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Abstract

We study the problem of finding a inner product norm in which a given companion matrix C ∈ Cn×n

with a [weakly] stable spectrum becomes contractive (or dissipative), via a preferably well-conditioned
change of basis. To this end we use a basis transformation related to a rescaled LQ decomposition of
the associated Vandermonde matrix which is robust to w.r.t. confluent or non-confluent spectra. For
n = 2 we give an explicit construction. The transformed, contractive matrix is non-normal in general,
and it depends on the distribution of the spectrum in a nonlinear way. This analysis cannot be directly
generalized to higher dimension, but it suggests an algebraic/numerical algorithm for a numerically given
spectrum. This has been tested for small values of n and appears to be successful.

2000 Mathematics Subject Classification : 15A21, 15A60.

Key words and phrases: companion matrix, weak stability, contractivity.

1 Introduction and overview

The term nonnormality is a placeholder for a rich variety of phenomena in matrix analysis, cf. e.g. [15].
Here our topic is a question nontrivial due to nonnormality, namely to find, for a given matrix A ∈ Cn×n

with spectrum satisfying a [weak] stability condition, a natural inner product norm in which A becomes a
contraction. In principle, one of the well-known equivalent conditions in the Kreiss matrix theorem asserts
that an appropriate basis transformation always exists, cf. e.g. [9],[15]. However, the proofs of this fact are
not constructive, cf. e.g. the survey paper [13] or the proof given in [12].

In this paper we argue that finding such a transformation, reasonably well-conditioned, is a difficult problem
in general, and we provide a partial solution. We restrict ourselves to the special class of companion matrices
C ∈ Cn×n. It is essential to handle non-confluent and confluent spectra in a uniform way, independent of
the clustering or multiplicity of eigenvalues. To this end it is favorable to consider companion matrices not
in a purely linear algebra setting but to refer to their interpretation in the context of polynomial algebra.

The paper is organized as follows: In Section 2 we review bases in polynomial interpolation, with emphasis
on confluent limits and interpretation in terms of orthogonality. In particular, we consider confluent forms
of the LU- and LQ-decomposition of Vandermonde matrices. In Section 3 these bases are used to transform
a given companion matrix to Hessenberg (or bidiagonal, tridiagonal) forms, which depend on the spectrum
in a continuous way (in contrast to the Jordan form). The bidiagonal form is well known; it is considered
mainly for the sake of completeness and for motivating use of the alternative Hessenberg or tridiagonal
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form. In Section 4 the latter used to study the contractivity problem for stable companion matrices.
We give a general, explicit construction in terms of the spectrum for dimension n = 2, which is already
nontrivial. For n ≥ 3 we discuss the question how to find the appropriate basis transformation by means
of an algebraic/numerical algorithm. Our procedure appears to be successful in numerical practice, but we
have not been able to give a complete theoretical explanation for this observation. The analogous question
for the case of a [weakly] dissipative spectrum is also briefly studied.

Although some simple applications are mentioned, the topic of this paper is mainly theoretical. We stress
that our approach taken in Section 3 via maximizing a certain determinant appears to be remarkably
successful; trying to explain this observation may be of more general interest. We also note that in [5],[8],
the contractivity of stable companion matrices is discussed from a different point of view.

Remark concerning notation: For any A ∈ Cm×n, A
′
denotes its ordinary transpose and A

∗
its Hermitian

transpose.1 For a function f of a real of complex argument, ḟ denotes its derivative.

2 Orthogonal polynomial bases in interpolation

Let Πn−1 denote the space of complex polynomials of degree ≤ n− 1. Our focus is on orthogonal bases in
Πn−1. We assume that n nodes η1, . . . , ηn ∈ C are given, not necessarily distinct, and denote

π(ζ) := (ζ − η1) · · · (ζ − ηn). (2.1)

Divided differences of scalar or vector-valued polynomials u(ζ) w.r.t. the ηk are denoted as

u[η1, . . . , η`] or by the shortcut u[1··`]. (2.2)

If the ηk are not pairwise distinct, this is to be interpreted in the usual confluent sense.

2.1 Newton-Taylor basis

The monomial basis in Πn−1 is denoted by

m(ζ) = (m0(ζ),m1(ζ), . . . ,mn−1(ζ))
′
= (1, ζ, . . . , ζn−1)

′
. (2.3)

The (transposed) Vandermonde matrix associated with the mj(ηk) is 2

V = V (η1, . . . , ηn) =




m(η1) m(η2) . . . m(ηn)




=




1 1 . . . 1
η1 η2 . . . ηn

η2
1 η2

2 . . . η2
n

...
...

. . .
...

ηn−1
1 ηn−1

2 . . . ηn−1
n




. (2.4)

The ‘Newton-Taylor basis’ associated with the given ηk is denoted by3

n(ζ) = (n0(ζ), n1(ζ), . . . , nn−1(ζ))
′
, nj(ζ) =

j∏

`=1

(ζ − η`). (2.5)

1Note that ‖A‖2 = ‖A′‖2 = ‖A∗‖2 for all A ∈ Cn×n.
2We are not referring to any confluent regularization of V for the case of multiple ηk.
3m(ζ) may also be called the ‘Taylor basis’ w.r.t. the node η = 0; it is the special case of n(ζ) for ηk ≡ 0.

2



It is well known from interpolation theory (cf. e.g. [7]) that, for distinct ηk, the change of basis m(ζ) 7→ n(ζ)
is described by the LU-decomposition of V , V = LU with

L =




m[η1] m[η1, η2] . . . m[η1, . . . , ηn]




=




1
ζ [1] 1
ζ2

[1] ζ2
[1··2] 1

...
...

. . . . . .

ζn−1
[1] ζn−1

[1··2] . . . ζn−1
[1··n−1] 1




, (2.6)

L unit lower diagonal,

U =




n(η1) n(η2) . . . n(ηn)




=




1 1 1 . . . 1
(η2−η1) (η3−η1) . . . (ηn−η1)

2∏
`=1

(η3−η`) . . .
2∏

`=1

(ηn−η`)

. . .
...

n−1∏
`=1

(ηn−η`)




. (2.7)

In the confluent case, V and U have reduced rank, but the basis transformation m(ζ) 7→ n(ζ) represented
by m(ζ) = L ·n(ζ) is always well defined, and identity V = LU remains valid, with confluent interpretation
of the divided differences defining L.

The Newton-Taylor basis n(ζ) satisfies the two-term recurrence

ζ n(ζ) = B · n(ζ) +




0
...
0

π(ζ)




, B =




η1 1
η2 1

. . . . . .

