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Pontryagin spaces of entire functions V

Michael Kaltenbäck, Harald Woracek

Abstract

The spectral theory of a two-dimensional canonical (or ‘Hamiltonian’)
system is closely related with two notions, depending whether Weyl’s limit
circle or limit point case previals. Namely, with its monodromy matrix
or its Weyl coefficient, respectively. A Fourier transform exists which
relates the differential operator induced by the canonical system to the
operator of multiplication by the independent variable in a reproducing
kernel space of entire 2-vector valued functions or in a weighted L

2-space
of scalar valued functions, respectively.

Motivated from the study of canonical systems or Sturm-Liouville
equations with a singular potential and from other developments in Pon-
tryagin space theory, we have suggested a generalization of canonical sys-
tems to an indefinite setting which includes a finite number of inner sin-
gularities. We have constructed an operator model for such ‘indefinite
canonical systems’. The present paper is devoted to the construction of
the corresponding monodromy matrix or Weyl coefficient, respectively,
and of the Fourier transform.

AMS Classification Numbers: 47E05, 46C20, 47B25, 46E22

Keywords: canonical system, Pontryagin space boundary triplet, maximal chain of

matrices, Weyl coefficient

1 Introduction

A two-dimensional canonical (or Hamiltonian) system is an initial value problem
of the form

y′(t) = zJH(t)y(t), t ∈ [s−, s+), y(s−) = y0 , (1.1)

where z is a complex parameter, J denotes the symplectic matrix

J :=

(
0 −1
1 0

)

,

and H is a 2 × 2-matrix valued function with H(t) ≥ 0 for t ∈ (s−, s+) a.e.,
which is locally integrable and does not vanish identically on any set of positive
measure. The function H is called the Hamiltonian of the system (1.1). A
Hamiltonian H is called regular, if

∫ s+
s−

trH(t) dt < ∞, and singular otherwise.

One also speaks of Weyl’s limit circle or limit point case instead of regular or
singular, respectively.

The interpretation of (1.1) as a differential operator takes place in a cer-
tain L2-space of 2-vector valued functions. In fact, in order to investigate
the spectral theory of a canoncial system, one constructs a boundary triplet
B(H) = (L2(H), Tmax(H),Γ(H)). This operator theoretic viewpoint goes back
to [K], for a more recent compilation see [HSW].
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Depending whether limit circle or limit point case prevails, the system (1.1)
shows significantly different behaviour. In the following we denote by W (t, z) =
(wij(t, z))i,j=1,2 the unique solution of the initial value problem

∂

∂t
W (t, z)J = zW (t, z)H(x), t ∈ [s−, s+), W (s−, z) = I . (1.2)

Limit point case: The function W (t, z) admits a continuous extension to s+.
The matrix function W (s+, z), sometimes also called the monodromy matrix
of H , belongs to the class M0, i.e. the entries of W (s+, z) are entire functions
which are real for real z, detW (s+, z) = 1, and

W (s+, z)JW (s+, z)
∗ − J

z − z
≥ 0, Im z > 0 . (1.3)

The family ωH := (W (t, z))t∈[s−,s+] is, in the language of §3.b below, a fi-
nite maximal chain of matrices going downwards from the monodromy matrix
W (s+, z).

The symmetric operator Tmin(H) := Tmax(H)∗ has defect index (2, 2), is
completely nonselfadjoint, and r(Tmin(H)) = C. The selfadjoint extensions of
Tmin(H) have compact resolvents, in particular, their spectrum is discrete. The
monodromy matrix is a (regularized) u-resolvent matrix of a certain symmetric
extension of Tmin(H) with defect 1. A Fourier transform exists which maps
L2(H) isometrically onto the reproducing kernel Hilbert space generated by
W (s+, z) via the kernel (1.3). The elements of this reproducing kernel space
are entire C2-valued functions, and the operator Tmin(H) corresponds to the
operator of multiplication by the independent variable z.

Limit point case: We have limtրs+ tr(W (t, 0)′J) = +∞. The family ωH :=
(W (t, z))t∈[s−,s+) is, in the language of [KW/III], a maximal chain of matrices.

Write W (t, z) = (wij(t, z))i,j=1,2. Then, for each τ ∈ R ∪ {∞}, the limit

qH(z) := lim
tրs+

w11(t, z)τ + w12(t, z)

w21(t, z)τ + w22(t, z)
(1.4)

exists locally uniformly on C \ R and does not depend on τ . The function qH
is called the Titchmarsh-Weyl coefficient associated to the Hamiltonian H . It
belongs to the Nevanlinna class N0, i.e. is analytic on C \ R, satisfies qH(z) =
qH(z), z ∈ C \ R, and

Im qH(z) ≥ 0, Im z > 0 . (1.5)

The symmetric operator Tmin(H) := Tmax(H)∗ has defect index (1, 1) and is
completely nonselfadjoint. However, the selfadjoint extensions of Tmin(H) may
have continuous spectrum. The function qH can be viewed as a Q-function of
Tmin(H). A Fourier transform exists which maps L2(H) isometrically onto the
space L2(σ) where σ is the measure in the Herglotz–integral representation of
qH (appropriately including a possible point mass at ∞). Thereby, the operator
Tmin(H) corresponds to a restriction of the operator of multiplication by the
independent variable t.

In [KW/IV] we have, as a generalization of the notion of a Hamiltonian func-
tion H to an indefinite setting, introduced the notion of general Hamiltonians
h which involves a finite number of singularities, cf. Definition IV.8.1 or §3.e
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below. For each general Hamiltonian we have constructed a Pontryagin space
boundary triplet B(h) = (P(h), T (h),Γ(h)), which is an indefinite analogue of
the boundary triplet B(H), and showed that it shares the most important oper-
ator theoretic properties of B(H). Our aim in the present paper is to establish
the indefinite analogoues of the above mentioned items related to the chain ωH
and to the Weyl coefficient qH .

The main difficulty is to actually construct a (finite) maximal chain ωh for a
given general Hamiltonian h. Most of this paper is devoted to the construction of
ωh and to the development of the machinery needed for it. Unlike in the positive
definite situation, where ωH is simply obtained as the solution of (1.2), in the
indefinite case it is not at all clear how to define ωh. Of course, in between each
two singularities we should have a solution of the differential equation in (1.2),
the problem is to understand how to ‘jump over an inner singularity’. In order
to construct ωh, we will combine indefinite analogues of the classical differential
equation oriented approach interpreting W (t, z) as boundary values of defect
elements, and the more operator theoretic approach via the (generalized) u-
resolvent matrix of a certain selfadjoint extension of the minimal operator.

Besides constructing ωh and proving that it indeed is a (finite) maximal
chain (and thereby in particular associating a monodromy matrix to a regular
general Hamiltonian), we will also prove in this paper existence of a Fourier
transform in both cases, regular and singular. Moreover, we will show that in
the singular case the Weyl-coefficient qh can be identified as a Q-function of the
minimal operator.

Table of contents

1. Introduction p.1

2. Matrices of the class M<∞ p.4

3. Maximal chains of matrices and general Hamiltonians p.20

4. Boundary triplets and matrix functions of the class M<∞ p.47

5. Construction of the maximal chain p.73

6. The Fourier transform p.87

Let us outline the content of these sections. In Section 2 we consider entire
matrix functions of the class M<∞. We construct, for each W ∈ M<∞, a
boundary triplet B(W ) and investigate its properties. Moreover, we recall some
relations of M<∞ to other classes of functions. In Section 3 we deal with
maximal chains of matrices and general Hamiltonians. We prove some results
which supplement [KW/III] and [KW/IV]. In Section 4 we associate to each
boundary triplet B an entire matrix function ω(B) by means of boundary values,
and make the connection with another line of approach by showing that it is a
(generalized) u-resolvent matrix in the sense of [KW/0], cf. Theorem 4.20. The
matrix ω(B) and its properties is vital for our purposes. We will pay particular
attention to the situation that B is of the form B(h) with a general Hamiltonian
h. Moreover, it is a noteworthy fact that for boundary triplets of the form B(W ),
the construction of ω(B) is converse to the construction introduced in §2. In
fact, ω(B(W )) = W wheneverW ∈ M<∞. In Section 5 we give the definition of
ωh for a general Hamiltonian h, and prove that ωh actually is a (finite) maximal
chain, cf. Theorem 5.1 which can be regarded as the main result of this paper.
Moreover, in the singular case, we give a representation of qh as a Q-function
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associated with a certain selfadjoint extension of the minimal operator. Finally,
in Section 6, we construct the Fourier transforms for both cases, regular or
singular. In the singular case, thereby the space L2(σ) is substituted by a
Pontryagin space induced by a distribution which represents qh by application
to Poisson-kernels.

Through all levels of development, some operations can be defined; rotation,
reversing, and the splitting-and pasting method, cf. §2.b,c. §3.c,e, §4.a,e, §5.d.
These operations are a somewhat technical, but essential, tool throughout our
considerations.

In its flavour, this paper is operator theoretic. Our methods are based on
the theory of Pontryagin space boundary triplets which possess some specific
properties as introduced in [KW/IV]. There is a vast literature on boundary
triplets, mainly in the Hilbert space case. We refer e.g. to [DHMS] for the
Hilbert space case, and [D], [B] for the indefinite case.

Let us close this introduction with a technical notice: References to [KW/0]–
[KW/IV] will be given as the following examples indicate. E.g. Lemma 0.2.1
refers to Lemma 2.1 of [KW/0], (I.2.1) refers to the equation (2.1) of [KW/I],
or Theorem IV.8.6 to Theorem 8.6 of [KW/IV].

2 Matrices of the class M<∞

In this section we discuss entire 2 × 2-matrix functions for which a certain
kernel function has a finite number of negative squares. After having recalled
the definition of M<∞, this section is divided into five subsections:

a. We show that each nonconstant function W ∈ M<∞ generates a boundary
triplet B(W ) in the sense of Definition IV.2.7.
b. We introduce two operations, namely 	α and rev, with functions from
M<∞ as well as with boundary triplets, and provide some of their properties.
Though elementary, these operations will be a very practical tool throughout
the whole paper.
c. Matrix polynomials do belong to M<∞. Here we discuss the boundary
triplet generated by matrix polynomials of specific form.
d. The class M<∞ is closed with respect to products. In this subsection we
make the relation between the boundary triplets B(W1), B(W2), and
B(W1 ·W2) explicit.
e. The class M<∞ is closely related to other classes of functions. We recall
some results on the relationship with indefinite Hermite-Biehler functions and
with generalized Nevanlinna functions.

Let us come to the definition of M<∞. For a complex valued function f defined
on some subset D of the complex plane, we denote by f# the function f#(z) :=
f(z), which is defined on the set D# := {z ∈ C : z ∈ D}. We call f real, if
D# = D and f#(z) = f(z), z ∈ D. If W is an analytic 2 × 2-matrix valued
function defined on some open subset D of the complex plane, and satisfies
W (z)JW (z)∗ = J , z, z ∈ D, we consider the kernel HW defined as

HW (w, z) :=
W (z)JW (w)∗ − J

z − w
, z, w ∈ D .

For z = w this formula has to be interpreted appropriately as a derivative, which
is possible by analyticity.
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2.1 Definition. Let W = (wij)i,j=1,2 be a 2 × 2-matrix valued function, and
let κ ∈ N0. We write W ∈ Mκ, if

(M1) The entries wij of W are real and entire functions.

(M2) We have detW (z) = 1, z ∈ C, and W (0) = I.

(M3) The kernel HW has κ negative squares on C.

Note in this place that the conditions (M1) and (M2) together imply that
W (z)JW (z)∗ = J .

We will moreover use the notation

M<∞ :=
⋃

ν∈N∪{0}

Mν ,

and write ind−W = κ to express the fact that a matrix function W ∈ M<∞

belongs to Mκ. For W ∈ M<∞, set

t(W ) := tr(W ′(0)J) .

�

a. The boundary triplet associated with W ∈ M<∞.

A matrix function W ∈ M<∞ generates via the kernel HW in a standard way
a reproducing kernel Pontryagin space K(W ), cf. [ADSR]. In fact, K(W ) is the
Pontryagin space completion of the inner product space defined by

L(W ) := span
{
HW (w, .)v : w ∈ C, v ∈ C2

}
,

[
HW (w1, .)v1, HW (w2, .)v2

]
:= v∗2HW (w1, w2)v1 .

The elements of this space are entire 2-vector valued functions. Besides its
Pontryagin space structure, K(W ) carries a conjugate linear and anti-isometric
involution: Consider the map .# defined on the set of all entire 2-vector valued
functions by

(
F

G

)#

:=

(
F#

G#

)

.

Since the entries of W (z) are real, we have

(
HW (w, z)v

)#
=
(W (z)JW (w)∗ − J

z − w
v
)#

=

=
W (z)JW (w)∗ − J

z − w
v = HW (w, z)v ,

(2.1)

and

[
HW (w2, z)v2, HW (w1, z)v1

]
= v1

∗HW (w2, w1)v2 =
(
v1

∗HW (w2, w1)v2
)T

=

= v∗2

(W (w1)JW (w2)
∗ − J

w1 − w2

)T

v1 = v∗2
−W (w2)JW (w1)

∗ + J

w1 − w2
v1 =

= v∗2HW (w1, w2)v1 =
[
HW (w1, z)v1, HW (w2, z)v2

]
.
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Hence .# maps L(W ) conjugate linearly and anti-isometrically onto itself. With
a standard continuity argument, it follows that .# maps K(W ) conjugate linearly
and anti-isometrically onto itself.

It is a deeper result that K(W ) is closed with respect to difference quotients,
cf. Proposition I.8.3: Denote by R(w) the operator

(
R(w)F

)
(z) :=

F (z) − F (w)

z − w
.

Then, for each w ∈ C, we have R(w)K(W ) ⊆ K(W ), and

G(u)∗JF (w) = [F,R(u)G] − [R(w)F,G] + (w − u)[R(w)F,R(u)G] , (2.2)

whenever w, u ∈ C and F,G ∈ K(W ).

2.2 Definition. Let W ∈ M<∞, W 6= I, be given. Define T (W ) ⊆ K(W )2 as

T (W ) := cls
{
(HW (w, .)v;wHW (w, .)v) : w ∈ C, v ∈ C2

}
,

and Γ(W ) ⊆ T × (C2 × C2) as

Γ(W ) := cls
{(

(HW (w, .)v;wHW (w, .)v); (v;W (w)∗v)
)

: w ∈ C, v ∈ C2
}
.

Moreover, set S(W ) := T (W )∗. �

2.3 Proposition. Let W ∈ M<∞, W 6= I, be given. Then B(W ) :=
(K(W ), T (W ),Γ(W )) is a boundary triplet which has defect 2 and satisfies (E),
cf. Definition IV.2.8, Definition IV.2.16. The symmetry S(W ) is completely
nonselfadjoint and r(S(W )) = C.

Proof.
Step 1: First we show that T (W ) and Γ(W ) respect the involution .# on K(W ),
and that the abstract Green’s identity holds.

From the computation (2.1) we obtain

(
(HW (w, z)v)#; (wHW (w, z)v)#

)
=
(
HW (w, z)v;wHW (w, z)v

)
∈ T (W ) ,

((
(HW (w, z)v)#; (wHW (w, z)v)#

)
;
(
v;W (w)∗v

))
=

=
((
HW (w, z)v;wHW (w, z)v

)
;
(
v,W (w)∗v

))
∈ Γ(W ) .

It follows by continuity that

(f ; g) ∈ T (W ) ⇐⇒ (f#; g#) ∈ T (W )

(
(f ; g); (a; b)

)
∈ Γ(W ) ⇐⇒

(
(f#; g#); (a; b)

)
∈ Γ(W )

The abstract Green’s identity (2.2) follows with the help of linearity and conti-
nuity from

[
w1HW (w1, z)v1, HW (w2, z)v2

]
−
[
HW (w1, z)v1, w2HW (w2, z)v2

]
=

= (w1 − w2)v
∗
2HW (w1, w2)v1 = −v∗2W (w2)JW (w1)

∗v1 + v∗2Jv1 .
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Step 2: We turn to a closer inspection of S(W ). It is apparent from the definition
of T (W ) that

S(W ) =
{
(f(z); zf(z)) : f(z), zf(z) ∈ K(W )

}
.

Since R(η) maps K(W ) into itself, we obtain

ran
(
S(W ) − η

)
=
{
f ∈ K(W ) : f(η) = 0

}
, η ∈ C .

In particular, ran(S(W ) − η) is closed and

ran
(
S(W ) − η

)⊥
=
{
HW (η, .)v : v ∈ C2

}
. (2.3)

Obviously, ker(S(W ) − η) = {0} for all η ∈ C. Hence r(S(W )) = C. Moreover,
we see that S(W ) is completely nonselfadjoint. Using (I.8.4), we obtain

S(W ) ⊆
{
(R1(0)g; g) : g ∈ K(W )

}
⊆ S(W )∗ = T (W ) ,

i.e. S(W ) is symmetric. The defect index of S(W ) is, by (2.3), given as







(2, 2) , {HW (0, .)
(
1
0

)
, HW (0, .)

(
0
1

)
} linearly independent

(1, 1) , {HW (0, .)
(
1
0

)
, HW (0, .)

(
0
1

)
} linearly dependent, HW (0, .) 6= 0

(0, 0) , HW (0, .) = 0

The case of defect (0, 0), however, cannot occur, since W is not constant.
By (2.3) and r(S(W )) = C, the dimension of kerHW (η, .) does not depend

on η ∈ C. Let us show that actually kerHW (η, .) is independent of η ∈ C. To
this end assume that m ∈ kerHW (0, .), i.e.

(
W (z)J − J

)
m = 0, z ∈ C . (2.4)

Using W (z)−1J = JW (z)∗, we obtain

m = W (z)∗m, z ∈ C , (2.5)

and hence

(z − η)HW (η, z)m =
(
W (z)JW (η)∗ − J)m = 0, z, η ∈ C .

Step 3: Next we establish the required properties of Γ(W ). To start with note
the following consequences of the Green’s identity: If J denotes the Gram-matrix

J :=

(
J 0
0 −J

)

on C2 × C2, then

(i) mulΓ(W ) is J-neutral and ranΓ(W ) ⊆ mul Γ(W )⊥J ;

(ii) kerΓ(W ) ⊆ T (W )∗ = S(W ).

By (i) we are left with the possibilities

dim mulΓ(W ) = 0, 1, 2
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and, correspondingly,

dim ranΓ(W ) ≤







4 , dimmul Γ(W ) = 0

3 , dimmul Γ(W ) = 1

2 , dimmul Γ(W ) = 2

.

Since, for any linear relation G ⊆ X × Y with dimY <∞ and domG = X , the
inequality

dim(X/ kerG) ≤ dim ranG− dimmulG

holds, it follows that

dim(T (W )/ kerΓ(W )) ≤







4 , dim mulΓ(W ) = 0

2 , dim mulΓ(W ) = 1

0 , dim mulΓ(W ) = 2

.

Note here that by (i) in particular mul Γ(W ) ⊆ mul Γ(W )⊥J . It follows from
(ii) that the case ker Γ(W ) = T cannot occur, and that

dim(T (W )/S(W )) = 4 =⇒ mul Γ(W ) = 0, kerΓ(W ) = S(W )

Assume that dimT (W )/S(W ) = 2. Then there exists m ∈ C2 \ {0} such that
HW (0, .)m = 0. Hence we obtain

(
(0; 0); (m;m)

)
=
(
(HW (0, z)m; 0); (m;m)

)
∈ Γ(W ) ,

i.e. (m;m) ∈ mul Γ(W ). It follows that dimmul Γ(W ) = 1 and thus also that
dimT (W )/ kerΓ(W ) ≤ 2. Combining this with (ii) yields kerΓ(W ) = S(W ),
and mul Γ(W ) = span{(m;m)}.

Let us state explictily that, in any case,

mul Γ(W ) = span{(m;m)} where span{m} = kerHW (z, 0) . (2.6)

Step 4: So far we have shown that B(W ) is a boundary triplet with defect 2,
that S(W ) is completely nonselfadjoint, and that r(S(W )) = C. It remains to
show that (E) holds.

We have

ker
(
T (W ) − η

)
= ran

(
S(W ) − η

)⊥
=
{
HW (η, .)v : v ∈ C2

}
.

Let v ∈ C2 be such that HW (η, .)v 6= 0, and let a, b ∈ C2 be such that
(
(HW (η, z)v; ηHW (η, z)v); (a; b)

)
∈ Γ(W ) .

If mul Γ(W ) = {0}, it follows that

a = v, b = W (η)∗v .

Since HW (η, .)v 6= 0, certainly v 6= 0, i.e. a 6= 0. Since detW (η) = 1 this
also implies that b 6= 0. Consider the case that mul Γ(W ) 6= {0}, and write
mul Γ(W ) = span{(m;m)} with span{m} = kerHW (η, .). It follows that, for
some µ ∈ C,

a = v + µm, b = W (η)∗v + µm .

By (2.5), actually b = W (η)∗(v+µm). Since HW (η, .)v 6= 0 but HW (η, .)m = 0,
the elements v and m are linearly independent. In particular, a 6= 0. Since
detW (η) = 1, it follows that also b 6= 0. ❑
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b. Operations with matrix functions and boundary triplets.

We will frequently employ two elementary operations on M<∞. Before we
come to the definition of these operations, let us fix the following notation.
Throughout our discussions, products and pairings of maps will appear. We
shall be accurate and distinguish these concepts also notationwise: Let f1 :
Y → X1 and f2 : Y → X2, then f1 × f2 : Y → X1 × X2 denotes the direct
product of the maps f1, f2. That is the unique map with

Y
f1

zzuuuuuuuuuu
f2

$$IIIIIIIIII

f1×f2

��

X1 X1 ×X2 π2

//
π1

oo X2

Let g1 : Y1 → X1 and g2 : Y2 → X2, then g1 ⊠ g2 : Y1 × Y2 → X1 ×X2 denotes
the pairing of the maps g1, g2. That is the unique map with

Y1

g1

��

Y1 × Y2
//oo

g1⊠g2

��

Y2

g2

��

X1 X1 ×X2
//oo X2

The first operation 	α: M<∞ → M<∞ which we will introduce can be thought
of as a rotation of a matrix by the angle α.

2.4 Definition. Denote

Nα :=

(
cosα sinα
− sinα cosα

)

, α ∈ R , (2.7)

and define for each 2 × 2-matrix W

	α W := NαWN−1
α . (2.8)

For boundary triplet B =
(
P , T,Γ

)
and α ∈ R we define a rotated boundary

triplet 	α B: Denote by να : C2 → C2 the isomorphism να(x) := Nαx and set

	α B :=
(
P , T, (να ⊠ να) ◦ Γ

)
. (2.9)

�

The matrix Nα is unitary and J-unitary, i.e. N−1
α = N∗

α = NT
α and

NαJN
∗
α = J , and we have N−1

α = N−α. Clearly, N−π
2

= J . Moreover, let
us note the following simple properties of 	α which are seen by straightforward
computation:

	0= id, 	α ◦ 	β=	α+β, t(	α W ) = t(W ) .

	α=	β ⇐⇒ α ≡ β mod π .

	α (W1 ·W2) =	α W1· 	α W2 , (2.10)

For boundary triplet B the rotated boundary triplet 	α B is in fact a
boundary triplet and (idP , να ⊠ να) is an isomorphism from B to 	α B, cf.
Remark IV.2.14.
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2.5 Lemma. Let W ∈ M<∞ and α ∈ R. Then also 	α W ∈ M<∞, and

ind− 	α W = ind−W .

Denote by να : C2 → C2 the map ναx := Nαx, and let ̟f := να ◦ f for
C2-valued functions f . Then (̟, να ⊠ να) is an isomorphism of the boundary
triplets B(W ) and B(	α W ).

Proof. The kernel relation

H	αW (w, z) = NαHW (w, z)N∗
α (2.11)

shows that 	α W ∈ M<∞ if and only if W ∈ M<∞ and that ind− 	α W =
ind−W . Moreover, the map ̟ : f 7→ Nαf is an isometric isomorphism of K(W )
onto K(	α W ), cf. [ADSR]. Since the entries of Nα are real, ̟ is compatible
with the respective involutions.

Again by (2.11), we have

H	αW (w, .)ναv = ̟HW (w, .)v, w ∈ C, v ∈ C2 .

Hence, the sets of elements written explicitly on the right side of the definition
of T (W ) and Γ(W ) will be mapped to the respective sets for T (	α W ) and
Γ(	α W ) when applying ̟ ⊠ ̟ and (̟ ⊠ ̟) ⊠ (να ⊠ να), respectively. By
continuity, it follows that

(̟ ⊠̟)T (W ) = T (	α W ),
[
(̟ ⊠̟)⊠ (να ⊠ να)

]
Γ(W ) = Γ(	α W ) .

❑

We will next introduce another operation rev : M<∞ → M<∞. The mean-
ing of this operation will become clear later, when it will be applied to chains
of matrices and Hamiltonians rather than to single matrices, cf. §3.c-e.

2.6 Definition. Denote

V :=

(
1 0
0 −1

)

,

and define for each 2 × 2-matrix W

revW := VW−1V .

Denote by φ : C2 × C2 → C2 × C2 the map

φ(a; b) := (V b;V a) .

Let B = (P , T,Γ) be a boundary triplet. We define the reversed boundary
triplet rev B as

rev B := (P , T, φ ◦ Γ) .

�

The matrix V satisfies V = V −1 = V ∗ and V JV = −J . Moreover, the
following relations are checked by simple computation:

rev(revW ) = W, t(revW ) = t(W ) ,

10



rev(W1 ·W2) = revW2 · revW1, rev 	α W =	−α revW .

Clearly, φ is an isometric isomorphism of (C2 × C2, (J., .)) onto itself such that
φ◦φ = id. Therefore, by Remark IV.2.14, rev B is a boundary triplet and (id;φ)
is an isomorphism between B and rev B. Moreover, it is easy to check that

rev 	α B =	−α rev B

2.7 Lemma. Let W ∈ M<∞. Then also revW ∈ M<∞, and

ind− revW = ind−W .

Let ̟f := VW−1f for C2-valued functions f , and set φ(a; b) := (V b;V a) for
(a; b) ∈ C2×C2. Then (̟,φ) is an isomorphism of the boundary triplets B(W )
and B(revW ).

Proof. The kernel relation

HrevW (w, z) =
[
VW (z)−1

]
HW (w, z)

[
VW (w)−1

]∗
(2.12)

is verified by a simple computation. Thus revW ∈ M<∞ if and only if W ∈
M<∞. Moreover, in this case, ind− revW = ind−W . It also follows that ̟ is
an isometric isomorphism of K(W ) onto K(revW ). Since the entries of VW−1

are real, ̟ is compatible with the respective involutions.
The relation (2.12) can be written as

HrevW (w, .)[V W (w)∗]v = ̟HW (w, .)v, w ∈ C, v ∈ C2 ,

and hence (̟ ⊠̟)T (W ) = T (revW ). Finally, a straightforward computation
will show that φ actually is an isometric isomorphism of (C2×C2, J) onto itself,
cf. Definition IV.2.12, and that ((̟ ⊠̟)⊠ φ)Γ(W ) = Γ(revW ). ❑

c. Polynomial matrices.

If W = (wij)
2
i,j=1 is a real polynomial matrix with W (0) = I and detW = 1,

then the space L(W ) is finite-dimensional. Actually,

L(W ) ⊆
{
(
f1
f2

)

∈ C[z]2 : max
i=1,2

deg fi < max
i,j=1,2

degwij
}
.

In particular, it follows that W ∈ M<∞ and ind−W ≤ 2 maxi,j=1,2 degwij .
Frequently it will be necessary to have a detailed description of K(W ) for

polynomial matrices W of a specific form at hand. This result is implicitly
contained in several earlier works, e.g. in [dB]. However, in view of our later
needs we give an explicit proof.

2.8 Proposition. Let p ∈ R[z], write p(z) := a1z + . . . + anz
n with an 6= 0,

and consider the matrix function

W (z) :=

(
1 0

−p(z) 1

)

.

Then W ∈ M<∞ and

ind−W =
[n

2

]
+

{

1 , n odd , an < 0

0 , otherwise
(2.13)

11



The space K(W ) is spanned by the functions

(
0

1

)

, z

(
0

1

)

, . . . , zn−1

(
0

1

)

,

and the Gram-matrix of K(W ) with respect to this basis is of Hankel type, i.e.
of the form (γk+l)

n−1
k,l=0. Thereby

γ0 = . . . = γn−2 = 0 ,

and γn−1, . . . , γ2n−2 are the unique real numbers which satisfy

(a1, . . . , an)






0 · · · γn−1

... . .
. ...

γn−1 · · · γ2n−2




 = (1, 0, . . . , 0) . (2.14)

Proof. A computation shows that

W (z)JW (w)∗ − J

z − w
=

(
0 0

0 p(z)−p(w)
z−w

)

,

cf. (I.8.2). Hence, the reproducing kernel functions of K(W ) are

HW (w, z)

(
α

β

)

= β
p(z) − p(w)

z − w

(
0

1

)

.

It follows that K(W ) is contained in the set {q(z)
(
0
1

)
: q ∈ C[z], deg q ≤ n− 1}

of polynomials. Moreover,

HW (0, z)

(
0

1

)

= (a1 + a2z + . . .+ anz
n−1)

(
0

1

)

∈ K(W ) . (2.15)

Hence, there exists a polynomial of degree n− 1 in the space K(W ).
Since K(W ) is invariant under R(0) and contains a polynomial of degree

n− 1, it contains a polynomial of each degree ≤ n− 1, i.e.

K(W )=
{
q(z)

(
0

1

)

: q ∈ C[z], deg q ≤ n− 1
}

=

= span
{
(

0

1

)

, z

(
0

1

)

, . . . , zn−1

(
0

1

)
}
.

Moreover, by (2.2) we have

[
zk
(

0

1

)

, zl
(

0

1

)
]

=
[
zk+1

(
0

1

)

, zl−1

(
0

1

)
]
, k = 0, . . . , n− 2, l = 1, . . . , n− 1 .

Hence, the Gram-matrix of K(W ) with respect to the basis
(
0
1

)
, z
(
0
1

)
, . . . , zn−1

(
0
1

)

is of Hankel type (γk+l)
n−1
k,l=0. Again by (2.2) we have

[
zk
(

0

1

)

,

(
0

1

)
]

=
[
zk+1

(
0

1

)

, 0
]

= 0, k = 0, . . . , n− 2 ,
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and hence γ0 = . . . = γn−2 = 0. We have

[
zk
(

0

1

)

, HW (0, z)

(
0

1

)
]

=

{

1 , k = 0

0 , k = 1, . . . , n− 1

Since, by (2.15),

[
zk
(

0

1

)

, HW (0, z)

(
0

1

)
]

=
[
zk
(

0

1

)

,
n−1∑

l=0

al+1z
l

(
0

1

)
]

=
n−1∑

l=0

al+1γk+l ,

we conclude that (2.14) holds true. Formula (2.13) for the negative index of
K(W ) follows from the already established form of the Gram-matrix. ❑

Proposition 2.8 can be used to characterize the occurance of a nontrivial
multivalued part of Γ(W ) explicitly in terms of W . For α ∈ R denote by ξα the
vector

ξα :=

(
cosα

sinα

)

. (2.16)

It is useful to collect the following elementary relations:

Nφξα = ξα−φ,

Nαξα =

(
1

0

)

, NαJξα =

(
0

1

)

, Nα

(
1

0

)

= ξ−α, Nα

(
0

1

)

= ξπ
2
−α ,

Jξα = ξπ
2
+α, ξα+π = −ξα .

ξα, ξβ linearly dependent ⇐⇒ α ≡ β mod π

2.9 Corollary. Let W ∈ M<∞, W 6= I. Then mul Γ(W ) 6= {0} if and only if
W is of the form

W (z) =	α

(
1 0

−p(z) 1

)

(2.17)

with some α ∈ R. In this case

mul Γ(W ) = span
{
(ξ−α; ξ−α)

}
, (2.18)

and K(W ) = span{ξπ
2 −α, . . . , z

deg p−1ξπ
2 −α}.

Proof. Assume first that W is of the form (2.17). Then we have

HW (w, z) =	α H“

1 0
−p 1

”(w, z) = Nα

(

0 0

0 p(z)−p(w)
z−w

)

N−α .

