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A Gradient Flow Scheme for Nonlinear Fourth Order Equations

24/2009 Winfried Auzinger
Normal Forms for Companion Matrices and Contractivity in Inner Product
Norms

23/2009 Harald Woracek
Existence of Zerofree Functions N-associated to a de Branges Pontryagin Space

22/2009 Michael Kaltenbäck, Harald Woracek
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ESTIMATOR REDUCTION AND CONVERGENCE
OF ADAPTIVE FEM AND BEM

M. AURADA, S. FERRAZ-LEITE, AND D. PRAETORIUS

Abstract. We propose a relaxed notion of convergence of adaptive finite element and
boundary element schemes. Instead of asking for convergence of the error to zero, we only
aim to prove estimator convergence in the sense that the adaptive algorithm drives the
underlying error estimator to zero. We observe that certain error estimators satisfy an es-
timator reduction property which is sufficient for estimator convergence. The elementary
analysis is only based on Dörfler marking and inverse estimates, but not on reliability and
efficiency of the error estimator at hand. In particular, this covers certain adaptive al-
gorithms in the context of FEM and BEM as well as heuristic strategies which are often
successfully used to steer an adaptive anisotropic mesh-refinement. Our framework therefore
contributes to understand adaptivity in FEM and BEM in a more general sense and gives
a first mathematical justification for the proposed steering of anisotropic mesh-refinements.

1. Introduction

Usual discretization schemes like the finite element method (FEM) or the boundary ele-
ment method (BEM) are based on a given triangulation Tℓ := {T1, . . . , TN} of the sim-
ulation domain and provide a numerical approximation uℓ of the exact solution u. Let

ρℓ :=
(∑

T∈Tℓ
ρℓ(T )2

)1/2
be a computable a posteriori error estimator that associates some

quantity ρℓ(T ) to each element T ∈ Tℓ which measures —at least heuristically— the local
contribution of the error ‖u−uℓ‖T on T . These quantities may then be used to improve the
triangulation Tℓ by local refinement. The common adaptive algorithm reads as follows:

Algorithm 1.1. Fix 0 < θ < 1 and let Tℓ with ℓ = 0 be the initial triangulation. For each
ℓ = 0, 1, 2, . . . do:

(i) Compute discrete solution uℓ and error estimator ρℓ.
(ii) Find minimal set Mℓ ⊆ Tℓ such that

θ
∑

T∈Tℓ

ρℓ(T )2 ≤
∑

T∈Mℓ

ρℓ(T )2. (1.1)

(iii) Refine at least marked elements T ∈ Mℓ to obtain Tℓ+1.
(iv) Increase counter ℓ 7→ ℓ+ 1 an iterate. �

Convergence of Adaptive FEM (AFEM). Convergence of this type of algorithms has
first been proven in [D], where also the marking criterion (1.1) is introduced. The latter work
considered the residual error estimator for a P1-FEM discretization of the Poisson problem,
and it is assumed that the given volume data are sufficiently resolved on the initial mesh.
In [MNS], the resolution of the data is included into the adaptive algorithm. The convergence
analysis is based on reliability and the so-called discrete local efficiency of the residual error
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estimator, which relies on an interior node property for the local mesh-refinement. It is then
shown that the error is contractive up to data oscillations. Optimality of this adaptive P1-
FEM has first been shown by [S], where some discrete local reliability of the residual error
estimator has been established and used.

In [CKNS], the authors prove convergence and optimality of adaptive FEM with Lagrange
elements of fixed order for a certain class of linear elliptic PDEs, where Algorithm 1.1 is
steered by the residual error estimator and where mesh-refinement is done by newest vertex
bisection. Compared to [D, MNS, S], the analysis is improved in the sense that only reliability
of the error estimator is used to show that a weighted sum of error and error estimator
yields a contraction property. Whereas the preceding works [D, MNS, S] show that the
marking criterion (1.1) is sufficient to prove convergence of AFEM, [CKNS, Lemma 5.9] states
that (1.1) is already satisfied if error and data oscillations allow a strict error reduction. Said
differently, the marking criterion (1.1) seems to be even necessary for optimal convergence
behaviour of adaptive algorithms.

The work [MSV] considers a different approach for convergence. Instead of asking for
convergence of the error to zero, the authors aim for a proof of the estimator convergence

lim
ℓ→∞

ρℓ = 0. (1.2)

Under reliability of ρℓ, i.e. the error estimator provides (up to some constant) an upper
bound for the error, (1.2) implies convergence of uℓ towards the exact solution u. The
analysis of [MSV] is essentially based on the observation that adaptive mesh-refinement and
conforming Galerkin schemes lead to a priori convergence

lim
ℓ→∞

uℓ = u∞ (1.3)

with some limit u∞ which does not necessarily coincide with the exact solution u, see
Lemma 1.3 below. Besides this, only local efficiency of the error estimator ρℓ is used to
verify (1.2) with the help of the Lebesgue dominated convergence theorem. Contrary to
prior work [D, MNS, S, CKNS], the analytical framework of [MSV] covers various marking
strategies instead of only (1.1) as well as different mesh-refining strategies instead of only
newest vertex bisection (with or without interior node property).

Convergence of Adaptive BEM (ABEM). Only recently, a first convergence result for
ABEM has been achieved. The reason for this is the non-locality of the involved boundary
integral operators which leads to major difficulties in the numerical analysis of a posteriori
error estimates. This is reflected by the fact that most error estimators in the context of
BEM are so far only proven to be either reliable or efficient, cf. the discussion in [EFFP,
EFGP, FOP]. Moreover, local properties of the error estimators like local discrete reliability
or local (discrete) efficiency still remain mathematically open. In particular, this makes it
impossible to prove contraction of the error with the techniques developed in [D, MNS].
Furthermore, the ideas of [MSV] cannot be applied either. First, the local efficiency of the
error estimator remains open and seems to be a strong assumption in the context of boundary
integral operators. Second, in case of weakly-singular integral equations, the exact solution
u as well as the limit u∞ of discrete solutions are not Lebesgue functions but distributions.
This makes it impossible to use the Lebesgue dominated convergence theorem in the spirit
of [MSV].
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In [FOP], the technique of [CKNS] is applied to some (h− h/2)-error estimator proposed
in [FP]. Under the saturation assumption, it is proven that a weighted sum of certain
Galerkin errors and (h−h/2)-type error estimators satisfies a contraction property. We note
that (h − h/2)-error estimators are always efficient, whereas reliability is equivalent to the
saturation assumption. The latter can be proven for the P1-FEM of the Poisson problem [DN]
and is used to prove convergence of (h−h/2)-based AFEM [FOP] but still remains open in the
context of boundary element methods. Although the saturation assumption is empirically
observed even for boundary element computations [FP], this makes the results of [FOP] in
some sense mathematically unsatisfactory.

Estimator Reduction Implies Estimator Convergence. To overcome the dependence
of the convergence result on the saturation assumption, we follow a different approach in this
work: Instead of considering the error, we only ask for estimator convergence (1.2). From
a conceptual point of view, this question is more natural since adaptive mesh-refinement is
only based on the knowledge of the local contributions of ρℓ. Moreover, this point of view
allows the treatment of certain adaptive anisotropic mesh-refining strategies. Anisotropic
meshes are in general necessary to resolve edge singularities effectively and to obtain op-
timal convergence results for BEM. To the best of our knowledge, there are —so far— no
convergence results for adaptive Galerkin schemes with anisotropic mesh-refinement, even in
the context of FEM.