ηn−1 1
ηn




, (2.8)

with π(ζ) from (2.1), and n(ζ) is orthonormal w.r.t. the discrete Sobolev product in Πn−1,

〈〈u, v〉〉 :=
n∑

k=1

ū[η1, . . . , ηk] v[η1, . . . , ηk]. (2.9)

The transition from m(ζ) to n(ζ) may be identified with a conventional Gram-Schmidt process w.r.t. 〈〈·, ·〉〉.
For u, v ∈ Πn−1 in monomial representation u(ζ) = u

′
m(ζ), v(ζ) = v

′
m(ζ), we have u[η1, . . . , ηk] = (L

′
u)k,

v[η1, . . . , ηk] = (L
′
v)k, and

〈〈u, v〉〉 = u
∗
Wv, with W = (L

′
)
∗

L
′
. (2.10)

Note that 〈〈u, v〉〉 is always a properly positive definite inner product, independent of the multiplicities of the
ηk. Multiple occurrence of some ηk corresponds to a version of Hermite interpolation. The Newton-Taylor
representation for an interpolation polynomial,

u(ζ) =
n−1∑

j=0

u[η1, . . . , ηj+1]nj(ζ) =
n−1∑

j=0

〈〈u, nj〉〉nj(ζ) (2.11)

covers the standard situations, including Lagrange interpolation and Taylor expansion as special cases.
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2.2 [Non-]confluent orthogonal `2-basis

Consider first the non-confluent case of distinct ηk. Let

q(ζ) = (q0(ζ), q1(ζ), . . . , qn−1(ζ))
′

(2.12)

denote the graded basis (degree(qj) = j) which is orthonormal w.r.t. the `2 - inner product

〈u, v〉 :=
n∑

k=1

ū(ηk)v(ηk), ‖u‖ := 〈u, u〉 1
2 . (2.13)

The change of basis m(ζ) 7→ q(ζ) is represented by the LQ decomposition of V , V = KQ, with K lower
diagonal and Q unitary. Then, m(ζ) = K · q(ζ), and

Q =




q(η1) q(η2) . . . q(ηn)




with Q Q
∗

= I, (2.14)

cf. e.g. [7]. q is not a monic basis, but a diagonal rescaling yields

V = (KD−1)(DQ) =: LP with D = Diag(K), (2.15)

where the new transformation matrix L is unit lower diagonal, and

p(ζ) = (p0(ζ), p1(ζ), . . . , pn−1(ζ))
′
:= D q(ζ) (2.16)

is a monic basis which is also orthogonal (but not orthonormal) w.r.t. 〈·, ·〉,

P :=




p(η1) p(η2) . . . p(ηn)




with PP
∗

= D2, m(ζ) = L · p(ζ). (2.17)

This process is not well-defined in the confluent case. In the sequel we consider a modification of this
orthogonalization procedure which makes sense in general. Assuming now that the ηk are arbitrary, we
indicate the Gram-Schmidt process w.r.t. the [semi]-definite form 〈·, ·〉 (with associated [semi]-norm ‖ · ‖),
which transforms m(ζ) into p(ζ) in the general case. For the pj(ζ) we use an ansatz which directly yields
the coefficients in the associated recurrence.

The case n = 2.

It is convenient to consider the special case n = 2 first. Let η̂ := 1
2(η1 + η2). In the non-confluent case we

have V = KQ = LP with

K =
√

2




1
η̂ 1

2 |η1 − η2|


, L =




1
η̂ 1


, P =




1 1
η1 − η̂ η2 − η̂


=




p0(η1) p0(η2)
p1(η1) p1(η2)


. (2.18)

Alternatively, including the confluent case, p(ζ) = (p0(ζ), p1(ζ))
′
is constructed as follows.
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[0.] p0(ζ) := m0(ζ) = 1, with ‖p0‖ =
√

2.

[1.] Ansatz with parameter γ1:
p1(ζ) := (ζ − γ1)p0(ζ) = (ζ − γ1). (2.19)

Requirement 〈p0, p1〉 = 0 yields
γ1 = η̂, p1(ζ) = ζ − η̂. (2.20)

Note that ‖p1‖ = 0 ⇔ η1 = η2 ( = η̂).

This construction is also well-defined also in the confluent case η1 = η2. The monic polynomials

p0(ζ) = 1, p1(ζ) = ζ − η̂ (2.21)

are linearly independent, and the change of basis m(ζ) 7→ p(ζ) is represented by a unit lower diagonal
matrix which we again denote by L,

m(ζ) = L · p(ζ), L =




1
−γ1 1



−1

=




1
η̂ 1


, (2.22)

and V = LP with L, P from (2.18) is a properly rescaled LQ-decomposition of V .

In the confluent case, V and P have reduced rank 1, and the inner product 〈·, ·〉 degenerates. But there is
of course a natural inner product which is trivially well-defined, definite, and properly scaled: For u(ζ) =
u
′
p(ζ), v(ζ) = v

′
p(ζ) ∈ Π1 we define 〈〈u, v〉〉 := u

∗
v (u = (u0, u1)

′
, v = (v0, v1)

′
). Obviously,

〈〈u, v〉〉 = ū0v0 + ū1v1 = ū(η̂)v(η̂) + ˙̄u v̇, |||u||| := 〈〈u, u〉〉 1
2 (2.23)

defines yet another discrete Sobolev product and norm on Π1, respectively, with u0 = u(η̂) = 1
2(u(η1)+u(η2))

and u̇ ≡ u[η1, η2]. By construction, the pj(ζ) are orthonormal w.r.t. 〈〈·, ·〉〉. The basis p(ζ) may be considered
as a ‘symmetric version’ of the Newton-Taylor basis n(ζ) which does not depend on a particular ordering
of the ηk. Expressed in monomial coordinates, u(ζ) = u

′
m(ζ), v(ζ) = v

′
m(ζ), we have

〈〈u, v〉〉 = u
∗
Wv, with W = (L

′
)
∗

L
′
=




1 η̂

¯̂η 1 + |η̂|2

. (2.24)

Furthermore, let γ2 and λ2 be defined such that

(ζ − γ2)p1(ζ)− λ2 p0(ζ) = π(ζ) = (ζ − η1)(ζ − η2). (2.25)

This gives γ2 = η̂, λ2 = 1
4(η1 − η2)

2 With these parameters, the basis p(ζ) satisfies a recurrence which
may be written in the form

ζ p(ζ) = H · p(ζ) +




0
π(ζ)


, H =




γ1 1
λ2 γ2


=




η̂ 1
1
4(η1 − η2)

2 η̂


, η̂ = 1

2(η1 + η2). (2.26)

Outline of general confluent orthogonalization procedure.

In general, we have to take special care for different versions of confluence.

s := number of distinct ηk, (2.27)

the degree of the minimal polynomial associated with π(ζ) = (ζ − η1) . . . (ζ − ηn). By η̂ := 1
n

∑n
k=1ηk we

denote the barycenter of the polygon spanned by the ηk. Let us consider in detail the first steps of the
orthogonalization process.
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[0.] p0(ζ) := m0(ζ) = 1, with ‖p0‖ =
√

n.

[1.] Ansatz:
p1(ζ) := (ζ − γ1)p0(ζ) = (ζ − γ1). (2.28)

– Requirement 〈p0, p1〉 = 0 yields

0 = 〈1, p1(ζ)〉 =
∑n

k=1p1(ηk) ⇒ γ1 = η̂, p1(ζ) = ζ − η̂. (2.29)

Note that ‖p1‖ = 0 ⇔ s = 1, i.e., iff η1 = . . . = ηn = η̂.

