ASC Report No. 44/2009

HILBERT — A MATLAB Implementation of
Adaptive BEM

Markus Aurada, Michael Ebner, Samuel Ferraz-Leite, Petra
Goldonits, Michael Karkulik, Markus Mayr, Dirk Praetorius

Institute for Analysis and Scientific Computing

Vienna University of Technology — TU Wien
www.asc.tuwien.ac.at ISBN 978-3-902627-02-5




Most recent ASC Reports

43/2009  Matthias Langer, Harald Woracek
A Local Inverse Spectral Theorem for Hamilton Systems
42/2009  Ansgar Jiingel
Energy Transport in Semiconductor Devices
41/2009  Ansgar Jiingel
Global Weak Solutions to Compressible Navier-Stokes Equations for Quantum
Fluid
40/2009  Markus Aurada, Petra Goldenits, Dirk Praetorius
Convergence of Data Perturbed Adaptive Boundary Element Methods
39/2009 llona Gucwa, Peter Szmolyan
Scaling in Singular Perturbation Problems: Blowing-up a Relaxation Oscillator
38/2009  Anton Baranov, Harald Woracek
Majorization in de Branges Spaces Ill. Division of Blaschke Products
37/2009  Philipp Dérsek, Jens Markus Melenk
Adaptive hp-FEM for the Contact Problem with Tresca Friction in Linear Ela-
sticity: The Primal-dual Formulation and a Posteriori Error Estimation
36/2009  Philipp Dérsek, Jens Markus Melenk
Adaptive hp-FEM for the Contact Problem with Tresca Friction in Linear Ela-
sticity: The Primal Formulation
35/2009  Georg Kitzhofer, Othmar Koch, Gernot Pulverer, Christa Simon, Ewa
B. Weinmiiller
BVPSUITE, A New MATLAB Solver for Singular Implicit Boundary Value Pro-
blems
34/2009 M. Léhndorf, Jens Markus Melenk
Mapping Properties of Helmholtz Boundary Integral Operators and their Appli-
cation to the hp-BEM

Institute for Analysis and Scientific Computing
Vienna University of Technology

Wiedner HauptstraBe 8-10

1040 Wien, Austria

E-Mail: admin@asc.tuwien.ac.at
WWW: http://www.asc.tuwien.ac.at

FAX: +43-1-58801-10196 ASC
ISBN 978-3-902627-02-5

TU WIEN

(© Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Autors.




HILBERT — A MATLAB IMPLEMENTATION OF ADAPTIVE BEM

MARKUS AURADA, MICHAEL EBNER, SAMUEL FERRAZ-LEITE, PETRA GOLDENITS,
MICHAEL KARKULIK, MARKUS MAYR, AND DIRK PRAETORIUS

ABSTRACT. The MATLAB BEM library HILBERT allows the numerical solution of the 2D Laplace
equation on some bounded Lipschitz domain with mixed boundary conditions by use of an
adaptive Galerkin boundary element method (BEM). This paper provides a documentation of
HILBERT. The reader will be introduced to the data structures of HILBERT and mesh-refinement
strategies. We discuss our approach of solving the Dirichlet problem (Section 5), the Neumann
problem (Section 6), and the mixed boundary value problem with Dirichlet and Neumann
boundary conditions (Section 7). Besides a brief introduction to these problems, their equivalent
integral formulations, and the corresponding BEM discretizations, we put an emphasis on
possible strategies to steer an adaptive mesh-refining algorithm. In particular, various error
estimators are discussed. Another notable feature is a complete and detailed description of our
MATLAB implementation which enhances the reader’s understanding of how to use the HILBERT
program package.

1. INTRODUCTION

The boundary element method is a discretization scheme for the numerical solution of elliptic
differential equations. On an analytical level, the differential equation, stated in the domain,
is reformulated in terms of a certain integral equation called representation theorem or third
Green’s formula. For the Laplace equation on some bounded Lipschitz domain Q C R?, each
solution of

(1.1) —Au=f in
can explicitly be written in the form
(1.2) u(z) = Nf(z) + Vo(x) — Kg(x) forall z € Q,
where ¢ := 0,u is the normal derivative and g := u|r is the trace of u on I := Q. The involved
linear integral operators read
~ 1
(1.3) Nf(z) = —2—/ log |z —y[ f(y) dy,
T Jo
~ 1
(14) Vola) i= ~5= [ loglo~ vl 6(s) dr(o),
TJr
15 e _ 1 (y—z)-ny
(1.5) g(x) = 7 9 dl(y),

o roly—zf?
where n, denotes the outer unit vector of {2 at some point y € I'. Put differently, the solution

wof (1.1) is known as soon as the Cauchy data (0,u,u|r) are known on the entire boundary I'.
If one considers the trace of u, the representation formula (1.2) becomes

(1.6) g=ulp=Nof+Ve¢—(K—-1/2)g.
If one considers the normal derivative of u, the representation formula (1.2) becomes
(1.7) ¢ =0Ohu= N f+ (K +1/2)¢ + Wyg.

The two linear equations (1.6)—(1.7) are known as Calderén system. It involves six linear
integral operators acting only on I': the simple-layer potential V', the double-layer potential
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K with adjoint operator K’, the hypersingular _integral operator W, and the trace Ny and the
normal derivative Ny of the Newton potential N.

For the boundary element method, the Laplace equation with given boundary data is equiv-
alently stated in terms of the Calderén system (1.6)—(1.7). This leads to a boundary integral
equation formulated on I'. This integral equation is solved numerically to obtain (approxima-
tions of) the missing Cauchy data. In a postprocessing step, the computed Cauchy data are
then plugged into the representation formula (1.2) to obtain an approximation of the solution
u of the differential equation.

Examples for this approach are given in the subsequent sections: In Section 5, we consider the
Dirichlet problem, where g = u|r is known and where the unknown normal derivative ¢ = J,u
has to be computed. More precisely, we consider the weakly-singular integral formulation of

—Au =0 in,

1.
(18) u=g¢g onl.

In Section 6, we consider the Neumann problem, where the normal derivative ¢ is known and
where the unknown trace g has to be computed. More precisely, we consider the hypersingular
integral formulation of

—Au=0 inQ,

(1.9) Opu=¢ onTl.

Finally, in Section 7, we consider a mixed boundary value problem, where I' is split into two
disjoint parts I'p and I'y and where g is known only on I'p C I', whereas ¢ is known only on
I'y C I'. More precisely, we consider the so-called symmetric integral formulation of

—Au=0 inQ,
(1.10) u=g onlp,
Ohu=¢ on .

All of these integral formulations lead to first-kind integral equations with elliptic integral
operators so that the Lax-Milgram lemma applies and provides existence and uniqueness of
discrete solutions.

Whereas this documentation focusses on the implementation of the adaptive lowest-order
BEM only, we refer to the literature for details on the analysis and the numerics of BEM:
For instance, the analysis of boundary integral equations is completely presented in the mono-
graph [Mc|. For the state of the art in numerical analysis, we refer to [SS]. Fast BEM is discussed
in [RS]. These algorithms are, however, beyond the scope of MATLAB and consequently beyond
the scope of HILBERT. Finally, an introductory overview on the analysis of elliptic boundary
integral equations and the boundary element method is best found in [S].

1.1. What is HILBERT. Throughout, I' = 912 is the piecewise affine boundary of a polygonal
Lipschitz domain © C R?. Sometimes, I' is partitioned into finitely many relatively open and
disjoint boundary pieces, e.g. in a Dirichlet boundary I'p and a Neumann boundary 'y, i.e.,
FZFDUFN and I'p NIy = 0.

Let & = {FE1, ..., En} be a finite set of affine line segments E; € &, i.e., there holds

(1.11) E; =laj,b;] := conv{a;,b;}

with certain a;,b; € R? with a; # b;. We say that & is a mesh (or triangulation) of I' provided
that T' = (UL, E; and |E; N Ey| = 0 for all E;, By € & with Ej # Ey. If T' is partitioned
into I'p and I'y, we assume that this partition is resolved by &, i.e., E; € & satisfies either
E; C Tp or E; C Ty. Finally, Ky = {21,..., 2y} denotes the set of all nodes of the mesh &,
and we note that there holds #&;, = #/; for the closed boundary T'.

HILBERT [AEFMGKP] is a MATLAB library for the solution of (1.8)—(1.10) by use of h-
adaptive lowest-order Galerkin BEM. In particular, missing Neumann data are approximated

by an &gp-piecewise constant function ¢, ~ ¢, and missing Dirichlet data are approximated by
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an &p-piecewise affine and continuous function Gy ~ ¢g. Given an initial coarse mesh &y of I', the
adaptive loop generates a sequence of improved meshes & by iterative local mesh-refinement.
Throughout, HILBERT uses the canonical bases, i.e., characteristic functions ; associated with
elements E; € & to represent discrete fluxes ®, and nodal hat functions (j associated with
nodes zj, € ICy to represent discrete stresses Gy.

1.2. Outline of Documentation. Section 2 recalls some analytical preliminaries like the
definition of boundary integrals and the arclength derivative. Moreover, some notation is intro-
duced which is used throughout the entire document. In Section 3, we give a concise overview
on all functions and functionality provided by HILBERT. Section 4 discusses our implementa-
tion of the local mesh-refinement and the marking strategy used in the adaptive mesh-refining
algorithms. The Dirichlet problem (1.8) and its numerical solution by use of HILBERT is dis-
cussed in Section 5, whereas Section 6 is concerned with the Neumann problem (1.9). Finally,
Section 7 treats the use of HILBERT for the numerical solution of the mixed boundary value
problem (1.10).

2. PRELIMINARIES

2.1. Functions on the Boundary. With each element E; = [a;,b;] € &, we associate the
affine mapping

(21) B L = By, (s = g (ag by 4 5(b; — a7)

which maps the reference element [—1,1] C R bijectively onto E;.

Let PP(&;) be the space of all &-piecewise polynomials of degree p € Ny with respect to the
arclength. By definition, this means that for all f, € PP(&) and all elements E; € &, the
function fyo~y; : [—1,1] — R satisfies

(2.2) fron; € PP[—1,1],

i.e., fro~; is a usual polynomial of degree (at most) p. Note that functions f, € PP(&) are, in
general, not continuous, but have jumps at the nodes of &.

In particular, P°(&,) is the space of all £,-piecewise constant functions. If x; € P%(&;) denotes
the characteristic function of E; € &, the set {x1,...,xn} is a basis of P°(&).

One particular example for a function in P°(&) is the local mesh-width h, € P°(&;) which
is defined &j-elementwise by

(2.3) he|g :=length(E) = |b—a| for all E = [a,b] € &.

Let S1(&) := P (&) N C(T) denote the set of all continuous and (with respect to the arc-
length) &p-piecewise affine functions. For each node z; € Ky of &, let (; € S'(&) be the
associated hat function, i.e., (j(zx) = d;5. Then, the set {(1,...,(n} is a basis of S*(&).

In HILBERT, we only consider the lowest-order Galerkin BEM, and the spaces P°(&;) and
S1(&) will be of major interest.

2.2. Boundary Integrals. Let I C R be a compact interval in R. For F; € &, let m; : I — E;
be a continuously differentiable and bijective mapping. For any function f : E; — R, the
boundary integral is then defined via

(2.4) | rar= [ p@ane) = [ om)omeia

One can prove that this definition is independent of the parametrization 7;. For the reference
parametrization ;, there holds

length(E
/fdr_engt /fo%dt



where length(E;) := |b; — a;| denotes the Euclidean length of E; = [a;,b;] C R% For the
arclength parametrization

t
B+ [0, length(E;)] — Ej,  §5(t) = a;j + Tongth(E;) (bj — aj)

length(E;)
E; 0

2.3. Arclength Derivative. Let I C R be a compact interval in R. For E; € &, let
mj : I — Ej be a continuously differentiable and bijective mapping with |7’ (¢)| > 0 for all ¢ € I.

holds

For any function f : Ej — R, the arclength derivative f’ is then defined by
1

(2.5) (ffom)(t) = =

’ |5 (1)]

Again, one can show that this definition is independent of the chosen parametrization. For the
reference parametrization «y;, we obtain

(o )(0) = iy U 29 (0 forall 2 = 2,(6) € B,

(fom;)(t) forall z=m;(t) € Ej.

whereas the arclength parametrization (3; leads to
flroBi=(fop).

3. OVERVIEW ON HILBERT

3.1. Tree Structure and Installation. The BEM library HILBERT is contained in a zip-file
hilbert.zip. Unzipping this zip-archive, you obtain the following tree structure

hilbert/

examples/
exampleO1/
example02/
example03/
example04/
general/

1ib/

source/

visualization/

The root directory hilbert/ contains this documentation documentation.pdf as well as the li-
cence agreement 1license.pdf. Besides this, it contains installation files Makefile, Makefile.m,
and make.m to build the integral operators from the UNIX shell or the MATLAB command line.

The m-files of HILBERT are contained in the folder 1ib/, whereas the C-source codes of the
integral operators are contained in source/. The folder examples/ contains various examples
and demo files which demonstrate the use of HILBERT. The discrete solutions obtained can be
visualized via functions from the folder visualization/.

To install HILBERT, unpack the zip-archive, change to the root folder, start MATLAB, and
type make at the MATLAB command line. In UNIX, you may type make in the shell and start
MATLAB afterwards. Both will create certain MEX-files in the folder 1ib/. You may then test
the installation by running some example from the examples/ folder.

3.2. Data Structure. The set of nodes Ky = {z1,...,zn} of the mesh & = {E1,...,En}
is represented by the (IV x 2)-array coordinates . The j-th row of coordinates  stores the
coordinates of the j-th node z; = (2;,y;) € R? as

coordinates(  j,0) =[z; y;].



If T is not split into several parts, the mesh & is represented by the (N x 2)-(formally integer)
array elements . The i-th boundary element F; = [2;, z;] with nodes zj, 2, € ICy is stored as

elements( i) =1[j k],
where the nodes are given in counterclockwise order, i.e., the parametrization of the boundary

element E; C I' is mathematically positive. Put differently, the outer normal vector n; € R?
of I on a boundary element F; = [z;, ;] reads

1 Yk — Yj -
n; = m (xj . xi) with Zj = (l"jayj)azk = (Cﬂk,yk)
If I' is split into Dirichlet boundary I'p and Neumann boundary I', the mesh &y is represented
by the (Np x2)-array dirichlet and the (Ny x2)-array neumann which describe the elements
E; CT'p and Ej C I'y as before. Then, there formally holds

elements = [dirichlet;neumann]

with N = Np + Ny. The array elements , however, is not explicitly built or stored in this
case.

3.3. Overview on Functions and Functionality. In this section, we list all functions
provided by HILBERT, describe their input and output parameters, provide a short overview on
their functionality, and give links to a detailed description within this documentation.
Throughout, let & = {E1,...,En} be a given mesh of I' with nodes K, = {z1,...,2n5}
described in terms of coordinates  and elements . Recall that y; denotes the characteristic
function associated with E; € & and that (i denotes the hat function associated with z;, € ;.

3.3.1. General Functions. For marking elements in an adaptive mesh-refining strategy, we
use the Déorfler marking introduced in [D]. This is realized in a generalized way by the function

[marked [,marked2,..]] = mar KEl ement s(theta [,rho], indicatorl [,indicator2,..]);

see Section 4.1 for details.

For the local mesh-refinement of the boundary mesh, we realize an Algorithm from [AGP]
which is proven to be optimal with respect to the number of generated elements. For a mesh
&y described in terms of coordinates  and elements and a vector marked containing the
indices of elements E; € 7y to be refined, the function call reads

[coord,elem,father2son] = r ef i neBoundar yMesh(coordinates,elements,marked);

where the generated mesh &y, is described by coord and elem. Moreover, father2son
returns a link between the meshes £,11 and &;. Further optional arguments of the function are
discussed in Section 4.2.

3.3.2. Discrete Integral Operators. The discrete simple-layer potential matrix
(3.1) VeRIN, Vie=(Vxe, xj)2m)
is returned by call of

V = bui | dV(coordinates,elements [,eta]);

Note that V is a dense matrix. Since MATLAB does not easily allow matrix compression
techniques like hierarchical matrices [H] or the fast multipole method, the assembly of V' (and
the other discrete integral operators below) as well as the storage is of quadratic complexity. To
lower the computational time in MATLAB, the computation is done in C via the MATLAB-MEX
interface. We stress that all matrix entries can be computed analytically by use of analytic
anti-derivatives derived, e.g., in [M]. If numerical stability is concerned, it is, however, better
to compute certain entries by use of numerical quadrature instead, see [Ma]. The optional
admissibility parameter eta determines whether certain entries V5, are computed by numerical
quadrature instead of analytic integration. Details are found in Section 5.1.
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The discrete double-layer potential matrix
(32) Ke RNXN, Kjk: = <KCI<:7 Xj>L2(F)
is returned by call of

K = bui | dK(coordinates,elements [,eta]);
see Section 5.1. The discrete hypersingular integral operator matrix

NxN
(3.3) W eR W, Wie= WG, G
is returned by call of
W = bui | dWcoordinates,elements [,eta]);
see Section 6.1. As above, the optional parameter eta in both functions determines whether
all matrix entries are computed analytically via anti-derivatives from [M] or whether certain
entries are computed by numerical quadrature.

3.3.3. Numerical Solution of Dirichlet Problem. The Laplace problem with Dirichlet
boundary condition (1.8) is equivalently recast in Symm’s integral equation
Vo= (K+1/2)g

with g being the known Dirichlet data and ¢ being the unknown Neumann data. We refer to
Section 5 for details. In the Galerkin formulation, we replace the Dirichlet data g by its nodal
interpolant Gy. The right-hand side vector then takes the form
(3.4) beRY with b; = ((K+1/2)G., x;)r2(r)
and is computed by

b = bui | dSymmRHS(coordinates,elements,q);
where g is a function handle for the given Dirichlet data, see Section 5.2.

By approximation of g, we introduce an additional error which is controlled by the so-called
Dirichlet data oscillations

(3.5) osci = Z osce(F)?  with oscy(E)? = length(E)| (g — GZ)/H%2(E)
Ee&y
cf. [AGP]. The function call

osc = conput eCschiri chl et (coordinates,elements,g);

returns a column vector with 0sc(j) = osc/(E;)?, cf. Section 5.3.
In academic experiments, the exact solution ¢ € L?(T") is known, and

(3.6) err? + osc? = Z (emrg(E)2 + OSCg(E)Z) with erry(E)? = length(F)||¢ — <I>g||%2(E)
Ee&

is an upper bound for the Galerkin error ||¢ — ®,[|?- with respect to the energy norm || - |ly. The
function call

err = conput eEr r Neumann(coordinates,elements,x,phi);

returns a column vector with err(j) = erry(F;)%. Here, phi is a function handle for the
known exact solution and X is the coefficient vector of the Galerkin solution ®, = Z;VZI X
We refer to Section 5.4 for details.