Thus

HW (0, z)ξ−α = Nα

(

0 0

0 p(z)−p(w)
z−w

)

N−αξ−α
︸ ︷︷ ︸

=(1
0)

= 0 ,

and we conclude from (2.6) that mul Γ(W ) 6= {0} and, actually, that (2.18)
holds.
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Conversely, assume that mul Γ(W ) = span{(m;m)} 6= {0}. Clearly, we can
choose m such that m = ξ−α with some appropriate α ∈ R. Remembering (2.4)
it follows that

(
	−α W (z)

)
(

0

1

)

= N−αW (z)Nα

(
0

1

)

= N−αW (z)ξπ
2 −α =

= N−αW (z)Jξ−α = N−αJξ−α = N−αξπ
2
−α =

(
0

1

)

.

As det(	−α W (z)) = 1 we also have (1, 0) 	−α W (z) = (1, 0), and by Lemma
II.5.6

	−α W (z) =

(
1 0

−p(z) 1

)

with some polynomial p.
By Lemma 2.5, the map f 7→ Nαf is an isomorphism of K(

(
1 0
−p 1

)
) onto

K(W ). Proposition 2.8 implies that K(W ) is of the desired form. ❑

d. Products of M<∞-functions.

It is an immediate consequence of the kernel relation

HW1W2(w, z) = HW1(w, z) +W1(z)HW2(w, z)W1(w)∗ (2.19)

that the class M<∞ is closed with respect to products:

2.10 Lemma. Let W1,W2 ∈ M<∞. Then also W1 ·W2 ∈ M<∞, and

ind−(W1W2) ≤ ind−W1 + ind−W2 .
❑

It is a more involved task to figure out how, for given W1,W2 ∈ M<∞, the
boundary triplet B(W1 ·W2) is related with B(W1) and B(W2). If one of Wi

is equal to I, the matters are trivial. Hence, assume that W1,W2 6= I. Let λ be
the mapping

λ :

{
K(W2) → W1 · K(W2)
f(z) 7→ W1(z)f(z)

and define an inner product on W1 · K(W2) so that λ is isometric. Note here
that λ is injective since detW1(z) ≡ 1. On W1 · K(W2) we have the conjugate
linear involution W1f 7→ (W1f)# = W1(f

#). Clearly, λ respects the respective
involutions, and the involution on W1 · K(W2) is anti-isometric.

Denote by BW1 (W2) the boundary triplet defined on W1 · K(W2) by the
requirement that (λ, idC4) is an isomorphism between B(W2) and BW1(W2), cf.
Remark IV.2.14. Then BW1 (W2) has defect 2 and satisfies (E).

2.11 Proposition. Let W1,W2 ∈ M<∞, W1,W2 6= I. Assume that there exists
no nonzero constant u with u ∈ K(W2) and W1(z)u ∈ K(W1). Then

B(W1) ⊎ BW1 (W2) = B(W1 ·W2) .

In the proof of this result we employ the following general statement:

2.12 Lemma. Let B1 = (P , T1,Γ1) and B2 = (P , T2,Γ2) be boundary triplets
defined on the same space P. Assume that either both have defect 2 or both have
defect 1. If Γ1 ⊆ Γ2, then already B1 = B2.
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Proof. The hypothesis Γ1 ⊆ Γ2 implies

T1 = domΓ1 ⊆ domΓ2 = T2 ,

T ∗
1 = kerΓ1 ⊆ ker Γ2 = T ∗

2 .

Thus T1 = T2, and hence in particular dimT1/T
∗
1 = dim T2/T

∗
2 . Since B1 and

B2 have the same defect, it follows that

mul Γ1 6= {0} ⇐⇒ mul Γ2 6= {0}

If mul Γ1 = mul Γ2 = {0}, then Γ1 = Γ2 since their domains coincide. Other-
wise, we obtain from dimmul Γ1 = dimmul Γ2 = 1 and mul Γ1 ⊆ mul Γ2 that
actually mul Γ1 = mul Γ2. Again we end up with Γ1 = Γ2. ❑

Proof (of Proposition 2.11). Our first task is to show that B(W1) and BW1(W2)
satisfy the condition (LI), cf. Proposition IV.6.2. Assuming the contrary yields

mulΓ(W1) = mul Γ(BW1 (W2)) = span{(m;m)}

with some m ∈ C2 \ {0}. However, mul Γ(BW1(W2)) = mul Γ(W2), and we
conclude from (2.4) and Corollary 2.9 that

W1(z)Jm = W2(z)Jm = Jm ∈ K(W1) ∩ K(W2) .

This contradicts the assumption of the present proposition. Thus (LI) holds,
and by Proposition IV.6.2 B(W1)⊎BW1 (W2) is a well-defined boundary triplet,
has defect 2, and satisfies (E), cf. Lemma IV.6.7.

The boundary triplet B(W1) ⊎ BW1(W2) acts in the space

K(W1) ⊕W1 · K(W2) .

However, by the present assumption, this space is isometrically equal to
K(W1W2), cf. [ADSR, §1.5]. In order to prove that B(W1) ⊎ BW1(W2) =
B(W1W2) it is, by Lemma 2.12, enough to show that

Γ(W1W2) ⊆ Γ(W1) ⊎ Γ(BW1(W2)) . (2.20)

The relation Γ(W1W2) is the closed linear span of the elements

(
(HW1W2(w, z)v;wHW1W2(w, z)v); (v;W2(w)∗W1(w)∗v)

)
, v ∈ C2, w ∈ C .

(2.21)
However, we have

HW1W2(w, z) = HW1(w, z) +W1(z)HW2(w, z)W1(w)∗ ,

and
(
(HW1 (w, z)v;wHW1(w, z)v); (v;W1(w)∗v)

)
∈ Γ(W1) ,

(
(W1(z) ·HW2(w, z) ·W1(w)∗v;W1(z) · wHW2(w, z) ·W1(w)∗v);

(W1(w)∗v;W2(w)∗ ·W1(w)∗v)
)
∈ Γ(BW1 (W2)) .

We see that each element of the form (2.21) belongs to Γ(W1) ⊎ Γ(BW1 (W2)),
cf. Definition IV.6.1. Thus (2.20) holds. ❑
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It is sometimes practical to note that pasting is compatible with operation rev.

2.13 Lemma. Let W1,W2 ∈ M<∞, W1,W2 6= I, be given. Then W1 and W2

satisfy the hypothesis of Proposition 2.11 if and only if revW2 and revW1 do
so.

Assume that W1 and W2 do satisfy this hypothesis, set W := W1W2, and let

̟W : K(W ) → K(revW ) ,

̟Wj
: K(Wj) → K(revWj), j = 1, 2 ,

be the respective isomorphisms constructed in Lemma 2.7. Then

̟W

(
K(W1)

)
= revW2 K(revW1), ̟W

(
W1K(W2)

)
= K(revW2) ,

i.e. we are in the situation

K(W )

̟W

��

= K(W1)

''P
P

P
P

P
P

[+̇] W1K(W2)

wwn
n

n
n

n
n

K(revW ) = K(revW2) [+̇] revW2 K(revW1)

Proof. Assume that u is constant with u ∈ K(W2) and W1u ∈ K(W1). Then

V u = VW−1
1 W1u = ̟W (W1u) ∈ K(revW1) ,

revW2 · V u = VW−1
2 V · V u = ̟W2(u) ∈ K(revW2) .

Since rev is involutory, the first assertion follows.
In order to show the remaining part of the lemma, it suffices to compute

̟W f = VW−1
2 W−1

1 · f = VW−1
2 V · VW−1

1 f = revW2 ·̟W1f, f ∈ K(W1) ,

̟W (W1f) = VW−1
2 W−1

1 ·W1f = VW−1
2 f = ̟W2f, f ∈ K(W2) .

❑

e. Relation with other classes of functions.

If E : D → C is an analytic function defined on some open subset D of the
complex plane, we define a kernel KE as

KE(w, z) :=
i

2

E(z)E(w) − E#(z)E#(w)

z − w
, z, w ∈ D .

Again, for z = w, this formula has to be interpreted appropriately.

2.14 Definition. Let E be a complex-valued function, and let κ ∈ N0. We
write E ∈ HBκ, if

(HB1) E is entire;

(HB2) E and E# have no common nonreal zeros;

(HB3) The kernel KE has κ negative squares on C.
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We use the notation
HB<∞ :=

⋃

κ∈N∪{0}

HBκ ,

and write ind−E = κ to express that a function E ∈ HB<∞ belongs to HBκ.
The class HB<∞ is called the indefinite Hermite-Biehler class. �

Let us recall some facts which can be found in [KW/I]. By means of
the reproducing kernel KE, each function E ∈ HB<∞ generates a Pontrya-
gin space P(E) which consists of entire functions. This space is referred to
as the de Branges Pontryagin space generated by E. In the space P(E) we
can consider the operator S(E) of multiplication by the independent vari-
able. This operator is closed, symmetric, has defect index (1, 1), and the set
r(S(E)) of its points of regular type equals the whole plane. Moreover, we have
dim(P(E)/domS(E)) ≤ 1.

The relations A ⊆ P(E)2 which extend S(E) and have nonempty resolvent
set can be described in terms of the set

AssocP(E) :=
{
S(z) : ∃ F,G ∈ P(E), S(z) = F (z) + zG(z)

}
.

This correspondence is given by the formula

(AS − w)−1F (z) =
F (z) − S(z)

S(w)F (w)

z − w
, w ∈ ρ(AS), F ∈ P(E) ,

ρ(AS) = {w ∈ C : S(w) 6= 0} ,

where S ∈ Assoc P(E). The relation AS has a nontrivial multivalued part if
and only if S ∈ P(E) and, in this case, mulAS = span{S}. The relation AS is
selfadjoint if and only if S = Sψ for some ψ ∈ [0, π), where

Sψ := eiψE + e−iψE#, ψ ∈ [0, π) .

If S ∈ Assoc P(E) and S(0) = 1, then A−1
S is a bounded operator which extends

S(E)−1. It is clear that there exists a one-dimensional perturbation which turns
A−1
S into a selfadjoint operator. We will in our later discussions need this fact

in an explicit form for functions S ∈ P(E).

2.15 Lemma. Let E ∈ HB<∞, E(0) = −i, and let S ∈ P(E), S(0) = 1.
Define BS : P(E) → P(E) as

BSF := A−1
S F − [A−1

S F, S]KE(0, .), F ∈ P(E) .

Then BS is a bounded selfadjoint operator in P(E). We have

BS ◦ S(E)|domS(E)∩span{S}⊥ = id ,

(
BSF ;F − F (0)S

)
∈ AS0 , F ∈ P(E) .

Proof. The fact that BS is bounded is clear. We only need to check symmetry.
To this end, note that KE(0, .) ∈ kerAS0 , and hence

(BSF ;F − F (0)S) =
(F (z) − F (0)S(z)

z
;F (z) − F (0)S(z)

)

︸ ︷︷ ︸

∈S(E)

−
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−[ASF, S](KE(0, .); 0) ∈ AS0 .

Moreover, we have S ⊥ ranBS . Thus we can compute

[BSF,G] = [BSF,G−G(0)S] = [F − F (0)S,BSG] = [F,BSG] .

❑

Matrices of the class M<∞ give rise to indefinite Hermite-Biehler functions
as follows: If W = (wij)i,j=1,2 ∈ M<∞, define

EW := w21 − iw22 .

The kernel relation

KEW
(w, z) =

(
0

1

)∗

HW (w, z)

(
0

1

)

(2.22)

shows that EW ∈ HB<∞ and ind−EW ≤ ind−W . Moreover, the projection
π2 :

(
f1
f2

)
7→ f2 onto the second component induces an isometric isomorphism

π2 : cls
{
HW (w, .)

(
0

1

)

: w ∈ C
}/

cls{HW (w,.)(01):w∈C}◦
→ P(EW ) ,

cf. Lemma I.8.6. In particular, if

K(W ) = closK(W ) span
{
HW (w, z)

(
0

1

)

: w ∈ C
}
, (2.23)

then π2 is an isometric isomorphism of K(W ) onto P(EW ).
Let W ∈ M<∞, and assume that (2.23) is satisfied, so that we can identify

K(W ) via π2 with P(EW ). Let us record that T (W ) and S(EW ) are related.
To this end denote by πl,1 : C2 × C2 → C, πr : C2 × C2 → C2 the projections

πl,1
(
(
a1

a2

)

,

(
b1
b2

)
)

:= a1, πr(a, b) := b ,

and set
T1(W ) := ker

(
πl,1 ◦ Γ(W )

)
, S1(W ) := T1(W )∗ .

Then S1(W ) = ker((πl,1 × πr) ◦ Γ(W )), and S1 is symmetric with defect index
(1, 1).

2.16 Lemma. Assume that W ∈ M<∞ satisfies (2.23), then

(π2 ⊠ π2)S1(W ) = S(EW ) .

We are thus in the situation

K(W )

π2

��

T (W ) ⊇ T1(W ) ⊇ S1(W )
︸ ︷︷ ︸

⊇ S(W )

π2⊠π2

��

P(EW ) S(EW )∗ ⊇ S(EW )
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Proof. The relation T1(W ) contains all pairs (HW (w, .)
(
0
1

)
;wHW (w, .)

(
0
1

)
), w ∈

C. Thus, cf. (2.22),

(
KEW

(w, .);wKEW
(w, .)

)
∈ (π2 ⊠ π2)T1(W ), w ∈ C .

We conclude that [(π2 ⊠ π2)T1(W )]∗ ⊆ S(EW ), and hence

(π2 ⊠ π2)S1(W ) ⊆ S(EW ) ⊆ S(EW )∗ ⊆ (π2 ⊠ π2)T1(W ) .

Since dim(S(EW )∗/S(EW )) = dim((π2 ⊠ π2)T1(W )/(π2 ⊠ π2)S1(W )) = 1, the
assertion follows. ❑

If q : D → C is an analytic function defined on some open subset D of the
complex plane, we define a kernel Nq as

Nq(w, z) :=
q(z) − q(w)

z − w
, z, w ∈ D .

Again, for z = w, this formula has to be interpreted appropriately.

2.17 Definition. Let q be a complex-valued function, and let κ ∈ N0. We
write q ∈ Nκ, if

(N1) q is real and meromorphic on C \ R;

(N2) The kernel Nq has κ negative squares on the domain of holomorphy
of q.

Once more, we set N<∞ :=
⋃

κ∈N∪{0}Nκ, and write ind− q = κ to express that

q ∈ N<∞ belongs to Nκ. �

Matrices of the class M<∞ give rise to generalized Nevanlinna functions as
follows: For a 2 × 2-matrix valued function W (z) = (wij(z))

2
i,j=1 and a scalar

function τ(z), we denote by W ⋆ τ the scalar function

(W ⋆ τ)(z) :=
w11(z)τ(z) + w12(z)

w21(z)τ(z) + w22(z)
,

wherever this expression is defined. For the parameter τ = ∞, we set W ⋆ τ :=
w−1

21 w11. A straightforward computation shows that

(W1W2) ⋆ τ = W1 ⋆ (W2 ⋆ τ) .

The kernel relation

(w21(z)τ(z) + w22(z))
(W ⋆ τ)(z) − (W ⋆ τ)(w)

z − w
(w21(w)τ(w) + w22(w)) =

=

(
−τ(z)

1

)T
(VW−1V )(z)J(VW−1V )∗(w) − J

z − w

(
−τ(w)

1

)

+
τ(z) − τ(w)

z − w

shows that W ⋆ τ ∈ N<∞ provided that W ∈ M<∞ and τ ∈ N<∞. Actually,
we have ind−W ⋆ τ ≤ ind−W + ind− τ .

Indefinite Hermite-Biehler functions give rise to generalized Nevanlinna
functions as follows: If E is an entire function, write E = A − iB with
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A := 1
2 (E + E#), B := i

2 (E − E#). Assume that E and E# have no com-
mon nonreal zeros. The kernel relation

KE(w, z) = A(z)NB
A

(w, z)A(w), z, w ∈ C A(z), A(w) 6= 0 ,

implies that E ∈ HB<∞ if and only if B
A

∈ N<∞, and that in this case ind−E =

ind−
B
A

.
On the set N<∞ we can also introduce an operation 	α, namely as

	α q := Nα ⋆ q, α ∈ R, q ∈ N<∞ .

From the above kernel relation it follows immediately that 	α q ∈ N<∞ and
ind− 	α q = ind− q. Clearly, we have

	β (	α q) =	(α+β) q, 	α ◦ 	−α= id, 	α (q1 + q2) =	α q1+ 	α q2 .

Moreover, a simple computation shows that

(	α W ) ⋆ τ =	α
(
W ⋆ (	−α ⋆τ)

)
. (2.24)

3 Maximal chains and general Hamiltonians

In this section we deal with chains of matrices and with positive definite and
general Hamiltonians. We set up the necessary notation, give some supplements
to earlier results, and provide some tools which are essential for the present work.
The content of this section is arranged in five subsections:

a. We recall definition and properties of a maximal chain of matrices, which is
the indefinite analogue of the fundamental matrix solution of a canonical
system in the limit point case. Moreover, we recall the notion of its Weyl
coefficient, and the corresponding variant of the Inverse Spectral Theorem.
b. Finite maximal chains are the indefinite analogue of the fundamental
matrix solution of a canonical system in the limit circle case. Besides recalling
the definition and the corresponding variant of an Existence/Uniqueness
Theorem for finite maximal chains, we give a condition for a function to be a
finite maximal chain which will be used later.
c. We formalize the idea of splitting-and-pasting for (finite) maximal chains.
This procedure is a technical tool whose use is, at the present stage of
development, inevitable. Moreover, we introduce operations 	α and rev on
(finite) maximal chains analogous to those introduced in the previous section
on M<∞.
d. We revisit the positive definite situation, and recall some results concerning
positive definite Hamiltonians. We discuss their relationship with (positive
definite) maximal chains, and provide the analogues of the previously defined
operations on maximal chains.
e. Here we recall the definition of a general Hamiltonian, investigate the
splitting-and-pasting procedure for such, and introduce corresponding
operations 	α and rev.

a. Maximal chains of matrices and their Weyl coefficients.

Let us recall the definition of a maximal chain of matrices, cf. [KW/III].
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3.1 Definition. A mapping ω : I → M<∞ is called a maximal chain of matrices
if the following axioms are satisfied:

(W1) The set I is of the form
⋃n
i=0(σi, σi+1) for some numbers n ∈ N∪{0}

and σ0, . . . , σn+1 ∈ R ∪ {±∞} with σ0 < σ1 < . . . < σn+1.

(W2) The function ω is not constant on any interval contained in I.

(W3) For all s, t ∈ I, s ≤ t, the matrix ω(s)−1ω(t) belongs to M<∞, and

ind− ω(t) = ind− ω(s) + ind− ω(s)−1ω(t) .

We will refer to ω(s)−1ω(t) as the transfer-matrix from s to t.

(W4) Let t ∈ I and W ∈ M<∞, W 6= I. If W−1ω(t) ∈ M<∞ and
ind− ω(t) = ind−W + ind−W

−1ω(t), then there exists a number
s ∈ I such that W = ω(s).

(W5) We have limtրσn+1 t(ω(t)) = +∞. If I is not connected, i.e. n > 0,
there exist numbers s, t ∈ (σn, σn+1) such that ω(s)−1ω(t) is not a
linear polynomial.

The points σ1, . . . , σn are called the singularities of ω. �

It is apparent from the axiom (W5) that points s, t ∈ I where the transfer
matrix ω(s)−1ω(t) is a linear polynomial play a special role. For l, φ ∈ R, we
set

W(l,φ)(z) :=

(
1 − lz sinφ cosφ lz cos2 φ

−lz sin2 φ 1 + lz sinφ cosφ

)

Note that (see (2.8))
	α W(l,φ)(z) = W(l,φ−α)(z) (3.1)

A short argument shows that a linear polynomial W belongs to M<∞ if and
only if W = W(l,φ) for some l ∈ R and φ ∈ [0, π). In this case we have

ind−W = ind−W(l,φ) =

{

0 , l ≥ 0

1 , l < 0

An interval (s, t) ⊆ I is called indivisible of type φ ∈ [0, π), if for all s′, t′ ∈ (s, t)

ω(s′)−1ω(t′) = W(l(s′,t′),φ) .

The number sup{l(s′, t′) : s′ ≤ t′, s′, t′ ∈ (s, t)} is called the length of the
indivisible interval (s, t).

If (s1, t1) and (s2, t2) are indivisible intervals of types φ1 and φ2, respec-
tively, which have nonempty intersection, then φ1 = φ2 and their union is again
an indivisible interval of the same type. Hence every indivisible interval is con-
tained in a maximal indivisible interval. We will denote by Ising the union of
all indivisible intervals, and set Ireg := I \ Ising.

A singularity σ of a maximal chain ω is called of polynomial type, if for some
s−, s+ ∈ I the intervals (s−, σ) and (σ, s+) are both indivisible.

Let us recall some basic properties of maximal chains which were proved in
[KW/III]. For (i) and (ii) of the following statement see Lemma III.3.5, the
assertion (iii) is Proposition III.3.16, and (iv) follows from the construction in
Theorem II.7.1.
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3.2 Proposition ([KW/III]). Let ω be a maximal chain of matrices.

(i) The function ind− ω(t) is nondecreasing, constant on each connected com-
ponent of I, and takes different values on different components. In par-
ticular, it is bounded and attains its maximum on (σn, σn+1). Moreover,
ind− ω(t) = 0 for t ∈ (σ0, σ1).

(ii) The function t(ω(t)) is continuous and strictly increasing on each interval
(σi, σi+1). We have

lim
tրσi

t(ω(t)) = +∞, i = 1, . . . , n+ 1 ,

lim
tցσi

t(ω(t)) = −∞, i = 1, . . . , n, lim
tցσ0

ω(t) = I . (3.2)

(iii) The condition required in (W5) for the interval (σn, σn+1) holds auto-
matically for intervals between two singularities, i.e. none of the intervals
(σi, σi+1), i = 1, . . . , n− 1, is indivisible. The interval (σ0, σ1), however,
might be indivisible.

(iv) Let t ∈ Ireg and s ∈ I, s ≥ t. Then K(ω(t)) ⊆ K(ω(s)) and the inclusion
map is isometric. The map f 7→ ω(t)f is an isometric isomorphism of
K(ω(t)−1ω(s)) onto K(ω(s)) ⊖ K(ω(t)).

(v) Let i ∈ {1, . . . , n}. Then there exists a unique angle φ(σi) ∈ [0, π) such
that

lim
tրσi

[
	φ(σi) ω(t)

]′

12
(0) <∞ .

We have

lim
tցσi

[
	φ(σi) ω(t)

]′

12
(0) = lim

tրσi

[
	φ(σi) ω(t)

]′

12
(0) .

❑

3.3 Remark. Let us explicitly state the following consequences of the above item
Proposition 3.2, (i):

(i) The notation ind− ω := maxt∈I ind− ω(t) is meaningful. The set of all
maximal chains ω with ind− ω = κ will be denoted by Mκ. As usual we
will use the notation

M<∞ :=
⋃

ν∈N∪{0}

Mν ,

and write ind− ω = κ to express that a chain ω ∈ M<∞ belongs to Mκ.

(ii) If s, t ∈ I, s < t, are such that (s, t) is an indivisible interval, then
ind− ω(t) = ind− ω(s). Hence the number l in ω(s)−1ω(t) = W(l,φ) is
positive. In particular, the length of an indivisible interval is a positive
number or equal to +∞.

It might happen that for some s, t ∈ I, s < t, we have ω(s)−1ω(t) = W(l,φ)

with some l < 0. In this case (s, t) cannot be contained in I. Nevertheless,
we shall speak of (s, t) as an indivisible interval of negative length l.

�
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Chains which can be obtained out of each other by a change of variable will
share their important properties. This is formalized by the notion of reparam-
eterization.

3.4 Definition. Let J1, J2 ⊆ R and let ωi : Ji → M<∞, i = 1, 2, be functions.
Then we say that ω2 is a reparameterization of ω1 if there exists an increasing
and bijective map α : J2 → J1 such that ω2 = ω1 ◦ α. In this case we write
ω2!ω1. �

Clearly, the relation ! induces an equivalence relation on the set M<∞,
and thereby ω1 ! ω2 implies ind− ω1 = ind− ω2.

A central role in the theory of maximal chains of matrices is played by
the Weyl coefficient associated to a maximal chain. Let ω : I → M<∞ be a
maximal chain of matrices. Due to the fact that limtրsup I t(ω(t)) = +∞, for
each function τ ∈ N0 the limit

q∞(ω)(z) := lim
tրsup I

(ω(t) ⋆ τ)(z) (3.3)

exists locally uniformly on compact subsets of C \R with respect to the chordal
metric, cf. [KW/II]. Moreover, it does not depend on τ . Obviously, if ω1 ! ω2,
then q∞(ω1) = q∞(ω2).

3.5 Definition. If ω ∈ M<∞, the function q∞(ω) is called the Weyl coefficient
of ω. �

The main result in connection with this notion is the Inverse Spectral Theorem
for matrix chains which is obtained by combining Theorem II.8.7 with Theorem
II.7.1.

3.6. Inverse Spectral Theorem; chain version ([KW/II]): For each κ ∈
N∪{0} the assignment ω 7→ q∞(ω) establishes a bijective correspondence between
the sets Mκ/! and Nκ.

b. Finite maximal chains

Finite maximal chains are bounded analogues of maximal chains.

3.7 Definition. A mapping ω : I → M<∞ is called a finite maximal chain of
matrices if

(W1f) the set I is of the form I = [σ0, σn+1] \ {σ1, . . . , σn} for some num-
bers n ∈ N ∪ {0} and σ0, . . . , σn+1 ∈ R with σ0 < σ1 < . . . < σn <
σn+1,

and ω satisfies the axioms (W2), (W3) and (W4). Again, σ1, . . . , σn are called
the singularities of the chain ω. �

Again we will denote by Ising the union of all indivisible intervals, and set
Ireg := I \ Ising. With the obvious modifications the statements of Proposition
3.2 remain true.

3.8 Proposition ([KW/III]).

(i) The function ind− ω(t) is nondecreasing, constant on each connected com-
ponent of I, and takes different values on different components. We have
ind− ω(t) = 0 for t ∈ [σ0, σ1).
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(ii) The function t(ω(t)) is continuous and strictly increasing on each compo-
nent of I. We have

lim
tրσi

t(ω(t)) = +∞, lim
tցσi

t(ω(t)) = −∞, i = 1, . . . , n ,

and ω(σ0) = I.

(iii) None of the intervals (σi, σi+1), i = 1, . . . , n− 1, is indivisible. The inter-
vals [σ0, σ1) and (σn, σn+1], however, might be indivisible.

(iv) If t ∈ Ireg, then K(ω(t)) ⊆ K(ω(s+)) isometrically, and the map f 7→ ω(t)f
is an isometric isomorphism of K(ω(t)−1ω(s+)) onto K(ω(s+))⊖K(ω(t)).

Note that this includes, as trivial cases, the points t = σ0 and t = σn+1.

(v) Let i ∈ {1, . . . , n}. Then there exists a unique angle φ(σi) ∈ [0, π) such
that

lim
tրσi

[
	φ(σi) ω(t)

]′

12
(0) <∞ .

We have

lim
tցσi

[
	φ(σi) ω(t)

]′

12
(0) = lim

tրσi

[
	φ(σi) ω(t)

]′

12
(0) .

❑

Again we will write ind− ω := maxt∈I ind− ω(t) = ind− ω(σn+1), denote the
set of all finite maximal chains ω with ind− ω = κ by Mf

κ, and set

M
f
<∞ :=

⋃

ν∈N∪{0}

Mf
ν .

Clearly, if ω1 ∈ M
f
<∞ and ω2 ! ω1, then also ω2 ∈ M

f
<∞ and ind− ω1 = ω2.

IfW ∈ Mκ and ω : I → M<∞ is a finite maximal chain with ω(max I) = W ,
we speak of ω as a finite maximal chain going downwards from W . Let us recall
the following fundamental result, cf. Theorem II.7.1.

3.9. Existence/Uniqueness of finite maximal chains ([KW/II]): Let W ∈
M<∞ be given. Then there exists an, up to reparameterizations, unique finite
maximal chain ω going downwards from W .

Note in this place that, clearly, ω1 ! ω2 implies that ω1(max I1) =
ω2(max I2). Hence, if W ∈ M<∞ is given, the set of all finite maximal chains

going downwards from W equals exactly one equivalence class of M
f
ind−W

mod-
ulo!.

Next we give an easy-to-check set of conditions for maximality of a given
chain. This result will be of good use later on.

3.10 Proposition. Let ω : I → M<∞ be given, where the set I is of the form
I = [σ0, σn+1] \ {σ1, . . . , σn} with σ0 < σ1 < σ2 < . . . < σn < σn+1, and let
W ∈ M<∞. Then ω is a finite maximal chain going downwards from W if and
only if the following conditions hold:

(i) We have ω(σ0) = I and ω(σn+1) = W .
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(ii) The function ind− ω(t) is nondecreasing on I, constant on each component
of I, and takes different values on different components. For each t ∈ I
we have ω(t)−1W ∈ M<∞ and ind− ω(t)−1W = ind−W − ind− ω(t).

(iii) The function t(ω(t)) is continuous and strictly increasing on each interval
contained in I. Moreover,

lim
tցσi

t(ω(t)) = −∞, lim
tրσi

t(ω(t)) = +∞, i = 1, . . . , n .

(iv) For each i = 1, . . . , n there exist functions τ+, τ− ∈ N0 such that

lim
tցσi

ω(t) ⋆ τ+ = lim
tրσi

ω(t) ⋆ τ− .

Proof. Necessity of the conditions (iv) is clear from what we have recalled in
Proposition 3.8 and Theorem III.5.6.

We need to establish sufficiency. Thus let ω be given, and assume that (i)–
(iv) holds. Let ω̂ : Î → M<∞, Î = [σ̂0, σ̂n̂+1]\{σ̂1, . . . , σ̂n̂}, be a finite maximal
chain going downwards from W . We shall show that ω is a reparameterization
of ω̂.

By our assumption (ii) on the factorization of W and by the maximality
(W4) of ω̂, for each t ∈ I there exists a number s ∈ Î such that ω(t) = ω̂(s), i.e.
ranω ⊆ ran ω̂. Since ω̂ is injective, we can define α := ω̂−1 ◦ ω, then α maps I
into Î.

Write I = {σ0} ∪ I0 ∪ . . . ∪ In ∪ {σn+1} where Ij := (σj , σj+1). Similarly,

let Î = {σ̂0} ∪ Î0 ∪ . . . ∪ În̂ ∪ {σ̂n̂+1} with Îj := (σ̂j , σ̂j+1). Let i ∈ {0, . . . , n}

and assume that for some l ∈ {0, . . . , n̂} we have α(Ii) ∩ Îl 6= ∅. Then, by our
assumption (ii) on negative indices, and the property Proposition 3.8, (i), of ω̂,
we have α(Ii) ⊆ Îl. Hence, there exists a map l : {0, . . . , n} → {0, . . . , n̂} such
that α(Ii) ⊆ Îl(i). Moreover, the map l is strictly increasing.

By our assumption (iii), t ◦ω|Ii
is continuous and strictly increasing. More-

over, for i = 1, . . . , n, it maps Ii bijectively onto R. In the case that i = 0 or
i = n+1, we obtain from (iii) and (i) that t◦ω|Ii

is a continuous and increasing
bijection of I0 onto (0,∞) or of In onto (−∞, t(W )), respectively. The map t◦ ω̂
has the same properties. Since t◦ω = t◦ω̂◦α, we have α = (t◦ω̂|

Îl
)−1◦(t◦ω|Ii

),

and conclude that α|Ii
is an increasing bijection of Ii onto Îl(i).

By (i) and (ii), we have ind− ω(t) = ind− ω(σ0) = 0, t ∈ I0. Since also
ind− ω̂(s) = 0, s ∈ Î0, it follows that l(0) = 0. Let i ∈ {0, . . . , n− 1} be given.
By our assumption (iv), Proposition III.5.1 and Theorem III.5.6, we have

ind− ω̂(Îl(i)) = ind− ω(Ii) = ind− lim
tցσi+1

ω(t) ⋆∞ =

= ind− lim
tցσi+1

(ω̂ ◦ α)(t) ⋆∞ = ind− lim
sցσ̂l(i+1)

ω̂(s) ⋆∞ =

= ind− ω̂(Îl(i+1)−1) .

