
ASC Report No. 19/2008

Efficient Implementation of Adaptive
P1-FEM in MATLAB

Stefan Funken, Dirk Praetorius, Philipp Wissgott

Institute for Analysis and Scientific Computing

Vienna University of Technology — TU Wien

www.asc.tuwien.ac.at ISBN 978-3-902627-00-1

Most recent ASC Reports

18/2008 Bertram Düring, Guiseppe Toscani
International and Domestic Trading and Wealth Distribution

17/2008 Vyacheslav Pivovarchik, Harald Woracek
Sums of Nevanlinna Functions and Differential Equations on Star-Shaped Gra-
phs

16/2008 Bertram Düring, Daniel Matthes, Guiseppe Toscani
Kinetic Equations Modelling Wealth Redistribution: A Comparison of Approa-
ches

15/2008 Jens Markus Melenk, Stefan Sauter
Convergence Analysis for Finite Element Discretizations of the Helmholtz Equa-
tion. Part I: the Full Space Problem

14/2008 Anton Arnold, Franco Fagnola, Lukas Neumann
Quantum Fokker-Planck Models: the Lindblad and Wigner Approaches

13/2008 Jingzhi Li, Jens Markus Melenk, Barbara Wohlmuth, Jun Zou
Optimal Convergence of Higher Order Finite Element Methods for Elliptic In-
terface Problems

12/2008 Samuel Ferraz-Leite, Christoph Ortner, Dirk Praetorius
Adaptive Boundary Element Method:
Simple Error Estimators and Convergence

11/2008 Gernot Pulverer, Gustaf Söderlind, Ewa Weinmüller
Automatic Grid Control in Adaptive BVP Solvers

10/2008 Othmar Koch, Roswitha März, Dirk Praetorius, Ewa Weinmüller
Collocation Methods for Index 1 DAEs with a Singularity of the First Kind

09/2008 Anton Arnold, Eric Carlen, Qiangchang Ju
Large-Time Behavior on Non-Symmetric Fokker-Planck Type Equations

Institute for Analysis and Scientific Computing
Vienna University of Technology
Wiedner Hauptstraße 8–10
1040 Wien, Austria

E-Mail: admin@asc.tuwien.ac.at

WWW: http://www.asc.tuwien.ac.at

FAX: +43-1-58801-10196

ISBN 978-3-902627-00-1

c© Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Autors.

ASC
TU WIEN

EFFICIENT IMPLEMENTATION OF ADAPTIVE P1-FEM IN MATLAB

S. FUNKEN, D. PRAETORIUS, AND P. WISSGOTT

Abstract. We provide a Matlab implementation of an adaptive P1-finite element method
(AFEM). This includes functions for the assembly of the data, different error estimators, and
an indicator-based adaptive mesh-refining algorithm. Throughout, the focus is on an efficient
realization by use of Matlab built-in functions and vectorization. Numerical experiments
underline the efficiency of the code which is observed to be of almost linear complexity with
respect to the runtime.

1. Introduction

In recent years, Matlab has become a de facto standard for the development of various kinds
of algorithms for numerical simulations.

In [2], a short Matlab code for the P1-Galerkin FEM is proposed. Whereas the given code
seems to be of linear complexity with respect to the number of elements, the measurement of
the computational time proves quadratic dependence instead.

In this paper, we thus show how to modify the existing Matlab code so that the theoretically
predicted complexity can even be measured in computations. Our code is fully vectorized in
the sense that for -loops are eliminated by use of Matlab vector operations. Moreover and
in addition to [2], we provide a complete and easy-to-modify package for adaptive P1-FEM
computations, including different a posteriori error estimators as well as an adaptive mesh-
refinement based on a red-green-blue strategy (RGB) or newest vertex bisection (NVB). For
the latter, we additionally provide an efficient implementation of the coarsening strategy from
Chen and Zhang [10, 12]. All parts of this package [15] are implemented in a way, we expect to
be optimal in Matlab as a compromise between clarity, shortness, and use of Matlab built-in
functions.