[2.] Ansatz:
p2(ζ) := (ζ − γ2)p1(ζ)− λ2 p0(ζ). (2.30)

– Requirement 〈p0, p2〉 = 0 yields

0 = 〈1, p2(ζ)〉 = 〈1, ζ p1(ζ)〉 − γ2〈1, p1(ζ)〉 − λ2〈1, p0(ζ)〉
= 〈1, ζ p1(ζ)〉 − 0 − nλ2. (2.31)

This uniquely determines λ2,

λ2 = 1
n〈1, ζ p1(ζ)〉 =

∑n
k=1

1
n p1(ηk) ηk. (2.32)

For s = 1 we obtain λ2 = 0.

– Requirement 〈p1, p2〉 = 0 yields

0 = 〈p1(ζ), p2(ζ)〉 = 〈p1(ζ), ζ p1(ζ)〉 − γ2〈p1(ζ), p1(ζ)〉 − λ2〈p1(ζ), p0(ζ)〉
= 〈1, ζ|p1(ζ)|2〉 − γ2‖p1‖2 + 0. (2.33)

This uniquely determines γ2,

γ2 =
〈1, ζ|p1(ζ)|2〉

‖p1‖2 =
∑n

k=1

|p1(ηk)|2∑n
`=1|p1(η`)|2

ηk if s > 1. (2.34)

Otherwise the natural choice for γ2 is

γ2 =
∑n

k=1
1
n ηk ≡ ηk = γ1 = η̂, thus: p2(ζ) = (ζ − η̂)2 for s = 1. (2.35)

Note that ‖p2‖ = 0 ⇔ s ≤ 2, because p2(ηk) ≡ 0 iff at least n−1 of ηk coincide (observing that p2(ζ)
is monic of degree 2).

[3.] Ansatz:
p3(ζ) := (ζ − γ3)p2(ζ)− λ3 p1(ζ)− κ3 p0(ζ). (2.36)

– Requirement 〈p0, p3〉 = 0 yields

0 = 〈1, p3(ζ)〉 = 〈1, ζ p2(ζ)〉 − γ3〈1, p2(ζ)〉 − λ3〈1, p1(ζ)〉 − κ3〈1, p0(ζ)〉
= 〈1, ζ p2(ζ)〉 − 0 − 0 − nκ3. (2.37)

This uniquely determines κ3,

κ3 = 1
n〈1, ζ p2(ζ)〉 =

∑n
k=1

1
n p2(ηk) ηk. (2.38)

For s ≤ 2 we obtain κ3 = 0.
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– Requirement 〈p1, p3〉 = 0 yields

0 = 〈p1(ζ), p3(ζ)〉 = 〈p1(ζ), ζ p2(ζ)〉 − γ3〈p1(ζ), p2(ζ)〉 − λ3〈p1(ζ), p1(ζ)〉 − κ3〈p1(ζ), p0(ζ)〉
= 〈p1(ζ), ζ p2(ζ)〉 − 0 − λ3‖p1‖2 − 0. (2.39)

This uniquely determines λ3,

λ3 =
〈p1(ζ), ζ p2(ζ)〉

‖p1‖2 =
∑n

k=1

p̄1(ηk)p2(ηk)∑n
`=1|p1(η`)|2

ηk if s > 1. (2.40)

Otherwise the natural choice is
λ3 = 0 for s = 1, (2.41)

since the multiplicity of the zero of p̄1(ζ)p2(ζ)ζ at ζ = η̂ is higher than for |p1(ζ)|2. For s = 2 we also
have λ3 = 0 due to p2(ηk) ≡ 0.

– Requirement 〈p2, p3〉 = 0 yields

0 = 〈p2(ζ), p3(ζ)〉 = 〈p2(ζ), ζ p2(ζ)〉 − γ3〈p2(ζ), p2(ζ)〉 − λ3〈p2(ζ), p1(ζ)〉 − κ3〈p2(ζ), p0(ζ)〉
= 〈1, ζ |p2(ζ)|2〉 − γ3‖p2‖2 − 0 − 0. (2.42)

This uniquely determines γ3,

γ3 =
〈1, ζ|p2(ζ)|2〉

‖p2‖2 =
∑n

k=1

|p2(ηk)|2∑n
`=1|p2(η`)|2

ηk if s > 2. (2.43)

Otherwise the natural choice for γ3 is

γ3 =
∑n

k=1
1
n ηk ≡ ηk = η̂ for s ≤ 2. (2.44)

Note that ‖p3‖ = 0 ⇔ s ≤ 3, because p3(ηk) ≡ 0 iff at least n− 2 of the ηk coincide (observing that
p3(ζ) is monic of degree 3).

• . . .

It is rather obvious how this procedure is to be continued, but the general handling of confluence will have
to be done in a systematic way, and a double index notation for the recurrence coefficients has to be used,

pj(ζ) = (ζ − hjj︸︷︷︸
= γj

)pj−1(ζ)− hj,j−1 pj−2(ζ)− . . .− hj1 p0(ζ), j < n. (2.45)

The procedure is independent of the ordering of the ηk. In this paper, however, we do not attempt to describe
this symbolic algorithm its general form. Of course it may be of interest to show that it is well-defined in
general, with the special outcome of a three-term recurrence if the ηk lie on a common line, in particular
if they are real, as is to be expected from the theory of orthogonal polynomials (cf. e.g. [4]). An explicit
representation of the parameters hj` in terms of the ηk becomes quite cumbersome already for n = 3, and
we will give no details.

The change of basis m(ζ) 7→ p(ζ), where the monic basis

p(ζ) = (p0(ζ), p1(ζ), . . . , pn−1(ζ))
′

(2.46)
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is constructed as indicated above, is represented by a unit lower diagonal matrix L,

m(ζ) = L · p(ζ), L =




1
−γ1 1

γ1γ2 − λ2 −γ1 − γ2 1
...

...
...

. . .




−1

=




1
γ1 1

γ2
1 + λ2 γ1 + γ2 1

...
...

...
. . .




. (2.47)

The decomposition V = LP , with P =

p(η1) p(η2) . . . p(ηn)


 is a rescaled LQ-decomposition of V ,

the natural extension of the non-confluent decomposition to the general case.

For u(ζ) = u
′
p(ζ), v(ζ) = v

′
p(ζ) ∈ Πn−1 let

〈〈u, v〉〉 := u
∗
v, |||u||| := 〈〈u, u〉〉 1

2 (2.48)

The basis p(ζ) is orthonormal w.r.t. this inner product. Expressed in monomial coordinates, u(ζ) = u
′
m(ζ),

v(ζ) = v
′
m(ζ), we have

〈〈u, v〉〉 = u
∗
Wv, with W = (L

′
)
∗

L
′
. (2.49)

As for n = 2 this may be called a (weighted) discrete Sobolev product; it is uniquely determined by ηk and
does not depend on their ordering.

