Section 3.2
above. The main focus is, however, on the practical use of the function.

• Input/Output Parameters: To allow a partition of Γ into finitely many parts (e.g., a
Dirichlet and a Neumann boundary), the formal signature reads

[coordinates, varargout ] = refineBoundaryMesh(coordinates, varargin )
To explain the variable input/output parameters, we consider certain examples.

• Suppose that Eℓ = {E1, . . . , EN} is described by coordinates and elements . Then,
[coordinates fine,elements fine,father2son] ...

= refineBoundaryMesh(coordinates,elements)
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provides the uniformly refined mesh Êℓ = {e1, . . . , e2N}, where each element Ei ∈ Eℓ is

bisected in certain sons ej , ek ∈ Êℓ. The (N × 2)-matrix father2son provides a link
between the element indices in the sense that

father2son (i, :) = [ j, k ] for Ei = ej ∪ ek.
The output parameter father2son is optional and can be omitted.

• Suppose that Mℓ ⊆ Eℓ is a set of elements which are marked for refinement. Let marked
be an (M × 1)-column vector containing the indices of the elements in Mℓ. Then,

[coordinates fine,elements fine,father2son] ...
= refineBoundaryMesh(coordinates,elements,marked)

provides a mesh Eℓ+1 which is only refined locally in the sense that all elements of Mℓ are
refined. If an element Ei ∈ Eℓ is not refined, there holds Ei = ej ∈ Eℓ+1, where the link
between these indices are given by

father2son (i, :) = [ j, j ] for Ei = ej .
Again, the output parameter father2son is optional and can be omitted.

• Suppose that Γ is split into a Dirichlet boundary ΓD and a Neumann boundary ΓN . In this
case, the mesh Eℓ = {E1, . . . , EN} is described in terms of coordinates , dirichlet ,
and neumann, cf. Section 3.2. Then,

[coordinates fine,dirichlet fine,neumann fine,dir2son,neu2son] ...
= refineBoundaryMesh(coordinates,dirichlet,neumann)

provides the uniformly refined mesh Êℓ. As father2son in the previous cases with a single
boundary part, now the arrays dir2son and neu2son provide the link between the coarse
mesh parts and the refined ones, e.g., dirichlet and dirichlet fine . For instance,

suppose that Eℓ|ΓD
= {ED

1 , . . . , E
D
ND

} and Êℓ|ΓD
= {eD1 , . . . , e

D
2ND

}. Then, there holds

dir2son (i, :) = [ j, k ] for ED
i = eDj ∪ eDk .

Finally, the fields dir2son and neu2son are optional in the sense that they can either
both be asked for or both be omitted.

• Suppose that MD
ℓ ⊆ Eℓ|ΓD

and MN
ℓ ⊆ Eℓ|ΓN

are sets of marked elements. Let
marked dirichlet and marked neumann be (MD × 1)- and (MN × 1)-column vectors
containing the indices of the elements in MD

ℓ and MN
ℓ , respectively. Then,

[coordinates fine,dirichlet fine,neumann fine,dir2son,neu2son] ...
= refineBoundaryMesh(coordinates,dirichlet,neumann, ...

marked dirichlet,marked neumann)
provides a mesh Eℓ+1 which is only refined locally in the sense that all elements of MD

ℓ ∪MN
ℓ

are refined. We stress that the optional input marked dirichlet and marked neumann
can either both be given or both be omitted. The optional output has already been described
before.

• If Γ is split into more than two boundary parts, described by, e.g., dirichlet , neumann,
and robin , the function refineBoundaryMesh can be used accordingly.

• Refinement of an Element: Suppose that element Ei = [a, b] ∈ Eℓ is bisected into two

sons ej , ek ∈ Eℓ+1 (or Êℓ). Then, there holds ej = [a,m] and ek = [m, b], wherem = (a+b)/2
denotes the midpoint of Ei. Note that elements(i,:) returns the indices of the nodes
a, b ∈ Kℓ. Clearly, Kℓ ⊆ Kℓ+1 and, e.g., the index of a = zp ∈ Kℓ+1 is obtained by
p = elements fine(father2son( i, 1), 1) .

• Boundedness of K-Mesh Constant: Many estimates in numerical analysis depend on
local quantities of the mesh, e.g., on an upper bound of the K-mesh constant

κ(Eℓ) := sup
{
length(Ej)/length(Ek) : Ej, Ek ∈ Eℓ with Ej ∩ Ek 6= ∅

}
≥ 1(4.3)

which is the maximal ratio of the element widths of neighbouring elements. Let E0 be a
given initial mesh. Let Eℓ be inductively obtained by refinement of arbitrary sets of marked
elements Mj ⊆ Ej with 0 ≤ j ≤ ℓ− 1. To avoid the blow-up of the K-mesh constant, one
thus aims for a refinement rule which guarantees supℓ∈N κ(Eℓ) < ∞. Our refinement rule,
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proposed and analyzed in [AGP, Section 2.2], guarantees

sup
ℓ∈N

κ(Eℓ) ≤ 2κ(E0)(4.4)

by refinement of all elements in a certain superset Mℓ ⊇ Mℓ. If the initial mesh is uniform,
one can prove that our refinement rule guarantees

#Eℓ − #E0 .

ℓ−1∑

j=0

#Mj ,(4.5)

i.e. the set Mj is generically of the same size as Mj , cf. [AGP, Theorem 2.5]. The constant
hidden in the symbol . only depends on the initial mesh E0.

Finally, we give a rough overview on the code:

• Variable input-/output parameters are treated in Line 8–60.
• The case of adaptive refinement is treated in Line 62–131.
• In order to ensure the boundedness of the K-mesh constant, the refinement algorithm

checks the mesh-size ratio of neighbouring elements: If Ei ∈ Eℓ is marked for refinement,
any neighbour Ej with

hℓ|Ej/hℓ|Ei ≥ 2

is recursively marked for refinement as well (Line 68–92). This guarantees κ(Eℓ) ≤ 2κ(E0)
for all generated meshes Eℓ.

• For all refined elements the coordinates of the midpoints of these elements are computed
as new nodes for the refined mesh (Line 96–98).

• We loop over each boundary part (Line 101–131), generate new elements as result of bi-
secting the respective coarse mesh elements (Line 109–114) and build the linkage arrays in
Line 123–125.

• The case of uniform refinement (Line 133–158) is a straight forward implementation.

17



5. Symm’s Integral Equation

Continuous Model Problem. In the entire section, we consider Symm’s integral equation

V φ = (K + 1/2)g on Γ(5.1)

with V the simple-layer potential and K the double-layer potential, where Γ = ∂Ω is the
piecewise-affine boundary of a polygonal Lipschitz domain Ω ⊂ R

2. This integral equation is
an equivalent formulation of the Dirichlet problem

−∆u = 0 in Ω with u = g on Γ.(5.2)

Formally, the Dirichlet data satisfy g ∈ H1/2(Γ). We will, however, assume additional regularity

g ∈ H1(Γ) ⊂ H1/2(Γ) so that g is, in particular, continuous. The exact solution φ ∈ H−1/2(Γ)
of (5.1) is the normal derivative φ = ∂nu of the solution u ∈ H1(Ω) of (5.2).

Note that (5.1) can equivalently be written in variational form

〈V φ , ψ〉Γ = 〈(K + 1/2)g , ψ〉Γ for all ψ ∈ H−1/2(Γ),(5.3)

where 〈· , ·〉Γ denotes the extended L2(Γ)-scalar product, i.e. 〈φ , ψ〉Γ =
∫
Γ φψ dΓ for φ,ψ ∈

L2(Γ) and with
∫
Γ dΓ integration along the boundary. Provided that diam(Ω) < 1, one can

show that the left-hand side

〈〈φ ,ψ〉〉V := 〈V φ , ψ〉Γ for φ,ψ ∈ H−1/2(Γ)(5.4)

of (5.3) defines a scalar product on H−1/2(Γ), and the induced norm |||φ|||V := 〈〈φ , φ〉〉
1/2
V is an

equivalent norm on H−1/2(Γ). In particular, the variational form (5.3) has a unique solution

φ ∈ H−1/2(Γ) which depends continuously on the data g with respect to the H1/2(Γ)-norm.

Galerkin Discretization. To discretize (5.3), we first replace the continuous Dirichlet data
g ∈ H1(Γ) by its nodal interpolant

Gℓ :=

N∑

j=1

g(zj)ζj ∈ S1(Eℓ) ⊂ H1(Γ)(5.5)

where {ζ1, . . . , ζN} denotes the set of canonical basis functions of S1(Eℓ). Second, we replace

the entire function space H−1/2(Γ) in (5.3) by the finite-dimensional space P0(Eℓ). Since the

discrete space P0(Eℓ) is a subspace of H−1/2(Γ), 〈〈· , ·〉〉V from (5.4) is also a scalar product on
P0(Eℓ). Consequently, there is a unique Galerkin solution Φℓ ∈ P0(Eℓ) of

〈V Φℓ , Ψℓ〉Γ = 〈(K + 1/2)Gℓ , Ψℓ〉Γ for all Ψℓ ∈ P0(Eℓ).(5.6)

According to Linear Algebra, (5.6) holds for all Ψℓ ∈ P0(Eℓ) if and only if it holds for all
(canonical) basis functions χk ∈ Bℓ = {χ1, . . . , χN} of P0(Eℓ). With the coefficient vector
x ∈ R

N of the ansatz

Φℓ =

N∑

j=1

xjχj(5.7)

and the vector g ∈ R
N defined by gj := g(zj) for all zj ∈ Kℓ, the Galerkin formulation (5.6) is

thus equivalent to

N∑

j=1

xj〈V χj , χk〉Γ = 〈V Φℓ , χk〉Γ = 〈(K + 1/2)Gℓ , χk〉Γ =

N∑

j=1

gj〈(K + 1/2)ζj , χk〉Γ

for all k = 1, . . . , N . If we define matrices V,K,M ∈ R
N×N by

Vkj = 〈V χj , χk〉Γ, Kkj = 〈Kζj , χk〉Γ, Mkj = 〈ζj , χk〉Γ for all j, k = 1, . . . , N,(5.8)

18



the last equation becomes

(Vx)k =

N∑

j=1

xjVkj =

N∑

j=1

gj

(
Kkj +

1

2
Mkj

)
=

(
Kg +

1

2
Mg

)
k

for all k = 1, . . . , N.

Altogether, the Galerkin formulation (5.6) is thus equivalent to the linear system

Vx = Kg +
1

2
Mg.(5.9)

We stress that V is symmetric and positive definite since it stems from a scalar product. In
particular, the linear system (5.9) has a unique solution x ∈ R

N .

5.1. Computation of Discrete Integral Operators V and K. The matrices V,K ∈
R

N×N defined in (5.8) are implemented in the programming language C via the Matlab-Mex-
Interface. The simple-layer potential matrix V is returned by call of

V = buildV(coordinates,elements [,eta]);

In general, all matrix entries of V can be computed analytically by use of anti-derivatives found
in [M]. However, analytic integration leads to cancellation effects if the integration domain is

small, i.e.
∫ b
a · dx with a ≈ b. In this case, the (continuous) integrand is generically of one sign

so that Gaussian quadrature (with positive weights) appears to be more stable.
Let η ≥ 0 be given. Recall that

Vkj = −
1

2π

∫

Ek

∫

Ej

log |x− y| dΓ(y) dΓ(x).

A pair of elements (Ej , Ek) is called admissible provided that

min{length(Ej), length(Ek)} ≤ η dist(Ej , Ek)(5.10)

with dist(·, ·) the distance of Ej and Ek. Otherwise, the pair (Ej , Ek) is called inadmissible.
Note that for Vkj , the Fubini theorem applies and proves that one can assume w.l.o.g. that
length(Ek) ≤ length(Ej). Note that the cancellation effects from the outer integration are thus
generically higher than those of the inner integration. For fixed x ∈ Ek, the inner integral

∫

Ej

log |x− y| dΓ(y)

is computed analytically [M]. If the pair (Ej , Ek) is admissible, we parametrize Ek and approx-
imate

∫

Ek

∫

Ej

log |x− y| dΓ(y) dΓ(x) =

∫ 1

−1

∫

Ej

log |γk(s) − y| dΓ(y) ds

≈

p∑

m=1

ωm

∫

Ej

log |γk(sm) − y| dΓ(y)

with a Gaussian quadrature on [−1, 1] of length p.
For fixed η > 0, the described procedure leads to some approximate matrix Vp ≈ V. It is

proven in [Ma, Satz 3.13] that Vp converges exponentially to V with respect to the Frobenius
norm (and hence the ℓ2-operator norm) as p→ ∞.

In HILBERT, we choose η = 1/2, if the optional parameter eta is not specified. If eta is given
by the user, we set η = eta . Note that for given eta ≤ 0 all entries of V are inadmissible and
thus computed analytically. For eta > 0 or non-specified, certain entries are computed semi-
analytically as described before, where we use a Gaussian quadrature of length p = 16. Different
values of p can be chosen by modification of the file source/geometry.h and by re-building the
integral operators, see Section 3.1.

The double-layer potential matrix K is obtained by call of

K = buildK(coordinates,elements [,eta]);
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Note that the entries of K read

Kkj = −
1

2π

∫

Ek

∫

supp(ζj)

(y − x) · nj

|x− y|2
ζj(y) dΓ(y) dΓ(x),

where supp(ζj) denotes the support of ζj and where nj ∈ R
2 denotes the (constant) outer

normal vector on Ej. For a mesh of a closed boundary Γ, supp(ζj) is the union of precisely two
elements Ei ∈ Eℓ. Therefore, the computation of Kkj needs the computation of double integrals
of the type

∫

Ek

∫

Ei

(y − x) · nj

|x− y|2
ζj(y) dΓ(y) dΓ(x).

These can be computed analytically by use of anti-derivatives from [M]. For admissible pairs
(Ei, Ek), we may proceed as described for V. More precisely, we change the order of integration
so that the smaller element corresponds to the outer integration, and we use numerical quad-
rature to compute the outer integral. As for V, this provides an approximation Kp ≈ K which
converges exponentially to K as p→ ∞.

Listing 3
1 function b = buildSymmRHS(coordinates,elements,uD)

2 %*** nodal evaluation of Dirichlet data

3 uDh = uD(coordinates);

4

5 %*** compute DLP−matrix for P0 x S1

6 K = buildK(coordinates,elements);

7

8 %*** compute mass −type matrix for P0 x S1

9 nE = size (elements,1);

10 h = sqrt ( sum((coordinates(elements(:,1),:) −coordinates(elements(:,2),:)).ˆ2,2));

11 I = reshape ( repmat (1:nE,2,1),2 * nE,1);

12 J = reshape (elements',2 * nE,1);

13 A = reshape ( repmat (0.5 * h,1,2)',2 * nE,1);

14 M = sparse (I,J,A);

15

16 %*** build right −hand side vector

17 b = K* uDh + M* uDh* 0.5;

5.2. Building of Right-Hand Side Vector (Listing 3). To compute the vector

b := Kg +
1

2
Mg ∈ R

N(5.11)

from (5.9), it essentially remains to build the matrix M ∈ R
N×N . Let zm, zn ∈ Kℓ denote

the nodes of an element Ek ∈ Eℓ, i.e., Ek = [zm, zn]. Note that the entry Mkj = 〈ζj , χk〉Γ =∫
Ek
ζj ds satisfies

Mkj =

{
0 if zj 6∈ {zm, zn},

length(Ek)/2 if zj ∈ {zm, zn}.

We thus may assemble the matrix M in the following way:

nE = size (elements,1);

M = sparse (nE,nE);

for k = 1:nE

a = coordinates(elements(k,1),:);

b = coordinates(elements(k,2),:);

h = norm(b −a);

M(k,elements(k,:)) = h/2;
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end

We stress, however, that this implementation will lead to (at least) quadratic runtime with
respect to the number N of elements. The reason for this is the internal storage of sparse
matrices in Matlab by use of the CCS format. This requires to sort the corresponding memory
with every update of the sparse matrix and thus leads to a complexity O(k log k) for k non-
zero entries. Since this is done for k = 1, . . . , N , one consequently expects a computational
complexity of order O(N2 logN) which can even be observed experimentally [FPW].

Building sparse matrices in Matlab is efficiently done via the built-in function sparse
which takes the coordinate format I, J,A ∈ R

n, where Mij = Ak for i = Ik and j = Jk. Here,
the matrix M has n = 2N non-zero entries.

Altogether, the documentation of Listing 3 reads as follows:

• The function takes the mesh Eℓ described in terms of coordinates and elements as
well as a function handle uD for the Dirichlet data g.

• We compute the vector g ∈ R
N of nodal values of g (Line 3) and build the double-layer

potential matrix K ∈ R
N×N (Line 6).

• The column vector h ∈ R
N contains hj = length(Ej) (Line 10). We stress that the Euclidean

length h = norm(b −a) can also be computed via h = sqrt ( sum((b −a).ˆ2,2)) if
a, b ∈ R

2 are row-vectors. Then, the vectors I, J,A ∈ R
2N of the coordinate format of M

are computed (Line 11–13), and the matrix M is built (Line 14).
• Finally, we build the right-hand side vector b (Line 17).

Listing 4
1 function osc = computeOscDirichlet(coordinates,elements,uD)

2 %*** compute midpoints of all elements

3 midpoints = 0.5 * ( coordinates(elements(:,1),:) + coordinates(elements( :,2),:) );

4

5 %*** evaluate Dirichlet data at element midpoints

6 uD midpoints = uD(midpoints);

7

8 %*** evaluate Dirichlet data at all nodes

9 uD nodes = uD(coordinates);

10

11 %*** compute oscillations of Dirichlet data via adapted Newton −Cotes formula

12 osc = 4/3 * ( uD nodes(elements(:,1))+uD nodes(elements(:,2)) −2* uD midpoints ).ˆ2;

5.3. Computation of Data Oscillations for Dirichlet Data (Listing 4). Instead of
solving the correct variational form (5.3), we solve

〈V φℓ , ψ〉Γ = 〈(K + 1/2)Gℓ , ψ〉Γ for all ψ ∈ H−1/2(Γ)(5.12)

with perturbed right-hand side, where we use the approximation Gℓ ≈ g. It is an analytical
observation that the error between the exact solution φ ∈ H−1/2(Γ) of (5.3) and the exact

solution φℓ ∈ H−1/2(Γ) of the perturbed formulation (5.12) is controlled by

|||φ− φℓ|||V . ‖h
1/2
ℓ (g −Gℓ)

′‖L2(Γ) =: oscD,ℓ,(5.13)

where (·)′ denotes the arclength-derivative, cf. [AGP].
We now aim for a numerical approximation of the local contributions

oscD,ℓ(Ej) = ‖h
1/2
ℓ (g −Gℓ)

′‖L2(Ej) = length(Ej)
1/2‖(g −Gℓ)

′‖L2(Ej) for all Ej ∈ Eℓ.