It follows that l(i + 1) − 1 = l(i). Recursively, we obtain l(i) = i for all i ∈
{0, . . . , n}. Since, by (i), ind− ω(t) = ind− ω(σn+1) = ind−W , t ∈ In, and
correspondingly ind− ω̂(t) = ind− ω̂(σ̂n̂+1) = ind−W , t ∈ În̂, we obtain that
l(n) = n̂. This shows that n = n̂ and that l is an increasing bijection.

Altogether it follows that α is an increasing and bijective map of I onto
Î. ❑
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Since each matrix W ∈ M<∞ induces a de Branges Pontryagin space, a
(finite) maximal chain of matrices induces a whole family of de Branges spaces.
In essence, this is actually a chain of spaces.

3.11 Proposition ([KW/II]). Let ω ∈ M
f
<∞, and assume that ω(t) satisfies

(2.23). Denote Et := Eω(t) for t ∈ I. Then the set of all nondegenerated
dB-subspaces of P(Es+) is equal to

{
P(Et) : t 6∈ Ising

}
.

If t ∈ Ising, and (t−, t+) is the maximal indivisible interval which contains t,
then P(Et) contains each space P(Es), s ≤ t−, isometrically, and is contained
in each P(Es), s ≥ t+, as a set but not isometrically. For s ∈ (t−, t+) \ {t} we
have P(Es) = P(Et) as sets, but not isometrically. ❑

c. Splitting-and-pasting, and other operations.

The operations 	α and rev, which were introduced previously for matrices W ∈
M<∞, can be applied to chains of matrices. One can think of 	α as rotation
of the whole chain by the angle α, and of rev as reading the chain backwards,
i.e. reversing the order in which the chain is run through.

3.12 Definition. Let ω ∈ M
f
<∞ ∪ M<∞, and let α ∈ R. Then we define

	α ω :

{
I → M<∞

t 7→ 	α ω(t)

If ω ∈ M
f
<∞, define

revω :

{

−I → M<∞

t 7→ rev
(
ω(−t)−1ω(σn+1)

)

�

3.13 Lemma.

(i) Let ω ∈ Mf
κ, and let α ∈ R. Then 	α ω ∈ Mf

κ.

(ii) Let ω ∈ Mκ, and let α ∈ R. Then 	α ω ∈ Mκ, and q∞(	α ω) =
Nα ⋆ q∞(ω).

(iii) Let ω ∈ Mf
κ, then also revω ∈ Mf

κ.

Proof.

(i) As 	α (ω(s)−1ω(t)) = (	α ω(s))−1(	α ω(t)) for s ≤ t the assertion
follows from Lemma 2.5.

(ii) Since 	α W is a linear polynomial if and only if W is, the first assertion
follows from Lemma 2.5 in the same manner. The second is immediate
from (3.3) and (2.24).

(iii) One easily verifies that (revω)(s)−1(revω)(t) = rev(ω(−t)−1ω(−s)) for
s ≤ t. Hence, the assertion is an immediate consequence of Lemma 2.7.
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❑

Clearly,

	β (	α ω) =	α+β ω, 	0 ω = ω and rev(revω) = ω .

For the following keep in mind that I contains σ0 and σn+1 if ω is a finite
maximal chain.

3.14 Definition. Let ω : I → M<∞ be a maximal or a finite maximal chain.
Let r ∈ I ∪ {σ0}, s ∈ I, r < s. Then we define

ωr↔s(t) := ω(r)−1ω(t), t ∈ I ∩ [r, s] .

In parallel we will also use the notations ω�s := ωσ0↔s, and ωr� := ωr↔σn+1 .
�

Because of t(WV ) = t(W ) + t(V ), it is easy to show that ωr↔s is a finite
maximal chain or a maximal chain, depending whether s ∈ I or s 6∈ I. Moreover,
we have

(ωr↔s)r′↔s′ = ωr′↔s′ , r, r′ ∈ I ∪ {σ0}, s, s
′ ∈ I, r ≤ r′ < s′ ≤ s .

The following remark shows that one can often reduce statements about maxi-
mal chains to corresponding statements about finite maximal chains. Its proof
is again obvious from the respective definitions.

3.15 Remark. Let ω : I → M<∞ be a function which satisfies (W1) and (W5).
Then the following are equivalent:

(i) ω is a maximal chain.

(ii) For each s ∈ I, the function ω�s is a finite maximal chain.

(iii) There exists a sequence (sn)n∈N, sn ∈ I, with sn ր σn+1, such that for
each n ∈ N the function ω�sn

is a finite maximal chain.

�

Although the definition of pasting two chains of matrices is most natural, the
properties of this operation are more involved.

3.16 Definition. Let J1, J2 ⊆ R, and let ω1 : J1 → M<∞, ω2 : J2 → M<∞.
Assume that inf J2 = supJ1 ∈ J1, and that with s1 := supJ1 we have

{

ω2(inf J2) = I , inf J2 ∈ J2

limtցinf J2 ω2(t) = I , inf J2 6∈ J2

Then we define ω1 ⊎ ω2 : J1 ∪ J2 → M<∞ by

(ω1 ⊎ ω2)(t) :=

{

ω1(t) , t ∈ J1

ω1(s1)ω2(t) , t ∈ J2

�
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Note that ⊎ is associative whenever all operations are defined. From the
considerations in [KW/II, §7] we obtain the following statement.

3.17 Proposition ([KW/II]). Let ω1 : I1 → M<∞ belong to Mf
κ1

, ω2 : I2 →
M<∞ belong to Mf

κ2
∪Mκ2 , and assume that sup I1 = inf I2 so that ω1 ⊎ ω2 is

well-defined. Assume that the following condition does not hold:

(¬link) ω1 ends with an indivisible interval of type φ ∈ [0, π) and ω2 starts
with an indivisible interval of the same type φ.

Then ω1 ⊎ ω2 ∈ M
f
κ1+κ2

or ω1 ⊎ ω2 ∈ Mκ1+κ2 , depending whether ω2 ∈ Mf
κ2

or
ω2 ∈ Mκ2 . ❑

3.18 Remark.

(i) The fact that ω2 starts with an indivisible interval of type φ is equivalent
to the fact that for some (and hence for all) t ∈ I2 \ {inf I2} there exists
a nonzero element ξφ ∈ K(ω2(t)), see (II.5.10), Remark III.3.2.

Applying this fact to t = − inf I1 and revω1 we obtain from Lemma 2.7
that the fact that ω1 ends with an indivisible interval of type φ is equivalent
to ω1(sup I1)ξφ ∈ K(ω1(sup I1)).

Therefore, the condition (¬link) is equivalent to the following condi-
tion:

(¬link′) For some t ∈ I2 there exists a nonzero element u ∈ K(ω2(t))
such that ω1(sup I1)u ∈ K(ω1(sup I1)).

(ii) If, in the situation of Proposition 3.17, ω2 ∈ M<∞ then

q∞(ω1 ⊎ ω2) = ω1(sup I1) ⋆ q∞(ω2) .

�

The operations of splitting and pasting are converses of each other. The
following statements are easily seen from Proposition 3.17 and Proposition 3.8,
(iii). We will thus not elaborate their proofs.

3.19 Lemma. Assume that ω : I → M<∞ is a finite maximal (or maximal)
chain, and let F be a finite subset of Ireg. Write F = {r1, . . . , rm} with σ0 <
r1 < . . . < rm < σn+1, and set r0 := σ0, rm+1 := σn+1.

Then ωrj↔rj+1 ∈ M
f
<∞, j = 0, . . . ,m − 1, and ωrm↔rm+1 belongs to M

f
<∞

or M<∞ depending whether ω has the corresponding property. For each two
consecutive chains ωrj−1↔rj

, ωrj↔rj+1 , the condition (¬link) fails, and we have

ω =

m⊎

j=0

ωrj↔rj+1 .

❑

3.20 Lemma. Let σ0, . . . , σn+1 ∈ R ∪ {±∞}, σ0 < . . . < σn+1, set I :=
⋃n
i=0(σi, σi+1), and let F be a finite subset of I. Write F = {r1, . . . , rm} with

σ0 < r1 < . . . < rm < σn+1, and set r0 := σ0, rm+1 := σn+1.
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Assume that there are given finite maximal chains ωj : [rj , rj+1]∩I → M<∞,
j = 0, . . . ,m− 1, and a finite maximal (or maximal) chain ωm : [rm, rm+1] →
M<∞ (or ωm : [rm, rm+1) → M<∞, respectively). Assume that for each two
consequtive chains ωj and ωj+1 the condition (¬link) fails, and set ω :=

⊎m
j=0 ωj,

so that ω is a finite maximal or maximal chain depending whether ωm has the
corresponding property.

Then F := {r1, . . . , rm} ⊆ Ireg and

ωrj↔rj+1 = ωj , j = 0, . . . ,m .

❑

Let ω ∈ M
f
<∞ ∪ M<∞. Then, by virtue of Proposition 2.3, we obtain a family

of boundary triplets, namely B(ω(t)), t ∈ I. It follows by induction from
Proposition 2.11 and Remark 3.18 that a splitting of the chain ω corresponds
to a splitting of the associated boundary triplets.

3.21 Corollary. Assume that ω : I → M<∞ is a finite maximal (or maximal)
chain, and let F be a finite subset of Ireg. Write F = {r1, . . . , rm} with σ0 <
r1 < . . . < rm < σn+1, and set r0 := σ0, rm+1 := σn+1. Moreover, for t ∈ I, let
i(t) ∈ {0, . . . ,m} be such that t ∈ (ri(t), ri(t)+1]. Then we have

B(ω(t)) =

i(t)
⊎

i=1

Bω(ri−1)(ωri−1↔ri
(ri)) ⊎ Bω(ri(t))(ωri(t)↔ri(t)+1

(t)) .

❑

d. Positive definite Hamiltonians

Let I = (s−, s+) be an interval on the real axis where s− < s+, s−, s+ ∈
R∪ {±∞}. A Hamiltonian on I is a measurable function H defined on I which
takes real and nonnegative 2 × 2-matrices as values, is locally integrable on I,
and does not vanish on any set of positive measure.

An important role is played by the primitive t(H) of trH . It is determined
up to an additive constant. Since trH is nonnegative, locally integrable, and
does not vanish on any set of positive measure, t(H) is locally absolutely con-
tinuous and strictly increasing. Thus t(H) maps I bijectively onto some interval
(L−, L+).

We say that a Hamiltonian H is regular at the endpoint s− if, for some
ǫ > 0,

∫ s−+ǫ

s−

trH(t) dt <∞ . (3.4)

If
∫ s−+ǫ

s−
trH(t) dt = ∞, it is called singular at s−. The terminology of reg-

ular/singular at the endpoint s+ is defined analogously. Sometimes one also
speakes of Weyl’s limit circle and limit point case, instead of regular and singu-
lar, respectively.

3.22 Remark. Let F : [a, b] → [c, d] is increasing, bijective and absolutely con-
tinuous, and assume that F ′ does not vanish identically on any Borel-subset of
[a, b] with positive measure. Then F−1 : [c, d] → [a, b] is absolutely continuous,
and (F−1)′ = 1

F ′◦F−1 a.e. �

29



Therefore, since trH does not vanish on any set of positive measure, also the
inverse function t(H)−1 is locally absolutely continuous.

We also see that H is regular or singular at the endpoint s± in the sense of
(3.4) if and only if L± is finite or infinite.

Intervals where H is of a particularly simple form play a special role. An
interval (α−, α+) ⊆ I, α− < α+, is called H-indivisible of type φ ∈ [0, π) if

ranH(t) = span{ξφ}, t ∈ (α−, α+) a.e.

In this case we have, with an appropriate measurable, scalar and a.e. positive
function h(t),

H(t) = h(t)ξφξ
T
φ , t ∈ (α−, α+) a.e.

If (α−, α+) is H-indivisible, the difference t(H)(α+) − t(H)(α−) ∈ (0,∞] is
called the length of this H-indivisible interval.

It is clear that, if (α−, α+) and (α′
−, α

′
+) are H-indivisible intervals with

nonempty intersection, then their types must coincide and their union is again
H-indivisible. Hence, every H-indivisible interval is contained in a maximal H-
indivisible interval. Similaras in the setting of chains of matrices, we will also
here denote by Ising the union of all indivisible intervals, and set Ireg := I \Ising.

Two Hamiltonians H1 and H2 which are defined on intervals (s1−, s
1
+) and

(s2−, s
2
+), respectively, are called reparameterizations of each other, if there exists

an increasing bijection α of (s2−, s
2
+) onto (s1−, s

1
+) such that α and α−1 are

locally absolutely continuous and H2(t) = H1(α(t))α′(t). In this case we write
H1 ! H2. Clearly, this relation is an equivalence relation on the set of all
Hamiltonians.

It is a classical result that positive definite Hamiltonians are related to posi-
tive definite maximal chains of matrices. Let us state this fact in a comprehen-
sive formulation suitable for our purposes.

3.23 Proposition ([GK], [HSW], [dB]).

(i) Let H be a positive definite Hamiltonian defined on an interval (s−, s+)
which is regular at s−. Then there exists a unique solution W (t, z) of the
initial value problem

∂

∂t
W (t, z)J = zW (t, z)H(t), for a.e. t ∈ (s−, s+), W (s−, z) = I ,

(3.5)
where z is a complex parameter. Set

ωH(t) := W (t, .), t ∈

{

[s−, s+] , H regular at s+

(s−, s+) , H singular at s+

If H is regular at s+, then ωH(t) belongs to M
f
0 . If H is singular at s+,

then ωH(t) ∈ M0.

The function t ◦ωH and its inverse are both locally absolutely continuous.
In fact, t ◦ ωH = t(H) when t(H) is chosen such that it takes the value 0
at s−.

If H1!H2, and ωH1 , ωH2 are defined correspondingly, then ωH1!ωH2 .
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(ii) Let ω ∈ M
f
0∪M0, and assume that t◦ω and its inverse are locally absolutely

continuous. Then there exists a unique Hamiltonian H which is regular at
s−, and regular or singular at s+ depending whether ω ∈ M

f
0 or ω ∈ M0,

such that ω = ωH , i.e. such that ω(t) is the solution of (3.5).

If ω1 and ω2 are maximal chains or finite maximal chains which give rise
to Hamiltonians H1 and H2, respectively, and if ω1!ω2, then H1!H2.

❑

Each equivalence class of chains modulo reparameterization contains elements
which do have the property that t ◦ ω and (t ◦ ω)−1 are locally absolutely con-
tinuous, and hence give rise to a Hamiltonian. Thus Proposition 3.23 can be
stated, in a somewhat less detailed form, as follows.

3.24 Remark. Denote by H0 the set of all Hamiltonians which are regular at their
left endpoint. Then the assignment H 7→ ωH induces a bijective correspondence
between H0/! and (Mf

0 ∪ M0)/!, where Hamiltonians which are regular at
s+ correspond to finite maximal chains, and Hamiltonians which are singular
at s+ correspond to maximal chains. �

A classical result, which lies at the basis of the operator theory of canonical
systems, says that a Hamiltonian H generates a boundary triplet B(H) =
(L2(H), Tmax(H),Γ(H)). Thereby mul Γ(H) 6= {0} if and only if (s−, s+) is
H-indivisible. These facts were formulated in a suitable way for our present
purposes in [KW/IV, §2.1]. If H is regular at s− and at s+, the boundary
triplet B(H) has defect 2, if H is regular at s− and singular at s+ it has defect
1. In any case, it satisfies (E).

The boundary triplet generated by H can be related to qH or ωH(s+), re-
spectively. We start with the case of a singular Hamiltonian.

3.25 Proposition ([HSW]). Let H be a Hamiltonian which is regular at s− and
singular at s+. Then the Weyl-coefficient qH is a Q-function of the symmetry
S(H) := T (H)∗. ❑

Assume that H is regular at s− and at s+. It is well-known that then there
exists an isomorphism between the Hilbert spaces L2(H) and K(ωH(s+)). Let us
complete the picture and show that this isomorphism actually is an isomorphism
of boundary triplets.

3.26 Proposition. Let H be a Hamiltonian which is regular at both endpoints
s− and s+. Denote

(Θf)(z) :=

∫ s+

s−

ωH(t, z)H(t)f(t) dt, f ∈ L2(H) .

Then the pair (Θ, idC4) is an isomorphism between the boundary triplets B(H)
and B(ωH(s+)).

Proof. Assume first that mul Γ(H) = {0}, i.e. that not the whole interval
(s−, s+) is indivisible. Note that this is equivalent to assuming that ωH(s+) 6=
W(l,φ) with some l, φ, and hence equivalent to mul Γ(ωH(s+)) = {0}.

Since Tmax(H)∗ is completely nonselfadjoint, and since for each w ∈ C the
space ker(Tmax(H) − w) is spanned by the functions t 7→ ωH(t)(w)T u, u ∈ C2,
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we have

L2(H) = cls
{
ωH(.)(w)T u : u ∈ C2, w ∈ C

}
,

Tmax(H) = cls
{(
ωH(.)(w)T u;wωH(.)(w)T u

)
: u ∈ C2, w ∈ C

}
,

Γ(H) = cls
{(

(ωH(.)(w)T u;wωH(.)(w)T u); (u;ωH(s+)(w)T u)
)

:

u ∈ C2, w ∈ C
}
.

The function ωH satisfies the differential equation (3.5), and hence, as a com-
putation shows, we have

HωH (s+)(w, z) =

∫ s+

s−

ωH(t)(z)H(t)ωH(t)(w)∗ dt ,

cf. [dB]. Therefore,

(
ΘωH(.)(w)T u

)
(z) =

∫ s+

s−

ωH(t)(z)H(t)ωH(t)(w)∗u dt = HωH (s+)(w, z)u ,

(3.6)
and we obtain

Θ
(
span

{
ωH(.)(w)T u : u∈C2, w∈C

})
= span

{
HωH(s+)(w, .) : u∈C2, w∈C

}
.

Moreover, by the abstract Green’s identity in B(H),

(w1 − w2)
[
ωH(.)(w1)

Tu1, ωH(.)(w2)
Tu2

]

L2(H)
=

= u∗2Ju1 −
(
ωH(s+)(w2)

Tu2

)∗
J
(
ωH(s+)(w1)

Tu1

)
=

= −u∗2
(
ωH(s+)(w2)u2JωH(s+)(w1)

∗u1 − J
)
u1 =

= −u∗2(w2 − w1)HωH(s+)(w1, w2)u1 =

= (w1 − w2)
[
HωH(s+)(w1, .)u1, HωH(s+)(w2, .)u2

]

K(ωH(s+))
=

= (w1 − w2)
[
ΘωH(.)(w1)

Tu1,ΘωH(.)(w2)
Tu2

]

K(ωH(s+))
.

Thus, Θ is isometric. With a standard continuity argument, we obtain that

Θ(L2(H)) = K(ωH(s+)), (Θ⊠Θ)Tmax(H) = T (ωH(s+)) .

Moreover, it is clear that Θ is compatible with the respective involutions. From
the definition of the boundary relation Γ(ωH(s+)) we see that also

(
(Θ⊠Θ)⊠ idC4

)
Γ(H) = Γ(ωH(s+)) .

The case that (s−, s+) is indivisible can be checked explicitly from the form of
L2(H) and K(W(l,φ)), cf. [KW/IV, §2.1.e], Proposition 2.8. We will not carry
out the details. ❑

Later on we will need a more general formulation of this result.
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3.27 Corollary. Let H be a Hamiltonian defined on (s−, s+), and let ω :
(s−, s+) → M<∞ be a solution of the differential equation in (3.5) (without
imposing any conditions on boundary values, they even need not necessarily ex-
ist). Moreover, let r−, r+ ∈ [s−, s+], r− < r+, be such that H |(r−,r+) is regular
at both of its endpoints r±, and denote

(Θr−,r+f)(z) :=

∫ r+

r−

ω(r−, z)
−1ω(t, z)H(t)f(t) dt, f ∈ L2(H |(r−,r+)) .

Then the pair (Θr−,r+ , idC4) is an isomorphism between the boundary triplets
B(H |(r−,r+)) and B(ω(r−)−1ω(r+)).

Proof. This follows immediately from Proposition 3.26, since ω(r−)−1ω(t), t ∈
(r−, r+), is the solution of the initial value problem (3.5) for the Hamiltonian
H |(r−,r+). ❑

The operations 	α and rev, defined above on the level of chains of matrices,
have their analogues for Hamiltonians.

3.28 Definition. Let H be a Hamiltonian defined on (s−, s+).

(i) For α ∈ R define 	α H : (s−, s+) → R2×2 as

(	α H)(t) :=	α (H(t)), t ∈ (s−, s+) .

(ii) Define revH : (−s+,−s−) → R2×2 as

(revH)(t) := V H(−t)V, t ∈ (−s+,−s−) .

�

3.29 Lemma. Let H be a Hamiltonian defined on (s−, s+). Then also 	α H
and revH are Hamiltonians. If H is regular/singular at s±, then 	α H is
regular/singular at s±, and revH is regular/singular at s∓.

If H is regular at s−, then ω	αH =	α ωH . If H is regular at s− and at s+,
then ωrevH = revωH.

Proof. The proof of these assertions is done by elementary computation, namely
by checking that the functions 	α ωH and revωH satisfy the respective differ-
ential equations. We will not carry out the details. ❑

3.30 Remark. The construction of the boundary triplet B(H) in [KW/IV, §2.1]
also shows that (̟, να ⊠ να) is an isomorphism of the boundary triplets B(H)
and B(	α H). Hereby, να : C2 → C2 is the map ναx := Nαx and (̟f)(t) :=
Nαf(t) for f ∈ L2(H).

Similarly, (̟,φ) is an isomorphism of the boundary triplets B(H) and
B(revH), where (̟f)(t) = V f(−t), and where φ and V are as in Definition
2.6. �

Also the splitting-and-pasting method has an analogue for Hamiltonians. Let
(s−, s+) be given, and let F be a finite subset of [s−, s+] with s−, s+ ∈ F . Write
F = {r0, . . . , rm+1} with r0 < . . . < rm+1. If H is a Hamiltonian defined on
(s−, s+), set

Hri↔ri+1 := H |(ri,ri+1) .
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Conversely, if Hi are Hamiltonians on (ri, ri+1), i = 0, . . . ,m, define a function
⊎m
i=0Hi : (s−, s+) → R2×2 a.e. by

( m⊎

i=0

Hi

)

(t) := Hi(t), t ∈ (ri, ri+1), i = 0, . . . ,m .

The following is immediate from the definitions:

3.31 Remark. If H is a Hamiltonian on (s−, s+), then Hri↔ri+1 are Hamilto-
nians on (ri, ri+1), which are regular at the endpoints rj , j = 1, . . . ,m, and
regular/singular at r0 or rm+1 depending whether H is regular/singular at s−
or s+. If H is regular at s−, then we have (see Definition 3.16)

ωH =

m⊎

i=0

ωHri↔ri+1
. (3.7)

Conversely, if Hi are Hamiltonians on (ri, ri+1), which are regular at the end-
points rj , j = 0, . . . ,m, then H :=

⊎m
i=0Hi is a Hamiltonian on (s−, s+) which

is regular at s−, and (3.7) holds. �

Similar as in Corollary 3.21, we can pass to boundary triplets. It is straightfor-
ward to verify the following remark.

3.32 Remark. Let H be a Hamiltonian defined on (s−, s+), and let F =
{r0, . . . , rm+1}, r0 < . . . < rm+1, be a finite subset of [s−, s+] with s−, s+ ∈ F .
Assume that ri 6∈ Ising, i = 1, . . . ,m. Then

B(H) =

m⊎

i=0

B(Hri↔ri+1) .

�

3.33 Remark. Let H be a Hamiltonian defined on (s−, s+). From (3.5) it is
easily seen that H starts (ends) with an indivisible interval von type φ if and
only ωH does.

Therefore, the condition that r ∈ (s−, s+) is contained in Ireg is equivalent to
the fact that (¬link) from Proposition 3.17 for ω1 = ωHs−↔r

and ω2 = ωHr↔s+

fails. �

It is interesting to note the following compatibility with the isomorphisms Θ.

3.34 Lemma. Let H be a Hamiltonian defined on (s−, s+), and let ω :
(s−, s+) → M<∞ be a solution of the differential equation in (3.5) (without
imposing any conditions on boundary values). Moreover, let r−, r+, r

′
−, r

′
+ ∈

[s−, s+], r− ≤ r′− < r′+ ≤ r+, be such that H |(r−,r+) is regular at both of its
endpoints r±, and assume that r′± 6∈ Ising. Let us denote

(i) by ιr′
−
,r′+

: L2(Hr′
−
↔r′+

) → L2(Hr−↔r+) be the natural embedding operator,

(ii) by ρr′
−
,r′+

: L2(Hr−↔r+) → L2(Hr′
−
↔r′+

) the restriction operator (we then

have ρr′
−
,r′+

= ι∗
r′
−
,r′+

),

(iii) by Pr′
−
,r′+

the orthogonal projection of K(ω(r−)−1ω(r+)) onto its subspace

ω(r−)−1ω(r′−)K(ω(r′−)−1ω(r′+)),
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(iv) and by
Θr−,r+ : L2(Hr−↔r+) → K(ω(r−)−1ω(r+)) ,

Θr′
−
,r′+

: L2(Hr′
−
↔r′+

) → K(ω(r′−)−1ω(r′+))

the respective isomorphisms as in Corollary 3.27.

Then we have

L2
(
Hr−↔r+

)

ρr′
−

,r′
+

--

Θr−,r+

��

L2
(
Hr′

−
↔r′+

)

ιr′
−

,r′
+

mm

Θr′
−

,r′
+

��

K
(
ω(r−)−1ω(r+)

)

ω(r′
−

)−1ω(r−)Pr′
−

,r′
+

..
K
(
ω(r′−)−1ω(r′+)

)

f 7→ω(r−)−1ω(r′
−

)f

nn

Proof. The fact that the restriction operator ρr′
−
,r′+

: f 7→ f |(r′
−
,r′+) is the adjoint

of the natural embedding operator ιr′
−
,r′+

is obvious.

By Corollary 3.27 we have for f ∈ L2
(
Hr′

−
↔r′+

)

Θr−,r+ ◦ ιr′
−
,r′+

(f) =

∫ r+

r−

ω(r−, z)
−1ω(t, z)H(t)ιr′

−
,r′+

(f)(t) dt =

= ω(r−, z)
−1ω(r′−, z)

∫ r′+

r′
−

ω(r′−, z)
−1ω(t, z)H(t)f(t) dt =

= ω(r−, z)
−1ω(r′−, z)Θr′

−
,r′+

(f) .

Since ιr′
−
,r′+

is isometric and both operators Θr−,r+ and Θr′
−
,r′+

are unitary, also

the assignment f 7→ ω(r−)−1ω(r′−)f maps K
(
ω(r′−)−1ω(r′+)

)
isometrically into

K
(
ω(r−)−1ω(r+)

)
. Its range, namely

ω(r−)−1ω(r′−)K
(
ω(r′−)−1ω(r′+)

)
=
{
ω(r−)−1ω(r′−)f : f ∈ K

(
ω(r′−)−1ω(r′+)

)}
,

is thus a closed subspace of K
(
ω(r−)−1ω(r+)

)
. Hence, the adjoint of f 7→

ω(r−)−1ω(r′−)f is the projection Pr′
−
,r′+

onto ω(r−)−1ω(r′−)K
(
ω(r′−)−1ω(r′+)

)

followed by multiplication with [ω(r−)−1ω(r′−)]−1. ❑

e. General Hamiltonians

The notion of positive definite Hamiltonians admits a generalization to an in-
definite setting. The definition of this generalization requires some preliminary
notation. Let H be a Hamiltonian defined on the interval (s−, s+).

 If H is regular at s− a number ∆(H) ∈ N ∪ {0,∞} is associated with H
which measures in a certain sense the growth of H towards s+, cf. Definition
IV.3.1.

 If H is regular at s− and singular at s+, we say that H satisfies the condition
(HS) if resolvents of selfadjoint extensions of Tmax(H)∗ are Hilbert-Schmidt
operators, cf. [KW/IV, §2.3.a]. In this case there exists a unique number φ(H)
such that

∫ s+
s−

ξT
φ(H)H(t)ξφ(H) dt <∞, cf. [KW] or Theorem IV.2.27.

35



 Let H be singular at both endpoints s− and s+, and fix s0 ∈ (s−, s+). We
say thatH satisfies the condition (HS+) or (HS−), ifH |(s0,s+) orH |(s−,s0)(−x),
respectively, satisfies (HS). Moreover, we define

∆+(H) := ∆(H |(s0,s+)), ∆−(H) := ∆(H |(s−,s0)(−x)) ,

φ+(H) := φ(H |(s0,s+)), φ−(H) := φ(H |(s−,s0)(−x)) .

It was shown in [KW/IV, §2.3.c, (i)] and Lemma IV.3.12 that these numbers
do not depend on the choice of s0 ∈ (s−, s+).

Now we can state the definition of a general Hamiltonian. It consists of a
Hamiltonian function H , which has in a sense certain singularities, and some
additional data associated with each singularity.

3.35 Definition. A general Hamiltonian h is a collection of data of the following
kind:

(i) n ∈ N ∪ {0}, σ0, . . . , σn+1 ∈ R ∪ {±∞} with σ0 < σ1 < . . . < σn+1.

(ii) Hamiltonians Hi : (σi, σi+1) → R2×2 for i = 0, . . . , n,

(iii) numbers ö1, . . . , ön ∈ N ∪ {0} and bi,1, . . . , bi,öi+1 ∈ R, i = 1, . . . , n, with
bi,1 6= 0 in case öi ≥ 1,

(iv) numbers di,0, . . . , di,2∆i−1 ∈ R, where ∆i := max{∆+(Hi−1),∆−(Hi)} for
i = 1, . . . , n,

(v) a finite subset E of {σ0, σn+1} ∪
⋃n
i=0(σi, σi+1),

which is assumed to be subject to the following conditions

(H1) The Hamiltonian H0 is regular at σ0 and, if n ≥ 1, singular at σ1.
Each Hamiltonian Hi, i = 1, . . . , n−1, is singular at both endpoints
σi and σi+1. If n ≥ 1, then Hn is singular at σn.

(H2) None of the intervals (σi, σi+1), i = 1, . . . , n − 1, is indivisible†. If
Hn is singular at σn+1, then also (σn, σn+1) is not indivisible.

(H3) We have ∆i < ∞, i = 1, . . . , n. Moreover, H0 satisfies (HS+), Hi

satisfies (HS−) and (HS+), i = 1, . . . , n− 1, and Hn satisfies (HS−).

(H4) We have φ+(Hi−1) = φ−(Hi), i = 1, . . . , n.

(H5) Let i ∈ {1, . . . , n}. If both of Hi−1 and Hi end with an indivisible
interval towards σi, then d1 = 0. If additionally bi,1 = 0, then also
d0 < 0.

(E1) σ0, σn+1 ∈ E, and E ∩ (σi, σi+1) 6= ∅ for i = 1, . . . , n − 1. If Hn

is singular at σn+1, then also E ∩ (σn, σn+1) 6= ∅. Moreover, E
contains all endpoints of indivisible intervals of infinite length which
lie in

⋃n
i=0(σi, σi+1).

(E2) No point of E is an inner point of an indivisible interval.

†No typo: The interval (σ0, σ1) may be indivisible.
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The common value of φ+(Hi−1) and φ−(Hi) will be denoted by φi.
The general Hamiltonian h is called definite if n = 0, and indefinite otherwise.

It is called regular or singular, if Hn is regular or singular, respectively, at σn+1.
Moreover, we set

ind− h :=

n∑

i=1

(
∆i + [

öi
2

]
)

+
∣
∣
{
1 ≤ i ≤ n : öi odd, ci,1 < 0

}∣
∣ . (3.8)

We will denote the set of all general Hamiltonians by H<∞, and set Hκ := {h ∈
H<∞ : ind− h = κ}. �

Let us introduce some more generic notation. Let h be a general Hamil-
tonian. The subset E is called an admissible partition and will be written as
E = {s0, . . . , sN+1} with s0 < . . . < sN+1. The function H : I → R2×2, where
I :=

⋃n
i=0(σi, σi+1), which is defined by

H(t) := Hi(t), t ∈ (σi, σi+1), i = 0, . . . , n ,

is referred to as the Hamiltonian function of h. For technical reasons we add to
I the points σ0 and σn+1. If t is one of these points we choose H(t) to be the
identity matrix. Since we consider H only almost everywhere this choice is not
relevant.