In addition, we complete the above orthogonalization procedure by defining parameters hnk such that

(ζ − hnn︸︷︷︸
= γn

)pn−1(ζ)− hn,n−1 pn−2(ζ)− . . .− hn1 p0(ζ) = π(ζ) = (ζ − η1) · · · (ζ − ηn). (2.50)

With all these parameters, the basis p(ζ) satisfies a recurrence of the general the form

ζ p(ζ) = H · p(ζ) +




0
...
0

π(ζ)




, H =




h11 1
h21 h22 1
...

...
. . . . . .

...
...

. . . 1
hn1 hn2 . . . . . . hnn




, (2.51)

where H is lower Hessenberg (or tridiagonal) with unit upper diagonal.

3 Similarity transformation of companion matrices

Consider a Frobenius matrix

C =




0 1
0 1

. . . . . .

0 1
−c0 −c1 . . . −cn−2 −cn−1




∈ Cn×n, (3.1)

which is the companion matrix of its associated characteristic polynomial with roots ζk, k = 1 . . . n (of
arbitrary multiplicities),

χ(ζ) = det(ζI − C) = ζn + cn−1ζ
n−1 + . . . + c1ζ + c0 = (ζ − ζ1) · · · (ζ − ζn), ζk ∈ C. (3.2)
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The normal forms for C described in the sequel depend on the choice of the parameters η1, . . . , ηn which,
in principle, are arbitrary complex numbers and need not be pairwise distinct. These normal forms, which
transform the lower Hessenberg matrix C into another lower Hessenberg form, are obtained via the basis
transformations considered in Section 2. In applications, the ηk typically are given approximations for the
characteristic roots ζk, and therefore we refer to {η1, . . . , ηn} as a ‘pseudospectrum’ for C, and as before
we denote π(ζ) = (ζ − η1) · · · (ζ − ηn). For the investigations in Section 4 we will assume that the ζk are
given, and with ηk :≡ ζk we obtain special normal forms with a simpler structure. We will refer to this as
the ‘spectral case’.

Frobenius matrices are of relevance in various applications. In the present context the standard interpretation
of C in the context of polynomial algebra is convenient, where [non-]confluent situations can be handled in
a uniform way: C represents multiplication by ζ mod χ in the complex polynomial ring Πn−1 of degree 1
w.r.t. the monomial basis (2.3): For

u◦(ζ) := ζ ◦ u(ζ) := ζ u(ζ) mod χ, u ∈ Πn−1, (3.3)

we have
m◦(ζ) := ζ ◦m(ζ) ≡ C ·m(ζ), (3.4)

where ζ ◦m(ζ) is to be interpreted componentwise.

For the linear operator ◦ or matrix C, respectively, we now apply a basis transformation in Πn−1 and this
will lead us to a similarity transformation C = LTL−1. As in Section 2 we consider two versions, the first
of which is well-known and and mentioned mainly for the sake of completeness.

3.1 Newton-Taylor orthogonalization and Bidiagonal-Frobenius form

For the Newton-Taylor basis n(ζ) from (2.5) we have m(ζ) = L ·n(ζ) with L from (2.6), and the two-term
recurrence (2.8) holds. This yields

n◦(ζ) := ζ ◦ n(ζ) =




ζ n0(ζ) mod χ

...
ζ nn−2(ζ) mod χ

ζ nn−1(ζ) mod χ




=




ζ n0(ζ)
...

ζ nn−2(ζ)
ζ nn−1(ζ)− χ(ζ)




, (3.5)

and

n◦(ζ) = B · n(ζ) +




0
...
0

π(ζ)− χ(ζ)




, B from (2.8), (3.6)

where

Πn−1 3 π(ζ)− χ(ζ) =
n−1∑

k=0

−χ[η1, . . . , ηk+1]nk(ζ). (3.7)

This shows
n◦(ζ) = L−1 C L · n(ζ) = T · n(ζ), (3.8)
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with

T =




η1 1
η2 1

. . . . . .

ηn−1 1
−χ[1] −χ[1··2] . . . −χ[1··n−1] −χ[1··n] + ηn




. (3.9)

The matrix T is of special lower Hessenberg form, the so-called Bidiagonal-Frobenius form, and it is the
coefficient matrix associated with the recurrence for the nj(ζ) ending up at π(ζ). Identity C L = LT may also
be written in the more conventional, transposed form in terms of the associated coordinate transformation,

C
′
(L

′
)
−1

= (L−1)
′
T
′
, with T

′
upper Hessenberg, and where the columns of (L−1)

′
are orthonormal w.r.t.

the inner product in Cn of Newton-Taylor type (cf. (2.9)).

In the spectral case ηk ≡ ζk, T takes the special bidiagonal form (2.8),

T =




ζ1 1
ζ2 1

. . . . . .

ζn−1 1
ζn




= B. (3.10)

For the Taylor case ηk ≡ 0, T is identical with C.

For various theoretical and numerical applications of this normal form we refer to [1],[2],[3],[6],[14], and
references therein. In [6] the bidiagonal form has been used for a quantitative stability analysis of linear
multistep methods applied to stiff ODEs. Here the point is that via an appropriate diagonal rescaling, the
bidiagonal form can be converted into a contraction in the ‖ · ‖∞ norm, assuming the ζk satisfy a stability
condition w.r.t. the unit circle. In Section 4 we will study an analogous question, namely transforming C
in such way that a contraction w.r.t. ‖ · ‖2 is obtained. This is a much more difficult problem, and we will
base our investigations on the orthogonal basis transformation from Section 2.2, as described in the next
section.

Remark. Consider (3.10) and assume that the ζk are contained in the complex unit circle, nicely separated,
and one of the of modulus close to 1. Then B is diagonalizable with a well-conditioned eigensystem, i.e., the
transformation to a contraction is straightforward. If some of the ‘inner’ ζk are close together, this makes no
sense. Here one may think of finding a positive diagonal matrix Ω such that ‖Ω−1B Ω‖2 < [≤] 1. Evidently,
this must also fail because Ω will necessarily have to be very ill-conditioned. Our approach described in the
sequel is based on an alternative to the bidiagonal form which is better adapted to the degree of confluence.
For real spectra, for instance, this normal form T will be tridiagonal but not symmetric. The problem of
`2-contractivity will be based on an appropriate diagonal rescaling of T , but we will see that finding the
scaling parameters is a nontrivial problem.

3.2 [Non-]confluent `2-orthogonalization and associated Hessenberg form

In Section 2.2 we have indicated how the Gram-Schmidt process for `2-orthogonalization works in general.
As for the Newton-Taylor case this can be rewritten yielding a transformation of C to another Hessenberg
form; this may be called an Arnoldi process applied to C. For later use we first specify the details for the
simplest case n = 2.
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The case n = 2.