The remaining content is organized as follows: Section 2 introduces the model problem and
the Galerkin scheme. In Section 3, we first recall the data structures of [2] as well as their
Matlab implementation. We discuss the reasons why this code leads to quadratic complexity
in practice. Even simple modifications yield an improved code which behaves almost linearly.
We show how the occurring for -loops can be eliminated by use of Matlab’s vector arithmetics
which leads to a further improvement of the code. Section 4 is focused on local mesh-refinement
and mesh-coarsening. Section 5 provides a realization of a standard adaptive mesh-refining
algorithm. For marking, we provide the Matlab implementations of three types of error
estimators: First, the residual-based error estimator introduced by Babuška and Miller [4],
second, the hierarchical error estimator due to Bank and Smith [5], third, the gradient recovery
technique proposed by Zienkiewicz and Zhu [23]. Section 6 concludes the paper with some
numerical experiments.

2. Model Example and P1-Galerkin FEM

2.1. Continuous Problem. As model problem, we consider the Laplace equation with mixed
Dirichlet-Neumann boundary conditions. Given f ∈ L2(Ω), uD ∈ H1(Ω), and g ∈ L2(ΓN), we

Date: August 4, 2008.

1

aim to compute an approximation of the solution u ∈ H1(Ω) of

−∆u = f in Ω,

u = uD on ΓD,

∂nu = g on ΓN .

(2.1)

Here, Ω is a bounded Lipschitz domain in R
2 whose polygonal boundary Γ := ∂Ω is split into a

closed Dirichlet boundary ΓD with positive length and a Neumann boundary ΓN := Γ\ΓD. On
ΓN we prescribe the normal derivative ∂nu of u, i.e. the flux. With

u0 = u − uD ∈ H1
D(Ω) := {v ∈ H1(Ω) : v = 0 on ΓD},(2.2)

the weak form reads: Find u0 ∈ H1
D(Ω) such that

∫

Ω
∇u0 · ∇v dx =

∫

Ω
fv dx +

∫

ΓN

gv ds −

∫

Ω
∇uD · ∇v dx for all v ∈ H1

D(Ω).(2.3)

Functional analysis provides the unique existence of u0 in the Hilbert space H1
D(Ω), whence

the unique existence of a weak solution u := u0 + uD ∈ H1(Ω) of (2.1). Note that u does only
depend on uD|ΓD

so that one may consider the easiest possible extension uD of the Dirichlet
trace uD|ΓD

from ΓD to Ω.

2.2. P1-Galerkin FEM. Let T be a regular triangulation of Ω into triangles, i.e.

• T is a finite set of compact triangles T = conv{z1, z2, z3} with positive area |T | > 0,
• the union of all triangles in T covers the closure Ω of Ω,
• the intersection of different triangles is either empty, a common node, or a common edge,
• an edge may not intersect both, ΓD and ΓN , such that the intersection has positive length.

In particular, the partition of Γ into ΓD and ΓN is resolved by T . Moreover, hanging nodes are
not allowed, cf. Figure 1 for an exemplary regular triangulation T . Let

S1(T) := {V ∈ C(Ω) : ∀T ∈ T V |T affine}(2.4)

denote the space of all globally continuous and T -piecewise affine splines. With N = {z1, . . . , zN}
the set of nodes of T , we consider the nodal basis B = {V1, . . . , VN}, where the hat function
Vℓ ∈ S1(T) is characterized by Vℓ(zk) = δkℓ with Kronecker’s delta. For the Galerkin method,
we consider the space

S1
D(T) := S1(T) ∩ H1

D(Ω) = {V ∈ S1(T) : ∀zℓ ∈ N ∩ ΓD V (zℓ) = 0}.(2.5)

