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Adaptive hp-FEM for the contact
problem with Tresca friction in linear
elasticity: The primal formulation

P. Dörsek and J.M. Melenk

Abstract We present an a priori analysis of the hp-version of the finite el-
ement method for the primal formulation of frictional contact in linear elas-
ticity. We introduce a new limiting case estimate for the interpolation error
at Gauss and Gauss-Lobatto quadrature points. An hp-adaptive strategy is
presented; numerical results shows that this strategy can lead to exponential
convergence.

1 Introduction

We study the hp-version of the finite element method (hp-FEM) applied to a
contact problem with Tresca friction in two-dimensional linear elasticity. In
contrast to the more realistic Coulomb friction model, Tresca friction leads to
a convex minimisation problem, which is simpler from a mathematical point
of view. Nevertheless, the efficient numerical treatment of Tresca friction
problems is important since solvers for such problems are building blocks for
solvers for Coulomb friction problems (see [20, Section 2.5.4]).

The mathematical formulation of the frictional contact problem as a min-
imisation problem is provided in [12] and can be shown to be equivalent to
a variational inequality of the second kind. First order h-version approxima-
tions have been available since the 1980s, see [16, 15], where the approxi-
mations can actually be chosen to be conforming and the nondifferentiable
functional can be evaluated exactly. When moving to higher order discretisa-
tions, it is highly impractical to retain these properties. For the closely related
variational inequalities of the first kind stemming from non-frictional obstacle
and contact problems, Maischak and Stephan analysed hp-boundary element
methods in [24, 25], and obtained convergence rates under certain regularity
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2 P. Dörsek and J.M. Melenk

assumptions on the exact solution; they also presented an adaptive strategy
based on a multilevel estimator. Results for the frictional contact problem
in the hp-boundary element method were next provided in [6]; however, the
variational crimes associated with approximating the nondifferentiable fric-
tion functional j, which is clearly necessary in a high order context, were not
addressed. In [18], this discretisation error was analysed.

In the present article, we focus on two issues: Firstly, we provide an a priori

analysis for the errors arising from a discretisation of the non-differentiable
friction functional j. We proceed in a different way than it was done in [18]
and base our analysis on a new limiting case interpolation error estimate

for functions in the Besov space B
1/2
2,1 (a, b). Secondly, we show numerically

for a two-dimensional model problem from [19] that hp-adaptivity can yield
exponential convergence.

2 Problem formulation

Let Ω ⊆ R
2 be a polygonal domain. We decompose its boundary Γ with

normal vector ν into three relatively open, disjoint parts ΓD, ΓN and ΓC.
On ΓD with |ΓD| > 0 we prescribe homogeneous Dirichlet conditions, on ΓN

Neumann conditions with given traction t, and on ΓC contact conditions with
Tresca friction, where the friction coefficient g is assumed to be constant. The
volume forces are denoted by F. Furthermore, we assume that contact holds
on the entirety of ΓC. For simplicity of exposition, we will assume that ΓC a
single edge of Ω.

We denote by Hs(Ω) the usual Sobolev spaces on Ω, and similarly on the
boundary parts, with norms defined through the Slobodeckij seminorms (see
[29]). H−s

00 (ΓC) denotes the dual space of Hs(ΓC). The Besov spaces Bs
2,q(Ω),

s ∈ (k, k + 1), k ∈ N0, q ∈ [1,∞], are defined as the interpolation spaces
(Hk(Ω),Hk+1(Ω))s−k,q (note that the J- and the K-method of interpolation
generate the same spaces with equivalent norms, see e.g. [30, Lemma 24.3]).
For q = 2, the Besov space Bs

2,2(Ω) and the Sobolev space Hs(Ω) coincide
with equivalent norms, which yields that fractional order Sobolev spaces can
be defined by interpolation.

Applying standard notation of linear elasticity, εij(v) := 1
2

(
∂vi

∂xj
+

∂vj

∂xi

)

denotes the small strain tensor and σ(v) := Cε(v) the stress tensor. Here, C

is the Hooke tensor, which is assumed to be uniformly positive definite. For a
vector field µ on ΓC, µn := µ · ν is its normal component and µt := µ− (µ ·
ν)ν its tangential component. With the trace operator γ0,ΓD

: (H1(Ω))2 →
(H1/2(ΓD))2, we set

V :=
{
v ∈

(
H1(Ω)

)2
: γ0,ΓD

(v) = 0
}
. (1)
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hp-FEM for Tresca friction 3

and define the bilinear form a : V × V → R, the linear form L : V → R and
the convex, nondifferentiable functional j : V → R by

a(v,w) :=

∫

Ω

σ(v) : ε(w)dx, (2)

L(v) :=

∫

Ω

F · vdx +

∫

ΓN

t · vdsx, j(v) :=

∫

ΓC

g|vt|dsx. (3)

The primal version of the continuous version of the linearly elastic contact
problem with Tresca friction then reads:

Find the minimiser u ∈ V of J(v) :=
1

2
a(v,v) − L(v) + j(v). (4)

As is well-known, this minimiser can also be characterised by (see [12])

a(u,v − u) + j(v) − j(u) ≥ L(v − u) ∀v ∈ V (5)

The unique solvability of (4) follows by standard arguments since the Hooke
tensor C is uniformly positive definite and ΓD has positive measure, see [20,
19, 22].

Choosing a discrete finite-dimensional subspace VN ⊆ V and a discretisa-
tion jN : VN → R of j, we obtain the discrete primal formulation:

Find the minimiser uN ∈ VN of JN (v) :=
1

2
a(v,v) − L(v) + jN (v). (6)

Let TN be regular shape regular triangulations of Ω consisting of affine
triangles or quadrilateral elements K ∈ TN with diameter hN,K . Assume
that the boundary parts ΓC, ΓD and ΓN are resolved by the mesh. For each
K ∈ TN , let pN,K ∈ N be a polynomial degree. We assume that neighboring
elements have comparable polynomial degrees, i.e.,

pN,K ∼ pN,K′ ∀K,K ′ ∈ TN with K ∩K ′ 6= ∅. (7)

Set

VN := {vN ∈ V : vN |K ∈ ΠpN,K (K) for all K ∈ TN} , (8)

where Πp(K) is the space of polynomials of (total) degree p if K is a triangle
and Πp(K) is the tensor product space Qp of polynomials of degree p in each
variable if K is a quadrilateral.