For

C =




0 1
−c0 −c1


 ∈ C2×2 (3.11)

with characteristic polynomial χ(ζ) = ζ2 + c1ζ + c0 = (ζ − ζ1)(ζ − ζ2) we have m◦(ζ) = C · m(ζ),
m(ζ) = (m0(ζ),m1(ζ))

′
= (1, ζ)

′
. The transformed basis p(ζ) from (2.21) is orthonormal w.r.t. the inner

product 〈〈·, ·〉〉 from (2.23). It satisfies m(ζ) = L ·p(ζ) with L =

1 0

η̂ 1


 from (2.22) (with η̂ = 1

2(η1 +η2)),

and the recurrence (2.26) holds. This yields

p◦(ζ) := ζ ◦ p(ζ) =




ζ p0(ζ) mod χ

ζ p1(ζ) mod χ


=




ζ p0(ζ)
ζ p1(ζ)− χ(ζ)


, (3.12)

and

p◦(ζ) = H · p(ζ) +




0
π(ζ)− χ(ζ)


, H =




η̂ 1
1
4(η1 − η2)

2 η̂


 from (2.26), (3.13)

where
Π1 3 π(ζ)− χ(ζ) = −χ[η1]p0(ζ)− χ[η1, η2]p1(ζ). (3.14)

With χ[η1] = χ(η̂) + 1
4(η1 − η2)2, χ[η1, η2] = χ̇(η̂) = const. this gives

p◦(ζ) = L−1 C L · p(ζ) = T · p(ζ), (3.15)

with

T =




η̂ 1
−χ(η̂) η̂ − χ̇(η̂)


=



〈〈p◦0, p0〉〉 〈〈p◦0, p1〉〉
〈〈p◦1, p0〉〉 〈〈p◦1, p1〉〉


. (3.16)

T is the coefficient matrix associated with the recurrence for the pj(ζ) ending up at χ(ζ). In the spectral
case ηk ≡ ζk, π(ζ) = χ(ζ) we have η̂ = 1

2(ζ1 + ζ2), χ(η̂) = −1
4(ζ1 − ζ2)

2, and χ̇(η̂) = 0. By construction,
T = H in this case, see (3.13).

Summing up, we can formulate

Proposition 3.1 For n = 2 and arbitrary η1, η2 ∈ C and with η̂ = 1
2(η1 + η2) we have C = LTL−1, with

L =




1
η̂ 1


, T =




η̂ 1
−χ(η̂) η̂ − χ̇(η̂)


. (3.17)

If {η1, η2} = {ζ1, ζ2} is chosen as the spectrum of C, then

T =




γ1 1

λ2 γ2


=




1
2(ζ1 + ζ2) 1
1
4(ζ1 − ζ2)

2 1
2(ζ1 + ζ2)


= H. (3.18)

General procedure.

For a general companion matrix (3.1) with characteristic polynomial (3.2) the construction is analogous.
The transformed basis p(ζ) constructed in Section 2.2 is orthonormal w.r.t. the inner product 〈〈·, ·〉〉 from
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(2.49). It satisfies m(ζ) = L · p(ζ) with L from (2.15) or (2.47), and a recurrence of the form (2.51) holds.
This yields

p◦(ζ) := ζ ◦ p(ζ) =




ζ p0(ζ) mod χ
...

ζ pn−2(ζ) mod χ
ζ pn−1(ζ) mod χ




=




ζ p0(ζ)
...

ζ pn−2(ζ)
ζ pn−1(ζ)− χ(ζ)




, (3.19)

and

p◦(ζ) = H · p(ζ) +




0
...
0

π(ζ)− χ(ζ)




, H from (2.51), (3.20)

where
Πn−1 ∈ π(ζ)− χ(ζ) = δ0 p0(ζ) + . . . + δn−1 pn−1(ζ) (3.21)

with certain coefficients δj depending on the ηk. This gives

p◦(ζ) = L−1 C L · p(ζ) = T · p(ζ), (3.22)

with

T =




h11 1
h21 h22 1
...

...
. . . . . .

...
...

. . . 1
hn1 − δ0 hn2 − δ1 . . . . . . hnn − δn−1




, Tij = 〈〈p◦i−1, pj−1〉〉. (3.23)

By construction we have C = LTL−1, and T is the coefficient matrix associated with the recurrence for the
pj(ζ) ending up at χ(ζ). In the spectral case ηk ≡ ζk, π(ζ) = χ(ζ) we have T = H, see (3.20).

Non-confluent spectral case.

For the non-confluent spectral case, C diagonalizable with distinct eigenvalues ζk, the matrix T = H
can be obtained algorithmically via the LQ-decomposition V (ζ1, . . . , ζn) = KQ and diagonal rescaling,
V = (KD−1)(DQ) = LP , with D = Diag(K) invertible and L unit lower diagonal, see (2.15): With
Z := Diag(ζ1, . . . , ζn) we have

C = V Z V −1 = LTL−1, T = P Z P−1 = D QZQ
∗
D−1. (3.24)

and T is diagonally similar to the normal matrix QZQ
∗
. In the confluent limit this is not well-defined.

Remark. With L = R E a polar decomposition of L, we may also write C = LTL−1 = R (E TE
∗
) R−1

with R > 0 and E TE
∗

unitarily similar to T .

4 Contractivity, or dissipativity, for stable spectra

We now study the problem of finding a basis transformation, preferably well-conditioned, converting a
given companion matrix C with a [weakly] stable spectrum into a `2-contractive, or `2-dissipative matrix,
respectively. The assumption is that the spectrum of C satifies a [weak] stability condition w.r.t. the closed
complex unit circle or the closed complex left half plane.
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For C diagonalizable with separated eigenvalues, transformation to a contraction is, in principle, trivial
via (3.24), C = V Z V −1. However, κ(V ) becomes arbitrarily large for eigenvalues clustered together.
Our construction below is independent of the distribution of the spectrum and robust w.r.t. confluence. We
proceed from the transformed version T of C introduced in Section 3, with the spectral choice ηk ≡ ζk. Recall
that T always well-defined (independent of the distribution of multiplicities of the ζk); but an appropriate
scaling of T has to be found. Our approach is to seek a diagonal matrix Ω > 0 such that Ω−1T Ω becomes
contractive, or dissipative.

The analysis given below for the special case n = 2 shows that the solution is not completely straightfor-
ward. We present the explicit solution for n = 2. For higher dimension, the search for appropriate scaling
parameters leads to a highly nonlinear problem in polynomial algebra. For the general case, we formulate
a ‘tentative’ algorithm which, for a given numerical values of the spectrum, amounts to solving a system of
polynomial equations in n − 1 unknowns. This gives a set of candidates for the unknown scaling param-
eters which have to be checked; this involves the solution of Hermitian eigenvalue problems. In extensive
numerical tests, in particular for n = 3 and n = 4, this procedure has proven successful.

4.1 Norm contractivity for spectra in the closed unit circle

The case n = 2.