Unlike [MSV], we restrict to the marking criterion (1.1) which, as has been pointed out
before, seems to be necessary and sufficient for optimal convergence behaviour of adaptive
schemes. Our analysis aims to provide an estimator reduction introduced in Equation (1.4)
below for certain error estimators ρℓ at hand. Compared to [MSV], our result is stronger
in the sense that we prove —up to a zero sequence— a contraction property for the error
estimator.

The two main observations of this paper are stated in the following elementary results,
where the second is already contained in [MSV, Lemma 4.2], even in a more general formu-
lation.

Proposition 1.2 (Estimator Reduction Implies Estimator Convergence). Suppose
that the sequence of error estimators (ρℓ)ℓ∈N satisfies some estimator reduction property

ρℓ+1 ≤ q ρℓ + αℓ for all ℓ ∈ N0 (1.4)

with some fixed constant 0 < q < 1 and some non-negative sequence (αℓ)ℓ∈N which satisfies
lim
ℓ→∞

αℓ = 0. Then, there holds the estimator convergence (1.2).

Proof. By induction on ℓ, the estimator reduction (1.4) implies

ρℓ+1 ≤ qℓ+1ρ0 +

ℓ∑

j=0

qℓ−jαj ≤ qℓ+1ρ0 + ‖(αn)‖∞
ℓ∑

k=0

qk

with ‖(αn)‖∞ the supremum norm of the bounded sequence (αn). In particular, the sequence
(ρn) is bounded and 0 ≤M := lim sup

ℓ→∞
ρℓ <∞ exists. Again, we apply (1.4) to see

M = lim sup
ℓ→∞

ρℓ+1 ≤ q lim sup
ℓ→∞

ρℓ + lim sup
ℓ→∞

αℓ = q M.
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With 0 < q < 1, this yields 0 ≤ lim inf
ℓ→∞

ρℓ ≤ lim sup
ℓ→∞

ρℓ = 0 and thus convergence (1.2). �

The interpretation of the second observation is that Galerkin schemes with adaptive mesh-
refinement always lead to a convergent sequence (uℓ) of discrete solutions (1.3). The limit
u∞, however, does not necessarily coincide with the continuous solution u.

Lemma 1.3 (A Priori Convergence of Adaptive Galerkin Schemes). Suppose that
H is a Hilbert space with norm ||| · ||| and Xℓ is a sequence of nested closed subspaces, i.e.
Xℓ ⊆ Xℓ+1. For fixed u ∈ H, let uℓ ∈ Xℓ be the best approximation with respect to Xℓ, i.e.

|||u− uℓ||| = min
vℓ∈Xℓ

|||u− vℓ|||. (1.5)

Then, the limit lim
ℓ→∞

uℓ ∈ H exists. In particular, there holds lim
ℓ→∞

|||uℓ+1 − uℓ||| = 0.

Proof. Let X∞ be the closure of
⋃∞

ℓ=0Xℓ in H. Then, X∞ is a closed subspace of H, and the
best approximation u∞ ∈ X∞ of u with respect to X∞ exists. Best approximation in Hilbert
spaces is realized in terms of the orthogonal projection so that the Pythagoras theorem reads

|||u− uℓ|||2 = |||u− u∞|||2 + |||u∞ − uℓ|||2.
In particular, uℓ is even the best approximation of u∞ with respect to Xℓ. Let ε > 0. Since⋃∞

ℓ=0Xℓ is dense in X∞ and since the spaces Xℓ are nested, we may choose some index ℓ0
and some element vℓ0 ∈ Xℓ0 such that |||u∞ − vℓ0 ||| ≤ ε. For ℓ ≥ ℓ0, the inclusion Xℓ0 ⊆ Xℓ

thus concludes |||u∞ − uℓ||| = min
vℓ∈Xℓ

|||u∞ − vℓ||| ≤ |||u∞ − vℓ0 ||| ≤ ε. �

Remarks on Estimator Reduction. Below, the proofs of the estimator reduction (1.4)
are only based on the marking criterion (1.1), use of the triangle inequality, and use of certain
inverse estimates. In particular, the proofs will be independent of the Galerkin orthogonality.
Moreover, the analysis is not restricted to the Hilbert space framework at all.

Throughout, we only use the a priori convergence of Galerkin schemes, and in this sense
the idea of our work can be transfered to any numerical method which provides some a priori
convergence of discrete solutions.

Outline of the Paper. The remaining content of the paper is organized as follows. In
Section 2, we consider the Poisson problem and AFEM steered by the residual-based error
estimator. The remaining Sections 3–4 treat Symm’s integral equation as model problem for
ABEM. Section 3 is concerned with isotropic mesh-refinement steered by (h − h/2)-based
error estimators from [FP] and averaging on large patches introduced in [CP1, CP2]. Finally,
Section 4 verifies the estimator reduction for an adaptive anisotropic mesh-refinement.

2. Residual-Based AFEM

We first consider an adaptive P1-FEM for the Poisson problem already treated in the seminal
works [D, MNS, S]. In this context, the estimator reduction (1.4) was introduced and first
proven, although not stated explicitly, in [CKNS]. Moreover, since the aim and scope of this
work was on optimality of AFEM, the authors did not observe or mention that the estimator
reduction already implies convergence of the adaptive algorithm in the sense of (1.2). Finally,
the work [CKNS] treats a more general model problem and p-th order finite elements, but the
Laplace equation with lowest-order elements might be an illustrative and simpler example.
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T ∈ Mℓ red(T ) bisec(T ) bisec3(T ) bisec5(T )

Figure 1. For marked elements T ∈ Mℓ, all refinement rules based on newest
vertex bisection and red-green-blue refinements guarantee hℓ+1|T ≤ q hℓ|T with
a uniform constant q < 1, which only depends on the initial mesh.

2.1. Model Problem. We consider the elliptic model problem

−∆u = f in Ω,

u = 0 on ΓD,

∂nu = g on ΓN ,

(2.1)

with Ω a bounded Lipschitz domain in R
2. The boundary Γ is split into a Dirichlet boundary

ΓD and a Neumann boundary ΓN which satisfy Γ = ΓD∪ΓN as well as ΓD∩ΓN = ∅. Moreover,
we assume that ΓD has positive surface measure |ΓD| > 0 so that (2.1) admits a unique weak
solution. The energy scalar product of the weak formulation of (2.1) reads

〈〈u , v〉〉 :=

∫

Ω

∇u · ∇v dx for all u, v ∈ H = {u ∈ H1(Ω) : u|ΓD
= 0}. (2.2)

In particular, the induced energy norm reads |||v||| = ‖∇v‖L2(Ω). The weak formulation
of (2.1) then reads

〈〈u , v〉〉 =

∫

Ω

fv dx+

∫

ΓN

gv dΓ for all v ∈ H (2.3)

and admits a unique solution u ∈ H. We consider the lowest-order Galerkin scheme, where
Tℓ is a regular triangulation of Ω into triangles and where Xℓ = {vℓ ∈ S1(Tℓ) : vℓ|ΓD

= 0}
with S1(Tℓ) = {vℓ ∈ C(Ω) : ∀T ∈ Tℓ vℓ|T is affine}. Then, the unique Galerkin solution
uℓ ∈ Xℓ is determined by