We denote the set of edges on the contact boundary by EC,N , that is,

EC,N := {E : E ⊂ ΓC is an edge of TN} . (9)

We see that for every E ∈ EC,N , there exists a unique KE ∈ TN such that E
is an edge of KE .
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4 P. Dörsek and J.M. Melenk

3 A priori error estimates

We obtain the discretisations jN of the functionals j by a quadrature for-
mula: Given an element E ∈ EC,N , let G̃E,q be the the points of either the
Gauss or Gauss-Lobatto quadrature on E with q + 1 points, together with
the corresponding weights ωE,q,x for x ∈ E, obtained by applying an affine

transformation from the reference edge Ê to E. Then, for vN ∈ VN , and
choosing a vector (qN,E)E∈EC,N , we define

jN (vN ) :=
∑

E∈EC,N

jN,E(vN ), where (10)

jN,E(vN ) :=
∑

x∈eGE,qN,E

g|vN,t(x)|ωE,qN,E ,x. (11)

Note, in particular, that jN is well-defined, as vN is continuous onΩ, and thus
also on ΓC. We shall assume that there exists a constant C > 0 independent
of N and E such that

C−1pN,KE ≤ qN,E ≤ CpN,KE . (12)

The main result of this section is:

Theorem 3.1. Let u ∈ H3/2(Ω) be the solution of (4) and uN ∈ VN be the
solution of (6) where jN is chosen as in (10), (11). Assuming (12), we have
the a priori error estimate

‖u− uN‖H1(Ω) ≤ Cu max
K∈TN

h
1/4
N,Kp

−1/4
N,K (1 + 4

√
ln pN,K). (13)

3.1 An interpolation error estimate for B
1/2

2,1 -functions

In [3], error estimates for the one-dimensional Gauss-Lobatto iN and Gauss
interpolation operators jN are proved, namely, for u ∈ H1/2+ε(Ê),

‖u− iNu‖L2(Ê) + ‖u− jNu‖L2(Ê) ≤ CεN
−1/2−ε|u|H1/2+ε(Ê) (14)

where Ê := (−1,+1) is the reference element and ε > 0 arbitrary. As func-
tions in H1/2(Ê) are not necessarily continuous, the choice ε = 0 is not ad-

missible. Thus, we consider the Besov space B
1/2
2,1 (Ê) =

(
L2(Ê),H1(Ê)

)
1/2,1

,

which is defined as the J-method interpolation space of L2(Ê) and H1(Ê)
with parameters θ = 1/2 and q = 1, and consists of continuous functions.

The main result is:
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hp-FEM for Tresca friction 5

Theorem 3.2. For all u ∈ B
1/2
2,1 (Ê) we have

‖u− iNu‖L2(Ê) + ‖u− jNu‖L2(Ê) . N−1/2‖u‖
B

1/2

2,1 (Ê)
. (15)

We shall only provide proofs for the case of Gauss-Lobatto interpolation;
for Gauss interpolation, one proceeds analogously.

The following result is a multiplicative variant of [2, Lemme III.1.4] ob-
tained by applying the Gagliardo-Nirenberg-Sobolev inequality instead of the
Sobolev imbedding theorem.

Lemma 3.3. Let ψ ∈ H1(a, b). Then,

‖ψ‖2
L∞(a,b) .

1

b − a
‖ψ‖2

L2(a,b) + ‖ψ‖L2(a,b)‖ψ′‖L2(a,b). (16)

Let ηN,i = cos(ξN,i) and ρN,i, i = 0, . . . , N , be the nodes and weights
of Gauss-Lobatto quadrature with N + 1 points. Define the Gauss-Lobatto
interpolation operator iN : C([−1,+1]) → PN by

iNu :=

N∑

j=0

u(ηN,j)LN,j, (17)

where LN,j(t) :=
∏

k 6=j
t−ηN,k

ηN,j−ηN,k
is the Lagrange interpolation polynomial

at ηN,j.
By applying the sharper estimate given in Lemma 3.3 in the proof of [2,

Théorème III.1.15], we obtain the following multiplicative result.

Proposition 3.4. For every u ∈ H1(Ê),

‖iNu‖2
L2(Ê)

.N−2
(
|u(−1)|2 + |u(1)|2

)
+ ‖u‖2

L2(Ê)

+N−1‖u‖L2(Ê)‖u′
√

1 − x2‖L2(Ê). (18)

Remark 3.5. Proposition 3.4 is a special case of the following, more general
result. Let Hk,α(Ê) be the space of all functions with

‖v‖2
Hk,α(Ê)

:=

k∑

ℓ=0

∫ +1

−1

|u(ℓ)(x)|2(1 − x2)α+ℓdx <∞, (19)

and set L2,α(Ê) := H0,α(Ê). These spaces were also considered in [17, Sec-
tion 3]. One can show (see Appendix 5)

‖iαNu‖2
L2,α(Ê)

.‖u‖2
L2,α(Ê)

+N−1‖u‖L2,α(Ê)‖u′‖L2,α+1(Ê)

+N−2−2α
(
u(−1)2 + u(+1)2

)
(20)
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6 P. Dörsek and J.M. Melenk

for all u ∈ H1,α(−1,+1) ∩ C([−1,+1]) and all α > −1, where iαN is the
Gauss-Jacobi-Lobatto interpolant. Additionally, Appendix 5 shows that the

Chebyshev-Lobatto interpolation operator i
−1/2
N is stable on H1,−1/2(−1,+1)

as well as the interpolation space
(
L2,−1/2(Ê),H1,−1/2(Ê)

)
1/2,1

.

Combining Lemma 3.3 with Proposition 3.4 yields:

Corollary 3.6. For u ∈ H1(Ê),

‖iNu‖L2(Ê) . ‖u‖L2(Ê) +N−1/2‖u‖1/2

L2(Ê)
‖u‖1/2

H1(Ê)
. (21)

A key step towards the proof of the main result of this section, Theo-
rem 3.2, is the following theorem:

Theorem 3.7. Let TN : C([−1,+1]) → PN , N ∈ N, be continuous linear
operators satisfying

TNp = p for p ∈ PN and (22)

‖TNu‖L2(Ê) . ‖u‖L2(Ê) +N−1/2‖u‖1/2

L2(Ê)
‖u‖1/2

H1(Ê)
for u ∈ H1(Ê). (23)

Then,

‖u− TNu‖L2(Ê) . N−1/2‖u‖
B

1/2

2,1 (Ê)
for all u ∈ B

1/2
2,1 (Ê). (24)

Note that TN : B
1/2
2,1 (Ê) → PN is well-defined and continuous as we have the

continuous injection B
1/2
2,1 (Ê) →֒ C([−1,+1]) (see [30]).