We adopt the notation from Sections 2.2 and 3.2. Assume that C from (3.11) satisfies a weak stability
condition w.r.t. unit circle, i.e.,

|ζ1| ≤ 1, |ζ2| ≤ 1, |ζ1| < 1 if ζ1 = ζ2. (4.1)

According to Proposition 3.1, T from (3.18) is similar to C, and the transformation matrix L from (3.17)
is well-conditioned. We now introduce a scaling parameter ω > 0, unspecified at the moment. Let Ω :=
Diag(1, ω). We write 1

2(ζ1 + ζ2) =: ζ̂ and define4

q0(ζ) := p0(ζ) = 1, q1(ζ) := ω−1p1(ζ) =
(ζ − ζ̂)

ω
. (4.2)

Furthermore, let

〈〈u, v〉〉
Ω

= ū0v0 + ω2 ū1v1 = ū(ζ̂)v(ζ̂) + ω2 ˙̄u v̇, |||u|||
Ω

:= 〈〈u, u〉〉 1
2 (4.3)

Then, 〈〈q0, q0〉〉Ω = 〈〈q1, q1〉〉Ω = 1, 〈〈q0, q1〉〉Ω = 0. W.r.t. to the rescaled basis

Ω p(ζ) =: q(ζ) = (q0(ζ), q1(ζ))
′
, (4.4)

multiplication by ζ mod χ is now represented by q◦(ζ) := ζ ◦ q(ζ) ≡ TΩ · q(ζ), where the entries of

TΩ := Ω−1T Ω =




γ1 ω

λ2
ω γ2


=




ζ̂ ω

−π(ζ̂)
ω ζ̂ − χ̇(ζ̂)


=



〈〈q◦0, q0〉〉Ω 〈〈q◦0, q1〉〉Ω
〈〈q◦1, q0〉〉Ω 〈〈q◦1, q1〉〉Ω


 (4.5)

represent the coefficients in the recurrence for the qj(ζ).

Now we wish to choose ω not too small, and at the same time not too large, such that the linear operator
u(ζ) 7→ u◦(ζ) = ζ ◦ u(ζ) becomes [strictly] contractive w.r.t. ||| · |||

Ω
. For arbitrary

u(ζ) = u
′
q(ζ) ∈ Π1, |||u|||

Ω
= ‖u‖2, (4.6)

4In this section, qk(ζ) denotes appropriately rescaled versions of the pk(ζ), where the scaling parameters are to be determined.
They are not identical with the original qk(ζ) from Section 2.2.
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we have
u◦(ζ) = u

′
TΩ q(ζ), |||u◦|||

Ω
= ‖u◦‖2, (4.7)

or equivalently, u◦(ζ) = u◦
′
q(ζ) with u◦ = T

′
Ω u. Thus, our contractivity requirement is equivalent to the

norm bound5 ‖T ′
Ω‖2 ≤ [<] 1, and this in turn is equivalent to

S := Ω2 − (T
′
)
∗
Ω2 T

′ ≥ [>] 0 ! ? (4.8)

positive semi-definite [or even positive definite], where

S =




1− |γ1|2 −(γ̄1λ2)

−(γ̄1λ2)
− −|λ2|2


 + ω2



−1 −γ2

−γ̄2 1− |γ2|2

, (4.9)

with coefficients γ1, γ2, λ2 from (3.18).

Now the idea is to consider the determinant

det S = −ω4 +
(
(1− |γ1|2)(1− |γ2|2)− |γ1γ2|2 + |γ1γ2 − λ2|2

)
ω2 − |λ2|2

= −ω4 +
(
(1− |ζ̂|2)

2
− |ζ̂|4 + |ζ̂2 − (ζ1 − ζ̂)

2|
2 )

ω2 − |ζ1 − ζ̂|4. (4.10)

This assumes its maximal value for

ω2 = 1
2

(
(1− |ζ̂|2)

2
− |ζ̂|4 + |ζ̂2 − (ζ1 − ζ̂)

2|
2 )

= 1
2

(
1− 2 |ζ̂|2 + |ζ1|2 |ζ2|2

)
(4.11)

= 1
2(1− |ζ1|2)(1− |ζ2|2) + 1

4 |ζ1 − ζ2|2 ≥ 0.

With this choice for the ω, (4.10) evaluates to

det S = ω4 − |ζ1 − ζ̂|4 =
(
ω2 − 1

4 |ζ1 − ζ2|2
)(

ω2 + 1
4 |ζ1 − ζ2|2

)
(4.12)

= 1
2(1− |ζ1|2)(1− |ζ2|2)

(
ω2 + 1

4 |ζ1 − ζ2|2
)

(4.13)

= 1
4(1− |ζ1|2)(1− |ζ2|2) |1− ζ1ζ2|2. (4.14)

Now we check requirement (4.8) for S with ω2 from (4.11). We consider three different cases of a stable
spectrum (in all cases, |ζ̂| < 1 and ω > 0) :

(i) |ζ1| < 1, |ζ2| < 1, i.e. ρ(C) < 1 : Here,

ω2 < 1− |ζ̂|2, i.e. S11 > 0, and detS > 0, implying S > 0. (4.15)

(ii) |ζ1| = 1, |ζ2| < 1 : Here,
ω2 = 1

4 |ζ1 − ζ2|2, detS = 0, trcS > 0 (4.16)

(the estimate for the trace requires a bit of computation). This implies that the eigenvalues of S must
be λ1 = 0 and λ2 > 0, hence S ≥ 0 with rank(S) = 1.

(iii) |ζ1| = |ζ2| = 1, with ζ1 6= ζ2 : Here,

ω2 = 1
4 |ζ1 − ζ2|2 = 1− |ζ̂|2 implies S = 0. (4.17)

5For the non-confluent case, the choice ω = |ζ1 − ζ̂| gives a normal matrix TΩ, with ‖TΩ‖2 = ρ(C) ≤ 1. However, this is not
a proper rescaling: It is undefined in the limit ζ2 → ζ1, where C is not diagonalizable. For ζ2 close to ζ1, the condition number
of the scaling matrix Ω tends to infinity. This choice for ω is natural only for ρ(C) = 1, see cases (ii) and (iii) below.
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(Throughout, rank(S) equals the number of roots ζk with |ζk| = 1.) Thus we have proved:

Proposition 4.1 Consider a companion matrix of dimension n = 2 with complex spectrum {ζ1, ζ2} satis-
fying the stability assumption (4.1). With ζ̂ = 1

2(ζ1 + ζ2) and

ω =
√

1
2(1− |ζ1|2)(1− |ζ2|2) + 1

4 |ζ1 − ζ2|2 > 0 (4.18)

we have
C = LΩTΩL−1

Ω (4.19)

where

LΩ = LΩ =




1

ζ̂ ω


, TΩ =




ζ̂ ω

1
4

(ζ1−ζ2)2

ω ζ̂


 with ‖TΩ‖2 ≤ 1. (4.20)

This also means contractivity of ◦ : Π1 → Π1 w.r.t. 〈〈·, ·〉〉
Ω
.

Remark.

• The parameter ω from (4.18) is a measure for ‘the distance to instability’ of the spectrum {ζ1, ζ2}. It
vanishes exactly in the limiting (unstable) case ζ1 = ζ2 with |ζ1| = |ζ2| = 1.

• For ρ(C) = 1 (cases (ii) and (iii) above), C is diagonalizable. In this case it is easy to verify that TΩ

is normal, ‖TΩ‖2 = 1. Indeed, up to a scalar factor, Ω = Diag(1, 1
2 |ζ1 − ζ2|) is identical with Diag(K),

K from (2.18), from which we infer T = QZ Q
∗
; cf. (3.24). Thus, up to unitary transformation the

outcome is equivalent to diagonalization of C, which is quite natural in cases (ii) and (iii). We call T
a normalization of C.