〈〈uℓ , vℓ〉〉 =

∫

Ω

fvℓ dx+

∫

ΓN

gvℓ dΓ for all vℓ ∈ Xℓ. (2.4)

2.2. Mesh-Refinement and Local Mesh-Width. We assume that mesh-refinement is
done in such a way that the created meshes Tℓ are uniformly shape-regular. This is ensured,
for instance, by any mesh-refinement based on newest vertex bisection [NVB] or by the
popular red-green-blue strategy [V96]. The local mesh-width hℓ ∈ L∞(Ω) associated with Tℓ

is defined in such a way that marked elements lead to a uniform decrease

hℓ+1|T ≤ q hℓ|T for all T ∈ Mℓ, (2.5)

see Figure 1. If marked elements are red-refined into four similar elements or bisected with
the help of bisec5(T ), (2.5) is satisfied for hℓ|T := diam(T ) and q = 1/2. In case of bisec3(T ),
an elementary calculation provides some q < 1, which only depends on the smallest angle of
the triangles in the initial mesh T0. If marked elements are only bisected into two elements
by bisec(T ), (2.5) is satisfied for hℓ|T := |T |1/2 and q = 1/

√
2.

In any case, we will simply write hT := hℓ|T for T ∈ Tℓ.
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2.3. Estimator Reduction for Residual Error Estimator. To steer Algorithm 1.1, we
use the residual error estimator ρℓ with local contributions

ρℓ(T )2 = ‖hTf‖2
L2(T ) + ‖h1/2

T [∂nuℓ]‖2
L2(∂T∩Ω) + ‖h1/2

T (g − ∂nuℓ)‖2
L2(∂T∩ΓN ), (2.6)

where [·] denotes the jump over an interior edge E ∈ Eℓ and Eℓ ⊂ Ω denotes the set of all
interior edges of triangulation Tℓ. It is well-known that ρℓ is reliable,

|||u− uℓ||| ≤ Crel ρℓ. (2.7)

and locally efficient up to oscillation terms,

ρℓ(T )2 ≤ C2
eff

(
‖∇(u− uℓ)‖2

L2(ωT ) + ‖hT (f − Πℓf)‖2
L2(ωT ) + ‖h1/2

T (g − Πℓg)‖2
L2(∂T∩ΓN )

)
. (2.8)

Here, ωT =
⋃{T ′ ∈ Tℓ : T ∩ T ′ 6= ∅} denotes the element patch of T ∈ Tℓ, and Πℓ is the

L2-orthogonal projection onto the space of piecewise constant functions with respect to the
underlying meshes Tℓ and Tℓ|ΓN

, respectively, cf. [V96].
Essentially, the following observation is already stated in [CKNS, Corollary 3.4].

Theorem 2.1. Let 0 < θ < 1 be a fixed constant and suppose that the indicators ρℓ(T )
from (2.6) are used in Algorithm 1.1. Then,

ρℓ+1 ≤
(
1 − θ(1 − q)

)1/2
ρℓ + Cshape |||uℓ+1 − uℓ|||, (2.9)

where 0 < q < 1 is the constant from (2.5). The constant Cshape > 0 only depends on the
shape regularity of Tℓ+1 and thus remains bounded. In particular, there holds lim

ℓ→∞
ρℓ = 0.

Proof. First, the triangle inequality in the sequence space ℓ2 proves

ρℓ+1 =
( ∑

T ′∈Tℓ+1

‖hT ′f‖2
L2(T ′) + ‖h1/2

T ′ [∂nuℓ+1]‖2
L2(∂T ′∩Ω) + ‖h1/2

T ′ (g − ∂nuℓ+1)‖2
L2(∂T ′∩ΓN )

)1/2

≤
( ∑

T ′∈Tℓ+1

‖hT ′f‖2
L2(T ′) + ‖h1/2

T ′ [∂nuℓ]‖2
L2(∂T ′∩Ω) + ‖h1/2

T ′ (g − ∂nuℓ)‖2
L2(∂T ′∩ΓN )

)1/2

+
( ∑

T ′∈Tℓ+1

‖h1/2
T ′ [∂n(uℓ+1 − uℓ)]‖2

L2(∂T ′∩Ω) + ‖h1/2
T ′ ∂n(uℓ+1 − uℓ)‖2

L2(∂T ′∩ΓN )

)1/2

.

Second, according to uniform shape regularity of the generated family (Tℓ)ℓ∈N, there holds

( ∑

T ′∈Tℓ+1

‖h1/2
T ′ [∂n(uℓ+1 − uℓ)]‖2

L2(∂T ′∩Ω) + ‖h1/2
T ′ ∂n(uℓ+1 − uℓ)‖2

L2(∂T ′∩ΓN )

)1/2

≤ Cshape ‖∇(uℓ+1 − uℓ)‖L2(Ω) = Cshape |||uℓ+1 − uℓ|||.
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Third, we define the set Mℓ := {T ′ ∈ Tℓ+1 : ∃T ∈ Mℓ T ′ ⊆ T} containing all elements
obtained by refinement of marked elements. Then, (2.5) implies

∑

T ′∈Mℓ

‖hT ′f‖2
L2(T ′) + ‖h1/2

T ′ [∂nuℓ]‖2
L2(∂T ′∩Ω) + ‖h1/2

T ′ (g − ∂nuℓ)‖2
L2(∂T ′∩ΓN )

≤ q
∑

T∈Mℓ

‖hTf‖2
L2(T ) + ‖h1/2

T [∂nuℓ]‖2
L2(∂T∩Ω) + ‖h1/2

T (g − ∂nuℓ)‖2
L2(∂T∩ΓN ).

= q
∑

T∈Mℓ

ρℓ(T )2.

Here, we have used that each element T ∈ Mℓ is the disjoint union of its sons T ′ ∈ Mℓ and
that the jump [∂nuℓ] is zero on all edges which lie inside a marked element T ∈ Mℓ. Fourth,
the same arguments prove

∑

T ′∈Tℓ+1\Mℓ

‖hT ′f‖2
L2(T ′) + ‖h1/2

T ′ [∂nuℓ]‖2
L2(∂T ′∩Ω) + ‖h1/2

T ′ (g − ∂nuℓ)‖2
L2(∂T ′∩ΓN )

≤
∑

T∈Tℓ\Mℓ

‖hTf‖2
L2(T ) + ‖h1/2

T [∂nuℓ]‖2
L2(∂T∩Ω) + ‖h1/2

T (g − ∂nuℓ)‖2
L2(∂T∩ΓN )

=
∑

T∈Tℓ\Mℓ

ρℓ(T )2.

Finally, we use the marking strategy (1.1) and q < 1 to derive

q
∑

T∈Mℓ

ρℓ(T )2 +
∑

T∈Tℓ\Mℓ

ρℓ(T )2 = (q − 1)
∑

T∈Mℓ

ρℓ(T )2 +
∑

T∈Tℓ

ρℓ(T )2 ≤
(
(1 − θ(1 − q)

)
ρ2

ℓ .