We will denote by Ising the union of all H-indivisible intervals, and set Ireg =
I \ Ising. Moreover, we will often write a Hamiltonian h which is given by the
data n, σ0, . . . , σn+1, H1, . . . , Hn, ö1, . . . , ön, bi,j , di,j and E as

h = (H, c, d)

where the Hamiltonian function H includes the number n and the points σi,
where c represents the numbers öi and bi,j , and where d represents the numbers
di,j and the subset E.

Intuitively speaking, a general Hamiltonian models a canonical system on
[σ0, σn+1) whose Hamiltonian is allowed to have singularities, namely σ1, . . . , σn,
and which is in the limit circle or limit point case at σn+1 depending whether
h is regular or singular. The behaviour of H at a singularity is not too bad in
the sense of (H3). A singularity itself contributes to the equation in two ways:
Firstly, a contribution concentrated inside the singularity; passing the singu-
larity influences the solution. This is modelled by the parameters c. Secondly,
interface conditions which connect before and after each singularity. This is
modelled by the parameters d, and by the condition (H4). We can picture the
situation as follows (E = {s0, . . . , sN+1}):

s0

q

σ0

sN+1

q

σn+1× × ×
σ1 σ2 σn

s1 s2 s3 sN

H0 H1 H2 Hn−1 Hn

φ+(H0)
q

φ−(H1)

d1j

!

 

ö1

b1j

φ+(H1)
q

φ−(H2)

d2j

!

 

ö2

b2j

φ+(Hn−1)
q

φ−(Hn)

dnj

!

 

ön

bnjh :

Let h be a general Hamiltonian. In [KW/IV] a boundary triplet B(h) =
(P(h), T (h),Γ(h)) has been associated to h, cf. Definition IV.8.5.
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3.36 Remark. Let us briefly recall the construction of B(h) = (P(h), T (h),Γ(h)),
cf. Lemma IV.8.4.

For l ∈ {0, . . . , N} let i(l) ∈ {0, . . . , n} be such that either (sl, sl+1) ⊆
(σi(l), σi(l)+1) or σi(l) ∈ (sl, sl+1) and σi 6∈ (sl, sl+1), i 6= i(l).

In the first – definite – case hl := Hi(l)|(sl,sl+1) is a positive definite Hamil-
tonian which is regular at sl. It is also regular at sl+1 if and only if it is not
true that h is singular and l = N .

If the second – indefinite – case occurs, then the data

	φi(l)
Hi(l)−1|(sl,σi(l)),	φi(l)

Hi(l)|(σi(l),sl+1) ,

öi(l), ci(l),1, . . . , ci(l),öi(l)
, di(l),0, . . . , di(l),2∆i(l)−1 ,

constitutes an elementary indefinite Hamiltonian hl of kind (A), (B) or (C), see
Definition IV.4.1.

For each l ∈ {0, . . . , N} boundary triplets B(hl) := (P(hl), T (hl),Γ(hl)) are
well defined by [KW/IV, §2.1, §4.1]. If h is regular, then all these boundary
triplets are of defect 2. If h is singular, then B(h0), . . . ,B(hN−1) are of defect
2, and B(hN ) is of defect 1.

The boundary triplet associated to h is defined as

B(h) =
(
P(h), T (h),Γ(h)

)
:=

N⊎

l=0

	γl
B(hl) , (3.9)

where

γl :=

{

0 , hl is positive definite

−φi(l) , hl is elementary indefinite

remember Definition 2.4. �

Also a mapping ψ(h) : P(h) → M(I)/=H
has been defined. Here M(I)

is the set of all measurable functions f : I → C2 such that on any indivisi-
ble interval of H of type φ the complex valued function ξTφ f is constant a.e.,
and M(I)/=H

denotes the set of equivalence classes of M(I) induced by the
equivalence relation f =H g ⇔ H(f − g) = 0 a.e.

The mapping ψ(h) has a finite dimensional kernel. Hence, ψ(h)(f) reflects
the major part of the information about a given element f ∈ P(h). Neverthe-
less ψ(h)(f) does not describe f entirely. Some information is hidden in the
singularities.

The following facts have been established in Theorem IV.8.6 and Theorem
IV.8.7:
 We have

ind− P(h) =

n∑

i=1

(
∆i + [

ö

2
]
)

+
∣
∣
{
1 ≤ i ≤ n : öi odd, ci,1 < 0

}∣
∣ . (3.10)

 The triple B(h) is a boundary triplet which has defect 2 or 1, depending
whether h is regular or singular. Moreover, it satisfies the condition (E).

 If h = (H, c, d) is regular, the adjoint S(h) := T (h)∗ is a completely non-
selfadjoint symmetric operator which satisfies (CR), cf. Definition IV.2.15, and
has the property that r(S(h)) = C. Moreover, S(h) has defect index (2, 2) and
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mul Γ(h) = {0} unless the Hamiltonian function H is almost everywhere of the
form h(t)ξγξ

T
γ for a constant γ. In the later case we have n ∈ {0, 1}, S(h) has

defect index (1, 1) and mul Γ(h) 6= {0}, where

mul Γ(h) = span
{(
Jξγ ; Jξγ

)}

. (3.11)

Note that if h(t)ξγξ
T
γ almost everywhere, n = 0 means that h is definite and

indivisible, and n = 1 means that (	φ1 H, c, d) is elementary indefinite of kind
(B) or (C). Hereby φ1 = γ − π

2 .

 If h is singular, the adjoint S(h) := T (h)∗ is a symmetric operator. More-
over, S(h) has defect index (1, 1) and mul Γ(h) = {0} unless the Hamiltonian
function H is almost everywhere of the form h(t)ξφξ

T
φ for a constant φ. In the

later case n = 0, S(h) is selfadjoint and mul Γ(h) 6= {0}.

In the case that the Hamiltonian function H is not almost everywhere of the
form h(t)ξφξ

T
φ for some constant φ, i.e. Γ(h) is a function, in Remark IV.8.9 a

mapping Ψac(h) : T (h) → AC(I ∪ {σ0}) ×M(I)/=H was defined such that

Ψac(h)((f ; g))′1 = JHΨac(h)((f ; g))2, a.e. on I .

We have Ψac(h)((f ; g))1(σ0) = Γ(h)(f ; g)1 and, in case of a regular Hamiltonian
also Ψac(h)((f ; g))1(σn+1) = Γ(h)(f ; g)2. Moreover, Ψac(h)(f ; g) is such that its
entries are equivalent (with respect to =H) to ψ(h)(f) and ψ(h)(g), respectively.

For later use we bring the following assertion. We will say that h = (H, c, d)
starts with an indivisible interval of type α if H starts with an indivisible interval
of type α.

3.37 Lemma. A general Hamiltonian h = (H, c, d), such that it is not the case,
that it is positive definite and just one indivisible interval of infinite length,
starts with an indivisible interval of type α if and only if there exists g ∈ P(h),
such that ((0; g); (Jξα; 0)) ∈ Γ(h).

Proof. The proof is similar to the arguments in the proof of Theorem IV.8.6. We
first construct elementary general Hamiltonians h0, . . . , hN from h as in Remark
3.36.

Assume that for some g ∈ P(h) we have (0; g) ∈ T (h). We write g = g0 +
. . .+gN according to (3.9), i.e. P(h) = P(h0)⊕· · ·⊕P(hN ). Then (0; gl) ∈ T (hl)
and there exist a0, a1, . . . , aN ∈ C2 with

(a0; a1) ∈ (νγ0 ⊠ νγ0) ◦ Γ(h0)(0; g0), (a1; a2) ∈ (νγ1 ⊠ νγ1) ◦ Γ(h1)(0; g1),

. . . , (aN ; aN+1) ∈ (νγN
⊠ νγN

)Γ(hN )(0; gN) ,

or equivalently,

(N−γ0a0;N−γ0a1) ∈ Γ(h0)(0; g0), (N−γ1a1;N−γ1a2) ∈ Γ(h1)(0; g1),

. . . , (N−γN
aN ;N−γN

aN+1) ∈ Γ(hN )(0; gN) .

In the case that hl is positive definite we have γl = 0 and we know from Corollary
IV.2.25, that

al ∈







span{Jξφ−

l
} ,

α
−

1 (H|(sl,sl+1))>sl,

φ
−

l
type of (sl,α

−

1 (H|(sl,sl+1)))

{0} , α−
1 (H |(sl,sl+1)) = sl

(3.12)
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al+1 ∈







span{Jξφ+
l
} ,

α
+
1 (H|(sl,sl+1))<sl+1,

φ
+
l

type of (α+
1 (H|(sl,sl+1)),sl+1)

{0} , α+
1 (H |(sl,sl+1)) = sl+1

(3.13)

In the case that hl is indefinite we see from Proposition IV.5.16, that

N−γl
al ∈







span{Jξψ−

l
} ,

α
−

1 (	−γl
H|(sl,sl+1))>sl,

ψ−

l
type of (sl,α

−

1 (	−γl
H|(sl,sl+1)))

{0} , α−
1 (	−γl

H |(sl,sl+1)) = sl

N−γl
al+1 ∈







span{Jξψ+
l
} ,

α
+
1 (	−γl

H|(sl,sl+1))<sl+1,

ψ
+
l

type of (α+
1 (	−γl

H|(sl,sl+1)),sl+1)

{0} , α+
1 (	−γl

H |(sl,sl+1)) = sl+1

Note that if hl is indefinite of kind (B) or (C), then the type of (sl, sl+1) for
	−γl

H |(sl,sl+1) is always π
2 .

Applying 	γl
we see that in fact (3.12) and (3.13) hold for all l = 0, . . . , N .

If we have α+
1 (H |(sl,sl+1)) < sl+1 and α−

1 (H |(sl+1,sl+2)) > sl+1 for
some index l ∈ {0, . . . , N − 1}, then the types of the indivisible intervals
(α+

1 (H |(sl,sl+1)), sl+1) and of (sl+1, α
−
1 (H |(sl+1,sl+2))) must be different because

sl+1 ∈ Ireg. Hence, a1 = · · · = aN = 0.
By (3.12) for l = 0 the fact that ((0; g); (Jξα; 0)) ∈ Γ(h) implies that h starts

with an indivisible interval of type α.
If, conversely, h starts with an indivisible interval of type α then h0 starts

with an indivisible interval of type α+ γ0.
According to Corollary IV.2.25, Proposition IV.2.24 (see also Section 2.1.e

of [KW/IV]) in the definite case or Proposition IV.5.16 in the indefinite case
we have ((0; g); (Jξα+γ0 ; 0)) ∈ Γ(h0) for some g ∈ P . As Nγ0Jξα+γ0 = Jξα we
obtain ((0; g); (Jξα; 0)) ∈ (νγ0 ⊠ νγ0) ◦ Γ(h0), and further

((0; g); (Jξα; 0)) ∈ Γ(h).

❑

3.38 Remark. Positive definite Hamiltonians which are reparameterizations of
each other share their important properties. This fact holds true also for indefi-
nite Hamiltonians, only, that the definition of ‘reparameterization’ is a bit more
tricky. It proceeds in several steps:

(i) First we define a relation ∼1 which directly generalizes what we are famil-
iar with from the positive definite case. We say that h ∼1 h′, if n = n′,
if there exists an increasing bijection α of [σ′

0, σ
′
n+1] onto [σ0, σn+1] such

that α and α−1 are locally absolutely continuous,

α(σ′
i) = σi, i = 1, . . . , n, H ′ = (H ◦ α) ◦ α′ a.e. ,

and if c = c′ and d = d′.

(ii) Next we write h ∼2 h′, if all the data of h and h′ with exception of
the numbers di,2∆i−1, d

′
i,2∆i−1 and bi,öi+1, b

′
i,öi+1 are the same. These

parameters should satisfy

d′i,2∆i−1 − b′i,öi+1 = di,2∆i−1 − bi,öi+1 .

40



(iii) Finally, and this is the most involved step, we write h ∼3 h′, if H = H ′

and c = c′, but the sets E and E′ may differ, and the numbers d′ij are
those used in the proof of Proposition IV.8.11 to perform the change from
E to E′ as admissible partitions.

It is obvious that each of these relations is reflexive and symmetric. Hence, the
transitive closure ! of (∼1 ∪ ∼2 ∪ ∼3) is an equivalence relation. If h! h′,
we say that h and h′ are reparameterizations of each other. Inspecting the
proof of Proposition IV.8.11, and using the relation between d̃k and dk given in
[KW/IV, §7, p.812], shows that

h! h′ ⇐⇒ ∃ h1, h2 ∈ H<∞ : h ∼1 h1 ∼2 h2 ∼3 h′

In particular, if h ! h′, there exists an increasing bijection α : I ′ → I such
that α and α−1 are locally absolutely continuous and H ′ = (H ◦ α) · α′. �

The following statement is an immediate consequence of Proposition IV.8.11
and Proposition IV.8.13. It indicates that general Hamiltonians which are repa-
rameterizations of each other will behave essentially the same.

3.39 Remark. Let h and h′ be general Hamiltonians, and let B(h) and B(h′)
be the boundary triplets associated to h and h′, respectively, by Definition
IV.8.5 (a review of the most important properties of B(h) will be given in §3.d).
Assume that h ! h′, and denote by α the increasing bijection of [σ′

0, σ
′
n+1]

onto [σ0, σn+1] which satsifies H ′ = (H ◦ α) · α′.
Then there exists an isomorphism of B(h) to B(h′), which has the form

(̟, id) and satisfies ψ(h′)(̟(x)) = ψ(h)(x) ◦ α, x ∈ P(h). If H is not al-
most everywhere of the form h(t)ξφξ

T
φ for a constant φ, then Ψac(h)(f ; g) =

Ψac(h′)(̟(f);̟(g)) for all (f ; g) ∈ T (h). �

We have already encountered the operations 	α and rev in various settings.
It is no surprise that these operations also have their analogues for general
Hamiltonians.

3.40 Definition. Let h = (H, c, d) ∈ H<∞.

(i) For α ∈ R define a general Hamiltonian 	α h as

	α h := (	α H, c, d) .

(ii) If h is regular, define rev h as rev h = (revH, c̃, d̃), where revH is defined
as in Definition 3.28 together with the singularities σ̃i := −σn+1−i for
i = 0, . . . , n + 1, where the data c̃ consist of the numers ˜̈oi := ön+1−i,
b̃ij := bn+1−i,j for i = 0, . . . , n + 1, and where the data d̃ consist of the

numbers d̃ij := dn+1−i,j for i = 0, . . . , n+ 1 and of the subset Ẽ := −E.

�

3.41 Lemma.

(i) Let h ∈ H<∞, then 	α h ∈ H<∞ and ind− 	α h = ind− h. h and 	α h are
together regular or singular. Moreover, h! h′ implies 	α h!	α h′.

(ii) Let h ∈ H<∞ be regular, then rev h is regular and belongs H<∞. We have
ind− rev h = ind− h. Moreover, h! h′ implies rev h! rev h′.
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Proof. It is elementary to check that with h also 	α and, in case of a regular
Hamiltonian, rev h satisfy all conditions in Definition 3.35. Also the compatibil-
ity with! is verified in a straightforward manner. Moreover, it is immediately
seen from (3.10) that ind− 	α h = ind− h and ind− rev h = ind− h. ❑

3.42 Remark. The boundary triplets B(	α h) and B(h) are isomorphic. To see
this, we first construct elementary general Hamiltonians h0, . . . , hN from h and
(	α h)0, . . . , (	α h)N from 	α h as in Remark 3.36.

If hl is definite, then obviously (	α h)l =	α (hl). By Remark 3.30
(̟l, να ⊠ να) with (̟lf)(t) := Nαf(t) for f ∈ L2(hl) is an isomorphism from
B(hl) onto B((	α h)l).

If hl is indefinite, then (	α h)l = hl because φi(l)(	α h) = φi(l)(h) − α (see

Remark 3.30). Hence B(hl) = B((	α h)l), and further

	α	−φi(l)(h) B(hl) =	−φi(l)(	αh) B((	α h)l).

Thus, (̟l, να⊠ να) with ̟l = id |P(hl) is an isomorphism from 	−φi(l)(h) B(hl)

onto 	−φi(l)(	αh) B((	α h)l).

Defining ̟ : P(h) → P(	α h) by ̟ = ⊠Nl=0̟
l we see that (̟, να ⊠ να) is

an isomorphism from B(h) onto B(	α h).
Moreover, by the definition of ψ(h) and ψ(	α h) in Definition IV.8.5 we find

ψ(	α h)◦̟ = Nαψ(h), and by Remark IV.8.9 we find Ψac(	α h)◦(̟⊠̟)|T (h) =
(Nα ⊠Nα)Ψac(h). �

3.43 Remark. Assume that h is regular. Similarly as in Remark 3.42 the bound-
ary triplets B(rev h) and B(h) are isomorphic. As before we first construct ele-
mentary general Hamiltonians h0, . . . , hN from h and (rev h)0, . . . , (rev h)N from
rev h as in Remark 3.36.

If hN−l is definite, then obviously (rev h)l = rev(hN−l). By Remark 3.30
(̟l, φ) with (̟lf)(t) := V f(−t) for f ∈ L2(hN−l) and φ, V as in Definition 2.6
is an isomorphism from B(hN−l) onto B((rev h)l).

If hN−l is (elementary) indefinite, then (rev h)l = rev(hN−l), since by Re-
mark 3.30 φi(l)(rev h) = −φi(N−l)(h) and rev 	−φi(l)(rev h)=	φi(l)(rev h) rev.

If hN−l is elementary indefinite of kind (B) or (C), then by Definition
IV.4.1 (see also Remark IV.4.2) rev(hN−l) = hN−l. From the construction
of the corresponding boundary triplet in [KW/IV, §4.2], one can easily derive
that (̟l, φ) with ̟l = − id |P(hN−l) is an isomorphism from B(hN−l) onto

B(hN−l) = B((rev h)l), and because of φi(l)(rev h) = −φi(N−l)(h) also from

	φi(N−l)(h) B(hN−l) onto 	φi(l)(rev h) B((rev h)l).

Assume now that hN−l is elementary indefinite of kind (A). We know from
Remark 3.30, that f(t) 7→ V f(−t) is an isomorphism from L2(H |(sN−l,sN−l+1))

onto L2(revH |(sN−l,sN−l+1)). If wk(h
N−l) and wk(rev hN−l) are defined as in

the end of [KW/IV, §4.1] for hN−l and rev hN−l, respectively, then it follows
from Lemma IV.3.10, that Vwk(h

N−l)(−t) = −wk(rev hN−l)(t).
From this it follows that ̟l defined by (for the notation see [KW/IV, §4.2])

f(t) 7→ V f(−t), f ∈ XL(hN−l),

pj(h
N−l) 7→ −pj(rev hN−l), j = 0, . . . ,∆(hN−l) − 1,

δk(h
N−l) 7→ −δk(rev hN−l), k = ∆(hN−l), . . . ,∆(hN−l) + ö(hN−l) − 1,
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extends to an isometric isomorphism from P(hN−l) onto P(rev(hN−l)). More-
over, (̟l, φ) is an isomorphism from B(hN−l) onto B((rev h)l), and because
of φi(l)(rev h) = −φi(N−l)(h) also from 	φi(N−l)(h) B(hN−l) onto 	φi(l)(rev h)

B((rev h)l).
Defining ̟ : P(h) → P(rev h) by ̟ = ⊠Nl=0̟

N−l we see that (̟,φ) is an
isomorphism from B(h) onto B(rev h). Thus, (̟, idC2×C2) is an isomorphism
from rev B(h) onto B(rev h)

Moreover, by the definition of ψ(h) and ψ(rev h) in Definition IV.8.5 we find
(ψ(rev h) ◦ ̟f)(t) = V (ψ(h)(f)(−t)) for f ∈ P(h), and by Remark IV.8.9 we
find Ψac(rev h) ◦ (̟ ⊠̟)(f ; g)(t) = (V ⊠ V )Ψac(h)(f ; g)(−t) for (f ; g) ∈ T (h).

�

Also for general Hamiltonians a splitting-and-pasting method can be intro-
duced. However, in this setting, splitting up is the more involved matter. It is
obtained by an inductive application of Corollary IV.8.12.

3.44 Lemma. Assume that h is a general Hamiltonian, and let {r0, . . . , rm+1},
r0 < r1 < . . . < rm+1, be a finite subset of I such that

r0 = σ0, rm+1 = σn+1, ri ∈ Ireg, i = 1, . . . ,m .

Then there exist general Hamiltonians hi, i = 0, . . . ,m, defined on (ri, ri+1),
respectively, such that there exists an isomorphism (̟, id) between the boundary
triplets

B(h) and

m⊎

i=0

B(hi) , (3.14)

which has the property that

ψ(h) =
(

⊠
m
i=0 ψ(hi)

)

◦̟, Ψac(h) =
(

⊠
m
i=0 Ψac(hi)

)

◦ (̟⊠̟)|T (h) . (3.15)

Moreover, hi, is regular for i = 0, . . . ,m− 1 and hm is regular (singular) if and
only if h is regular (singular).

Proof. We use induction on |F |. If |F | = 2, i.e. F = {σ0, σn+1}, we set h0 := h.
Then the desired properties are trivially satisfied.

Assume that |F | = m + 2 > 2, and consider the set F ′ := F \ {rm}. By
the inductive hypothesis there exist hi, i = 0, . . . ,m − 1, which are defined on
(ri, ri+1), i = 0, . . . ,m− 2, and on (rm−1, rm+1) for i = m− 1, and possess the
stated properties. By Corollary IV.8.12 we can further split hm−1 in two general
Hamiltonians hm−1

0 , hm−1
1 , defined on (rm−1, rm) and (rm, rm+1), respectively,

such that (3.14) and (3.15) hold for hm−1, and hm−1
0 , hm−1

1 . Note here that, by
(3.11), the condition (LI) is satisfied. ❑

More interesting than the proof just given is that we actually know the general
Hamiltonians hi quite explicitly. The following notice is obtained from the
formulas given in Corollary IV.8.12 by carrying out the above inductive process
step by step.

3.45 Remark. For the Hamiltonians hi, i = 0, . . . ,m, in Lemma 3.44 we can
choose the ones described as follows:

For i ∈ {0, . . . ,m} let k(i) denote the smallest number such that σk(i) > ri.
Then

(ri, ri+1) \ I = {σk(i), . . . , σk(i+1)−1} .
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Note that this set might be empty, actually this is the case if and only if σk(i) >
ri+1 or, equivalently, k(i) = k(i + 1). In this case the Hamiltonian hi shall be
positive definite and given by the Hamiltonian function

H(hi) := Hk(i)−1|(ri,ri+1) .

If k(i) < k(i+ 1), then hi shall be given by the data

k(i+ 1) − k(i) ∈ N, ri, σk(i), . . . , σk(i+1)−1, ri+1 ∈ R ∪ {±∞} ,

H(hi)l :=







Hk(i)−1|(ri,σk(i)) , l = 0

Hk(i)+l−1 , l = 1, . . . , k(i+ 1) − k(i) − 1

Hk(i+1)−1|(σk(i+1)−1,ri+1) , l = k(i+ 1) − k(i) > 0

ö(hi)l := ök(i)+l−1, l = 1, . . . , k(i+ 1) − k(i) ,

b(hi)l,j := bk(i)+l−1,j , l = 1, . . . , k(i+ 1) − k(i), j = 1, . . . , ök(i)+l−1 + 1 ,

Ei := {ri, ri+1} ∪
(
E ∩ (ri, ri+1)

)
,

d(hi)l,j := dk(i)+l−1,j , l = 2, . . . , k(i+ 1)− k(i)− 1, j = 0, . . . , 2∆(hi)l − 1 ,

and some appropriate numbers

d(hi)l,j , l = 1 and l = k(i+ 1) − k(i), j = 0, . . . , 2∆(hi)l − 1

according to Corollary IV.8.12. Note here that ∆(hi)l = ∆(h)k(i)+l−1 , l =
1, . . . , k(i+ 1) − k(i). We can picture the situation as follows:

r0

q

σ0

q

s0

rm+1

q

σn+1

q

sN+1

× × × × × ×
σ1 σ2 σ3 σ4 σn−1 σn

r1 r2 r3 rm

s1 s2 s3 s4 s5 s6 s7 sN−1 sNE :

F :

h :

hi:

ri ri+1
× × × ×
σk(i) σk(i)+1 σk(i+1)−2 σk(i+1)−1

 

ök(i)

bk(i),j

dk(i),j

 

ök(i)+1

bk(i)+1,j

dk(i)+1,j

 

ök(i+1)−2

bk(i+1)−2,j

dk(i+1)−2,j

 

ök(i+1)−1

bk(i+1)−1,j

dk(i+1)−1,j

 

ök(i)

bk(i),j

d(hi)1j

 

ök(i)+1

bk(i)+1,j

dk(i)+1,j

 

ök(i+1)−2

bk(i+1)−2,j

dk(i+1)−2,j

 

ök(i+1)−1

bk(i+1)−1,j

d(hi)k(i+1)−k(i),j

Hk(i)−1 Hk(i) Hk(i)+1 Hk(i+1)−1 Hk(i+1)−1

Hk(i)−1|(ri,σk(i))
Hk(i) Hk(i)+1 Hk(i+1)−1 Hk(i+1)−1 |(σk(i+1)−1,ri+1)

�

The following observation, which is obtained by a closer inspection of the con-
struction in [KW/IV, §7], turns out to be quite important.

3.46 Remark. The numbers d(hi)l,j for l = 1 and l = k(i + 1) − k(i), depend
only on the points ri and ri+1, respectively. More exactly: Let F = {r0, . . . , rm}
and F̂ = {r̂0, . . . , r̂m̂} be two finite subsets of I which qualify for the above
construction, and denote the corresponding general Hamiltonians resulting from
Remark 3.45 by hi, i = 0, . . . ,m, and ĥk, k = 0, . . . , m̂, respectively. If, for some
i and k, we have ri = r̂k, ri+1 = r̂k+1, then hi = ĥk. �
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Let us now introduce notation similar as we did for maximal chains.

3.47 Definition. Let r ∈ I∪{σ0} and s ∈ I, r < s, and assume that r, s 6∈ Ising.
We divide five cases:

(i) r = σ0, s ∈ I: Let h0 and h1 be the general Hamiltonians constructed in
Remark 3.45 for the set F := {σ0, s, σn+1}, and set

hr↔s := h0 .

(ii) r > σ0, s = σn+1: Let h0 and h1 be the general Hamiltonians constructed
in Remark 3.45 for the set F := {σ0, r, σn+1}, and set

hr↔s := h1 .

(iii) r > σ0 and s ∈ I: Let h0, h1, h2 be the general Hamiltonians constructed
in Remark 3.45 for the set F := {σ0, r, s, σn+1}, and set

hr↔s := h1 .

(iv) r = σ0 and s 6∈ I: Let n′ ∈ {1, . . . , n + 1} be such that s = σn′ , and let
hσ0↔σn′

the general Hamiltonian comprised of the data

n′ − 1 ∈ N, σ0, . . . , σn′ ∈ R ∪ {±∞}, Hi, i = 0, . . . , n′ − 1 ,

öi, i = 1, . . . , n′ − 1, bij , i = 1, . . . , n′ − 1, j = 1, . . . , öi − 1

(E ∩ [σ0, σn′ ]) ∪ {σn′}, dij , i = 1, . . . , n′ − 1, j = 0, . . . , 2∆i − 1

(v) r > σ0 and s 6∈ I: Set hr↔s := (hr↔σn+1)r↔s.

We will also write hσ0↔s =: h�s and hr↔σn+1 =: hr�. �

According to the definition of the negative index of a general Hamiltonian,
we have

ind− hr↔s :=
∑

i=1,...,n
σi∈(r,s)

(
∆i + [

öi
2

]
)

+
∣
∣
{
1 ≤ i ≤ n : öi odd, ci,1 < 0

}∣
∣ .

3.48 Remark. It immediately follows from our construction that

(i) If s, t ∈ Ireg, s < t, then

(h�t)�s = h�s, (hs�)�t = (h�t)s� = hs↔t .

(ii) If s, t, u ∈ Ireg, s < t < u, then

(h�u)s↔t = (hs↔u)�t = hs↔t, (hs�)t↔u = (hs↔u)t� = ht↔u .

(iii) From the construction which led to Definition 3.47 and from Definition
3.40 it is immediate that for s, t ∈ Ireg, s < t and α ∈ R, we have

(	α h)�s =	α (h�s), (	α h)�s =	α (h�s), (	α h)s↔t =	α (hs↔t),

(rev h)�−s = rev(h�s), (rev h)�−s = rev(h�s), (rev h)−t↔−s = rev(hs↔t).
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�

Also an operation of pasting of general Hamiltonians can be defined in a natural
way.

3.49 Definition. Let h1 = (H1, c1, d1) and h2 = (H2, c2, d2) be general Hamil-
tonians, and assume that h1 is regular. Let their respective domains be such

that σ
(1)
n+1 = σ

(2)
0 , and assume that the following does not hold true:

(¬paste) h1 ends with an indivisible interval of type φ ∈ [0, π) and h2 starts
with an indivisible interval of the same type φ

Then let h1 ⊎ h2 be the general Hamiltonian constituted by the data

n := n1 + n2 ∈ N0, σ
(1)
0 , . . . , σ(1)

n1
, σ

(2)
1 , . . . , σ

(2)
n2+1 ∈ R ∪ {±∞} ,

H(t) :=

{

H1(t) , t ∈ I1

H2(t) , t ∈ I2

öl := ö(h1)l, l = 1, . . . , n1, öl := ö(h2)l−n1 , l = n1 + 1, . . . , n ,

bl,j := b(h1)l,j , l = 1, . . . , n1, bl,j := b(h2)l−n1,j, l = n1 + 1, . . . , n ,

E := E(h1) ∪ E(h2) ,

dl,j := d(h1)l,j , l = 1, . . . , n1, dl,j := d(h2)l−n1,j , l = n1 + 1, . . . , n ,

�

The fact that actually h1 ⊎ h2 is a general Hamiltonian, is obvious. Note here
that the assumption that (¬paste) fails is necessary to ensure (H2). Moreover,
h1 ⊎ h2 is regular or singular depending whether h2 is regular or singular.

The operations of splitting and pasting are converses of each other. The
following statement is easily seen from the definitions.

3.50 Remark. If h ∈ H<∞ and F = {r0, . . . , rm+1}, rj < rj+1, be a finite subset
of Ireg ∪ {σ0, σn+1} with σ0, σn+1 ∈ F , then hri↔ri+1 ∈ H<∞ for i = 0, . . . ,m.
For each two consecutive general Hamiltonians the condition (¬paste) fails, and
we have

h =

m⊎

i=0

hri↔ri+1 .

�

3.51 Remark. Let hi be general Hamiltonians defined on (ri, ri+1) \ {σi,j :
j = 1, . . . , ni}. If (¬paste) fails for each two consequtive Hamiltonians, then
⊎m
i=0 hi ∈ H<∞, and

( m⊎

i=0

hi

)

ri↔ri+1

= hi, i = 0, . . . ,m .

In particular, we obtain from (3.14) that

B(
m⊎

i=0

hi) and
m⊎

i=0

B(hi) ,
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are isomorphic. Moreover, it is straight forward to check that (α ∈ R)

	α

m⊎

i=0

hi =
m⊎

i=0

	α hi, rev
m⊎

i=0

hi =
m⊎

i=0

rev hm−i.

�

4 Boundary triplets and matrix functions of the

class M<∞

In this section we will construct for each boundary triplet B = (P , T,Γ) of defect
2 in the sense of Definition IV.2.7, Definition IV.2.8, which satisfies the condition
(E) of Definition IV.2.16, a 2×2-matrix function ω(B) which is analytic on r(T ∗)
and is such that the kernel Hω(B) has a finite number of negative squares. As
for a converse, we are content to show that each matrix function W ∈ M<∞ is
realized as ω(B(W )). For boundary triplets B = (P , T,Γ) of defect 1 an object
v(B) playing a similar role will be constructed.

The content of this section is arranged in five subsections:

a. Here the definition of ω(B) is given, and some compatibilities of the
assignment B 7→ ω(B) are provided.
b. Here the definition of v(B) is given, and some of its properties are
discussed.
c. In this subsection we show that ω(B) can be considered as a u-resolvent
matrix in the sense of [KW/0]; this is a central result.
d. We show that ω(B(W )) = W for W ∈ M<∞.
e. The construction of ω(.) will later be applied to the boundary triplet B(h)
associated with a general Hamiltonian h. Here we collect some properties
specific for this situation.