For a posteriori error estimation and to steer an adaptive mesh-refinement, HILBERT includes
four (h — h/2)-based error estimators from [FP, EFFP], discussed in Section 5.5 in detail: With

‘I)g an improved Galerkin solution with respect to a uniformly refined mesh Eg, the a posteriori
error estimators

(37 me=[®— Ry and pf =" p(E)* with p(E)? = length(E) | ®; — l[72(z
Ee&y



can be computed by
eta = conput eEst Sl pEt a(father2son,V _fine,x _fine,x _coarse);
and
mu = conput eEst Sl pMu(coordinates,elements,father2son,x fine,x _coarse);
respectively. Here, V_fine is the Galerkin matrix for the uniformly refined mesh 5@, and X
and x_fine are the coefficient vectors for ®, and Py, respectively. Then, eta = 77% and muis

a column vector with mu()) = u,(E;)?. The additional field father2son  describes how to

obtain é\g from the given mesh &, cf. Section 4.2.
The computation of ®; can be avoided by taking the L?-projection onto P°(&y). This leads
to a posteriori error estimators

(3.8) i = [|(1 = ) @flly and i = > fie(E)? with fig(E)* = length(E) [|(1 — ) @475
Eeé,
which are computed by
eta _tilde =  conput eEst Sl pEt aTi | de(father2son,V ~ _fine,x _fine);
and

muctilde = conput eEst Sl pMuTi | de(coordinates,elements,father2son,x _fine);

Then, eta _tilde =77 and mutilde is a column vector with mutilde(j) = e (Ej)%

An adaptive algorithm based on fiy is realized in the MATLAB script adapt i veSynmfound
in the folder examples/. Details are given in Section 5.6.1.

Finally, certain examples are contained in the folders examples/exampleXX/ , e.g., in
examples/example01/ the function

exanpl eSynmD1(Nmax)

computes sequences of discrete solutions based on uniform and adaptive mesh-refinement until
in both cases meshes & with #&, > Nmaxelements have been created. On-the-fly, the decay
of the error bound (errg + osc%)l/ 2 as well as the decay of all error estimators 7y, 7, ¢, and fig
is plotted over the number of elements as well as over the runtime of the adaptive algorithm
realized in adapti veSynmm

3.3.4. Numerical Solution of Neumann Problem. The Laplace problem with Neumann
boundary condition (1.9) is equivalently recast in the hypersingular integral equation

Wg=(1/2-K")é

with g being the unknown Dirichlet data and ¢ being the known Neumann data. We refer to
Section 6 for details. Since the hypersingular integral operator W is only semi-elliptic with
kernel being the constant functions, we use the Galerkin matrix

W+SeRVN with 8= (/ngdr)(/rgkdr).

The stabilization matrix S is provided by

S = bui | dHypsi ngSt abi | i zat i on(coordinates,elements);

cf. Section 6.2. In the Galerkin formulation, we further replace the Neumann data ¢ by its
L?-projection ®;. The right-hand side vector then takes the form

(3.9) beRY with b;=((1/2—- K%, {)r2r)

and is computed by
b = bui | dHypsi ngRHS(coordinates,elements,phi);



where phi is a function handle for the given Neumann data, see Section 6.3.
Similar to above, the additional approximation error is controlled by the so-called Neumann
data oscillations

(3.10) osc; = Y oscy(E)* with osc,(E)” = length(E)||¢ — @[ -
Eeé,

The function call

osc = conput eCscNeunann(coordinates,elements,phi);

returns a column vector with osc(j) = OSCg(Ej)Q, cf. Section 6.4.
In academic experiments, the exact solution g € H(T") is known, and

(3.11) err? + osc? = Z errg(E)? 4 osc(E)?  with  erry(E)? = length(E)| (g — GZ)/H%%E)
Ee&

is an upper bound for the Galerkin error [lg— G|} ¢ with respect to the energy norm |- [l +s.
The function call

err = conput eErrDiri chl et (coordinates,elements,x,q);

returns a column vector with err(j) = errg(Ej)Q. Here, g is a function handle for the known

exact solution and X is the nodal vector of the Galerkin solution Gy = ZjV:1 x;(j. We refer to
Section 6.5 for details.

For a posteriori error estimation and to steer an adaptive mesh-refinement, HILBERT includes
four (h — h/2)-based error estimators from [EFGP], discussed in Section 5.5 in detail: These
read

me =% — ellwis  and pf =Y p(E)? with p(E)* = length(E) | ®; — l|72(z
Ee&y

M= (1= I)®llwys and i =Y fie(E)* with fig(E)* = length(E) | (1 — Ir)®¢)' |17
Ee&y

with I, the nodal interpolation onto S'(7;). These are computed by

eta = conput eEst HypEt a(elem _fine,elements,father2son,WS fine,x _fine x);

eta _tilde = conput eEst HypEt aTi | de(elem _fine,elements,father2son,WS _fine,x _fine);
and

mu = conput eEst HypMu(elem _fine,elements,father2son,x _fine x);

muctilde = conput eEst HypMuTi | de(elem _fine,elements,father2son,x _fine);
Then, eta = 57 as well as eta _tilde =77, and muas well as mutilde  are column vectors
with mu(j) = pe(E;)? and mutilde(j) = ie(E;)?, respectively. As input, these functions

take elements and elem fine which describe & and &, respectively, as well as the link
between both meshes given by father2son . WSfine is the Galerkin matrix for é\g The
vectors X and X_fine are the nodal vectors of the Galerkin solutions Gy and ég, respectively.

An adaptive algorithm based on i, is implemented in the MATLAB script adapt i veHypsi ng
in the folder examples/, cf. Section 6.7.1. Moreover, the folders examples/exampleXX/ contain
various examples like exanpl eHypsi ng01(Nmax) in examples/example0O1/.

3.3.5. Numerical Solution of Mixed Boundary Value Problem. The Laplace prob-
lem with mixed boundary condition (1.10) is equivalently recast in an integral equation which
involves the Calderén projector, see Section 7. Our implementation is based on the func-
tions provided for the Dirichlet and Neumann problem. Note that & is now given in terms of
coordinates , dirichlet , and neumann.

In the problem formulation, the Dirichlet data g are only known on I'p. For the integral
formulation, one has to fix some extension g to I'. We replace g by its nodal interpolation G,.
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Since g is only implicitly built on the initial mesh &, we need to guarantee that Gy|r, = glr -
This is done by
gh = bui | dM xedDi ri chl et (coordinates,dirichlet,neumann,
father2neumann,neumann  _old,gh _old,qg);

where gh is the nodal vector of Gy, gh_old is the nodal vector of Gy_;, and g is a function
handle for the Dirichlet data on I'p. Details are found in Section 7.2

To re-use the functions implemented for the hypersingular integral equation from the previous
section, we have to guarantee that the first n nodes of K, belong to I'y. This needs some
possible reordering of coordinates  as well as some corresponding update of dirichlet and
neumann which is done by

[coordinates,dirichlet,neumann] = bui | dM xedEl enent s(coordinates,dirichlet,neumann);

We stress that the ordering of dirichlet and neumann, i.e., the numbering of the elements
& ={F1,...,En} is not affected. Details are found in Section 7.3.

The right-hand side vector b for the Galerkin formulation, split into contributions on I'y and
contributions on I'p, is computed by

[bN,bD] = bui | dM xedRHS(coordinates,dirichlet,neumann,gh,V,K,W,g,phi);

Here, gh is the nodal vector of the extended Dirichlet data and g is a function handle for
the Dirichlet data on I'p. The function handle phi provides the Neumann data on I'y. The
matrices V, K, and Ware the discrete integral operators associated with &.

An adaptive algorithm from [AGKP] based on the jis-estimators from the previous sections,
is provided by adapti veM xed in the folder examples/. Various examples are found in the
folders examples/exampleXX/, e.g., exanpl eM xed0la(Nmax) in examples/exampleO1/.

3.4. Visualization of Discrete Solutions. Provided that I' is connected, the function
plotArclengthPO(coordinates,elements,phih [,phi], [,f igure])
plots a discrete solution ®, € P°(&) over the arclength. The elementwise values of ®, are

provided by the column vector phih . With the optional function handle phi the exact solution
¢ can be plotted into the same plot for comparison. With the function

plotArclengthS1(coordinates,elements,gh [,g], [.figur e])

one can plot a discrete solution Gy € S'(&) over the arclength. The nodal values of Gy are
provided by the column vector gh. With the optional function handle g the exact solution g
can be plotted into the same plot for comparison.

For both functions, the optional parameter figure  prescribes the figure number for the plot.

3.5. Numerical Examples. So far, HILBERT contains four different examples, where the
exact solution u of

(3.12) —Au=0 inQ

is prescribed.
In examples/example01/, the exact solution reads in polar coordinates

(3.13) u(r, o) = 3 cos(2¢/3),

and (2 is a rotated L-shaped domain with diam(€2) < 1 and reentrant corner with angle 37 /2.
The rotation is done in a way that the Dirichlet data g = u|r are smooth, whereas the Neumann
data ¢ = J,u have a generic singularity at the reentrant corner.

In examples/example02/, the exact solution reads in polar coordinates

(3.14) u(r, @) = r7 cos(4p)7),
9



and (Q is a Z-shaped domain with diam(€2) < 1 and reentrant corner with angle 77/4. Then,
the Dirichlet data g as well as the Neumann data ¢ have generic singularities at the reentrant
corner.

In examples/example03/, the exact solution reads

(3.15) u(z,y) = sinh(27 ) - cos(2m y)

on the cube Q = (0,1/2)2. Now, the Dirichlet data g as well as the Neumann data ¢ are smooth
so that uniform mesh-refinement is theoretically predicted to be optimal.

In examples/example04/ taken from [AGP], we consider the rotated L-shaped domain from
the first example. The exact solution is chosen in a way such that the Dirichlet data g have a
weak singularity at the uppermost corner, whereas the Neumann data ¢ have a generic singular-
ity at the reentrant corner. Therefore, the adaptive algorithm has to resolve two singularities.

For Symm’s integral equation, the hypersingular integral equation, and the symmetric formu-
lation of the mixed boundary value problem, the example files, e.g. for example/example0l/
are run by

exanpl eSynmD1(Nmax)
exanpl eHypsi ng01(Nmax)
exanpl eM xed0la(Nmax)

where Nmaxdefines the stopping criterion for the adaptive and uniform mesh-refinement. More
precisely, the functions compute sequences of discrete solutions based on uniform and adaptive
mesh-refinement until in both cases meshes & with #&, > Nmaxelements have been created.
On-the-fly, the decay of the error bounds (err? + oscf)l/ 2 as well as the decay of all error
estimators 7y, Mg, e, and pip is plotted over the number of elements as well as over the runtime
of the corresponding fig-steered adaptive algorithm.

10
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4. MESH-REFINEMENT

LisTING 1
function varargout = nmar kKEl enent s(theta, varargin )
%++x check whether optional parameter rho is given or not
if pargin == nargout +1

rho = O;
else

rho = varargin  {1};

varargin = varargin (2: end);
end
%++ enforce input parameters to be column vectors and count thei r length
nE = zeros (1, nargout +1);
for j = 1: nargout

nE(+1) = length (varargin {j });

varargin {j } = reshape (varargin {j },nE(j+1),1);
end

%++x generate set of all indicators
indicators = cat(1, varargin = {: });
nE = cumsum(nE);

%+ realization of Doerfler marking

[indicators,idx] = sort(indicators, 'descend’ );
sum.indicators = cumsum(indicators);
ell = max(ceilrho  *nE(end)), find (sum .indicators  >=sum.indicators( end) *theta,1));

marked = idx(1:ell);

%+ split subset marked into subsets with respect to input vecto rs
for j = 1: nargout

varargout {j } = marked( marked >nE() & marked <=nE(j+1) ) — nE();
end

4.1. Dorfler Marking (5.28) for Local Mesh-Refinement (Listing 1). We realize the
marking criterion proposed by DORFLER [D] in a generalized form which is suitable even for

mixed boundary value problems or the FEM-BEM coupling. Suppose that Eél), e ,Eén) are

pairwise disjoint meshes which provide indicators ng) (E) for all E € 5§k). We formally define

& =Ul Eéj) and o/(E) == ng)(E) for all £ € é‘ék) and k =1,...,n. For given 0 < § < 1, we

then aim to find the minimal set M, C &, such that

(4.1) 0 o(B)< D olE).

Ee&y EeM,

Finally, we define and return Mgk) =M,N Eék) forall k=1,...,n.

A second generalization is concerned with the minimal cardinality of M,. For analytical
convergence results, the minimal set My with (4.1) is sufficient. However, small sets M, lead to
many iterations in the adaptive loop and may thus lead to a large runtime. With an additional
parameter 0 < p < 1, one remedy for this drawback can be to determine the minimal superset

M, C M, C & with
#M,
#E

(4.2) >p and o(E) > g/(E") forall E € My and E' € £\M,.

11
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m an analytical point of view, any superset My of My also leads to a convergent adaptive

algorithm. Our definition of M, guarantees that at least a fixed percentage of elements is
refined and that these elements have the largest associated refinement indicators. Note that the

par

ameter p gives a lower bound for the percentage of elements which are refined.

Our implementation of the marking criterion includes (optionally) the generalizations (4.1)—
(4.2) of the original strategy from [D]:

In the simplest case, the function mar KEl enment s is called by

marked = nar KEl enent s(theta,indicator)
where indicator is a column vector, where indicator(j) corresponds to some element
E; € &. The function mar KEl enent s then returns the indices corresponding to the
minimal set M.
Alternatively, the function can be called by

marked = nar KEl enent s(theta,rho,indicator)
and returns the indices corresponding to the minimal set M, O M, with (4.2).
For the general formulation described above, the function is called by

[markedl,marked2, ...] = marKkEl enment s(theta [,rho], ind1,ind2,
where, e.g., indl is the vector of indicators Qg(Ej(l)) for all Ej(l) € elf” = {E%l), - ,E](\}()l)}.

The function returns the indices corresponding to the sets Mék) - Elf’“) (or Mﬁk) if p is

given).

First, we check whether the parameter p is given. If not, it is set to 0 (Line 3-8).

The given indicator vectors are reshaped into column vectors, and their length is stored in
the vector nE (Line 11-15).

We build the vector of all indicators g¢(E;) (Line 18) which corresponds to the ordered
set & = {E1,...,En}. Moreover, NnE becomes a vector of pointers so that nE( j) +1 and
NE(j + 1) give the start and the end of Eéj) with respect to indicators (Line 19).

To determine the minimal set M, we sort the vector indicators (Line 22). Mathe-
matically, this corresponds to finding a permutation 7 such that o/(Er(jy) > 0¢(Er(jt1))-

We then compute the vector sum.indicators of sums Zle 0e(Ex(jy) (Line 23). Note
that sum.indicators(  end) contains Y2 0¢(En(j) = S.i_; 0¢(E;). Finding the min-
imal set M, is thus equivalent to finding the minimal index k with 92?7:1 00(Erij)) <
25:1 0¢(Er(j)), and there holds My = {E q),..., Erqy}. If p is specified, we choose the

minimal index k > k ﬂith k> p N. Altogether, Line 24-25 thus determines the indices of
elements in M, and My, respectively.

Finally, we use the pointer vector NE to determine the indices of ./\/lék) with respect to
e = (B, .., BY)} (Line 28-30).

LisTING 2
function [coordinates, varargout ] = refineBoundaryMesh(coordinates, varargin )
%++ fix the blow —up factor for the K —mesh constant,
%+ where we assume C(Mesh _0) = 1, i.e., the initial mesh is uniform
kappa = 2;
%=+ count number of boundary parts from input
%+ nB will hold this number
nB = 0;
for iter = 1 : ( nargin — 1)

if size (varargin {iter },2) ==
nB = nB + 1,
12



14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

nE_boundary(iter) = size (varargin {iter },1);

else

break ;

end

end

%++ check the correct number of input parameters
if ~( (nargin == (nB+1)) || (nargin == (2 *nB+1)) )

error(
end

'refineBoundaryMesh: Wrong number of input arguments!'

%=+ check the correct number of output parameters
if ~( (nargout == (nB+1)) || (nargout == (2 *nB+1)) )

error(
end

'refineBoundaryMesh: Wrong number of output arguments!'

%=+ check, if user asks for father2son fields in output

if  nargout

output

else

output

end

== (2 *nB+1)
_father2son = true;

_father2son = false;

%++ obtain set of all elements of the boundary partition

elements =

cat(1, varargin {1 : nB });

%+« indices of a boundary part w.r.t. entire field elements
ptr _boundary = cumsum([0,nE _boundary]);

%+ 1. determine whether uniform or adaptive mesh —refinement
%+ 2. in case of adaptive mesh —refinement compute vector marked
Yxx of marked elements w.r.t. entire field elements
if (nB+1) == nargin

refinement = ‘uniform’ ;
else

refinement = ‘adaptive' ;

marked = zeros (0,1); % marked elements w.r.t. entire field elements

for iter = 1 : nB

marked = [marked; varargin {iter + nB } + ptr _boundary(iter)];

end
end
nC = size (coordinates,1); % number of coordinates
nE = size (elements,1); % number of elements
if  stremp(refinement, ‘adaptive' )
%+ if element Ej is marked and if its neighbour Ek satisfies
%+ hk >= kappa *hj, we (recursively) mark Ek for refinement as well
%+ marked elements Ej will be refined, i.e., flag(j) = 1
flag = zeros (nE,1);

flag(marked) = 1;
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78
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%+ determine neighbouring elements

node2element = zeros (nC,2);

node2element(elements(:,1),2) = (1:nE);

node2element(elements(:,2),1) = (1:nE)’;

element2neighbour = [ node2element(elements(:,1),1),
node2element(elements(:,2),2) I;

%+ compute (squared) local mesh —size
h = sum((coordinates(elements(:,1),:) —coordinates(elements(:,2),:))."2,2)";
%++ the formal recursion is avoided by sorting elements by mesh —size

[tmp,sorted  _elements] = sort(h);
for j = sorted _elements

if  flag(j)

neighbours = element2neighbour(j,:);

neighbours = neighbours( find (neighbours) );

flag( neighbours(h(neighbours) >= kappa*h(j)) ) = 1;
end

end

%+ obtain vector of marked elements
marked = find (flag);

nM = length (marked);

%+ compute and add new nodes

coordinates = [coordinates; zeros (nM,2)];
coordinates((1:nM)+nC,:) = ( coordinates(elements(mark ed,1),)
+ coordinates(elements(marked,2),:) ) *0.5;

%+ refinement of mesh iterates over each boundary part
for iter = 1:nB

%++  determine which marked elements belong to boundary part
idx = find ( (ptr _boundary(iter) < marked)

& (marked <= ptr _boundary(iter+1)) );
nMboundary = length (idx);

%+ allocate new elements
new_elements = [ varargin {iter }; zeros (nM_boundary,2)];

%=+ generate new elements
new_elements((1:nM  _boundary)+nE _boundary(iter),:)
= [ nC + idx, elements(marked(idx),2) I;
new_elements( marked(idx) — ptr _boundary(iter),2 ) = nC + idx;

%+ add new_elements and father2son to output
varargout {iter } = new_elements;

%+ compute father2son only if desired
if output _father2son == true

%+x generate father2son

father2son = repmat ((1:nE _boundary(iter))',1,2);

father2son( marked(idx) — ptr _boundary(iter),2 )
= (1:nM _boundary)' + nE _boundary(iter);

%++ add new_elements and father2son to output

14
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varargout {nB+iter } = father2son;
end
end
elseif  strcmp(refinement, ‘uniform'* )
%+ compute and add new nodes
coordinates = [coordinates; zeros (nE,2)];
coordinates((nC+1): end,:)) = ( coordinates(elements(:,1),:)
+ coordinates(elements(:,2),:) ) *0.5;
%+ uniform refinement of mesh iterates over each boundary part
for iter = 1.nB
%=+ generate new elements
idx = (ptr _boundary(iter)+1):ptr _boundary(iter+1);
varargout {iter } = [ varargin {iter }(:,1),nC + idx' ;
nC + idx, varargin {iter }(:,2) [;
%+ compute father2son only if desired
if output _father2son == true
%+ build father2son
varargout {nB+iter } ..
= [(1:nE _boundary(iter)),
(1:nE _boundary(iter))’ + nE _boundary(iter)];
end
end
end

4.2. Local Refinement of Boundary Element Mesh (Listing 2). In many cases, one is
not interested in computing only one approximation U with respect to a fixed given boundary el-
ement mesh &£, but in computing a sequence of more and more accurate approximations Uy corre-
sponding to a sequence & of boundary element meshes with decreasing mesh-sizes. To that end,
our software package HILBERT provides an efficient mesh-refinement r ef i neBoundar yMesh
for boundary element meshes, which covers the following tasks:

uniform refinement of a given mesh

refinement of certain marked elements, specified by the user

linkage between elements of the input mesh with elements of the refined mesh

handling of meshes that are split into finitely many distinct parts, e.g., T =TpUTy

guaranteed boundedness of the K-mesh constant
Throughout, refinement of an element means that £; is bisected into two elements e;, e, of half
length. We now discuss certain aspects of our implementation from Listing 2, where the data
structure of coordinates |, elements , dirichlet , and neumann is described in Section 3.2
above. The main focus is, however, on the practical use of the function.