Combining the obtained estimates with Tℓ+1 = Mℓ ∪ (Tℓ+1\Mℓ), we conclude (2.9). �

3. Adaptive BEM with Isotropic Mesh-Refinements

3.1. Model Problem. Throughout, we consider the first-kind integral equation

(V u)(x) :=

∫

Γ

G(x, y)u(y) dΓ(y) = f(x) for x ∈ Γ (3.1)

with weakly-singular integral kernel

G(x, y) = − 1

2π
log |x− y| for d = 2 and G(x, y) = +

1

4π

1

|x− y| for d = 3. (3.2)

Here, Γ is an open piece of the boundary ∂Ω of a Lipschitz domain Ω in Rd, and dΓ denotes
the integration along the arc or on the manifold for d = 2, 3, respectively. For d = 2,
we additionally assume diam(Ω) < 1. Then, V is a symmetric and elliptic isomorphism

between the fractional-order Sobolev spaces H := H̃−1/2(Γ) and its dual H1/2(Γ). For proofs
and details, we refer to [M, SS]. Recall that H1/2(Γ) denotes the trace space

H1/2(Γ) := {F |Γ : F ∈ H1(Ω)} (3.3)

which is associated with the (Hilbert) norm

‖f‖H1/2(Γ) := inf{‖F‖H1(Ω) : F ∈ H1(Ω) with F |Γ = f}. (3.4)
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Then, the energy space H̃−1/2(Γ) is the algebraic-topological dual of H1/2(Γ) with respect
to the extended L2-scalar product 〈· , ·〉. The energy scalar product is thus given by

〈〈u , v〉〉 := 〈V u, v〉 for all u, v ∈ H, (3.5)

and (3.1) is equivalently stated in the variational form

〈〈u , v〉〉 = 〈f , v〉 for all v ∈ H. (3.6)

The induced energy norm |||v||| := 〈〈v , v〉〉1/2 defines an equivalent norm on H.
We consider the lowest-order Galerkin scheme, where Tℓ = {T1, . . . , TN} is a triangulation

of Γ and where Xℓ := P0(Tℓ) denotes the space of all Tℓ-piecewise constant functions on Γ.
The Galerkin solution uℓ ∈ Xℓ with respect to Xℓ is the unique solution of the variational
form

〈〈uℓ , vℓ〉〉 = 〈f , vℓ〉 for all vℓ ∈ Xℓ. (3.7)

3.2. Mesh-Refinement and Local Mesh-Widths. Let Tℓ = {T1, . . . , TN} be a trian-
gulation of Γ with associated mesh-size functions hℓ, ̺ℓ ∈ L∞(Γ), where hℓ|T := diam(T )
is the diameter of an element T ∈ Tℓ and where ̺ℓ|T denotes the diameter of the largest
inscribed circle in T . In this section, we consider isotropic mesh-refinement in the sense that
any sequence Tℓ generated by the mesh-refinement rules satisfies

sup
ℓ∈N

σ(Tℓ) <∞, where σ(Tℓ) := max
T∈Tℓ

hℓ|T
̺ℓ|T

= ‖hℓ/̺ℓ‖L∞(Γ). (3.8)

We consider (h − h/2)-based and averaging-based error estimators for BEM from [FP]
and [CP1, CP2], respectively, where the local contributions are weighted by ̺ℓ. Therefore,
the mesh-refinement now aims at a uniform reduction

̺ℓ+1|T ≤ q̺ℓ|T for all T ∈ Mℓ with some q < 1. (3.9)

For the analysis, the mesh-refinement has to guarantee the inclusions

Xℓ ⊆ Xℓ+1 and X̂ℓ ⊆ X̂ℓ+1. (3.10)

Whereas the first inclusion is guaranteed for any mesh-refinement rule, the second inclusion
for the uniformly refined meshes is crucial. We stress that the subsequently introduced

mesh-refinement rules guarantee (3.10) even in the stronger form Xℓ ⊆ Xℓ+1 ⊆ X̂ℓ ⊆ X̂ℓ+1.
For d = 2, we assume that the elements T ∈ Tℓ are affine line segments so that ̺ℓ = hℓ,

i.e. σ(Tℓ) = 1. When refined, an element T is bisected into two elements of half length so
that (3.9) even holds in the form ̺ℓ+1|T = q̺ℓ|T with q = 1/2.

For d = 3, the triangulation Tℓ is either a regular triangulation consisting of flat triangles
or an almost-regular triangulation consisting of flat rectangles with hanging nodes of order
at most 1, cf. [FP].

First, if Tℓ is a regular triangulation into triangles, we note that all refinement rules based
on newest vertex bisection satisfy the additional property (3.10), whereas red-green-blue
refinement does not. We refer to [NVB] for the fact that newest vertex bisection based mesh-
refinement only leads to finitely many similarity classes of triangles. In particular, σ(Tℓ) can
be bounded uniformly by a constant that only depends on the initial mesh T0. Moreover,
an elementary calculation proves that any newest vertex bisection based refinement rule
guarantees (3.9), where q < 1 again only depends on T0.
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SSS

T1T1T1 T2T2T2

T3T3T3T4T4T4

S1S1S1 S2S2S2

S3S3S3S4S4S4

T1T1T1

T3T3T3T4T4T4

Figure 2. For isotropic mesh-refinement with rectangular elements, a marked
element T is always refined uniformly into four new elements Tj. This isotropic
refinement obviously yields hℓ+1|T = 1

2
hℓ|T and ̺ℓ+1|T = 1

2
̺ℓ|T for the refined

mesh-sizes. Moreover, one hanging node per edge is allowed (left). If, in the
left configuration, element T2 is marked for refinement, we mark element S for
refinement as well (right).

Second, if Tℓ consists of rectangular elements, a marked element T is refined by use of the
unif(T ) rule shown in Figure 3. In particular, the shape-regularity constant σ(Tℓ) = σ(T0)
does not change. As in 2D, (3.9) holds even in the form ̺ℓ+1|T = q̺ℓ|T with q = 1/2.

3.3. K-Mesh Property. The analysis of the error estimators under consideration depends
on the uniform boundedness

sup
ℓ∈N

κ(Tℓ) <∞, (3.11)

where the K-mesh constant κ(Tℓ) ≥ 1 is defined as follows:

• For any Tj , Tk ∈ Tℓ with Tj ∩Tk 6= ∅ holds hℓ|Tj
/hℓ|Tk

≤ κ(Tℓ) as well as ̺ℓ|Tj
/̺ℓ|Tk

≤
κ(Tℓ), i.e. the local mesh-widths of neighbouring elements do not vary too rapidly.

• For any node z ∈ Γ of Tℓ holds #{T ∈ Tℓ : z ∈ T} ≤ κ(Tℓ), i.e. each node does not
belong to too many elements of Tℓ.

We stress that (an upper bound (3.11) of) the K-mesh constant κ(Tℓ) enters the constants
in the estimates from Theorem 3.1 and Theorem 3.4 below.

Note that for a sequence Tℓ of regular meshes consisting of triangles, the uniform shape-
regularity (3.8) implies the uniform K-mesh property (3.11).