Throughout this section we will keep the following notation: If B = (P , T,Γ)
is a boundary triplet, the adjoint of T will be denoted by S := T ∗. Moreover,
πl, πr, πj , πl,j , πr,j denote the following projections of C2 × C2 (or C2) onto C2

(or C):

πl
(
(
a1

a2

)

;

(
b1
b2

)
)

:=

(
a1

a2

)

, πr
(
(
a1

a2

)

;

(
b1
b2

)
)

:=

(
b1
b2

)

,

πj

(
a1

a2

)

:= aj , πl,j
(
(
a1

a2

)

;

(
b1
b2

)
)

:= aj , πr,j
(
(
a1

a2

)

;

(
b1
b2

)
)

:= bj , j = 1, 2 .

a. Construction of ω(B).

The definition of ω(B) is based on the following observation.

4.1 Lemma. Let B = (P , T,Γ) be a boundary triplet which has defect 2
and satisfies (E). Moreover, let z ∈ r(S). Then there exist unique elements
φ(z), ψ(z) ∈ P and unique vectors α(z), β(z) ∈ C2, such that

((
φ(z); zφ(z)

)
;
(
(

1

0

)

;α(z)
))

∈ Γ ,

((
ψ(z); zψ(z)

)
;
(
(

0

1

)

;β(z)
))

∈ Γ .

(4.1)

We have ker(T − z) = span{φ(z), ψ(z)}.
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Proof. Put Nz := {(f ; zf) ∈ P2 : f ∈ ker(T − z)}, and consider the linear
relation πl ◦ Γ|Nz

. By the condition (E) we have

ker
(
πl ◦ Γ|Nz

)
= {0} . (4.2)

This already shows the uniqueness of φ(z) and ψ(z).
Let us first consider the case that mul Γ = {0}. Then S has defect index

(2, 2), i.e. dimker(T−z) = 2 for all z ∈ r(S). In this case πl◦Γ|Nz
is an injective

linear map between spaces of dimension 2. Therefore, it is bijective, and hence
elements φ(z), ψ(z), α(z), β(z) with the desired property (4.1) exist. Moreover,
φ(z) and ψ(z) span ker(T − z), since their images span C2.

In the case that mul Γ 6= {0}, mul Γ =: span{(m;m)}, the symmetry S
has defect index (1, 1), i.e. dimNz = 1, z ∈ r(S). Choose f0 ∈ Nz \ {0} and
a0, b0 ∈ C2 such that ((f0; zf0); (a0; b0)) ∈ Γ. Clearly, then

(
(µf0; zµf0); (µa0 + λm;µb0 + λm)

)
∈ Γ, λ, µ ∈ C .

By (4.2), the elements a0 and m are linearly independent and thus span C2.
Again we see that elements φ(z), ψ(z), α(z), β(z) with the desired property (4.1)
exist. If both φ(z) and ψ(z) were equal to 0, we would obtain the contradiction

(
(

1

0

)

;α(z)
)
,
(
(

0

1

)

;β(z)
)
∈ mul Γ = span{(m;m)} .

Thus, also in the present case, ker(T − z) = span{φ(z), ψ(z)}.
Finally, note that α(z) and β(z) are uniquely determined by (4.1) since mul Γ

has the form span{(m;m)}. ❑

4.2 Corollary. Let notation be as in Lemma 4.1, and let ρ1, ρ2 ∈ C be given.
Then there exist unique vectors χ(z) ∈ ker(T − z) and c(z) ∈ C2 such that

((
χ(z); zχ(z)

)
;
(
(
ρ1

ρ2

)

; c(z)
))

∈ Γ . (4.3)

In fact, χ(z) = ρ1φ(z) + ρ2ψ(z) and c(z) = ρ1α(z) + ρ2β(z).

Proof. Set χ(z) := ρ1φ(z) + ρ2ψ(z) and c(z) := ρ1α(z) + ρ2β(z). Then the
relation (4.3) follows immediately from Lemma 4.1.

In order to see uniqueness, assume that (4.3) also holds for elements χ̃(z)
and c̃(z). Then

((
(χ(z) − χ̃(z)); z(χ(z) − χ̃(z))

)
;
(
0; c(z) − c̃(z)

))

∈ Γ .

By property (E) we obtain χ(z)− χ̃(z) = 0, and the fact that mul Γ is spanned
by a vector of the form (m;m) gives c(z) − c̃(z) = 0. ❑

4.3 Definition. Let B be a boundary triplet which has defect 2 and satisfies
(E). Let

α(z) =

(
α(z)1
α(z)2

)

∈ C2, β(z) =

(
β(z)1
β(z)2

)

∈ C2

be the elements constructed in Lemma 4.1. Then we define

ω(B)(z) :=
(
α(z) |β(z)

)T
=

(
α(z)1 α(z)2
β(z)1 β(z)2

)

, z ∈ r(S) .

�
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To start with let us collect some properties of ω(B) which follow by elementary
computation.

4.4 Proposition. Let B be a boundary triplet which has defect 2 and satisfies
(E). Then φ(z) = φ(z), ψ(z) = ψ(z), α(z) = α(z) and β(z) = β(z). Moreover,
detω(B)(z) = 1 and

ω(B)(z)Jω(B)(w)∗ − J = (z − w)

(
[φ(z), φ(w)] [φ(z), ψ(w)]
[ψ(z), φ(w)] [ψ(z), ψ(w)]

)

. (4.4)

Proof. The relation Γ is real with respect to the involution . in the sense of
(IV.2.5). Hence we obtain from (4.1) that

((
φ(z); zφ(z)

)
;
(
(

1

0

)

;α(z)
))

∈ Γ.

The uniqueness statement of Lemma 4.1 yields φ(z) = φ(z) and α(z) = α(z).
The relations ψ(z) = ψ(z) and β(z) = β(z) follow in the same way.

In order to show (4.4), we use the abstract Green’s identity (IV.2.6). It
gives:

(z − w)[φ(z), φ(w)] = [zφ(z), φ(w)] − [φ(z), wφ(w)] =

=

(
1

0

)∗

J

(
1

0

)

− α(w)∗Jα(z) = α(z)2α(w)1 − α(z)1α(w)2 ,

(z − w)[φ(z), ψ(w)] = [zφ(z), ψ(w)] − [φ(z), wψ(w)] =

=

(
0

1

)∗

J

(
1

0

)

− β(w)∗Jα(z) = α(z)2β(w)1 − α(z)1β(w)2 + 1 ,

(z − w)[ψ(z), φ(w)] = [zψ(z), φ(w)] − [ψ(z), wφ(w)] =

=

(
1

0

)∗

J

(
0

1

)

− α(w)∗Jβ(z) = β(z)2α(w)1 − β(z)1α(w)2 − 1 ,

(z − w)[ψ(z), ψ(w)] = [zψ(z), ψ(w)] − [ψ(z), wψ(w)] =

=

(
0

1

)∗

J

(
0

1

)

− β(w)∗Jβ(z) = β(z)2β(w)1 − β(z)1β(w)2 .

Computing ω(B)(z)Jω(B)(w)∗ −J from the definition of ω(B), cf. (I.8.2) with
‘S = 1’, and comparing with the above relations yields (4.4).

If we put w = z in (4.4) and use that α and β are symmetric with respect
to the real line, it follows in particular that detω(B)(z) = 1. ❑

4.5 Corollary. We have ind−Hω(B) ≤ ind− P.

Proof. By (4.4) the map Θ defined by linearity and

Θ : Hω(B)(w, .)

(
λ

µ

)

7→ λφ(w) + µψ(w) (4.5)

is an isometry of the linear space span{Hω(B)(w, .)
(
λ
µ

)
: λ, µ ∈ C, w ∈ r(S)}

into P . ❑
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4.6 Remark. Assume that S is completely non-selfadjoint, i.e. that we have
cls
⋃

z∈r(S) ker(T − z) = P or, equivalently,

cls
{
φ(z), ψ(z) : z ∈ C

}
= P , (4.6)

compare Lemma 4.1. Then the map Θ defined above has dense range and
therefore admits a continuation to a unitary mapping Θ : K(ω(B)) → P . �

Our next task is to establish two compatibilities of the assignment B 7→ ω(B).
The first one deals with isomorphisms (̟,φ) of boundary triplets, where φ is

of the form φ̂⊠ φ̂, cf. Definition IV.2.12 and Remark IV.2.13, (iii). The second
one with pasting of boundary triplets.

4.7 Proposition. Let B1 and B2 be boundary triplets, and let (̟, φ̂⊠ φ̂) be an
isomorphism between B1 and B2. Denote by N

φ̂
∈ C2×2 the matrix such that

φ̂(x) = N
φ̂
x, x ∈ C2. If B1 has defect 2 and satisfies (E), so does B2, and we

have
ω(B2) = N−T

φ̂
ω(B1)N

T

φ̂
.

Proof. As it was noted in Remark IV.2.13, (iii), and Remark IV.2.17, the pres-

ence of the isomorphism (̟, φ̂⊠φ̂) implies that also B2 has defect 2 and satisfies
(E).

Let φj(z), ψj(z), αj(z), βj(z) be defined for Bj , j = 1, 2, as in Lemma 4.1,
and let (mij)i,j=1,2 be the inverse of N

φ̂
. Then

(
(m1jφ1(z) +m2jψ1(z); z[m1jφ1(z) +m2jψ1(z)]);

(

(
m1j

m2j

)

;m1jα1(z) +m2jβ1(z))
)
∈ Γ1, j = 1, 2 .

Hence
(
(̟[m1jφ1(z)+m2jψ1(z)]; z̟[m1jφ1(z) +m2jψ1(z)]);

(

(
δ1j
δ2j

)

;N
φ̂
(m1jα1(z) +m2jβ1(z)))

)
∈ Γ2, j = 1, 2 ,

(4.7)

and we obtain from the uniqueness assertion in Lemma 4.1

φ2(z) = ̟[m11φ1(z) +m21ψ1(z)], ψ2(z) = ̟[m12φ1(z) +m22ψ1(z)] ,

α2(z) = N
φ̂

(
α1(z) |β1(z)

)
(
m11

m21

)

, β2(z) = N
φ̂

(
α1(z) |β1(z)

)
(
m12

m22

)

.

By uniqueness in Lemma 4.1, it follows that

(
α2(z) |β2(z)

)
= N

φ̂

(
α1(z) |β1(z)

)
N−1

φ̂
.

Taking transposes we obtain the desired result. ❑

The above Proposition 4.7 applies to the isomorphism (idP , νγ⊠ νγ) from B

to the rotated boundary triplet 	γ B, see (2.9). Recall also the notation 	γ W
from (2.8).
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4.8 Corollary. We have ω(	γ B) =	γ ω(B).

Proof. As already noted, (id, νγ ⊠ νγ) is an isomorphism from B to 	γ B. The
desired equality follows from Proposition 4.7 and the fact that N−1

γ = NT
γ . ❑

For the following recall Definition 2.6.

4.9 Lemma. Assume that the boundary triplet B has defect 2 and satisfies (E).
Then also rev B has these properties. Moreover, in this case, we have

ω(rev B) = rev(ω(B)) . (4.8)

Proof. Assume that B = (P , T,Γ) has defect 2 and satisfies (E). The base space
and the relation T in rev B is just the same as in B, and

mul Γ = span{(m;m)} ⇒ mul(φ ◦ Γ) = span{(Vm;V m)} .

Thus also the boundary triplet revB has defect 2. Since ((f ; zf); (a; b)) ∈ φ ◦Γ
implies that ((f ; zf); (V b;V a)) ∈ Γ, also the condition (E) transfers to rev B.

Denote by φ′(z), ψ′(z), α′(z), β′(z) the elements constructed in Lemma 4.1
for rev B, and let

(
c11(z) c12(z)
c21(z) c22(z)

)

:=
(
α(z)|β(z)

)−1
,

so that c11α+ c21β =
(
1
0

)
and c12α+ c22β =

(
0
1

)
. We have

(
(φ; zφ); (

(
1

0

)

;α)
)
,
(
(ψ; zψ); (

(
0

1

)

;β)
)
∈ Γ

and hence

((
(c11φ+ c21ψ); z(c11φ+ c21ψ)

)
;
(
(
c11
c21

)

;

(
1

0

)
))

∈ Γ ,

((
(c12φ+ c22ψ); z(c12φ+ c22ψ)

)
;
(
(
c12
c22

)

;

(
0

1

)
))

∈ Γ .

Thus
((

(c11φ+ c21ψ); z(c11φ+ c21ψ)
)
;
(
(

1

0

)

;

(
c11
−c21

)
))

∈ φ ◦ Γ ,

((
(c12φ+ c22ψ); z(c12φ+ c22ψ)

)
;
(
(

0

−1

)

;

(
c12
−c22

)
))

∈ φ ◦ Γ ,

and we conclude that

φ′ = c11φ+ c21ψ, α
′ =

(
c11
−c21

)

, ψ′ = −(c12φ+ c22ψ), β′ =

(
−c12
c22

)

.

Hence,
(
α|β
)−1

=

(
c11 c12
c21 c22

)

= V
(
α′|β′

)
V .

Taking transposes yields (4.8). ❑
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Though elementary, it is important that B 7→ ω(B) is compatible with pasting
of boundary triplets.

4.10 Proposition. Let B1 = (P1, T1,Γ1) and B2 = (P2, T2,Γ2) be boundary
triplets which have defect 2 and satisfy (E). Assume that the condition (LI) of
Proposition IV.6.2 holds true, so that the pasting B := B1 ⊎B2 is well-defined,
has defect 2, and satisfies (E), cf. Definition IV.6.1, Proposition IV.6.2 and
Lemma IV.6.7, (iii). Denote by φi(z), ψi(z) ∈ Pi and αi(z)j , βi(z)j ∈ C those
elements and numbers, such that

(
(φi(z); zφi(z)); (

(
1

0

)

;

(
αi(z)1
αi(z)2

)

)
)
∈ Γi, i = 1, 2 ,

(
(ψi(z); zψi(z)); (

(
0

1

)

;

(
βi(z)1
βi(z)2

)

)
)
∈ Γi, i = 1, 2 .

Then the elements φ(z), ψ(z) ∈ P1 ⊎P2 defined by Lemma 4.1 for the boundary
triplet B, are given as

φ(z) = φ1(z) +
(
α1(z)1φ2(z)+α1(z)2ψ2(z)

)

ψ(z) = ψ1(z) +
(
β1(z)1φ2(z)+β1(z)2ψ2(z)

) (4.9)

Moreover, we have

ω(B)(z) = ω(B1)(z)ω(B2)(z), z ∈ r(S) ∩ r(S1) ∩ r(S2) .

Proof. By the definition of Γ1 ⊎ Γ2, we have

(
(φ1(z)+ [α1(z)1φ2(z)+α1(z)2ψ2(z)];zφ1(z)+ [α1(z)1zφ2(z)+α1(z)2zψ2(z)]);

(

(
1

0

)

;

(
α1(z)1α2(z)1 + α1(z)2β2(z)1
α1(z)1α2(z)2 + α1(z)2β2(z)2

)

)
)
∈ Γ1 ⊎ Γ2

(
(ψ1(z)+ [β1(z)1φ2(z)+β1(z)2ψ2(z)];zψ1(z)+ [β1(z)1zφ2(z)+β1(z)2zψ2(z)]);

(

(
0

1

)

;

(
β1(z)1α2(z)1 + β1(z)2β2(z)1
β1(z)1α2(z)2 + β1(z)2β2(z)2

)

)
)
∈ Γ1 ⊎ Γ2

By Lemma 4.1 this shows that the relation (4.9) holds, and that

ω(B)(z) =

(
α1(z)1α2(z)1+α1(z)2β2(z)1 α1(z)1α2(z)2+α1(z)2β2(z)2
β1(z)1α2(z)1+β1(z)2β2(z)1 β1(z)1α2(z)2+β1(z)2β2(z)2

)

=

=

(
α1(z)1 α1(z)2
β1(z)1 β1(z)2

) (
α2(z)1 α2(z)2
β2(z)1 β2(z)2

)

= ω(B1)(z)ω(B2)(z) .

❑

b. Construction of v(B).

In Definition 4.3 we have associated to each boundary triplets B with defect 2
satisfying (E) a 2 × 2-matrix function ω(B). In this subsection we will carry
out a similar construction for boundary triplets with defect 1.
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4.11 Definition. Let B = (P , T,Γ) be a boundary triplet with defect 1 satis-
fying (E). For z ∈ r(S), let v(B)(z) be the subspace of all vectors u in C2 such
that there exists (f ; zf) ∈ T such that ((f ; zf); (−Ju; 0)) ∈ Γ, i.e.

v(B)(z) = JπlΓ
(
{(f ; zf) : f ∈ ker(T − z)}

)
.

We call v(B)(z) the Titchmarsh-Weyl subspace of B. �

Note that, by property (E), r(S) is not empty.

4.12 Remark. We immediately see, that v(B)(z̄) = v(B)(z). �

4.13 Remark. In case that mul Γ = {0}, S is a symmetric relation with defect
(1, 1). If in this situation (f ; zf) ∈ T and z ∈ r(S), then (f ; zf) 6∈ S = kerΓ.
Hence v(B)(z) is one-dimensional.

In case that mul Γ 6= {0} we have T = T ∗ = S and mul Γ = span{(m; 0)}.
Therefore, ker(T − z) = {0} for z ∈ r(S). We obtain v(B)(z) = span{Jm}.
Hence also in this case v(B)(z) is one-dimensional. �

4.14 Lemma. Let B = (P , T,Γ) be a boundary triplet with defect 1 satisfying
(E). Set Å := ker(πl,1 ◦ Γ). Then Å is selfadjoint. If mul Γ 6= span{(

(
0
1

)
; 0)},

then
ρ(Å) =

{
z ∈ r(S) : π2v(B)(z) 6= {0}

}
,

where ρ(Å) = ∅ implies mulS 6= {0} and mul Γ = {0}.
Under the condition that mul Γ 6= span{(

(
0
1

)
; 0)} for every z ∈ ρ(Å) there

exist fz ∈ ker(T − z) and q(z) ∈ C such that
(
q(z)
1

)
spans v(B)(z). Moreover,

((fz − fw); (zfz − wfw)) ∈ Å.
If, in addition, mul Γ = {0}, then fz is a defect family for (S, Å) and q(z)

is the corresponding Q-function.

Proof. Selfadjointness of Å is easily checked using Green’s identity. Note also
that ρ(Å) ⊆ r(S) and that a point z ∈ r(S) belongs to σ(Å) if and only if
ker(Å− z) 6= {0}.

Assume first that π2v(B)(z) = {0}. Let w ∈ C2 be such that span{Jw} =
v(B)(z). By definition there exists (f ; zf) ∈ T such that ((f ; zf); (w; 0)) ∈ Γ,
and as π1w = 0 we have (f ; zf) ∈ Å, i.e. f ∈ ker(Å − z). If we had f = 0,
then (

(
0
1

)
; 0) ∈ mul Γ = span{(m; 0)}, a contradiction to our assumption. Hence

ker(Å− z) 6= {0}.
Conversely, assume that f ∈ ker(Å−z)\{0}. Then there exists w ∈ C2 \{0}

such that ((f ; zf); (w; 0)) ∈ Γ with π1w = 0, hence π2v(B)(z) = {0}.
If mulΓ 6= {0}, then because of Å = S we have ρ(Å) 6= ∅. Now assume

that mul Γ = {0} and that ρ(Å) = ∅. It is well-known, e.g. from [DS], that
then (λf ;µf) ∈ Å for some f 6= 0 and all λ, µ ∈ C. As S is a subspace of Å
with codimension one, we get (λf ;µf) ∈ S for some (λ;µ) ∈ C2 \ {(0; 0)}. By
property (E) we must have λ = 0 and, hence, mulS 6= {0}.

As v(B)(z) is one-dimensional the condition π2v(B)(z) 6= {0} implies that

v(B)(z) is spanned by a vector of the form
(
q(z)
1

)
, and hence

((fz ; zfz); (

(
1

−q(z)

)

; 0)) ∈ Γ.

for some fz ∈ ker(T − z). As (((fz − fw); (zfz − wfw)); (
(

0
−q(z)+q(w)

)
; 0)) ∈ Γ,

we find ((fz − fw); (zfz − wfw)) ∈ Å.
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If mul Γ = {0}, then S is symmetric with defect (1, 1) with S∗ = T and
fz 6= 0. Hence fz ∈ ker(S∗ − z) is a defect family for (S, Å). Moreover, by
Green’s identity

(z − w)[fz , fw] = [zfz, fw] − [fz, wfw] =

(
1

−q(w)

)∗

J

(
1

−q(z)

)

= q(z) − q(w).

This shows that q(z) is a Q-function of (S, Å) corresponding to the defect family
fz. ❑

The following proposition is the analogue of Proposition 4.7.

4.15 Proposition. Let B1 and B2 be boundary triplets, and let (̟, φ̂ ⊠ φ̂) be
an isomorphism between B1 and B2. Denote by N

φ̂
∈ C2×2 the matrix such

that φ̂(x) = N
φ̂
x, x ∈ C2. If B1 has defect 1 and satisfies (E), so does B2, and

we have
v(B2) = N

φ̂
v(B1) .

Proof. As it was noted in Remark IV.2.13, (iii), and Remark IV.2.17, the pres-

ence of the isomorphism (̟, φ̂⊠φ̂) implies that also B2 has defect 1 and satisfies
(E).

The relation v(B2) = N
φ̂
v(B1) immediately follows from ((f ; zf); (u; 0)) ∈

Γ1 ⇔ ((̟f ; z̟f); (N
φ̂
u; 0)) ∈ Γ2. ❑

The above Proposition 4.15 applies in particular to the isomorphism (idP , νγ ⊠
νγ) from B to 	γ B, cf. (2.9).

4.16 Corollary. We have v(	γ B) = Nγv(B). ❑

For Titchmarsh-Weyl subspaces a similar multiplicativity property as in Propo-
sition 4.10 holds true.

4.17 Lemma. Let B1 be a boundary triplet with defect 2 and B2 be a boundary
triplet with defect 1 both satisfying property (E).

Assume that the condition (LI) of Proposition IV.6.2 holds true, so that the
pasting B = (P , T,Γ) := B1⊎B2 is well-defined, has defect 1, and satisfies (E).
Then

v(B1 ⊎ B2)(z) = ω(B1)(z)v(B2)(z), z ∈ r(S) ∩ r(S1) ∩ r(S2) .

Proof. For v ∈ v(B2)(z) we have ((f ; zf); (−Jv; 0)) ∈ Γ2 for some f ∈ ker(T2 −
z). Corollary 4.2 applied to B1 gives we have

((w1φ(z) + w2ψ(z);w1zφ(z) + w2zψ(z)); (ω(B1)(z)
−T (−Jv);−Jv)) ∈ Γ1

with (w1 w2)
T = ω(B1)(z)

−T (−Jv). As ω(B1)(z)Jω(B1)(z)
T = J we have

ω(B1)(z)
−T = −Jω(B1)(z)J and hence (w1 w2)

T = −Jω(B1)(z)v. As Γ =
Γ1 ⊎ Γ2 we have

((w1φ(z) + w2ψ(z) + f ;w1zφ(z) + w2zψ(z) + zf); (−Jω(B1)(z)v; 0)) ∈ Γ.

Therefore, ω(B1)(z)v ∈ v(B1 ⊎ B2)(z). ❑
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Note that a boundary triplet of the form B = B1 ⊎ B2 the assumptions of
Lemma 4.14 are satisfied, since mul Γ = {0}, cf. Proposition IV.6.2.

4.18 Remark. With the same notation and assumptions as in Lemma 4.17 con-
sider Å := ker(πl,1 ◦ Γ). By Lemma 4.14, for z ∈ r(S), we have z ∈ ρ(Å) if and
only if π2v(B)(z) 6= {0}. In our situation this means that for the entries β1(z)
and β2(z) in the lower row of ω(B1)(z) we have β1(z)ν1(z) + β2(z)ν2(z) = 0,
where (ν1(z) ν2(z))

T is any non-zero element of v(B2)(z). This, in turn, is the

same as ν2(z)
ν1(z) = −β1(z)

β2(z)
. In particular,

ρ(Å) = ∅ ⇐⇒
ν2(z)

ν1(z)
= −

β1(z)

β2(z)
, z ∈ r(S) .

�

c. Realization as a u-resolvent matrix.

We will now prove that the matrix ω(B) can be viewed as a u-resolvent matrix
in the sense of [KW/0]. This is a crucial result; it provides us with several con-
clusions of great value. Also, it establishes a connection between the viewpoint
of the classical theory of differential equations and the viewpoint of the operator
theory of the associated symmetry, namely the following: In the particular situ-
ation that the boundary triplet B under consideration is the maximal operator
of a positive definite canonical system, cf. Theorem IV.2.18, the matrix ω(B)
above is defined as the boundary values at the right endpoint of the pair of
fundamental solutions. The below theorem then says nothing else but the well-
known fact that this matrix is a u-resolvent matrix of the symmetry associated
to the problem.

4.19 Theorem. Let B = (P , T,Γ) be a boundary triplet which has defect 2
and satisfies (E), and assume that the symmetric relation S := T ∗ is completely
nonselfadjoint. Moreover, assume that

mul Γ 6= span
{
(

(
0

1

)

;

(
0

1

)

)
}
,

∃ z0 ∈ r(S) : β(z0)2 6= 0 .

(4.10)

Then the restriction S1 of T defined as S1 := ker
(
(πl,1×πr)◦Γ

)
is a symmetric

and real extension of S with defect index (1, 1). Its adjoint T1 := S∗
1 is given as

T1 = ker(πl,1 ◦ Γ).
Let P− be the space constructed from S1 as in [KW/0, §3], and let u be the

element of P− which is defined by
[
(f ; g), u

]

±
= (πl,2 ◦ P ◦ Γ)(f ; g), (f ; g) ∈ T1 , (4.11)

where

P
(
(a; b)

)
:=

{

(a; b) , mulΓ = {0}

(a; b) − π1a
π1m

(m;m) , mulΓ = span{(m;m)} 6= {0}
.

Then ru(S1) = r(S) and ω(B) is a u-resolvent matrix of S1. Moreover,
ind−Hω(B) = ind− P, and the map Ξ defined as

(Ξf)(z) :=

(
[f, φ(z)]

[f, ψ(z)]

)

, f ∈ P , (4.12)
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is an isometric isomorphism of P onto the reproducing kernel space K(ω(B)).
The relation (Ξ⊠Ξ)(S) is the multiplication operator f(z) 7→ zf(z) in this space
with domain {f ∈ K(ω(B)) : zf(z) ∈ K(ω(B))}.

Proof. The proof of this theorem is quite elaborate and will be carried out in
several steps.
Step 1: Due to the abstract Green’s identity (IV.2.6), the relation S1 is sym-
metric. Moreover, S1 is real with respect to the involution .. In particular, the
defect indices of S1 are equal.

Consider first the case that mul Γ = {0}. Then Γ is an isomorphism of T/S
onto C2 × C2, and the abstract Green’s identity yields T1 = ker(πl,1 ◦ Γ). We
also see that dim T1/S1 = 2, i.e. S1 has defect index (1, 1). The relation Γ is a
closed, and thus bounded, operator defined on T . Hence, the right hand side of
(4.11) is bounded linear functional on T1 = S∗

1 , which is, by definition, nothing
else but P+, c.f. [KW/0, §3]. By its definition, [KW/0, p.290], [., .]± is a duality
between P+ and P−. Therefore, an element u ∈ P− is well-defined by (4.11).

Assume now that mul Γ = span{(m;m)} 6= {0}. By our assumption, π1m 6=
0. This implies T = ker(πl,1 ◦ Γ). Together with the abstract Green’s identity
we get

S ⊆ S1 ⊆ ker(πl,1 ◦ Γ)∗ = T ∗ = S ,

and conclude that S1 = S and T1 = T = ker(πl,1 ◦ Γ). Thus, also in this case
S1 has defect index (1, 1). Since P is nothing else but the projection of C2 ×C2

onto ({0}×C)×C2 with kernel span{(m;m)}, we have mul(P ◦Γ) = {0}. The
same reasoning as above yields that the right hand side of (4.11) is bounded
linear functional on T1, and hence that u ∈ P− is well-defined by the relation
(4.11).

Clearly, r(S1) ⊆ r(S). If z ∈ r(S), then ran(S − z) is closed, and hence
ran(S1 − z) is closed. By (E), we have ker(S1 − z) = {0} for all z ∈ C, hence
z ∈ r(S1). Let f ∈ ker(T1 − z), and assume that [(f ; zf), u]± = 0. Then
((f ; zf); (0; b)) ∈ Γ and hence, again by (E), f = 0. Thus, ru(S1) = r(S1).

Step 2: Consider the relation

A := ker
(
(πl,1 × πr,2) ◦ Γ

)
.

By the abstract Green’s identity we have A ⊆ A∗, and thus certainly A ( T1.
However, dimT1/A ≤ 1. Hence, A is selfadjoint. Let us show that

ρ(A) =
{
z ∈ r(S) : β(z)2 6= 0

}
.

In particular, by (4.10), it will follow that ρ(A) 6= ∅. To see this formula for
ρ(A), note that a point z ∈ r(S) belongs to σ(A) if and only if ker(A−z) 6= {0},
and that ρ(A) ⊆ r(S). Assume first that β(z)2 = 0. Then (ψ(z); zψ(z)) ∈ A, i.e.
ψ(z) ∈ ker(A−z). If we had ψ(z) = 0, then (

(
0
1

)
;β(z)) ∈ mul Γ = span{(m;m)},

a contradiction to (4.10). Hence ker(A− z) 6= {0}.
Conversely, assume that f ∈ ker(A − z) \ {0}. Then there exist a, b ∈ C2

such that ((f ; zf); (a; b)) ∈ Γ and π1a = π2b = 0. By (E) we have π2a 6= 0.
Again by (E) the fact that

(f ; zf)− π2a · (ψ(z); zψ(z)) ∈ ker(πl ◦ Γ) ,
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implies f = π2a · ψ(z). Thus,

(0; b− π2a · β(z)) = (a; b) − π2a ·
(
(

0

1

)

;β(z)
)
∈ mul Γ = span{(m;m)} ,

and we conclude that b − π2a · β(z) = 0. In particular, 0 = π2b = π2a · β(z)2,
and thus β(z)2 = 0.

Step 3: For z ∈ ρ(A) define elements ϕ(z) and γ(z) as

ϕ(z) := −
1

β(z)2
ψ(z), γ(z) :=

α(z)2
β(z)2

ψ(z) − φ(z) .

We show that

(
I − (w − z)(A− z)−1

)
ϕ(w) = ϕ(z), z, w ∈ ρ(A) , (4.13)

where 0 6= ϕ(z) ∈ ker(T1 − z) and

(
I − (w − z)(A− z)−1

)
γ(w) = γ(z), z, w ∈ ρ(A) (4.14)

and γ(z) ∈ ker(ker(πr,2 ◦ Γ) − z).
For the first relation note that, for z ∈ ρ(A),

( −1

β(z)2
(ψ(z); zψ(z)) ;

(
(

0

− −1
β(z)2

)

;

(
−β(z)1
β(z)2

−1

)
))

∈ Γ , (4.15)

which yields ϕ(z) ∈ ker(T1 − z). As ϕ(z) = 0 would give ψ(z) = 0 and further
mul Γ = span{(

(
0
1

)
;
(
0
1

)
)}, we conclude that ϕ(z) 6= 0. Moreover, for z, w ∈ ρ(A)

( −1

β(w)2
(ψ(w);wψ(w)) −

−1

β(z)2

(
ψ(z); zψ(z)

)
;

(
(

0
−1

β(w)2
− −1

β(z)2

)

;

(
−β(w)1
β(w)2

+ β(z)1
β(z)2

0

)
))

∈ Γ .

Hence
(
ϕ(w) − ϕ(z);wϕ(w) − zϕ(z)

)
∈ A ,

which implies (4.13).
As detω(B)(z) = 1 we have

(α(z)2
β(z)2

(
ψ(z); zψ(z)

)
−
(
φ(z); zφ(z)

)
;
(
(

−1
α(z)2
β(z)2

)

;

( −1
β(z)2

0

)
))

∈ Γ , (4.16)

which implies γ(z) ∈ ker(ker(πr,2 ◦ Γ) − z).

(α(w)2
β(w)2

(
ψ(w);wψ(w)

)
−
(
φ(w);wφ(w)

)
−
α(z)2
β(z)2

(
ψ(z); zψ(z)

)
+
(
φ(z); zφ(z)

)
;

(
(

0
α(w)2
β(w)2

− α(z)2
β(z)2

)

;

( −1
β(w)2

+ 1
β(z)2

0

)
))

∈ Γ ,
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and hence
(
γ(w) − γ(z);wγ(w) − zγ(z)

)
∈ A ,

which yields (4.14).