For Ej = [aj, bj ] ∈ Eℓ and h := length(Ej) = |bj − aj |, let γj : [−1, 1] → Ej denote the reference
parametrization from (2.1). Recall that |γ′j | = h/2. With the definition of a boundary integral
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from Section 2.2 and the definition of the arclength derivative from Section 2.3, we obtain

‖v′‖2
L2(Ej)

=

∫

Ej

(v′)2 dΓ
Def
=

h

2

∫ 1

−1

(
(v′ ◦ γj)(s)

)2
ds

Def
=

2

h

∫ 1

−1

(
(v ◦ γj)

′(s)
)2
ds.(5.14)

We now approximate w := v ◦ γj : [−1, 1] → R by some polynomial pj ∈ P2[−1, 1] with

pj(−1) = w(−1) = v(aj), pj(0) = w(0) = v(mj), pj(1) = w(1) = v(bj),

where mj = (aj + bj)/2 denotes the midpoint of Ej. Note that p′j ∈ P1[−1, 1] and (p′j)
2 ∈

P2[−1, 1] so that

‖v′‖2
L2(Ej)

=
2

h

∫ 1

−1

(
(v ◦ γj)

′(s)
)2
ds ≈

2

h

∫ 1

−1
(p′j)

2 ds =
2

h
quad2

(
(p′j)

2
)
,

where quad2(·) is a quadrature rule on [−1, 1] which is exact on P2[−1, 1]. We use a 3-point
Newton-Côtes formula with nodes s1 = −1, s2 = 0, and s3 = 1, which is exact on P3[−1, 1]. It
thus remains to evaluate p′j(sk) by use of pj(−1), pj(0), and pj(1). To that end, we write pj in
terms of the Lagrangian basis

pj = v(aj)L1 + v(mj)L2 + v(bj)L3, whence p′j = v(aj)L
′
1 + v(mj)L

′
2 + v(bj)L

′
3.

The Lagrange polynomials Lk associated with sk = −1, 0, 1 read

L1(s) = s(s− 1)/2, L2(s) = 1 − s2, L3(s) = s(s+ 1)/2,

and their derivatives are

L′
1(s) = (2s− 1)/2, L′

2(s) = −2s, L′
3(s) = (2s + 1)/2.

With the matrix (L′
k(sj))

3
j,k=1, p

′
j(sk) is thus obtained from a matrix-vector multiplication



p′j(−1)

p′j(0)

p′j(+1)


 =



L′

1(−1) L′
2(−1) L′

3(−1)
L′

1(0) L′
2(0) L′

3(0)
L′

1(+1) L′
2(+1) L′

3(+1)






v(aj)
v(mj)
v(bj)


 =



−3/2 +2 −1/2
−1/2 0 +1/2
+1/2 −2 +3/2






v(aj)
v(mj)
v(bj)


 .

For the computation of the local Dirichlet data oscillations

oscD,ℓ(Ej)
2 = h ‖(g −Gℓ)

′‖2
L2(Ej)

= 2

∫ 1

−1

(
(g −Gℓ) ◦ γj)

′(s)
)2
ds,

we have v = g −Gℓ. This results in (g −Gℓ)(aj) = 0 = (g −Gℓ)(bj) by definition of the nodal
interpolant Gℓ. Consequently, everything simplifies to


p′j(−1)
p′j(0)

p′j(+1)


 =




2 v(mj)
0

−2 v(mj)


 =

(
g(mj) −

g(aj) + g(bj)

2

)



+2
0
−2


 =

(
g(aj) + g(bj) − 2 g(mj)

)


−1
0

+1


 .

Note that the weights of the Newton-Côtes formula read

ωk =

∫ 1

−1
Lk(t) dt, whence ω1 = 1/3, ω2 = 4/3, ω3 = 1/3.

Therefore,

oscD,ℓ(Ej)
2 ≈ õscD,ℓ(Ej)

2 := 2 quad2

(
(p′j)

2
)

= 2
3∑

k=1

ωk

(
p′j(sk)

)2

=
4

3

(
g(aj) + g(bj) − 2 g(mj)

)2
.

(5.15)

Altogether, the documentation of Listing 4 now reads as follows:

• The function takes the mesh Eℓ in terms of coordinates and elements as well as a
function handle uD for the Dirichlet data g (Line 1).

• We first compute all element midpoints (Line 3) and evaluate the Dirichlet data g at all
midpoints (Line 6) and all nodes (Line 9).
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• Finally, Formula (5.15) is realized (Line 12) simultaneously for all elements Ej ∈ Eℓ.
• The function returns the column vector of elementwise Dirichlet data oscillations

v :=
(
õscD,ℓ(E1)

2, . . . , õscD,ℓ(EN )2
)
∈ R

N

so that oscD,ℓ ≈
( ∑N

j=1 vj

)1/2
.

Remark 5.1. For smooth Dirichlet data g and uniform meshes with mesh-size h, there holds

oscD,ℓ = O(h3/2) and

∣∣∣oscD,ℓ −
( N∑

j=1

vj

)1/2∣∣∣ = O(h5/2).

Therefore, the quadrature error is of higher order when compared to the discretization order.

Listing 5
1 function err = computeErrNeumann(coordinates,elements,p,phi)

2 %*** arbitrary quadrature on [ −1,1] with exactness n >= 2, e.g., gauss(2)

3 quad nodes = [ −1 1]/ sqrt (3);

4 quad weights = [1;1];

5

6 %*** the remaining code is independent of the chosen quadrature r ule

7 nE = size (elements,1);

8 nQ = length (quad nodes);

9

10 %*** build vector of evaluations points as (nQ * nE x 2) −matrix

11 a = coordinates(elements(:,1),:);

12 b = coordinates(elements(:,2),:);

13 sx = reshape (a,2 * nE,1) * (1 −quad nodes) + reshape (b,2 * nE,1) * (1+quad nodes);

14 sx = 0.5 * reshape (sx',nQ * nE,2);

15

16 %*** phi(sx) usually depends on the normal vector, whence phi tak es sx and the

17 %*** nodes of the respective element to compute the normal

18 a sx = reshape ( repmat ( reshape (a,2 * nE,1),1,nQ)',nE * nQ,2);

19 b sx = reshape ( repmat ( reshape (b,2 * nE,1),1,nQ)',nE * nQ,2);

20

21 %*** perform all necessary evaluations of phi as (nE x nQ) −matrix

22 phi sx = reshape (phi(sx,a sx,b sx),nQ,nE)';

23

24 %*** compute vector of (squared) element −widths

25 h = sum((a −b).ˆ2,2);

26

27 %*** compute Neumann error simultaneously for all elements

28 err sx = (phi sx − repmat ( reshape (p,nE,1),1,nQ)).ˆ2;

29 err = 0.5 * h. * (err sx * quad weights);

5.4. Computation of Reliable Error Bound for |||φ− Φℓ|||V|||φ− Φℓ|||V|||φ− Φℓ|||V (Listing 5). We assume
that the exact Neumann data satisfy φ ∈ L2(Γ). Let Φ∗

ℓ ∈ P0(Eℓ) be the (only theoretically
computed) Galerkin solution with respect to the non-perturbed right-hand side (K + 1/2)g
instead of (K + 1/2)Gℓ. Let Πℓ denote the L2-orthogonal projection onto P0(Eℓ). With the
technique from [FP, AGP], we obtain

|||φ− Φ∗
ℓ |||V ≤ |||φ− Πℓφ|||V . ‖h

1/2
ℓ (φ− Πℓφ)‖L2(Γ)

as well as

|||Φ∗
ℓ − Φℓ|||V . oscD,ℓ,
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where oscD,ℓ denote the Dirichlet data oscillations from Section 5.3. Note that Πℓ is even the
Eℓ-elementwise best approximation operator. With the triangle inequality, we therefore obtain

|||φ− Φℓ|||V . ‖h
1/2
ℓ (φ− Φℓ)‖L2(Γ) + oscD,ℓ =: errN,ℓ + oscD,ℓ.

In this section, we aim to numerically compute

errN,ℓ =
( N∑

j=1

errN,ℓ(Ej)
2
)1/2

, where errN,ℓ(Ej)
2 = length(Ej) ‖φ− Φℓ‖

2
L2(Ej)

.

With x ∈ R
N the coefficient vector of

Φℓ =

N∑

j=1

xjχj,

there holds

errN,ℓ(Ej)
2 = length(Ej)

∫

Ej

|φ− xj |
2 dΓ =

length(Ej)
2

2

∫ 1

−1
|φ ◦ γj(s) − xj |

2 ds

≈
length(Ej)

2

2
quadn

(
(φ ◦ γj − xj)

2
)

=: ẽrrN,ℓ(Ej)
2,(5.16)

where quadn(·) denotes a quadrature rule on [−1, 1] which is exact for polynomials of degree n,

i.e. quadn(p) =
∫ 1
−1 p ds for all p ∈ Pn[−1, 1]. With the definition ẽrrN,ℓ :=

( ∑N
j=1 ẽrrN,ℓ(Ej)

2
)1/2

,
one can then prove that

|errN,ℓ − ẽrrN,ℓ| = O(hn/2+1).

For smooth φ, there holds errN,ℓ = O(h3/2). For our implementation, we thus choose the Gauss
quadrature with two nodes, which is exact for polynomials of degree n = 3. As for the Dirichlet
data oscillations, this choice then leads to

|errN,ℓ − ẽrrN,ℓ| = O(h5/2), whereas at most errN,ℓ = O(h3/2),

i.e. our implementation is accurate up to higher-order terms. The documentation of Listing 5
now simply reads as follows:

• The function takes the given mesh Eℓ in form of the arrays coordinates and elements ,
the coefficient vector p = x as well as a function handle phi for the Neumann data. The
function phi is called by

y = phi(x,a,b)
with (n × 2)-arrays x , a, and b. The j-th rows x(j, :), a(j, :), and b(j, :) correspond to a
point xj ∈ [aj , bj ] ⊂ R

2. The entry y(j) of the column vector y then contains φ(xj).
• As stated above, we use the Gauss quadrature with two nodes (Line 3–4).
• If sk ∈ [−1, 1] is a quadrature node and Ej = [aj , bj ] ∈ Eℓ = {E1, . . . , EN} is an element,

the function φ has to be evaluated at

γj(sk) =
1

2

(
aj + bj + sk(bj − aj)

)
=

1

2

(
aj(1 − sk) + bj(1 + sk)

)
.

In Line 11–14, we build the (2N × 2)-array sx which contains all necessary evaluation
points. Note that the two evaluation points at Ej are stored in sx (2j − 1, :) and sx (2j, :).

• In Line 18–19, we compute the (2N×2)-arrays a sx and b sx such that, e.g., a sx (2j−1, :)
and a sx (2j, :) contain the first node aj ∈ R

2 of the boundary element Ej = [aj , bj ].
• We then evaluate the Neumann data φ simultaneously in all evaluation points and we

reshape this (2N × 1)-array into a (N × 2)-array phi sx such that phi sx (j, :) contains
all φ-values related to Ej (Line 22).
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• We realize Equation (5.16). We first derive the necessary evaluations of (φ − xj)
2 in

Line 28. Multiplication with the quadrature weights and coefficient-wise weighting with
length(Ej)

2/2 provides the (N×1)-array err such that err (j) ≈ length(Ej)‖φ−Φℓ‖
2
L2(Ej)

.

More precisely, there holds err2N,ℓ ≈
∑N

j=1 err (j) = ẽrr2N,ℓ.

Remark 5.2. In academic experiments, the exact solution φ is usually known and has certain

regularity φ ∈ L2(Γ) which only depends on the geometry of Γ. As explained before, there holds

|||φ− Φℓ|||V . errN,ℓ + oscD,ℓ

so that we can control the error reliably. Moreover, the convergence errN,ℓ → 0 as ℓ→ ∞ might

indicate that there are no major bugs in the implementation — since we compare the Galerkin

solution with the exact solution. �

5.5. Computation of (h− h/2)(h− h/2)(h− h/2)-Based A Posteriori Error Estimators. In this section,
we discuss the implementation of four error estimators introduced and analyzed in [FP]. Let

Êℓ = {e1, . . . , e2N} be the uniform refinement of the mesh Eℓ = {E1, . . . , EN}. Let Φℓ ∈ P0(Eℓ)

and Φ̂ℓ ∈ P0(Êℓ) be the Galerkin solutions (5.6) with respect to Eℓ and Êℓ and the same
approximate Dirichlet data Gℓ, i.e., there holds

〈V Φℓ , Ψℓ〉V = 〈(K + 1/2)Gℓ , Ψℓ〉Γ for all Ψℓ ∈ P0(Eℓ)

as well as

〈V Φ̂ℓ , Ψ̂ℓ〉V = 〈(K + 1/2)Gℓ , Ψ̂ℓ〉Γ for all Ψ̂ℓ ∈ P0(Êℓ).

With φℓ ∈ H−1/2(Γ) the exact solution of (5.12), one can expect

|||φℓ − Φℓ|||V ≈ |||Φ̂ℓ − Φℓ|||V =: ηℓ,(5.17)

which results in

|||φ− Φℓ|||V ≤ |||φ− φℓ|||V + |||φℓ − Φℓ|||V . oscD,ℓ + ηℓ(5.18)

according to the triangle inequality and (5.13).

Clearly, the Galerkin solution Φ̂ℓ with respect to the uniformly refined mesh Êℓ is more

accurate than Φℓ. Consequently, any algorithm will return Φ̂ℓ instead of Φℓ if Φ̂ℓ has been
computed. From this point of view, Φℓ then becomes a side result and leads to unnecessary
computational effort. One can prove that one may replace Φℓ by a cheap (but appropriate)

postprocessing ΠℓΦ̂ℓ of Φ̂ℓ. This leads to some error estimator

ηℓ ∼ |||Φ̂ℓ − ΠℓΦ̂ℓ|||V =: η̃ℓ(5.19)

which always stays proportional to ηℓ, indicated by ηℓ ∼ η̃ℓ. To be more precise, Πℓ denotes the
L2-orthogonal projection onto P0(Eℓ), which simply reads

(ΠℓΦ̂ℓ)|Ei =
1

length(Ei)

∫

Ei

Φ̂ℓ dΓ for all Ei ∈ Eℓ(5.20)

in case of the lowest-order discretization, i.e. piecewise constant ansatz and test functions.
However, one essential drawback of the error estimators ηℓ and η̃ℓ is that they do not provide

an additional information on the local errors, i.e., the error |||φ−Φℓ|||V related to some element
Ei ∈ Eℓ. This is different for the error estimators µℓ and µ̃ℓ discussed in the following. For
instance, one can prove that

ηℓ ∼ µℓ := ‖h
1/2
ℓ (Φ̂ℓ − Φℓ)‖L2(Γ) =

( N∑

i=1

length(Ei)‖Φ̂ℓ − Φℓ‖
2
L2(Ei)

)1/2
.(5.21)

Then, the local contributions

µℓ(Ei) := length(Ei)
1/2‖Φ̂ℓ − Φℓ‖L2(Ei) for all Ei ∈ Eℓ(5.22)
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give some measure for the error on Ei.
As the computation of the error estimator ηℓ, the computation of µℓ needs the computation

of two Galerkin solutions Φℓ and Φ̂ℓ. As before, the computation of the coarse-mesh solution

Φℓ can be avoided by use of the projected fine mesh solution ΠℓΦ̂ℓ. One can mathematically
prove that

ηℓ ∼ µ̃ℓ := ‖h
1/2
ℓ (Φ̂ℓ − ΠℓΦ̂ℓ)‖L2(Γ).(5.23)

In the following subsections, we first discuss the computation of the global error estimators ηℓ

and η̃ℓ from (5.17) and (5.19). Then, we give an implementation of the local error estimators µℓ

and µ̃ℓ from (5.21) and (5.23), where our functions return the local contributions, see e.g. (5.22),
to steer an adaptive mesh-refinement.

Remark 5.3. If we plot the error estimators ηℓ, η̃ℓ, µℓ and µ̃ℓ over the number of elements, one

can mathematically predict that the corresponding curves, for a sequence of arbitrarily refined

meshes, are parallel. In mathematical terms, this reads

ηℓ ≤ η̃ℓ . µ̃ℓ ≤ µℓ . ηℓ,(5.24)

cf. [EFFP, FP]. Empirically, one observes a very good coincidence of ηℓ and η̃ℓ in the sense

that the corresponding curves almost coincide. The same is observed for the curves of µℓ and

µ̃ℓ. �

Remark 5.4. Mathematically, the error estimate (5.18) involves the so-called saturation as-

sumption: Assume that we could compute the Galerkin solutions Φ∗
ℓ and Φ̂∗

ℓ with respect to

Eℓ and Êℓ for the non-perturbed variational formulation (5.3), i.e., we formally use the exact

Dirichlet data g instead of the interpolated data Gℓ — although the right-hand side is, in fact,

non-computable because of Kg. Then, the saturation assumption states that

|||φ− Φ̂∗
ℓ |||V ≤ q |||φ− Φ∗

ℓ |||V(5.25)

with some uniform and ℓ-independent constant q ∈ (0, 1). —Put differently, uniform mesh-

refinement leads to a uniform improvement of the discretization error.— Provided (5.25), one

can prove that

ηℓ ≤ |||φℓ − Φℓ|||V ≤ (1 − q2)−1/2 ηℓ(5.26)

which is the mathematical basis of (5.17), cf. [FP].
We stress that this assumption is somewhat natural and can, for instance, be proven for the

finite element method [DN], see also [FOP, Section 2.3]. For the boundary element method,

however, (5.25) still remains open.