Input/Output Parameters: To allow a partition of I into finitely many parts (e.g., a
Dirichlet and a Neumann boundary), the formal signature reads

[coordinates, varargout ] = refineBoundaryMesh(coordinates, varargin
To explain the variable input/output parameters, we consider certain examples.
Suppose that & = {F4,..., Ex} is described by coordinates  and elements . Then,

[coordinates  _fine,elements fine,father2son]

= r ef i neBoundar yMesh(coordinates,elements)
15

)



provides the uniformly refined mesh gg = {e1,...,ean}, where each element F; € & is
bisected in certain sons ej,e; € &. The (N x 2)-matrix father2son  provides a link
between the element indices in the sense that

father2son (i,:) =[ j, k] for E; =ejUey.
The output parameter father2son  is optional and can be omitted.
Suppose that M, C &, is a set of elements which are marked for refinement. Let marked
be an (M x 1)-column vector containing the indices of the elements in M,. Then,

[coordinates  fine,elements fine,father2son]

= r ef i neBoundar yMesh(coordinates,elements, marked)

provides a mesh &y which is only refined locally in the sense that all elements of M, are
refined. If an element E; € & is not refined, there holds E; = e; € &1, where the link
between these indices are given by

father2son (i,:) =[ j, j] for E; =e;.
Again, the output parameter father2son is optional and can be omitted.
Suppose that I' is split into a Dirichlet boundary I'p and a Neumann boundary I'y. In this

case, the mesh & = {E1,...,En} is described in terms of coordinates , dirichlet ,
and neumann, cf. Section 3.2. Then,
[coordinates fine,dirichlet _fine,neumann _fine,dir2son,neu2son]

= refineBoundaryMesh(coordinates,dirichlet,neumann)
provides the uniformly refined mesh &£,. As father2son in the previous cases with a single
boundary part, now the arrays dir2Zson and neu2son provide the link between the coarse
mesh parts and the refined ones, e.g., dirichlet and dirichlet fine . For instance,
suppose that &|r, = {EP, ... ,E]l\?D} and gg’FD ={eP, ... 765ND}' Then, there holds
dir2son (i,:) =[ j, k] for EP = ef U ekD.
Finally, the fields dir2son and neu2son are optional in the sense that they can either
both be asked for or both be omitted.
Suppose that ./\/l? C &lr,, and Mév C &|ry are sets of marked elements. Let
marked _dirichlet and marked _-neumann be (Mp x 1)- and (My x 1)-column vectors
containing the indices of the elements in Mf’ and Mév , respectively. Then,
[coordinates fine,dirichlet _fine,neumann _fine,dir2son,neu2son]
= r ef i neBoundar yMesh(coordinates,dirichlet,neumann,
marked _dirichlet,marked _neumann)
provides a mesh &y;1 which is only refined locally in the sense that all elements of M? UMéV
are refined. We stress that the optional input marked _dirichlet and marked _neumann
can either both be given or both be omitted. The optional output has already been described
before.
If I' is split into more than two boundary parts, described by, e.g., dirichlet , heumann,
and robin , the function r ef i neBoundar yMesh can be used accordingly.
Refinement of an Element: Suppose that element E; = [a,b] € & is bisected into two
sons e, e, € Epyq (or &;). Then, there holds e; = [a,m] and e, = [m, b], where m = (a+b)/2
denotes the midpoint of F;. Note that elements(i,:) returns the indices of the nodes
a,b € K. Clearly, K, C Ky4q1 and, e.g., the index of a = 2, € Kyq1 is obtained by
p = elements _fine(father2son( i,1), 1).
Boundedness of K-Mesh Constant: Many estimates in numerical analysis depend on
local quantities of the mesh, e.g., on an upper bound of the K-mesh constant

(4.3) k(&) := sup {length(E;)/length(Ey) : Ej, Ej, € & with E; NE, #0} > 1

which is the maximal ratio of the element widths of neighbouring elements. Let & be a

given initial mesh. Let & be inductively obtained by refinement of arbitrary sets of marked

elements M; C &; with 0 < j < /¢ —1. To avoid the blow-up of the K-mesh constant, one

thus aims for a refinement rule which guarantees sup,cy k(&) < co. Our refinement rule,
16



proposed and analyzed in [AGP, Section 2.2]|, guarantees
(4.4) sup k(&) < 2k (&)
leN

by refinement of all elements in a certain superset M, O M,. If the initial mesh is uniform,
one can prove that our refinement rule guarantees
—1
(45) #HE — #E0 SO H#M;,
§=0
i.e. the set M, is generically of the same size as M, cf. [AGP, Theorem 2.5]. The constant
hidden in the symbol < only depends on the initial mesh &.

Finally, we give a rough overview on the code:

Variable input-/output parameters are treated in Line 8-60.
The case of adaptive refinement is treated in Line 62-131.
In order to ensure the boundedness of the K-mesh constant, the refinement algorithm
checks the mesh-size ratio of neighbouring elements: If F; € & is marked for refinement,
any neighbour F; with

helg; /[ hel g, > 2
is recursively marked for refinement as well (Line 68-92). This guarantees k(&) < 2k(&)
for all generated meshes &.
For all refined elements the coordinates of the midpoints of these elements are computed
as new nodes for the refined mesh (Line 96-98).
We loop over each boundary part (Line 101-131), generate new elements as result of bi-
secting the respective coarse mesh elements (Line 109-114) and build the linkage arrays in
Line 123-125.
The case of uniform refinement (Line 133-158) is a straight forward implementation.

17



5. SYMM’S INTEGRAL EQUATION
Continuous Model Problem. In the entire section, we consider Symm’s integral equation
(5.1) Vo= (K+1/2)g onT

with V' the simple-layer potential and K the double-layer potential, where I' = 0 is the
piecewise-affine boundary of a polygonal Lipschitz domain € C R?. This integral equation is
an equivalent formulation of the Dirichlet problem

(5.2) —Au=0in Q with uw=gonT.

Formally, the Dirichlet data satisfy g € H'/ 2(T"). We will, however, assume additional regularity
g € HY(T') € HY2(I') so that g is, in particular, continuous. The exact solution ¢ € H~1/2(T")
of (5.1) is the normal derivative ¢ = d,u of the solution u € H'(Q2) of (5.2).

Note that (5.1) can equivalently be written in variational form

(5.3) Vo, ¥)r = (K +1/2)g, ¥)r for all » € HV/*(I),

where (-, -)p denotes the extended L?(T')-scalar product, i.e. (¢, ¥)r = [r ¢ dT for ¢, €
L?(T) and with [i, dI' integration along the boundary. Provided that diam(Q2) < 1, one can
show that the left-hand side

(5.4) (¢, 0)v == (Vo, ¥)r for ¢4 € H V()

of (5.3) defines a scalar product on H~/(I"), and the induced norm |||y := ((qﬁ,(ﬁ»%/p is an
equivalent norm on H~1/ 2(T'). In particular, the variational form (5.3) has a unique solution
¢ € H*I/Q(F) which depends continuously on the data g with respect to the Hl/Q(P)-norm.

Galerkin Discretization. To discretize (5.3), we first replace the continuous Dirichlet data
g € HY(T) by its nodal interpolant

N
(5.5) Goi=>glz)¢ € §'(E) © H'(D)
j=1
where {C1,...,{x} denotes the set of canonical basis functions of S*(&). Second, we replace

the entire function space H~Y2(I') in (5.3) by the finite-dimensional space P%(&). Since the
discrete space P2(&) is a subspace of H~Y2(T'), (-,-)v from (5.4) is also a scalar product on
PY(&). Consequently, there is a unique Galerkin solution ®, € P°(&) of

(5.6) (VO®,, U r = (K +1/2)Gy, W) for all ¥, € PO(E).

According to Linear Algebra, (5.6) holds for all ¥, € P°(&) if and only if it holds for all
(canonical) basis functions xx € By = {x1,...,xn} of P°(&). With the coefficient vector
x € RY of the ansatz

N
(5.7) O = X))
j=1

and the vector g € RY defined by g; := g(z;) for all z; € Ky, the Galerkin formulation (5.6) is
thus equivalent to

N

N
D % (Vg xihr = (Ve xir = (K +1/2)Ge, xi)r = > g; (K +1/2)¢;, xa)r
j=1 J=1

for all k =1,..., N. If we define matrices V,K,M € RV*N by

(5.8) Vi =(Vxj, xe)v, Kij = (K¢, xe)r, My = (G, xa)vr forall jk=1,... N,
18



the last equation becomes
N N 1 .
(Vx) = ijvkj = Zgj <Kkj + §Mk]) = <Kg+ 51\/Ig>l~C foral k=1,..., N.
j=1 j=1

Altogether, the Galerkin formulation (5.6) is thus equivalent to the linear system
1

We stress that V is symmetric and positive definite since it stems from a scalar product. In
particular, the linear system (5.9) has a unique solution x € R¥.

5.1. Computation of Discrete Integral Operators V and K. The matrices V,K €
RV*N defined in (5.8) are implemented in the programming language C via the MATLAB-MEX-
Interface. The simple-layer potential matrix V is returned by call of

= bui | dV(coordinates,elements [,eta));

In general, all matrix entries of V can be computed analytically by use of anti-derivatives found
in [M]. However, analytic integration leads to cancellation effects if the integration domain is
small, i.e. fab -dx with a ~ b. In this case, the (continuous) integrand is generically of one sign
so that Gaussian quadrature (with positive weights) appears to be more stable.

Let 7 > 0 be given. Recall that

1
Vig =5 [ [ logla—ylar)are).
2m Ey, JEj

A pair of elements (£}, E},) is called admissible provided that
(5.10) min{length(E}), length(Ey)} < ndist(Ej, Ey)

with dist(-,-) the distance of F; and Ej. Otherwise, the pair (£}, E}) is called inadmissible.
Note that for Vi;, the Fubini theorem applies and proves that one can assume w.l.o.g. that
length(E}) < length(E;). Note that the cancellation effects from the outer integration are thus
generically higher than those of the inner integration. For fixed = € Fj, the inner integral

/ log |z — y| dI'(y)
3

is computed analytically [M]. If the pair (E;, Ei) is admissible, we parametrize Ej, and approx-

imate
//log]x— | dT'(y) dT'(z //log\'yk —y|dl'(y)ds
Ey

~ Z wm/ log [k (sm) — y| dI'(y)
m=1 Ej

with a Gaussian quadrature on [—1,1] of length p.

For fixed n > 0, the described procedure leads to some approximate matrix V, = V. It is
proven in [Ma, Satz 3.13] that V,, converges exponentially to V with respect to the Frobenius
norm (and hence the fs-operator norm) as p — oo.

In HILBERT, we choose n = 1/2, if the optional parameter eta is not specified. If eta is given
by the user, we set 7 = eta . Note that for given eta < 0 all entries of V are inadmissible and
thus computed analytically. For eta > 0 or non-specified, certain entries are computed semi-
analytically as described before, where we use a Gaussian quadrature of length p = 16. Different
values of p can be chosen by modification of the file source/geometry.h and by re-building the
integral operators, see Section 3.1.

The double-layer potential matrix K is obtained by call of

= bui | dK(coordinates,elements [,eta]);
19
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Note that the entries of K read

Ku=-g: [ [ G aw e,

where supp((;) denotes the support of ¢; and where n; € R? denotes the (constant) outer
normal vector on E;. For a mesh of a closed boundary I', supp((;) is the union of precisely two
elements E; € &. Therefore, the computation of Kj; needs the computation of double integrals

of the type
/Ek/ y‘Q CJ( )dl'(y) dT' ().

These can be computed analytically by use of anti-derivatives from [M]. For admissible pairs
(E;, Ex), we may proceed as described for V. More precisely, we change the order of integration
so that the smaller element corresponds to the outer integration, and we use numerical quad-
rature to compute the outer integral. As for V, this provides an approximation K, ~ K which
converges exponentially to K as p — oo.

LisTiNG 3
function b = bui | dSymRHS(coordinates,elements,uD)
%++ nodal evaluation of Dirichlet data
uDh = uD(coordinates);

%+ compute DLP —matrix for PO x S1
K = bui | dK(coordinates,elements);

%+x compute mass —type matrix for PO x S1

nE = size (elements,1);

h = sqgrt (sum((coordinates(elements(:,1),:) —coordinates(elements(:,2),:))."2,2));
| = reshape (repmat (1:nE,2,1),2 *nE,1);

J = reshape (elements',2 *nE,1);

A = reshape (repmat (0.5 *h,1,2)',2 *nE,1);

M = sparse (I,J,A);

%+« build right —hand side vector
b = K+«uDh + MruDh*0.5;

5.2. Building of Right-Hand Side Vector (Listing 3). To compute the vector
1
(5.11) b:=Kg+ Mge RY

from (5.9), it essentially remains to build the matrix M € RNXN - Let 2z, zn € Ky denote
the nodes of an element Ej, € &, i.e., B = [z, 2,]. Note that the entry My; = ((j, xx)r =
I} B, (j ds satisfies

M, = 0 if Zj ¢ {Zmazn}7
b length(Ey)/2 if zj € {zm, 2n}.

We thus may assemble the matrix M in the following way:
nE = size (elements,1);

M = sparse (nE,nE);

for k = 1.nE

a = coordinates(elements(k,1),:);
b = coordinates(elements(k,2),:);
h = norm(b —a);

M(k,elements(k,:)) = h/2;
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end

We stress, however, that this implementation will lead to (at least) quadratic runtime with
respect to the number N of elements. The reason for this is the internal storage of sparse
matrices in MATLAB by use of the CCS format. This requires to sort the corresponding memory
with every update of the sparse matrix and thus leads to a complexity O(klogk) for k non-
zero entries. Since this is done for £k = 1,..., N, one consequently expects a computational
complexity of order O(N?log N) which can even be observed experimentally [FPW].

Building sparse matrices in MATLAB is efficiently done via the built-in function sparse
which takes the coordinate format I,J, A € R", where M;; = Ay, for ¢ = I}, and j = Jj,. Here,
the matrix M has n = 2N non-zero entries.

Altogether, the documentation of Listing 3 reads as follows:

The function takes the mesh &, described in terms of coordinates and elements as
well as a function handle uD for the Dirichlet data g.

We compute the vector g € RY of nodal values of g (Line 3) and build the double-layer
potential matrix K € RV*Y (Line 6).

The column vector h € RY contains h; = length(F;) (Line 10). We stress that the Euclidean
length h = norm(b —a) can also be computed via h = sgrt (sum((b —a).”2,2)) if
a,b € R? are row-vectors. Then, the vectors I,.J, A € R of the coordinate format of M
are computed (Line 11-13), and the matrix M is built (Line 14).

Finally, we build the right-hand side vector b (Line 17).

LisTING 4
function osc = conput eCscDhi ri chl et (coordinates,elements,uD)
%+ compute midpoints of all elements
midpoints = 0.5  *( coordinates(elements(;,1),:) + coordinates(elements( 12),) );

%++ evaluate Dirichlet data at element midpoints
uD_midpoints = uD(midpoints);

9%+ evaluate Dirichlet data at all nodes
uD_nodes = uD(coordinates);

%+ compute oscillations of Dirichlet data via adapted Newton —Cotes formula
osc = 4/3 x( uD _nodes(elements(:,1))+uD _nodes(elements(:,2)) —2+uD_midpoints )."2;

5.3. Computation of Data Oscillations for Dirichlet Data (Listing 4). Instead of
solving the correct variational form (5.3), we solve

(5.12) (Voe, ¥)r = (K +1/2)Gy, ¢)r  for all y € H~/*(T)

with perturbed right-hand side, where we use the approximation Gy =~ ¢. It is an analytical
observation that the error between the exact solution ¢ € H~Y2(I') of (5.3) and the exact
solution ¢y € H~/2(T) of the perturbed formulation (5.12) is controlled by

(5.13) 6 — ellv S 1Ay (g = Ge)'ll oy = 0scpes

where (-)' denotes the arclength-derivative, cf. [AGP].
We now aim for a numerical approximation of the local contributions

oscpo(Ej) = ||hy* (g — Go)' |l r2(s,) = length(E;)?|(g — Go) || p2(p,) for all Ej € &.

For E; = [a;,bj] € & and h := length(E;) = |b; — a;|, let ; : [-1,1] — E; denote the reference
parametrization from (2.1). Recall that [v}| = h/2. With the definition of a boundary integral
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from Section 2.2 and the definition of the arclength derivative from Section 2.3, we obtain

614 Wy = [ 022 [ (on)as 2 2 [ (orye) as

i —

We now approximate w := v o~; : [—1,1] — R by some polynomial p; € P?[—1, 1] with
pi(—=1) = w(=1) = v(a;), p;(0) =w(0) =v(my), p;(1)=mw(l)=uv(b)),
where m;j = (a; + b;)/2 denotes the midpoint of Ej. Note that p; € P'[—1,1] and (p})?
P2[~1,1] so that
2 ! 9 2 ! 2
Hv/H%Q(EJ_) =2 /_1 ((v ofyj)/(s)) ds ~ - /_1(]99)2 ds = EquadQ((p;)Q)’

where quady(-) is a quadrature rule on [—1,1] which is exact on P?[—1,1]. We use a 3-point
Newton-Cotes formula with nodes s; = —1, s = 0, and s3 = 1, which is exact on P3[—1,1]. It
thus remains to evaluate p(sy) by use of p;(—1), p;(0), and p;(1). To that end, we write p; in
terms of the Lagrangian basis

pj = v(a;j)L1 4+ v(m;) Ly 4+ v(bj) L3, whence p;=wv(a;)L} +v(m;)Ls+ v(b;)L5.
The Lagrange polynomials Lj associated with s = —1,0,1 read
Li(s) =s(s —1)/2, Ly(s)=1—5s% L3(s)=s(s+1)/2,
and their derivatives are
Li(s) = (2s —1)/2, Lh(s)=—2s, L5(s)=(2s+1)/2.

With the matrix (L;C(s])) _1» Pj(sk) is thus obtained from a matrix-vector multiplication
pi(=1) Li(=1) Ly(=1) Ls(=1)\ [v(a;) =3/2 +2 —1/2\ [w(a )
pi(0) | =1{ Li(0)  L5(0)  Ly(0) | |w(my) | =|—=1/2 0 +1/2] | v(my)
pi(+1) Li(4+1) L4yj(+1) L5(+1) v(b;) +1/2 -2 +3/2 v(b;)

For the computation of the local Dirichlet data oscillations

1
05, e(By)? = (g — Go) |22, = 2 / (9 — G) o) ()" ds,

we have v = g — Gy. This results in (g — Gy)(a;) =0 = (g9 — G¢)(b;) by definition of the nodal
interpolant Gy. Consequently, everything simplifies to

pi(—1) 2v(m;) " A 42 1
O | = 07 ) = (gtmy) - LTI [0}~ (ga)) + g) — 200m) [ 0
pj(+1) —2v(m;) —2 +1

Note that the weights of the Newton-Cotes formula read

1
W :/ Li(t)dt, whence w;=1/3, wa=4/3, w3=1/3.
—1

Therefore,

oscp ¢(E;)? ~ oscp y(Ej)* == = 2 quad, (( pj =2 Zwk P)(sk))
(5.15)
4 2
=3 (9(ay) + g(bj) —2g(m;))".