Step 4: By the previous step ϕ(z), γ(z) span the defect space ker(T − z). The
corresponding Q-function is

Q(z) =

(
α(z)2
β(z)2

− 1
β(z)2

− 1
β(z)2

−β(z)1
β(z)2

)

. (4.17)

In fact, if we consider (z ∈ r(S))

W (z) := −ω(B)(z)J =

(
−α(z)2 α(z)1
−β(z)2 β(z)1

)

, (4.18)

then for z ∈ ρ(A) its Potapov-Ginzburg transform is Q(z), cf. [KW/0, §6]. Note
here that detω(B) = 1. By Lemma 0.6.2, for all z, w ∈ ρ(A),

W (z)JW (w)∗ − J

z − w
=

(
−1 −α(z)2
0 −β(z)2

)
Q(z) −Q(w)∗

z − w

(
−1 −α(w)2
0 −β(w)2

)∗

.

However, by (4.4),

W (z)JW (w)∗ − J

z − w
=
ω(B)(z)Jω(B)(w)∗ − J

z − w
=

(
[φ(z), φ(w)] [φ(z), ψ(w)]
[ψ(z), φ(w)] [ψ(z), ψ(w)]

)

,

and, hence,
Q(z) −Q(w)∗

z − w
=

=

(

1 −α(z)2
β(z)2

0 1
β(z)2

)(
[φ(z), φ(w)] [φ(z), ψ(w)]
[ψ(z), φ(w)] [ψ(z), ψ(w)]

)(

1 −α(w)2
β(w)2

0 1
β(w)2

)∗

=

=













[φ(z), φ(w)] + α(z)2
β(z)2

(α(w)2
β(w)2

)[ψ(z), ψ(w)]−

(α(w)2
β(w)2

)[φ(z), ψ(w)] − α(z)2
β(z)2

[ψ(z), φ(w)]

( 1
β(w)2

)[φ(z), ψ(w)]−

( 1
β(w)2

)α(z)2
β(z)2

[ψ(z), ψ(w)]

1
β(z)2

[ψ(z), φ(w)]−

1
β(z)2

(α(w)2
β(w)2

)[ψ(z), ψ(w)]
1

β(z)2
( 1
β(w)2

)[ψ(z), ψ(w)]













=

=

(
[γ(z), γ(w)] [γ(z), ϕ(w)]
[ϕ(z), γ(w)] [ϕ(z), ϕ(w)]

)

=

(
[γ(z), γ(w)] [ϕ(z), γ(w)]
[γ(z), ϕ(w)] [ϕ(z), ϕ(w)]

)

.

The last equality sign holds since the off-diagonal entries of Ψ(W (z)) are equal.

If we compare this formula with the expression for Q(z)−Q(w)∗

z−w obtained from
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the explicit form (4.17) of Q, and keep in mind that α and β are symmetric
with respect to the real line, we obtain

[γ(z), γ(w)] =
1

z − w

(α(z)2
β(z)2

−
α(w)2
β(w)2

)
, (4.19)

[γ(z), ϕ(w)] = [ϕ(z), γ(w)] =
1

z − w

( −1

β(z)2
−

−1

β(w)2

)
, (4.20)

[ϕ(z), ϕ(w)] =
1

z − w

(−β(z)1
β(z)2

−
−β(w)1
β(w)2

)
. (4.21)

In particular, we obtain from (4.21), that −β(z)1
β(z)2

is a Q-function of (S1, A)

corresponding to the defect family ϕ(z), and (4.19) shows that α(z)2
β(z)2

is a Q-

function of (ker(πr,2 ◦ Γ)∗, A) corresponding to the defect family γ(z).

Step 5: We show that γ(w) = R−
wu, w ∈ ρ(A), and that α(z)2

β(z)2
is a generalized

u-resolvent of S1 induced by A where R−
w is defined as in [KW/0, §3] and

generalized u-resolvents as in Definition 0.4.2: By the definition of R+
z and

relations (4.13) and (4.14),

R+
wϕ(z) =

1

z − w

(
ϕ(z) − ϕ(w); zϕ(z) − wϕ(w)

)
,

R+
wγ(z) =

1

z − w

(
γ(z) − γ(w); zγ(z)− wγ(w)

)
.

We compute for z, w ∈ ρ(A)

[γ(z), R−
wu] = [R+

wγ(z), u]± =
[ 1

z − w

(
γ(z) − γ(w); zγ(z) − wγ(w)

)
, u
]

±
=

=
1

z − w

(α(z)2
β(z)2

−
α(w)2
β(w)2

)
= [γ(z), γ(w)] ,

[ϕ(z), R−
wu] = [R+

wϕ(z), u]± =
[ 1

z − w

(
ϕ(z) − ϕ(w); zϕ(z) − wϕ(w)

)
, u
]

±
=

=
1

z − w

( −1

β(z)2
− (

−1

β(w)2
)
)

= [ϕ(z), γ(w)] .

Since S is completely nonselfadjoint, by Lemma 4.1, the linear span of all el-
ements ϕ(z), γ(z), z ∈ ρ(A), is dense in P . Hence, γ(z) = R−

z u. The fact,

that α(z)2
β(z)2

is a generalized u-resolvent of S1 induced by A now follows from

(4.19), Proposition 0.4.5 and its proof, where we saw that any such generalized
u-resolvent is a Q-function corresponding to the defect family R−

z u.

Step 6: Because of

[(ϕ(z); zϕ(z)), u]± =
−1

β(z)2
, z ∈ ρ(A),

the u-resolvent matrix of S1 constructed by means of Definition 0.4.8 with the

selfadjoint extension A, the regularized u-resolvent α(z)2
β(z)2

, and the Q-function
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−β(z)1
β(z)2

corresponding to the defect family (ϕ(z))z∈ρ(A) is now nothing else, but

W (z) in (4.18) and, hence, ω(B)(z) = W (z)J , z ∈ ρ(A).

Step 7: We know from [KW/0, §4], that the matrix W (z) has an analytic
continuation W̃ (z) to ru(S1) = r(S). Hence, also the functions

α(z)1|ρ(A), α(z)2|ρ(A), β(z)1|ρ(A), β(z)2|ρ(A) ,

are analytic and have analytic continuations α̃(z)1, α̃(z)2, β̃(z)1, β̃(z)2 to r(S).
Consider the functionals P(z),Q(z), z ∈ ρ(A), as defined in (0.5.1) and

(0.5.2). We compute for f ∈ P and z ∈ ρ(A)

P(z)f =
[f, ϕ(z)]

[u, (ϕ(z); zϕ(z))]±
= [f, (−β(z)2)ϕ(z)] = [f, ψ(z)] . (4.22)

Q(z)f = [R+
z f, u]± − (P(z)f)r(z) = [f,R−

z u] − (P(z)f)r(z) =

= [f, γ(z)] − (P(z)f)r(z) =
α(z)2
β(z)2

[f, ψ(z)] − [f, φ(z)] − (P(z)f)r(z) .

By Lemma 0.6.4, (4.17), and Q(z) = Q̂(z) we have

α(z)2
β(z)2

= r(z) .

Together with (4.22) this yields

Q(z)f = −[f, φ(z)], f ∈ P , z ∈ ρ(A) .

By Lemma 0.5.1, the functions P(z)f and Q(z)f have analytic continuations to
ru(S1) = r(S). Hence, for every f ∈ P , the functions

z 7→ [f, ψ(z)], z 7→ [f, φ(z)], z ∈ ρ(A) ,

have analytic continuations to r(S). Therefore, also the functions

z 7→ ψ(z), z 7→ φ(z), z ∈ ρ(A) ,

have analytic continuations to r(S). We shall denote these continuations by
ψ̃(z) and φ̃(z), respectively.

Since ρ(A) is dense in r(S) and Γ is closed, we obtain

(
(φ̃(z); zφ̃(z)); (

(
1

0

)

,

(
α̃(z)1
α̃(z)2

)

)
)
∈ Γ, z ∈ r(S) ,

(
(ψ̃(z); zψ̃(z)); (

(
0

1

)

,

(
β̃(z)1

β̃(z)2

)

)
)
∈ Γ, z ∈ r(S) .

By the uniqueness assertion in Lemma 4.1 we get

φ(z) = φ̃(z), ψ(z) = ψ̃(z), z ∈ r(S) ,

α(z)1 = α̃(z)1, α(z)2 = α̃(z)2, β(z)1 = β̃(z)1, β(z)2 = β̃(z)2, z ∈ r(S) .
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We conclude that ω(B) is analytic on r(S) and is a u-resolvent matrix of S1,
namely

ω(B)(z) = W̃ (z)J, z ∈ r(S) .

Since S is completely non-selfadjoint, the function Q(z) = Ψ(W (z)) is a gen-
eralized Nevanlinna function with ind−Q = ind− P . Therefore, ind−HW̃ =
ind−Hω(B) = ind− P .

Finally, by Theorem 0.5.4,

f 7→

(
−Q(z)f

P(z)f

)

=

(
[f, φ(z)]

[f, ψ(z)]

)

.

is an isometric isomorphism from P onto K(W̃ ). Since the kernels HW̃ (w, z)

and Hω(B)(w, z) coincide, we however have K(W̃ ) = K(ω(B)).
The fact that, S is mapped to the multiplication operator by Ξ⊠Ξ, follows

from Theorem 0.5.3 and its proof. ❑

Using rotation isomorphisms it is easy to deduce a variant of Theorem 4.19
which is not bound to

(
0
1

)
and β(z)2. The original formulation corresponds to

the case γ = 0 in the following statement. Recall the notation ξγ from (2.16).

4.20 Theorem. Let B = (P , T,Γ) be a boundary triplet which has defect 2
and satisfies (E), and assume that the symmetric relation S := T ∗ is completely
nonselfadjoint. Moreover, let γ ∈ R, and assume that

mul Γ 6= span
{
(ξγ+ π

2
; ξγ+ π

2
)
}
,

∃ z ∈ r(S) : ξTγ+ π
2
ω(B)(z)ξγ+ π

2
6= 0 .

(4.23)

Then the restriction Sγ1 of T defined as Sγ1 := ker(([ξTγ πl] × πr) ◦ Γ), is a sym-
metric and real extension of S with defect index (1, 1). Its adjoint T γ1 := (Sγ1 )∗

is given as ker(ξTγ πl ◦ Γ).
Let P− be the space constructed from Sγ1 as in [KW/0, §3], and let uγ be the

element of P− which is defined by

[
(f ; g), uγ

]

±
=
(
ξTγ+ π

2
πl ◦ P

γ ◦ Γ
)
(f ; g), (f ; g) ∈ T γ1 , (4.24)

where P γ is the identity, if mul Γ = {0}, and the projection of C2 × C2 onto
span{ξγ+ π

2
} × C2 with kernel mul Γ = span{(m;m)}, otherwise.

Then ruγ (Sγ1 ) = r(S) and 	γ ω(B) is a uγ-resolvent matrix of Sγ1 . More-
over, ind−H	γω(B) = ind− P, and map Ξγ defined as

(Ξγf)(z) := Nγ

(
[f, φ(z)]

[f, ψ(z)]

)

, f ∈ P ,

is an isometric isomorphism of P onto the reproducing kernel space K(	γ ω(B)).
The relation (Ξγ ⊠ Ξγ)(S) is the multiplication operator f(z) 7→ zf(z) in this
space with domain {f ∈ K(	γ ω(B)) : zf(z) ∈ K(	γ ω(B))}.

Proof. We wish to apply Theorem 4.19 to the boundary triplet 	γ B, cf. (2.9).
In order to do so, we must make sure that the corresponding hypothesis (4.10)
is satisfied: Since mul[(νγ ⊠ νγ) ◦ Γ] = (Nγ ⊠ Nγ)mul Γ, the first condition in
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(4.10) for 	γ B is equivalent to mul Γ 6= (NT
γ ⊠N

T
γ ) span{(

(
0
1

)
;
(
0
1

)
)}, and hence

equivalent to the first condition in (4.23). We have

(
0

1

)T

	γ ω(B)

(
0

1

)

= ξTγ+π
2
ω(B)ξγ+ π

2
,

and hence, the second condition in (4.10) for 	γ B is equivalent to the second
condition in (4.23).

Next we identify all the quantities appearing in Theorem 4.19 for 	γ B.
First

S1(	γ B) = ker
(
(πl,1×πr)◦(νγ⊠νγ)◦Γ

)
= ker

(
([(1 0)Nγ ]×Nγ)◦(πl⊠πr)◦Γ

)
=

= ker
(
([(cos γ sin γ)πl] × πr) ◦ Γ

)
= Sγ1 ,

and

T1(	γ B) = ker(πl,1 ◦ (νγ ⊠ νγ) ◦ Γ) = ker((1 0)πl ◦ (νγ ⊠ νγ) ◦ Γ) =

= ker((1 0)Nγπl ◦ Γ) = ker((cos γ sin γ)πl ◦ Γ) = (Sγ1 )∗ = T γ1 .

The equation (4.11) reads as

[
(f ; g), u(	γ B)

]

±
= (πl,2 ◦ P ◦ (νγ ⊠ νγ) ◦ Γ)(f ; g), (f ; g) ∈ T γ1 ,

where P is the identity map, if mul Γ = {0}, and the projection of C2 ×C2 onto
({0}×C)×C2 with kernel mul[(νγ ⊠ νγ) ◦Γ] = span{(Nγm;Nγm)}, otherwise.
Moreover, we have

(πl,2 ◦ P ◦ (νγ ⊠ νγ) ◦ Γ) = ((0 1)Nγ ◦ πl ◦ (NT
γ ⊠N

T
γ )P (Nγ ⊠Nγ) ◦ Γ). (4.25)

The linear mapping P γ := (NT
γ ×NT

γ )P (Nγ ×Nγ) obviously is the projection
with kerP γ = span{(m;m)} and ranP γ = span{ξγ+ π

2
} × C2. The relation

(4.25) thus shows that the right side of (4.24) for B equals the right side of
(4.11) for 	γ B and, hence,

u(	γ B) = uγ .

Finally, by (4.7), we have

φ(	γ B) = cos γ · φ+ sin γ · ψ =: φγ , ψ(	γ B) = − sinγ · φ+ cos γ · ψ =: ψγ ,

and hence

(Ξ(	γ B))f(z) =

(
[f, φ(	γ B)(z)]

[f, ψ(	γ B)(z)]

)

= Nγ

(
[f, φ(z)]

[f, ψ(z)]

)

.

Theorem 4.19 now yields that ruγ (Sγ1 ) = r(S), that ω(	γ B) is a uγ-resolvent
matrix of Sγ1 , that ind−Hω(	γB) = ind− P , and that Ξγ is an isomorphism of P
onto K(ω(	γ B)). However, by Corollary 4.8, we have ω(	γ B) =	γ ω(B). ❑

Looking at Theorem 4.20 from a little different angle, we obtain the following
corollary.
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4.21 Corollary. Let B = (P , T,Γ) be a boundary triplet which has defect 2
and satisfies (E), and assume that the symmetric relation S := T ∗ is completely
nonselfadjoint. Moreover, assume that for some γ ∈ R the conditions (4.23) are
satisfied.

Then ind−Hω(B) = ind− P and the map Ξ defined as in (4.12) is an isomet-
ric isomorphism of P onto the reproducing kernel space K(ω(B)). The relation
(Ξ⊠Ξ)(S) is the multiplication operator f(z) 7→ zf(z) in this space with domain
{f ∈ K(ω(B)) : zf(z) ∈ K(ω(B))}. In fact, Ξ = Θ−1, where Θ is defined in
Remark 4.6 by (4.5).

Proof. We can apply Theorem 4.20 with the number γ given by the present
hypothesis. The fact that Ξ is then an isometric isomorphism follows from
(2.11) and the remark made after it. Finally, by the definition of Ξ and by the
fact that K(ω(B)) is a reproducing kernel space Ξ maps λφ(w) + µψ(w) onto
Hω(B)(w, .)

(
λ
µ

)
. Therefore, Ξ = Θ−1. ❑

4.22 Remark. Let us have a closer look at the set E of all values γ ∈ R for which
(4.23) fails. If ω(B) = ±J , trivially, ξTγ+ π

2
(±J)ξγ+ π

2
≡ 0, and thus E = R.

Let us show that otherwise |[0, π)∩E| ≤ 3. The condition in the first line of
(4.23) fails for at most one value of γ ∈ [0, π). Assume that the condition in the
second line fails for three different values γ1, γ2, γ3 ∈ [0, π), and let z ∈ r(S).
Since span{ξγ+ π

2
}⊥ = span{Jξγ+ π

2
}, this implies that ξγj+ π

2
, j = 1, 2, 3, are

eigenvalues of the matrix ω(B)(z). Since each two of these vectors are linearly
independent, this yields that Jω(B)(z) = ±I, i.e. ω(B)(z) = ±J .

Finally note that if ω(B) = ±J and if S = T ∗ is completely non-selfadjoint,
then due to Remark 4.6 P = {0}. �

As a consequence of Theorem 4.20, we can compute the reproducing kernel space
generated by the matrix constructed from a pasting of two boundary triplets.

4.23 Corollary. Let B1 and B2 be boundary triplets which have defect 2 and
satisfy (E) and (LI). Assume that S(B1), S(B2), and S(B1⊎B2) are completely
nonselfadjoint, and that non of the matrices ω(B1), ω(B2), and ω(B1 ⊎B2) is
equal to ±J . Then

K(ω(B1 ⊎ B2)) = K(ω(B1)) ⊕
[
ω(B1) · K(ω(B2))

]
.

Proof. Due to Remark 4.22, we can choose a value γ ∈ R such that (4.23) holds
for each of B1, B2 and B := B1⊎B2. Denoting the corresponding isomorphisms
given in Corollary 4.21 by Ξ1, Ξ2 and Ξ, we have

P(B1)×P(B2)=P(B1⊎B2)

Ξ1⊠Ξ2

vvllllllllllllllllll

Ξ

''PPPPPPPPPPPPPPPP

K(ω(B1))×K(ω(B2))
Ξ◦(Ξ1⊠Ξ2)

−1

// K(ω(B1⊎B2))

However, if f1 ∈ P1, f2 ∈ P2, we obtain from (4.9) that

Ξ(f1; f2)(z) =

(
[(f1; f2), φ(z)]

[(f1; f2), ψ(z)]

)

=

(
[f1, φ1(z)]

[f1, ψ1(z)]

)

+ ω(B1)(z)

(
[f2, φ2(z)]

[f2, ψ2(z)]

)

=
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= Ξ1f1(z) + ω(B1)(z)Ξ2f2(z) ,

and, hence,

(
Ξ ◦ (Ξ1 ⊠ Ξ2)

−1
)
(F ;G)(z) = F (z) + ω(B1)(z)G(z), F ∈ K(B1)), g ∈ K(B2)) .

The assertion follows. ❑

4.24 Theorem. Let B1 = (P1, T1,Γ1) be a boundary triplet which satisfies
thehypothesis of Theorem 4.19. Moreover, let B2 be a boundary triplet with
defect 1 satisfying property (E) such that the condition (LI) of Proposition IV.6.2
holds true. Set

B = (P , T,Γ) := B1 ⊎ B2 ,

and Å := ker(πl,1 ◦ Γ), and assume that ρ(Å) 6= ∅. For z ∈ ρ(Å) let

(
q(z)

1

)

∈ v(B)(z) and fz ∈ ker(T − z)

be as in Lemma 4.14. Let z ∈ r(S2), and let (ν1(z) ν2(z))
T be any nonzero

element of v(B2)(z). Then

q(z) = ω(B)(z) ⋆
ν1(z)

ν2(z)
, (4.26)

and this function is a generalized u-resolvent in the sense of Definition 0.4.2
of S1 := ker

(
(πl,1 × πr) ◦ Γ1

)
induced by Å. Here u is the same element as in

Theorem 4.19. Moreover, fz = ξR−
z u for some ξ ∈ C \ {0}.

If it is not the case that q(z) = ν1(z)
ν2(z) , z ∈ r(S), and that this function is a

real constant θ such that mul Γ1 = span
{
(
(
−1
−θ

)
;
(
−1
−θ

)
)
}
, then ξ = −1.

Proof.
Step 1: First of all (4.26) is an immediate consequence of Lemma 4.17.

Step 2: Note that Å := ker(πl,1 ◦ (Γ1 ⊎ Γ2)) is in fact a selfadjoint extension of
S1 = ker((πl,1 × πr) ◦ Γ1). Let A = ker((πl,1 × πr,2) ◦ Γ1) be as in Step 2 of the
proof of Theorem 4.19.

In the following R−
z denotes the extension of the resolvent as defined in

[KW/0] on page 290, where now P is P1 and P̃ is P and where A = Å.
Because of

[g − zf,R−
z u] = [R+

z (g − zf), u]± = [(f ; g), u]± ,

cf. Proposition 0.4.5, R−
z u is an appropriate parametrization of the defect spaces

of the symmetric restriction

Su = {(f ; g) ∈ Å : [(f ; g), u]± = 0}

of Å. As Γ = Γ1 ⊎ Γ2 and consequently P̃− = P− ⊕ (P̃ ⊖ P)2 and as u ∈ P−

we see that

Su = {(f1 + f2; g1 + g2) : ∃ ((f1; g1); (a1; b1)) ∈ Γ1, ((f2; g2); (a2; 0)) ∈ Γ2,

b1 = a2, π1a1 = 0, [(f1; g1), u]± = 0}.
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Since u is defined such that

[(f1; g1), u]± = πl,2 ◦ P ◦ Γ1(f1; g1) ,

cf. (4.11), where P = I in case mul Γ1 = {0} and P is the projection of C2 ×C2

onto ({0} × C) × C2 with kernel mul Γ1. As π1a1 = 0 in the above equation it
follows that

Su = {(f ; g) ∈ T : πl ◦ Γ(f ; g) = 0} = T ∗ =: S.

Thus R−
z u ∈ ker(T − z). By Lemma 4.14 and Lemma 0.4.3 R−

z u is a constant
multiple of fz.

Note that, since mul Γ = {0}, S has defect (1, 1), and hence, both R−
z u and

fz do not vanish.

Step 3: For z ∈ ρ(A)∩ρ(Å) let g ∈ P1\ran(S1−z) and set f = (A−z)−1g (∈ P1)

and f̊ = (Å − z)−1g. According to the decomposition P = P1 ⊕ P2 we write

f̊ = f1 + f2. It follows that

((f ; g + zf); (

(
0

a(z)

)

;

(
b(z)

0

)

)) ∈ Γ1, (4.27)

for some a(z), b(z) ∈ C. Moreover, ((f̊ ; g + zf̊); (
(

0
å(z)

)
; 0) ∈ Γ = Γ1 ⊎ Γ2, and

hence,

((f1; g + zf1); (

(
0

å(z)

)

;

(
c1(z)

c2(z)

)

)) ∈ Γ1, ((f2; zf2); (

(
c1(z)

c2(z)

)

; 0)) ∈ Γ2 (4.28)

for some å(z), c1(z), c2(z) ∈ C. By Definition 4.11 J
(
c1(z)
c2(z)

)
∈ v(B2)(z). More-

over, from (4.27) and (4.28) we obtain

((f1 − f ; z(f1 − f)); (

(
0

å(z) − a(z)

)

;

(
c1(z) − b(z)

c2(z)

)

)) ∈ Γ1. (4.29)

By the definition of ω(B1)(z) = (
(
α1(z)
α2(z)

)
|
(
β1(z)
β2(z)

)
)T (see Lemma 4.1 and Corollary

4.2)
(
c1(z) − b(z)

c2(z)

)

= (̊a(z) − a(z))

(
β1(z)

β2(z)

)

. (4.30)

On the other hand we have by Green’s identity (ψ(z) is defined in Lemma 4.1
applied to B1)

[g, ψ(z̄)] = [g + zf, ψ(z̄)] − [f, z̄ψ(z̄)] =

(0 1)J

(
0

a(z)

)

−

(
β1(z̄)

β2(z̄)

)∗

J

(
b(z)

0

)

= −β2(z̄)b(z) = −β2(z)b(z).

Hence, with the notation from the proof of Theorem 4.19, Step 3, we have
[g, ϕ(z̄)] = b(z). For å(z) − a(z) 6= 0 we obtain from (4.30)

c1(z) = [g, ϕ(z̄)] + (̊a(z) − a(z))β1(z), c2(z) = (̊a(z) − a(z))β2(z).

As z ∈ ρ(A) we have β2(z) 6= 0, compare the proof of Theorem 4.19, Step 2,
and hence c2(z) 6= 0. Therefore,

c1(z)

c2(z)
=

[g, ϕ(z̄)]

(̊a(z) − a(z)) β2(z)
+
β1(z)

β2(z)
,
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und further

(̊a(z) − a(z)) =
[g, ϕ(z̄)]

c1(z)
c2(z) −

β1(z)
β2(z)

·
1

β2(z)
.

By (4.29) and Lemma 4.1

f1 = f +
[g, ϕ(z̄)]

c1(z)
c2(z)

− β1(z)
β2(z)

·
1

β2(z)
ψ(z) = f −

[g, ϕ(z̄)]
c1(z)
c2(z)

− β1(z)
β2(z)

· ϕ(z). (4.31)

If å(z)−a(z) = 0 for some z ∈ ρ(A)∩ρ(Å), then by property (E) of B1 we have
f1 = f and c1(z) = b(z), c2(z) = 0. By property (E) of B2 we have c1(z) 6= 0.
Thus, also in this case (4.31) holds true.

However, since −β1(z)
β2(z)

is the Q-function of (S1, A) corresponding to the

defect family ϕ(z), cf. Step 3 of the proof of Theorem 4.19, the formula (4.31)
is nothing else, but Krein’s fomula for generalized resolvents of S1, see (0.2.4).

Step 4: Let W (z) be the u-resolvent matrix of S1 constructed by means of
Definition 0.4.8 with the selfadjoint extension A, the regularized u-resolvent

r(z) = α2(z)
β2(z)

, and the Q-function −β1(z)
β2(z)

, see Step 5 of the proof of Theorem
4.19.

By Theorem 0.4.9 and (4.31) we get that

r̊(z) = W (z) ⋆
c1(z)

c2(z)

is a generalized u-resolvent of S1 induced by Å. Moreover, by Step 6 of the
proof of Theorem 4.19 W (z)J = ω(B1)(z), and hence,

r̊(z) = ω(B1)(z) ⋆−
c2(z)

c1(z)
= ω(B1)(z) ⋆

ν1(z)

ν2(z)
= q(z). (4.32)

Step 5: In Step 2 of the present proof we saw that fz = ξR−
z u for some ξ ∈

C \ {0}.
To compute the actual value of ξ we employ (0.3.8) and the fact that ((A−

z)−1)−u = γ(z), cf. Step 5 of the proof of Theorem 4.19. This gives

P1R
−
z u = γ(z) −

[u, (ϕ(z̄); z̄ϕ(z̄))]±
c1(z)
c2(z)

− β1(z)
β2(z)

· ϕ(z) =

γ(z) +
1

β2(z)
·
[u, (ψ(z̄); z̄ψ(z̄))]±

c1(z)
c2(z)

− β1(z)
β2(z)

· ϕ(z) = γ(z) +
1

β2(z)
c1(z)
c2(z)

− β1(z)
· ϕ(z).

Since γ(z), ϕ(z) ∈ P1 we obtain

[γ(z), P1R
−
wu] = [γ(z), γ(w)] +

1
(
c1(w)
c2(w)

)

β2(w̄) − β1(w̄)
· [γ(z), ϕ(w)]

and

[ϕ(z), P1R
−
wu] = [ϕ(z), γ(w)] +

1
(
c1(w)
c2(w)

)

β2(w̄) − β1(w̄)
· [ϕ(z), ϕ(w)].
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On the other hand, by the definition of fz and by Corollary 4.2, we have

((P1fz; zP1fz); (

(
1

−q(z)

)

;

(
α1(z) − q(z)β1(z)

α2(z) − q(z)β2(z)

)

)) ∈ Γ1 .

Hence, by Green’s identity, and by (4.15) and (4.16),

(z − w̄)[γ(z), P1fw] = [zγ(z), P1fw] − [γ(z), wP1fw] =

(
1

−q(w)

)∗

J

(
−1
α2(z)
β2(z)

)

−

(
α1(w) − q(w)β1(w)

α2(w) − q(w)β2(w)

)∗

J

(
− 1
β2(z)

0

)

=

−
α2(z)

β2(z)
+ q(w̄) − (α2(w̄) − q(w̄)β2(w̄)) ·

1

β2(z)
,

and (z − w̄)[ϕ(z), P1fw] coincides with

(
1

−q(w)

)∗

J

(
0

− 1
β2(z)

)

−

(
α1(w) − q(w)β1(w)

α2(w) − q(w)β2(w)

)∗

J

(
−β1(z)
β2(z)

−1

)

=

1

β2(z)
− α1(w̄) + q(w̄)β1(w̄) + (α2(w̄) − q(w̄)β2(w̄))

β1(z)

β2(z)
.

From (4.32) and the fact that detω(B1)(w̄) = 1 we get

q(w̄) =

α2(w̄)
β2(w̄) (β2(w̄) c1(w̄)

c2(w̄) − β1(w̄)) + α2(w̄)
β2(w̄)β1(w̄) − α1(w̄)

β2(w̄) c1(w̄)
c2(w̄) − β1(w̄)

=

=
α2(w̄)

β2(w̄)
−

1

β2(w̄)

1

β2(w̄) c1(w̄)
c2(w̄) − β1(w̄)

.

Hence,

(z − w̄)[γ(z), P1fw] = −
α2(z)

β2(z)
+
α2(w̄)

β2(w̄)
−

−
1

β2(w̄)
·

1

β2(w̄) c1(w̄)
c2(w̄) − β1(w̄)

−
1

β2(w̄) c1(w̄)
c2(w̄) − β1(w̄)

·
1

β2(z)
=

= −

(
α2(z)

β2(z)
−
α2(w̄)

β2(w̄)

)

−
1

β2(w̄) c1(w̄)
c2(w̄) − β1(w̄)

(
−1

β2(z)
−

−1

β2(w̄)

)

.

(z − w̄)[ϕ(z), P1fw] =
1

β2(z)
− α1(w̄) +

α2(w̄)β1(w̄)

β2(w̄)
−

−
β1(w̄)

β2(w̄)
·

1

β2(w̄) c1(w̄)
c2(w̄) − β1(w̄)

+
1

β2(w̄) c1(w̄)
c2(w̄) − β1(w̄)

·
β1(z)

β2(z)

= −

(
−1

β2(z)
−

−1

β2(w)

)

−

(
−β1(z)

β2(z)
−

−β1(w̄)

β2(w̄)

)
1

β2(w̄) c1(w̄)
c2(w̄) − β1(w̄)

.
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Therefore, according to relations (4.19) and (4.20), [γ(z), P1fw] coincides with
[γ(z),−P1R

−
wu] and [ϕ(z), P1fw] coincides with [ϕ(z),−P1R

−
wu]. By the com-

plete non-selfadjointness the vectors γ(z), ϕ(z) span P1 and, hence, −P1R
−
wu =

P1fw. If this vector does not vanish for at least one w ∈ r(S), we get ξ = −1.
If this vector always vanishes, then ((0; 0); (

(
−1
q(w)

)
;
(
b1
b2

)
)) ∈ Γ1 and

(((I−P1)fw;w(I−P1)fw); (
(
b1
b2

)
; 0)) ∈ Γ2 for some b1, b2 ∈ C. Therefore

(
−1
q(w)

)
=

(
b1
b2

)
and mul Γ1 = span

{
(
(

−1
−q(w)

)
;
(

−1
−q(w)

)
)
}

for all w ∈ r(S). From this see

that q(w) is constant. Moreover, J
(

−1
q(w)

)
spans v(B2)(z) and, hence, q(w) =

ν1(w)
ν2(w) . ❑

4.25 Remark. Assume that in the previous theorem it is the case that q(z) =
ν1(z)
ν2(z) , z ∈ r(S), and that this function is a real constant such that mul Γ1 =

span
{
(
(

−1
−q(z)

)
;
(

−1
−q(z)

)
)
}
.