Proof. We shall first prove the multiplicative error estimate

‖u− TNu‖L2(Ê) . N−1/2‖u‖1/2

L2(Ê)
‖u‖1/2

H1(Ê)
: (25)

By [26, Proposition A.2], there exists a sequence of operators πN : L2(Ê) →
PN with

‖πNu‖L2(Ê) . ‖u‖L2(Ê) for all u ∈ L2(Ê), (26)

‖u− πNu‖L2(Ê) . N−1‖u‖H1(Ê) for all u ∈ H1(Ê), (27)

and ‖πNu‖H1(Ê) . ‖u‖H1(Ê) for all u ∈ H1(Ê). (28)

As TN ◦ πN = πN , we see by (23) that

‖u− TNu‖L2(Ê) ≤ ‖u− πNu‖L2(Ê) + ‖TN(u − πNu)‖L2(Ê)

. ‖u− πNu‖L2(Ê) +N−1/2‖u− πNu‖1/2

L2(Ê)
‖u− πNu‖1/2

H1(Ê)

. N−1/2‖u‖1/2

L2(Ê)
‖u‖1/2

H1(Ê)
. (29)
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hp-FEM for Tresca friction 7

A careful analysis of the proof of [30, Theorem 25.3] shows that this yields

‖u− TNu‖L2(Ê) . N−1/2‖u‖
B

1/2

2,1 (Ê)
, (30)

that is, the claimed estimate. ⊓⊔
Theorem 3.2 follows by combining Corollary 3.6 and Theorem 3.7.

3.2 A polynomial inverse estimate

We need the following inverse estimate:

Lemma 3.8 (Generalised B
1/2
2,1 -H1/2 p-version inverse inequality). There

exists a constant C > such that for all polynomials q ∈ Pp and all κ ∈ R,

∥∥|q| − κ
∥∥

B
1/2

2,1 (Ê)
≤ C(1 +

√
ln p)

(
|q|H1/2(Ê) + |κ− q̄|

)
, (31)

where q̄ := 1
2

∫ +1

−1 |q(x)|dx is the integral mean of |q|.
The particular choices κ = q̄ and κ = 0 lead to

∥∥|q| − q̄
∥∥

B
1/2

2,1 (Ê)
≤ C(1 +

√
ln p)

(
|q|H1/2(Ê)

)
,

∥∥|q|
∥∥

B
1/2

2,1 (Ê)
≤ C(1 +

√
ln p)

(
|q|H1/2(Ê) + |q̄|

)
≤ C(1 +

√
ln p)‖q‖H1/2(Ê).

Proof. We use the K-method of interpolation (see [29, 30]). Let

K(t, u) := inf
v∈H1(Ê)

[
‖u− v‖2

L2(Ê)
+ t2‖v‖2

H1(Ê)

]1/2

. (32)

By [7, p.193, equation (7.4)], we see that for arbitrary ε ∈ (0, 1],

∥∥|q| − κ
∥∥

B
1/2

2,1 (Ê)
∼

∫ 1

0

t−1/2K(t, |q| − κ)
dt

t

=

∫ ε

0

t−1/2K(t, |q| − κ)
dt

t
+

∫ 1

ε

t−1/2K(t, |q − κ|)dt

t
. (33)

For the first integral, choose v = |q| − κ in K so that, by the Deny-Lions
Lemma (see [11, Theorem 6.1] for the version used here),
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8 P. Dörsek and J.M. Melenk

∫ ε

0

t−1/2K(t, |q| − κ)
dt

t
≤

∫ ε

0

t1/2
∥∥|q| − κ

∥∥
H1(Ê)

dt

t

= 2
√
ε
∥∥|q| − κ

∥∥
H1(Ê)

≤ 2
√
ε
(∥∥|q| − q̄

∥∥
H1(Ê)

+ 2|κ− q̄|
)

≤ 2
√
ε
(∣∣|q|

∣∣
H1(Ê)

+ 2|κ− q̄|
)
. (34)

Note that
∣∣|q|

∣∣
H1(Ê)

= |q|H1(Ê). The inverse inequality in [1, p. 100, Theorem

III.4.2] implies √
ε|q|H1(Ê) .

√
εp|q|H1/2(Ê). (35)

For the second integral, we see that, by applying the Cauchy-Schwarz
inequality for the measure dt

t to the functions t 7→ 1 and t 7→ t−1/2K(t, |q|−κ),
and the definition of

∥∥|q| − κ
∥∥

H1/2(Ê)
by the K-method,

∫ 1

ε

t−1/2K(t, |q| − κ)
dt

t
≤

√∫ 1

ε

dt

t

√∫ 1

ε

(
t−1/2K(t, |q| − κ)

)2 dt

t

.
√
− ln ε

∥∥|q| − κ
∥∥

H1/2(Ê)
.

√
− ln ε

(∥∥|q| − q̄
∥∥

H1/2(Ê)
+ |κ− q̄|

)

.
√
− ln ε

(∣∣|q|
∥∥

H1/2(Ê)
+ |κ− q̄|

)
, (36)

where the last step again follows by the Deny-Lions Lemma. Additionally,
by the definition of the H1/2-seminorm, we see easily that

∣∣|q|
∣∣
H1/2(Ê)

≤
|q|H1/2(Ê), which yields

∫ 1

ε

t−1/2K(t, |q| − κ)
dt

t
.

√
− ln ε

(
|q|H1/2(Ê) + |κ− q̄|

)
, (37)

We set ε := 1
p2 and obtain

∥∥|q| − κ
∥∥

B
1/2

2,1 (Ê)
. (1 +

√
ln p)|q|H1/2(Ê) + (p−1 +

√
ln p)|κ− q̄|

≤ (1 +
√

ln p)
(
|q|H1/2(Ê) + |κ− q̄|

)
. ⊓⊔ (38)

3.3 Convergence rates: Proof of Theorem 3.1

We now prove a convergence rate result for the primal formulation of the
friction problem. We follow in style the article [5]. A similar estimate was
derived in [18, Lemma 4.1] using different techniques.

In the following, u and uN denote the solutions of (4) and (6).

Proposition 3.9. Define Su(v) := a(u,v) − L(v). Then, for all vN ∈ VN ,

Page: 8 job: main macro: svmult.cls date/time:26-Jan-2010/9:29



hp-FEM for Tresca friction 9

a(u− uN ,u− uN ) ≤ a(u − uN ,u− vN ) + Su(vN − u)

+ jN (vN ) − j(vN ) + j(uN ) − jN (uN ) + j(vN − u). (39)

Proof. It follows from (6) that

a(u − uN ,u− uN ) =

a(u − uN ,u− vN ) + a(u,vN − uN ) − a(uN ,vN − uN )

≤ a(u − uN ,u − vN ) + a(u,vN − uN ) − L(vN − uN ) + jN (vN ) − jN (uN )

≤ a(u − uN ,u − vN ) + Su(vN − uN ) + jN (vN ) − jN (uN ).

Since for all v ∈ V we have

Su(vN − uN ) = Su(vN − u) + Su(u− v) + Su(v − uN )

≤ Su(vN − u) + j(v) − j(u) + Su(v − uN ), (40)

we obtain

a(u − uN ,u− uN ) ≤a(u − uN ,u− vN ) + Su(vN − u) + Su(v − uN )

+ jN (vN ) − j(u) + j(v) − jN (uN ). (41)

Choose now v = uN and note that j(vN ) ≤ j(vN − u) + j(u), and thus
−j(u) ≤ −j(vN ) + j(u − vN ). The claim then follows. ⊓⊔

Proposision 3.9 shows that the main task is to estimate the error intro-
duced by approximating j by jN on VN . This will be done now.