Finally, one can prove that (5.25) is sufficient and in some sense even necessary to guaran-

tee (5.18). �

Remark 5.5. In academic experiments, the exact solution φ is usually known and has cer-

tain regularity φ ∈ L2(Γ) which only depends on the geometry of Γ. In this case, one can

experimentally verify the saturation assumption as follows: In Section 5.4, we derived

|||φ− Φℓ|||V . errN,ℓ + oscD,ℓ.

If the right-hand side has the same convergence behaviour as the error estimator ηℓ + oscD,ℓ,

this proves empirically

|||φ− Φℓ|||V . ηℓ + oscD,ℓ

and confirms the saturation assumption. �

Listing 6
1 function est = computeEstSlpEta(father2son,V fine,x fine,x coarse)
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2 %*** compute coefficient vector of (phi fine − phi coarse) w.r.t. to fine mesh

3 x fine(father2son(:,1)) = x fine(father2son(:,1)) − x coarse;

4 x fine(father2son(:,2)) = x fine(father2son(:,2)) − x coarse;

5

6 %*** compute energy | | | phi fine − phi coarse | | | ˆ 2

7 est = x fine' * (V fine * x fine);

5.5.1. Computation of Error Estimator ηℓηℓηℓ (Listing 6). In this section, we aim to

compute the error estimator ηℓ = |||Φ̂ℓ − Φℓ|||V from (5.17). Let χ̂j denote the characteristic

function associated with some fine-mesh element ej ∈ Êℓ. Let x ∈ R
N and x̂ ∈ R

2N be the

coefficient vectors of Φℓ and Φ̂ℓ with respect to the canonical bases of P0(Eℓ) and P0(Êℓ), i.e.

Φℓ =

N∑

j=1

xjχj and Φ̂ℓ =

2N∑

j=1

x̂jχ̂j.

Because of P0(Eℓ) ⊂ P0(Êℓ), there is a unique vector ŷ ∈ R
2N such that

Φℓ =
2N∑

j=1

ŷjχ̂j.

With the vectors x̂, ŷ ∈ R
2N , there holds

η2
ℓ = |||Φ̂ℓ − Φℓ|||

2
V = 〈〈Φ̂ℓ − Φℓ , Φ̂ℓ − Φℓ〉〉V =

2N∑

j,k=1

(x̂j − ŷj)(x̂k − ŷk)〈〈χ̂j , χ̂k〉〉V

= (x̂ − ŷ) · V̂(x̂ − ŷ),

where V̂ is the matrix for the simple-layer potential (5.8) with respect to the fine mesh Êℓ. With
these observations, the documentation of Listing 6 reads as follows:

• The function takes the coefficient vectors x ∈ R
N and x̂ ∈ R

2N of the Galerkin solutions
Φℓ and Φ̂ℓ as well as the simple-layer potential matrix V̂ for the fine mesh Êℓ. Besides this,
the (N × 2)-array father2son links the indices of elements Ei ∈ Eℓ with the indices of

the sons ej, ek ∈ Êℓ in the sense that father2son( i,:) = [ j, k] for Ei = ej ∪ ek and
consequently ŷj = ŷk = xi.

• We overwrite the vector x̂ by the coefficient vector x̂− ŷ of Φ̂ℓ − Φℓ (Line 3–4).

• Finally, the function returns η2
ℓ = |||Φ̂ℓ − Φℓ|||

2
V (Line 7).

Listing 7
1 function est = computeEstSlpEtaTilde(father2son,V fine,x fine)

2 %*** compute L2 −projection Pi coarse * phi fine onto coarse mesh

3 pi x fine = 0.5 * ( x fine(father2son(:,1)) + x fine(father2son(:,2)) );

4

5 %*** compute coefficient vector of (1 −Pi coarse) * phi fine

6 x fine(father2son(:,1)) = x fine(father2son(:,1)) − pi x fine;

7 x fine(father2son(:,2)) = x fine(father2son(:,2)) − pi x fine;

8

9 %*** compute energy | | | (1 −Pi coarse) * phi fine | | | ˆ 2

10 est = x fine' * (V fine * x fine);
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5.5.2. Computation of Error Estimator η̃ℓ̃ηℓ̃ηℓ (Listing 7). We adopt the notation of
Section 5.5.1 for the computation of ηℓ, namely x̂ ∈ R

2N with

Φ̂ℓ =

2N∑

j=1

x̂jχ̂j.

Let ej , ek ∈ Êℓ be the sons of Ei ∈ Eℓ, i.e. Ei = ej ∪ ek. Then,
∫

Ei

Φ̂ℓ dΓ =

∫

ej

Φ̂ℓ dΓ +

∫

ek

Φ̂ℓ dΓ = length(ej) x̂j + length(ek) x̂k = length(Ei)
x̂j + x̂k

2
.

Put differently, there holds

(ΠℓΦ̂ℓ)|Ei =
x̂j + x̂k

2
for all Ei ∈ Eℓ with Ei = ej ∪ ek and ej, ek ∈ Êℓ

for the L2-projection Πℓ defined in (5.20). Representing ΠℓΦ̂ℓ ∈ P0(Eℓ) with respect to the

fine-mesh Êℓ, we obtain

ΠℓΦ̂ℓ =

2N∑

n=1

ẑnχ̂n,

where the vector ẑ ∈ R
2N satisfies ẑj = ẑk =

bxj+bxk

2 provided that ej, ek ∈ Êℓ are the sons of
some element Ei ∈ Eℓ. As in Section 5.5.1, there holds

η̃ 2
ℓ = |||Φ̂ℓ − ΠℓΦ̂ℓ|||

2
V = (x̂ − ẑ) · V̂(x̂ − ẑ).

Therefore, the documentation of Listing 7 reads as follows:

• The function takes the simple-layer potential matrix V̂ for the fine mesh Êℓ and the coeffi-

cient vector x̂ ∈ R
2N of Φ̂ℓ. Moreover, the link between Eℓ and Êℓ is provided by means of

father2son .
• We first compute the coefficient vector of ΠℓΦ̂ℓ with respect to the coarse mesh Eℓ (Line 3).

• We then overwrite x̂ by the coefficient vector x̂ − ẑ ∈ R
2N of Φ̂ℓ − ΠℓΦ̂ℓ (Line 6–7).

• Finally, the function returns η̃ 2
ℓ = |||Φ̂ℓ − ΠℓΦ̂ℓ|||

2
V (Line 10).

Listing 8
1 function ind = computeEstSlpMu(coordinates,elements,father2son,x fine,x coarse)

2 %*** compute (squared) local mesh −size

3 h = sum((coordinates(elements(:,1),:) − coordinates(elements(:,2),:)).ˆ2,2);

4

5 %*** compute coefficient vector of (phi fine − phi coarse) w.r.t. to fine mesh

6 x fine(father2son(:,1)) = x fine(father2son(:,1)) − x coarse;

7 x fine(father2son(:,2)) = x fine(father2son(:,2)) − x coarse;

8

9 %*** compute ind(j) = diam(Ej ) * | | phi fine − phi coarse | | {L2(Ej) }ˆ2

10 ind = 0.5 * h. * ( x fine(father2son(:,1)).ˆ2 + x fine(father2son(:,2)).ˆ2 );

5.5.3. Computation of Error Estimator µℓµℓµℓ (Listing 8). In this section, we discuss the
implementation of

µ2
ℓ =

N∑

i=1

µℓ(Ei)
2, where µℓ(Ei)

2 = length(Ei) ‖Φ̂ℓ − Φℓ‖
2
L2(Ei)

.
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We adopt the notation of Section 5.5.1, namely x̂, ŷ ∈ R
2N with

Φ̂ℓ =
2N∑

j=1

x̂jχ̂j and Φℓ =
2N∑

j=1

ŷjχ̂j.

For fixed Ei ∈ Eℓ and sons ej , ek ∈ Êℓ with Ei = ej ∪ ek, we obtain

‖Φ̂ℓ − Φℓ‖
2
L2(Ei)

=

∫

ej

(Φ̂ℓ − Φℓ)
2 dΓ +

∫

ek

(Φ̂ℓ − Φℓ)
2 dΓ =

length(Ei)

2

(
(x̂j − ŷj)

2 + (x̂k − ŷk)
2
)
.

This implies

µℓ(Ei)
2 =

length(Ei)
2

2

(
(x̂j − ŷj)

2 + (x̂k − ŷk)
2
)
.(5.27)

Altogether, the documentation of Listing 8 reads as follows:

• As input arguments, the function takes the mesh Eℓ, the link between Eℓ and Êℓ, and the

coefficient vectors x ∈ R
N and x̂ ∈ R

2N of the Galerkin solutions Φℓ and Φ̂ℓ (Line 1).
• We compute the vector of all squared element-sizes (Line 3).

• We overwrite the coefficient vector x̂ of Φ̂ℓ by the coefficient vector x̂ − ŷ of Φ̂ℓ − Φℓ

(Line 6–7).
• Finally (Line 10), the function realizes (5.27) and returns the vector

v := (µℓ(E1)
2, . . . , µℓ(EN )2) ∈ R

N

so that µℓ =
( ∑N

i=1 vi

)1/2
.

Listing 9
1 function ind = computeEstSlpMuTilde(coordinates,elements,father2son,x fine)

2 %*** compute (squared) local mesh −size

3 h = sum((coordinates(elements(:,1),:) − coordinates(elements(:,2),:)).ˆ2,2);

4

5 %*** compute L2 −projection Pi coarse * phi fine onto coarse mesh

6 pi x fine = 0.5 * ( x fine(father2son(:,1)) + x fine(father2son(:,2)) );

7

8 %*** compute coefficient vector of (1 −Pi coarse) * phi fine

9 x fine(father2son(:,1)) = x fine(father2son(:,1)) − pi x fine;

10 x fine(father2son(:,2)) = x fine(father2son(:,2)) − pi x fine;

11

12 %*** compute ind(j) = diam(Ej ) * | | (1 −Pi coarse) * phi fine | | {L2(Ej) }ˆ2

13 ind = 0.5 * h. * ( x fine(father2son(:,1)).ˆ2 + x fine(father2son(:,2)).ˆ2 );

5.5.4. Computation of Error Estimator µ̃ℓµ̃ℓµ̃ℓ (Listing 9). In this section, we finally aim to
compute

µ̃ 2
ℓ =

N∑

i=1

µ̃ℓ(Ei)
2, where µ̃ℓ(Ei)

2 = length(Ei) ‖Φ̂ℓ − ΠℓΦ̂ℓ‖
2
L2(Ei)

.

We adopt the notation of the preceding Sections 5.5.1–5.5.3, namely x̂, ẑ ∈ R
2N with

Φ̂ℓ =
2N∑

j=1

x̂jχ̂j and ΠℓΦ̂ℓ =
2N∑

j=1

ẑjχ̂j.

Based on this, the abbreviate documentation of Listing 9 reads as follows:

• The function takes the mesh Eℓ, the link between Eℓ and Êℓ, and the coefficient vectors

x̂ ∈ R
2N of Φ̂ℓ (Line 1). It overwrites x̂ by the coefficient vector x̂ − ẑ of Φ̂ℓ − ΠℓΦ̂ℓ (Line

6–10).
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• Finally (Line 13), the function returns the vector

v := (µ̃ℓ(E1)
2, . . . , µ̃ℓ(EN )2) ∈ R

N .

In particular, there holds µ̃ℓ =
( ∑N

i=1 vi

)1/2
.

5.6. Adaptive Mesh-Refinement. Usually computing time and memory requirements are
limiting quantities for numerical simulations. Therefore, one aims to choose the mesh such that
it is coarse, where the (unknown) solution is smooth, and fine, where the (unknown) solution is
singular. Based on a local error estimator, e.g. µ̃ℓ, such meshes are constructed in an iterative
way. In each step, one refines the mesh only locally, i.e. one refines elements Ej , where the
error appears to be large, namely, where the local contributions µ̃ℓ(Ej) are large. For the error
estimator µ̃ℓ from Section 5.5.4, a possible adaptive algorithm reads as follows:

Input: Initial mesh E0, Dirichlet data g, adaptivity parameter 0 < θ < 1, maximal number
Nmax ∈ N of elements, and counter ℓ = 0.

(i) Build uniformly refined mesh Êℓ.

(ii) Compute Galerkin solution Φ̂ℓ ∈ P0(Êℓ).
(iii) Compute refinement indicators µ̃ℓ(E)2 and oscillation terms oscD,ℓ(E)2 for all E ∈ Eℓ.
(iv) Find minimal set Mℓ ⊆ Eℓ such that

θ (µ̃2
ℓ + osc2

D,ℓ) = θ
∑

E∈Eℓ

µ̃ℓ(E)2 + oscD,ℓ(E)2 ≤
∑

E∈Mℓ

µ̃ℓ(E)2 + oscD,ℓ(E)2.(5.28)

(v) Refine at least marked elements E ∈ Mℓ and obtain mesh Eℓ+1 with κ(Eℓ+1) ≤ 2κ(E0).
(vi) Stop provided that #Eℓ+1 ≥ Nmax; otherwise, increase counter ℓ 7→ ℓ+ 1 and go to (i).

Output: Adaptively generated mesh Êℓ and corresponding discrete solution Φ̂ℓ ∈ P0(Êℓ).

The marking criterion (5.28) has been proposed in the context of adaptive finite element
methods [D]. Let formally Nmax = ∞ so that the adaptive algorithm computes a sequence of

discrete solutions Φ̂ℓ (or even Φℓ, although this is not computed). In [FOP, Section 3], we prove

that the saturation assumption (5.25) implies convergence of Φ̂ℓ and Φℓ to φ, provided that the
right-hand side g is not disturbed, i.e., g = Gℓ. The same result also holds for µ̃ℓ replaced by
µℓ.

In [AFP], we changed the notion of convergence and proved that for certain error estimators
—amongst them are µ̃ℓ and µℓ— the adaptive algorithm guarantees limℓ µ̃ℓ = 0. This concept is
followed in [AGP] to prove that the adaptive algorithm stated above, yields limℓ(µ

2
ℓ +osc2

D,ℓ) =

0. If the saturation assumption (5.25) holds (at least in infinitely many steps), we obtain
convergence of Φℓ to φ due to |||φ− Φℓ|||

2
V . µ2

ℓ + osc2
D,ℓ.

For adaptive finite element schemes, it could recently be proven that adaptive algorithms
of this type even lead to quasi-optimal meshes [CKNS]. For adaptive BEM, such a result is
completely open although numerical experiments give evidence for such an optimality result.

Listing 10
1 % adaptiveSymm provides the implementation of an adaptive m esh−refining
2 % algorithm for Symm's integral equation.

3

4 %*** maximal number of elements

5 nEmax = 100;

6

7 %*** adaptivity parameter

8 theta = 0.25;

9 rho = 0.25;

10

11 %*** adaptive mesh −refining algorithm
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12 while size (elements,1) < nEmax

13

14 %*** build uniformly refined mesh

15 [coordinates fine,elements fine,father2son] ...

16 = refineBoundaryMesh(coordinates,elements);

17

18 %*** compute fine −mesh solution

19 V fine = buildV(coordinates fine,elements fine);

20 b fine = buildSymmRHS(coordinates fine,elements fine,@g);

21 x fine = V fine \b fine;

22

23 %*** compute (h −h/2) −error estimator tilde −mu

24 mu tilde = computeEstSlpMuTilde(coordinates,elements,father2son, ...

25 x fine);

26 %*** compute data oscillations

27 osc fine = computeOscDirichlet(coordinates fine,elements fine,@g);

28 osc = osc fine(father2son(:,1)) + osc fine(father2son(:,2));

29

30 %*** mark elements for refinement

31 marked = markElements(theta,rho,mu tilde + osc);

32

33 %*** generate new mesh

34 [coordinates,elements] = refineBoundaryMesh(coordinates,elements,marked);

35 end

5.6.1. Implementation of Adaptive Algorithm (Listing 10). The Matlab script of
Listing 10 realizes the adaptive algorithm from the beginning of this section.

• We use the adaptivity parameter θ = 1/4 in (5.28) and mark at least the 25% of elements
with the largest indicators (Line 8–9).

• Recall that the function computeEstSlpMuTilde as well as computeOscDirichlet
return vectors of quadratic terms µ̃ℓ(E)2 and oscℓ(E)2, respectively. Note that (5.28) cor-
responds to the choice ̺ℓ(E) := µ̃ℓ(E)2 + oscℓ(E)2 in (4.1). Therefore, the marking crite-
rion (4.1) is provided by means of the function markElements (Line 31).
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6. Hypersingular Integral Equation

Continuous Model Problem. In the entire section, we consider the hypersingular integral
equation

Wu = (1/2 −K ′)φ on Γ(6.1)

with W the hypersingular integral operator and K ′ the adjoint double-layer potential, where
Γ = ∂Ω is the piecewise-affine boundary of a polygonal Lipschitz domain Ω ⊂ R

2. This integral
equation is an equivalent formulation of the Neumann problem

−∆u = 0 in Ω with ∂nu = φ on Γ.(6.2)

Note that due to the Gauss Divergence Theorem there holds
∫

Γ
φdΓ =

∫

∂Ω
∂nu dΓ =

∫

Ω
∆u dx = 0.

Formally, the Neumann data satisfy φ ∈ H
−1/2
∗ (Γ), where the subscript abbreviates the con-

straint 〈φ , 1〉Γ = 0. We will, however, assume additional regularity φ ∈ C(Eℓ) ⊂ L2(Γ) ⊂
H−1/2(Γ). The exact solution u ∈ H1/2(Γ) of the integral formulation (6.1) is just the Dirichlet
data u|Γ of the solution u ∈ H1(Ω) of (6.2).