• The more interesting case is ρ(C) < 1. For ζ1 6= ζ2, T and TΩ are not directly related to a diagonal-
ization, or normalization, of C. Here we have S > 0 and ‖TΩ‖2 < 1, but in general, ‖TΩ‖2 cannot be
expressed in a reasonably simple way in terms of the data.

In the confluent case ζ1 = ζ2 = ζ̂ we obtain ω =
√

2
2 (1− |ζ̂|2), and

T =




ζ̂ 1

0 ζ̂


, TΩ =




ζ̂
√

2
2 (1− |ζ̂|2)

0 ζ̂


, (4.21)

i.e., TΩ is a rescaled Jordan form.

Summing up, we see that Proposition 4.1 describes a similarity transformation leading to a contraction
which is based on a smooth transition between normalization and Jordan decomposition.

Example: Second order difference equations.

Consider the homogeneous difference equation

yν+2 + c1 yν+1 + c0 yν = 0, ν ≥ 0, (4.22)

for given y0, y1. For the characteristic polynomial χ(ζ) = ζ2 + c1z + c0 = (ζ − ζ1)(ζ − ζ2) we assume that

{ζ1, ζ2} satisfies the stability condition (4.1). With yν = (yν , yν+1)
′
this is equivalent to yν+1 = C yν with

C from (3.11), or equivalently, L−1
Ω yν+1 = TΩ L−1

Ω yν with LΩ, TΩ from (4.20). Here,

L−1
Ω yν =




yν

1
ω (yν+1 − ζ̂ yν)


, (4.23)
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and Proposition 4.1 asserts that

ω2 ‖L−1
Ω yν‖2

2 = |ω yν |2 + |yν+1 − ζ̂ yν |2 (4.24)

is always monotonously decreasing with ν.

A tentative algorithm for the general case.

Let n be arbitrary. For the strictly stable case ρ(C) < 1 it is well-known that for any positive definite
matrix G, there exists a unique positive definite solution X of the Stein equation X − (C

′
)
∗
X C

′
= G, cf.

e.g. [10],[11]. Then, ‖X 1
2 C

′
X− 1

2 ‖2 < 1. The nontrivial question is what is a ‘good’ choice for G; we also

note the formula for the solution X cannot be directly evaluated. In our approach we use T
′
instead of C

′
,

and we are not prescribing G but force X = Ω2 to be diagonal and try to compute Ω such that G = S
satisfies our needs.

The explicit solution for n = 2 given above appears to be quite natural. The proof of Proposition 4.1 was
based on maximizing the determinant detS, leading to a linear equation for the scaling parameter ω for
n = 2. For general dimension n on may think of proceeding in an analogous way, starting from the normal
form (3.23) with δj ≡ 0, i.e. the spectral case ηk ≡ ζk. The ζk ∈ C are assumed to be given, satisfying a
weak stability condition w.r.t. unit circle, i.e.,

|ζk| ≤ 1, k = 1 . . . n, where each ζk with |ζk| = 1 is simple. (4.25)

Analogously as for n = 2 we consider

TΩ := Ω−1T Ω, with Ω = Diag(1, ω1, . . . , ωn−1), (4.26)

and we wish to determine parameters ωj > 0, j = 1 . . . n− 1, such that ‖T ′
Ω‖2 ≤ [<] 1. This is equivalent to

the requirement
S := Ω2 − (T

′
)
∗
Ω2 T

′ ≥ [>] 0 ! ? (4.27)

positive semi-definite [or even positive definite].6

The basic idea is again to look for a maximum of detS. However, to derive explicit expressions for the
entries of T becomes very cumbersome even for n = 3. They are nonlinear in the parameters ωj , and the
explicit symbolic procedure which has been used for n = 2 cannot be readily generalized to n > 2. Therefore
we restrict ourselves to the case that numerical values for the ζk are given and apply the following ‘tentative’
algorithm: Since S is Hermitian by construction, the function detS =: ϕ(ω1, . . . , ωn−1) is a higher order
polynomial in the parameters ω2

j , with real coefficients. Now we consider the system of polynomial equations

∂
∂σj

ϕ(σ1, . . . , σn−1), j = 1 . . . n− 1, (4.28)

and determine its solution set by means of a standard algorithm implemented in a computer algebra system.
We look for solutions (σ1, . . . , σn−1) with σj > 0 and check the spectrum of S for these cases, inserting
ω2

j = σj , hoping to find a solution.

For n > 2, det S is typically an unbounded function in the parameters, and a global maximum does not
exist. However, in many cases tested, in particular for n = 3 and n = 4, it turns out that an appropriate
set of parameters σj > 0 is found, where detS has a local maximum and the spectrum of S is positive (or
nonnegative), as required.

6As discussed in Section 3.2, the explicit construction of T is nontrivial in a confluent situation. Here we do not discuss
this point further but we assume that disctinct numerical values for the ζk are given, where T has been obtained via a rescaled
LQ-decomposition of the associated Vandermonde matrix.
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Figure 1: Axes: horizontal = σ1, vertical = σ2

The following example for n = 3 has been arbitrarily chosen from a collection of a large number of numerical
examples which have been treated in the way described above, using Maple 13. Consider the given, stable
spectrum {ζ1, ζ2, ζ3} = { 9

10 ,−2
3 + 2

3 i,−2
3 + (2

3 + ε) i}, with ε small. For visualization we choose ε = 1
6 .

We have ‖C‖2 ≈ 2.05, and for the transformed matrix T , ‖T‖2 ≈ 1.46. Implementation of the procedure
described above in Maple 13 finds a complete solution set of four solution pairs (σ1, σ2) in terms of algebraic
numbers. For the solution pair (σ1, σ2) ≈ (0.668, 0.027) it turns out that detS has a local maximum, and
checking the spectrum of ReS we obtain ReS ≥ 0.0036 I > 0. Furthermore, ‖TΩ‖2 ≈ 0.961.

A visualization is given in Figure 1. The two hyperbolas correspond to the solution sets of ∂ϕ
∂σ1

= 0 and
∂ϕ
∂σ2

= 0. Furthermore, the plot shows the contour where ϕ = detS ≡ 0, and the four solution pairs of
system ∂ϕ

∂σ1
= ∂ϕ

∂σ2
= 0. The solution (σ1, σ2) ≈ (0.618, 0.238) is located in the interior of the convex hull of

the the other solutions, and ϕ = detS has a unique local maximum at this point.

For ε → 0, the matrix TΩ is neither related to Z = Diag(ζ1, ζ2, ζ3) nor to a Jordan form of C. It is close to
tridiagonal (because the ζk approximately lie on a common line) but of course not normal. The condition
number of the transformation matrix LΩ remains bounded for ε → 0, with a value near 262.

Remark. We believe that, at least for lower dimensions n, the general structure of detS may be used to
argue that a unique local maximum exists for the case ρ(C) < 1 (ρ(C) = 1 is an exceptional, limiting case).
However, already for n = 3 the necessary algebra becomes quite involved.