Without loss of generality, there holds N ∩ΓD = {zn+1, . . . , zN}. We assume that the Dirichlet
data uD ∈ H1(Ω) are continuous on ΓD and replace uD|ΓD

by its nodal interpolant

UD :=
N∑

ℓ=n+1

uD(zℓ)Vℓ ∈ S1(T).(2.6)

The discrete variational form∫

Ω
∇U0 · ∇V dx =

∫

Ω
fV dx +

∫

ΓN

gV ds −

∫

Ω
∇UD · ∇V dx for all V ∈ S1

D(T)(2.7)

then has a unique solution U0 ∈ S1
D(T) which provides an approximation U := U0+UD ∈ S1(T)

of u ∈ H1(Ω). We aim to compute the coefficient vector x ∈ R
N of U ∈ S1(T) with respect to

the nodal basis B

U0 =

n∑

j=1

xjVj , whence U =

N∑

j=1

xjVj with xj := uD(zj) for j = n + 1, . . . ,N.(2.8)

Note that the discrete variational form (2.7) is equivalent to the linear system

n∑

k=1

Ajkxk = bj :=

∫

Ω
fVj dx +

∫

ΓN

gVj ds −
N∑

k=n+1

Ajkxk for all j = 1, . . . , n(2.9)

2

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

z1z1z1 z2z2z2

z3z3z3

z4z4z4
z5z5z5

z6z6z6

z7z7z7 z8z8z8

z9z9z9
z10z10z10 z11z11z11 coordinates

1 −1.0 −1.0
2 0.0 −1.0
3 −0.5 −0.5
4 −1.0 0.0
5 0.0 0.0
6 1.0 0.0
7 −0.5 0.5
8 0.5 0.5
9 −1.0 1.0

10 0.0 1.0
11 1.0 1.0

elements

1 1 2 3
2 2 5 3
3 5 4 3
4 4 1 3
5 4 5 7
6 5 10 7
7 10 9 7
8 9 4 7
9 5 6 8

10 6 11 8
11 11 10 8
12 10 5 8

dirichlet

1 11 10
2 10 9
3 9 4
4 4 1

neumann

1 1 2
2 2 5
3 5 6
4 6 11

Figure 1. Exemplary triangulation T of the L-shaped domain Ω =
(−1, 1)2\([0, 1] × [−1, 0]) into 12 triangles specified by the 11 × 2 array
coordinates and the 12×3 array elements . The Dirichlet boundary, specified
in the 4 × 2 array dirichlet , consists of 4 edges which are plotted in red. The
nodes N ∩ ΓD are indicated by red squares, whereas free nodes are indicated by
black bullets. The Neumann boundary is specified by neumann and consists of
the remaining 4 boundary edges.

with stiffness matrix entries

Ajk =

∫

Ω
∇Vj · ∇Vk dx =

∑

T∈T

∫

T
∇Vj · ∇Vk dx for all j, k = 1, . . . ,N.(2.10)

For the implementation, we build A ∈ R
N×N
sym with respect to all nodes and then solve (2.9) on

the n × n subsystem corresponding to the free nodes.

3. Matlab Implementation of P1-Galerkin FEM

In this section, we recall the Matlab implementation of the P1-FEM from [2] and explain, why
this code leads to a quadratic growth of the runtime with respect to the number of elements.
We discuss how to write an efficient Matlab code by use of vectorization. In particular, we
collect a number of tricks which are used in our Matlab implementations lateron. From this
point of view, Section 3 is central, and the reader is enforced to read this section carefully. We
finally provide a fully vectorized Matlab implementation of the P1-FEM, which is empirically
proven to be optimal in numerical experiments.

3.1. Data Structures. For the data representation of the set of all nodes N = {z1, . . . , zN},
the regular triangulation T = {T1, . . . , TM}, and the boundaries ΓD and ΓN , we follow [2]: We
refer to Figure 1 for an exemplary triangulation T and corresponding data arrays coordinates ,
elements , dirichlet , and neumann, which are formally specified in the following:

The set of all nodes N is represented by the N × 2 array coordinates , where N = #N .
The ℓ-th row of coordinates stores the coordinates of the ℓ-th node zℓ = (xℓ, yℓ) ∈ R

2 as

coordinates(ℓ,:) = [xℓ yℓ].