Theorem 3.10. Let E ∈ EC,N and KE ∈ TN be such that E is an edge of
KE. Let wN ∈ VN , and set

jE(wN ) :=

∫

E

g|wN |dsx. (42)

Then, we have the estimate

|jE(wN ) − jN,E(wN )| . hN,KE(1 +
√

ln pN,KE)q
−1/2
N,E |wN |H1(KE)

. hN,KE(1 +
√

ln pN,KE)p
−1/2
N,KE

|wN |H1(KE). (43)

Proof. It is clear that

jN,E(wN ) = g

∫

E

iE,qN,E |wN |dsx, (44)

where iE,qN,E denotes the local interpolation operator on E at the qN,E + 1
Gauss-Lobatto points. Theorem 3.2 provides a constant C > 0 such that

∥∥|w| − iq|w|
∥∥

L2(Ê)
≤ Cq−1/2‖w‖

B
1/2

2,1 (Ê)
∀q ∈ N. (45)
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10 P. Dörsek and J.M. Melenk

Apply now a scaling argument: Let ΦE : Ê → E be an invertible, affine
mapping. As iE,qN,E reproduces constant functions, we have for any κ ∈ R,

∥∥|wN | − iE,qN,E |wN |‖L2(E) = ‖(|wN | − κ) − iE,qN,E(|wN | − κ)‖L2(E)

=
h

1/2
N,E

2

∥∥(|wN ◦ ΦE | − κ) − iqN,E (|wN ◦ ΦE | − κ)
∥∥

L2(Ê)

≤ Ch
1/2
N,Eq

−1/2
N,E

∥∥|wN ◦ ΦE | − κ
∥∥

B
1/2

2,1 (Ê)
.

With the choice κ := 1
2

∫
Ê
|wN ◦ ΦE |dx, Lemma 3.8 gives

∥∥|wN ◦ ΦE | − κ
∥∥

B
1/2

2,1 (Ê)
.

(
1 +

√
ln pN,E

)
|wNΦE |H1/2(Ê).

Thus, again by scaling,

‖|wN | − iE,qN,E |wN |‖L2(E) . Ch
1/2
N,E(1 +

√
ln pN,E)q

−1/2
N,E |wN |H1/2(E).

We obtain by the trace theorem and (12) that

|jE(wN ) − jN,E(wN )| . hN,E(1 +
√

ln pN,E)q
−1/2
N,E |wN |H1/2(E)

. hN,KE(1 +
√

ln pN,KE)q
−1/2
N,E |wN |H1(KE)

. hN,KE(1 +
√

ln pN,KE)p
−1/2
N,KE

|wN |H1(KE). ⊓⊔

Let hN , pN and qN be the local mesh width, polynomial degree and quadra-
ture order and introduce the local approximation quantification

ωN := h
1/2
N p

−1/2
N (1 +

√
ln pN ). (46)

Corollary 3.11. Set SN :=
⋃

E∈EC,N
KE. Let ωN be given by (46). Then:

For every wN ∈ VN ,

|j(wN ) − jN (wN )| . ‖ωN∇wN‖L2(SN ) ≤ ‖ωN∇wN‖L2(Ω). (47)

Proof. Applying Theorem 3.10 to wN and summing overE ∈ EC,N , we obtain
by the discrete Cauchy-Schwarz inequality and the trace theorem that

|jN (wN ) − j(wN )| ≤
∑

E∈EC,N

|jE(wN ) − j(wN )|

.
∑

E∈EC,N

h
1/2
N,Eh

1/2
N,E(1 +

√
ln pN,KE)q

−1/2
N,E |wN |H1(KE)

≤




∑

E∈EC,N

hN,E




1/2 


∑

E∈EC,N

hN,E(1 + ln pN,KE)q−1
N,KE

|wN |2H1(KE)




1/2
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= |ΓC|1/2




∑

E∈EC,N

hN,E(1 + ln pN,KE)q−1
N,KE

|wN |2H1(KE)




1/2

. ‖h1/2
N (1 +

√
ln pN )q

−1/2
N ∇wN‖L2(SN ) ⊓⊔

Theorem 3.12. Set SN :=
⋃

E∈EC,N
KE, and let uN and u be the solutions

of (6) and (4), respectively. Let ωN be given by (46). Then:

‖u− uN‖H1(Ω)

. inf
vN∈VN

(
‖ωN∇uN‖L2(SN ) + ‖ωN∇vN‖L2(SN )

+ ‖u− vN‖H1(Ω) + ‖u− vN‖2
H1(Ω) + |Su(u− vN )|

)1/2

. inf
vN∈VN

(
‖ωN∇uN‖L2(Ω) + ‖ωN∇vN‖L2(Ω)

+ ‖u− vN‖H1(Ω) + ‖u− vN‖2
H1(Ω) + |Su(u− vN )|

)1/2

.

Before proving Theorem 3.12, we remark that estimating the L2(SN )-norm
by the L2(Ω)-norm is typically very pessimistic. Heuristically, the strip is of
area O(h), so we expect to obtain another power of h in this estimate.

Proof. We employ Proposition 3.9. By the V -boundedness and V -ellipticity
of a and the V -boundedness of j, we see that

‖u− uN‖2
H1(Ω) . ‖u− uN‖H1(Ω)‖u− vN‖H1(Ω) + ‖vN − u‖H1(Ω)

+ jN (vN ) − j(vN ) + j(uN ) − jN (uN ) + Su(vN − u),

from which it follows by applying the ε-trick that

‖u− uN‖2
H1(Ω) . ‖u− vN‖2

H1(Ω) + ‖u− vN‖H1(Ω)

+ |jN (vN ) − j(vN )| + |jN (uN ) − j(uN )| + Su(vN − u).

Applying Corollary 3.11 to uN and vN , the result now follows by the local
equivalence of pN and qN . ⊓⊔
Clearly, choosing vN ∈ VN to be the best approximation of u with respect

to the H1-norm proves that ‖h1/2
N (1 +

√
ln pN )p

−1/2
N vN‖H1(Ω) stays bounded

and converges with a rate of h
1/2
N (1 +

√
ln pN )p

−1/2
N , and ‖u−vN‖H1(Ω) → 0

if hN/pN → 0. It still remains to show that ‖uN‖H1(Ω) stays bounded.

Lemma 3.13. The norms in H1(Ω) of the solutions uN of (6) stay bounded
for N → ∞.

Proof. Choose vN = 0. Then, as jN (wN ) ≥ 0 for all wN ∈ VN ,

a(uN ,uN ) ≤ L(uN ) − jN (uN ) ≤ L(uN ). (48)
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12 P. Dörsek and J.M. Melenk

The result now follows by the coercitivity of a and the boundedness of L. ⊓⊔

Remark 3.14. Lemma 3.13 shows that the primal method converges if
⋃

N VN

is dense in V . This can also be shown similarly as in [18] using Glowinski’s
theorem.