Altogether, the documentation of Listing 4 now reads as follows:

The function takes the mesh &, in terms of coordinates and elements as well as a
function handle uD for the Dirichlet data g (Line 1).
We first compute all element midpoints (Line 3) and evaluate the Dirichlet data g at all
midpoints (Line 6) and all nodes (Line 9).
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Finally, Formula (5.15) is realized (Line 12) simultaneously for all elements E; € &.
The function returns the column vector of elementwise Dirichlet data oscillations

v i= (Gep (B’ ..., 65p e(En)?) € RY
so that oscp ¢ ~ (Zjvﬂ Vj)l/z'

Remark 5.1. For smooth Dirichlet data g and uniform meshes with mesh-size h, there holds

3/2 NNV 5/2
oscpy = O(h**) and ‘OSCD,K - <Zvj> ‘ = O(h’*).
j=1

Therefore, the quadrature error is of higher order when compared to the discretization order.

LISTING 5
function err = conput eEr r Neunann(coordinates,elements,p,phi)
%=+ arbitrary quadrature on [ —1,1] with exactness n >= 2, e.g., gauss(2)
quad _nodes = [ —1 1}/ sqrt (3);
quad _weights = [1;1];
%+ the remaining code is independent of the chosen quadrature r ule
nE = size (elements,1);
nQ = length (quad _nodes);
%+ build vector of evaluations points as (nQ *NE X 2) —matrix
a = coordinates(elements(:,1),:);
b = coordinates(elements(:,2),:);

sx = reshape (a,2 *nE,1) *(1 —quad _nodes) + reshape (b,2 *nE,1) *(1+quad _nodes);
sx = 0.5 xreshape (sx',nQ *nE,2);

%+ phi(sx) usually depends on the normal vector, whence phi tak es sx and the
%+ nodes of the respective element to compute the normal

a_sx = reshape (repmat (reshape (a,2 *nE,1),1,nQ)',nE *NnQ,2);

b_sx reshape (repmat (reshape (b,2 *nE,1),1,nQ)",nE *NnQ,2);

%++ perform all necessary evaluations of phi as (nE x nQ) —matrix
phi _sx = reshape (phi(sx,a _sx,b _sx),nQ,nE);

%+« compute vector of (squared) element —widths
h = sum((a —b)."2,2);

%+ compute Neumann error simultaneously for all elements
err _.sx = (phi _sx — repmat (reshape (p,nE,1),1,nQ))."2;
err = 0.5 *h.*(err _sx*quad_weights);

5.4. Computation of Reliable Error Bound for ||¢ — &y (Listing 5). We assume
that the exact Neumann data satisfy ¢ € L*(I"). Let ®; € P°(&,) be the (only theoretically
computed) Galerkin solution with respect to the non-perturbed right-hand side (K + 1/2)g
instead of (K + 1/2)Gy. Let II, denote the L2-orthogonal projection onto P°(&;). With the
technique from [FP, AGP], we obtain

o — @5l < o — el < [1hy'* (6 — TLed) | L2y

as well as

97 — Pellv < oscpe,
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where oscp ¢ denote the Dirichlet data oscillations from Section 5.3. Note that II, is even the
Ep-elementwise best approximation operator. With the triangle inequality, we therefore obtain

1/2
lo = @ellv < 15y (6 — o)l 2wy + 0scp ¢ =: erry g+ oscp .

In this section, we aim to numerically compute

N
eITN ¢ = < Z errN7g(Ej)2)

j=1

1/2
,  where erry(FE;)? = length(E;) ||¢ — ‘I)EH%Q(Ej)'

With x € RY the coefficient vector of

N
P = ZXij,
j=1

there holds

length(E;)? [1
REEE [ oo - xfds

_ length(E;)?
- 2

erry (E;)? = length(Ej)/ lp — x;|>dl =

J

(5.16) quady ((¢ 075 — x;)?) = erry o(E;)%,

where quad,,(-) denotes a quadrature rule on [—1, 1] which is exact for polynomials of degree n,
i.e. quad,(p) = fil pds for all p € P"[—1,1]. With the definition erry ¢ := ( Zjvzl erry o (Ej)?) 1/2,
one can then prove that

lerr ¢ — erTy o] = O(R™/2H1),

For smooth ¢, there holds erry , = (’)(h3/ 2). For our implementation, we thus choose the Gauss
quadrature with two nodes, which is exact for polynomials of degree n = 3. As for the Dirichlet
data oscillations, this choice then leads to

lerry ¢ — erry ¢ = (’)(h5/2), whereas at most erry, = O(h3/2),

i.e. our implementation is accurate up to higher-order terms. The documentation of Listing 5
now simply reads as follows:

The function takes the given mesh &, in form of the arrays coordinates  and elements |,
the coefficient vector p = x as well as a function handle phi for the Neumann data. The
function phi is called by

y = phi(x,a,b)
with (n x 2)-arrays X, @, and b. The j-th rows X(j,:), a(j,:), and b(j,:) correspond to a
point z; € [aj,b;] C R?. The entry y(j) of the column vector y then contains ¢(x;).
As stated above, we use the Gauss quadrature with two nodes (Line 3-4).
If s € [-1,1] is a quadrature node and E; = [a;,b;] € & = {E1,...,En} is an element,
the function ¢ has to be evaluated at

Wj(sk) = % (aj + bj + Sk(bj — aj)) = % ( j(l — Sk) + bj(l + Sk))

In Line 11-14, we build the (2N x 2)-array SX which contains all necessary evaluation
points. Note that the two evaluation points at F; are stored in sx (25 — 1,:) and sx (27, :).
In Line 18-19, we compute the (2N x 2)-arrays a_sx and b_sx such that, e.g., a_sx (2j—1,:)
and a_sX (2j,:) contain the first node a; € R? of the boundary element E; = [a;, b;].

We then evaluate the Neumann data ¢ simultaneously in all evaluation points and we
reshape this (2N X 1)-array into a (N x 2)-array phi _Sx such that phi _sX (j,:) contains
all ¢-values related to E; (Line 22).
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We realize Equation (5.16). We first derive the necessary evaluations of (¢ — x;)? in

Line 28. Multiplication with the quadrature weights and coefficient-wise weighting with
length(E;)?/2 provides the (N x 1)-array err such that err (j) ~ length(E;)||¢— ‘1>g||L2(E

More precisely, there holds err?, , ~ ijl err (j) = erer.

Remark 5.2. In academic experiments, the exact solution ¢ is usually known and has certain
regularity ¢ € L*(T) which only depends on the geometry of T'. As explained before, there holds
o — @ellv < errne+oscp e

so that we can control the error reliably. Moreover, the convergence erry ¢ — 0 as £ — oo might
indicate that there are no major bugs in the implementation — since we compare the Galerkin
solution with the exact solution. (]

5.5. Computation of (h — h/2)-Based A Posteriori Error Estimators. In this section,
we discuss the implementation of four error estimators introduced and analyzed in [FP]. Let

= {e1,..., ean} be the uniform refinement of the mesh & = {Ey,..., En}. Let ®; € PO(&)

and o, € 730(&) be the Galerkin solutions (5.6) with respect to Eg and & and the same
approximate Dirichlet data Gy, i.e., there holds

Vo, Uy = (K +1/2)Gy, Uy)r for all U, € PY(&)
as well as

VO, Up)y = (K +1/2)G¢, Up)r  for all Uy € PY(E)).
With ¢y € H'/2(T') the exact solution of (5.12), one can expect

(5.17) lpe — @ellv = |Pr — Pellv =: 1,
which results in
(5.18) lp = @ellv < lld = dellv + lpe — Pellv S oscpe +ne

according to the triangle mequahty and (5.13).

Clearly, the Galerkin solution ‘I)g with respect to the unlformly refined mesh Eg is more
accurate than ®,. Consequently, any algorithm will return <I>g instead of &, if <I>g has been
computed. From this point of view, ®;, then becomes a side result and leads to unnecessary
computational effort. One can prove that one may replace ®;, by a cheap (but appropriate)
postprocessing Hg(/f)g of (/I\)g. This leads to some error estimator

(5.19) e~ |Pe — T ®ellv =: 7
which always stays proportional to 7, indicated by 7y ~ 7,. To be more precise, II; denotes the
L2-orthogonal projection onto P°(&;), which simply reads

- 1 .
(5.20) (H€¢£)|E¢ = ) / P, dl’ for all E; € &
) JE,

length(E;

in case of the lowest-order discretization, i.e. piecewise constant ansatz and test functions.

However, one essential drawback of the error estimators 7, and 7, is that they do not provide
an additional information on the local errors, i.e., the error ||¢ — @[y related to some element
E; € &. This is different for the error estimators py and gy discussed in the following. For
instance, one can prove that

1/2
(5:21) e~ o= By (@0 @) 2y = <Zlength NS = @lZiy)

Then, the local contributions
(5.22) pe(E;) = length(E,) Y2 @y — @l 12,y for all E; € &
25



1

give some measure for the error on F;.
As the computation of the error estimator 7, the computation of 1y needs the computation
of two Galerkin solutions ®;, and ®,. As before, the computation of the coarse-mesh solution

®, can be avoided by use of the projected fine mesh solution Hga\)g. One can mathematically
prove that

~ 1/2 , =
(5.23) e~ fie o= |[hy" (8¢ — L) 12(ry-

In the following subsections, we first discuss the computation of the global error estimators 7,
and 7y from (5.17) and (5.19). Then, we give an implementation of the local error estimators py
and fip from (5.21) and (5.23), where our functions return the local contributions, see e.g. (5.22),
to steer an adaptive mesh-refinement.

Remark 5.3. If we plot the error estimators ng, ne, e and jip over the number of elements, one
can mathematically predict that the corresponding curves, for a sequence of arbitrarily refined
meshes, are parallel. In mathematical terms, this reads

(5.24) Ne < e S He < e S e

cf. [EFFP, FP|. Empirically, one observes a very good coincidence of ny and 1, in the sense
that the corresponding curves almost coincide. The same is observed for the curves of uy and
fe- U
Remark 5.4. Mathematically, the error estimate (5.18) involves the so-called saturation as-
sumption: Assume that we could compute the Galerkin solutions ®; and ®; with respect to

Er and é\g for the non-perturbed variational formulation (5.3), i.e., we formally use the exact
Dirichlet data g instead of the interpolated data Gy — although the right-hand side is, in fact,
non-computable because of Kg. Then, the saturation assumption states that

(5.25) I — @7llv < qll¢ — ellv

with some uniform and {-independent constant q € (0,1). —Put differently, uniform mesh-
refinement leads to a uniform improvement of the discretization error.— Provided (5.25), one
can prove that

(5.26) e < g — ellv < (1—¢*) 2

which is the mathematical basis of (5.17), cf. [FP].

We stress that this assumption is somewhat natural and can, for instance, be proven for the
finite element method [DN], see also [FOP, Section 2.3]. For the boundary element method,
however, (5.25) still remains open.

Finally, one can prove that (5.25) is sufficient and in some sense even necessary to guaran-
tee (5.18). O

Remark 5.5. In academic experiments, the exact solution ¢ is usually known and has cer-
tain regularity ¢ € L?(T') which only depends on the geometry of I'. In this case, one can
experimentally verify the saturation assumption as follows: In Section 5.4, we derived
l¢ — @ellv < errne + oscp,e
If the right-hand side has the same convergence behaviour as the error estimator 1, + oscp g,
this proves empirically
¢ — Pellv < e+ osepe

and confirms the saturation assumption. O

LISTING 6
function est = conput eEst Sl pEt a(father2son,V fine,x _fine,x _coarse)

26




N O Ot e W N

© 0 N O U R W N

—
[}

%+« compute coefficient vector of (phi _fine — phi _coarse) w.r.t. to fine mesh

x _fine(father2son(:,1)) = x _fine(father2son(:,1)) — X_coarse;
x _fine(father2son(:,2)) = x _fine(father2son(:,2)) — X_coarse;
%= compute energy ||| phi _-fine — phi _coarse ||| 2

est = x _fine' =*(V_fine *x_fine);

5.5.1. Computation of Error Estimator 7, (Listing 6). In this section, we aim to
compute the error estimator n, = [|®; — @[y from (5.17). Let X; denote the characteristic
function associated with some fine-mesh element e; € é/’\g Let x € RY and X € R?N be the
coefficient vectors of ®, and @, with respect to the canonical bases of P°(&;) and PY(&), i.e.

N

2N
‘I)g = ZXij and ‘I)g = Zﬁjyj
j=1 i=1

Because of P%(&) C P°(&,), there is a unique vector y € RZV such that
2N
= %
j=1

With the vectors X,y € R?Y, there holds

2N
=100 — Pelly = (P — Br, 2o — Brhy = Y (X5 — ¥) R — Iu) (X5 k)
jik=1

=x-9) - VE-9),

where V is the matrix for the simple-layer potential (5.8) with respect to the fine mesh é\g With
these observations, the documentation of Listing 6 reads as follows:

The function takes the coefficient vectors x € RN and X € RN of the Galerkin solutions
®y and Py as well as the simple-layer potential matrix V for the fine mesh &;. Besides this,
the (N x 2)-array father2son links the indices of elements E; € & with the indices of
the sons ej, e, € & in the sense that father2son( i) = [ j, k] for E; = e; Ue, and
consequently ¥; = yi, = x;.

We overwrite the vector X by the coefficient vector X — y of &y — @, (Line 3-4).

Finally, the function returns n7 = ”@g — @)} (Line 7).

LisTiNG 7
function est = conput eEst Sl pEt aTi | de(father2son,V fine,x _fine)
%+x compute L2 —projection Pi _coarse =*phi _fine onto coarse mesh
pi x_fine = 0.5 *( x _fine(father2son(:,1)) + x _fine(father2son(:,2)) );
%++x compute coefficient vector of (1 —Pi _coarse) =*phi _fine
x _fine(father2son(:,1)) = x _fine(father2son(:,1)) — pi x_fine;
x _fine(father2son(:,2)) = x _fine(father2son(:,2)) — pi x_fine;
%= compute energy ||| (1—Pi_coarse) phi _fine |[||"2

est = x _fine' x(V_fine *x_fine);
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5.5.

2. Computation of Error Estimator 7y (Listing 7). We adopt the notation of

Section 5.5.1 for the computation of 7y, namely X € R* with

Let

/ d,dl = / O, dl + / &, dl' = length(e;) X, + length(ey) Xy = length(E;)
E; ;

2N
@g: E XiXj-
j=1

ej, e € gg be the sons of E; € &, i.e. E; =e; Ue. Then,

ﬁj"‘ik
2

€ e

Put differently, there holds

(Hg(/ﬁg)‘Ei = m for all £, € & with FE; = e; Ueg and €j, €k € gg

for the L2-projection II, defined in (5.20). Representing II,®;, € P(&;) with respect to the
fine-mesh &y, we obtain

2N
ng)g = /Z\nj(\m

n=1

where the vector z € R2V satisfies z; =2 = @ provided that ej, e} € gg are the sons of
some element F; € . As in Section 5.5.1, there holds

;= 190 — @[l = (X ~2) - V(X - 7).

Therefore, the documentation of Listing 7 reads as follows:

The function takes the simple-layer potential matrix V for the fine mesh é\g and the coeffi-
cient vector X € R?N of @g. Moreover, the link between & and gg is provided by means of
father2son

We first compute the coefficient vector of Hg@g with respect to the coarse mesh & (Line 3).
We then overwrite X by the coefficient vector X —z € R?V of :1\)@ — Hg(/f)g (Line 6-7).
Finally, the function returns 72 = || o, — I, I?, (Line 10).

LisTiNG 8

function ind = conput eEst SI pMu(coordinates,elements,father2son,x _fine,x _coarse)
%+x compute (squared) local mesh —size
h = sum((coordinates(elements(:,1),:) — coordinates(elements(:,2),:))."2,2);
%++x compute coefficient vector of (phi _fine — phi _coarse) w.r.t. to fine mesh
x _fine(father2son(:,1)) = x _fine(father2son(:,1)) — Xx.coarse;
x _fine(father2son(:,2)) = x _fine(father2son(:,2)) — Xx.coarse;
%++ compute ind(j) = diam(Ej) * || phi _fine — phi coarse ||_{L2(Ej) }2
ind = 0.5 *h.*( x _fine(father2son(:,1))."2 + x _fine(father2son(:,2)).”2 );
5.5.3. Computation of Error Estimator py (Listing 8). In this section, we discuss the
implementation of

N

2 2 2 3 2
= ZM(Ei) , where py(E;)” = length(E;) || — Pol|72(p,)-
i=1
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We adopt the notation of Section 5.5.1, namely X,y € R?VN with

2N 2N
(I>g = E ij(\j and (I)g = yjj(\j'
J=1 J=1

For fixed E; € £ and sons ej, e;, € é/’\g with E; = e; U e, we obtain

~ ~ ~ length(FE;) , . . ~ o~
@0 = @el1 o) = / (B¢ — ®()*dl +/ (Pr — @)*dl’ = % (% =5 + & = ¥8)?)-
€5 €L
This implies
length(E;)? , ~ -~
(5.27) pe()? = BN (g, g2 4 e - 9007,
Altogether, the documentation of Listing 8 reads as follows:

As input arguments, the function takes the mesh &, the link between &, and é/’\g, and the
coefficient vectors x € RY and x € R2Y of the Galerkin solutions ®; and ®; (Line 1),

We compute the vector of all squared element-sizes (Line 3).

We overwrite the coeflicient vector X of (/I\)g by the coeflicient vector X — y of :1\)@ - @,
(Line 6-7).

Finally (Line 10), the function realizes (5.27) and returns the vector

Vi= (MZ(E1)27 LRI 7MZ(EN)2) € RN
so that py = (Zfil Vl-)l/Q.

LISTING 9
function ind = conput eEst S| pMuTi | de(coordinates,elements,father2son,x _fine)
%++x compute (squared) local mesh —size
h = sum((coordinates(elements(:,1),:) — coordinates(elements(:,2),:))."2,2);
%+ compute L2 —projection Pi _coarse =*phi _fine onto coarse mesh
pi x_fine = 0.5 *( x _fine(father2son(:,1)) + x _fine(father2son(:,2)) );
%++x compute coefficient vector of (1 —Pi _coarse) =*phi _fine
x _fine(father2son(:,1)) = x _fine(father2son(:,1)) — pi x_fine;
x _fine(father2son(:,2)) = x _fine(father2son(:,2)) — pi x_fine;
%+ compute ind(j) = diam(Ej) * || (1 —Pi_coarse) =phi _fine || _{L2(Ej) }"2
ind = 0.5 *h.*( x _fine(father2son(:,1)).”2 + x _fine(father2son(:,2)).”2 );

5.5.4. Computation of Error Estimator g1y (Listing 9). In this section, we finally aim to
compute

N
i =Y fu(E:)?  where [ig(E;)? = length(E;) || ¢ — T®¢l[72 -
=1

We adopt the notation of the preceding Sections 5.5.1-5.5.3, namely X,z € R*V with

2N 2N
‘I)g = Zijj(\j and ng)g == /Z\jj(\j.
j=1 j=1

Based on this, the abbreviate documentation of Listing 9 reads as follows:

The functiorl takes the mesh &, the link between & and éA’g, and the cogfﬁcientAvectors
%X € R?N of &, (Line 1). It overwrites X by the coefficient vector X —z of ®; — IT,®, (Line
6-10).
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Finally (Line 13), the function returns the vector

v = (g(E1),. .. fie(En)®) € RV,
In particular, there holds i, = (ZZ]L vi)1/2.
5.6. Adaptive Mesh-Refinement. Usually computing time and memory requirements are
limiting quantities for numerical simulations. Therefore, one aims to choose the mesh such that
it is coarse, where the (unknown) solution is smooth, and fine, where the (unknown) solution is
singular. Based on a local error estimator, e.g. iy, such meshes are constructed in an iterative
way. In each step, one refines the mesh only locally, i.e. one refines elements E;, where the
error appears to be large, namely, where the local contributions 7i,(F;) are large. For the error
estimator g1, from Section 5.5.4, a possible adaptive algorithm reads as follows:

Input: Initial mesh &, Dirichlet data g, adaptivity parameter 0 < § < 1, maximal number
Npax € N of elements, and counter £ = 0.