The choice of the coordinate system and the order of the nodes, i.e. the numbering of N , is
arbitrary.

The triangulation T is represented by the M × 3 integer array elements with M = #T .
The ℓ-th triangle Tℓ = conv{zi, zj , zk} ∈ T with vertices zi, zj , zk ∈ N is stored as

elements(ℓ,:) = [i j k],

where the nodes are given in counterclockwise order, i.e., the parametrization of the boundary
∂Tℓ is mathematically positive. The order of the triangles, i.e. the numbering of T , is arbitrary.

3

The Dirichlet boundary ΓD is split into K affine boundary pieces, which are edges of triangles
T ∈ T . It is represented by a K × 2 integer array dirichlet . The ℓ-th edge Eℓ = conv{zi, zj}
on the Dirichlet boundary is stored in the form

dirichlet(ℓ,:) =[i j].

It is assumed that zj − zi gives the mathematically positive orientation of Γ, i.e. the outer
normal vector of Ω on Eℓ reads

nℓ =
1

|zj − zi|

(
yj − yi

xi − xj

)
,

where zk = (xk, yk) ∈ R
2. The order of Dirichlet edges is arbitrary. Finally, the Neumann

boundary ΓN is stored analogously within an L × 2 integer array neumann.
Using this data structure, we may visualize a discrete function U =

∑N
j=1 xjVj ∈ S1(T) by

trisurf (elements,coordinates(:,1),coordinates(:,2),x, 'facecolor' , 'interp')

Here, the column vector xj = U(zj) contains the nodal values of U at the j-th node zj ∈ R
2

given by coordinates(j,:) .

Listing 1
1 function [x,energy] = solveLaplace(coordinates,elements,dirichl et,neumann,f,g,uD)
2 nC = size (coordinates,1);
3 x = zeros (nC,1);
4 %* ** Assembly of stiffness matrix
5 A = sparse (nC,nC);
6 for i = 1: size (elements,1)
7 nodes = elements(i,:);
8 B = [1 1 1 ; coordinates(nodes,:)'];
9 grad = B \ [0 0 ; 1 0 ; 0 1];

10 A(nodes,nodes) = A(nodes,nodes) + det (B) * grad * grad'/2;
11 end
12 %* ** Prescribe values at Dirichlet nodes
13 dirichlet = unique (dirichlet);
14 x(dirichlet) = feval (uD,coordinates(dirichlet,:));
15 %* ** Assembly of right −hand side
16 b = −A* x;
17 for i = 1: size (elements,1)
18 nodes = elements(i,:);
19 sT = [1 1 1] * coordinates(nodes,:)/3;
20 b(nodes) = b(nodes) + det ([1 1 1 ; coordinates(nodes,:)']) * feval (f,sT)/6;
21 end
22 for i = 1: size (neumann,1)
23 nodes = neumann(i,:);
24 mE = [1 1] * coordinates(nodes,:)/2;
25 b(nodes) = b(nodes) + norm([1 −1] * coordinates(nodes,:)) * feval (g,mE)/2;
26 end
27 %* ** Computation of P1 −FEM approximation
28 f reenodes = setdiff (1:nC, dirichlet);
29 x(freenodes) = A(freenodes,freenodes) \b(freenodes);
30 %* ** Compute energy | | grad(uh) | | ˆ2 of discrete solution
31 energy = x' * A* x;

3.2. A First But Inefficient MatlabMatlabMatlab Implementation (Listing 1). This section essen-
tially recalls the Matlab code of [2] for later reference:

• Line 1: As input, the function solveLaplace takes the description of a triangulation T as
well as functions for the volume forces f , the Neumann data g, and the Dirichlet data uD.
According to the Matlab 7 standard, these functions may be given as function handles or
as strings containing the function names. Either function is assumed to take n evaluation
points ξj ∈ R

2 in form of a matrix ξ ∈ R
n×2 and to return a column vector y ∈ R

n of the
4

associated function values, e.g., yj = f(ξj). Finally, the function solveLaplace returns
the coefficient vector xj = U(zj) of the discrete solution U ∈ S1(T), cf. (2.8), as well as its

energy ‖∇U‖2
L2(Ω) =

∑N
j,k=1 xjxk

∫
Ω ∇Vj · ∇Vk dx = x ·Ax.

• Lines 5–11: The stiffness matrix A ∈ R
N×N
sym is built elementwise as indicated in (2.10). We

stress that, for Ti ∈ T and piecewise affine basis functions, a summand
∫

Ti

∇Vj · ∇Vk dx = |Ti|∇Vj |Ti
· ∇Vk|Ti

vanishes if not both zj and zk are nodes of Ti. We thus may assemble A simultaneously for
all j, k = 1, . . . ,N , where we have a (3× 3)-update of A per element Ti ∈ T . Note that the
matrix B ∈ R

3×3 defined in Line 8 even provides |Ti| = det(B)/2. Moreover, grad(ℓ,:)
from Line 9 contains the gradient of the hat function Vj |Ti

corresponding to the j-th node
zj , where j=elements(i, ℓ) .

• Lines 13–14: The entries of the coefficient vector x ∈ R
N which correspond to Dirichlet

nodes, are initialized, cf. (2.8).
• Lines 16–26: The load vector b ∈ R

N from (2.9) is built. It is initialized by the contribution
of the nodal interpolation of the Dirichlet data (Line 16), cf. (2.7) resp. (2.9). Next (Lines
17–21), we elementwise add the volume force

∫

Ω
fVj dx =

∑

T∈T

∫

T
fVj dx.

Again, we stress that, for T ∈ T , a summand
∫
T fVj dx vanishes if zj is not a node of T .

Each element T thus enforces an update of three components of b only. The integral is
computed by a 1-point quadrature with respect to the center of mass sT ∈ T

∫

T
fVj dx ≈ |T |f(sT)Vj(sT) =

|T |

3
f(sT) for zj ∈ T ∈ T .

Finally (Lines 22–26), we elementwise add the Neumann contributions
∫

ΓN

gVj ds =
∑

E⊆ΓN

∫

E
gVj ds.

Again, for each edge E on the Neumann boundary, only two components of the load vector
b are effected. The boundary integral is computed by a 1-point quadrature with respect to
the edge’s midpoint mE ∈ E

∫

E
gVj ds ≈ hEg(mE)Vj(mE) =

hE

2
g(mE) for zj ∈ E ∈ E , E ⊆ ΓN ,

where hE denotes the edge length.
• Lines 28–29: We first compute the indices of all free nodes zj 6∈ ΓD (Line 28). Then, we

solve the linear system (2.9) for the coefficients xj which correspond to free nodes zj 6∈ ΓD

(Line 29). Note that this does not effect the coefficients xk = uD(zk) corresponding to
Dirichlet nodes zk ∈ ΓD so that x ∈ R

N finally is, in fact, the coefficient vector of the
P1-FEM approximation U ∈ S1(T), cf. (2.8).

On a first glance, one might expect linear runtime of the function solveLaplace with respect
to the number #T of elements — at least up to the solution of the linear system in Line 29.
Instead, one observes a quadratic dependence, cf. Table 1–2 and Figure 9 below.