Finally, Theorem 3.1 now easily follows from Theorem 3.12 together with
the interpolation operators in [26].

4 Numerical experiments

4.1 A posteriori error estimation

One way to realise numerically the minimisation problem (6) is by dualisation.
Specifically, we assume that the quadrature points G̃E,qN,E are the Gauss
points and that

qN,E ≥ pN,KE − 1 ∀E ∈ EC,N . (49)

We introduce the bilinear forms b and bN by

b(u, λ) := g

∫

ΓC

utλ, bN(u, λ) := g
∑

E∈EC,N

∑

x∈G̃E,qN,E

ωE,qN ,E,xut(x)λ(x),

WN := {λ ∈ L2(ΓC) : λ|E ∈ PqN,E ∀E ∈ EC,N},
ΛN := {λ ∈ WN : |λ(x)| ≤ 1 ∀x ∈ G̃E,qN,E ∀E ∈ EC,N},

where, in the present 2D setting, we view the tangential component ut of u as
a scalar function in the definition of b and bN . It is easy to see that jN (u) =
supλ∈ΛN

bN(u, λ). Hence, the minimisation problem (6) can be reformulated
as a saddle point problem of finding (uN , λN ) ∈ VN × ΛN such that

a(uN ,v) +bN(v, λN ) = L(v) ∀v ∈ VN , (50a)

bN (uN , µ− λN ) ≤ 0 ∀µ ∈ ΛN . (50b)

(50) has solutions; the component uN is the unique solution of (6), which
justifies our using the same symbol. Any Lagrange multiplier λN can be used
for a posteriori error estimation. Indeed, exploiting the fact that b(v, λ) =
bN (v, λ) for all v ∈ VN and λ ∈ WN , one can proceed as in [8, Sec. 4] to
show the following result (see [9, Appendix] for the details):

Theorem 4.1. Assume (49). Let u, uN solve (4), (6), and let λN be a Lan-
grange multiplier satisfying (50). Then ‖u − uN‖2

H1(Ω) ≤ Cη2
N , where the

error indicator
η2

N :=
∑

K∈TN

η2
N,K (51)
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is defined in terms of element error indicators

η2
N,K :=h2

N,Kp
−2
N,K‖rK‖2

L2(K) + hN,Kp
−1
N,K

∑

E⊆∂K

‖RE‖2
L2(E) (52)

+ j∂K∩ΓC
(uN ) − b∂K∩ΓC

(uN , λ̃N ) + g2‖λN − λ̃N‖2

H
−1/2

00 (∂K∩ΓC)
,

where the element residuals rK and the edge jumps RE are given by

rK := − div σ(uN ) − F, RE :=





1
2 [σ(uN ) · ν]E if E ⊂ Ω,

(σ(uN ) · ν)t + gλN if E ⊂ ΓC

σ(uN ) · ν − t if E ⊂ ΓN,

0 if E ⊂ ΓD.

Finally, λ̃N is the L2(ΓC)-projection of λN onto ΛN .

Remark 4.2. In our numerical experiments, we estimate the error indicator

ηN further by replacing the H
−1/2
00 -norm by the L2-norm and estimating

rather generously the contributions of j∂K∩ΓC
(uN ) − b∂K∩ΓC

(uN , λ̃N ) for
those edges E ⊂ ΓC where λN |E 6= λ̃N |E . We refer to [8, Remark 4.3] for
details.

4.2 Numerical examples

We consider the two-dimensional numerical problem of [19, Example 6.12].
Let Ω = (0, 4) × (0, 4), assume homogeneous Dirichlet conditions on ΓD :=
{4} × (0, 4), frictional contact on ΓC := (0, 4) × {0}, and Neumann con-
ditions on ΓN := ({0} × (0, 4)) ∪ ((0, 4) × {4}), where t(0, s) = (150(5 −
s),−75)daN/mm2 for s ∈ (0, 4) and t = 0 on (0, 4) × {4}. The elasticity
parameters are chosen to be E = 1500daN/mm2 and ν = 0.4, the friction
coefficient is g = 450daN/mm2. We assume plane stress conditions.

We perform 6 numerical experiments: h-uniform and h-adaptive methods
with polynomial degrees 2 and 3; a p-uniform method starting with polyno-
mial degree 2; and an hp-adaptive method starting with polynomial degree
3. The initial meshes are uniform and consist of 16 squares.

Quadrilateral meshes with hanging nodes are used. We require the “one
hanging node rule” and that all irregular nodes be one-irregular. Differing
polynomial degrees on neighbouring elements are resolved by using the mini-
mum rule on the edge. For the discretisation of j, we choose Gaussian quadra-
ture and qN,E = pN,KE −1 for E ∈ EC,N , i.e., we use pN,KE quadrature points
in (11). As described in Section 4.1, the minimisation problem (6) is recast in
primal-dual form and the resulting first kind variational inequality is solved
with the MPRGP algorithm (see [10]). As a by-product, we obtain a Lagrange
multiplier λN ∈ WN , which is used to define error indicators of (51). These
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14 P. Dörsek and J.M. Melenk

are plotted in Figure 1. All calculations were done using maiprogs ([23]). For
the static condensation of the internal degrees of freedom, pardiso was used
([27, 28, 21]).

In the hp-adaptive scheme, each adaptive step refines those 20% of the
elements that have the largest error indicators (52). The decision of whether
to perform an h-refinement or a p-enrichnement is based on [8, Alg. 5.1] with
δ = 1. The essential idea of that algorithm is similar to Strategy II of [13]: A
p-enrichment for an element K can only be done if two conditions are met:
(i) the coefficients of the Legendre expansion of the displacement field decay
sufficiently rapidly and (ii), if K has an edge E on the contact boundary
ΓC, then λN satisfies ‖λN‖L∞(E) ≤ 1. This last condition ‖λN‖L∞(E) ≤
1 is strictly enforced by ensuring that an upper bound for ‖λN‖L∞(E) is
bounded by 1. This upper bound is obtained by expanding the polynomial
λN |E into a Legendre series, computing the extrema of the leading quadratic
part explicitly and estimating the remainder with the triangle inequality; we
refer to [8] for details, where a similar strategy is employed in the context of
a primal-dual formulation.

 0.1
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h-uniform, p=2
h-adaptive, p=2
h-uniform, p=3

h-adaptive, p=3
p-uniform

hp-adaptive

Fig. 1 Error indicator ηN vs. problem size

Figure 1 shows the error indicators for the two uniform and adaptive h-
methods, the uniform p-method and the hp-adaptive method. Assuming that
the error behaves like ‖u − uN‖H1(Ω) = CN−α in the uniform h- and p-
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versions and the adaptive h-versions, we obtain by a least squares fit rates
of about α = 0.44 for the h-uniform and α = 0.33 for the p-uniform methods
and about α = 0.64 and α = 0.87 for the adaptive schemes with polynomial
degrees 2 and 3, respectively. For the hp-adaptivity, we obtain γ = 0.35,
assuming an error behaviour of the form ‖u− uN‖H1(Ω) = C exp(−γN1/3).