The interesting question is why an appropriate set of parameters is found in this way. The fact that,
searching for a diagonal rescaling, local maximization of detS for S from (4.27) appears to do the job is
quite remarkable and may be worth investigating further, possibly also in another context where definiteness
is searched for via diagonal scaling.

4.2 Norm dissipativity for spectra in the closed left half plane

The procedure is similar as in Section 4.1.
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The case n = 2.

Assume that C from (3.11) satisfies a weak stability condition w.r.t. left half plane

Re ζ1 ≤ 0, Re ζ2 ≤ 0, Re ζ1 < 0 if ζ1 = ζ2. (4.29)

Again we wish to choose ω > 0 such that, with Ω := Diag(1, ω), the transformed matrix

TΩ := Ω−1T Ω =




γ1 ω

λ2
ω γ2


=




ζ̂ ω

1
4

(ζ1−ζ2)2

ω ζ̂


 (4.30)

becomes [strictly] dissipative w.r.t. ||| · |||
Ω
, i.e.

S ≤ [<] 0 ! ? (4.31)

negative [semi-]definite, where

S := ReTΩ = 1
2(TΩ + T

∗
Ω ) =




Re γ1
1
2(ω + λ̄2

ω )
1
2(ω + λ2

ω ) Re γ2


=




Re ζ̂ ω
2 + 1

8
(ζ̄1−ζ̄2)2

ω

ω
2 + 1

8
(ζ1−ζ2)2

ω Re ζ̂


 (4.32)

Consider S̃ := 2ω S. The determinant

det S̃ = −ω4 + 2
(
2 (Re ζ̂)

2 − Reλ2

)
ω2 − |λ2|2 (4.33)

assumes its maximal value for

ω2 = 2 (Re ζ̂)
2 − Reλ2 (4.34)

= 2 Re ζ1 Re ζ2 + 1
4 |ζ1 − ζ2|2 ≥ 0. (4.35)

With this choice for ω, (4.33) evaluates to

det S̃ = ω4 − (1
4 |ζ1 − ζ2|2)2 =

(
ω2 − 1

4 |ζ1 − ζ2|2
)(

ω2 + 1
4 |ζ1 − ζ2|2

)
(4.36)

= 2 Re ζ1 Re ζ2

(
2Re ζ1 Re ζ2 + 1

2 |ζ1 − ζ2|2
)

(4.37)

= Re ζ1 Re ζ2 |ζ1 + ζ2|2. (4.38)

Now we check requirement (4.32) for S with ω2 from (4.34). We consider three different cases of a stable
spectrum:

(i) Re ζ1 < 0, Re ζ2 < 0 : Here, ω2 > 0, ζ1 + ζ2 6= 0, and

Re ζ̂ < 0, i.e. S11 < 0, and detS = 4 ω2 det S̃ > 0, implying S < 0. (4.39)

(ii) Re ζ1 = 0, Re ζ2 < 0 : Here, ω2 = 1
4 |ζ1 − ζ2|2 > 0, and

detS = 0, trcS < 0. (4.40)

This implies that the eigenvalues of S must be λ1 = 0 and λ2 < 0, hence S ≤ 0 with rank(S) = 1.

(iii) Re ζ1 = Re ζ2 = 0, with ζ1 6= ζ2 : Here, ω2 = 1
4 |ζ1 − ζ2|2 > 0, Re ζ̂ = 0, and

detS = 0, trcS = 0, hence S = 0. (4.41)
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Throughout, rank(S) equals the number of roots ζk with Re ζk = 0. The logarithmic norm of TΩ, i.e. the
rightmost eigenvalue of S is given by

µ2(TΩ) = Re ζ̂ +
∣∣ω +

1
2 (ζ1−ζ2)2

ω

∣∣, (4.42)

with µ2(TΩ) < 0 for case (i) and µ2(TΩ) = 0 for cases (ii) and (iii). Thus we have proved:

Proposition 4.2 Consider a companion matrix of dimension n = 2 with complex spectrum {ζ1, ζ2} satis-
fying the stability assumption (4.29). With ζ̂ = 1

2(ζ1 + ζ2) and

ω =
√

2 Re ζ1 Re ζ2 + 1
4 |ζ1 − ζ2|2 > 0 (4.43)

we have
C = LΩTΩL−1

Ω (4.44)

where

LΩ = LΩ =




1

ζ̂ ω


, TΩ =




ζ̂ ω

1
4

(ζ1−ζ2)2

ω ζ̂


 with Re TΩ ≤ 0. (4.45)

Again, the parameter ω from (4.43) is a measure for ‘the distance to instability’ of the spectrum {ζ1, ζ2}.
It vanishes exactly in the limiting (unstable) case ζ1 = ζ2 with Re ζ1 = Re ζ2 = 0. Analogous remarks as
following Proposition 4.1 apply.

Example: The damped harmonic oscillator.

The purpose of this example is to show that, in the context of a simple ODE problem, Proposition 4.2
automatically provides a ‘physically meaningful’ dissipation functional.

Consider the second order linear ODE for the free damped harmonic oscillator in the dimensionless variable y,

ÿ(t) + 2γ ẏ(t) + ω2
0 y(t) = 0, (4.46)

with damping parameter γ ≥ 0 and angular frequency ω0 > 0. For y(t) = (y(t), ẏ(t))
′
we have

ẏ(t) = C y(t), C =




0 1
−ω2

0 −2γ


, (4.47)

with eigenvalues ζ1,2 = −γ±
√

γ2 − ω2
0 and ζ̂ = 1

2(ζ1+ζ2) = −γ. Consider the assertion from Proposition 4.2.
In all three cases (over- or underdamping, critical damping) we easily obtain ω =

√
γ2 + ω2

0, and

TΩ =




γ
√

γ2 + ω2
0

γ2−ω2
0√

γ2+ω2
0

γ


 with Re TΩ ≤

( γ√
γ2+ω2

0

− 1
)
γI =: −ρI ≤ 0. (4.48)

With (L−1
Ω y)· = TΩ (L−1

Ω y) this implies

‖L−1
Ω y(t)‖2 ≤ e−ρt ‖L−1

Ω y(0)‖2, ρ =
(
1− γ√

γ2+ω2
0

)
γ ≥ 0. (4.49)

In other words,
Ẽ(y, ẏ) := (γ2 + ω2

0)‖L−1
Ω y‖2

2 = (γ2 + ω2
0) y2 + (ẏ + γ y)2 (4.50)
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is always a Lyapunov function for the oscillator, dẼ ≤ 0 along solution trajectories. In the undamped case,
Ẽ is identical with the total energy functional E(y, ẏ) = ω2

0 y2 + ẏ2 which is conserved, dẼ ≡ 0 for γ = 0.
For γ < 0 we have dE < 0, and dẼ < 0 due to ρ > 0, where Ẽ 6= E. A straightforward calculation shows
dẼ = −2γE, i.e., Ẽ(t) represents a form of mean energy.

Remark. From numerical experiments we believe that for n > 2 and a spectrum satisfying a weak stability
condition w.r.t. the closed left half plane, a ‘tentative algorithm’ will work in a similar way as described in
Section 4.1. We are not going into detail here.
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