Due to the fact that there holds Wc = 0 for all constant functions c ∈ R, the solutions of (6.1)
and (6.2) are only unique up to additive constants. To fix the additive constant, one usually
assumes integral mean zero for the respective solutions. In this sense, (6.1) can equivalently be

formulated in variational form: Find u∗ ∈ H
1/2
∗ (Γ) :=

{
v ∈ H1/2(Γ) :

∫
Γ v dΓ = 0

}
such that

〈Wu∗ , v∗〉Γ = 〈(1/2 −K ′)φ , v∗〉Γ for all v∗ ∈ H
1/2
∗ (Γ).(6.3)

One can prove that this formulation has a unique solution, since the left-hand side defines a

scalar product on H
1/2
∗ (Γ) even with equivalent norms.

From another point of view, one can consider the bilinear form

〈〈u , v〉〉W+S := 〈Wu , v〉Γ +
(∫

Γ
u dΓ

)(∫

Γ
v dΓ

)
for all u, v ∈ H1/2(Γ),(6.4)

which leads to the following modified variational form: Find u ∈ H1/2(Γ) such that

〈〈u , v〉〉W+S = 〈(1/2 −K ′)φ , v〉Γ for all v ∈ H1/2(Γ).(6.5)

One can prove that 〈〈· , ·〉〉W+S from (6.4) defines a scalar product such that the induced norm

|||u|||W+S := 〈〈u , u〉〉
1/2
W+S is an equivalent norm on H1/2(Γ). Consequently, (6.5) has a unique

solution u which depends continuously on the Neumann data φ. Moreover, one can prove that

〈(1/2 −K ′)ψ , 1〉Γ =
1

2
〈ψ , 1〉Γ − 〈ψ , K1〉Γ = 〈ψ , 1〉Γ = 0 for all ψ ∈ H

−1/2
∗ (Γ).

If we plug in v = 1 in (6.5), we thus obtain
(∫

Γ
u dΓ

)
length(Γ) = 〈Wu , 1〉Γ +

(∫

Γ
u dΓ

)(∫

Γ
1 dΓ

)

= 〈〈u , 1〉〉W+S = 〈(1/2 −K ′)φ , 1〉Γ = 0

according to the fact that the kernel of the hypersingular integral operator W consists of con-

stant functions. This implies u ∈ H
1/2
∗ (Γ). For a test function v∗ ∈ H

1/2
∗ (Γ), the variational

formulation (6.5) thus becomes

〈Wu , v∗〉Γ = 〈〈u , v∗〉〉W+S = 〈(1/2 −K ′)φ , v∗〉Γ,

i.e. (6.5) reduces to (6.3). Altogether we obtain that the unique solution u of (6.5) is also the
unique solution of (6.3), i.e., (6.5) is an equivalent formulation of (6.3).
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Galerkin Discretization. To discretize (6.5), we first replace the Neumann data φ ∈ H
−1/2
∗ (Γ)∩

L2(Γ) by its L2-projection Φℓ ∈ P0(Eℓ),

Φℓ|Ej =
1

length(Ej)

∫

Ej

φdΓ =: pj for all Ej ∈ Eℓ.(6.6)

According to this definition, there holds
∫

Γ
Φℓ dΓ =

∑

E∈Eℓ

∫

E
Φℓ dΓ =

∑

E∈Eℓ

∫

E
φdΓ =

∫

Γ
φdΓ = 0,

i.e. there holds Φℓ ∈ H
−1/2
∗ (Γ), too. Second, we replace the function space H1/2(Γ) in (6.5) by

the finite-dimensional space S1(Eℓ). Since S1(Eℓ) is a subspace of H1/2(Γ), 〈〈· , ·〉〉W+S from (6.4)
is also a scalar product on S1(Eℓ). Consequently, there exists a unique Galerkin solution Uℓ ∈
S1(Eℓ) of the discretized problem

〈〈Uℓ , Vℓ〉〉W+S = 〈(1/2 −K ′)Φℓ , Vℓ〉Γ for all Vℓ ∈ S1(Eℓ).(6.7)

As in the continuous case, the discrete solution Uℓ automatically satisfies
∫
Γ Uℓ dΓ = 0 which

follows from 1 =
∑N

j=1 ζj ∈ S1(Eℓ), which allows us to plug in Vℓ = 1 in (6.7). Indeed,

( ∫

Γ
Uℓ dΓ

)
length(Γ) = 〈WUℓ , 1〉Γ +

( ∫

Γ
Uℓ dΓ

)( ∫

Γ
1 dΓ

)

= 〈〈Uℓ , 1〉〉W+S = 〈(1/2 −K ′)Φℓ , 1〉Γ = 0.

According to Linear Algebra, (6.7) holds for all Vℓ ∈ S1(Eℓ) if and only if it holds for all
basis functions ζk ∈ {ζ1, . . . , ζN} of S1(Eℓ). With p ∈ R

N from (6.6) and the coefficient vector
x ∈ R

N of the ansatz

Uℓ =

N∑

j=1

xjζj,(6.8)

the Galerkin formulation (6.7) is thus equivalent to

N∑

j=1

xj〈〈ζj , ζk〉〉W+S = 〈〈Uℓ , ζk〉〉W+S = 〈(1/2 −K ′)Φℓ , ζk〉Γ =

N∑

j=1

pj〈(1/2 −K ′)χj , ζk〉Γ(6.9)

for all k = 1, . . . , N . In the context of Symm’s integral equation of Section 5, we have already
defined the matrices K,M ∈ R

N×N by

Kjk = 〈Kζk , χj〉Γ and Mjk = 〈ζk , χj〉Γ,

cf. (5.8). The right-hand side of the last equation thus reads

N∑

j=1

pj〈(1/2 −K ′)χj , ζk〉Γ =
1

2

N∑

j=1

pj〈χj , ζk〉Γ −
N∑

j=1

pj〈χj , Kζk〉Γ =
1

2
(MTp)k − (KT p)k.

To compute the left-hand side of (6.9), we define matrices W,S ∈ R
N×N by

Wkj = 〈Wζj , ζk〉Γ, Skj =
( ∫

Γ
ζj dΓ

)(∫

Γ
ζk dΓ

)
for all j, k = 1, . . . , N.(6.10)

Then there holds

(
(W + S)x

)
k

=

N∑

j=1

xj(Wkj + Skj) = 〈WUℓ , ζk〉Γ +
( ∫

Γ
Uℓ dΓ

)( ∫

Γ
ζk dΓ

)
= 〈〈Uℓ , ζk〉〉W+S .

Altogether, the Galerkin system (6.7) is equivalently stated by

(W + S)x =
1

2
MTp −KTp.(6.11)
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Note that the matrix S has rank 1 since it can be written in the form

S = ccT with the column vector c ∈ R
N with cj :=

∫

Γ
ζj dΓ.(6.12)

Finally, we stress that the matrix W + S from (6.11) is symmetric and positive definite since
it stems from a scalar product. Consequently, the linear system (6.11) has a unique solution
x ∈ R

N .

6.1. Computation of Discrete Integral Operator W. The matrix W ∈ R
N×N
sym defined

in (6.10) is implemented in the programming language C via the Matlab-Mex-Interface. It is
returned by call of

W = buildW(coordinates,elements [,eta]);

The entries of the matrix W are computed with the help of Nédélec’s formula which is presented
in the following identity

〈Wu , v〉Γ = 〈V u′ , v′〉Γ for all u, v ∈ H1(Γ).(6.13)

Since ζ ′j ∈ P0(Eℓ), this gives a direct link between the matrices W and V, namely, each entry
of W is the weighted sum of four entries of V. The optional parameter eta decides whether all
entries of W are computed analytically or if certain double integrals are computed by numerical
quadrature. We refer to Section 5.1 for details.

Listing 11
1 function S = buildHypsingStabilization(coordinates,elements)

2 nE = size (elements,1);

3

4 %*** compute local mesh −size

5 h = sqrt ( sum((coordinates(elements(:,1),:) −coordinates(elements(:,2),:)).ˆ2,2));

6

7 %*** build vector with entries c(j) = int Gamma hatfunction(j) ds

8 c = 0.5 * accumarray ( reshape (elements,2 * nE,1),[h;h]);

9

10 %*** build stabilization matrix

11 S = c* c';

6.2. Compute Stabilization for Hypersingular Integral Equation (Listing 11). The
kernel of the hypersingular integral operator W is the space of constant functions. Since

1 =
∑N

j=1 ζj ∈ S1(Eℓ), the corresponding matrix W defined by Wkj = 〈Wζj , ζk〉Γ for all

j, k ∈ {1, . . . , N} cannot be regular. One can prove, however, that it is semi-positive definite.
As we have figured out in the introduction, one remedy is to consider the extended bilinear
form 〈〈· , ·〉〉W+S from (6.4). It thus remains to assemble the rank-1-matrix S = ccT ∈ R

N×N

from (6.12). For building the vector c with

ck :=

∫

Γ
ζk dΓ =

N∑

i=1

∫

Ei

ζk dΓ,

note that the support of ζk consists precisely of the elements Ei ∈ Eℓ which include zk ∈ Kℓ as
a node. The vector c can be assembled Eℓ-elementwise, and for each element Ei two entries of
c are updated. Moreover, there holds

∫

Ei

ζk dΓ =

{
0, if zk 6∈ Ei,

length(Ei)/2, else.

Consequently, the assembly of the vector c can be done as follows, where h(j) contains the
element-width length(Ej).
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1 nE = size (elements,1);

2 h = sqrt ( sum((coordinates(elements(:,1),:) −coordinates(elements(:,2),:)).ˆ2,2));

3 c = zeros (nE,1);

4 for j = 1:nE

5 nodes = elements(j,:);

6 c(nodes) = c(nodes) + 0.5 * h(j);

7 end

For the final implementation of buildHypsingStabilization in Listing 11, the for -loop
is eliminated by use of accumarray :

• The function takes the mesh Eℓ described by the arrays coordinates and elements .
• We compute the vector of all element-widths (Line 5).
• The former for -loop is written in compact form (Line 8).
• Finally, the function builds and returns the stabilization matrix S (Line 11).

Listing 12
1 function b = buildHypsingRHS(coordinates,elements,phi)

2 %*** arbitrary quadrature on [ −1,1] with exactness n >= 2, e.g., gauss(2)

3 quad nodes = [ −1 1]/ sqrt (3);

4 quad weights = [1;1];

5

6 %*** the remaining code is independent of the chosen quadrature r ule

7 nE = size (elements,1);

8 nQ = length (quad nodes);

9

10 %*** build vector of evaluations points as (nQ * nE x 2) −matrix

11 a = coordinates(elements(:,1),:);

12 b = coordinates(elements(:,2),:);

13 sx = reshape (a,2 * nE,1) * (1 −quad nodes) + reshape (b,2 * nE,1) * (1+quad nodes);

14 sx = 0.5 * reshape (sx',nQ * nE,2);

15

16 %*** phi(sx) usually depends on the normal vector, whence phi tak es sx and the

17 %*** nodes of the respective element to compute the normal

18 a sx = reshape ( repmat ( reshape (a,2 * nE,1),1,nQ)',nE * nQ,2);

19 b sx = reshape ( repmat ( reshape (b,2 * nE,1),1,nQ)',nE * nQ,2);

20

21 %*** perform all necessary evaluations of phi as (nE x nQ) −matrix

22 phi sx = reshape (phi(sx,a sx,b sx),nQ,nE)';

23

24 %*** compute elementwise integral mean of phi

25 phi mean = (phi sx * quad weights * 0.5)';

26

27 %*** compute DLP−matrix for P0 x S1

28 K = buildK(coordinates,elements);

29

30 %*** compute mass −type matrix for P0 x S1

31 nE = size (elements,1);

32 h = sqrt ( sum((coordinates(elements(:,1),:) −coordinates(elements(:,2),:)).ˆ2,2));

33 I = reshape ( repmat (1:nE,2,1),2 * nE,1);

34 J = reshape (elements',2 * nE,1);

35 A = reshape ( repmat (0.5 * h,1,2)',2 * nE,1);

36 M = sparse (I,J,A);

37

38 %*** build right −hand side vector

39 b = (phi mean* M* 0.5 − phi mean* K)';
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6.3. Build Right-Hand Side for Hypersingular Integral Equation (Listing 12). With
the representation

Φℓ =

N∑

j=1

pjχj

and the transposed matrices of K and M, the right-hand side vector for (6.11) reads

b :=
1

2
MTp− KTp =

(1

2
pTM − pT K

)T
,(6.14)

where we identify the vector p ∈ R
N with a matrix p ∈ R

N×1.
For the implementation, we compute the elementwise integral mean Φℓ by use of numerical

quadrature:

pj :=
1

length(Ej)

∫

Ej

φdΓ =
1

2

∫ 1

−1
φ ◦ γj ds ≈

1

2
quadn(φ ◦ γj) =: p̃j for all Ej ∈ Eℓ.(6.15)

Here, we use the parametrization γj : [−1, 1] → Ej from (2.1). Moreover, quadn(·) denotes a

quadrature rule which is exact of order n ∈ N, i.e., quadn(p) =
∫ 1
−1 p ds for all p ∈ Pn[−1, 1]. In

our realization, we use a Gauss quadrature with two nodes. Note that this provides exactness
n = 3 and leads to an approximation error of order O(h5/2), cf. Section 6.4.

With these preparations, the documentation of Listing 12 reads as follows:

• The function takes as input the given mesh Eℓ in form of the arrays coordinates and
elements as well as a function handle phi for the Neumann data. A call of the function
phi is done by

y = phi(x,a,b)
with (n × 2)-arrays x , a, and b. The j-th rows x(j, :), a(j, :), and b(j, :) correspond to a
point xj ∈ [aj , bj ] ⊂ R

2. The entry y(j) of the column vector y then contains φ(xj).
• As stated above, we use the Gauss quadrature with two nodes (Line 3–4).
• If sk ∈ [−1, 1] is a quadrature node and Ej = [aj , bj ] ∈ Eℓ = {E1, . . . , EN} is an element,

the function φ has to be evaluated at

γj(sk) =
1

2

(
aj + bj + sk(bj − aj)

)
=

1

2

(
aj(1 − sk) + bj(1 + sk)

)
.

In Line 11–14, we build the (2N × 2)-array sx which contains all necessary evaluation
points. Note that the two evaluation points at Ej are stored in sx (2j − 1, :) and sx (2j, :).

• In Line 18–19, we compute the (2N × 2)-arrays a sx and b sx such that, e.g.,
a sx (2j − 1, :) and a sx (2j, :) contain the first node aj ∈ R

2 of the boundary element
Ej = [aj , bj ].

• We then evaluate the Neumann data φ simultaneously in all evaluation points and we
reshape this (2N × 1)-array into an (N × 2)-array phi sx such that phi sx (j, :) contains
all φ-values related to Ej (Line 22).

• As a next step, we compute the (N × 1)-array phi mean of all integral means along the
lines of (6.15), namely phi mean(j) = quadn(φ ◦ γj)/2 (Line 25).

• Next we build K (Line 28) and M (Line 31–36), cf. Section 5.2 above.
• Finally (Line 39), the function computes and returns the vector b as described in (6.14).

Listing 13
1 function osc = computeOscNeumann(coordinates,elements,phi)

2 %*** arbitrary quadrature on [ −1,1] with exactness n >= 2, e.g., gauss(2)

3 quad nodes = [ −1 1]/ sqrt (3);

4 quad weights = [1;1];

5

6 %*** the remaining code is independent of the chosen quadrature r ule

7 nE = size (elements,1);
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8 nQ = length (quad nodes);

9

10 %*** build vector of evaluations points as (nQ * nE x 2) −matrix

11 a = coordinates(elements(:,1),:);

12 b = coordinates(elements(:,2),:);

13 sx = reshape (a,2 * nE,1) * (1 −quad nodes) + reshape (b,2 * nE,1) * (1+quad nodes);

14 sx = 0.5 * reshape (sx',nQ * nE,2);

15

16 %*** phi(sx) usually depends on the normal vector, whence phi tak es sx and the

17 %*** nodes of the respective element to compute the normal

18 a sx = reshape ( repmat ( reshape (a,2 * nE,1),1,nQ)',nE * nQ,2);

19 b sx = reshape ( repmat ( reshape (b,2 * nE,1),1,nQ)',nE * nQ,2);

20

21 %*** perform all necessary evaluations of phi as (nE x nQ) −matrix

22 phi sx = reshape (phi(sx,a sx,b sx),nQ,nE)';

23

24 %*** compute elementwise integral mean of phi

25 phi mean = phi sx * quad weights * 0.5;

26

27 %*** compute vector of (squared) element −widths

28 h = sum((a −b).ˆ2,2);

29

30 %*** compute oscillation terms

31 osc sx = (phi sx − repmat (phi mean,1,nQ)).ˆ2;

32 osc = 0.5 * h. * (osc sx * quad weights);

6.4. Computation of Data Oscillations for Neumann Data (Listing 13). Instead of
solving the correct variational form (6.5), we solve

〈〈uℓ , v〉〉W+S = 〈(1/2 −K ′)Φℓ , v〉Γ for all v ∈ H1/2(Γ)(6.16)

with perturbed right-hand side, where we use the approximation Φℓ ≈ φ. Analytically, the error
between the exact solution u ∈ H1/2(Γ) of (6.5) and the exact solution uℓ ∈ H1/2(Γ) of the
perturbed formulation (6.16) is controlled by

|||u− uℓ|||W+S . ‖h
1/2
ℓ (φ− Φℓ)‖L2(Γ) =: oscN,ℓ,(6.17)

see [AGP]. We now aim for a numerical approximation of the local contributions

oscN,ℓ(Ej) := ‖h
1/2
ℓ (φ− Φℓ)‖L2(Ej) = length(Ej)

1/2 ‖φ− pj‖L2(Ej) for all Ej ∈ Eℓ,

where —as for the computation of the right-hand side vector b in Section 6.3— pj abbreviates
the integral mean

pj :=
1

length(Ej)

∫

Ej

φdΓ =
1

2

∫ 1

−1
φ ◦ γj ds ≈

1

2
quadn(φ ◦ γj) =: p̃j.(6.18)

Here, we use the parametrization γj : [−1, 1] → Ej from (2.1). Moreover, quadn(·) denotes the
same quadrature rule as for the computation of the right-hand side vector b which is exact of

order n ∈ N, i.e., quadn(p) =
∫ 1
−1 p ds for all p ∈ Pn[−1, 1]. With this quadrature rule, the local

Neumann oscillations are approximated by

oscN,ℓ(Ej)
2 = length(Ej)

∫

Ej

|φ− pj |
2 dΓ =

length(Ej)
2

2

∫ 1

−1
|φ ◦ γj(s) − pj |

2 ds

≈
length(Ej)

2

2
quadn

(
(φ ◦ γj − p̃j)

2
)

=: õscN,ℓ(Ej)
2.(6.19)
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With the definition õscN,ℓ :=
( ∑N

j=1 õscN,ℓ(Ej)
2
)1/2

, one can then prove that

|oscN,ℓ − õscN,ℓ| = O(hn/2+1).