Listing 2
1 %* ** Assembly of stiffness matrix in linear complexity
2 nE = size (elements,1);
3 I = zeros (9 * nE,1);
4 J = zeros (9 * nE,1);
5 A = zeros (9 * nE,1);

5

6 for i = 1:nE
7 nodes = elements(i,:);
8 B = [1 1 1 ; coordinates(nodes,:)'];
9 grad = B \ [0 0 ; 1 0 ; 0 1];

10 idx = 9 * (i −1)+1:9 * i;
11 tmp = [1;1;1] * nodes;
12 I(idx) = reshape (tmp',9,1);
13 J(idx) = reshape (tmp,9,1);
14 A(idx) = det (B)/2 * reshape (grad * grad',9,1);
15 end
16 A = sparse (I,J,A,nC,nC);

3.3. Reasons for MatlabMatlabMatlab’s Inefficiency and some Remedy. A closer look on the Matlab

code of the function solveLaplace in Listing 1 reveals that the quadratic dependence of the
runtime on the number M = #T of elements is due to the assembly of the stiffness matrix
A ∈ R

N×N (Lines 5–11): In Matlab, sparse matrices are internally stored in the compressed
column storage format (or: Harwell-Boeing format), cf. [6] for an introduction to storage formats
for sparse matrices. Therefore, updating a sparse matrix with new entries, necessarily needs the
prolongation and sorting of the storage vectors. For each step i in the update of a sparse matrix,
we are thus led to at least O(i) operations, which results in an overall complexity of O(M2)
for building the stiffness matrix. This theoretically predicted complexity is even observed in
Table 2.

As has been pointed out by Gilbert, Moler, and Schreiber [14], Matlab provides some
simple remedy for the otherwise inefficient building of sparse matrices: Let a ∈ R

n and I, J ∈ N
n

be the vectors for the coordinate format of some sparse matrix A ∈ R
M×N . Then, A can be

declared and initialized by use of the Matlab command

A = sparse (I,J,a,M,N)

where, in general, Aij = aℓ for i = Iℓ and j = Jℓ. If an index pair, (i, j) = (Iℓ, Jℓ) appears twice
(or even more), the corresponding entries aℓ are added. In particular, the internal realization
only needs one sorting of the entries which appears to be of complexity O(n log n), cf. Table 2
below.

For the assembly of the stiffness matrix, we now replace Lines 5–11 of Listing 1 by Lines 2–16
of Listing 2. We only comment on the differences of Listing 1 and Listing 2 in the following:

• Lines 2–5: Note that the elementwise assembly of A in Listing 1 uses nine updates of the
stiffness matrix per element, i.e. the vectors I, J , and a have length 9M with M = #T the
number of elements.

• Lines 10–14: Storage of the matrix updates in the corresponding entries of the vectors
I, J , and a: Note that dense matrices are stored columnwise in Matlab, i.e., a matrix
V ∈ R

M×N is stored in a vector v ∈ R
MN with Vjk = vj+(k−1)M . For fixed, i and idx in

Lines 10–14, there consequently hold
I(idx) = elements(i,[1 2 3 1 2 3 1 2 3]);
J(idx) = elements(i,[1 1 1 2 2 2 3 3 3]);

Therefore, I(idx) and J(idx) address the same entries of A as has been done in Line 10
of Listing 1. Note that we compute the same matrix updates a as in Line 10 of Listing 1.

• Line 16: The sparse matrix A ∈ R
N×N is built from the three coordinate vectors.

A comparison of the assembly times for the stiffness matrix A by use of the naive code (Lines
5–11 of Listing 1) and the improved code (Lines 2–16 of Listing 2) reveals that the new code has
almost linear complexity with respect to M = #T , cf. Table 2. Moreover, in Figure 9 we even
observe that the overall runtime of the modified function solveLaplace has logarithmic-linear
growth. We remark that, in theory, the assembly of a P1-FEM stiffness matrix in compressed
column storage format could be done in linear complexity with respect to the number M = #T
of elements. However, we observe a logarithmic-linear growth of the runtime for Matlab’s

6

sparse function instead. This is probably due to the internal realization of sorting the coordi-
nate vectors.