(i) Build uniformly refined mesh &.

(i) Compute Galerkin solution &, € P°(&).
(iii) Compute refinement indicators fis(E)? and oscillation terms oscp ((E)? for all E € &.
(iv) Find minimal set My C & such that

(5.28) 0 (12 + OSC%M) =0 Z fie(E)? + oscpo(E)* < Z fie(E)* + oscpo(E)%.

Ee&, EeM,

(v) Refine at least marked elements E € M, and obtain mesh &1 with k(Ep1) < 26(&Ep).
(vi) Stop provided that #&p11 > Npax; otherwise, increase counter ¢ — ¢+ 1 and go to (i).

Output: Adaptively generated mesh g’g and corresponding discrete solution @g e P (gg)

The marking criterion (5.28) has been proposed in the context of adaptive finite element
methods [D]. Let formally Np.x = 0o so that the adaptive algorithm computes a sequence of
discrete solutions @g (or even @y, although this is not computed). In [FOP, Section 3|, we prove
that the saturation assumption (5.25) implies convergence of :1;@ and @, to ¢, provided that the
right-hand side g is not disturbed, i.e., g = Gy. The same result also holds for piy replaced by
hg-
In [AFP], we changed the notion of convergence and proved that for certain error estimators
—amongst them are jip and py— the adaptive algorithm guarantees limy i, = 0. This concept is
followed in [AGP] to prove that the adaptive algorithm stated above, yields limg(u? + OSC%,Z) =
0. If the saturation assumption (5.25) holds (at least in infinitely many steps), we obtain
convergence of @ to ¢ due to ||¢p — @y} < pZ + osc? .

For adaptive finite element schemes, it could receﬁtly be proven that adaptive algorithms
of this type even lead to quasi-optimal meshes [CKNS]. For adaptive BEM, such a result is
completely open although numerical experiments give evidence for such an optimality result.

LisTiNnGg 10
% adaptiveSymm provides the implementation of an adaptive m esh —refining
% algorithm for Symm's integral equation.

%+ maximal number of elements
nEmax = 100;

%+ adaptivity parameter
theta = 0.25;
rho = 0.25;

%++ adaptive mesh —refining algorithm
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%+ build uniformly refined mesh
[coordinates  _fine,elements _fine,father2son]
= refi neBoundar yMesh(coordinates,elements);

%+ compute fine —mesh solution

V_fine = bui | dV(coordinates _fine,elements _fine);

b_fine bui | dSynmmRHS(coordinates  _fine,elements _fine,@q);
x_fine = V _fine \b-_fine;

%+ compute (h —h/2) —error estimator tilde —mu
mutilde = conput eEst SI pMuTi | de(coordinates,elements,father2son,
x fine);
%++x compute data oscillations
osc _-fine = conput eOCscDirichl et (coordinates  _fine,elements _fine,@q);
osc = osc _fine(father2son(:,1)) + osc _fine(father2son(:,2));

%+ mark elements for refinement
marked = nmar kEl enent s(theta,rho,mu _tilde + osc);

%>+ generate new mesh
[coordinates,elements] = r ef i neBoundar yMesh(coordinates,elements,marked);
end

5.6.1. Implementation of Adaptive Algorithm (Listing 10). The MATLAB script of
Listing 10 realizes the adaptive algorithm from the beginning of this section.
We use the adaptivity parameter § = 1/4 in (5.28) and mark at least the 25% of elements
with the largest indicators (Line 8-9).
Recall that the function conput eEst SI pMuTi | de as well as conput eCGscDiri chl et
return vectors of quadratic terms fi;(E)? and osce(E)?, respectively. Note that (5.28) cor-
responds to the choice g/(E) := fig(E)? + oscy(E)? in (4.1). Therefore, the marking crite-
rion (4.1) is provided by means of the function mar KEl enent s (Line 31).
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6. HYPERSINGULAR INTEGRAL EQUATION

Continuous Model Problem. In the entire section, we consider the hypersingular integral
equation

(6.1) Wu=(1/2—K')¢ onT

with W the hypersingular integral operator and K’ the adjoint double-layer potential, where
I' = 09 is the piecewise-affine boundary of a polygonal Lipschitz domain  C R2. This integral
equation is an equivalent formulation of the Neumann problem

(6.2) —Au=0in Q with 0J,u=¢ onT.
Note that due to the Gauss Divergence Theorem there holds

/qﬁdI’: anudF:/Audx:O.
I o0 Q

Formally, the Neumann data satisfy ¢ € H, 1 2(I’), where the subscript abbreviates the con-
straint (¢, 1)r = 0. We will, however, assume additional regularity ¢ € C(&) c L*T) C
H~'/2(T"). The exact solution u € H'/?(T') of the integral formulation (6.1) is just the Dirichlet
data u|r of the solution u € H'(Q) of (6.2).

Due to the fact that there holds We = 0 for all constant functions ¢ € R, the solutions of (6.1)
and (6.2) are only unique up to additive constants. To fix the additive constant, one usually
assumes integral mean zero for the respective solutions. In this sense, (6.1) can equivalently be

formulated in variational form: Find w, € Hi/Q(F) i={ve HY*I) : [Lvdl =0} such that

(6.3) (W, , vr = (1/2 — K¢, v,)p  for all v, € HY*(I).

One can prove that this formulation has a unique solution, since the left-hand side defines a

scalar product on H} / 2(I’) even with equivalent norms.
From another point of view, one can consider the bilinear form

(6.4) (u,vY)wis = (Wu, v)r + (/

Fudf)(/rvdf> for all u,v € HY(T),

which leads to the following modified variational form: Find u € H'/?(I") such that
(6.5) (u,v)wis = ((1/2 = K')¢, v)p for all v € HY*(T).

One can prove that (-, )wis from (6.4) defines a scalar product such that the induced norm

lullw s = ((u,u»ll/,is is an equivalent norm on HY?(T'). Consequently, (6.5) has a unique
solution u which depends continuously on the Neumann data ¢. Moreover, one can prove that

1 _
(/2= K", e = 50, r = (@, K1)r = (¥, Jr =0 for all v € HZ /().
If we plug in v = 1 in (6.5), we thus obtain

2
(/Fudr) length(T) = (Wu, D)r + (/Fudr>(/r1dr>
= (u,)wis =((1/2-K")¢, 1)r =0

according to the fact that the kernel of the hypersingular integral operator W consists of con-
stant functions. This implies u € H/ 2(I‘). For a test function v, € Hy/ 2(I‘), the variational

formulation (6.5) thus becomes
<WU, ’U*>I‘ = <<U,U*>>W+S = <(1/2 - KI)QS? v*>Fa

i.e. (6.5) reduces to (6.3). Altogether we obtain that the unique solution u of (6.5) is also the
unique solution of (6.3), i.e., (6.5) is an equivalent formulation of (6.3).
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Galerkin Discretization. To discretize (6.5), we first replace the Neumann data ¢ € H, 1/2 (N
L*(T) by its L%-projection ®, € P°(&),
1
6.6 Q)|p, = ————~ dl' =:p; forall E; € &.
(6.6) 115 longth(E;) /Ej ] p; forall E; €&

According to this definition, there holds
/qwr: Z/cpgdr: Z/mzr:/mzr:o,
r Beg ' E Eeg ' E r

i.e. there holds @, € H,:l/Q(I’), too. Second, we replace the function space H'/?(T) in (6.5) by
the finite-dimensional space S*(&). Since S*(&) is a subspace of H/2(T), (-, -)w s from (6.4)
is also a scalar product on S'(&). Consequently, there exists a unique Galerkin solution U, €
S1(&) of the discretized problem

(6.7) (Ue . Vidwes = (1/2 — K&y, V))r  for all V; € SH(&).

As in the continuous case, the discrete solution U, automatically satisfies fr Uy dl’ = 0 which
follows from 1 = Zjvzl ¢j € SY(&), which allows us to plug in V, = 1 in (6.7). Indeed,

( /F Uy dI) length(T') = (WU, , Tyr + ( /F Updr) /F Lar)
= (Ue, Dws = ((1/2 = KN)®¢, 1)r = 0.

According to Linear Algebra, (6.7) holds for all V, € S'(&) if and only if it holds for all
basis functions ¢y € {(1,...,(y} of SY(&). With p € RY from (6.6) and the coefficient vector
x € RN of the ansatz

N
(6.8) Ur=> %G,
j=1
the Galerkin formulation (6.7) is thus equivalent to
N N
(6.9) > % (G Ghwrs = (Ue, Ghws = (1/2 = KNP, Gr =Y p;((1/2 = K')x;, Gr
j=1 J=1
for all k =1,...,N. In the context of Symm’s integral equation of Section 5, we have already

defined the matrices K, M € RY*N by
Kjr = (KG, xj)r and M, = (G, xj)r,
cf. (5.8). The right-hand side of the last equation thus reads

N

N N
> pi{(1/2 = K')x;, G)r = %ZPJ(X]', G — > Pl KG)r = % (M"p)), — (K" p)i.
j=1 j=1 j=1

To compute the left-hand side of (6.9), we define matrices W, S € RV*¥ by

(6.10) Wi = (We, Gers Sij = (/gj dP)(/Ck dr) for all j,k=1,...,N.
r r

Then there holds

N
(W+8)x), = ij(wkj +Sgj) = (WUe, G)r + </ Uy dP) </ Ck df) = (Ue, Ghw+s-
= r r
Altogether, the Galerkin system (6.7) is equivalently stated by
1
(6.11) (W +8S)x = 5MTp ~K'p.
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Note that the matrix S has rank 1 since it can be written in the form

(6.12) S =cc’ with the column vector ¢ € RY with ¢; := / ¢ dr.
r

Finally, we stress that the matrix W + S from (6.11) is symmetric and positive definite since
it stems from a scalar product. Consequently, the linear system (6.11) has a unique solution
x € RV,

6.1. Computation of Discrete Integral Operator W. The matrix W ¢ Ré\;an defined
in (6.10) is implemented in the programming language C via the MATLAB-MEX-Interface. It is
returned by call of

W =bui | dWcoordinates,elements [,eta]);

The entries of the matrix W are computed with the help of Nédélec’s formula which is presented
in the following identity

(6.13) (Wu, v)r = (Vu', v')p  for all u,v € HY(I).

Since CJ'- € PY(&), this gives a direct link between the matrices W and V, namely, each entry
of W is the weighted sum of four entries of V. The optional parameter eta decides whether all
entries of W are computed analytically or if certain double integrals are computed by numerical
quadrature. We refer to Section 5.1 for details.

LisTing 11
function S = bui | dHypsi ngSt abi | i zat i on(coordinates,elements)
nE = size (elements,1);

%++x compute local mesh —size
h = sqgrt (sum((coordinates(elements(:,1),) —coordinates(elements(:,2),:))."2,2));

%+ build vector with entries c(j) = int _Gamma hatfunction(j) ds
¢ = 0.5 raccumarray (reshape (elements,2 *nE,1),[h;h]);

%+ build stabilization matrix
S = c*C';

6.2. Compute Stabilization for Hypersingular Integral Equation (Listing 11). The
kernel of the hypersingular integral operator W is the space of constant functions. Since
1= Zjvzl ¢j € SY(&), the corresponding matrix W defined by Wy; = (W(;, ()r for all
j,k € {1,..., N} cannot be regular. One can prove, however, that it is semi-positive definite.
As we have figured out in the introduction, one remedy is to consider the extended bilinear
form (-, )ws from (6.4). It thus remains to assemble the rank-1-matrix S = cc? € RV*VN
from (6.12). For building the vector ¢ with

N
cpi= | (pdl = /gdr,

note that the support of ;. consists precisely of the elements E; € £ which include z, € Ky as
a node. The vector ¢ can be assembled &p-elementwise, and for each element F; two entries of
c are updated. Moreover, there holds

/ Codl = 0, if 2z, & Ej,
B length(E;)/2, else.

Consequently, the assembly of the vector ¢ can be done as follows, where h(j) contains the
element-width length(E};).
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nE = size (elements,1);
h = sqgrt (sum((coordinates(elements(:,1),:) —coordinates(elements(:,2),:)).”2,2));
¢ = zeros (nE,1);
for j = 1.nE
nodes = elements(j,:);
c(nodes) = c(nodes) + 0.5 *h(j);
end

For the final implementation of bui | dHypsi ngSt abi | i zati on in Listing 11, the for -loop
is eliminated by use of accumarray

The function takes the mesh &, described by the arrays coordinates  and elements
We compute the vector of all element-widths (Line 5).

The former for -loop is written in compact form (Line 8).

Finally, the function builds and returns the stabilization matrix S (Line 11).

LIiSTING 12
function b = bui | dHypsi ngRHS(coordinates,elements,phi)
%+ arbitrary quadrature on [ —1,1] with exactness n >= 2, e.g., gauss(2)
quad _nodes = [ —1 1}/ sqrt (3);
quad _weights = [1;1];
%+ the remaining code is independent of the chosen quadrature r ule
nE = size (elements,1);
nQ = length (quad _nodes);
%+ build vector of evaluations points as (nQ *NE X 2) —matrix

a = coordinates(elements(:,1),:);

b = coordinates(elements(:,2),:);

sx = reshape (a,2 *nE,1) *(1 —quad _nodes) + reshape (b,2 *nE,1) *(1+quad _nodes);
sx = 0.5 xreshape (sx',nQ =*nE,2);

%+ phi(sx) usually depends on the normal vector, whence phi tak es sx and the
%+ nodes of the respective element to compute the normal

a_sx = reshape (repmat (reshape (a,2 *nE,1),1,nQ)',nE *NnQ,2);

b_sx reshape (repmat (reshape (b,2 *nE,1),1,nQ),nE *NnQ,2);

%+ perform all necessary evaluations of phi as (nE x nQ) —matrix
phi _sx = reshape (phi(sx,a _sx,b _sx),nQ,nE)’;

%++x compute elementwise integral mean of phi
phi _-mean = (phi _sx*quad _weights =*0.5)";

%+ compute DLP —matrix for PO x S1
K = bui | dK(coordinates,elements);

%+x compute mass —type matrix for PO x S1

nE = size (elements,1);

h = sqrt (sum((coordinates(elements(:,1),:) —coordinates(elements(:,2),:)).”2,2));
I = reshape (repmat (1:nE,2,1),2 *nE,1);

J = reshape (elements',2 *nE,1);

A = reshape (repmat (0.5 *h,1,2)',2 *nE,1);

M = sparse (1,J,A);

%+ build right —hand side vector
b = (phi _meanxM0.5 — phi _-meanxK);
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6.3. Build Right-Hand Side for Hypersingular Integral Equation (Listing 12). With
the representation

N
Dy = Z PjX;
j=1

and the transposed matrices of K and M, the right-hand side vector for (6.11) reads
1 1 T
(6.14) b:=>M'p-K'p= <§pTM — pTK) :
where we identify the vector p € RY with a matrix p € RV,
For the implementation, we compute the elementwise integral mean ®, by use of numerical
quadrature:

1
1 ~
(6.15) p; = length / pdl' = /1 poyds = 3 quad, (¢ o) =:p; forall E; € &.

Here, we use the parametrlzatlon v+ [=1,1] — Ej from (2.1). Moreover, quad, (-) denotes a

quadrature rule which is exact of order n € N, i.e., quad,,(p) = f_ll pds for all p € P"[—1,1]. In
our realization, we use a Gauss quadrature with two nodes. Note that this provides exactness
n = 3 and leads to an approximation error of order O(h%?), cf. Section 6.4.

With these preparations, the documentation of Listing 12 reads as follows:

The function takes as input the given mesh & in form of the arrays coordinates  and
elements as well as a function handle phi for the Neumann data. A call of the function
phi is done by

= phi(x,a,b)
with (n x 2)-arrays X, @, and b. The j-th rows x(j,:), a(j,:), and b(j,:) correspond to a
point x; € [aj,b;] C R% The entry y(j) of the column vector y then contains ¢(z;).
As stated above, we use the Gauss quadrature with two nodes (Line 3-4).
If s € [-1,1] is a quadrature node and E; = [a;,b;] € & = {F1,...,En} is an element,
the function ¢ has to be evaluated at

Vi(sk) = % (aj +bj + s1(bj — a5)) = % (aj(1 = sg) +bj(1 + s8)).

In Line 11-14, we build the (2N x 2)-array SX which contains all necessary evaluation
points. Note that the two evaluation points at F; are stored in sx (25 — 1,:) and sx (27, :).
In Line 18-19, we compute the (2N X 2)-arrays a_sx and b_sx such that, e.g.,

a-sx(2j — 1,:) and a-sx(2j,:) contain the first node a; € R? of the boundary element
Ej = laj, bjl.

We then evaluate the Neumann data ¢ simultaneously in all evaluation points and we
reshape this (2N x 1)-array into an (/N x 2)-array phi _sx such that phi _sx (7,:) contains
all ¢-values related to E; (Line 22).

As a next step, we compute the (N x 1)-array phi _mean of all integral means along the
lines of (6.15), namely phi _-mean(j) = quad,,(¢ o v;)/2 (Line 25).

Next we build K (Line 28) and M (Line 31-36), cf. Section 5.2 above.

Finally (Line 39), the function computes and returns the vector b as described in (6.14).