If in addition mul Γ2 = {(0; 0)}, then, since according to Lemma 4.14 q(z) =
ν1(z)
ν2(z) is a Q-function corresponding to the defect family (I−P1)fz ∈ ker(T2−z),

the span of these defect vectors is a neutral subspace. In particular, P2 must
have at least one negative square.

If mul Γ2 6= {(0; 0)}, then according to Remark 4.13 mulΓ2 is spanned by
(

−1
q(w)

)
. But this is impossible since we impose condition (LI) of Proposition

IV.6.2. �

4.26 Remark. By Remark 4.18 the fact that ρ(Å) 6= ∅ is equivalent to the fact
that the denominator in (4.26) does not vanish identically. �

d. The matrix ω(B(W )) induced by W ∈ M<∞.

We will now show that the constructions of ω(.) and B(.) are in a sense converse
to each other. First, let W ∈ M<∞ be given. Then the construction of ω(.)
can be applied to the boundary triplet B(W ). It is easy to compute ω(B(W )).

4.27 Proposition. Let W ∈ M<∞, W 6= I. Then ω(B(W )) = W .

Proof. We have

(
(HW (z, .)

(
1

0

)

; zHW (z, .)

(
1

0

)

); (

(
1

0

)

;W (z)∗
(

1

0

)

)
)
∈ Γ(W ) ,

(
(HW (z, .)

(
0

1

)

; zHW (z, .)

(
0

1

)

); (

(
0

1

)

;W (z)∗
(

0

1

)

)
)
∈ Γ(W ) .

Thus

φ(z) = HW (z, .)

(
1

0

)

, ψ(z) = HW (z, .)

(
0

1

)

α(z) = W (z)∗
(

1

0

)

, β(z) = W (z)∗
(

0

1

)

and it follows that

ω(B(W ))(z) =
(
α(z)|β(z)

)T
=
(
W (z)∗

)T
= W (z) .

❑
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Secondly, let a boundary triplet B which has defect 2 and satisfies (E) be
given. Then we can consider the boundary triplet B(ω(B)). It is equally easy
to relate it with B.

4.28 Proposition. Let B be a boundary triplet which has defect 2 and satisfies
(E). Let φ(z) and ψ(z) be the elements constructed in Lemma 4.1, assume that
S is completely non-selfadjoint. Moreover, let Θ : K(ω(B)) → P be the unitary
operator defined in Remark 4.6.

Then the pair (Θ; id) is an isomorphism between the boundary triplets
B(ω(B)) and B.

Proof. By Lemma 2.12 and the definition of B(ω(B)) it is enough to show that

(

(Θ × Θ)
(
Hω(B)(w, .)v;wHω(B)(w, .)v

)
;
(
v;ω(B)(w)∗v

))

∈ Γ, w ∈ C, v ∈ C2 .

(4.33)
By linearity, it is enough to consider the cases v =

(
1
0

)
and v =

(
0
1

)
. However,

we have

Θ
(
Hω(B)(w, .)

(
1

0

)
)

= φ(w), ω(B)(w)∗
(

1

0

)

= α(w) ,

Θ
(
Hω(B)(w, .)

(
0

1

)
)

= ψ(w), ω(B)(w)∗
(

0

1

)

= β(w) ,

and thus (4.33) follows from the defining relations for α and β. ❑

e. The matrix ω(B(h)) induced by a general Hamiltonian.

Let h ∈ H<∞. The construction of ω(.) can be applied to the boundary triplet
B(h). Properties of the boundary triplet B(h) reflect in properties of ω(B(h)).

4.29 Proposition. Let h be a regular general Hamiltonian. Then ω(B(h)) ∈
M<∞ and

ind− ω(B(h)) =
n∑

i=1

(
∆i + [

ö

2
]
)

+
∣
∣
{
1 ≤ i ≤ n : öi odd, ci,1 < 0

}∣
∣ .

The map Ξ defined by (4.12) for f ∈ P(h) is an isometric isomorphism of P(h)
onto K(ω(B(h))).

Proof. We have r(S(h)) = C, hence ω(B(h)) is entire. Moreover, S(h) is com-
pletely nonselfadjoint. We need to show that

ω(B(h))(0) = I . (4.34)

In order to establish this relation we first consider positive definite and ele-
mentary indefinite general Hamiltonians, and then use the standard pasting
argument.

If h is positive definite, i.e. h is just a Hamiltonian H(t), t ∈ (s−, s+),
then any constant C2-valued function f(t) :=

(
a
b

)
satisfies f ′ = JH

(
0
0

)
. Hence,

((f ; 0); (
(
a
b

)
;
(
a
b

)
)) ∈ Γ(H), cf. Subsections IV.2.1.c and IV.2.1.d. If h is an

elementary indefinite Hamiltonian of type (A), then we see from Definition
IV.4.11 and Definition IV.4.12 that

(
(χ−

(
1

0

)

+ χ+

(
1

0

)

; 0); (

(
1

0

)

;

(
1

0

)

)
)
,
(
(p0; 0); (

(
0

1

)

;

(
0

1

)

)
)
∈ Γ(h) .
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Finally, if h is an elementary indefinite Hamiltonain of type (B) or (C), then we
see from Definition IV.4.3 and Definition IV.4.5 that

(
(0; 0); (

(
1

0

)

;

(
1

0

)

)
)
,
(
(p0; 0); (

(
0

1

)

;

(
0

1

)

)
)
∈ Γ(h) .

In all these cases we have ω(B(h))(0) = I.
Next let h be an arbitrary regular general Hamiltonian, and let Hamiltonians

hl, l = 0, . . . , N , be defined as in Remark 3.36. By Corollary 4.8 and Proposition
4.10 we conclude from (3.9) that

ω(B(h))(z) =	γ0 ω(B(h0))(z) · . . . · 	γN
ω(B(hN ))(z) .

Evaluating at z = 0 yields (4.34).
The relation (4.34) gives

ξTγ+ π
2
ω(B(h))(0)ξγ+ π

2
= 1 ,

and hence the hypothesis (4.23) is satisfied for all but at most one value of
γ ∈ [0, π). An application of Corollary 4.21 yields the desired assertion. ❑

From Remark 3.42, Proposition 4.7 for 	α and from Remark 3.43 together
with Lemma 4.9 und Proposition 4.7 for rev we immediately obtain the following
compatibility result.

4.30 Lemma. For h be a regular general Hamiltonian and α ∈ R we have
ω(B(	α h)) =	α ω(B(h)) and ω(B(rev h)) = revω(B(h)). ❑

For elementary indefinite Hamiltonians h of kind (B) or (C), the matrix ω(B(h))
can be computed explicitly.

4.31 Proposition. Let h be an elementary indefinite Hamiltonian of kind (B)
or (C) which consists of the data

H(t), t ∈ [s−, σ) ∪ (σ, s+] ,

ö ∈ N ∪ {0}, b1, . . . , bö+1 ∈ R, d0 ∈ R, d1 = 0 ,

subject to the conditions of Definition IV.4.1. Then

ω(B(h))(z) =

(
1 0

−zd0 + z2bö+1 + . . .+ zö+2b1 1

)

.

Proof. In both cases, kind (B) or (C), we have mul Γ(h) = span{(
(
1
0

)
;
(
1
0

)
)}, cf.

Lemma IV.4.19. Hence,

φ(z) = 0, α(z) =

(
1

0

)

.

If h is of kind (C), trivially ker(T − z) = span{p0}. In fact, (p0; zp0) = (p0; 0)+
z(0; p0), which shows that Λ(p0; zp0) =

(
zd0
1

)
, and thus

(
(p0; zp0); (

(
0

1

)

;

(
−zd0

1

)

)
)
∈ Γ(h) . (4.35)
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Hence

ψ(z) = p0, β(z) =

(
−zd0

1

)

.

Assume now that h is of kind (B). In this case

ker(T − z) = span
{
p0 +

ö∑

j=0

µjδj
}
,

with

µj :=

ö−j
∑

k=0

zk+1b1+ö−j−k, j = 0, . . . , ö .

To see this, note that by the definition of µj we have µj−1 − zµj = zbö−j+2,

j = 1, . . . , ö, and remember b =
∑ö+1

l=1 blδ1+ö−l. Hence,

(
p0 +

ö∑

j=0

µjδj ; zp0 +

ö∑

j=0

zµjδj
)

=

= (p0; 0) +

ö∑

j=1

zµj(δj−1; δj) + z(b; p0 + d0δ0) + z(µ0 − d0)(0; δ0) .

Hence

Λ
(
p0 +

ö∑

j=0

µjδj ; zp0 +

ö∑

j=0

zµjδj
)

=

(
z(d0 − µ0)

1

)

,

and therefore

((
p0 +

ö∑

j=0

µjδj ; zp0 +

ö∑

j=0

zµjδj
)
;
(
(

0

1

)

;

(
−zd0 + zµ0

1

)
))

∈ Γ(h) .

It follows that

ψ(z) = p0 +

ö∑

j=0

µjδj , β(z) =

(
−zd0 +

∑ö
k=0 z

k+2b1+ö−k
1

)

.

❑

4.32 Corollary. Let h be a regular general Hamiltonian given by the data

h(t)ξφξ
T
φ , t ∈ [s−, σ) ∪ (σ, s+] ,

ö ∈ N ∪ {0}, b1, . . . , bö+1 ∈ R, d0 ∈ R, d1 = 0 ,

where h is locally integrable on [s−, σ) ∪ (σ, s+],
∫ σ

s−
h =

∫ s+
σ

= ∞, and where

either b1 6= 0 or d0 < 0, ö = 0, b1 = 0. Then

ω(B(h))(z) =	 π
2
−φ

(
1 0

−zd0 + z2bö+1 + . . .+ zö+2b1 1

)

Proof. Under the present hypothesis the general Hamiltonian 	φ−π
2

h is ele-
mentary indefinite of kind (B) or (C). The assertion follows from Proposition
4.31 and compatibility with 	γ , Lemma 4.30. ❑
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4.33 Remark. Let h be a positive definite regular Hamiltonian which consists of
just one indivisible interval, i.e. let h = H where H(t) = h(t)ξφξ

T
φ , t ∈ (s−, s+),

where h is some non-negative integrable scalar function. Let us show that

ω(B(h))(z) =	 π
2
−φ

(
1 0

−z
∫ s+
s−

h 1

)

= W
(
R s+

s−
h,φ)

(z) .

The same argument as in Corollary 4.32 shows that it is enough to consider
the case φ = π

2 . Hence, assume that φ = π
2 . Then, by the considerations in

[KW/IV, §2.1.e], we have mul Γ(H) = span{(
(
1
0

)
;
(
1
0

)
)}, and therefore

φ(z) = 0, α(z) =

(
1

0

)

.

Moreover,

(
(

(
−z
∫ x

s−
h

1

)

; z

(
−z
∫ x

s−
h

1

)

); (

(
0

1

)

;

(
−z
∫ s+
s−

h

1

)

)
)
∈ Γ(H) ,

and hence

ψ(z) =

(
−z
∫ x

s−
h

1

)

, β(z) =

(
−z
∫ s+
s−

h

1

)

.

We conclude that

ω(B(h)) =

(
1 0

−z
∫ s+
s−

h 1

)

�

4.34 Remark. Let h be a positive definite singular Hamiltonian which consists of
just one indivisible interval, i.e. let h = H where H(t) = h(t)ξφξ

T
φ , t ∈ (s−, s+),

where h is non-negative scalar function, which is integrable on all subintervals
(s−, t) ⊆ (s−, s+). Let us show that

v(B(h))(z) =	 π
2 −φ

(
0

1

)

= span{ξφ}.

Note that the boundary triplet B(h) induced by the singular positive definite
Hamiltonian has defect 1 an satisfies property (E), see [KW/IV, §2.1.e]. There-
fore, v(B(h))(z) is well-defined, cf. Definition 4.11.

The same argument as in Corollary 4.32 shows that it is enough to consider
the case φ = π

2 . Hence, assume that φ = π
2 . By the considerations in [KW/IV,§2.1.e], we have mul Γ(H) = span{(

(
1
0

)
; 0)}, and therefore (see Remark 4.13)

v(B(h))(z) = span{J

(
1

0

)

} = span{ξπ
2
}.

�

Let us make explicit the following compatibility of ω(.) with splitting of h.

4.35 Lemma. Assume that h ∈ H<∞ is regular, and let {r0, . . . , rm+1}, r0 <
r1 < . . . < rm+1, be a finite subset of I such that

r0 = σ0, rm+1 = σn+1, ri ∈ Ireg, i = 1, . . . ,m .
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Then we have

ω(B(h)) =

m∏

i=0

ω(B(hri↔ri+1)) , (4.36)

and

K
(
ω(B(h))

)
= K

(
ω(B(hr0↔r1))

)
⊕ ω(B(hr0↔r1)) · K

(
ω(B(hr1↔r2))

)
⊕ . . .

. . .⊕
m−1∏

i=0

ω(B(hri↔ri+1)) · K
(
ω(B(hrm↔rm+1))

)
.

Proof. With the notation from Definition 3.47 by Lemma 3.44 we may apply
Proposition 4.7 with φ̂ = id and then Proposition 4.10 to conclude that (4.36)
holds. The relation between reproducing kernel spaces follows from Corollary
4.23. ❑

4.36 Remark. According to Remark 3.51 we obtain from Lemma 4.35 that past-
ing of general Hamiltonians is also compatible with building ω(.):

Let hi, i = 1, . . . ,m, be general Hamiltonians. If (¬paste) fails for each two
consequtive Hamiltonians, then

ω(B(

m⊎

i=0

hi)) =

m∏

i=0

ω(B(hi)).

Moreover, the reproducing kernel spaces are connected as in Lemma 4.35. �

Let h be a regular general Hamiltonian. Observe that, by Proposition 4.31,
Corollary 4.32, and Remark 4.33, we have computed ω(B(h)) explicitly in those
cases when mul Γ(h) 6= {0}. If mul Γ(h) = {0}, this will in general not be
possible. However, ω(B(h)) can be represented with help of the function Ψac(h) :
T (h) → AC(I) ×M(I)/=H

, which was defined in Remark IV.8.9.

4.37 Remark. Let h be a regular general Hamiltonian defined on the set I =
⋃n
i=0(σi, σi+1), and assume that mul Γ(h) = {0}. Let φ(z) and ψ(z) be as in

Lemma 4.1. Then

ω(B(h))(z) =
(
πlΨ

ac(h)(φ(z); zφ(z))(σ0) |πlΨ
ac(h)(ψ(z); zψ(z))(σn+1)

)T
.

This is obvious from the last lines of Remark IV.8.9, cf. the bottom line on
[KW/IV, p.827]. �

5 Construction of the maximal chain

In this section we turn to the actual construction of the chain ωh : I ∪ {σ0} →
M<∞ associated with the general Hamiltonian h. After the definition of ωh, we
will prove the following theorem:

5.1 Theorem. Let h be a general Hamiltonian defined on I =
⋃n
i=0(σi, σi+1). If

h is regular, then ωh is the finite maximal chain going downwards from ω(B(h)).
If h is singular, then ωh|I is a maximal chain. In either case, we have ind− h =
ind− ωh.
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Moreover, by means of this result, the following definition is meaningful, cf.
Lemma II.8.2:

5.2 Definition. Let h be a singular general Hamiltonian. The function

qh := q∞(ωh)

is called the Weyl coefficient of h. �

The content of this section is arranged in five subsections:

a. We give the definition of ωh, and prove some of its properties.
b. In this subsection we give the proof of Theorem 5.1 for the case that h is
regular. This is done by invoking Proposition 3.10.
c. The case of a singular general Hamiltonian can easily be reduced to the
regular case.
d. We show compatibility of the assignment h 7→ ωh with the previously
defined operations 	γ , rev, and with pasting.
e. We give a representation of qh as a Q-function.

a. Construction of ωh.

In the following let h always denote a (regular or singular) general Hamiltonian.

5.3 Definition. In the singular case let t ∈ I∪{σ0} be given and in the regular
case let t ∈ I ∪ {σ0, σn+1} be given. For the definition of ωh(t) we distinguish
the following cases. First we deal with the cases that t is not contained in an
indivisible interval.

(i) If t = σ0, put ωh(t) := I.

(ii) If h is regular and t = σn+1, put ωh(t) := ω(B(h)).

(iii) If t ∈ I \ Ising, define ωh(t) := ω(B(h�t)).

It remains to define ωh(t) if t is inner point of some indivisible interval. Assume
that (t−, t+) ⊆ I is the maximal indivisible interval which contains t, and write
H(t) = h(t)ξφξ

T
φ , t ∈ (t−, t+), where φ ∈ [0, π) is the type of the indivisible

interval and h is some locally integrable scalar function.

(iv) If t− ∈ I ∪ {σ0}, and hence belongs to Ireg ∪ {σ0}, define

ωh(t) := ωh(t−) ·W(l−(t),φ) , (5.1)

where l−(t) :=
∫ t

t−
h(t) dt.

(v) Assume that t− 6∈ I∪{σ0}. Then we must have t+ ∈ I∪{σn+1}, cf. axiom
(H2) in Definition 3.35, and hence t+ ∈ Ireg ∪ {σn+1}, where the case

t = σn+1 can occur only if h is regular. In this case set l+(t) :=
∫ t

t+
h(t) dt

(< 0), and define
ωh(t) := ωh(t+) ·W(l+(t),φ) . (5.2)

�
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First of all note that ωh(t) actually always does belong to M<∞. If t ∈
(I ∪ {σ0}) \ Ising, this was said in Proposition 4.29, otherwise it follows because
M<∞ is closed with respect to products and W(l,φ) ∈ M0 ∪M1.

We will frequently employ our standard splitting-and-pasting method. In
order to do so, it is practical to note explicitly:

5.4 Lemma. Let s, s′ ∈ (I ∪ {σ0}) \ Ising, s < s′, be given. Then

ωh(t) = ωh(s)ωhs↔s′
(t), t ∈ (I ∪ {σ0}) ∩ [s, s′] . (5.3)

Proof. Let t ∈ (I ∪ {σ0}) ∩ [s, s′] be fixed. If t = s, we have ωhs↔s′
(t) = I and

hence (5.3) holds.
Assume next that t ∈ Ireg, t > s. We employ Remark 3.48 to obtain

ωhs↔s′
(t) = ω

(
B
(
(hs↔s′ )�t

))
= ω(B(hs↔t)) ,

and hence

ωh(t) = ω(B(h�t)) = ω(B((h�t)�s)) · ω(B((h�t)s�)) =

= ω(B(h�s)) · ω(B(hs↔t)) = ωh(s) · ωhs↔s′
(t) .

Note here that
Ireg(hs↔s′ ) = Ireg(h) ∩ (s, s′) . (5.4)

since the Hamiltonian functions of hs↔s′ are just restrictions of the Hamiltonian
functions of h.

Assume now that we are in the case (iv) if Definition 5.3. Note that, by (5.4)
and s ∈ Ireg, case (iv) prevails for h if and only if it does for hs↔s′ . Moreover,
we must have t− ≥ s. Clearly, the magnitudes φ and h(t) are the same for h

and hs↔s′ . Hence, by what we have already proved,

ωh(t) = ωh(t−)W(l−(t),φ) = ωh(s) · ωhs↔s′
(t−)W(l−(t),φ) = ωh(s) · ωhs↔s′

(t) .

If we are in case (v) of Definition 5.3 for h and thus also for hs↔s′ , we can
proceed in the same manner. We must have t+ ≤ s′, and the magnitudes φ and
h(t) are the same for h and hs↔s′ . Hence

ωh(t) = ωh(t+)W(l+(t),φ) = ωh(s) · ωhs↔s′
(t+)W(l+(t),φ) = ωh(s) · ωhs↔s′

(t) .

❑

With the help of Proposition 4.31 – Remark 4.37, we can determine ωh ex-
plicitly if mul Γ(h) 6= {0}, and at least represent it in terms of Ψac(h) otherwise.

5.5 Proposition. Let h be a regular general Hamiltonian.

(i) Assume that h is positive definite and consists of just one indivisible in-
terval, and write h = H with H(t) = h(t)ξφξ

T
φ , t ∈ [s−, s+]. Then

ωh(t) = W(l−(t),φ), t ∈ [s−, s+] ,

where l−(t) :=
∫ t

s−
h.
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(ii) Assume that h is given by the data

h(t)ξφξ
T
φ , t ∈ [s−, σ) ∪ (σ, s+] ,

ö ∈ N ∪ {0}, b1, . . . , bö+1 ∈ R, d0 ∈ R, d1 = 0 ,

where h is locally integrable on [s−, σ) ∪ (σ, s+],
∫ σ

s−
h =

∫ s+
σ

h = ∞, and

where either b1 6= 0 or d0 < 0, ö = 0, b1 = 0. Then

ωh(t)(z) = W(l−(t),φ)(z) =	 π
2 −φ

(
1 0

−zl−(t) 1

)

, t ∈ [s−, σ) .

ωh(t)(z) =	 π
2
−φ

(
1 0

−z(l+(t)+d0)+z
2bö+1+. . .+zö+2b1 1

)

, t ∈ (σ, s+] ,

where l+(t) :=
∫ t

s+
h.

(iii) Assume that mul Γ(h) = {0}. Let φ(z) and ψ(z) be as in Lemma 4.1 for
B(h). Then

ωh(t)(z) =
(
πlΨ

ac(h)(φ(z); zφ(z))(t) |πlΨ
ac(h)(ψ(z); zψ(z))(t)

)T
,

t ∈ I ∪ {σ0} .

Proof. The assertions in (i) and (ii) are immediate from the definition of ωh

and Remark 4.33, Corollary 4.32.
In order to show (iii), consider first the case that t ∈ (I ∪ {σ0}) \ Ising. For

t = σ0, we have by Remark 4.37,

ωh(σ0)(z) = I =
(
πlΨ

ac(h)(φ(z); zφ(z))(σ0) |πlΨ
ac(h)(ψ(z); zψ(z))(σ0)

)T
.

If t > σ0, we obtain from (3.15) and Remark 4.37 that

ωh(t)(z) = ω(B(h�t))(z) =

=
(
πlΨ

ac(h�t)(φ(h�t)(z); zφ(h�t)(z))(t) |πlΨ
ac(h�t)(ψ(h�t)(z); zψ(h�t)(z))(t)

)T
=

=
(
πlΨ

ac(h)(φ(h)(z); zφ(h)(z))(t) |πlΨ
ac(h)(ψ(h)(z); zψ(h)(z))(t)

)T
.

Next observe that, by Remark IV.8.9, Ψac maps T (h) into T (H), and that the
definition of Ψac ensures that

πrΨ
ac(h)(f ; zf) = zπlΨ

ac(h)(f ; zf), f ∈ ker(T (h) − z) .

Thus the matrix function

M(t, z) :=
(
πlΨ

ac(h)(φ(z); zφ(z))(t) |πlΨ
ac(h)(ψ(z); zψ(z))(t)

)T
,

t ∈ I ∪ {σ0}, z ∈ C ,

satisfies the differential equation

∂

∂t
M(t, z)J = zM(t, z)H(t), t ∈ I .
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Assume now that t ∈ Ising is given, so that either case (iv) or (v) of Definition
5.3 prevails. If we have t− ∈ I ∪ {σ0}, then M(t, z) is the (unique) solution of
the initial value problem

∂

∂t
W (t, z)J = zW (t, z)H(t), t ∈ [t−, t+), W (t−, z) = M(t−, z) .

Since (t−, t+) is indivisible, however, this equation is easily solved on this inter-
val and we obtain

M(t, z) = M(t−, z)W(l−(t),φ), t ∈ [t−, t+) .

By what we have already shown, it now follows that

ωh(t) = ωh(t−) ·W(l−(t),φ) = M(t−, .) ·W(l−(t),φ) = M(t, .), t ∈ (t−, t+) .

The case that t− 6∈ I ∪ {σ0} can be treated in a completely similar manner,
since then the function M(t, z) is the (unique) solution of

∂

∂t
W (t, z)J = zW (t, z)H(t), t ∈ (t−, t+], W (t+, z) = M(t+, z) .

❑

5.6 Corollary. The function ωh : I ∪ {σ0} → M<∞ is locally absolutely con-
tinuous and satisfies the differential equation

∂

∂t
ωh(t)(z)J = zωh(t)(z)H(t), t ∈ I, ωh(σ0) = I , (5.5)

and ωh(σn+1) = ω(B(h)) in case h is regular.

Proof. If h is regular, this is obvious from the above proposition and its proof.
Consider the case that h is singular. If s ∈ Ireg, then

ωh(t) = ωh�s
(t), t ≤ s ,

and hence ωh satisfies (5.5) on I ∩ (σ0, s). If sup Ireg = σn+1, we are done.
Otherwise, put s := sup Ireg. Then s ∈ Ireg and the interval (s, σn+1) is a
maximal indivisible interval, cf. axiom (H2) in Definition 3.35. By what we
know for the regular case, ωh|(I∪{σ0})∩[σ0,s] is locally absolutely continuous and
satisfies (5.5). However, it is apparent from the definition of ωh that ωh|[s,σn+1)

is locally absolutely continuous and satisfies (5.5). Thus also in this case the
desired assertion follows. ❑

5.7 Remark.

(i) Although the equation (5.5) looks like an initial value problem, actually
it is not: If h is indefinite, the set I is not connected. In particular, ωh

is not uniquely determined by (5.5). This is of course no surprise, since a
general Hamiltonian also contains the data öi, bij , dij , and this data does
not appear in (5.5).

(ii) We already see that the function ωh is closely related to the general Hamil-
tonian h, namely via the equation (5.5).
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(iii) If h = H is positive definite, then (5.5) is a proper initial value problem.
Hence, in this case, ωh coincides with the chain ωH previously defined, cf.
Proposition 3.23, (i).

�

b. Proof of Theorem 5.1, h regular.

We will employ Proposition 3.10 to show that, for a regular general Hamiltonian
h, the function ωh is a finite maximal chain.

The function ωh maps the set I ∪ {σ0}, which is of the form described in
Proposition 3.10, into M<∞, the matrix ω(B(h)) belongs to M<∞, and as we
have already noted the equalities in hypothesis (i) of Proposition 3.10 hold true.
The validity of hypothesis (iii) is an immediate consequence of the differential
equation (5.5), axiom (H1), and the classical theory of canonical systems:

5.8 Corollary. If s, s′ belong to the same connected component of I, s ≤ s′,
then

t(ωh(s′)) = t(ωh(s)) +

∫ s′

s

trH .

In particular, the function t(ωh(t)) is locally absolutely continuous and strictly
increasing on I and

lim
tրσi

t(ωh(t)) = +∞, lim
tցσi

t(ωh(t)) = −∞, i = 1, . . . , n .

❑

It is more exhausting to show that hypothesis (ii) of Proposition 3.10 holds
true.

5.9 Proposition. Let h be a regular general Hamiltonian, and let t ∈ I ∪{σ0}.
Then

ind− ωh(t) =

=
∑

i=1,...,n
σi<t

(
∆i + [

ö

2
]
)

+
∣
∣
{
1 ≤ i ≤ n : σi < t, öi odd, ci,1 < 0

}∣
∣ , (5.6)

ind−

(
ωh(t)−1ω(B(h))

)
=

=
∑

i=1,...,n
σi>t

(
∆i + [

ö

2
]
)

+
∣
∣
{
1 ≤ i ≤ n : σi > t, öi odd, ci,1 < 0

}∣
∣ . (5.7)

In particular, ind− ωh(t) is constant on each component of I ∪ {σ0}, and

ind− ω(B(h)) = ind− ωh(t) + ind−

(
ωh(t)−1ω(B(h))

)
.

Proof (of Proposition 5.9, Case t ∈ (I ∪ {σ0}) \ Ising). We know from Proposi-
tion 4.29 that

ind− ω(B(h)) =
∑

i=1,...,n

(
∆i + [

ö

2
]
)

+
∣
∣
{
1 ≤ i ≤ n : öi odd, ci,1 < 0

}∣
∣ .
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In the cases that t = σ0 or t = σn+1, the desired formulas (5.6) and (5.7) readily
follow.

Assume that t ∈ (σ0, σn+1). By the definition of ωh we have ωh(t) = ωh�t
,

and by Lemma 5.4 we have ωh(t)−1ω(B(h)) = ωht�
. Hence (5.6) and (5.7) follow

from Remark 3.45 and Proposition 4.29 applied to h�t and ht�, respectively. ❑

If t ∈ Ising, three cases may occur: If (t−, t+) is the maximal indivisible
interval which contains t, then

t−, t+ ∈ I ∪ {σ0} or t− ∈ I ∪ {σ0}, t+ 6∈ I ∪ {σ0} or

t− 6∈ I ∪ {σ0}, t+ ∈ I ∪ {σ0}

Proof (of Proposition 5.9, Case t−, t+ ∈ I ∪ {σ0}). Write H(t) = h(t)ξφξ
T
φ , t ∈

(t−, t+), and put l1 :=
∫ t

t−
h, l2 :=

∫ t+
t
h. Then, by the definition of ωh and by

(5.5), respectively,

ωh(t) = ωh(t−)W(l1,φ), ωh(t+) = ωh(t)W(l2,φ) .

Since l1, l2 ≥ 0 and hence W(li,φ) ∈ M0, it follows from the subadditivity of
ind− that

ind− ωh(t+) ≤ ind− ωh(t) ≤ ωh(t−) .

However, by what we have already proved, both of ωh(t−) and ωh(t+) are equal
to the number written on the right side of (5.6).

Similarly, we have

ωh(t)−1ω(B(h)) = W(l2,φ)ωh(t+)−1ω(B(h)) ,

ωh(t−)−1ω(B(h)) = W(l1,φ)ωh(t)−1ω(B(h)) ,

and hence

ind−

(
ωh(t−)−1ω(B(h))

)
≤ ind−

(
ωh(t)−1ω(B(h))

)
≤

≤ ind−

(
ωh(t+)−1ω(B(h))

)
.

Both numbers ind−(ωh(t−)−1ω(B(h))) and ind−(ωh(t+)−1ω(B(h))) are equal
to the number written on the right side of (5.7). ❑

The treatment of the case t− ∈ I ∪ {σ0}, t+ 6∈ I ∪ {σ0} is based on the
following result.

5.10 Lemma. Let (t−, t+) be a maximal indivisible interval with t− ∈ I ∪
{σ0}, t+ 6∈ I ∪ {σ0}, and let φ ∈ [0, π) and h(t) be such that H(t) = h(t)ξφξ

T
φ ,

t ∈ (t−, t+). Then

ξφ ∈ K
(
ωh(t−)−1ω(B(h))

)
, [ξφ, ξφ] ≤ 0 .

Proof. Let s := min(E ∩ (t+, σn+1]), then ĥ :=	φ−π
2

ht−↔s is elementary indef-
inite, cf. Lemma IV.8.4.

If ĥ is of kind (B) or (C), then by Proposition 4.31 and Proposition 2.8 we
have (

0

1

)

∈ K
(
ω(B(ĥ))

)
,
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[(0

1

)

,

(
0

1

)]

=

{

0 , ĥ kind (B)
1
d0

, ĥ kind (C)

Assume that ĥ is of kind (A). Since (t−, t+) is indivisible, we have χ−

(
0
1

)
= 0,

and hence
(
(0;−δ0); (

(
1

0

)

; 0)
)
∈ Γ(ĥ) .

By the abstract Green’s identity, cf. (IV.2.6),

[−δ0, φ(z)] − [0, zφ(z)] =

(
1

0

)∗

J

(
1

0

)

− α(z)∗J0 = 0 ,

[−δ0, ψ(z)] − [0, zψ(z)] =

(
0

1

)∗

J

(
1

0

)

− β(z)∗J0 = 1 .

(5.8)

Let Ξ be the isomorphism of P(ĥ) onto K(ω(B(ĥ))) defined by (4.12). Then the
formulas (5.8) give

(
0

1

)

= Ξ(−δ0) .

In particular,
(
0
1

)
∈ K(ω(B(ĥ))) and

[(0

1

)

,

(
0

1

)]

= [−δ0,−δ0] = 0 .

Referring to Lemma 2.5, we find that

ξφ = N−φ+ π
2

(
0

1

)

∈ K(ω(B(ht−↔s))), [ξφ, ξφ] ≤ 0 .