Acknowledgements The first author gratefully acknowledges partial support by the
FWF grant W8.
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5 Appendix A: Interpolation in weighted norms

Let ξα
N,j = cos θα

N,N−j, j = 0, . . . , N , be the Gauss-Lobatto-Jacobi quadrature
points, and ρα

N,j, j = 0, . . . , N the corresponding weights. Recall that the
(ξα

N,j)j=0,...,N are symmetric with respect to 0.
The following results are well-known (see [4, (IV.19.24) and (IV.19.28)]).

Lemma 5.1. For 1 ≤ j ≤ ⌊N
2 ⌋ and α > −1,

(2j − 1)π

2N − 2
≤ θα

N,j ≤ (2j + 1)π

2N − 2
(53)
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and for α > −1 and 1 ≤ j ≤ N − 1,

ρα
N,j . N−1 sin2α+1 θα

N,j. (54)

For j = 0 and j = N ,

ρα
N,0 = ρα

N,N . N−2−2α. (55)

For the quadrature of Jacobi polynomials, we have (cf. [2, Lemme III.1.12]):

Lemma 5.2. For α > −1 and N ≥ 1,

N∑

j=0

Jα
N (ξα

j )2ρα
j =

(
2 +

2α+ 1

N

)
‖Jα

N‖2
L2,α(−1,+1). (56)

Proof. By [4, (IV.19.30)],

Jα
N (ξα

j )2ρα
j =

22α+1Γ (N + α+ 1)2

NN !Γ (N + 2α+ 2)
(57)

and by [4, (IV.19.1) and (IV.19.31)],

Jα
N (−1)2ρα

0 = Jα
N (+1)2ρα

N =
22α+1Γ (N + α+ 1)2

NN !Γ (N + 2α+ 2)
(α+ 1). (58)

As, by [4, (IV.19.8)],

‖(Jα
N )2‖L2,α(−1,+1) =

22α+1Γ (N + α+ 1)2

(2N + 2α+ 1)N !Γ (N + 2α+ 1)

=
N(N + 2α+ 1)

2N + 2α+ 1

22α+1Γ (N + α+ 1)2

NN !Γ (N + 2α+ 2)
, (59)

we see that

N∑

j=0

Jα
N (ξα

j )2ρα
j = (N + 2α+ 1)

2N + 2α+ 1

N(2N + 2α+ 1)
‖Jα

N‖2
L2,α(−1,+1)

=
2N + 2α+ 1

N
‖Jα

N‖2
L2,α(−1,+1). ⊓⊔ (60)

As the (Jα
N )N are orthogonal in L2,α(−1,+1), we obtain similarly as in [2,

Corollaire III.1.13]:

Lemma 5.3. There exists a constant C > 0 such that for every ϕN ∈ PN ,

‖ϕN‖2
L2,α(−1,+1) ≤

N∑

j=0

ϕN (ξα
j )2ρα

j ≤ C‖ϕN‖2
L2,α(−1,+1). (61)
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18 P. Dörsek and J.M. Melenk

With the Gauss-Lobatto-Jacobi interpolation operator at (ξα
N,j)j=0,...,N

denoted by iαN , we obtain:

Theorem 5.4. Let α ≥ −1/2. For every u ∈ H1,α(−1,+1) ∩ C([−1,+1]),

‖iαNu‖2
L2,α(−1,+1) . ‖u‖2

L2,α(−1,+1) +N−1‖u‖L2,α(−1,+1)‖u′‖L2,α+1(−1,+1)

+N−2−2α
(
u(−1)2 + u(+1)2

)
. (62)

Note that by [17, Lemma 3.1], H1,−1/2(−1,+1) ⊂ C([−1,+1]).

Proof. Set û(θ) := u(cos θ). Define the open intervals ÎN,j, j = 1, . . . , N −
1, by ÎN,j :=

(
2j−1
2N−2π,

2j+1
2N−2π

)
for j ≤ ⌊N

2 ⌋, and by ÎN,j := π − ÎN,N−j

otherwise. It follows by Lemma 5.1 that θα
N,j ∈ ÎN,j, and that there exists

a constant C > 0 independent of N or j such that C−1 sin θα
N,j ≤ sin θ ≤

C sin θα
N,j for θ ∈ ÎN,j. Furthermore, |ÎN,j | ∼ N−1, and the intervals overlap

at most near π
2 .

Set IN,j := cos ÎN,j. By Lemma 5.3,

‖iαNu‖2
L2,α(−1,+1) ≤

N∑

j=0

u(ξα
N,j)

2ρα
N,j

= u(−1)2ρα
N,0 + u(+1)2ρα

N,N +
N−1∑

j=1

û(θα
N,j)

2ρα
N,j. (63)

Lemma 3.3 yields

û(θα
N,j)

2 ≤ ‖û‖2
L∞(ÎN,j)

.
1

|ÎN,j |
‖û‖2

L2(ÎN,j)
+ ‖û‖L2(ÎN,j)

‖û′‖L2(ÎN,j)
. (64)

Now, by sin θα
N,j ≤ sin θ ≤ C sin θα

N,j,

‖û‖2
L2(ÎN,j)

ρα
N,j . N−1

∫

ÎN,j

û(θ)2 sin2α+1(θ)dθ

= N−1

∫

IN,j

u(x)2(1 − x2)αdx (65)

and

‖û′‖2
L2(ÎN,j)

ρα
N,j . N−1

∫

ÎN,j

û′(θ)2 sin2α+1(θ)dθ

= N−1

∫

ÎN,j

u′(cos θ)2 sin2α+3(θ)dθ

= N−1

∫

IN,j

u′(x)2(1 − x2)α+1dx. (66)
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As ‖ÎN,j‖ ∼ N−1,

û(θα
N,j)

2ρα
N,j ≤ ‖u‖2

L2,α(IN,j)
+N−1‖u‖L2,α(IN,j)‖u′‖L2,α+1(IN,j), (67)

from which the result follows.

We single out the special case α = −1/2, for which we can show stability of

i
−1/2
N in (L2,−1/2(−1,+1),H1,−1/2(−1,+1))1/2,1:

Corollary 5.5. The operator i
−1/2
N is uniformly (in N) stable on H1,−1/2(−1,+1)

and the interpolation space (L2,−1/2(−1,+1),H1,−1/2(−1,+1))1/2,1.