LisTiNnGg 13
function osc = conput eCscNeumann(coordinates,elements,phi)
Y%+« arbitrary quadrature on [ —1,1] with exactness n >= 2, e.g., gauss(2)
quad _nodes = [ —1 1}/ sqart (3);
quad -weights = [1;1];
%++ the remaining code is independent of the chosen quadrature r ule

nE = size (elements,1);
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nQ = length (quad _nodes);

%=+ build vector of evaluations points as (nQ *nNE X 2) —matrix

a = coordinates(elements(:,1),:);

b = coordinates(elements(:,2),:);

sx = reshape (a,2 *nE,1) *(1 —quad _nodes) + reshape (b,2 *nE,1) *(1+quad _nodes);
sx = 0.5 xreshape (sx',nQ =*nE,2);

%+ phi(sx) usually depends on the normal vector, whence phi tak es sx and the
%+ nodes of the respective element to compute the normal

a_sx = reshape (repmat (reshape (a,2 *nE,1),1,nQ)',nE *nQ,2);

b_sx reshape (repmat (reshape (b,2 *nE,1),1,nQ)",nE *NnQ,2);

%+ perform all necessary evaluations of phi as (nE x nQ) —matrix
phi _sx = reshape (phi(sx,a _sx,b _sx),nQ,nE);

%++x compute elementwise integral mean of phi
phi _-mean = phi _sx*quad _weights *0.5;

%+x compute vector of (squared) element —widths
h = sum((a —b)."2,2);

%+ compute oscillation terms
osc sx = (phi _sx — repmat (phi _mean,1,nQ))."2;
osc = 0.5 *h. »(osc _sx=*quad _weights);

6.4. Computation of Data Oscillations for Neumann Data (Listing 13). Instead of
solving the correct variational form (6.5), we solve

(6.16) (ug, v)was = ((1/2 = K"Y®;, v)p for all v € HY*(D)

with perturbed right-hand side, where we use the approximation ®, &~ ¢. Analytically, the error
between the exact solution v € H'/?(T") of (6.5) and the exact solution uy € H'/?(T') of the
perturbed formulation (6.16) is controlled by

1/2
(6.17) b= uelhws < llhg (6 = ®o)l2r)y = osex
see [AGP]. We now aim for a numerical approximation of the local contributions
osen ((Ej) = [lhy/*(¢ — ®0)l|p2(z,) = length(E;)Y2 ¢ — pjll 2,y for all E; € &,

where —as for the computation of the right-hand side vector b in Section 6.3— p; abbreviates
the integral mean

1
1 ~
(6.18) p; = length / pdl' = /_1 poyjds~ 3 quad,, (¢ 0 ;) =: p;.
Here, we use the parametrization v; : [~1,1] — Ej; from (2.1). Moreover, quad,,(-) denotes the
same quadrature rule as for the computation of the right-hand side vector b which is exact of
order n € N, i.e., quad,,(p) = f}l pds for all p € P"[—1, 1]. With this quadrature rule, the local
Neumann oscillations are approximated by

length(E;)? !
oscxa(B) =tength(E5) [ (o= pyPar = EUEE [ g, pias
’ -
length(E;)? ~ N
(6.19) ~ length(F;)” quady ((¢ o yj — Pj)?) =: osen e(E))>.

2
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With the definition oscy ¢ := (ZjV:1 C;é/(IN’g(Ej)Z)l/z, one can then prove that
‘OSCNJ — (gé/(IN,g’ = O(hn/2+1).

Since oscyy = (’)(h3/ 2), we should thus choose n > 2. For our implementation, we use the
Gauss quadrature rule with two nodes, which is exact for polynomials of degree n = 3. As for
the Dirichlet data oscillations, this choice leads to

losc, ¢ — oscy | = O(h*?), whereas 0SCN ¢ = O(h%/?).

The documentation of Listing 13 simply reads as follows:

The function takes the given mesh & in form of the arrays coordinates  and elements
as well as a function handle phi for the Neumann data.

The Lines 2-25 are identical with those of Listing 12, cf. Section 6.3.

We realize Equation (6.19). Since we are using the same quadrature rule as for the com-
putation of the integral mean, all necessary evaluations of ¢ have already been computed.
Therefore, we derive the necessary evaluations of (¢ — p;)? in Line 31. Multiplication
with the quadrature weights and coefficient-wise weighting with length(E;)?/2 provides the
(N x 1)-array osc such that osc (j) ~ length(E;)||¢ — @g\\%Q(EJ_). More precisely, there

holds osc?w ~2 (Ssv(:?w = z;vzl 0sc (7).

LisTING 14
function err = conput eErr Di ri chl et (coordinates,elements,g,uD)
%+ compute midpoints of all elements
midpoints = 0.5 *( coordinates(elements(;,1),:) + coordinates(elements( 12),) );

%+ compute p = (uD — uDh) at element midpoints
p_midpoints = uD(midpoints) — 0.5 »sum(g(elements),2);

%+ compute p = (uD — uDh) at all nodes
p-nodes = uD(coordinates) - g;

%++ evaluate derivative p' at all elements (left,midpoint,rig ht)
p-prime = [p _nodes(elements) p  _midpoints] *» [-3-11; -113;40 -4]+0.5;

%+ compute Dirichlet error simultaneously for all elements
err = 2 xp_prime.”2  *[1;4;11/3;

6.5. Computation of Reliable Error Bound for ||u —Ug||w+s (Listing 14). We assume
that the exact Dirichlet data satisfy additional regularity u € H'(I'). Let U; € S'(&) be the
(only theoretically computed) Galerkin solution with respect to the non-perturbed right-hand
side (1/2 — K')¢ instead of (1/2 — K')®,. Moreover, let I; denote the nodal interpolation
operator onto S'(&). With the technique from [EFGP, AGP], we obtain

llu = Ufllw+s < Ml = Toullwes < e (w = Tow) [l g2y < llhg' (u = Up)' |l z2qry
as well as
1U7 = Uellw+s < osene,
where oscy ¢ denotes the Neumann data oscillations from Section 6.4. We therefore obtain
lu = Uellws < llu = Ullws + 1U7 = Uellw+s

1/2
< ”hz/ (u — UZ),”LQ(F) + 0sCyy¢ =: €errp ¢ + OSCN ¢
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For the numerical realization of

> 2\ /2 2 12
errp = (ZGII‘D,[(E]‘) ) ,  where errp ¢(FE;)* = length(E}) ||(u — Up) HLQ(EJ_),
j=1
we use the same ideas as for the Dirichlet data oscillations in Section 5.3, where
1

(620) eer7g(Ej)2 =2 /1 ((u — Ug) o ’yj)l(s)z ds ~ quadg((p;-)Q) = éVerj(Ej).

Here, p; € P?[—1,1] is the unique polynomial with p;(—1) = v(a;), p;(1) = v(b;), and p;(0) =
v(m;), where v = u — Uy as well as E; = [aj,b;] and m; = (a; + b;j)/2. Recall that

P (=1) -3/2 +2 —1/2\ [v(aj) -3/2 —1/2 +2\ [v(a))
p;0) | =(-1/2 0 +41/2| [v(imy) | =|-1/2 +1/2 O v(bj)
pj(+1) +1/2 -2 +3/2 v(bj) +1/2 +3/2 =2/ \v(m;)

As we are at last targeted on vectorization, we write the linear system row-wise as
-3/2 —1/2 +1/2
(621) (p;(—l),p;(()),p;(—{—l)) = (v(aj)’ U(bj)’ U(mj)) _1/2 +1/2 +3/2
+2 0 -2

For the numerical quadrature, we use a Newton-Cotes formula with three nodes s € {—1,0,+1}
and corresponding weights wy, = {1/3,4/3,1/3}. The documentation of Listing 14 now reads
as follows:
The function takes the mesh & in terms of coordinates  and elements as well as the
nodal vector g € RY of U, = Zjvzl g;¢; and the function handle uD for the exact solution
u (Line 1).
We first compute all element midpoints (Line 3) and evaluate the solution u — U, at all
midpoints (Line 6) and all nodes (Line 9).
Using (6.21), we provide all necessary evaluations of p’(sx) in form of the (N x 3)-array
p-prime (Line 12).
Finally, Line 15 realizes (6.20), and the function returns the column vector err , where
err (j) = errp(E;)?. In particular, there holds errp ¢ & errp g := (Zj\le err (j))l/Q.

Remark 6.1. In academic experiments, the exact solution u is usually known and has certain
regularity u € H'(T') which only depends on the geometry of I'. As explained before, there holds
lu = Uellw+s < errpe + oscnye,

so that we can control the error reliably. Moreover, the convergence errp ¢ — 0 as £ — oo might
indicate that there are no major bugs in the implementation — since we compare the Galerkin
solution with the exact solution. (]

6.6. Computation of (h — h/2)-Based A Posteriori Error Estimators. In this section,
we discuss the implementation of four error estimators which are introduced and analyzed
in [EFGP] Let & = {e1,...,ean} be the uniform refinement of the mesh &. Let U, € S'(&)
and Ug € 81(&) be the Galerkm solutions of (6.7) with respect to & and Eg and the same
approximate Neumann data ®,, i.e. there holds

(Ue, Viywas = ((1/2 = K')®y, Vi) for all V, € SH(&)
and

U, Viyws = (1/2 = K')®,, Vo)r  for all V; € SY(&).

As for Symm’s integral equation, one can expect

(6.22) lwe = Udllws = |Ue = Uellw+s = 1Ue — Uellw =: e,
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where u € H'/?(T) denotes the exact solution of

(6.23) (ue, v)ywas = ((1/2 = K")®;, v)p for all v € HY*(I).
According to (6.17), (6.22), and the triangle inequality, there holds

(6.24) lu = Uellw+s < llu — wellws + llue = Uellw+s < osene + e

Clearly, the Galerkin solution Ug with respect to S* (Sg) is more accurate than U,. Consequently,
any algorithm will return Ug instead of Uy if Ug has been computed. From this point of view
Uy becomes a side result and leads to unnecessary computational effort. Similar to Section 5,
one can prove that one may replace U; by a cheap (but appropriate) postprocessing I gfjg of (7@.
This leads to some error estimator

(6.25) e ~ 10 — LUgllw s =: 7

which always stays proportional to 7y, indicated by 7y ~ 7y, cf. [EFGP]. To be more precise, I,
denotes the nodal interpolation operator on S(&), which is given by

LU= Us(2)¢e,

z€y

where ICy denotes the set of all nodes of & and where (, denotes the hat-function associated
with some node z € ICy.

As a matter of fact, the error estimators 7, and 7y do not provide any information about the
local errors, i.e., the error |uy — Uy||w+s related to some element E; € &. This is different for
the error estimators py and jip discussed in the following. For instance, one can prove that

1/2
(6.26) e~ pe = by > (U0 — Ue) 2y = (Zleﬂgth (T = U [32(5 ) -

The local contributions
(6.27) p1e(E;) == length(E)Y2(|(Up — Up)'|| 12y for all E; € &

give some measure for the error on FE;.

As the computation of the error estimator 7, the computation of i, requires two Galerkin
solutions U, and (7@. As before, the computation of the coarse-mesh solution U, can be avoided
by use of the nodal interpolant I, gﬁg. One can mathematically prove that

(6.28) e ~ fig == ||hy* (O — LU0 || 2y

In the following subsections, we first discuss the computation of the global error estimators 7,
and 7y from (6.22) and (6.25). Then, we give an implementation of the local error estimators py
and iy from (6.26) and (6.28), where our functions return the local contributions, see e.g. (6.27),
to steer an adaptive mesh-refinement.

Remark 6.2. If we plot the error estimators ng, Ng, e and iy over the number of elements, one
can mathematically predict that the corresponding curves, for a sequence of arbitrarily refined
meshes, are parallel. In mathematical terms, this reads

(6.29) Ne <Te S He < e S e
cf. [EFGP]. Empirically, one observes a very good coincidence of ny and 1y in the sense that the
corresponding curves almost coincide. The same is observed for the curves of g and fip. O

Remark 6.3. Mathematically, the error estimate (6.22) respectively (6.24) involves the so-
called saturation assumption: Assume that we could compute the Galerkin solutions U; and U}

with respect to & and g’g for the non-perturbed variational formulation (6.5), i.e., we formally
use the exact Neumann data ¢ instead of the interpolated data ®, — although the right-hand
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side 1s, in practice, non-computable because of K'¢p. Then, the saturation assumption states
that

(6.30) lw = Ufllw+s < qllu = Ufllw+s

with some uniform and (-independent constant q € (0,1). Put differently, uniform mesh-
refinement leads to a uniform improvement of the discretization error. Provided (6.30), one
can prove that

(6.31) e < Jue — Uellwss < (1 — %) "2 e

We stress that this assumption is somewhat natural and can, for instance, be proven for the finite
element method [DN, FOP]. For the boundary element method, however, (6.30) still remains
open.

Finally, one can prove that (6.30) is sufficient and in some sense even necessary to guaran-
tee (6.24). O

Remark 6.4. In academic experiments, the exact solution u of the hypersingular integral equa-
tion is usually known and has certain reqularity u € H*(T') which only depends on the geometry
of I'. In this case, one can experimentally verify the saturation assumption as follows: In
Section 6.5, we derived

lu = Uellw < errpe+ oscyy.

If the right-hand side has the same convergence behaviour as the error estimator ng + oscy g,
this proves empirically

lu — Uellw < ne + oscwe

and confirms the saturation assumption. O
LISTING 15
function est = conput eEst HypEt a(elements _fine,elements _coarse,father2son,
Wfine,x _fine,x _coarse)
nC = length (x _coarse);
%++  build index field k = idx(j) such that j —th node of coarse mesh coincides
%+ with k —th node of fine mesh
idx = zeros (nC,1);
idx(elements  _coarse) = [ elements _fine(father2son(:,1),1),
elements _fine(father2son(:,2),2) ;
%+ build index field k = mid(j) such that midpoint of ] —th element of coarse

%+x mesh is k —th node of fine mesh
mid = elements _fine(father2son(:,1),2);

%+x compute coefficient vector of (u fine — u_coarse) w.r.t. fine mesh
x fine(idx) = x _fine(idx) — X_coarse;

x fine(mid) = x  _fine(mid) — 0.5 *sum(x _coarse(elements  _coarse),2);
%>+ compute energy ||| u_fine — u.coarse |||"2

est = x _fine' x(W_fine *x_fine);

6.6.1. Computation of Error Estimator ny (Listing 15). In this section, we aim to
compute the error estimator 1, = ||[Uy — Uy|lw+s from (6.22). Let (; denote the hat-function

associated with some fine-mesh node z; € K. Let x € RY and X € R2N be the coefficient
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vectors of Uy, and ﬁg with respect to the canonical bases of S'(&;) and Sl(é\g), ie

N N 2N R
UZ:ZX]'C]' and UgZZijCj.
Jj=1

Similar to Section 5.5.1, there holds S*(&) C S'(&;) which provides a unique vector y € R2V
such that

2N
Ur=>_ 3G
j=1

With the vectors X,y € R2Y, there holds

2N
m =0 = Udlllyys = (Ue = U, Us = Uddwis = D (R = §5) R = $u)(G » Ghwas
Jk=1

=x-9) (W+S)E-9),

where W denotes the matrix of the hypersingular integral operator and S the matrix of the
stabilization term contributions (6.10) with respect to the fine mesh, cf. Section 6. The docu-
mentation of Listing 15 now reads as follows:
The function takes the coefficient vectors x € RY and X € R?Y of the Galerkin solutions
U, and Ug as well as the sum W + S of the hypersingular operator matrix W and the
stabilization term matrix S for the fine mesh Eg stored in Wfine . Besides this, the function
takes the coarse mesh described by the (N x 2)-array elements _coarse and the fine mesh
described by the (2N x 2)-array elements _fine . Finally, the (IV x 2)-array father2son
links the indices of elements F; € £ with the indices of its sons e;, e, € é\g in the sense that
father2son( i) = [ j, k] for E; =e; Uey.
We build an array k = idx(i) such that the i-th node of the coarse mesh coincides with
the k-th node of the fine mesh (Line 7-9).
Furthermore, we build an array K = mid(j)  such that the midpoint of the j-th element
of the coarse mesh is the k-th node of the fine mesh (Line 13).
Then we overwrite successively the vector X by the coefficient vector X — y of Uy — Up. We
first calculate this difference for any node belonging to Iy (Line 16) and in a next step for
any node occurring in ,/C\g\l(:g by interpolating the coarse vector (Line 17).
Finally, the function returns n? = || U, — U, I3+ (Line 20).

LisTING 16
function est = conput eEst HypEt aTi | de(elements _fine,elements _coarse,
father2son,W _fine,x _fine)
nC = max(elements _coarse());
%+« build index field k = idx(j) such that j —th node of coarse mesh coincides
%+ with k —th node of fine mesh
idx = zeros (nC,1);
idx(elements  _coarse) = [ elements _fine(father2son(:,1),1),
elements _fine(father2son(:,2),2) ];
%+ build index field k = mid(j) such that midpoint of ] —th element of coarse

%+ mesh is k —th node of fine mesh
mid = elements _fine(father2son(:,1),2);

%+« build index field [i j] = e2n(k) such that fine —mesh nodes zi and zj are
%++ the nodes of the coarse —mesh element Ek
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e2n = [ elements _fine(father2son(:,1),1) elements _fine(father2son(:,2),2) I;

%+« compute coefficient vector of (1 — | _coarse) =*u_fine w.r.t. fine mesh
x fine(mid) = x  _fine(mid) — 0.5 *sum(x _fine(e2n),2);

x_fine(idx) =

%+ compute energy ||| (1 — | _coarse) xu_fine |||"2

est = x _fine' *(W_fine *x_fine);

6.6.2. Computation of Error Estimator 7y (Listing 16). In this section, we aim to
compute the error estimator 7, which is defined by

ne = Ue — LiUe||w+s-

We adopt the notation of Section 6.6.1 for the computation of 1., namely X € R?" with
2N
Ue= Z X;Gj-
j=1

Let z; € ,/C\g\ng. Then, there are two elements e;, e, € gg being the sons of E; € &, i.e.

E; = ejUey, which share z; as a common node. Since 7, gﬁg restricted to some element E; = e;Uey,
is affine, there holds

(6.32) LU (2) = % (Ieﬁz(zj) + fzﬁe(%)) = % (ﬁz(%’) + ﬁe(%)) ;

where zj, z;, € Ky denote the outer nodes of the elements e, e;.. On the other hand, there holds
IUy(2) = Uy(2) provided that z; € K. Altogether, representing I,U, € S'(&;) with respect to
the fine-mesh &y, we obtain

2N
(6.33) LU =Y Znko,
n=1

where zZ € R?N denotes the coefficient vector. As in Section 6.6.1, there holds
0 = U = LUllfy 45 = (X —2) - (W + S)(X — 2).
Therefore, the documentation of Listing 16 reads as follows:

The functlon takes the coefficient vector X € R?N of the Galerkin solutions Ug as well as
the sum W + S of the hypersingular operator matrix W and the stabilization term matrix
S for the fine mesh Eg stored in Wfine . Besides this, the function takes the coarse mesh
described by the (N x 2)-array elements _coarse and the fine mesh described by the
(2N x 2)-array elements fine . Moreover, the link between & and & is provided by
means of father2son

We first build an array k = idx(i) such that the i-th node of the coarse mesh coincides
with the k-th node of the fine mesh (Line 7-9).

Furthermore, we build an array K = mid(j)  such that the midpoint of the j-th element
of the coarse mesh is the k-th node of the fine mesh (Line 13).

Next we build an array [i j] = e2n(k) such that the fine-mesh nodes z; and z; are the
nodes of the coarse mesh elements Ej, (Line 17).

We successively overwrite X by the coefficient vector X —z € R?Y of ﬁg —1 gﬁg (Line 20-21).
Finally, the function returns 77 = || U, — 1,U, I3 s (Line 24).

LISTING 17

function ind = conput eEst HypMu(elements _fine,elements _coarse,father2son,
x _fine,x _coarse)
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nC = length (x _coarse);

%+« build index field k = idx(j) such that j —th node of coarse mesh coincides
%+ with k —th node of fine mesh

idx = zeros (nC,1);

idx(elements  _coarse) = [ elements _fine(father2son(:,1),1),

elements _fine(father2son(:,2),2) ];

%++  build index field k = mid(j) such that midpoint of ] —th element of coarse
%+ mesh is k —th node of fine mesh
mid = elements _fine(father2son(:,1),2);

%++x compute coefficient vector of (u fine — u_coarse) w.r.t. fine mesh
x fine(idx) = x _fine(idx) — X_coarse;

x fine(mid) = x  _fine(mid) — 0.5 *sum(x _coarse(elements  _coarse),2);

%+ compute h"2 = |(u _fine — u_coarse)' |2 for all fine —mesh elements
%+ where h denotes the diameters of the fine —mesh elements

grad = (x _fine(elements fine) =*[—-1;1])."2;

%+x compute (squared) indicators w.r.t. coarse mesh as describ ed above
ind = 2 =( grad(father2son(:,1)) + grad(father2son(:,2)) );

6.6.3. Computation of Error Estimator py (Listing 17). In this section, we discuss the
implementation of

N
i =Y (B, where ju(E;)* :=length(E;)|(Ur — Up)|[72 (-
=0

Actually we calculate the squared entries uy(E;)? for all E; € &.
We adopt the notation of Section 6.6.1, namely X,y € R?V with

2N 2N
UgZZQjCj and U€:Z§jCj-
Jj=1 J=1

For fixed E; € £ and sons ej, e;, € (‘:’\g with E; = e; U e, we obtain
~ ~ 2 2
|G = U ooy = [ |@e=vo| ar = [ d”/ek

€j
As (U,—Uy) € SY(E,) is piecewise affine, its arc-length derivative (U —Uy;) € P%(&) is piecewise
constant. Consequently, the above formula reduces to

(Uy — U,)'| dr.