In order to ensure (3.11) in 2D, the refinement algorithm checks the mesh-size ratio of
neighbouring elements: If Ti ∈ Tℓ is marked for refinement, any neighbour Tj with

hℓ|Tj
/hℓ|Ti

≥ 2 (3.12)

is recursively marked as well. This guarantees κ(Tℓ) ≤ 2κ(T0) for all generated meshes Tℓ.
For meshes consisting of rectangular boundary elements in 3D, we naturally allow hang-

ing nodes. However, to ensure the K-mesh property, we only allow one hanging node per
edge, cf. Figure 2. This restriction automatically ensures ̺ℓ|Ti

/̺ℓ|Tj
≤ 2κ(T0) as well as

hℓ|Ti
/hℓ|Tj

≤ 2κ(T0) for neighbouring elements Ti, Tj ∈ Tℓ which share an edge. In particu-
lar, this implies κ(Tℓ) ≤ 4κ(T0) for all generated meshes.
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3.4. Estimator Reduction for (h− h/2)(h− h/2)(h− h/2)-Type Error Estimators. In the following,

let T̂ℓ be the uniform refinement of Tℓ. We denote by ûℓ ∈ X̂ℓ := P0(T̂ℓ) the corresponding
Galerkin solution.

For the analysis below, we recall the inverse estimate

‖̺1/2
ℓ vℓ‖L2(Γ) ≤ Cinv |||vℓ||| for all vℓ ∈ Xℓ (3.13)

from [GHS, Theorem 3.6], where the constant Cinv > 0 depends only on theK-mesh constant.
Moreover, we recall the approximation estimate

|||v − Πℓv||| ≤ Capx‖h1/2
ℓ (v − Πℓv)‖L2(Γ) ≤ Capx‖h1/2

ℓ v‖L2(Γ) (3.14)

proven in [CP1] where the constant Capx depends only on Γ and Πℓ again denotes the L2-
orthogonal projection onto the space of piecewise constant functions with respect to the
underlying mesh.

We recall the following main result from [FP]. Moreover, we stress that all mesh-refinement
rules from Section 3.2 above guarantee uniform boundedness (3.8) of σ(Tℓ). This will be
different for the anisotropic mesh-refinement discussed in Section 4, where σ(Tℓ) may tend
to infinity as ℓ→ ∞.

Theorem 3.1. The error estimators

ηℓ = |||ûℓ − uℓ||| η̃ℓ = |||(1 − Πℓ)ûℓ|||
µℓ = ‖̺1/2

ℓ (ûℓ − uℓ)‖L2(Γ) µ̃ℓ = ‖̺1/2
ℓ (1 − Πℓ)ûℓ‖L2(Γ)

(3.15)

satisfy the estimates

µ̃ℓ ≤ µℓ ≤
√

2Cinv ηℓ and ηℓ ≤ η̃ℓ ≤ Capx σ(Tℓ)
1/2µ̃ℓ, (3.16)

where the constant Capx > 0 depends only on Γ. Moreover, ηℓ, µℓ, and µ̃ℓ are always efficient
in the sense that

ηℓ ≤ Ceff |||u− uℓ||| (3.17)

with known efficiency constant Ceff = 1. Finally, reliability of ηℓ in the sense that

|||u− uℓ||| ≤ Crel ηℓ (3.18)

with some constant Crel > 0 is equivalent to the saturation assumption

|||u− ûℓ||| ≤ Csat |||u− uℓ||| (3.19)

with some constant 0 < Csat < 1. �

Note that the error estimators ρℓ ∈ {µℓ, µ̃ℓ} can be employed to steer Algorithm 1.1 via

µℓ(T ) := ‖̺1/2
ℓ (ûℓ − uℓ)‖L2(T ) and µ̃ℓ(T ) := ‖̺1/2

ℓ (1 − Πℓ)ûℓ‖L2(T ). (3.20)

In [FOP, Proof of Theorem 7] and [FOP, Proof of Theorem 8], we prove the following
estimator reductions (3.21)–(3.22) for µℓ and µ̃ℓ, respectively.

Theorem 3.2. Let 0 < θ < 1 be a fixed constant and let µℓ(T ) and µ̃ℓ(T ) be the indicators
defined in (3.20). Let 0 < q < 1 be the constant from (3.9).

(i) Suppose that we use the indicators ρℓ(T ) := µℓ(T ) in Algorithm 1.1. Then,

µℓ+1 ≤
(
1 − (1 − q) θ

)1/2
µℓ + Cmesh (|||ûℓ+1 − ûℓ||| + |||uℓ+1 − uℓ|||) for all ℓ ∈ N0. (3.21)

10



(ii) Suppose that we use the indicators ρℓ(T ) := µ̃ℓ(T ) in Algorithm 1.1. Then,

µ̃ℓ+1 ≤ (1 − θ)1/2 µ̃ℓ + Cmesh |||ûℓ+1 − ûℓ||| for all ℓ ∈ N0. (3.22)

(iii) The constant Cmesh > 0 only depends on the chosen mesh-refinement and the initial
mesh T0. The last two terms on the right-hand side of (3.21) as well as the last term
on the right-hand side of (3.22) vanish as ℓ → ∞. In particular, Proposition 1.2
applies.

Proof. For the convenience of the reader, we recall the proof of (3.21): The triangle inequality
proves

µℓ+1 ≤ ‖̺1/2
ℓ+1(ûℓ − uℓ)‖L2(Γ) + ‖̺1/2

ℓ+1((ûℓ+1 − uℓ+1) − (ûℓ − uℓ))‖L2(Γ)

Note that the used mesh-refinement guarantees (ûℓ+1 − uℓ+1) − (ûℓ − uℓ) ∈ X̂ℓ as well as
q−1 ̺̂ℓ+1 ≤ ̺ℓ+1 ≤ Crefine ̺̂ℓ+1 almost everywhere. The constant Crefine only depends on q and
the chosen mesh-refinement. Therefore, the inverse estimate (3.13) gives

‖̺1/2
ℓ+1((ûℓ+1 − uℓ+1) − (ûℓ − uℓ))‖L2(Γ) ≤ Crefine ‖̺̂1/2

ℓ+1((ûℓ+1 − ûℓ) − (uℓ+1 − uℓ))‖L2(Γ)

≤ CrefineCinv |||(ûℓ+1 − ûℓ) − (uℓ+1 − uℓ)|||.
Isotropic mesh-refinement yields

̺ℓ+1|T ≤ q̺ℓ|T for all T ∈ Mℓ, as well as ̺ℓ+1|T ≤ ̺ℓ|T for all T ∈ Tℓ\Mℓ.

The marking strategy (1.1) gives

‖̺1/2
ℓ+1(ûℓ − uℓ)‖2

L2(Γ) =
∑

T∈Mℓ

‖̺1/2
ℓ+1(ûℓ − uℓ)‖2

L2(T ) +
∑

T∈Tℓ\Mℓ

‖̺1/2
ℓ+1(ûℓ − uℓ)‖2

L2(T )

≤ q
∑

T∈Mℓ

‖̺1/2
ℓ (ûℓ − uℓ)‖2

L2(T ) +
∑

T∈Tℓ\Mℓ

‖̺1/2
ℓ (ûℓ − uℓ)‖2

L2(T )

= (q − 1)
∑

T∈Mℓ

µℓ(T )2 +
∑

T∈Tℓ

µℓ(T )2

≤
(
1 − (1 − q) θ

)
µ2

ℓ .

This concludes the proof of (3.21) with Cmesh = CrefineCinv. Lemma 1.3 proves that ûℓ and
uℓ converge to certain limits û∞ and u∞, respectively. Consequently, the terms |||ûℓ+1 − ûℓ|||
and |||uℓ+1 − uℓ||| vanish as ℓ → ∞. For the proof of (3.22), one only notes that there holds

‖̺1/2
ℓ+1(1 − Πℓ+1)ûℓ‖L2(T ) = 0 for T ∈ Mℓ. �

Under the saturation assumption (3.19), we can now prove that the adaptive algorithm
leads to convergence u∞ = u.