Proof. From [17, Thm. 3.1] we have the existence of an operator ΠN :
H1,−1/2(−1,+1) → PN with

‖u−ΠNu‖L2,−1/2(−1,1) . N−1‖u‖H1,−1/2(−1,1), (68)

‖ΠNu‖L2,−1/2(−1,1) ≤ ‖u‖L2,−1/2(−1,1), (69)

‖ΠNu‖H1,−1/2(−1,1) ≤ ‖u‖H1,−1/2(−1,1). (70)

Furthermore, we have the inverse estimate (see [1, Prop. 6.1])

‖q′N‖L2,+1/2(−1,1) . N‖qN‖L2,−1/2(−1,1) for all qN ∈ PN ,

which readily implies

‖qN‖H1,−1/2(−1,1) . N‖qN‖L2,−1/2(−1,1) for all qN ∈ PN . (71)

We are now ready to show the stability of i
−1/2
N on H1,−1/2(−1, 1): Combining

the stability result Lemma 5.6 below with (68)–(71) gives

‖i−1/2
N u‖H1,−1/2 ≤ ‖ΠNu‖H1,−1/2 + ‖i−1/2

N (u−ΠNu)‖H1,−1/2

. ‖u‖H1,−1/2 +N‖i−1/2
N (u−ΠNu)‖L2,−1/2

. ‖u‖H1,−1/2 +N‖(u−ΠNu)‖L2,−1/2

+N1/2‖u−ΠNu‖1/2

L2,−1/2‖u−ΠNu‖1/2

H1,−1/2

. ‖u‖H1,−1/2. (72)

In order to see the stability of i
−1/2
N on (L2,−1/2(−1,+1),H1,−1/2(−1,+1))1/2,1,

we first consider the operator i
−1/2
N −ΠN . We have for the interpolation norm

‖·‖1/2,1 associated with the space (L2,−1/2(−1,+1),H1,−1/2(−1,+1))1/2,1 by
using the inverse estimate (71) and Lemma 5.6 below
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‖i−1/2
N u−ΠNu‖2

1/2,1 ≤ ‖i−1/2
N u−ΠNu‖L2,−1/2‖i−1/2

N u−ΠNu‖H1,−1/2

= ‖i−1/2
N (u−ΠNu)‖L2,−1/2‖i−1/2

N (u−ΠNu)‖H1,−1/2

. N‖i−1/2
N (u −ΠNu)‖2

L2,−1/2

. N‖u−ΠNu‖2
L2,−1/2 + ‖u−ΠNu‖L2,−1/2‖u−ΠNu‖H1,−1/2

. ‖u−ΠNu‖L2,−1/2‖u‖H1,−1/2 . ‖u‖L2,−1/2‖u‖H1,−1/2;

here we used the approximation property (68) and the stability estimate (70)
in the penultimate step and the stability estimate (68) in the final step.
We conclude with the triangle inequality and the multiplicative estimate
‖ΠNu‖2

1/2,1 ≤ ‖ΠNu‖L2,−1/2‖ΠNu‖H1,−1/2 that

‖i−1/2
N u‖2

1/2,1 . ‖u‖L2,−1/2‖u‖H1,−1/2 ∀u ∈ H1,−1/2.

An application of [30, Lemma 25.3] allows us to conclude ‖i−1/2
N u‖1/2,1 .

‖u‖1/2,1 for all u ∈ (L2,−1/2,H1,−1/2)1/2,1.

Lemma 5.6. For every u ∈ H1,−1/2(−1,+1)

‖u‖2
L∞(−1,+1) . ‖u‖L2,−1/2(−1,+1)‖u‖H1,−1/2(−1,+1),

‖i−1/2
N u‖2

L2,−1/2(−1,+1) . ‖u‖2
L2,−1/2(−1,+1) +N−1‖u‖L2,−1/2(−1,+1)‖u‖H1,−1/2(−1,+1).

Proof. We start with the L∞-bound. Let u ∈ C∞([−1, 1]). Then for arbitrary
x, y ∈ (−1, 1):

u2(x) − u2(y) =

∫ x

y

(u2)′(t)dt = 2

∫ x

y

uu′dt

≤ 2

√∫ 1

−1

u2(t)(1 − t2)−1/2dt

√∫ 1

−1

|u′(t)|2(1 − t2)1/2dt

= 2‖u‖L2,−1/2(−1,1)‖u′‖L2,+1/2(−1,1).

Multiplying by (1−y2)−1/2, integrating in y, and observing
∫ 1

−1
(1−y2)−1/2dy =

π produces

πu2(x) ≤ ‖u‖2
L2,−1/2(−1,1) + 2π‖u‖L2,−1/2(−1,1)‖u′‖L2,+1/2(−1,1),

which implies the desired L∞-bound.

The estimate for i
−1/2
N u now follows from Theorem 5.4.
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6 Appendix B: A posteriori error estimation

6.1 Preliminaries

We state a well-known lemma:

Lemma 6.1. Let K ⊂ V and Λ ⊂ W be a closed convex subsets of the Hilbert
spaces V and W. Let a : V×V → R and b : V×W → R be continuous bilinear
forms; let L : V → R and G : W → R be continuous linear forms. Let a be
symmetric positive definite. Assume additionally that Λ is bounded.

1. The functional J given by

J(u) := sup
λ∈Λ

L(u, λ), L(u, λ) :=
1

2
a(u, u) − L(u) + b(u, λ) −G(λ)

is continuous and strictly convex on K. Hence, there exists a unique min-
imizer u ∈ K of J .

2. There exists a Lagrange multiplier λ ∈ Λ such that (u, λ) ∈ K × Λ solves
the saddle point problem

a(u, v) + b(v, λ) ≥ L(v − u) ∀v ∈ K, (73a)

b(u, µ− λ) ≤ G(µ− λ) ∀µ ∈ Λ. (73b)

Proof.
Proof of Part 1:
1. step: It is not difficult to see that z : u 7→ supλ∈Λ b(u, λ) is convex. Hence,
J is convex. Furthermore, since u 7→ a(u, u) is strictly convex, we get that J
is strictly convex.
2. step: We claim that J is continuous. To that end, it suffices to see that
the function z is continuous. However, since Λ is bounded, it is clear that
|z(u)| ≤ C‖u‖V for all u ∈ V and a suitable C > 0. Since z is convex, the
continuity of z follows (see, e.g., [14, Chap. 1, Lemma 2.1]).
3. step: Since |z(u)| ≤ C‖u‖V and a is symmetric positive definite, we infer
that J is coercive. By general results of convex analysis, J has a minimizer.
By strict convexity of J , this minimizer is unique.

Proof of Part 2: Define the Lagrangian

L(u, λ) :=
1

2
a(u, u) − L(u) + b(u, λ) −G(λ)

Then [14, Prop. VI.2.4] provides the existence of a saddle point (u, λ) of L.
This saddle point satisfies (73), and the component u is the minimiser of J .
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6.2 A posteriori error estimation

Introduce

b(v,µ) =

∫

ΓC

gvt · µ,

Λ = {λ ∈ (L∞(ΓC))2 | ‖λ‖L∞(ΓC) ≤ 1}.