For the convenience of the reader, the following list collects some Matlab built-in functions
which are used below to optimize the performance of our Matlab code. All of the following
techniques are based on the empirical observation that vectorized code is always faster than the
corresponding implementation using loops. Besides sparse discussed above, we shall use the
following tools for performance acceleration, provided by Matlab:

• We have already noted that dense matrices A ∈ R
M×N are stored columnwise in Matlab.

The command A(:) returns the column vector as used for the internal storage. Besides
this, one may use

B = reshape (A,m,n)
to change the shape of A ∈ R

M×N into B ∈ R
m×n with MN = mn, where B(:) coincides

with A(:) .
• For a (sparse or even dense) matrix A ∈ R

M×N ,
[I,J,a] = find (A) .

returns the coordinate format of A: With n ∈ N the number of nonzero-entries of A, there
holds I, J ∈ N

n, a ∈ R
n, and Aij = aℓ with i = Iℓ and j = Jℓ. Moreover, the vectors are

columnwise ordered with respect to A.
• Fast assembly of dense matrices A ∈ R

M×N is done by
A = accumarray (I,a,[M N])

with I ∈ N
n×2 and a ∈ R

n. The entries of A are then given by Aij = aℓ with i = Iℓ1 and
j = Iℓ2. As for sparse , multiple occurrence of an index pair (i, j) = (Iℓ1, Iℓ2) leads to the
summation of the associated values aℓ.

• For a matrix A ∈ R
M×N ,

a = sum(A,2)
returns the rowwise sum a ∈ R

M of the entries of A, i.e., aj =
∑N

k=1 Ajk. The columnwise

sum b ∈ R
N is computed by b = sum(A,1) .

• Finally, linear arithmetics is done by usual matrix-matrix operations, e.g., A+B or A* B,
whereas nonlinear arithmetics is done by pointwise arithmetics, e.g., A. * B or A.ˆ2 .

Listing 3
1 function [x,energy] = solveLaplace(coordinates,elements,dirichl et,neumann,f,g,uD)
2 nE = size (elements,1);
3 nC = size (coordinates,1);
4 x = zeros (nC,1);
5 %* ** First vertex of elements and corresponding edge vectors
6 c1 = coordinates(elements(:,1),:);
7 d21 = coordinates(elements(:,2),:) − c1;
8 d31 = coordinates(elements(:,3),:) − c1;
9 %* ** Vector of element areas 4 * |T |

10 area4 = 2 * (d21(:,1). * d31(:,2) −d21(:,2). * d31(:,1));
11 %* ** Assembly of stiffness matrix
12 I = reshape (elements(:,[1 2 3 1 2 3 1 2 3])',9 * nE,1);
13 J = reshape (elements(:,[1 1 1 2 2 2 3 3 3])',9 * nE,1);
14 a = (sum(d21. * d31,2)./area4)';
15 b = (sum(d31. * d31,2)./area4)';
16 c = (sum(d21. * d21,2)./area4)';
17 A = [−2* a+b+c;a −b;a −c;a −b;b; −a;a −c; −a;c];
18 A = sparse (I,J,A(:));
19 %* ** Prescribe values at Dirichlet nodes
20 dirichlet = unique (dirichlet);
21 x(dirichlet) = feval (uD,coordinates(dirichlet,:));
22 %* ** Assembly of right −hand side
23 f sT = feval (f,c1+(d21+d31)/3);
24 b = accumarray (elements(:), repmat (12 \area4. * fsT,3,1),[nC 1]) − A* x;

7

25 if ∼ isempty (neumann)
26 cn1 = coordinates(neumann(:,1),:);
27 cn2 = coordinates(neumann(:,2),:);
28 gmE = feval (g,(cn1+cn2)/2);
29 b = b + accumarray (neumann(:), ...
30 repmat (2 \sqrt (sum((cn2 −cn1).ˆ2,2)). * gmE,2,1),[nC 1]);
31 end
32 %* ** Computation of P1 −FEM approximation
33 f reenodes = setdiff (1:nC, dirichlet);
34 x(freenodes) = A(freenodes,freenodes) \b(freenodes);
35 %* ** Compute energy | | grad(uh) | | ˆ2 of discrete solution
36 energy = x' * A* x;