Since oscN,ℓ = O(h3/2), we should thus choose n ≥ 2. For our implementation, we use the
Gauss quadrature rule with two nodes, which is exact for polynomials of degree n = 3. As for
the Dirichlet data oscillations, this choice leads to

|oscN,ℓ − õscN,ℓ| = O(h5/2), whereas oscN,ℓ = O(h3/2).

The documentation of Listing 13 simply reads as follows:

• The function takes the given mesh Eℓ in form of the arrays coordinates and elements
as well as a function handle phi for the Neumann data.

• The Lines 2–25 are identical with those of Listing 12, cf. Section 6.3.
• We realize Equation (6.19). Since we are using the same quadrature rule as for the com-

putation of the integral mean, all necessary evaluations of φ have already been computed.
Therefore, we derive the necessary evaluations of (φ − p̃j)

2 in Line 31. Multiplication
with the quadrature weights and coefficient-wise weighting with length(Ej)

2/2 provides the
(N × 1)-array osc such that osc (j) ≈ length(Ej)‖φ − Φℓ‖

2
L2(Ej)

. More precisely, there

holds osc2
N,ℓ ≈ õsc2

N,ℓ =
∑N

j=1 osc (j).

Listing 14
1 function err = computeErrDirichlet(coordinates,elements,g,uD)

2 %*** compute midpoints of all elements

3 midpoints = 0.5 * ( coordinates(elements(:,1),:) + coordinates(elements( :,2),:) );

4

5 %*** compute p = (uD − uDh) at element midpoints

6 p midpoints = uD(midpoints) − 0.5 * sum(g(elements),2);

7

8 %*** compute p = (uD − uDh) at all nodes

9 p nodes = uD(coordinates) − g;

10

11 %*** evaluate derivative p' at all elements (left,midpoint,rig ht)

12 p prime = [p nodes(elements) p midpoints] * [ −3 −1 1 ; −1 1 3 ; 4 0 −4] * 0.5;

13

14 %*** compute Dirichlet error simultaneously for all elements

15 err = 2 * p prime.ˆ2 * [1;4;1]/3;

6.5. Computation of Reliable Error Bound for |||u−Uℓ|||W+S (Listing 14). We assume
that the exact Dirichlet data satisfy additional regularity u ∈ H1(Γ). Let U∗

ℓ ∈ S1(Eℓ) be the
(only theoretically computed) Galerkin solution with respect to the non-perturbed right-hand
side (1/2 − K ′)φ instead of (1/2 − K ′)Φℓ. Moreover, let Iℓ denote the nodal interpolation
operator onto S1(Eℓ). With the technique from [EFGP, AGP], we obtain

|||u− U∗
ℓ |||W+S ≤ |||u− Iℓu|||W+S . ‖h

1/2
ℓ (u− Iℓu)

′‖L2(Γ) ≤ ‖h
1/2
ℓ (u− Uℓ)

′‖L2(Γ)

as well as

|||U∗
ℓ − Uℓ|||W+S . oscN,ℓ,

where oscN,ℓ denotes the Neumann data oscillations from Section 6.4. We therefore obtain

|||u− Uℓ|||W+S ≤ |||u− U∗
ℓ |||W+S + |||U∗

ℓ − Uℓ|||W+S

. ‖h
1/2
ℓ (u− Uℓ)

′‖L2(Γ) + oscN,ℓ =: errD,ℓ + oscN,ℓ.
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For the numerical realization of

errD,ℓ =
( N∑

j=1

errD,ℓ(Ej)
2
)1/2

, where errD,ℓ(Ej)
2 = length(Ej) ‖(u− Uℓ)

′‖2
L2(Ej)

,

we use the same ideas as for the Dirichlet data oscillations in Section 5.3, where

errD,ℓ(Ej)
2 = 2

∫ 1

−1

(
(u− Uℓ) ◦ γj

)′
(s)2 ds ≈ quad2

(
(p′j)

2
)

=: ẽrrD,ℓ(Ej).(6.20)

Here, pj ∈ P2[−1, 1] is the unique polynomial with pj(−1) = v(aj), pj(1) = v(bj), and pj(0) =
v(mj), where v = u− Uℓ as well as Ej = [aj , bj ] and mj = (aj + bj)/2. Recall that



p′j(−1)

p′j(0)

p′j(+1)


 =



−3/2 +2 −1/2
−1/2 0 +1/2
+1/2 −2 +3/2






v(aj)
v(mj)
v(bj)


 =



−3/2 −1/2 +2
−1/2 +1/2 0
+1/2 +3/2 −2






v(aj)
v(bj)
v(mj)


 .

As we are at last targeted on vectorization, we write the linear system row-wise as

(
p′j(−1), p′j(0), p

′
j(+1)

)
=

(
v(aj), v(bj), v(mj)

)


−3/2 −1/2 +1/2
−1/2 +1/2 +3/2
+2 0 −2


 .(6.21)

For the numerical quadrature, we use a Newton-Côtes formula with three nodes sk ∈ {−1, 0,+1}
and corresponding weights ωk = {1/3, 4/3, 1/3}. The documentation of Listing 14 now reads
as follows:

• The function takes the mesh Eℓ in terms of coordinates and elements as well as the
nodal vector g ∈ R

N of Uℓ =
∑N

j=1 gjζj and the function handle uD for the exact solution

u (Line 1).
• We first compute all element midpoints (Line 3) and evaluate the solution u − Uℓ at all

midpoints (Line 6) and all nodes (Line 9).
• Using (6.21), we provide all necessary evaluations of p′j(sk) in form of the (N × 3)-array

p prime (Line 12).
• Finally, Line 15 realizes (6.20), and the function returns the column vector err , where

err (j) = ẽrrD,ℓ(Ej)
2. In particular, there holds errD,ℓ ≈ ẽrrD,ℓ :=

( ∑N
j=1 err (j)

)1/2
.

Remark 6.1. In academic experiments, the exact solution u is usually known and has certain

regularity u ∈ H1(Γ) which only depends on the geometry of Γ. As explained before, there holds

|||u− Uℓ|||W+S . errD,ℓ + oscN,ℓ,

so that we can control the error reliably. Moreover, the convergence errD,ℓ → 0 as ℓ→ ∞ might

indicate that there are no major bugs in the implementation — since we compare the Galerkin

solution with the exact solution. �

6.6. Computation of (h− h/2)(h− h/2)(h− h/2)-Based A Posteriori Error Estimators. In this section,
we discuss the implementation of four error estimators which are introduced and analyzed

in [EFGP]. Let Êℓ = {e1, . . . , e2N} be the uniform refinement of the mesh Eℓ. Let Uℓ ∈ S1(Eℓ)

and Ûℓ ∈ S1(Êℓ) be the Galerkin solutions of (6.7) with respect to Eℓ and Êℓ and the same
approximate Neumann data Φℓ, i.e. there holds

〈〈Uℓ , Vℓ〉〉W+S = 〈(1/2 −K ′)Φℓ , Vℓ〉Γ for all Vℓ ∈ S1(Eℓ)

and

〈〈Ûℓ , V̂ℓ〉〉W+S = 〈(1/2 −K ′)Φℓ , V̂ℓ〉Γ for all V̂ℓ ∈ S1(Êℓ).

As for Symm’s integral equation, one can expect

|||uℓ − Uℓ|||W+S ≈ |||Ûℓ − Uℓ|||W+S = |||Ûℓ − Uℓ|||W =: ηℓ,(6.22)
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where uℓ ∈ H1/2(Γ) denotes the exact solution of

〈〈uℓ , v〉〉W+S = 〈(1/2 −K ′)Φℓ , v〉Γ for all v ∈ H1/2(Γ).(6.23)

According to (6.17), (6.22), and the triangle inequality, there holds

|||u− Uℓ|||W+S ≤ |||u− uℓ|||W+S + |||uℓ − Uℓ|||W+S . oscN,ℓ + ηℓ.(6.24)

Clearly, the Galerkin solution Ûℓ with respect to S1(Êℓ) is more accurate than Uℓ. Consequently,

any algorithm will return Ûℓ instead of Uℓ if Ûℓ has been computed. From this point of view
Uℓ becomes a side result and leads to unnecessary computational effort. Similar to Section 5,

one can prove that one may replace Uℓ by a cheap (but appropriate) postprocessing IℓÛℓ of Ûℓ.
This leads to some error estimator

ηℓ ∼ |||Ûℓ − IℓÛℓ|||W+S =: η̃ℓ(6.25)

which always stays proportional to ηℓ, indicated by ηℓ ∼ η̃ℓ, cf. [EFGP]. To be more precise, Iℓ
denotes the nodal interpolation operator on S1(Eℓ), which is given by

IℓUℓ :=
∑

z∈Kℓ

Uℓ(z)ζz,

where Kℓ denotes the set of all nodes of Eℓ and where ζz denotes the hat-function associated
with some node z ∈ Kℓ.

As a matter of fact, the error estimators ηℓ and η̃ℓ do not provide any information about the
local errors, i.e., the error |||uℓ − Uℓ|||W+S related to some element Ei ∈ Eℓ. This is different for
the error estimators µℓ and µ̃ℓ discussed in the following. For instance, one can prove that

ηℓ ∼ µℓ := ‖h
1/2
ℓ (Ûℓ − Uℓ)

′‖L2(Γ) =
( N∑

i=1

length(Ei)‖(Ûℓ − Uℓ)
′‖2

L2(Ei)

)1/2
.(6.26)

The local contributions

µℓ(Ei) := length(Ei)
1/2‖(Ûℓ − Uℓ)

′‖L2(Ei) for all Ei ∈ Eℓ(6.27)

give some measure for the error on Ei.
As the computation of the error estimator ηℓ, the computation of µℓ requires two Galerkin

solutions Uℓ and Ûℓ. As before, the computation of the coarse-mesh solution Uℓ can be avoided

by use of the nodal interpolant IℓÛℓ. One can mathematically prove that

ηℓ ∼ µ̃ℓ := ‖h
1/2
ℓ (Ûℓ − IℓÛℓ)

′‖L2(Γ).(6.28)

In the following subsections, we first discuss the computation of the global error estimators ηℓ

and η̃ℓ from (6.22) and (6.25). Then, we give an implementation of the local error estimators µℓ

and µ̃ℓ from (6.26) and (6.28), where our functions return the local contributions, see e.g. (6.27),
to steer an adaptive mesh-refinement.

Remark 6.2. If we plot the error estimators ηℓ, η̃ℓ, µℓ and µ̃ℓ over the number of elements, one

can mathematically predict that the corresponding curves, for a sequence of arbitrarily refined

meshes, are parallel. In mathematical terms, this reads

ηℓ ≤ η̃ℓ . µ̃ℓ ≤ µℓ . ηℓ,(6.29)

cf. [EFGP]. Empirically, one observes a very good coincidence of ηℓ and η̃ℓ in the sense that the

corresponding curves almost coincide. The same is observed for the curves of µℓ and µ̃ℓ. �

Remark 6.3. Mathematically, the error estimate (6.22) respectively (6.24) involves the so-

called saturation assumption: Assume that we could compute the Galerkin solutions U∗
ℓ and Û∗

ℓ

with respect to Eℓ and Êℓ for the non-perturbed variational formulation (6.5), i.e., we formally

use the exact Neumann data φ instead of the interpolated data Φℓ — although the right-hand
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side is, in practice, non-computable because of K ′φ. Then, the saturation assumption states

that

|||u− Û∗
ℓ |||W+S ≤ q |||u− U∗

ℓ |||W+S(6.30)

with some uniform and ℓ-independent constant q ∈ (0, 1). Put differently, uniform mesh-

refinement leads to a uniform improvement of the discretization error. Provided (6.30), one

can prove that

ηℓ ≤ |||uℓ − Uℓ|||W+S ≤ (1 − q2)−1/2 ηℓ.(6.31)

We stress that this assumption is somewhat natural and can, for instance, be proven for the finite

element method [DN, FOP]. For the boundary element method, however, (6.30) still remains

open.

Finally, one can prove that (6.30) is sufficient and in some sense even necessary to guaran-

tee (6.24). �

Remark 6.4. In academic experiments, the exact solution u of the hypersingular integral equa-

tion is usually known and has certain regularity u ∈ H1(Γ) which only depends on the geometry

of Γ. In this case, one can experimentally verify the saturation assumption as follows: In

Section 6.5, we derived

|||u− Uℓ|||W . errD,ℓ + oscN,ℓ.

If the right-hand side has the same convergence behaviour as the error estimator ηℓ + oscN,ℓ,

this proves empirically

|||u− Uℓ|||W . ηℓ + oscN,ℓ

and confirms the saturation assumption. �

Listing 15
1 function est = computeEstHypEta(elements fine,elements coarse,father2son, ...
2 Wfine,x fine,x coarse)

3 nC = length (x coarse);

4

5 %*** build index field k = idx(j) such that j −th node of coarse mesh coincides

6 %*** with k −th node of fine mesh

7 idx = zeros (nC,1);

8 idx(elements coarse) = [ elements fine(father2son(:,1),1), ...

9 elements fine(father2son(:,2),2) ];

10

11 %*** build index field k = mid(j) such that midpoint of j −th element of coarse

12 %*** mesh is k −th node of fine mesh

13 mid = elements fine(father2son(:,1),2);

14

15 %*** compute coefficient vector of (u fine − u coarse) w.r.t. fine mesh

16 x fine(idx) = x fine(idx) − x coarse;

17 x fine(mid) = x fine(mid) − 0.5 * sum(x coarse(elements coarse),2);

18

19 %*** compute energy | | | u fine − u coarse | | | ˆ 2

20 est = x fine' * (W fine * x fine);

6.6.1. Computation of Error Estimator ηℓηℓηℓ (Listing 15). In this section, we aim to

compute the error estimator ηℓ = |||Ûℓ − Uℓ|||W+S from (6.22). Let ζ̂j denote the hat-function

associated with some fine-mesh node zj ∈ K̂ℓ. Let x ∈ R
N and x̂ ∈ R

2N be the coefficient
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vectors of Uℓ and Ûℓ with respect to the canonical bases of S1(Eℓ) and S1(Êℓ), i.e.

Uℓ =
N∑

j=1

xjζj and Ûℓ =
2N∑

j=1

x̂j ζ̂j .

Similar to Section 5.5.1, there holds S1(Eℓ) ⊂ S1(Êℓ) which provides a unique vector ŷ ∈ R
2N

such that

Uℓ =

2N∑

j=1

ŷj ζ̂j.

With the vectors x̂, ŷ ∈ R
2N , there holds

η2
ℓ = |||Ûℓ − Uℓ|||

2
W+S = 〈〈Ûℓ − Uℓ , Ûℓ − Uℓ〉〉W+S =

2N∑

j,k=1

(x̂j − ŷj)(x̂k − ŷk)〈〈ζ̂j , ζ̂k〉〉W+S

= (x̂ − ŷ) · (Ŵ + Ŝ)(x̂ − ŷ),

where Ŵ denotes the matrix of the hypersingular integral operator and Ŝ the matrix of the
stabilization term contributions (6.10) with respect to the fine mesh, cf. Section 6. The docu-
mentation of Listing 15 now reads as follows:

• The function takes the coefficient vectors x ∈ R
N and x̂ ∈ R

2N of the Galerkin solutions
Uℓ and Ûℓ as well as the sum Ŵ + Ŝ of the hypersingular operator matrix Ŵ and the

stabilization term matrix Ŝ for the fine mesh Êℓ stored in Wfine . Besides this, the function
takes the coarse mesh described by the (N×2)-array elements coarse and the fine mesh
described by the (2N×2)-array elements fine . Finally, the (N×2)-array father2son

links the indices of elements Ei ∈ Eℓ with the indices of its sons ej , ek ∈ Êℓ in the sense that
father2son( i,:) = [ j, k] for Ei = ej ∪ ek.

• We build an array k = idx(i) such that the i-th node of the coarse mesh coincides with
the k-th node of the fine mesh (Line 7–9).

• Furthermore, we build an array k = mid(j) such that the midpoint of the j-th element
of the coarse mesh is the k-th node of the fine mesh (Line 13).

• Then we overwrite successively the vector x̂ by the coefficient vector x̂− ŷ of Ûℓ − Uℓ. We
first calculate this difference for any node belonging to Kℓ (Line 16) and in a next step for

any node occurring in K̂ℓ\Kℓ by interpolating the coarse vector (Line 17).

• Finally, the function returns η2
ℓ = |||Ûℓ − Uℓ|||

2
W+S (Line 20).

Listing 16
1 function est = computeEstHypEtaTilde(elements fine,elements coarse, ...
2 father2son,W fine,x fine)

3 nC = max(elements coarse(:));

4

5 %*** build index field k = idx(j) such that j −th node of coarse mesh coincides

6 %*** with k −th node of fine mesh

7 idx = zeros (nC,1);

8 idx(elements coarse) = [ elements fine(father2son(:,1),1), ...