Corollary 3.3. Let 0 < θ < 1 be a fixed constant and suppose that we use either µℓ or
µ̃ℓ for marking in Algorithm 1.1. Assume that the saturation assumption (3.19) is valid, at
least for infinitely many steps ℓ of the adaptive algorithm. Then, there holds

lim
ℓ→∞

µℓ = lim
ℓ→∞

µ̃ℓ = lim
ℓ→∞

|||u− uℓ||| = 0. (3.23)
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Proof. Recall that the saturation assumption (3.19) is equivalent to the reliability (3.18) of
the (h − h/2)-error estimator ηℓ, cf. Theorem 3.1. Moreover, the mesh-refining strategy in
this section is isotropic. Therefore, µℓ as well as µ̃ℓ are equivalent to ηℓ, cf. (3.16). Finally,
convergence of the estimator, e.g., lim

ℓ→∞
µℓ = 0, implies |||u−uℓ||| ≤ Crel ηℓ → 0 as ℓ→ ∞. �

Remark 1. In [FOP, Theorem 8], we prove the following result: Suppose that we use
the indicators µℓ(T ) for marking in Algorithm 1.1. Under the saturation assumption (3.19),
there are constants γ, κ ∈ (0, 1) such that ∆ℓ := |||u−uℓ|||2+ |||u− ûℓ|||2+γ µℓ(T )2 ≥ 0 satisfies

∆ℓ+1 ≤ κ∆ℓ. In particular, one obtains convergence ∆ℓ
ℓ→∞−−−→ 0.— The same result holds

for µℓ replaced by µ̃ℓ, cf. [FOP, Theorem 7]. Although the results in [FOP] are stronger, so
are the assumptions, i.e., uniform saturation assumption (3.19) for all steps ℓ = 0, 1, 2, . . . .
Contrary to those results, we now have decoupled the convergence of the error estimator in
Theorem 3.2 from the convergence of the error lim

ℓ→∞
|||u− uℓ||| = 0. �

3.5. Estimator Reduction for Averaging Error Estimators. In this section, we

additionally consider the space X
(1)
ℓ := P1(Tℓ) of all Tℓ-piecewise affine, but not necessarily

continuous functions. Let G
(1)
ℓ and Π

(1)
ℓ denote the Galerkin and L2-projections onto X

(1)
ℓ .

The work [CP1] proposes to use averaging on large patches for a posteriori error estimation,

i.e., the error |||u− ûℓ||| is measured by use of G
(1)
ℓ ûℓ or Π

(1)
ℓ ûℓ. We recall the following main

result from [CP1, CP2].

Theorem 3.4. The error estimators

αℓ = |||(1 − G
(1)
ℓ )ûℓ||| α̃ℓ = |||(1 − Π

(1)
ℓ )ûℓ|||

βℓ = ‖̺1/2
ℓ (1 − G

(1)
ℓ )ûℓ‖L2(Γ) β̃ℓ = ‖̺1/2

ℓ (1 − Π
(1)
ℓ )ûℓ‖L2(Γ)

(3.24)

satisfy the estimates

β̃ℓ ≤ βℓ ≤
√

2Cinv αℓ, αℓ ≤ |||u− uℓ|||, and αℓ ≤ α̃ℓ ≤ Capx σ(Tℓ)
1/2β̃ℓ. (3.25)

The error estimators β̃ℓ, βℓ, and αℓ are, in particular, efficient to estimate |||u− uℓ|||. More-
over, there holds

αℓ ≤ |||u− ûℓ|||+ |||(1 − G
(1)
ℓ )u|||, (3.26)

which is understood as efficiency of β̃ℓ, βℓ, and αℓ with respect to |||u− ûℓ|||, up to terms of

higher order. Let Ĝℓ denote the Galerkin projection onto X̂ℓ. Provided that

qℓ := |||(1 − Ĝℓ)G
(1)
ℓ : H → H||| = max

v
(1)
ℓ ∈X

(1)
ℓ \{0}

min
bvℓ∈ bXℓ

|||v(1)
ℓ − v̂ℓ|||
|||v(1)

ℓ |||
< 1, (3.27)

there even holds

|||u− ûℓ||| ≤ (1 − q2
ℓ )

−1/2
(
αℓ + |||(1− G

(1)
ℓ )u|||

)
, (3.28)

which is interpreted as reliability of αℓ and α̃ℓ with respect to |||u− ûℓ|||, up to terms of higher
order. �

Following the lines of proof of Theorem 3.2, we obtain the following estimator reduc-

tions (3.29)–(3.30) for βℓ and β̃ℓ, respectively.
12



Theorem 3.5. Let 0 < θ < 1 be a fixed constant and let βℓ(T ) and β̃ℓ(T ) be the indicators
defined in (3.24). Let 0 < q < 1 be the constant from (3.9).

(i) Suppose that we use the indicators ρℓ(T ) := βℓ(T ) in Algorithm 1.1. Then,

βℓ+1 ≤
(
1 − (1 − q) θ

)1/2
βℓ

+ Cmesh (|||ûℓ+1 − ûℓ||| + |||G(1)
ℓ+1ûℓ+1 − G

(1)
ℓ ûℓ|||) for all ℓ ∈ N0.

(3.29)

(ii) Suppose that we use the indicators ρℓ(T ) := β̃ℓ(T ) in Algorithm 1.1. Then,

β̃ℓ+1 ≤ (1 − θ)1/2 β̃ℓ + Cmesh |||ûℓ+1 − ûℓ||| for all ℓ ∈ N0. (3.30)

(iii) The constant Cmesh > 0 only depends on the chosen mesh-refinement and the initial
mesh T0. The last two terms on the right-hand side of (3.29) as well as the last term
on the right-hand side of (3.30) vanish as ℓ → ∞. In particular, Proposition 1.2
applies.

Proof. The proofs of (i) and (ii) follow along the same lines as in Theorem 3.2. To verify (iii),
note that Lemma 1.3 proves convergence û∞ := limℓ ûℓ, whence |||ûℓ+1 − ûℓ||| → 0, and

Proposition 1.2 applies to β̃ℓ. Moreover, û
(1)
ℓ := G

(1)
ℓ û∞ ∈ X

(1)
ℓ is the best approximation

of û∞ with respect to X
(1)
ℓ . Therefore, Lemma 1.3 applies and proves that the limit û

(1)
∞ :=

limℓ û
(1)
ℓ exists. Finally, a triangle inequality and stability of the Galerkin projection G

(1)
ℓ

yield

|||G(1)
ℓ+1ûℓ+1 − G

(1)
ℓ ûℓ||| ≤ |||G(1)

ℓ+1ûℓ+1 − G
(1)
ℓ+1û∞||| + |||G(1)

ℓ+1û∞ − G
(1)
ℓ û∞||| + |||G(1)

ℓ û∞ − G
(1)
ℓ ûℓ|||

≤ |||ûℓ+1 − û∞|||+ |||û(1)
ℓ+1 − û

(1)
ℓ ||| + |||û∞ − ûℓ||| ℓ→∞−−−→ 0.