~ 2
(Ue—Up) ‘

) N 2
+ length(ey) ‘(Uz —Up)|ex

'y

1@ = U 1325, = length(e;) | (@ = U .,

_ length(E;)
B 2

~ 2 —~
< ‘(Uz —Up)'le;| + ‘(Uz —Up)'e,

With e; = [zj,, 2j,] € &y, we obtain
N . 2
2 |@e= U0 (zi) = (T = Unz)

- length(e;)?

‘((7@ —U)'le;

This implies

630 (B = 2|0~ Uz5) — @~ U3 |[ + |0 = U ) — @ = U ov)

Altogether, the documentation of Listing 17 reads as follows:
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As input arguments, the function takes the mesh &, represented by the (N x 2)-array
elements _coarse , the mesh & represented by the (2N x 2)-array elements fine | the
link between & and é\g, and the coefficient vectors x € RY and X € R?V of the Galerkin
solutions Uy and Uy (Line 1-2).

We overwrite the vector X by coefficient vector X —y of (75 — Uy in exactly the same way as
we did in Section 6.6.1 for the error estimator 7, (Line 7-17).

1/\Iext (Line 21), we compute the coefficient vector of the squared arc-length derivative of

Uy — Uy multiplied by the diameter of the fine-mesh elements to avoid needless computations.
Finally (Line 24), the function realizes (6.34) and returns the vector

vi= (w(Er)?, .. p(En)?) € RY

so that uy = (Zfil Vl-)l/Q.

LisTiNG 18
function ind = conput eEst HypMuTi | de(elements _fine,elements _coarse,
father2son,x  _fine)
nC = max(elements _coarse());
%+« build index field k = idx(j) such that j —th node of coarse mesh coincides
%+ with k —th node of fine mesh
idx = zeros (nC,1);
idx(elements  _coarse) = [ elements _fine(father2son(:,1),1),
elements _fine(father2son(:,2),2) ];
%+ build index field k = mid(j) such that midpoint of ] —th element of coarse
%+ mesh is k —th node of fine mesh
mid = elements _fine(father2son(;,1),2);
%+« build index field [i j] = e2n(k) such that fine —mesh nodes zi and zj are
%++ the nodes of the coarse —mesh element Ek
e2n = [ elements _fine(father2son(:,1),1) elements _fine(father2son(:,2),2) 1;
%+« compute coefficient vector of (1 — | _coarse) =*u_fine w.r.t. fine mesh
x _fine(mid) = x  _fine(mid) — 0.5 »sum(x _fine(e2n),2);
x fine(idx) = O;
%+ compute h"2 | (1 — I _coarse) =*u_fine) |"2 for all fine —mesh elements
%+ where h denotes the diameters of the fine —mesh elements

grad = (x _fine(elements fine) =*[—-1;1])."2;

%+x compute (squared) indicators w.r.t. coarse mesh as describ ed above
ind = 2 =( grad(father2son(:,1)) + grad(father2son(:,2)) );
6.6.4. Computation of Error Estimator p, (Listing 18). In this section, we finally aim
to compute
N AN A~
7 =y f(E:)?,  where [ig(E;)? := length(E;)||(Up — LU |12,
i=0

We

adopt the notation of Section 6.6.1, namely X € R?" with
2N
Ur=> %;¢
j=1
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Based on the same ideas as for the realization of the local contributions from the preceding
Sections 6.6.2 and 6.6.3, a concise documentation of Listing 18 reads as follows:

The function takes the meshes &£ and gg, the link between &, and é\g, and the coefficient
vector X € R2V of Uy (Line 1-2).

Adopting the ideas of Section 6.6.2, we compute the coefficient vector of (7@ -1 gfjg (Line 7—
21).

According to Section 6.6.3, we compute the local contributions length(ej)2|(ﬁg — LU,))?
for all elements e; € & (Line 25).

Finally (Line 28), the function returns the vector

vi= ((E1)?,. .. e(En)?) € RY.
In particular, there holds iy = (Z@]L vi)1/2.

6.7. Adaptive Mesh-Refinement for Hypersingular Integral Equation.

Usually computing time and memory requirements are limiting quantities for numerical simu-
lations. Therefore, one aims to choose the mesh such that it is coarse, where the (unknown)
solution is smooth, and fine, where the (unknown) solution is singular. Based on a local error
estimator, e.g. iz, such meshes are constructed in an iterative way. In each step, one refines
the mesh only locally, i.e. one refines elements F;, where the error appears to be large, namely,
where the local contributions i,(E;) are large. For the error estimator i, from Section 6.6.4, a
possible adaptive algorithm reads as follows:

Input: Initial mesh &, Neumann data ¢, adaptivity parameter 0 < 8 < 1, maximal number
Niax € N of elements, and counter £ = 0.

(i) Build uniformly refined mesh &.

(i) Compute Galerkin solution Uy € S'(&).
(iii) Compute refinement indicators fig(E)? and oscillation terms oscy ¢(E)? for all E € &.
(iv) Find minimal set My C & such that

(6.35)  0(7 +osck) =60 > (ME)2 + oschg(E)Q) <y (;zg(E)Q + osch(E)Z).

Ee& EeM,

(v) Refine at least marked elements E € M, and obtain mesh &1 with k(Ep1) < 26(Ep).
(vi) Stop provided that #&p11 > Npax; otherwise, increase counter ¢ — ¢+ 1 and go to (i).

Output: Adaptively generated mesh é\g and corresponding discrete solution ﬁg es 1(5@)

The marking criterion (6.35) has been proposed in the context of adaptive finite element
methods [D]. Let formally Nyax = 0o so that the adaptive algorithm computes a sequence of
discrete solutions ﬁg (or even Uy, although this is not computed). With the same techniques as
in [FOP], one can prove that the saturation assumption (6.30) implies convergence of U, and
Uy to u, provided that the right-hand side ¢ is not disturbed, i.e., = ®,. The same result also
holds for iy replaced by .

In [AFP], we changed the notion of convergence and proved that for certain error estimators —
amongst them are j1p and pp for Symm’s integral equation — the adaptive algorithm guarantees
limy 11, = 0. This concept is followed in [AGP] to prove that the adaptive algorithm for Symm’s
integral equation stated above, yields limg(ﬁl?—i—osca ;) = 0. The same ideas are applicable to the
hypersingular integral equation. Therefore, if the saturation assumption (6.30) holds (at least
in infinitely many steps), we obtain convergence of Uy to u due to [u — U, ¢ < 117 + OSC?\LK.

LisTING 19
% adaptiveHypsing provides the implementation of an adapti ve mesh—refining
% algorithm for the hypersingular integral equation.
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%+ maximal number of elements
nEmax = 100;

%+ adaptivity parameter

theta = 0.25;

rho = 0.25;

%+ adaptive mesh —refining algorithm

while  size (elements,1) < nEmax

end

%+ build uniformly refined mesh
[coordinates _fine,elements _fine,father2son]
= refi neBoundar yMesh(coordinates,elements);

%++x compute fine —mesh solution
Wfine = bui | dWcoordinates  _fine,elements _fine)
+ bui |l dHypsi ngSt abi | i zati on(coordinates  _fine,elements _fine);
b_fine = buil dHypsi ngRHS(coordinates  _fine,elements _fine,@phi);
x_fine = W _fine \b_fine;

%+ compute (h —h/2) —error estimator tilde —mu
mutilde =  conput eEst HypMuTi | de(elements _fine,elements,father2son,
x fine);
%+ compute data oscillations
osc _-fine = conput eCscNeurmann(coordinates  _fine,elements _fine,@phi);
osc = osc _fine(father2son(:,1)) + osc _fine(father2son(:,2));

%+ mark elements for refinement
marked = nmar kEl enent s(theta,rho,mu _tilde + osc);

%+ generate new mesh
[coordinates,elements] = r ef i neBoundar yMesh(coordinates,elements,marked);

6.7.1. Implementation of Adaptive Algorithm (Listing 19). The MATLAB script of
Listing 19 realizes the adaptive Algorithm from the beginning of this section.

We use the adaptivity parameter § = 1/4 in (6.35) and mark at least the 25% of elements
with the largest indicators (Line 8-9). The marking criterion is explained in Section 4.1.
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7. MIXED PROBLEM

Continuous Model Problem. Let I' = 92 be the piecewise affine boundary of a polygonal
Lipschitz domain Q C R?. We assume that I' is split into two disjoint and relatively open sets
I'p and I'y with I’ = 'y UT p. Moreover, we assume positive surface measure ITp| > 0 to avoid
treating the pure Neumann problem from Section 6. For given Dirichlet data up € HY 2(I'p)
and Neumann data ¢y € H~1/2 (I'n), we consider the mixed boundary value problem

—Au = 0 in €,
(7.1) u = wup onlp,
O = ¢y only.

For the equivalent integral formulation of (7.1), we choose (and fix) arbitrary extensions
Up € HY2(I') and ¢, € H'/?(T') of the given data from T'p resp. T'y to the entire boundary
I". The missing boundary data, which have to be computed, are

(7.2) uy :=u—7up and ép = du — Py.

One can show that this definition yields uy € HY/2(I'y) and ¢p € H™Y/2(T'p).
Let V denote the simple-layer potential, K the double-layer potential with adjoint K’, and
W the hypersingular integral operator. With the so-called Calderén projector

-K Vv
which is an operator matrix, the unknown data uy and ¢p satisfy the following system of
integral equations

(7.4) A (Zg ) — (1/2— A) (gﬁ — F

One can prove that (7.4) is, in fact, an equivalent formulation of the mixed boundary value
problem (7.1). With the spaces

(7.5) H:=H'Y?(Ty) x HY*(Ip) and H*:= HY/?>(Tp) x HY?(Iy),

one can show that A : H — H" is a linear and continuous mapping. Moreover, H* is the dual
space of H with duality understood via the formula

(7.6) ((vp,¥N), (ON, YD) x1 = (YN, vN)Ty + (¥D, vD)Tp

for all (vn,v¥p) € H and (vp,¥n) € H*, where the duality brackets (-, -)r, and (-, -)r, on
the right-hand side denote the extended L?-scalar products. Now, the operator A induces a
continuous bilinear form on H via

((un,¢p) s (vn,¥D))a : = (Alun, ¢p) , (VN,¥D))H*xH
= (Wun + K'¢p, vn)ry + (=Kuy +Vép, ¥p)ry-

Note that this bilinear form is non-symmetric because of the entries —K and K’ on the right-
hand side. Nevertheless, the definition

(7.8) I(un, ¢D)lI% = {(un. ép) . (un, ¢p))a = (Wun . un)ry +(Vén, ép)rp

provides a norm on H which is equivalent to the usual product norm. Therefore, the bilinear
form ((-,-)) 4 is uniformly elliptic, and we are in the framework of the Lax-Milgram Lemma.
Consequently, the variational form of (7.4)

(7.9) ((un, D), (vn,¥p))a = (F, (vn,¥D))H=xn for all (vn,9¥p) € H

has a unique solution (uy, ¢p) € H. To abbreviate notation, we will now use the vector-valued
unknown u := (un, ¢p) € H.

(7.7)
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Mesh Restriction and Discrete Spaces. Let & be a mesh of I'. By definition, & then
resolves I'p and 'y, cf. Section 1.1. Consequently,

Eilry, = {E c&  EC fD} and &lry = {E c&  EC fN}

define meshes of I'p and I'y, respectively. By now, we have thus defined the discrete spaces
PUE), PY(Edry), PO (Erlry), SH(E), SH(Eelrp ), and SY(Elry ). In addition, we now define the

discrete space
So(Elry) = {Vilry : i € S'(&) with Vi|r, = 0},

ie., Vi € S¢(&lry) is a continuous and piecewise affine function which vanishes at the tips of
I'y. One can then show, that S§(&|r,) is a discrete subspace of HY/?(I'y), whereas P%(&|r,,)
is a subspace of H=1/2(T'p).

Extension of the Given Dirichlet and Neumann Data. By Definition (7.2), the solution
u = (un, ¢p) of (7.9) depends on the chosen extensions up of up and ¢ of ¢pn. We assume
additional regularity

(7.10) up € H'(Tp) ¢ HY?(T'p) and ¢y € L}(Ty) € H Y2(Ty).

Let & be the initial mesh for our numerical computation. We then define ¢, € L?(I") by
(7.11) onlry =én and  ¢nlr, =0

as well as up € HY(T) by

(7.12) Uplr, =up and Tplry € S'(&olry) with Tp(z) =0 for all z € Ko N Ty.

As a consequence of the inclusion H(T") € C(T'), this extension is unique.

Galerkin Discretization. Let & = {Fj,...,Ex} be a mesh of I' obtained by certain re-

finements of the initial mesh &. To discretize (7.9), we replace the continuous Dirichlet data
up € HY(T') Cc C(T') by the nodal interpolant

N
(7.13) Upe:=Y Tp(z)¢ € S' (&) C HI(T)
j=1

and the Neumann data by its L?-projection

1 _

7.14 Dy ePYUE), Pnilp = —— dl' =: p;.
(7.14) Ne €PE), Pnylm Tongth(E7) /E On jof
With the vector g; := up(z;), this leads to the representations

N N N
(7.15) Upe=Y gl and ®yy=> pixi= Y. DPjX;
i=1 i=1 j=1
E;CTyN

Here, the representation for ®y ¢ shrinks to a sum over all elements on the Neumann boundary
by definition (7.11) of the extended Neumann data. The representation of Up ¢, however, takes
into account all nodes. This is due to the fact that the extension wp of up has to be continuous.
This leads to supp(zp) NT'y # 0 in general. Restricting the sum for Up to Dirichlet nodes,
would thus correspond to a change of the extension wp, whence the first component upy of the
solution u € H in every step /!

We now consider the lowest-order Galerkin scheme and replace H by the discrete space

(7.16) Xo = 85 (Elry) x PU(Er,) CH.

Altogether, this leads to the following discrete version of the integral equation (7.4): Find
U, € X, with

(7.17) <<Ug ,Vg>>,4 = <Fg, Vg>7-[* <H for all Vg S Xg,
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where the approximated right-hand side is given by

(7.18) Fy:=(1/2 - A) (?1) .

Nt

We use (7.18) here because the right hand side of (7.4) can hardly be evaluated numerically. In
order to write (7.17) as a linear system of equations

(7.19) Ax = b,

we have to fix a basis of the discrete space Xy:

Let & = {E1,...,Ex} and assume that T'p = U;lzl E;. Then, {x1,...,xn} is a basis of
PY(&) and {x1,...,xa} is a basis of P°(&|r,).

Let K¢ = {z1,...,2n} and assume that {z1,...,2,} = K, NTx. Then, {(1,...,(n} is a
basis of SY(&) and {C1,..., ¢} is a basis of S§(Elry)-

In particular, {(¢1,0),...,(¢n,0),(0,x1),-..,(0,xq)} is a basis of Xy, and we fix this order-
ing for the implementation.

With this basis, the assembly of the the Galerkin data A € R(tdx(ntd) gnd p e R
from (7.19) reads as follows: According to Linear Algebra, the Galerkin system (7.17) holds for
all V, € X if it holds for all basis functions ({j,0) and (0, xx) of X,. Consequently, we need to
compute the vector

(7.20) b e R where b;:= (Fy, ((j,0)1xrs  bryr = (Fr, (0, k)2 3,

forall j =1,...,n and k = 1,...,d. Recall the matrices M, K € R¥*¥ defined in (5.8) and
the matrix W € RV*¥ from (6.10). With the data representation (7.15), there holds

bj = (—WUpe+ (1/2 - K'®ny, )r

L)

J

where we have finally used the symmetry of W. Now, also recall the matrix V. € RN*N
from (5.8). The same type of arguments leads to

bir =(1/2+ K)Upy—V®Ny, Xi)T

1
=5 Upes xi)r + (KUpe, xir = (VO Xk)r
LN N N
=3 > gl xir + Y si(EG, xer — Y pi(VXi, Xe)r
i—1 i—1 i—1
- (11\/1 FKg-V )
—\3 g g | & .

For the right-hand side vector b, we thus obtain the short-hand notation

(7.21) b= ((% p"M - p’K —g"W)" IrN> _
(3 Mg +Kg -~ Vp) [r,,
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To compute the entries of the Galerkin matrix A, we proceed in the same way. With the

coefficient vector x € R"™% of the ansatz

n d
Uy = (Une,®pe) € X, Une =Y %XiGi, ®pe= Y XniiXis

i=1 i=1
it is easily seen that the entries of A read
Aij = ((6,0), (¢ 0))a, Aintk = ((0,xk), (¢, 0)) a,
Aniki = (¢, 0), (0, xk)) 4, Antrntm = (0, Xm) , (0, X)) 4,
foralli,j=1,...,nand k,m =1,...,d. Now, a direct computation leads to
Aij = ((¢,0), (G, 0))a = (A(G5,0), (¢, 0)) = (=K¢, W), (6, 0))
= (WG, G)
Ainre = (0,xx), (G, 0))a = (A0, xk), (¢:,0)) = (Vxe, K'x), (G, 0))
= (K'xk, G)
Anikg = ((G,0),(0,xk))a = (A6, 0), (0,xk)) = (K&, W), (0,xx))
= —(KG, xk)
Apiintm = ((0,xm) (0, X)) a = (A0, xm) , (0,x%)) = ((VXms K'x2) , (0, x2))
= (Vxm » Xk)-
Altogether, we obtain the short-hand notation
Wiryxry Kllryxrp ).  ((2p™™ — pTK — gTW 4 N
(v22) <—K‘!errN V!‘erFD ) T <(2 IE% Mg JIr)Kg —fifp) !)FD|F )

for the linear system (7.19)

LIiSTING 20
function [b1,b2] =  bui | dM xedRHS(coordinates,dirichlet,neumann,g,V,K,W,uD,phiN)
nD = size (dirichlet,1);
nN = size (neumann,l);
nE = nD + nN;
elements = [dirichlet;neumann];
Y%++  arbitrary quadrature on [ —1,1] with exactness n >= 2, e.g., gauss(2)
quad _nodes = [ —1 1]/ sqrt (3);
quad _weights = [1;1];
%+ the remaining code is independent of the chosen quadrature r ule
nQ = length (quad _nodes);
%+«  build vector of evaluation points as (nQ *nNN X 2) —matrix
a = coordinates(neumann(:,1),:);
b = coordinates(neumann(:,2),:);

sx = reshape (a,2 *nN,1) *(1 —quad_nodes) + reshape (b,2 *nN,1) *(1+quad _nodes);
sx = 0.5 xreshape (sx',nQ =*nN,2);

%+ phiN(sx) usually depends on the normal vector, whence phi ta kes sx and the
%+ nodes of the respective element to compute the normal

a_sx = reshape (repmat (reshape (a,2 *nN,1),1,nQ),nN *nQ,2);

b_sx = reshape (repmat (reshape (b,2 *nN,1),1,nQ)',nN *nQ,2);

%+« perform all necessary evaluations of phi as (nE x nQ) —matrix
phi _sx = reshape (phiN(sx,a _sx,b _sx),nQ,nN)’;
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%++x compute vector p of elementwise integral means of Neumann da ta phiN
p = zeros (nE,1);
p(nD+1:nE) = (phi  _sx*quad -weights *0.5)";

%++ update vector g of nodal values of Dirichlet data on Dirichle t boundary
g( unique (dirichlet)) = uD(coordinates( unique (dirichlet),:));

%+x compute mass —type matrix for PO x S1

h = sqgrt (sum((coordinates(elements(:,1),:) —coordinates(elements(:,2),:)).”2,2));
I = reshape ([1:nE;1:nE],2 *nE,1);

J = reshape (elements',2 *nE,1);

A = reshape (0.5 *[h h],2 =*nE,l);

M = sparse (1,J,A);

%+ compute full right —hand side
bl = (05 »p'*M— p' *K — g *W)}
b2 = Mkgx0.5 + K*g — Vxp;

7.1. Build Right-Hand Side Vector (Listing 20). To compute the vector b from (7.19),
we first recall the representation of b in (7.22). In the routine for the computation of b, we
choose to compute

T
(7.23) <b1> - ( (3p'M —g"W - p'K) " |r, ) .
b, (3Mg+Kg - Vp)|r,

The documentation of Listing 20 reads as follows:

As input, the function takes the mesh &, described in terms of coordinates | dirichlet
and neumann, where the last two arrays represent the Dirichlet and Neumann part of the
boundary. The vector g contains —at least for all nodes z; € Ky NI'y on the Neumann
boundary— the nodal values of up, i.e., g(j) = up(z;). The matrices V, K, and Ware the
matrices for the simple-layer potential, the double-layer potential, and the hypersingular
integral operator for the mesh &;. Finally, the function handles uD and phiN provide the
Dirichlet and Neumann data with the same conventions discussed above.