9 elements fine(father2son(:,2),2) ];

10

11 %*** build index field k = mid(j) such that midpoint of j −th element of coarse

12 %*** mesh is k −th node of fine mesh

13 mid = elements fine(father2son(:,1),2);

14

15 %*** build index field [i j] = e2n(k) such that fine −mesh nodes zi and zj are

16 %*** the nodes of the coarse −mesh element Ek
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17 e2n = [ elements fine(father2son(:,1),1) elements fine(father2son(:,2),2) ];

18

19 %*** compute coefficient vector of (1 − I coarse) * u fine w.r.t. fine mesh

20 x fine(mid) = x fine(mid) − 0.5 * sum(x fine(e2n),2);

21 x fine(idx) = 0;

22

23 %*** compute energy | | | (1 − I coarse) * u fine | | | ˆ 2

24 est = x fine' * (W fine * x fine);

6.6.2. Computation of Error Estimator η̃ℓ̃ηℓ̃ηℓ (Listing 16). In this section, we aim to
compute the error estimator η̃ℓ which is defined by

η̃ℓ := |||Ûℓ − IℓÛℓ|||W+S .

We adopt the notation of Section 6.6.1 for the computation of ηℓ, namely x̂ ∈ R
2N with

Ûℓ =

2N∑

j=1

x̂j ζ̂j.

Let zi ∈ K̂ℓ\Kℓ. Then, there are two elements ej , ek ∈ Êℓ being the sons of Ei ∈ Eℓ, i.e.

Ei = ej∪ek, which share zi as a common node. Since IℓÛℓ restricted to some element Ei = ej∪ek
is affine, there holds

IℓÛℓ(zi) =
1

2

(
IℓÛℓ(zj) + IℓÛℓ(zk)

)
=

1

2

(
Ûℓ(zj) + Ûℓ(zk)

)
,(6.32)

where zj, zk ∈ Kℓ denote the outer nodes of the elements ej , ek. On the other hand, there holds

IℓÛℓ(zi) = Ûℓ(zi) provided that zi ∈ Kℓ. Altogether, representing IℓÛℓ ∈ S1(Eℓ) with respect to

the fine-mesh Êℓ, we obtain

IℓÛℓ =

2N∑

n=1

ẑnζ̂n,(6.33)

where ẑ ∈ R
2N denotes the coefficient vector. As in Section 6.6.1, there holds

η̃ 2
ℓ = |||Ûℓ − IℓÛℓ|||

2
W+S = (x̂ − ẑ) · (Ŵ + Ŝ)(x̂ − ẑ).

Therefore, the documentation of Listing 16 reads as follows:

• The function takes the coefficient vector x̂ ∈ R
2N of the Galerkin solutions Ûℓ as well as

the sum Ŵ + Ŝ of the hypersingular operator matrix Ŵ and the stabilization term matrix

Ŝ for the fine mesh Êℓ stored in Wfine . Besides this, the function takes the coarse mesh
described by the (N × 2)-array elements coarse and the fine mesh described by the

(2N × 2)-array elements fine . Moreover, the link between Eℓ and Êℓ is provided by
means of father2son .

• We first build an array k = idx(i) such that the i-th node of the coarse mesh coincides
with the k-th node of the fine mesh (Line 7–9).

• Furthermore, we build an array k = mid(j) such that the midpoint of the j-th element
of the coarse mesh is the k-th node of the fine mesh (Line 13).

• Next we build an array [i j] = e2n(k) such that the fine-mesh nodes zi and zj are the
nodes of the coarse mesh elements Ek (Line 17).

• We successively overwrite x̂ by the coefficient vector x̂− ẑ ∈ R
2N of Ûℓ − IℓÛℓ (Line 20–21).

• Finally, the function returns η̃2
ℓ = |||Ûℓ − IℓÛℓ|||

2
W+S (Line 24).

Listing 17
1 function ind = computeEstHypMu(elements fine,elements coarse,father2son, ...
2 x fine,x coarse)
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3 nC = length (x coarse);

4

5 %*** build index field k = idx(j) such that j −th node of coarse mesh coincides

6 %*** with k −th node of fine mesh

7 idx = zeros (nC,1);

8 idx(elements coarse) = [ elements fine(father2son(:,1),1), ...

9 elements fine(father2son(:,2),2) ];

10

11 %*** build index field k = mid(j) such that midpoint of j −th element of coarse

12 %*** mesh is k −th node of fine mesh

13 mid = elements fine(father2son(:,1),2);

14

15 %*** compute coefficient vector of (u fine − u coarse) w.r.t. fine mesh

16 x fine(idx) = x fine(idx) − x coarse;

17 x fine(mid) = x fine(mid) − 0.5 * sum(x coarse(elements coarse),2);

18

19 %*** compute hˆ2 * |(u fine − u coarse) ' |ˆ2 for all fine −mesh elements

20 %*** where h denotes the diameters of the fine −mesh elements

21 grad = (x fine(elements fine) * [ −1;1]).ˆ2;

22

23 %*** compute (squared) indicators w.r.t. coarse mesh as describ ed above

24 ind = 2 * ( grad(father2son(:,1)) + grad(father2son(:,2)) );

6.6.3. Computation of Error Estimator µℓµℓµℓ (Listing 17). In this section, we discuss the
implementation of

µ2
ℓ :=

N∑

i=0

µℓ(Ei)
2, where µℓ(Ei)

2 := length(Ei)‖(Ûℓ − Uℓ)
′‖2

L2(Ei)
.

Actually we calculate the squared entries µℓ(Ei)
2 for all Ei ∈ Eℓ.

We adopt the notation of Section 6.6.1, namely x̂, ŷ ∈ R
2N with

Ûℓ =

2N∑

j=1

x̂j ζ̂j and Uℓ =

2N∑

j=1

ŷj ζ̂j .

For fixed Ei ∈ Eℓ and sons ej , ek ∈ Êℓ with Ei = ej ∪ ek, we obtain

‖(Ûℓ − Uℓ)
′‖2

L2(Ei)
=

∫

Ei

∣∣∣(Ûℓ − Uℓ)
′
∣∣∣
2
dΓ =

∫

ej

∣∣∣(Ûℓ − Uℓ)
′
∣∣∣
2
dΓ +

∫

ek

∣∣∣(Ûℓ − Uℓ)
′
∣∣∣
2
dΓ.

As (Ûℓ−Uℓ) ∈ S1(Êℓ) is piecewise affine, its arc-length derivative (Ûℓ−Uℓ)
′ ∈ P0(Êℓ) is piecewise

constant. Consequently, the above formula reduces to

‖(Ûℓ − Uℓ)
′‖2

L2(Ei)
= length(ej)

∣∣∣(Ûℓ − Uℓ)
′|ej

∣∣∣
2
+ length(ek)

∣∣∣(Ûℓ − Uℓ)
′|ek

∣∣∣
2

=
length(Ei)

2

( ∣∣∣(Ûℓ − Uℓ)
′|ej

∣∣∣
2
+

∣∣∣(Ûℓ − Uℓ)
′|ek

∣∣∣
2 )
.

With ej = [zj1 , zj2 ] ∈ Êℓ, we obtain

∣∣∣(Ûℓ − Uℓ)
′|ej

∣∣∣
2

=

∣∣∣(Ûℓ − Uℓ)(zj2) − (Ûℓ − Uℓ)(zj1)
∣∣∣
2

length(ej)2
.

This implies

µℓ(Ei)
2 = 2

( ∣∣∣(Ûℓ − Uℓ)(zj2) − (Ûℓ − Uℓ)(zj1)
∣∣∣
2
+

∣∣∣(Ûℓ − Uℓ)(zk2) − (Ûℓ − Uℓ)(zk1)
∣∣∣
2 )

(6.34)

Altogether, the documentation of Listing 17 reads as follows:
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• As input arguments, the function takes the mesh Eℓ represented by the (N × 2)-array

elements coarse , the mesh Êℓ represented by the (2N × 2)-array elements fine , the

link between Eℓ and Êℓ, and the coefficient vectors x ∈ R
N and x̂ ∈ R

2N of the Galerkin

solutions Uℓ and Ûℓ (Line 1–2).

• We overwrite the vector x̂ by coefficient vector x̂− ŷ of Ûℓ −Uℓ in exactly the same way as
we did in Section 6.6.1 for the error estimator ηℓ (Line 7–17).

• Next (Line 21), we compute the coefficient vector of the squared arc-length derivative of

Ûℓ−Uℓ multiplied by the diameter of the fine-mesh elements to avoid needless computations.
• Finally (Line 24), the function realizes (6.34) and returns the vector

v := (µℓ(E1)
2, . . . , µℓ(EN )2) ∈ R

N

so that µℓ =
( ∑N

i=1 vi

)1/2
.

Listing 18
1 function ind = computeEstHypMuTilde(elements fine,elements coarse, ...
2 father2son,x fine)

3 nC = max(elements coarse(:));

4

5 %*** build index field k = idx(j) such that j −th node of coarse mesh coincides

6 %*** with k −th node of fine mesh

7 idx = zeros (nC,1);

8 idx(elements coarse) = [ elements fine(father2son(:,1),1), ...

9 elements fine(father2son(:,2),2) ];

10

11 %*** build index field k = mid(j) such that midpoint of j −th element of coarse

12 %*** mesh is k −th node of fine mesh

13 mid = elements fine(father2son(:,1),2);

14

15 %*** build index field [i j] = e2n(k) such that fine −mesh nodes zi and zj are

16 %*** the nodes of the coarse −mesh element Ek

17 e2n = [ elements fine(father2son(:,1),1) elements fine(father2son(:,2),2) ];

18

19 %*** compute coefficient vector of (1 − I coarse) * u fine w.r.t. fine mesh

20 x fine(mid) = x fine(mid) − 0.5 * sum(x fine(e2n),2);

21 x fine(idx) = 0;

22

23 %*** compute hˆ2 * | ((1 − I coarse) * u fine)' |ˆ2 for all fine −mesh elements

24 %*** where h denotes the diameters of the fine −mesh elements

25 grad = (x fine(elements fine) * [ −1;1]).ˆ2;

26

27 %*** compute (squared) indicators w.r.t. coarse mesh as describ ed above

28 ind = 2 * ( grad(father2son(:,1)) + grad(father2son(:,2)) );

6.6.4. Computation of Error Estimator µ̃ℓµ̃ℓµ̃ℓ (Listing 18). In this section, we finally aim
to compute

µ̃2
ℓ :=

N∑

i=0

µ̃ℓ(Ei)
2, where µ̃ℓ(Ei)

2 := length(Ei)‖(Ûℓ − IℓÛℓ)
′‖2

L2(Ei)
.

We adopt the notation of Section 6.6.1, namely x̂ ∈ R
2N with

Ûℓ =
2N∑

j=1

x̂j ζ̂j.
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Based on the same ideas as for the realization of the local contributions from the preceding
Sections 6.6.2 and 6.6.3, a concise documentation of Listing 18 reads as follows:

• The function takes the meshes Eℓ and Êℓ, the link between Eℓ and Êℓ, and the coefficient

vector x̂ ∈ R
2N of Ûℓ (Line 1–2).

• Adopting the ideas of Section 6.6.2, we compute the coefficient vector of Ûℓ − IℓÛℓ (Line 7–
21).

• According to Section 6.6.3, we compute the local contributions length(ej)
2|(Ûℓ − IℓÛℓ)

′|2

for all elements ej ∈ Êℓ (Line 25).
• Finally (Line 28), the function returns the vector

v := (µ̃ℓ(E1)
2, . . . , µ̃ℓ(EN )2) ∈ R

N .

In particular, there holds µ̃ℓ =
( ∑N

i=1 vi

)1/2
.

6.7. Adaptive Mesh-Refinement for Hypersingular Integral Equation.
Usually computing time and memory requirements are limiting quantities for numerical simu-
lations. Therefore, one aims to choose the mesh such that it is coarse, where the (unknown)
solution is smooth, and fine, where the (unknown) solution is singular. Based on a local error
estimator, e.g. µ̃ℓ, such meshes are constructed in an iterative way. In each step, one refines
the mesh only locally, i.e. one refines elements Ej, where the error appears to be large, namely,
where the local contributions µ̃ℓ(Ej) are large. For the error estimator µ̃ℓ from Section 6.6.4, a
possible adaptive algorithm reads as follows:

Input: Initial mesh E0, Neumann data φ, adaptivity parameter 0 < θ < 1, maximal number
Nmax ∈ N of elements, and counter ℓ = 0.

(i) Build uniformly refined mesh Êℓ.

(ii) Compute Galerkin solution Ûℓ ∈ S1(Êℓ).
(iii) Compute refinement indicators µ̃ℓ(E)2 and oscillation terms oscN,ℓ(E)2 for all E ∈ Eℓ.
(iv) Find minimal set Mℓ ⊆ Eℓ such that

θ (µ̃2
ℓ + osc2

N,ℓ) = θ
∑

E∈Eℓ

(
µ̃ℓ(E)2 + oscN,ℓ(E)2

)
≤

∑

E∈Mℓ

(
µ̃ℓ(E)2 + oscN,ℓ(E)2

)
.(6.35)

(v) Refine at least marked elements E ∈ Mℓ and obtain mesh Eℓ+1 with κ(Eℓ+1) ≤ 2κ(E0).
(vi) Stop provided that #Eℓ+1 ≥ Nmax; otherwise, increase counter ℓ 7→ ℓ+ 1 and go to (i).

Output: Adaptively generated mesh Êℓ and corresponding discrete solution Ûℓ ∈ S1(Êℓ).

The marking criterion (6.35) has been proposed in the context of adaptive finite element
methods [D]. Let formally Nmax = ∞ so that the adaptive algorithm computes a sequence of

discrete solutions Ûℓ (or even Uℓ, although this is not computed). With the same techniques as

in [FOP], one can prove that the saturation assumption (6.30) implies convergence of Ûℓ and
Uℓ to u, provided that the right-hand side φ is not disturbed, i.e., φ = Φℓ. The same result also
holds for µ̃ℓ replaced by µℓ.

In [AFP], we changed the notion of convergence and proved that for certain error estimators —
amongst them are µ̃ℓ and µℓ for Symm’s integral equation — the adaptive algorithm guarantees
limℓ µ̃ℓ = 0. This concept is followed in [AGP] to prove that the adaptive algorithm for Symm’s
integral equation stated above, yields limℓ(µ̃

2
ℓ +osc2

D,ℓ) = 0. The same ideas are applicable to the

hypersingular integral equation. Therefore, if the saturation assumption (6.30) holds (at least
in infinitely many steps), we obtain convergence of Uℓ to u due to |||u− Uℓ|||

2
W+S . µ̃2

ℓ + osc2
N,ℓ.

Listing 19
1 % adaptiveHypsing provides the implementation of an adapti ve mesh−refining
2 % algorithm for the hypersingular integral equation.
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3

4 %*** maximal number of elements

5 nEmax = 100;

6

7 %*** adaptivity parameter

8 theta = 0.25;

9 rho = 0.25;

10

11 %*** adaptive mesh −refining algorithm

12 while size (elements,1) < nEmax

13

14 %*** build uniformly refined mesh

15 [coordinates fine,elements fine,father2son] ...

16 = refineBoundaryMesh(coordinates,elements);

17

18 %*** compute fine −mesh solution

19 Wfine = buildW(coordinates fine,elements fine) ...

20 + buildHypsingStabilization(coordinates fine,elements fine);

21 b fine = buildHypsingRHS(coordinates fine,elements fine,@phi);

22 x fine = W fine \b fine;

23

24 %*** compute (h −h/2) −error estimator tilde −mu

25 mu tilde = computeEstHypMuTilde(elements fine,elements,father2son, ...

26 x fine);

27 %*** compute data oscillations

28 osc fine = computeOscNeumann(coordinates fine,elements fine,@phi);

29 osc = osc fine(father2son(:,1)) + osc fine(father2son(:,2));

30

31 %*** mark elements for refinement

32 marked = markElements(theta,rho,mu tilde + osc);

33

34 %*** generate new mesh

35 [coordinates,elements] = refineBoundaryMesh(coordinates,elements,marked);

36 end

6.7.1. Implementation of Adaptive Algorithm (Listing 19). The Matlab script of
Listing 19 realizes the adaptive Algorithm from the beginning of this section.