Consequently, Proposition 1.2 also applies to the error estimator βℓ. �

Remark 2. Note that the last term in (3.29) reads |||(G(1)
ℓ+1Ĝℓ+1 − G

(1)
ℓ Ĝℓ)u|||. Since the

spaces X
(1)
ℓ and X̂ℓ are not nested, the operator G

(1)
ℓ Ĝℓ is not a Galerkin projection. This

prevents to use the arguments of [FOP] to prove some contraction property for the (weighted)
sum of error and βℓ — provided that βℓ is reliable. Instead, our new argument applies directly
and proves lim

ℓ→∞
βℓ = 0. �

4. Adaptive BEM with Anisotropic Mesh-Refinement

We consider the model problem of Section 3. Since isotropic mesh-refinement does usually not
recover the optimal order of convergence in 3D BEM computations, we extend the refinement
strategy in Algorithm 1.1. For this purpose, we restrict to rectangular boundary elements.
We use a strategy introduced in [FP, Section 4.5] for the (h− h/2)-based estimators µℓ and
µ̃ℓ to decide whether a marked rectangle T ∈ Tℓ is refined isotropically into four rectangles
or anisotropically into two rectangles, respectively, cf. Figure 3. For µ̃ℓ, we prove that this
strategy yields the estimator reduction. Finally, we extend these ideas to prove the estimator

reduction for some anisotropic mesh-refinement steered by β̃ℓ.

4.1. (h− h/2)(h− h/2)(h− h/2)-Error Estimator. Let T1, . . . , T4 ∈ T̂ℓ denote the four son-elements of a
marked coarse-mesh rectangle T ∈ Tℓ, where we use the same numbering as for the isotropic

13



TTT

T ∈ Mℓ

T1T1T1 T2T2T2

T3T3T3T4T4T4

unif(T )

T1T1T1

T2T2T2

vert(T )

T1T1T1 T2T2T2

horiz(T )

Figure 3. The extended Algorithm 1.1 in Section 4 gives a criterion whether
a marked rectangle T ∈ Mℓ (left) is refined isotropically into four elements
T1, . . . , T4 or anisotropically into two elements T1 and T2. In the latter case,
the algorithm decides whether vertical or horizontal refinement seems to be
more appropriate.

+1+1+1

ψT,1

+1+1+1

+1+1+1

−1−1−1

−1−1−1

ψT,2

+1+1+1

−1−1−1

ψT,3

+1+1+1 −1−1−1

ψT,4

Figure 4. For each rectangle T ∈ Tℓ, we introduce four T̂ℓ-piecewise constant

functions ψT,j ∈ P0(T̂ℓ), which are extended by zero to Γ \ T .

refinement of Figure 3. We consider the four piecewise constant functions ψT,j ∈ P0(T̂ℓ) from
Figure 4 and observe that {ψT,1, . . . , ψT,4} is an L2-orthogonal basis of P0({T1, . . . , T4}).
Therefore, the already computed ûℓ|T ∈ P0({T1, . . . , T4}) can be written in the form

ûℓ|T =

4∑

j=1

cT,jψT,j with the Fourier coefficients cT,j =
(ψT,j , ûℓ)L2(T )

‖ψT,j‖2
L2(T )

. (4.1)

The decision whether isotropic or anisotropic refinement is more appropriate, is now done
as follows: Let 0 < τ < 1 be an additional parameter. We assume that T ∈ Mℓ is marked
for refinement.

• If c2T,2 + c2T,3 ≤ τ
1−τ

c2T,4, we use horizontal refinement to create two sons T1, T2 ∈ Tℓ+1.

• If c2T,2 + c2T,4 ≤ τ
1−τ

c2T,3, we use vertical refinement to create two sons T1, T2 ∈ Tℓ+1.
• Otherwise, T ∈ Mℓ is refined isotropically into four sons T1, . . . , T4 ∈ Tℓ+1.

In order to ensure the uniform boundedness of the K-mesh constant κ(Tℓ) we additionally
check the mesh-size ratio ̺ℓ of neighbouring elements and possibly mark additional elements
as it is done in 2D for the mesh-size ratio with respect to hℓ.

Remark 3. In [FP, Section 4.5], we use the above stated refinement strategy with τ̃ :=
τ/(1 − τ) = 1/2 which is equivalent to the choice τ = 1/3. �
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Remark 4. In addition to [FP], we stress the following observation: For τ < 1/2, the
proposed criterion cannot mark T ∈ Mℓ for both, horizontal and vertical refinement. To see
this, we argue by contradiction and assume that there holds c2T,2 + c2T,3 ≤ τ

1−τ
c2T,4 as well as

c2T,2 + c2T,4 ≤ τ
1−τ

c2T,3 for some T ∈ Mℓ. Note that this is equivalent to

c2T,2 + c2T,3 ≤ τ (c2T,2 + c2T,3 + c2T,4) and c2T,2 + c2T,4 ≤ τ (c2T,2 + c2T,3 + c2T,4).

Now, τ < 1/2 yields

c2T,2 + c2T,3 + c2T,4 ≤ τ (c2T,2 + c2T,3 + c2T,4) +
1

2
(c2T,3 + c2T,4) < c2T,2 + c2T,3 + c2T,4,

from which we infer c2T,2 + c2T,3 + c2T,4 = 0. This however implies ûℓ|T = (Πℓûℓ)|T . Then,
µ̃ℓ(T ) = 0 contradicts T ∈ Mℓ according to the minimality of Mℓ. �

Remark 5. Note that ‖ψT,j‖2
L2(T ) = |T | so that the denominator in (4.1) can be neglected

for the implementation. �

We now prove that this anisotropic mesh-refining strategy yields the estimator reduction
for the error estimator µ̃ℓ.

Theorem 4.1. Let 0 < θ < 1 and 0 < τ < 1 be fixed constants. Suppose that we use
the indicators ρℓ(T ) := µ̃ℓ(T ) defined in (3.20) for marking in Algorithm 1.1 and the above
described heuristics to decide the type of refinement. Then,

µ̃ℓ+1 ≤
(
1 − θ(1 − τ)

)1/2
µ̃ℓ +

√
2Cinv |||ûℓ+1 − ûℓ||| for all ℓ ∈ N0, (4.2)

and the second term on the right-hand side vanishes as ℓ→ ∞. In particular, Proposition 1.2
applies and proves convergence lim

ℓ→∞
µ̃ℓ = 0.

Proof. Note that, for rectangular elements, ̺̂ℓ+1 = ̺ℓ+1/2. We proceed as in the proof of
Theorem 3.2. The triangle inequality and the inverse estimate (3.13) prove

µ̃ℓ+1 = ‖̺1/2
ℓ+1(1 − Πℓ+1)ûℓ+1‖L2(Γ)

≤ ‖̺1/2
ℓ+1(1 − Πℓ+1)ûℓ‖L2(Γ) + ‖̺1/2

ℓ+1(1 − Πℓ+1)(ûℓ+1 − ûℓ)‖L2(Γ)

≤ ‖̺1/2
ℓ+1(1 − Πℓ+1)ûℓ‖L2(Γ) + ‖̺1/2

ℓ+1(ûℓ+1 − ûℓ)‖L2(Γ)

≤ ‖̺1/2
ℓ+1(1 − Πℓ+1)ûℓ‖L2(Γ) +

√
2Cinv |||ûℓ+1 − ûℓ|||,

where we have additionally used that Πℓ+1 is even the Tℓ+1-elementwise L2-orthogonal pro-
jection. Now, let T ∈ Mℓ be a marked element.