We then note that the friction functional j can be written as

j(u) = sup
λ∈Λ

b(u,λ).

Lemma 6.1 asserts that the saddle point problem

a(u,v) + b(v,λ) = L(v) ∀v ∈ V, (74a)

b(u,µ − λ) ≤ 0 ∀µ ∈ Λ, (74b)

is solvable and that the component u is the minimiser of the minimisation
problem (4). In fact, as is shown in [8], the Lagrange multiplier λ is unique.

Let jN be realised by a Gaussian quadrature with qN,E +1 points on each
edge E ∈ EC,N and assume

qN,E ≥ pN,E − 1 ∀E ∈ EC,N . (75)

Introduce

WN := {µ ∈ (L2(ΓC))2 | µ|E ∈ PqN,E ∀E ∈ EC,N},
bN (v,µ) := g

∑

E∈EC,N

∑

x∈ eGE,qN,E

ωe,qN,E ,xvt(x)µ(x),

ΛN := {µ ∈ WN : |µ(x)| ≤ 1 ∀E ∈ EC,N ∀x ∈ G̃E,qN,E}.

We notice

sup
µ∈ΛN

bN (v,µ) = jN (v) ∀v ∈ VN , (76)

bN (v,µ) = b(v,µ) ∀v ∈ VN , µ ∈ WN . (77)

Again, by Lemma 6.1, there exists a solution (uN ,λN ) of the saddle point
problem saddle point problem

a(uN ,v) + bN(v,λN ) = L(v) ∀v ∈ VN , (78a)

bN (uN ,µ − λN ) ≤ 0 ∀µ ∈ ΛN . (78b)

The solution uN is the minimiser of the discrete problem (6).
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For λN ∈ WN let λ̃N ∈ ΛN be the L2(ΓC)-projection onto Λ. For v ∈ V
let Iv ∈ VN be arbitrary. Then (74) and (78) yield:

−a(uN ,v) + L(v) − b(v, λ̃N )

= −a(uN ,v − Iv) + L(v − Iv) − a(uN , Iv) + L(Iv) − b(v, λ̃N )

= −a(uN ,v − Iv) + L(v − Iv) + bN (Iv,λN ) − b(v, λ̃N )

= −a(uN ,v − Iv) + L(v − Iv) − b(v − Iv,λN) + b(v,λN − λ̃N ), (79)

where, in the last step we additionally used (77).
We are now in position to provide a posteriori error estimates. The starting

point is [8, Thm. 4.1], which directly gives

‖u− uN‖2
H1(Ω) ≤ C

{
sup
v∈V

‖v‖−2
H1(Ω)

(
−a(uN ,v) + L(v) − b(v, λ̃N )

)2

+ j(uN ) − b(uN , λ̃N )
}
.

Inserting (79) yields

‖u− uN‖2
H1(Ω) ≤ C

{
sup
v∈V

‖v‖−2
H1(Ω) (−a(uN ,v − Iv) + L(v − Iv) − b(v − Iv,λN ))

2

+ (b(v,λN − λ̃N ))2 + j(uN ) − b(uN , λ̃N )
}
.

We recognise that this expression is exactly the same as in [8]. Hence, we
may proceed in exactly the same way as there. For K ∈ TN , we define the
interior residuals by

rK := −Div σ(uN ) − F (80)

and for E ∈ EN the boundary residuals by

RE :=





1
2 [σ(uN ) · ν]E if E ⊂ Ω,

(σ(uN ) · ν)t + g(λN )t i f E ⊂ ΓC

σ(uN ) · ν − t if E ⊂ ΓN,

0 if E ⊂ ΓD,

(81)

where

[σ(uN ) · ν]E := σ(uN )|KE,1 · νKE,1 + σ(uN )|KE,2 · νKE,2

is the boundary jump with E the common edge of KE,1 and KE,2 and νKE,1

pointing from KE,1 to KE,2, and νKE,2 = −νKE,1 .
We define local error indicators by
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η2
N,K :=h2

N,Kp
−2
N,K‖rK‖2

L2(K) + hN,Kp
−1
N,K

∑

E⊆∂K

‖RE‖2
L2(E)

+ j∂K∩ΓC
(uN ) − b∂K∩ΓC

(uN , λ̃N ) + g2‖λN − λ̃N‖2

H
−1/2

00 (∂K∩ΓC)
,

(82)

where the last three terms vanish if ∂K∩ΓC = ∅, and the global error indicator
by

η2
N :=

∑

K∈TN

η2
N,K . (83)

Theorem 6.2 (Reliability). Assume that the meshes TN are affine and
shape regular. Assume (7).

Assume (75). Then there exists a constant C > 0 such that the following is
true: For Lagrange multiplier λN such that (uN ,λN ) solves (78) the residual
error indicator given by (82), (83) satisfies

‖u− uN‖H1(Ω) ≤ CηN for all N. (84)

The efficiency result of [8] is also true as can be checked by inspection:

Theorem 6.3 (Efficiency). Let (u,λ) ∈ V × Λ be the solution of (74).
Assume (7). For each K let r̄K ∈ ΠpN,K (K) be a polynomial approximation
of rK . For each edge E, let R̄E be a polynomial approximation of RE of
degree pE, where pE = min{pK : E is edge of K ∈ TN}.

For K ∈ TN denote by Kpatch the union of elements of TN that share an
edge with K. Let rpatch and r̄patch be defined on Kpatch in an elementwise
fashion by rpatch|K′ = rK′ and r̄patch|K′ = r̄K′ for all K ′ ⊂ Kpatch.

Let β ∈ (1/2, 1]. Then there exists a constant C > 0 such that the residual
error indicator satisfies

η2
N,K . p2β

N,K

(
pN,K‖u− uN‖2

H1(Kpatch)
+ h2

N,Kp
−3+2β
N,K ‖r̄Kpatch

− rKpatch
‖L2(Kpatch)

+ hN,Kp
−1
K

∑

E⊆∂K

‖R̄E − RE‖2
L2(E) + g2hN,Kp

−1
K ‖λN − λ‖2

L2(∂K∩ΓC)

)

+ gh
1/2
N,∂K∩ΓC

‖uN − u‖L2(∂K∩ΓC) + g‖u‖L2(∂K∩ΓC)‖λ − λN‖L2(∂K∩ΓC)

+ g2‖λN − λ‖2
L2(∂K∩ΓC) (85)

for all N and all K ∈ TN .

Remark 6.4. It is worth pointing out that that the Lagrange multiplier λN

may not be unique. In the special case considered in Section 4.2, it is, however,
unique: The special choice qN,E = pN,E − 1 and the boundary conditions
(Dirichlet boundary conditions at one end point) ensure that a λ ∈WN that
satisfies

bN(u,λ) = 0 ∀u ∈ VN
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has to vanish identically. Thus, the Lagrange multiplier λN is unique in this
case.
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