• We use the adaptivity parameter θ = 1/4 in (6.35) and mark at least the 25% of elements
with the largest indicators (Line 8–9). The marking criterion is explained in Section 4.1.
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7. Mixed Problem

Continuous Model Problem. Let Γ = ∂Ω be the piecewise affine boundary of a polygonal
Lipschitz domain Ω ⊂ R

2. We assume that Γ is split into two disjoint and relatively open sets
ΓD and ΓN with Γ = ΓN ∪ΓD. Moreover, we assume positive surface measure |ΓD| > 0 to avoid

treating the pure Neumann problem from Section 6. For given Dirichlet data uD ∈ H1/2(ΓD)

and Neumann data φN ∈ H−1/2(ΓN ), we consider the mixed boundary value problem

−∆u = 0 in Ω,
u = uD on ΓD,

∂nu = φN on ΓN .
(7.1)

For the equivalent integral formulation of (7.1), we choose (and fix) arbitrary extensions

uD ∈ H1/2(Γ) and φN ∈ H−1/2(Γ) of the given data from ΓD resp. ΓN to the entire boundary
Γ. The missing boundary data, which have to be computed, are

uN := u− uD and φD := ∂nu− φN .(7.2)

One can show that this definition yields uN ∈ H̃1/2(ΓN ) and φD ∈ H̃−1/2(ΓD).
Let V denote the simple-layer potential, K the double-layer potential with adjoint K ′, and

W the hypersingular integral operator. With the so-called Calderón projector

A =

(
−K V
W K ′

)
,(7.3)

which is an operator matrix, the unknown data uN and φD satisfy the following system of
integral equations

A

(
uN

φD

)
= (1/2 −A)

(
uD

φN

)
=: F.(7.4)

One can prove that (7.4) is, in fact, an equivalent formulation of the mixed boundary value
problem (7.1). With the spaces

H := H̃1/2(ΓN ) × H̃−1/2(ΓD) and H∗ := H1/2(ΓD) ×H−1/2(ΓN ),(7.5)

one can show that A : H → H∗ is a linear and continuous mapping. Moreover, H∗ is the dual
space of H with duality understood via the formula

〈(vD, ψN ) , (vN , ψD)〉H∗×H := 〈ψN , vN 〉ΓN
+ 〈ψD , vD〉ΓD

(7.6)

for all (vN , ψD) ∈ H and (vD, ψN ) ∈ H∗, where the duality brackets 〈· , ·〉ΓN
and 〈· , ·〉ΓD

on
the right-hand side denote the extended L2-scalar products. Now, the operator A induces a
continuous bilinear form on H via

〈〈(uN , φD) , (vN , ψD)〉〉A : = 〈A(uN , φD) , (vN , ψD)〉H∗×H

= 〈WuN +K ′φD , vN 〉ΓN
+ 〈−KuN + V φD , ψD〉ΓD

.
(7.7)

Note that this bilinear form is non-symmetric because of the entries −K and K ′ on the right-
hand side. Nevertheless, the definition

|||(uN , φD)|||2A := 〈〈(uN , φD) , (uN , φD)〉〉A = 〈WuN , uN 〉ΓN
+ 〈V φD , φD〉ΓD

(7.8)

provides a norm on H which is equivalent to the usual product norm. Therefore, the bilinear
form 〈〈· , ·〉〉A is uniformly elliptic, and we are in the framework of the Lax-Milgram Lemma.
Consequently, the variational form of (7.4)

〈〈(uN , φD) , (vN , ψD)〉〉A = 〈F , (vN , ψD)〉H∗×H for all (vN , ψD) ∈ H(7.9)

has a unique solution (uN , φD) ∈ H. To abbreviate notation, we will now use the vector-valued
unknown u := (uN , φD) ∈ H.
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Mesh Restriction and Discrete Spaces. Let Eℓ be a mesh of Γ. By definition, Eℓ then
resolves ΓD and ΓN , cf. Section 1.1. Consequently,

Eℓ|ΓD
:=

{
E ∈ Eℓ : E ⊆ ΓD

}
and Eℓ|ΓN

:=
{
E ∈ Eℓ : E ⊆ ΓN

}

define meshes of ΓD and ΓN , respectively. By now, we have thus defined the discrete spaces
P0(Eℓ), P

0(Eℓ|ΓD
), P0(Eℓ|ΓN

), S1(Eℓ), S
1(Eℓ|ΓD

), and S1(Eℓ|ΓN
). In addition, we now define the

discrete space

S1
0 (Eℓ|ΓN

) :=
{
Vℓ|ΓN

: Vℓ ∈ S1(Eℓ) with Vℓ|ΓD
= 0

}
,

i.e., Vℓ ∈ S1
0 (Eℓ|ΓN

) is a continuous and piecewise affine function which vanishes at the tips of

ΓN . One can then show, that S1
0 (Eℓ|ΓN

) is a discrete subspace of H̃1/2(ΓN ), whereas P0(Eℓ|ΓD
)

is a subspace of H̃−1/2(ΓD).

Extension of the Given Dirichlet and Neumann Data. By Definition (7.2), the solution
u = (uN , φD) of (7.9) depends on the chosen extensions uD of uD and φN of φN . We assume
additional regularity

uD ∈ H1(ΓD) ⊂ H1/2(ΓD) and φN ∈ L2(ΓN ) ⊂ H−1/2(ΓN ).(7.10)

Let E0 be the initial mesh for our numerical computation. We then define φN ∈ L2(Γ) by

φN |ΓN
= φN and φN |ΓD

= 0(7.11)

as well as uD ∈ H1(Γ) by

uD|ΓD
= uD and uD|ΓN

∈ S1(E0|ΓN
) with uD(z) = 0 for all z ∈ K0 ∩ ΓN .(7.12)

As a consequence of the inclusion H1(Γ) ⊂ C(Γ), this extension is unique.

Galerkin Discretization. Let Eℓ = {E1, . . . , EN} be a mesh of Γ obtained by certain re-
finements of the initial mesh E0. To discretize (7.9), we replace the continuous Dirichlet data
uD ∈ H1(Γ) ⊂ C(Γ) by the nodal interpolant

UD,ℓ :=

N∑

j=1

uD(zj)ζj ∈ S1(Eℓ) ⊂ H1(Γ)(7.13)

and the Neumann data by its L2-projection

ΦN,ℓ ∈ P0(Eℓ), ΦN,ℓ|Ei :=
1

length(Ei)

∫

Ei

φN dΓ =: pi.(7.14)

With the vector gi := uD(zi), this leads to the representations

UD,ℓ =

N∑

i=1

giζi and ΦN,ℓ =

N∑

i=1

piχi =

N∑

j=1
Ej⊆ΓN

pjχj.(7.15)

Here, the representation for ΦN,ℓ shrinks to a sum over all elements on the Neumann boundary
by definition (7.11) of the extended Neumann data. The representation of UD,ℓ, however, takes
into account all nodes. This is due to the fact that the extension uD of uD has to be continuous.
This leads to supp(uD) ∩ ΓN 6= ∅ in general. Restricting the sum for UD,ℓ to Dirichlet nodes,
would thus correspond to a change of the extension uD, whence the first component uN of the
solution u ∈ H in every step ℓ!

We now consider the lowest-order Galerkin scheme and replace H by the discrete space

Xℓ := S1
0 (Eℓ|ΓN

) × P0(Eℓ|ΓD
) ⊂ H.(7.16)

Altogether, this leads to the following discrete version of the integral equation (7.4): Find
Uℓ ∈ Xℓ with

〈〈Uℓ ,Vℓ〉〉A = 〈Fℓ , Vℓ〉H∗×H for all Vℓ ∈ Xℓ,(7.17)

49



where the approximated right-hand side is given by

Fℓ := (1/2 −A)

(
UD,ℓ

ΦN,ℓ

)
.(7.18)

We use (7.18) here because the right hand side of (7.4) can hardly be evaluated numerically. In
order to write (7.17) as a linear system of equations

Ax = b,(7.19)

we have to fix a basis of the discrete space Xℓ:

• Let Eℓ = {E1, . . . , EN} and assume that ΓD =
⋃d

j=1Ej . Then, {χ1, . . . , χN} is a basis of

P0(Eℓ) and {χ1, . . . , χd} is a basis of P0(Eℓ|ΓD
).

• Let Kℓ = {z1, . . . , zN} and assume that {z1, . . . , zn} = Kℓ ∩ ΓN . Then, {ζ1, . . . , ζN} is a
basis of S1(Eℓ) and {ζ1, . . . , ζn} is a basis of S1

0 (Eℓ|ΓN
).

• In particular, {(ζ1, 0), . . . , (ζn, 0), (0, χ1), . . . , (0, χd)} is a basis of Xℓ, and we fix this order-
ing for the implementation.

With this basis, the assembly of the the Galerkin data A ∈ R
(n+d)×(n+d) and b ∈ R

n+d

from (7.19) reads as follows: According to Linear Algebra, the Galerkin system (7.17) holds for
all Vℓ ∈ Xℓ if it holds for all basis functions (ζj, 0) and (0, χk) of Xℓ. Consequently, we need to
compute the vector

b ∈ R
n+d, where bj := 〈Fℓ , (ζj , 0)〉H∗×H, bn+k := 〈Fℓ , (0, χk)〉H∗×H,(7.20)

for all j = 1, . . . , n and k = 1, . . . , d. Recall the matrices M,K ∈ R
N×N defined in (5.8) and

the matrix W ∈ R
N×N from (6.10). With the data representation (7.15), there holds

bj = 〈−WUD,ℓ + (1/2 −K ′)ΦN,ℓ , ζj〉Γ

=
1

2
〈ΦN,ℓ , ζj〉Γ − 〈ΦN,ℓ , Kζj〉Γ − 〈WUD,ℓ , ζj〉Γ

=
1

2

N∑

i=1

pi〈χi , ζj〉Γ −
N∑

i=1

pi〈χi , Kζj〉Γ −
N∑

i=1

gi〈Wζi , ζj〉Γ

=
(1

2
MTp− KTp − Wg

)
j

=
(1

2
MTp− KTp − WTg

)
j
,

where we have finally used the symmetry of W. Now, also recall the matrix V ∈ R
N×N

from (5.8). The same type of arguments leads to

bn+k = 〈(1/2 +K)UD,ℓ − V ΦN,ℓ , χk〉Γ

=
1

2
〈UD,ℓ , χk〉Γ + 〈KUD,ℓ , χk〉Γ − 〈V ΦN,ℓ , χk〉Γ

=
1

2

N∑

i=1

gi〈ζi , χk〉Γ +

N∑

i=1

gi〈Kζi , χk〉Γ −
N∑

i=1

pi〈V χi , χk〉Γ

=
(1

2
Mg + Kg − Vp

)
k
.

For the right-hand side vector b, we thus obtain the short-hand notation

b =

((
1
2 pTM − pTK − gT W

)T
|ΓN(

1
2 Mg + Kg − Vp

)
|ΓD

)
.(7.21)
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To compute the entries of the Galerkin matrix A, we proceed in the same way. With the
coefficient vector x ∈ R

n+d of the ansatz

Uℓ = (UN,ℓ,ΦD,ℓ) ∈ Xℓ, UN,ℓ =

n∑

i=1

xiζi, ΦD,ℓ =

d∑

i=1

xn+iχi,

it is easily seen that the entries of A read

Aij = 〈〈(ζj , 0) , (ζi, 0)〉〉A, Ai,n+k = 〈〈(0, χk) , (ζi, 0)〉〉A,

An+k,i = 〈〈(ζi, 0) , (0, χk)〉〉A, An+k,n+m = 〈〈(0, χm) , (0, χk)〉〉A,

for all i, j = 1, . . . , n and k,m = 1, . . . , d. Now, a direct computation leads to

Aij = 〈〈(ζj , 0) , (ζi, 0)〉〉A = 〈A(ζj , 0) , (ζi, 0)〉 = 〈(−Kζj,Wζj) , (ζi, 0)〉

= 〈Wζj , ζi〉

Ai,n+k = 〈〈(0, χk) , (ζi, 0)〉〉A = 〈A(0, χk) , (ζi, 0)〉 = 〈(V χk,K
′χk) , (ζi, 0)〉

= 〈K ′χk , ζi〉

An+k,i = 〈〈(ζi, 0) , (0, χk)〉〉A = 〈A(ζi, 0) , (0, χk)〉 = 〈(−Kζi,Wζi) , (0, χk)〉

= −〈Kζi , χk〉

An+k,n+m = 〈〈(0, χm) , (0, χk)〉〉A = 〈A(0, χm) , (0, χk)〉 = 〈(V χm,K
′χk) , (0, χk)〉

= 〈V χm , χk〉.

Altogether, we obtain the short-hand notation
(

W|ΓN×ΓN
KT |ΓN×ΓD

−K|ΓD×ΓN
V|ΓD×ΓD

)
x =

((
1
2 pT M− pTK − gT W

)T
|ΓN(

1
2 Mg + Kg − Vp

)
|ΓD

)
(7.22)

for the linear system (7.19)

Listing 20
1 function [b1,b2] = buildMixedRHS(coordinates,dirichlet,neumann,g,V,K,W,uD,phiN)

2 nD = size (dirichlet,1);

3 nN = size (neumann,1);

4 nE = nD + nN;

5 elements = [dirichlet;neumann];

6

7 %*** arbitrary quadrature on [ −1,1] with exactness n >= 2, e.g., gauss(2)

8 quad nodes = [ −1 1]/ sqrt (3);

9 quad weights = [1;1];

10

11 %*** the remaining code is independent of the chosen quadrature r ule

12 nQ = length (quad nodes);

13

14 %*** build vector of evaluation points as (nQ * nN x 2) −matrix

15 a = coordinates(neumann(:,1),:);

16 b = coordinates(neumann(:,2),:);

17 sx = reshape (a,2 * nN,1) * (1 −quad nodes) + reshape (b,2 * nN,1) * (1+quad nodes);

18 sx = 0.5 * reshape (sx',nQ * nN,2);

19

20 %*** phiN(sx) usually depends on the normal vector, whence phi ta kes sx and the

21 %*** nodes of the respective element to compute the normal

22 a sx = reshape ( repmat ( reshape (a,2 * nN,1),1,nQ)',nN * nQ,2);

23 b sx = reshape ( repmat ( reshape (b,2 * nN,1),1,nQ)',nN * nQ,2);

24

25 %*** perform all necessary evaluations of phi as (nE x nQ) −matrix

26 phi sx = reshape (phiN(sx,a sx,b sx),nQ,nN)';

51



27

28 %*** compute vector p of elementwise integral means of Neumann da ta phiN

29 p = zeros (nE,1);

30 p(nD+1:nE) = (phi sx * quad weights * 0.5)';

31

32 %*** update vector g of nodal values of Dirichlet data on Dirichle t boundary

33 g( unique (dirichlet)) = uD(coordinates( unique (dirichlet),:));

34

35 %*** compute mass −type matrix for P0 x S1

36 h = sqrt ( sum((coordinates(elements(:,1),:) −coordinates(elements(:,2),:)).ˆ2,2));

37 I = reshape ([1:nE;1:nE],2 * nE,1);

38 J = reshape (elements',2 * nE,1);

39 A = reshape (0.5 * [h h]',2 * nE,1);

40 M = sparse (I,J,A);

41

42 %*** compute full right −hand side

43 b1 = (0.5 * p' * M − p' * K − g' * W)';

44 b2 = M* g* 0.5 + K * g − V* p;

7.1. Build Right-Hand Side Vector (Listing 20). To compute the vector b from (7.19),
we first recall the representation of b in (7.22). In the routine for the computation of b, we
choose to compute

(
b1

b2

)
:=

( (
1
2p

TM − gT W − pTK
)T

|ΓN(
1
2Mg + Kg −Vp

)
|ΓD

)
.(7.23)

The documentation of Listing 20 reads as follows:

• As input, the function takes the mesh Eℓ described in terms of coordinates , dirichlet
and neumann, where the last two arrays represent the Dirichlet and Neumann part of the
boundary. The vector g contains —at least for all nodes zj ∈ Kℓ ∩ ΓN on the Neumann
boundary— the nodal values of uD, i.e., g(j) = uD(zj). The matrices V, K, and Ware the
matrices for the simple-layer potential, the double-layer potential, and the hypersingular
integral operator for the mesh Eℓ. Finally, the function handles uD and phiN provide the
Dirichlet and Neumann data with the same conventions discussed above.

• Recall that we have chosen an ordering of the elements such that elements on the Dirichlet
boundary are taken into account first. This is realized in Line 5.

• First (Line 8–30), the coefficient vector p of the approximate Neumann data ΦN,ℓ = ΠℓφN

is computed. Details are discussed in Section 6.4.
• In Line 33, the approximate Dirichlet data are updated on all Dirichlet nodes.
• Next, the mass-type matrix M is computed (Line 36-40), cf. Section 5.2 for details.
• Finally (Line 43–44), the right-hand side vectors b1 and b2 are computed.

Listing 21
1 function g = buildMixedDirichlet(coordinates,dirichlet,neumann, ...
2 father2neumann,neumann old,g old,uD)

3 nC = size (coordinates,1);

4

5 %*** prolongate Dirichlet data on Neumann boundary

6 g = zeros (nC,1);

7 g(neumann(father2neumann(:,1),1)) = g old(neumann old(:,1));

8 g(neumann(father2neumann(:,2),2)) = g old(neumann old(:,2));

9 g(neumann(father2neumann(:,1),2)) = 0.5 * sum(g old(neumann old),2);

10

11 %*** evaluate Dirichlet data on Dirichlet boundary

12 g( unique (dirichlet)) = uD(coordinates( unique (dirichlet),:));
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7.2. Prolongation for Mixed Problem (Listing 21). The solution uN depends on the
chosen extension uD ∈ H1(Γ). We start with a coarse mesh E0 and choose the extended Dirichlet
data uD to satisfy uD|ΓN

∈ S1(E0|ΓN
) with uD(zi) = 0 for all nodes zi ∈ Kℓ ∩ ΓN . We stress

that for all subsequent meshes, which arise by mesh refinement, this extension must not be
changed! This is realized in the following way: The data UD,ℓ is the point evaluation of uD on
the Dirichlet boundary ΓD, whereas on the Neumann boundary ΓN it is just the prolongation
of UD,ℓ−1 to the mesh Eℓ.

It is the purpose of the function buildMixedDirichlet in Listing 21 to perform the
described prolongation. A description of this function reads as follows:

• The function buildMixedDirichlet takes the following input: The mesh Eℓ is described
by the arrays coordinates , dirichlet , and neumann. The array neumann old is the
Neumann part of the mesh Eℓ−1 and the link between Eℓ−1|ΓN

and Eℓ|ΓN
is given by the

array father2neumann . The vector g old provides the nodal values of UD,ℓ−1, and uD
is a function handle for the Dirichlet data uD.

• The output is the vector g, which contains the nodal values of UD,ℓ.
• On the Neumann part of the boundary, two cases are distinguished: If a node zi of the

mesh Eℓ was also a node of Eℓ−1, i.e. zi ∈ Kℓ−1∩Kℓ, there holds UD,ℓ(zi) = UD,ℓ−1(zi) (Line
7–8). If a node zi of the mesh Eℓ is a new node, i.e. zi ∈ Kℓ\Kℓ−1, it is thus the midpoint
of some element E = [zj , zk] of Eℓ−1. Then, UD,ℓ(zi) = (UD,ℓ−1(zj) + UD,ℓ−1(zk))/2 (Line
9).

• On the Dirichlet part of the boundary, g is just the nodal evaluation of uD (Line 12).