Recall that we have chosen an ordering of the elements such that elements on the Dirichlet
boundary are taken into account first. This is realized in Line 5.

First (Line 8-30), the coefficient vector p of the approximate Neumann data ®y, = Iy
is computed. Details are discussed in Section 6.4.

In Line 33, the approximate Dirichlet data are updated on all Dirichlet nodes.

Next, the mass-type matrix Mis computed (Line 36-40), cf. Section 5.2 for details.

Finally (Line 43-44), the right-hand side vectors bl and b2 are computed.

LISTING 21

function g = buil dM xedDi ri chl et (coordinates,dirichlet,neumann,
father2neumann,neumann  _old,g _old,uD)

nC = size (coordinates,1);

%++ prolongate Dirichlet data on Neumann boundary
g = zeros (nC,1);

g(neumann(father2neumann(:,1),1)) = g _old(neumann _old(:,1));
g(neumann(father2neumann(:,2),2)) = g _old(neumann _old(:,2));
g(neumann(father2neumann(:,1),2)) = 0.5 *sum(g -old(neumann _old),2);

%++ evaluate Dirichlet data on Dirichlet boundary
g( unique (dirichlet)) = uD(coordinates( unique (dirichlet),:));
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7.2. Prolongation for Mixed Problem (Listing 21). The solution uy depends on the
chosen extension up € H'(T"). We start with a coarse mesh &y and choose the extended Dirichlet
data Tp to satisfy Up|ry € S'(E|ry) with Tp(z;) = 0 for all nodes z; € Ky NT'y. We stress
that for all subsequent meshes, which arise by mesh refinement, this extension must not be
changed! This is realized in the following way: The data Up , is the point evaluation of up on
the Dirichlet boundary I'p, whereas on the Neumann boundary I'y it is just the prolongation
of Up¢—1 to the mesh &.

It is the purpose of the function bui | dM xedDi ri chl et in Listing 21 to perform the
described prolongation. A description of this function reads as follows:

The function bui | dM xedDi ri chl et takes the following input: The mesh & is described
by the arrays coordinates , dirichlet , and neumann. The array neumann_old is the
Neumann part of the mesh £_; and the link between &_1|r, and &|r, is given by the
array fatherzneumann . The vector g-old provides the nodal values of Up ¢_1, and uD
is a function handle for the Dirichlet data up.

The output is the vector g, which contains the nodal values of Up 4.

On the Neumann part of the boundary, two cases are distinguished: If a node z; of the
mesh & was also a node of &_1, i.e. z; € Ky_1 NIy, there holds Up ¢(z;) = Up ¢—1(%) (Line
7-8). If a node z; of the mesh & is a new node, i.e. z; € K;\Ky_1, it is thus the midpoint
of some element E = [zj, 2] of &_1. Then, Up¢(2) = (Upe—1(2j) + Upe—1(2x))/2 (Line
9).

On the Dirichlet part of the boundary, g is just the nodal evaluation of up (Line 12).

LISTING 22
function [coordinates,dirichlet,neumann] = bui | dM xedEl enent s(coordinates,
dirichlet,neumann)

%++ determine nodes on Dirichlet and Neumann boundary
nC = size (coordinates,1);

nodes _neumann = unique (neumann);

nodes _dirichlet = setdiff  ((1:nC)',nodes _neumann);

%+ build permutation such that Neumann nodes are first
nodes = [nodes _neumann;nodes _dirichlet];
[foo,permutation] = sort(nodes);

%+ permute indices of nodes
coordinates(permutation,:) = coordinates;
neumann = permutation(neumann);
dirichlet = permutation(dirichlet);

7.3. Sort Mesh for Mixed Problem (Listing 22). As described above, we order the
degrees of freedom in the form

B:= {(Cla 0)7 ceey (Cn70)7 (07X1)7 R (07Xd)}7

where {((1,0), ..., (Cq,0)} is a basis of S¢ (&|ry ) and {(0,x1), - - -, (0, xa)} is a basis of P°(E|r ).
For SY(&ry) € HY?(T'y) we aim to benefit from the functions already written for the
hypersingular integral equation. To do so, we have to embed S}(&|r ) into SY(&|r, ). We thus
enforce an ordering of the nodes such that {z1,...,2,} =K, NTxy = K\ p, ie., {C1,.. 0, Cm}
is a basis of S*(&|r,) and, in particular, n < m. Note that for T'y connected, there holds
m=mn-+2.
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The described ordering of the nodes enforces to do some reordering of the array coordinates
and to adapt the indices in dirichlet and neumann. Both subjects are done by the function
bui | dM xedEl enent s.

7.4. Computation of Data Oscillations for Mixed Boundary Data. Instead of the
correct variational form (7.9)
(u,v)a=(F, V)prxn forallveH

with solution u = (un,¢p) € H and test functions v = (vy,¥p) € H, we solve the perturbed
formulation

(7.24) (ug,v)a = (Fp, V)n=xn forall veH.
In [AGKP], we prove that the error between the continuous solutions u,uy; € H is controlled by
lu—wella < 1@p = L@l gy + én — Wedn | r-172ry
< M1y (@@p — L) [l 2y + Iy (Gx = e ey
= Ihg* @p — Ip) | 2r,) + g @ = el 22
= Ihg* (up = Teup) ) + g (O = Tedw) 2
=!0SCpy + 0SCN ¢

where we have used the definition of the chosen extensions ¢, and 7p. Since the Dérfler
marking below uses Hilbert space structure for the indicators, we rewrite the latter estimate in
the form

lu — ugmi < OSC%M + osc?w =: osc%.

Note that the right-hand side is computable, and the implementation of oscp ¢ and oscy ¢ has
already been discussed in Section 5.3 and Section 6.4.

7.5. Computation of Reliable Error Bound for [Ju—Uglla. We assume that the exact
solution has additional regularity u = (un,¢p) € H(I'n) x L*(Tp). Let U} € X; be the
(unknown, but existing) Galerkin solution with respect to the exact right-hand side F' instead
of Fy. As in the previous section, one can prove that

IU; — Uilla S osee.
Moreover, the exact Galerkin solution is quasi-optimal. Therefore,
= Ulla S Buw — Leunllwe) + 160 — Teplly ) = ere + e,
Altogether, we obtain
Jlu— Ul S err? +osc? with err? = err%w + err?\,’g.

Note that the computation of erry, and errp, has already been discussed in Section 5.4 and
Section 6.5.

7.6. Computation of (h — h/2)-Based A Posteriori Error Estimators. Note that the en-
ergy norm ||| 4 induced by the Calderén projector A can be written in terms of the energy norms

Il - vy and || - [lwry) induced by the simple-layer potential V' € L(H-Y2(p); HY/2(I'p))

and the hypersingular integral operator W € L(H'Y2(Py); H-Y/2(T'y)). According to (7.8),
there holds

I(un, oD)A = Nun iy o) + I 17 -

For a posteriori error estimation, we may therefore use the estimators introduced above. Suppose
that

~

U;= (Une,Ppe) € X and U, = (ﬁN,Za ‘/ISD,Z) € Xy
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are Galerkin solutions with respect to the mesh & and its uniform refinement gg As in Sec-
tion 5.5, we define the following four error estimators for the part of the simple-layer potential:

o= [®pe — Ppellvry), np,e = |®pe — We@pellv(ry),

1/2 /= ~ 1/2 = -
upe = lhy*@pe — ®p.o)l L2, e = > (@pe — L@ po) | L2(r,)-

In analogy to Section 6.6, we define the following four error estimators for the contribution of
the hypersingular integral operator:

nn.e = [[UNe = Unellwry)s nne = Ung — LUNellw )
12,5 . 12,7 ~
KN = Hh/ (Unye — Une)'ll2(rw) HN = Hh/ (Unye = IiUn ) | 2(r -

Consequently, we obtain (at least) four a posteriori error estimators for the mixed problem:
2 2 2 ~2 . ~2 ~2
Mg =MD+ NN Mg == MNpe T NN
HE = 1he + M fie? = ip g+ AR
We remark that the implementation of these error estimators has already been discussed above.
With the analytical techniques from [FP, EFFP] and [EFGP], we prove in [AGKP] that there
holds equivalence
e SN S fe < pe S e
Moreover, there holds efficiency in the form
e S la—Ugfla + osce.

The constants hidden in the symbol < depend only on I'" and k(&;). Under a saturation as-
sumption for the non-perturbed problem, there holds also reliability

(7.25) lu = Uefla < ne + osce.

To steer an adaptive mesh-refining algorithm, it is therefore natural to use one of the combined
error estimators

0f = p +osc} = (up ¢ + 0sch 1) + (i +0sciy ),
0f = [if +osc} = (jip,, +0sch o) + (i + 0schy ).

For the same reasons as above, the usual choice is g, since it avoids the computation of the
coarse-mesh Galerkin solution Uy € X, but only relies on local postprocessing of Uy.

7.7. Adaptive Mesh-Refinement. For E; € & = {F1,...,En}, we consider the refinement
indicators
~ 2 2 . =
- (E;)* 4+ oscpy(E; if £, CTI'p,
(726) QE(E]')Q — /iD, ( ])2 D, ( J)2 . J -
MN,E(Ej) + OSCN74(EJ') if Ej CTI'n.

Note that there holds
N
(7.27) or = ou(E;).
j=1
With this notation, the adaptive algorithm takes the same form as before:

Input: Initial mesh &, Dirichlet data up, Neumann data ¢y, adaptivity parameter 0 < 0 < 1,
maximal number Ny.x € N of elements, and counter £ = 0.

(i) Build uniformly refined mesh &.
(ii) Compute Galerkin solution U, € X,.

(iii) Compute refinement indicators gy(E)? for all E € &,.
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(iv) Find minimal set My C & such that

(7.28) of =0 a(E)’< ) w®E)?
Ee& EeMy
(v) Refine (at least) marked elements E € M, and obtain mesh £y with k(Ep11) < 26(&)).
(vi) Stop provided that #&p11 > Npax; otherwise, increase counter ¢ — ¢+ 1 and go to (i).

Output: Adaptively generated mesh é\g and corresponding discrete solution ﬁg €X /.

The marking criterion (7.28) has been proposed in the context of adaptive finite element
methods [D]. Let formally N, = oo so that the adaptive algorithm computes a sequence of
discrete solutions Uy (or even Uy, although this is not computed). Based on (7.25), which holds
under a saturation assumption for the non-perturbed problem, we can show with techniques
introduced in [FOP] the convergence of U, and Uy to u, provided that the right hand side
(up, ) is not disturbed, i.e., (up,¢n) = (Upe, Pn ).

In [AFP], we changed the notion of convergence and proved that for certain error estimators
— amongst them are piy and py for Symm’s integral equation — the adaptive algorithm guar-
antees convergence limy iy = 0. This concept is followed in [AGKP] to prove that the adaptive
algorithm for the mixed problem stated above, yields limy gy = 0. Therefore, if the saturation
assumption holds (at least in infinitely many steps), we obtain convergence of Uy to u due to
Ju— U2 S o

LisTING 23
% adaptiveMixed provides the implementation of an adaptive mesh-—refining
% algorithm for the symmetric integral formulation of a mixe d boundary value

% problem.

%++ rearrange indices such that Neumann nodes are first
[coordinates,dirichlet,neumann] =
bui | dM xedEl enent s(coordinates,dirichlet,neumann);

%+ initialize Dirichlet data
g- = zeros (size (coordinates,1),1);
g-(unique (dirichlet)) = g(coordinates( unique (dirichlet),:));

%+« maximal number of elements
nEmax = 100;

%++ adaptivity parameter
theta = 0.25;
rho = 0.25;

%+« adaptive mesh —refining algorithm
while  (size (neumann,1l)+ size (dirichlet,1) < nEmax )

%+ refine mesh uniformly

[coordinates _fine,dirichlet _fine,neumann _fine,
father2dirichlet,father2neumann]
= refi neBoundar yMesh(coordinates,dirichlet,neumann);

%+ rearrange indices such that Neumann nodes are first
[coordinates,dirichlet,neumann] =
bui | dM xedEl enent s(coordinates,dirichlet,neumann);

%+ prolongate Dirichlet data to uniformly refined mesh
g-fine = buil dM xedDi ri chl et (coordinates  _fine,dirichlet _fine,neumann  _fine,
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father2neumann,neumann, g _,@q);

%+ compute integral operators for fine mesh

elements _fine = [dirichlet _fine;neumann  _fine];

V_fine = buil dV(coordinates  _fine,elements _fine);
K_fine = bui | dK(coordinates _fine,elements _fine);
Wfine = bui | dWcoordinates _fine,elements _fine);

%+ compute right —hand side for fine mesh

[b1l _fine,b2 _fine] = buil dM xedRHS(coordinates  _fine,dirichlet fine,
neumann_fine,g _fine,V _fine,K _fine,W _fine,
@g,@phi);

%+ compute degrees of freedom for fine mesh

nC_fine = size (coordinates _fine,1);

nD_fine = size (dirichlet _fine,1);

freeNeumann _fine = setdiff (1:nC _fine, unique (dirichlet _fine));

freeDirichlet fine = 1.nD _fine;

nN_fine = length (freeNeumann fine);

%+ shrink integral operators and right —hand side

Wfine = W _fine(freeNeumann _fine,freeNeumann fine);

K_fine = K _fine(freeDirichlet _fine,freeNeumann fine);

V_fine = V _fine(freeDirichlet _fine,freeDirichlet fine);

bl_fine = bl _fine(freeNeumann _fine);

b2 _fine = b2 _fine(freeDirichlet fine);

%+ compute Galerkin solution for fine mesh

x = [ W_fine K _fine' ; —K_fine V _fine ] \ [ bl fine ; b2 _fine |
%+ compute coefficient vectors w.r.t. S1(GammaN) and PO(Gamm aD)
dim _fine = length (unique (neumann _fine));
xN_fine = zeros (dim _fine,1);
xN_fine(freeNeumann  _fine) = x(1:nN _fine); %+ dof on Neumann boundary
xD_fine = x((1:nD  _fine) + nN _fine); %+ dof on Nirichlet boundary
%+ compute (h —h/2) —error estimator tilde —mu on the associated boundaries
multilde = conput eEst SI pMuTi | de(coordinates,dirichlet,father2dirichlet,
xD_fine);
muNtilde =  conput eEst HypMiuTi | de(neumann _fine,neumann,father2neumann,
xN_fine);

%++x compute data oscillations for fine mesh

oscD _fine = conputeCscDiri chl et (coordinates _fine,dirichlet _fine,@q);
oscD = sum(oscD _fine(father2dirichlet),2);
oscN_fine = conput eCscNeunmann(coordinates  _fine,neumann _fine,@phi);

oscN = sum(oscN _fine(father2neumann),2);

%+ mark elements for refinement
[marked _dirichlet,marked _neumann]
= mar KEl enent s(theta,rho,muD _tilde + oscD,muN _tilde + oscN);

%+ generate new mesh
[coordinates  _new,dirichlet _new,neumann _new, ...
father2dirichlet,father2neumann]
= refi neBoundar yMesh(coordinates,dirichlet,neumann,
marked _dirichlet,marked _neumann);
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[coordinates _new,dirichlet _new,neumann _new] =
bui | dM xedEl enent s(coordinates _new,dirichlet _new,neumann _new);

%+ prolongate Dirichlet data to adaptively refined mesh

g- = buil dM xedDi ri chl et (coordinates _new,dirichlet _new,neumann _new,
father2neumann,neumann, g _,@9);

coordinates = coordinates _new;

dirichlet = dirichlet _new;

neumann = neumann_new;

end

7.7.1. Implementation of Adaptive Algorithm (Listing 23). The MATLAB script of
Listing 23 realizes the adaptive algorithm from the beginning of this section.

We first order the nodes such that nodes on Iy are first (Line 6-7) and compute the nodal
vector of Up o (Line 10-11)

We use the adaptivity parameter § = 1/4 in (7.28) and mark at least 25% of elements with
the largest indicators (Line 17-18).

The remainder of the code consists of the adaptive loop, where & is a given mesh with associated
discrete Dirichlet data Up j.

We generate the mesh & (Line 24-26), order the nodes such that nodes on 'y are first
(Line 29-30), and compute the nodal vector of U, p,¢ (Line 33-34).

We build the discrete integral operators related to gg (Line 37-40) and the corresponding
right-hand side (Line 43-45). Note that the latter is built with respect to the improved
data (ij,g, ‘/ISN,g) instead of (Up ¢, P e).

By definition, the degrees of freedom are the elements on the Dirichlet boundary, which are
the first Np clements (Line 51), as well as the nodes K\I'p, which lie inside of I'y (Line
50).

To lower the storage, we restrict the discrete operators and the right-hand side to the
degrees of freedom (Line 55-59). For instance, V is only needed for elements on I'p, and
W is only needed for nodes z, € K,\I'p.

Finally (Line 62), we compute the coefficient vector X of Uy by solving (7.22).

Next, we aim to obtain the basis vectors zV and z” of Uny and ®p g, respectively. To use
the functions from Section 6, we have to represent Uy, in the nodal basis of 51(5g|fN).
This is done in Line 65-67. The coefficients of ®p , with respect to P° (&elf,,) are obtained
in Line 68.

We compute the local contributions of the error estimator /742 = i3 ot 5 , (Line 71-—74).
Next, we compute the data oscillations (Line 77-80). By deﬁnition; we have used the data
for é\g and have to sum the son contributions to obtain the oscillations on the coarse mesh
&p.

In Line 83-84, the Dérfler marking (7.28) is realized.

Finally, the new mesh &y, is created (Line 87-90) and ordered (Line 92-93), and we
compute the nodal vector of Up sy (Line 96-97).
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