Finally, since t−, s ∈ Ireg, we may apply Lemma 3.44 with the general
Hamiltonian ht−↔s and the set {t−, s, σn+1}. It follows that K(ω(B(ht−↔s)))
is contained isometrically in K(ω(B(ht−�))). However, ωh(t−)−1ω(B(h)) =
ω(B(ht−�))). ❑

Proof (of Proposition 5.9, Case t− ∈ I ∪ {σ0}, t+ 6∈ I ∪ {σ0}). Let t ∈ (t−, t+),

then ωh(t−)−1ωh(t) = W(l,φ) where l :=
∫ t

t−
h > 0. We see from Lemma

5.10 and Proposition 2.8 that the space K(ωh(t−)−1ωh(t)) is contained in
K(ωh(t−)−1ω(B(h))) and that the inclusion map is contractive. By [ADSR,
Theorem 1.5.6], it follows that

ind−

(
Hωh(t−)−1ω(B(h)) −Hωh(t−)−1ωh(t)

)
=

= ind−Hωh(t−)−1ω(B(h)) − ind−Hωh(t−)−1ωh(t) = ind−Hωh(t−)−1ω(B(h)) .

However, we have

Hωh(t−)−1ω(B(h))(w, z) −Hωh(t−)−1ωh(t)(w, z) =

= ωh(t−)−1(z)ωh(t)(z) ·Hωh(t)−1ω(B(h))(w, z) · ωh(t)(w)∗ωh(t−)−∗(w) .

Since it is already known that the formula (5.7) holds for t−, it now follows that
(5.7) also holds for t.
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From ωh(t) = ωh(t−)W(l,φ), we have ind− ωh(t) ≤ ind− ωh(t−). On the other
hand

ω(B(h)) = ωh(t) ·
[
ωh(t)−1ω(B(h))

]
= ωh(t−) ·

[
ωh(t−)−1ω(B(h))

]
.

Using (5.7), which is already known for t and t−, and (5.6) for t−, it follows
that

ind− ω(B(h)) ≤ ind− ωh(t) + ind−

[
ωh(t)−1ω(B(h))

]
≤

≤ ind− ωh(t−) + ind−

[
ωh(t−)−1ω(B(h))

]
= ind− ω(B(h)) .

Thus equality must hold throughout, and we conclude that (5.6) holds also for
t. ❑

In the case t− 6∈ I ∪ {σ0}, t+ ∈ I ∪ {σ0} we proceed along similar lines.

5.11 Lemma. Let (t−, t+) be a maximal indivisible interval with t− 6∈ I ∪
{σ0}, t+ ∈ I ∪ {σ0}, and let φ ∈ [0, π) and h(t) be such that H(t) = h(t)ξφξ

T
φ ,

t ∈ (t−, t+). Then

ωh(t+)ξφ ∈ K(ωh(t+)),
[
ωh(t+)ξφ, ωh(t+)ξφ

]
≤ 0 .

Proof. Let s := max(E ∩ [σ0, t−)), then ĥ :=	φ−π
2

hs↔t+ is elementary indefi-
nite.

Assume first that ĥ is of kind (B) or (C), then by Proposition 4.31

ω(B(ĥ))

(
0

1

)

=

(
0

1

)

.

Combining this with Proposition 2.8, we obtain the desired assertion.
Next, assume that ĥ is of kind (A). Since (t−, t+) is indivisible, we have

χ+

(
0
1

)
= 0, and hence

(
(0; δ0); (0;

(
1

0

)

)
)
∈ Γ(ĥ) .

By the abstract Green’s identity,

[δ0, φ(z)] − [0, zφ(z)] =

(
1

0

)∗

J0 − α(z)∗J

(
1

0

)

= −α(z)2 ,

[δ0, ψ(z)] − [0, zψ(z)] =

(
0

1

)∗

J0 − β(z)∗J

(
1

0

)

= −β(z)2 .

(5.9)

Let Ξ be the isomorphism (4.12), then (5.9) yields

ω(B(ĥ))

(
0

1

)

= Ξ(−δ0) .

We conclude that ω(B(ĥ))
(
0
1

)
∈ K(ω(B(ĥ))) and

[

ω(B(ĥ))

(
0

1

)

, ω(B(ĥ))

(
0

1

)]

= [−δ0,−δ0] = 0 .

It follows that

ω(B(hs↔t+ ))ξφ = N−φ+π
2
ω(B(ĥ))

(
0

1

)

∈ K(ω(B(hs↔t+ ))) ,
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and [ξφ, ξφ] ≤ 0.
Since t+, s ∈ Ireg, we may apply Lemma 3.44 with the general Hamiltonian

h�t+ and the set {σ0, s, t+}. It follows that ω(B(h�s))K(ω(B(hs↔t+ ))) is con-
tained isometrically in K(ω(B(h�t+))). Since ωh(t+) = ω(B(h�s))ω(B(hs↔t+ )),
the assertion follows. ❑

Proof (of Proposition 5.9, Case t− 6∈ I ∪ {σ0}, t+ ∈ I ∪ {σ0}). Let t ∈ (t−, t+),

then ωh(t)−1ωh(t+) = W(l,φ) with l :=
∫ t+
t
h > 0. Thus, by Lemma 5.11, the

space ωh(t+)K(ωh(t)−1ωh(t+)) is contained contractively in ωh(t+). However,

ωh(t)ξφ = ωh(t+) · ωh(t+)−1ωh(t)
︸ ︷︷ ︸

=W(−l,φ)

ξφ = ωh(t+)ξφ ,

and hence also ωh(t)K(ωh(t)−1ωh(t+)) is contained contractively in K(ωh(t+)).
Appealing to [ADSR, Theorem 1.5.6], we find

ind−

(
Hωh(t+)(w, z) − ωh(t)(z)Hωh(t)−1ωh(t+)ωh(t)(w)∗

)
=

= ind−Hωh(t+)(w, z) − ind− ωh(t)(z)Hωh(t)−1ωh(t+)ωh(t)(w)∗ =

= ind−Hωh(t+)(w, z) .

However,

Hωh(t+)(w, z) − ωh(t)(z)Hωh(t)−1ωh(t+)ωh(t)(w)∗ = Hωh(t)(w, z) ,

and (5.6) follows. We have ωh(t)−1ω(B(h)) = W(l,φ) · ωh(t+)−1ω(B(h)), and
therefore

ind− ω(B(h)) ≤ ind− ωh(t) + ind− ωh(t)−1ω(B(h)) ≤

≤ ind− ωh(t+) + ind− ωh(t+)−1ω(B(h)) = ind− ω(B(h)) .

We see that also (5.7) holds. ❑

Finally, we will establish condition (iv) of Proposition 3.10. Thereby we will
use the following simple computation:

5.12 Lemma. Let φ, ψ ∈ C2, M =

(
a b
c d

)

∈ C2, and q ∈ C. Assume that

detM = 1, and
λ := d− cq 6= 0 . (5.10)

Then

(φ |ψ)M−T

(
1

q

)

= λ
[
φ− (M ⋆ (−q))ψ

]
.

Proof. We have

M−T =

(
d −c
−b a

)

,

and hence

(φ;ψ)M−T

(
1

q

)

= (φ;ψ)

(
d− cq

−b+ aq

)

= (d− cq)φ+ (−b+ aq)ψ =

= (d− cq)
[
φ− ψ

b− aq

d− cq

]
= λ

[
φ−

(
M ⋆ (−q)

)
ψ
]
.

(5.11)

❑
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5.13 Proposition. Let σ = σi be a singularity of h = (H, c, d). Then there
exists a number τ ∈ R ∪ {∞} such that

lim
tրσ

ωh(t)(z) ⋆ τ = lim
tցσ

ωh(t)(z) ⋆ τ .

Proof. Put r := max(E ∩ [σ0, σ)) and s := min(E ∩ (σ, σn+1]). Then ĥ :=	φi

hr↔s is elementary indefinite. For t ∈ [r, s] \ {σ} we have

ωh(t) = ωh(r)· 	−φi
ω

ĥ
(t) = ωh(r)N−φi

· ω
ĥ
(t)N−1

−φi
,

and hence
ωh(t) ⋆ (N−φi

⋆ τ) = ωh(r)N−φi
⋆
(
ω

ĥ
(t) ⋆ τ

)
.

Hence, it is enough to prove the stated assertion for elementary indefinite Hamil-
tonians.

Let h be an elementary indefinite Hamiltonians defined on [r, s] \ {σ}. If h

is of kind (B) or (C), then it is apparent from Proposition 5.5 that

ωh(t) ⋆ 0 = 0, t ∈ [r, s] \ {σ} .

The situation is more delicate if h is of type (A). By Corollary 5.6 the matrix
function ωh(t)(z), t ∈ [r, σ), is the solution of the initial value problem

∂

∂t
W (t, z)J = zW (t, z)H−(t), t ∈ [r, σ), W (r, z) = I , (5.12)

and ωh(s)(z)−1ωh(t)(z), t ∈ (σ, s], is the solution of

∂

∂t
W (t, z)J = zW (t, z)H+(t), t ∈ (σ, s], W (s, z) = I .

For each τ ∈ R ∪ {∞} the limits

qσ(z) := lim
tրσ

ωh(t) ⋆ τ, q(z) := − lim
tցσ

[
ωh(s)(z)−1ωh(t)(z) ⋆ τ

]

exist and do not depend on τ . By [HSW, Theorem 2.1] and [HSW, (6.5),(6.6)],
respectively, we have (as functions of t ∈ [r, σ) or t ∈ (σ, s], respectively)

ωh(t)(z)∗
(

1

−qσ(z)

)

∈ L2(H−) ,

[ωh(s)(z)−1ωh(t)(z)]∗
(

1

q(z)

)

∈ L2(H+) ,

(5.13)

where H− = H |[r,σ) and H+ := H |(σ,s]. Moreover, again by [HSW, (6.5)] the

function q(z) is identically equal to ∞ only if H+ is of the form h(t)
(
1
0

)
(1, 0) for

t ∈ (σ, s]. However, since the generalized Hamiltonian h is elementary of kind
(A) this is impossible, cf. (IV.4.1). Similarly, qσ(z) is not identically equal to
∞.

Put φ̃(z)(t) := Ψac((φ(z); zφ(z)))1(t) and ψ̃(z)(t) := Ψac((ψ(z); zψ(z)))1(t).
By Proposition 5.5 we have (φ̃(z)(t)|ψ̃(z)(t)) = ωh(t)(z)T .

Consider the element φ(z)− qσ(z)ψ(z) ∈ ker(T (h)− z). The relations (5.12)
and (5.13) imply φ̃(z)|[r,σ) − qσ(z)ψ̃(z)|[r,σ) ∈ L2(H−). By Lemma IV.5.13 this

implies that also φ̃(z)|(σ,s] − qσ(z)ψ̃(z)|(σ,s] ∈ L2(H+).
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On the other hand, writing

ωh(s)(z) =:

(
a(z) b(z)
c(z) d(z)

)

,

we obtain from (5.11) that (t ∈ (σ, s])

0 6= [ωh(s)(z)−1ωh(t)(z)]∗
(

1

q(z)

)

= ωh(t)(z)∗ωh(s)(z)−∗

(
1

q(z)

)

=

=
(
φ̃(z)(t); ψ̃(z)(t)

)
ωh(s)(z)−T

(
1

q(z)

)

=

= (d(z) − c(z)q(z))φ̃(z)(t) + (−b(z) + a(z)q(z))ψ̃(z)(t).

By (5.13) we see that this function belongs to L2(H+). Hence, φ̃(z)|(σ,s] −

qσ(z)ψ̃(z)|(σ,s] and (d(z)− c(z)q(z))φ̃(z)|(σ,s] +(−b(z)+a(z)q(z))ψ̃(z)|(σ,s] both
belong to ker(T (H+) − z). We know from [HSW] that this space is one-
dimensional. Thus, these functions must be collinear. In particular, λ(z) :=
d(z) − c(z)q(z) 6= 0, and by Lemma 5.12

φ̃(z)|(σ,s] − qσ(z)ψ̃(z)|(σ,s] = φ̃(z)|(σ,s] −
(
ωh(s)(z) ⋆ (−q(z))

)
ψ̃(z)|(σ,s] ,

i.e. qσ(z) = ωh(s)(z) ⋆ (−q(z)). By the definition of q, however,

ωh(s)(z) ⋆ (−q(z)) = lim
tցσ

ωh(t)(z) ⋆ τ = q(z) .

❑

We have by now shown that all the assumptions of Proposition 3.10 are satisfied,
and conclude that ωh is a finite maximal chain. ,

c. Reduction to the regular case.

It is easy to deduce the desired assertion of Theorem 5.1 for singular general
Hamiltonians from the already established regular case. To this end, let us note
the following: If h is a general Hamiltonian and s ∈ Ireg, then

ωh�s
(x) = ωh(x), x ∈ (I ∪ {σ0}) ∩ [σ0, s] .

In case x ∈ (I ∪ {σ0}) \ Ising, this is immediate from Remark 3.48, (i). For
x ∈ Ising, it follows the fact that ωh�s

(t) and ωh(t) are both solutions of the
differential equation (5.5).

Let a singular general Hamiltonian h be given. By what we already know,
for each s ∈ (I ∪ {σ0}) \ Ising, the function ωh|(I∪{σ0})∩[σ0,s] is a finite maximal
chain. If sup Ireg = σn+1, it follows from Remark 3.15 that ωh is a maximal
chain. Otherwise, put s := sup Ireg, then ωh|(I∪{σ0})∩[σ0,s] is a finite maximal
chain, and ωh|[s,σn+1) is a maximal chain which consists of just one indivisible
interval. Since s ∈ Ireg, the assumption of Proposition 3.17 is fullfilled, and we
conclude that ωh = ωh|(I∪{σ0})∩[σ0,s] ⊎ ωh|[s,σn+1) is a maximal chain.

Finally, by Theorem 4.20 and (3.8), we have for any s ∈ Ireg ∩ (σn, σn+1),

ind− h = ind− h�s = ind− ωh�s
(s) = ind− ωh(s) = ind− ωh .

84



d. Compatibilities.

It is important to know that the construction of ωh is compatible with rotation,
reversing, and pasting.

5.14 Lemma. If h is a general Hamiltonian and α ∈ R, then ω	αh =	α ωh.

Proof. If t ∈ (I ∪ {σ0}) \ Ising, t > σ0 or if t = σn+1 in the regular case,
then by Definition 5.3, ω	αh(t) = ω(B((	α h)�t)). By Remark 3.48 we have
(	α h)�t = (	α h�t). Hence Lemma 4.30

ω(B((	α h)�t)) =	α ω(B(h�t)) =	α ωh(t).

If t is an inner point of an indivisible interval of type φ for h, then t is an
inner point of an indivisible interval of type φ − α for 	α h. Therefore, using
(2.10) and (3.1) we see from (5.1) and (5.2), that also in the case we have
ω	αh(t) =	α ωh(t). ❑

5.15 Lemma. If h is a regular general Hamiltonian, then ωrev h = revωh.

Proof. If t ∈ (I∪{σ0, σn+1})\Ising, −t > σ0, then by Definition 5.3, ωrev h(−t) =
ω(B((rev h)�−t)). By Remark 3.48 we have (rev h)�−t = rev(h�t) and according
to Remark 3.50 and Remark 3.51 we obtain

rev(h) = rev(h�t ⊎ h�t) = rev(h�t) ⊎ rev(h�t).

From Lemma 4.35 and Lemma 4.30 we obtain

revω(B(h)) = ω(B(rev(h))) = ω(B(rev(h�t))) · ω(B(rev(h�t))) =

= ω(B(rev(h�t))) · revω(B(h�t)),

and hence by Definition 3.12

ω(B(rev(h�t)))(z) = revω(B(h))(z) · (revω(B(h�t))(z))
−1

=

= rev
(

(ω(B(h�t))(z))
−1 · ω(B(h))(z)

)

= (revωh)(−t)(z).

If t is an inner point of an indivisible interval of type φ for h, then −t is an
inner point of an indivisible interval of type −φ for rev h. Therefore, using the
fact that revW(l,φ) = W(l,−φ) we see from (5.1) and (5.2), that also in the case
we have ωrev h(t) = revωh(t). ❑

In order to consider pasting of general Hamiltonians and linking of chains
we need the following statement.

5.16 Proposition. The following assertions are equivalent:

(i) h starts with an indivisible interval of type α.

(ii) For some r ∈ I with (σ0, r) ⊆ I we have ωh(t) = W(
R

t
σ0
h,α), t ∈ [σ0, r).

(iii) ξα ∈ K(ωh(t)) for some t ∈ I.

(iv) ξα ∈ K(ωh(t)) for all t ∈ I.
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Proof. If h starts with an indivisible interval of type α, then on a certain interval
(σ0, r) ⊆ I we have H(t) = h(t)ξαξ

T
α . As t 7→W(

R

t
σ0
h,α), t ∈ [σ0, r), satisfies

∂

∂t
W(

R

t
σ0
h,α)(z)J = zW(

R

t
σ0
h,α)(z)H(t), a.e. on [σ0, r), W(

R

σ0
σ0

h,α)(z) = I,

it follows from (5.5), that ωh(t) = W(
R

t
σ0
h,α) on [σ0, r).

If ωh(t) = W(
R

t
σ0
h,α) =	 π

2
−α W(

R

t
σ0
h,π

2 ) for at least one t ∈ I, then due to

Corollary 2.9 we have ξα ∈ K(ωh(t)).
Since ωh is a maximal chain, we obtain from Corollary II.5.15 that if ξα ∈

K(ωh(t)) for one t ∈ I, then ξα ∈ K(ωh(t)) for all t ∈ I.
Assume now that ξα ∈ K(ωh(t)) for all t ∈ Ireg. Fix t ∈ Ireg.
If mul Γ(	α h�t) = span{(

(
0
1

)
;
(
0
1

)
)}, then due to Theorem IV.8.6, and

Lemma IV.4.19 and Section 2.e of [KW/IV], 	α−π
2

h�t must be elemenatry
indefinite of kind (B) or (C) or positive and indivisible of type π

2 . In any case
of these cases h�t starts with an indivisible interval of type α.

If mul Γ(	α h�t) 6= span{(
(
0
1

)
;
(
0
1

)
)}, then ξ0 ∈ K(ω	αh(t)) and we can apply

Theorem 4.19.
Due to Theorem 0.5.3 (S1 − a)−1Ξ−1(ξ0) = 0 for all a ∈ C, where

S1 = ker((πl,1 × πr) ◦ Γ(ω	αh�t
)). Hence, Ξ−1(ξ0) ∈ mulS1 or equivalently

((0; Ξ−1(ξ0)); (ξπ
2
; 0)) ∈ Γ(ω	αh�t

). As ξπ
2

= Jξ0 we obtain from Lemma 3.37
that 	α h�t starts with an indivisible interval of type 0, and, therefore, h�t starts
with an indivisible interval of type α. ❑

5.17 Remark. Let us state explicitly one consequence of the previous proof. We
saw that, if mul Γ(	α h�t) = span{(

(
0
1

)
;
(
0
1

)
)}, then h�t starts with an indivisible

interval of type α. �

5.18 Lemma. Let h1 and h2 be general Hamiltonians such that h1 is regular.
Then condition (¬paste) from Definition 3.49 fails for h1 and h2 if and only
condition (¬paste) from Proposition 3.17 fails for the correspoonding chains
ωh1 and ωh2 . In this case we have

ωh1⊎h2 = ωh1 ⊎ ωh2 .

Proof. By Proposition 5.16 h2 starts with an indivisible interval of type α if
and only if ωh2 does, and rev h1 starts with an indivisible interval of type −α
if and only if revωh1 = ωrev h1 does, see Lemma 5.15.Therefore, h1 ends with
an indivisible interval of type α if and only if ωh1 does. Hence, the conditions
(¬paste) from Definition 3.49 and from Proposition 3.17 correspond to each
other. Finally, ωh1⊎h2 = ωh1 ⊎ ωh2 follows easily from Definition 5.3 using
Remark 4.36. ❑

e. The Weyl coefficient as Q-function.

If h is a singular positive definite Hamiltonian, h = H : (σ0, σ1) → R2×2 which
does not consist of just one indivisible interval, it was proved in [HSW, Theorem
4.3] that the Weyl coefficient q of H is a Q-function of S(h). Actually, the
selfadjoint extension of S(h) which gives rise to q as a Q-function is the one
determined by the boundary condition π1f(σ0) = 0. Using the concept of
Titchmarsh-Weyl subspaces introduced in §4.b we are able to establish the exact
analogue of this result for singular general Hamiltonians.
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First of all note that for a singular general Hamiltonian h the bound-
ary triplet B(h) has defect 1 and satisfies (E), see Theorem IV.8.7. Hence,
v(B(h))(z) is well-defined.

Moreover, by the same theorem, we have mulS(h) = {0}. Therefore, except
in the case mul Γ(h) = span{(

(
0
1

)
; 0)} we may apply Lemma 4.14 to B(h) and

see that Å := ker(πl,1 ◦ Γ(h)) has non-empty resolvent set.

5.19 Proposition. Let h be a singular general Hamiltonian, and assume that
S(h) has defect index (1, 1), i.e. that h is not a positive definite Hamiltonian
which consists of just one indivisible interval.

With the notation from Lemma 4.14 applied to B(h) we have

qh(z) = q(z) .

Thus the Titchmarsh-Weyl coefficient of h is a Q-function of (S(h), Å).

Proof. Let s ∈ Ireg, then there exists at most one number α1 ∈ [0, π) such that
mul Γ 	α1 h�s = span

{
(
(
0
1

)
;
(
0
1

)
)
}
. Since q	αh =	α qh, cf. Lemma 3.13, and

since v(B(	α h)) = Nαv(B(h)), cf. Corollary 4.16, we may thus assume without
loss of generality that Theorem 4.24 is applicable.

First we consider the case that there exists a largest number s ∈ Ireg ∩
(σn, σn+1). Since h�s is positive and consists of just one indivisible interval of
some type φ we see from Remark 4.34 that

v(B(h�s))(z) = span{ξφ}.

Hence, by (4.26)
q(z) = ωh(s) ⋆ cotφ.

By [HSW, Example 2.2] we know that cotφ is the Titchmarsh-Weyl coefficient
of h�s. Hence, q(z) is the Titchmarsh-Weyl coefficient of h.

If there is no largest number s ∈ Ireg∩(σn, σn+1), there is a strictly increasing
sequence sk, k ∈ N∪{0}, in Ireg∩(σn, σn+1). As B(h�sk

) = B(h�s)⊎B(hs0↔sk
)

we have mul Γ�sk
= {0}, k ∈ N, see Proposition IV.6.2.

Thus we can apply Theorem 4.24 with B1 = B(h�sk
) and B2 = B(h�sk

), k ∈
N. By (4.26)

q(z) = ωh(sk) ⋆
νk1 (z)

νk2 (z)
, (5.14)

where (νk1 (z) νk2 (z))T is any non-zero element from v(B(h�sk
))(z). By Lemma

4.14 either
νk
1 (z)

νk
2 (z)

≡ ∞ or
νk
1 (z)

νk
2 (z)

is a Q-function in the Hilbert space P(h�sk
).

In any case
νk
1 (z)

νk
2 (z)

is a Nevanlinna function. Hence, letting k tend to ∞ in

(5.14) we obtain q(z) = qh(z). ❑

6 The Fourier transform

Let H be a singular positive definite Hamiltonian which does not start with
an indivisible interval of type zero and is not just one indivisible interval with
infinite length. Denote by µ the measure in the Herglotz–integral representation
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of its Weyl–coefficient qH . Then there exists an isomorphism, the Fourier–
transform associated with H , of L2(H) onto L2(µ). Thereby, the preimage of
the multiplication operator in L2(µ) is a certain selfadjoint extension of S(H).

In this section we will establish the analogous result for singular general
Hamiltonians h. The space h is thereby naturally substituted by P(h). On the
other side, the measure µ is substituted by a certain distribution ρ associated
to qh, and the space L2(µ) by the Pontryagin space Π(ρ), cf. [KW/II, §2, §3].

Before we turn to the definition and investigation of the Fourier transform,
we need a preparatory result.

6.1 Proposition. Let h be a general singular Hamiltonian which is not positive
definite and consist of just one indivisible interval. Then S(h) is densely defined
if and only if h does not start with an indivisible interval.

Moreover, the following assertions are equivalent

(i) h does not start with an indivisible interval of type 0.

(ii) The selfadjoint extension Å := ker(πl,1 ◦ Γ(h)) of S(h) is an operator.

(iii) For all t ∈ I the projection π2, which assignes to any function in K(ωh(t))
the second entry of this function, is injective.

(iv) ∞ is regular for the corresponding Weyl-coefficient qh, i.e. we have

limy→+∞
qh(iy)
y

= 0.

Proof. First note that, under our assumption on h, we have mul Γ(h) = {0}.
The relation S(h) is densely defined if and only if S∗(h) = T (h) is an opera-

tor. Since mulS(h) = {0}, cf. Theorem IV.8.7, by Lemma 3.37 this happens if
and only if h does not start with an indivisible interval.

The multivalued part of Å consists of all elements g ∈ mulT (h) such that
πl,1(Γ(h)(0; g)) = 0. Thus, again by mulS(h) = {0} and Lemma 3.37, the

assertion that mul Å = {0} is equivalent to the fact that h does not start with
an indivisible interval of type 0.

Finally, by Proposition 5.16 this is equivalent to ξ0 6∈ K(ωh(t)) for all t ∈ I.
However, by Corollary I.9.7 together with Proposition I.8.3, this is equivalent
to kerπ2 = {0}. By Lemma I.8.6 this means that K(ωh(t)) = K−(ωh(t)) and by
Theorem II.5.7 nothing else, but the fact that ∞ is regular for qh. ❑

6.2 Definition. Let h be singular generalized Hamiltonian. We say that an
element f ∈ P(h) is right finite, if for some r ∈ Ireg we have f ∈ P(h�r), when
we consider P(h�r) as subspace of P(h), cf. Lemma 3.44. The set of all right
finite elements of P(h) will be denoted by Pfin(h), i.e.

Pfin(h) :=
⋃

r∈Ireg

P(h�r) .

�

6.3 Lemma. The space Pfin(h) of right finite elements is a dense subspace of
P(h).
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Proof. As the last interval (σn, σn+1) of I contains regular points we have

Pfin(h) =
⋃

r∈Ireg∩(σn,σn+1)

P(h�r).

If Ireg ∩ (σn, σn+1) contains a maximal element, say r, then P(h�r) = L2(H)
with some purely indivisible Hamiltonian H . Hence P(h�r) = {0} and P(h�r) =
Pfin(h) = P(h).

If Ireg ∩ (σn, σn+1) does not possess a maximal element, then for each r ∈
Ireg ∩ (σn, σn+1) the Hamiltonian h�r is not purely indivisible. Still,

P(h�r) = L2(H) =
⋃

r<s∈Ireg

L2(H |[r,s]) .

Therefore,

Pfin(h) =
⋃

r<s∈Ireg

P(h�r) = P(h�r) ⊕
⋃

r<s∈Ireg

P(hr↔s) = P(h) .

❑

Assume that h is a singular generalized Hamiltonian which does not start with
an indivisible interval of type 0. Due to Remark 5.17 we have mulΓ(h�t) 6=
span{(

(
0
1

)
;
(
0
1

)
)}, t ∈ Ireg. Therefore, we Theorem 4.19 is applicable, and we

have the isometric isomorphism Ξt : P(h�t) → K(ω(B(h�t))) defined by (4.12).
Moreover, by Proposition 6.1, the projection π2 onto the second entry is

injective. This implies that condition (2.23) is satisfied, cf. Lemma I.8.6. Hence,
π2 : K(ω(B(h�t))) → P(Et) is an isometric isomorphism, where Et = w21− iw22

and ω(B(h�t)) = (wi,j)i,j=1,2. Thus also the map

Θt :

{
P(h�t) → P(Et)

f 7→ π2(Ξt)

is an isometric isomorphism. For s, t ∈ Ireg, s < t, we obtain from Corollary
4.23 that Θt|P(h�s) = Θs. Therefore a map Θ : Pfin(h) →

⋃

t∈Ireg
P(Et) is

well-defined by Θf := Θtf , f ∈ P(h�t). Clearly, Θ is surjective.
Let ̺ be the distribution in the representation Corollary II.3.5 of the Weyl-

coefficient qh, so that we have

qh(z) = c+ ̺
(( 1

t− z
−
t− Re z0
|t− z0|2

)
|t− z0|

2
)

. (6.1)

with some z0 ∈ ρ(Å) \ R. Note that, by Proposition 5.19, z0 belongs to the
domain of holomorphy of qh. Finally, let Π(ρ) denote the Pontryagin space
generated by ρ, cf. Proposition II.3.1.

6.4 Theorem. Let h be a general singular Hamiltonian which is not positive
definite and consist of just one indivisible interval. Assume that h does not start
with an indivisible interval of type 0. Then S(h) is completely nonselfadjoint
symmetric operator with defect index (1, 1). The map

Λ : f 7→ θ(f) · (.− z0)
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is an isometry of the dense subspace Pfin(h) of P(h) onto a certain dense sub-
seteq of Π(̺). We have

Λ(Åf)(z) = zθ(f)(z) · (z − z0), f ∈ Pfin(h) ∩ dom Å .

Proof. From Theorem IV.8.7 we know that S(h) is a symmetric operator with
defect index (1, 1).

Let t ∈ Ireg∩(σn, σn+1). By Remark 5.17 we can apply Theorem 4.19 to the
boundary triplet B1 = B(h�t) and see that ω(B1) is a generalized u-resolvent
matrix, where u ∈ (P1)− is given by (4.11).

Now Ξt maps ψ(w̄) to Hω(B1)(w, .)
(
0
1

)
and, hence, θt maps ψ(w̄) to KEt

(w, .)
(see (2.22)).

The continuation (θt)− of θt to (P1)− maps u to a function in P(Et)−. From
Proposition I.10.2 we know that P(Et)− can be identified with Assoc P(Et) by
the relation (I.10.1). Hereby,

(θt)−(u)(w) = [(θt)−(u),

(
KEt

(w, .)

w̄KEt
(w, .)

)

]± =

= [u,

(
ψ(w̄)

w̄ψ(w̄)

)

]± = (πl,2 ◦ P ◦ Γ1)(ψ(w̄)) = 1.

Therefore, (θt)−(u) is the constant one-function on C.
The selfadjoint extension

Å ⊇ S1(h�t) = ker
(
(πl,1 × πr) ◦ Γ(h�t)

)

acting in P(h) satisfies ρ(Å) 6= ∅, because of Lemma 4.14 which is applicable
since mul Γ(h) = {0}. Let us choose z0 ∈ ρ(Å) such that qh is holomorphic
there.

By Proposition 6.1 it is in fact an operator. Therefore, we can apply Propo-
sition II.4.4 with Ã = Å and see that Å is R−

z0
u-minimal, or equivalently

cls{R−
z u : z ∈ ρ(Å)} = P(h),

where R−
z denotes the extension of the resolvent as defined in [KW/0, p.290],

where now P is P1 and P̃ is P(h) and where A = Å
By Theorem 4.24 we have R−

z u = −fz, where fz is the defect family from
Lemma 4.14. Here we can be sure that actually ξ = −1 because of Remark
4.25 since for Γ2 = Γ(h�t) either mul Γ2 6= {(0; 0)} or P(h�t) 6= {0} is a Hilbert
space.

Thus we showed that S(h) is completely non-selfadjoint. Since qh is the Q-

function of (S(h), Å) corresponding to the defect family fz, we see from Proposi-
tion II.3.4 that there is an isometric isomorphism Λ : P(h) → Π(̺), where Π(̺)
is the model space constructed in [KW/II, §3] from the distribution in (6.1).

In particular, Λ ⊠ Λ(Å) is just the multiplication operator by z. Moreover,
Corollary II.6.1 it satisfies

Λ(f) = θt(f) · (.− z0)

for any f ∈ P(h�t), where t ∈ Ireg ∩ (σn, σn+1). As Pfin(h) coincides with the
union of all P(h�t), Ireg ∩ (σn, σn+1), we see that

f 7→ θ(f) · (.− z0)
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is an isometric mapping from the dense subseteq Pfin(h) of P(h) onto a certain
dense subseteq of Π(̺). ❑

As a consequence, we obtain one property of S(h) which was missing in
Theorem IV.8.7, cf. Remark IV.8.8.

6.5 Corollary. Let h be a singular generalized Hamiltonian, which is not
just one positive definite indivisible interval. Then S(h) is completely non-
selfadjoint.

Proof. Apply Theorem 6.4 to the general Hamiltonian	α h with an appropriate
choice of α. ❑
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[KW/IV] M.Kaltenbäck, H.Woracek: Pontryagin spaces of entire functions IV,
Acta Sci.Math. (Szeged) 72 (2006), 709–835.

91
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