Listing 22
1 function [coordinates,dirichlet,neumann] = buildMixedElements(coordinates, ...
2 dirichlet,neumann)

3 %*** determine nodes on Dirichlet and Neumann boundary

4 nC = size (coordinates,1);

5 nodes neumann = unique (neumann);

6 nodes dirichlet = setdiff ((1:nC)',nodes neumann);

7

8 %*** build permutation such that Neumann nodes are first

9 nodes = [nodes neumann;nodes dirichlet];

10 [foo,permutation] = sort(nodes);

11

12 %*** permute indices of nodes

13 coordinates(permutation,:) = coordinates;

14 neumann = permutation(neumann);

15 dirichlet = permutation(dirichlet);

7.3. Sort Mesh for Mixed Problem (Listing 22). As described above, we order the
degrees of freedom in the form

B := {(ζ1, 0), . . . , (ζn, 0), (0, χ1), . . . , (0, χd)},

where {(ζ1, 0), . . . , (ζn, 0)} is a basis of S1
0 (Eℓ|ΓN

) and {(0, χ1), . . . , (0, χd)} is a basis of P0(Eℓ|ΓD
).

For S1
0 (Eℓ|ΓN

) ⊂ H̃1/2(ΓN ) we aim to benefit from the functions already written for the
hypersingular integral equation. To do so, we have to embed S1

0 (Eℓ|ΓN
) into S1(Eℓ|ΓN

). We thus

enforce an ordering of the nodes such that {z1, . . . , zm} = Kℓ ∩ ΓN = Kℓ\ΓD, i.e., {ζ1, . . . , ζm}
is a basis of S1(Eℓ|ΓN

) and, in particular, n < m. Note that for ΓN connected, there holds
m = n+ 2.
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The described ordering of the nodes enforces to do some reordering of the array coordinates
and to adapt the indices in dirichlet and neumann. Both subjects are done by the function
buildMixedElements.

7.4. Computation of Data Oscillations for Mixed Boundary Data. Instead of the
correct variational form (7.9)

〈〈u ,v〉〉A = 〈F , v〉H∗×H for all v ∈ H

with solution u = (uN , φD) ∈ H and test functions v = (vN , ψD) ∈ H, we solve the perturbed
formulation

〈〈uℓ ,v〉〉A = 〈Fℓ , v〉H∗×H for all v ∈ H.(7.24)

In [AGKP], we prove that the error between the continuous solutions u,uℓ ∈ H is controlled by

|||u− uℓ|||A . ‖uD − IℓuD‖H1/2(Γ) + ‖φN − ΠℓφN‖H−1/2(Γ)

. ‖h
1/2
ℓ (uD − IℓuD)′‖L2(Γ) + ‖h

1/2
ℓ (φN − ΠℓφN )‖L2(Γ)

= ‖h
1/2
ℓ (uD − IℓuD)′‖L2(ΓD) + ‖h

1/2
ℓ (φN − ΠℓφN )‖L2(ΓN )

= ‖h
1/2
ℓ (uD − IℓuD)′‖L2(ΓD) + ‖h

1/2
ℓ (φN − ΠℓφN )‖L2(ΓN )

=: oscD,ℓ + oscN,ℓ

where we have used the definition of the chosen extensions φN and uD. Since the Dörfler
marking below uses Hilbert space structure for the indicators, we rewrite the latter estimate in
the form

|||u − uℓ|||
2
A . osc2

D,ℓ + osc2
N,ℓ =: osc2

ℓ .

Note that the right-hand side is computable, and the implementation of oscD,ℓ and oscN,ℓ has
already been discussed in Section 5.3 and Section 6.4.

7.5. Computation of Reliable Error Bound for |||u − Uℓ|||A|||u− Uℓ|||A|||u −Uℓ|||A. We assume that the exact
solution has additional regularity u = (uN , φD) ∈ H1(ΓN ) × L2(ΓD). Let U⋆

ℓ ∈ Xℓ be the
(unknown, but existing) Galerkin solution with respect to the exact right-hand side F instead
of Fℓ. As in the previous section, one can prove that

|||U⋆
ℓ − Uℓ|||A . oscℓ.

Moreover, the exact Galerkin solution is quasi-optimal. Therefore,

|||u− U⋆
ℓ |||A . |||uN − IℓuN |||W (ΓN ) + |||φD − ΠℓφD|||V (ΓD) =: errN,ℓ + errD,ℓ.

Altogether, we obtain

|||u − Uℓ|||
2
A . err2ℓ + osc2

ℓ with err2ℓ = err2D,ℓ + err2N,ℓ.

Note that the computation of errN,ℓ and errD,ℓ has already been discussed in Section 5.4 and
Section 6.5.

7.6. Computation of (h− h/2)(h− h/2)(h− h/2)-Based A Posteriori Error Estimators. Note that the en-
ergy norm |||·|||A induced by the Calderón projector A can be written in terms of the energy norms

||| · |||V (ΓD) and ||| · |||W (ΓN ) induced by the simple-layer potential V ∈ L(H̃−1/2(ΓD);H1/2(ΓD))

and the hypersingular integral operator W ∈ L(H̃1/2(ΓN );H−1/2(ΓN )). According to (7.8),
there holds

|||(uN , φD)|||2A = |||uN |||2W (ΓN ) + |||φD|||2V (ΓD).

For a posteriori error estimation, we may therefore use the estimators introduced above. Suppose
that

Uℓ = (UN,ℓ,ΦD,ℓ) ∈ Xℓ and Ûℓ = (ÛN,ℓ, Φ̂D,ℓ) ∈ X̂ℓ

54



are Galerkin solutions with respect to the mesh Eℓ and its uniform refinement Êℓ. As in Sec-
tion 5.5, we define the following four error estimators for the part of the simple-layer potential:

ηD,ℓ := |||Φ̂D,ℓ − ΦD,ℓ|||V (ΓD), η̃D,ℓ := |||Φ̂D,ℓ − ΠℓΦ̂D,ℓ|||V (ΓD),

µD,ℓ := ‖h
1/2
ℓ (Φ̂D,ℓ − ΦD,ℓ)‖L2(ΓD), µ̃D,ℓ := ‖h

1/2
ℓ (Φ̂D,ℓ − ΠℓΦ̂D,ℓ)‖L2(ΓD).

In analogy to Section 6.6, we define the following four error estimators for the contribution of
the hypersingular integral operator:

ηN,ℓ := |||ÛN,ℓ − UN,ℓ|||W (ΓN ), η̃N,ℓ := |||ÛN,ℓ − IℓÛN,ℓ|||W (ΓN ),

µN,ℓ := ‖h
1/2
ℓ (ÛN,ℓ − UN,ℓ)

′‖L2(ΓN ), µ̃N,ℓ := ‖h
1/2
ℓ (ÛN,ℓ − IℓÛN,ℓ)

′‖L2(ΓN ).

Consequently, we obtain (at least) four a posteriori error estimators for the mixed problem:

η2
ℓ := η2

D,ℓ + η2
N,ℓ, η̃ 2

ℓ := η̃ 2
D,ℓ + η̃ 2

N,ℓ,

µ2
ℓ := µ2

D,ℓ + µ2
N,ℓ, µ̃ℓ

2 := µ̃ 2
D,ℓ + µ̃ 2

N,ℓ.

We remark that the implementation of these error estimators has already been discussed above.
With the analytical techniques from [FP, EFFP] and [EFGP], we prove in [AGKP] that there
holds equivalence

ηℓ . η̃ℓ . µ̃ℓ ≤ µℓ . ηℓ.

Moreover, there holds efficiency in the form

ηℓ . |||u − Uℓ|||A + oscℓ.

The constants hidden in the symbol . depend only on Γ and κ(Eℓ). Under a saturation as-
sumption for the non-perturbed problem, there holds also reliability

|||u − Uℓ|||A . ηℓ + oscℓ.(7.25)

To steer an adaptive mesh-refining algorithm, it is therefore natural to use one of the combined
error estimators

̺2
ℓ := µ2

ℓ + osc2
ℓ = (µ2

D,ℓ + osc2
D,ℓ) + (µ2

N,ℓ + osc2
N,ℓ),

˜̺2
ℓ := µ̃ 2

ℓ + osc2
ℓ = (µ̃ 2

D,ℓ + osc2
D,ℓ) + (µ̃ 2

N,ℓ + osc2
N,ℓ).

For the same reasons as above, the usual choice is ˜̺ℓ since it avoids the computation of the

coarse-mesh Galerkin solution Uℓ ∈ Xℓ, but only relies on local postprocessing of Ûℓ.

7.7. Adaptive Mesh-Refinement. For Ej ∈ Eℓ = {E1, . . . , EN}, we consider the refinement
indicators

˜̺ℓ(Ej)
2 :=

{
µ̃D,ℓ(Ej)

2 + oscD,ℓ(Ej)
2 if Ej ⊆ ΓD,

µ̃N,ℓ(Ej)
2 + oscN,ℓ(Ej)

2 if Ej ⊆ ΓN .
(7.26)

Note that there holds

˜̺2
ℓ =

N∑

j=1

˜̺ℓ(Ej)
2.(7.27)

With this notation, the adaptive algorithm takes the same form as before:

Input: Initial mesh E0, Dirichlet data uD, Neumann data φN , adaptivity parameter 0 < θ < 1,
maximal number Nmax ∈ N of elements, and counter ℓ = 0.

(i) Build uniformly refined mesh Êℓ.

(ii) Compute Galerkin solution Ûℓ ∈ X̂ℓ.
(iii) Compute refinement indicators ˜̺ℓ(E)2 for all E ∈ Eℓ.
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(iv) Find minimal set Mℓ ⊆ Eℓ such that

θ ˜̺2
ℓ = θ

∑

E∈Eℓ

˜̺ℓ(E)2 ≤
∑

E∈Mℓ

˜̺ℓ(E)2.(7.28)

(v) Refine (at least) marked elements E ∈ Mℓ and obtain mesh Eℓ+1 with κ(Eℓ+1) ≤ 2κ(E0).
(vi) Stop provided that #Eℓ+1 ≥ Nmax; otherwise, increase counter ℓ 7→ ℓ+ 1 and go to (i).

Output: Adaptively generated mesh Êℓ and corresponding discrete solution Ûℓ ∈ X̂ℓ.

The marking criterion (7.28) has been proposed in the context of adaptive finite element
methods [D]. Let formally Nmax = ∞ so that the adaptive algorithm computes a sequence of

discrete solutions Ûℓ (or even Uℓ, although this is not computed). Based on (7.25), which holds
under a saturation assumption for the non-perturbed problem, we can show with techniques

introduced in [FOP] the convergence of Ûℓ and Uℓ to u, provided that the right hand side
(uD, φN ) is not disturbed, i.e., (uD, φN ) = (UD,ℓ,ΦN,ℓ).

In [AFP], we changed the notion of convergence and proved that for certain error estimators
— amongst them are µ̃ℓ and µℓ for Symm’s integral equation — the adaptive algorithm guar-
antees convergence limℓ µ̃ℓ = 0. This concept is followed in [AGKP] to prove that the adaptive
algorithm for the mixed problem stated above, yields limℓ ˜̺ℓ = 0. Therefore, if the saturation
assumption holds (at least in infinitely many steps), we obtain convergence of Uℓ to u due to
|||u − Uℓ|||

2
A . ̺2

ℓ .

Listing 23
1 % adaptiveMixed provides the implementation of an adaptive mesh−refining
2 % algorithm for the symmetric integral formulation of a mixe d boundary value
3 % problem.

4

5 %*** rearrange indices such that Neumann nodes are first

6 [coordinates,dirichlet,neumann] = ...

7 buildMixedElements(coordinates,dirichlet,neumann);

8

9 %*** initialize Dirichlet data

10 g = zeros ( size (coordinates,1),1);

11 g ( unique (dirichlet)) = g(coordinates( unique (dirichlet),:));

12

13 %*** maximal number of elements

14 nEmax = 100;

15

16 %*** adaptivity parameter

17 theta = 0.25;

18 rho = 0.25;

19

20 %*** adaptive mesh −refining algorithm

21 while ( size (neumann,1)+ size (dirichlet,1) < nEmax )

22

23 %*** refine mesh uniformly

24 [coordinates fine,dirichlet fine,neumann fine, ...

25 father2dirichlet,father2neumann] ...

26 = refineBoundaryMesh(coordinates,dirichlet,neumann);

27

28 %*** rearrange indices such that Neumann nodes are first

29 [coordinates,dirichlet,neumann] = ...

30 buildMixedElements(coordinates,dirichlet,neumann);

31

32 %*** prolongate Dirichlet data to uniformly refined mesh

33 g fine = buildMixedDirichlet(coordinates fine,dirichlet fine,neumann fine, ...
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34 father2neumann,neumann,g ,@g);

35

36 %*** compute integral operators for fine mesh

37 elements fine = [dirichlet fine;neumann fine];

38 V fine = buildV(coordinates fine,elements fine);

39 K fine = buildK(coordinates fine,elements fine);

40 Wfine = buildW(coordinates fine,elements fine);

41

42 %*** compute right −hand side for fine mesh

43 [b1 fine,b2 fine] = buildMixedRHS(coordinates fine,dirichlet fine, ...

44 neumann fine,g fine,V fine,K fine,W fine, ...

45 @g,@phi);

46

47 %*** compute degrees of freedom for fine mesh

48 nC fine = size (coordinates fine,1);

49 nD fine = size (dirichlet fine,1);

50 freeNeumann fine = setdiff (1:nC fine, unique (dirichlet fine));

51 freeDirichlet fine = 1:nD fine;

52 nN fine = length (freeNeumann fine);

53

54 %*** shrink integral operators and right −hand side

55 Wfine = W fine(freeNeumann fine,freeNeumann fine);

56 K fine = K fine(freeDirichlet fine,freeNeumann fine);

57 V fine = V fine(freeDirichlet fine,freeDirichlet fine);

58 b1 fine = b1 fine(freeNeumann fine);

59 b2 fine = b2 fine(freeDirichlet fine);

60

61 %*** compute Galerkin solution for fine mesh

62 x = [ W fine K fine' ; −K fine V fine ] \ [ b1 fine ; b2 fine ];

63

64 %*** compute coefficient vectors w.r.t. S1(GammaN) and P0(Gamm aD)

65 dim fine = length ( unique (neumann fine));

66 xN fine = zeros (dim fine,1);

67 xN fine(freeNeumann fine) = x(1:nN fine); %** dof on Neumann boundary

68 xD fine = x((1:nD fine) + nN fine); %** dof on Nirichlet boundary

69

70 %*** compute (h −h/2) −error estimator tilde −mu on the associated boundaries

71 muDtilde = computeEstSlpMuTilde(coordinates,dirichlet,father2dirichlet, ...

72 xD fine);

73 muNtilde = computeEstHypMuTilde(neumann fine,neumann,father2neumann, ...

74 xN fine);

75

76 %*** compute data oscillations for fine mesh

77 oscD fine = computeOscDirichlet(coordinates fine,dirichlet fine,@g);

78 oscD = sum(oscD fine(father2dirichlet),2);

79 oscN fine = computeOscNeumann(coordinates fine,neumann fine,@phi);

80 oscN = sum(oscN fine(father2neumann),2);

81

82 %*** mark elements for refinement

83 [marked dirichlet,marked neumann] ...

84 = markElements(theta,rho,muD tilde + oscD,muN tilde + oscN);

85

86 %*** generate new mesh

87 [coordinates new,dirichlet new,neumann new, ...

88 father2dirichlet,father2neumann] ...

89 = refineBoundaryMesh(coordinates,dirichlet,neumann, ...

90 marked dirichlet,marked neumann);
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91

92 [coordinates new,dirichlet new,neumann new] = ...

93 buildMixedElements(coordinates new,dirichlet new,neumann new);

94

95 %*** prolongate Dirichlet data to adaptively refined mesh

96 g = buildMixedDirichlet(coordinates new,dirichlet new,neumann new, ...

97 father2neumann,neumann,g ,@g);

98

99 coordinates = coordinates new;

100 dirichlet = dirichlet new;

101 neumann = neumann new;

102 end

7.7.1. Implementation of Adaptive Algorithm (Listing 23). The Matlab script of
Listing 23 realizes the adaptive algorithm from the beginning of this section.

• We first order the nodes such that nodes on ΓN are first (Line 6–7) and compute the nodal
vector of UD,0 (Line 10-11)

• We use the adaptivity parameter θ = 1/4 in (7.28) and mark at least 25% of elements with
the largest indicators (Line 17–18).

The remainder of the code consists of the adaptive loop, where Eℓ is a given mesh with associated
discrete Dirichlet data UD,ℓ.

• We generate the mesh Êℓ (Line 24–26), order the nodes such that nodes on ΓN are first

(Line 29–30), and compute the nodal vector of ÛD,ℓ (Line 33-34).

• We build the discrete integral operators related to Êℓ (Line 37–40) and the corresponding
right-hand side (Line 43–45). Note that the latter is built with respect to the improved

data (ÛD,ℓ, Φ̂N,ℓ) instead of (UD,ℓ,ΦN,ℓ).
• By definition, the degrees of freedom are the elements on the Dirichlet boundary, which are

the first ND elements (Line 51), as well as the nodes K̂ℓ\ΓD, which lie inside of ΓN (Line
50).

• To lower the storage, we restrict the discrete operators and the right-hand side to the
degrees of freedom (Line 55–59). For instance, V is only needed for elements on ΓD, and
W is only needed for nodes zℓ ∈ Kℓ\ΓD.

• Finally (Line 62), we compute the coefficient vector x̂ of Ûℓ by solving (7.22).
• Next, we aim to obtain the basis vectors x̂N and x̂D of UN,ℓ and ΦD,ℓ, respectively. To use

the functions from Section 6, we have to represent UN,ℓ in the nodal basis of S1(Eℓ|ΓN
).

This is done in Line 65–67. The coefficients of ΦD,ℓ with respect to P0(Eℓ|ΓD
) are obtained

in Line 68.
• We compute the local contributions of the error estimator µ̃ 2

ℓ = µ̃2
D,ℓ + µ̃2

N,ℓ (Line 71—74).

• Next, we compute the data oscillations (Line 77–80). By definition, we have used the data

for Êℓ and have to sum the son contributions to obtain the oscillations on the coarse mesh
Eℓ.

• In Line 83–84, the Dörfler marking (7.28) is realized.
• Finally, the new mesh Eℓ+1 is created (Line 87–90) and ordered (Line 92–93), and we

compute the nodal vector of UD,ℓ+1 (Line 96–97).
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