• If T is refined isotropically, there holds

‖(1 − Πℓ+1)ûℓ‖L2(T ) = 0.

• If T is refined by horizontal refinement, there holds

‖(1 − Πℓ+1)ûℓ‖2
L2(T ) = |T |

(
c2T,2 + c2T,3

)
.

Moreover, the proposed mesh-refinement yields c2T,2 + c2T,3 ≤ τ
1−τ

c2T,4, which is equiv-
alent to

|T |
(
c2T,2 + c2T,3

)
≤ τ |T |

(
c2T,2 + c2T,3 + c2T,4

)
= τ ‖(1 − Πℓ)ûℓ‖2

L2(T ).
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• If T is refined by vertical refinement, there holds

‖(1 − Πℓ+1)ûℓ‖2
L2(T ) = |T |

(
c2T,2 + c2T,4

)
,

and the mesh-refinement strategy yields c2T,2 + c2T,4 ≤ τ
1−τ

c2T,3. This again leads to

|T |
(
c2T,2 + c2T,4

)
≤ τ |T |

(
c2T,2 + c2T,3 + c2T,4

)
= τ ‖(1 − Πℓ)ûℓ‖2

L2(T ).

Since ̺ℓ+1|T ∈ R is constant, we thus obtain in any case

‖̺1/2
ℓ+1(1 − Πℓ+1)ûℓ‖2

L2(T ) ≤ τ ‖̺1/2
ℓ+1(1 − Πℓ)ûℓ‖2

L2(T ) ≤ τ µ̃ℓ(T )2 for all T ∈ Mℓ.

Moreover, there clearly holds

‖̺1/2
ℓ+1(1 − Πℓ+1)ûℓ‖2

L2(T ) ≤ ‖̺1/2
ℓ (1 − Πℓ)ûℓ‖2

L2(T ) = µ̃ℓ(T )2 for all T ∈ Tℓ\Mℓ.

Together with the marking strategy (1.1), this implies

‖̺1/2
ℓ+1(1 − Πℓ+1)ûℓ‖2

L2(Γ) =
∑

T∈Mℓ

‖̺1/2
ℓ+1(1 − Πℓ+1)ûℓ‖2

L2(T ) +
∑

T∈Tℓ\Mℓ

‖̺1/2
ℓ+1(1 − Πℓ+1)ûℓ‖2

L2(T )

≤ τ
∑

T∈Mℓ

µ̃ℓ(T )2 +
∑

T∈Tℓ\Mℓ

µ̃ℓ(T )2

= −(1 − τ)
∑

T∈Mℓ

µ̃ℓ(T )2 +
∑

T∈Tℓ

µ̃ℓ(T )2

≤
(
1 − θ(1 − τ)

)
µ̃2

ℓ

and concludes the proof. �

4.2. Averaging Error Estimator. The ideas of the previous section can be generalized to

anisotropic mesh-refinement steered by the averaging estimator β̃ℓ from (3.24). For T ∈ Mℓ,

let Π
(1)
unif(T ), Π

(1)
vert(T ), and Π

(1)
horiz(T ) denote the L2-orthogonal projections onto P1(unif(T )),

P1(vert(T )), and P1(horiz(T )), respectively, cf. Figure 3. As before, let 0 < τ < 1 be an
additional parameter and assume that T ∈ Tℓ is marked for refinement.

• If ‖̺1/2
ℓ (1 − Π

(1)
horiz(T ))ûℓ‖2

L2(T ) ≤ τ β̃ℓ(T )2, we use horizontal refinement to create two
sons T1, T2 ∈ Tℓ+1.

• If ‖̺1/2
ℓ (1−Π

(1)
vert(T ))ûℓ‖2

L2(T ) ≤ τ β̃ℓ(T )2, we use vertical refinement to create two sons

T1, T2 ∈ Tℓ+1.
• Otherwise, T ∈ Mℓ is refined isotropically into four sons T1, . . . , T4 ∈ Tℓ+1.

As in the previous section, we check the mesh-size ratio ̺ℓ of neighbouring elements and
possibly mark them for refinement in order to ensure the uniform boundedness of the K-
mesh constant κ(Tℓ).

Theorem 4.2. Let 0 < θ < 1 and 0 < τ < 1 be fixed constants. Suppose that we use the

indicators ρℓ(T ) := β̃ℓ(T ) defined in (3.24) in Algorithm 1.1. Then,

β̃ℓ+1 ≤
(
1 − θ(1 − τ)

)1/2
β̃ℓ +

√
2Cinv |||ûℓ+1 − ûℓ||| for all ℓ ∈ N0, (4.3)

and the second term on the right-hand side vanishes as ℓ→ ∞. In particular, Proposition 1.2

applies and proves convergence lim
ℓ→∞

β̃ℓ = 0.

16



Proof. We follow the lines of the proof of Theorem 4.1. As above, the triangle inequality
and the inverse estimate (3.13) prove

β̃ℓ+1 ≤ ‖̺1/2
ℓ+1(1 − Π

(1)
ℓ+1)ûℓ‖L2(Γ) +

√
2Cinv |||ûℓ+1 − ûℓ|||.

Now, let T ∈ Mℓ be a marked element.

• If T is refined isotropically, there holds

‖̺1/2
ℓ+1(1 − Π

(1)
ℓ+1)ûℓ‖L2(T ) = 0.

• If T is refined by horizontal refinement, there holds

‖̺1/2
ℓ+1(1 − Π

(1)
ℓ+1)ûℓ‖2

L2(T ) ≤ ‖̺1/2
ℓ (1 − Π

(1)
horiz(T ))ûℓ‖2

L2(T ) ≤ τ β̃ℓ(T )2.

• If T is refined by vertical refinement, there holds

‖̺1/2
ℓ+1(1 − Π

(1)
ℓ+1)ûℓ‖2

L2(T ) ≤ ‖̺1/2
ℓ (1 − Π

(1)
vert(T ))ûℓ‖2

L2(T ) ≤ τ β̃ℓ(T )2.

In all cases, we thus obtain

‖̺1/2
ℓ+1(1 − Π

(1)
ℓ+1)ûℓ‖2

L2(T ) ≤ τ β̃ℓ(T )2 for all T ∈ Mℓ.

Moreover, there clearly holds

‖̺1/2
ℓ+1(1 − Π

(1)
ℓ+1)ûℓ‖2

L2(T ) ≤ β̃ℓ(T )2 for all T ∈ Tℓ\Mℓ.

Together with the marking strategy (1.1), we again obtain

‖̺1/2
ℓ+1(1 − Π

(1)
ℓ+1)ûℓ‖2

L2(Γ) ≤
(
1 − θ(1 − τ)

)
β̃2

ℓ

and conclude the proof. �

Remark 6. We stress that, instead of first-order polynomials p = 1 for the L2-orthogonal

projections Π
(p)
∗ , we may use arbitrary polynomial degree p ≥ 1. In particular, the choice of

p = 0 leads to the criterion from [FP] discussed in Section 4.1. Therefore, the introduced
anisotropic refinement rule can be seen as an extension of the original ideas, and the proof
of the estimator reduction holds for arbitrary polynomial degree p ≥ 0. �
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