3.4. An Efficient MatlabMatlabMatlab Implementation (Listing 3). In this section, we further
improve the overall runtime of the P1-FEM implementation in Matlab. First, function calls
are generically expensive. We therefore reduce the function calls to the three necessary calls
in Line 21, 23, and 28 to evaluate the data functions uD, f , and g, respectively. Second, a
further improvement of the function solveLaplace can be achieved by use of Matlab’s vector
arithmetics which allows to replace any for -loop.

• Line 10: Let T = conv{z1, z2, z3} denote a non-degenerate triangle in R
2, where the vertices

z1, z2, z3 are given in counterclockwise order. With vectors v = z2 − z1 and w = z3 − z1,
the area of T then reads

2|T | = det

(
v1 w1

v2 w2

)
= v1w2 − v2w1.

Consequently, Line 10 computes the areas of all elements T ∈ T simultaneously.
• Line 12–18: We assemble the stiffness matrix A ∈ R

N×N
sym as in Listing 2. However, the

coordinate vectors I, J , and a are now assembled simultaneously for all elements T ∈ T by
use of vector arithmetics. Since the assembly of I and J in Lines 12–13 is along the lines
of Listing 2, it only remains to understand that Lines 14–17 compute the same vector a
as before. Let T = conv{z1, z2, z3} denote a non-degenerate triangle with vertices zj ∈ R

2

(j = 1, 2, 3) given in counterclockwise order and corresponding hat functions Vj. Using an
affine mapping between T and a reference element Tref = conv{(0, 0), (0, 1), (1, 0)} we are
able to precalculate the local stiffness matrices up to a linear combination which depends
on z1, z2, z3 only, i.e.

(∫

T
∇Vj · ∇Vk dx

)3

j,k=1

= a

(
−2 1 1
1 0 −1
1 −1 0

)
+ b

(
1 −1 0
−1 1 0
0 0 0

)
+ c

(
1 0 −1
0 0 0
−1 0 1

)

=

−2a + b + c a − b a − c

a − b b −a
a − c −a c

with

a =
(z2 − z1) · (z3 − z1)

4|T |
, b =

|z3 − z1|
2

4|T |
, and c =

|z2 − z1|
2

4|T |
,

see [19, Chapter 4].
• Lines 23–30: Assembly of the load vector, cf. Lines 16–26 in Listing 1 above: In Line 23,

we evaluate the volume forces f(sT) in the centers sT of all elements T ∈ T simultaneously.
We initialize b with the contribution of the volume forces and of the Dirichlet data (Line
24). If the Neumann boundary is non-trivial, we evaluate the Neumann data g(mE) in all
midpoints mE of Neumann edges E ∈ EN simultaneously (Line 28). Finally, Line 29 is the
vectorized variant of Lines 22–26 in Listing 1.

8

4. Local Mesh Refinement and Coarsening

The accuracy of a discrete approximation U of u depends on the triangulation T in the sense
that the data f , g, and uD as well as possible singularities of u have to be resolved by the triangu-
lation. Using the adaptive algorithm of Section 5, this can be done automatically, which needs,
however, some (local) mesh-refinement to improve T . We provide Matlab implementations
of two popular mesh-refining techniques, namely newest vertex bisection and red-green-blue
refinement. Moreover, in parabolic problems the solution u usually becomes smoother if time
proceeds. Since the computational complexity depends on the number of elements, one may
then want to remove certain elements from T . For newest vertex bisection, this (local) mesh
coarsening can be done efficiently without storing any further data. Although the focus of this
paper is not on time dependent problems, we include an efficient implementation of a coarsening
algorithm from [12] for the sake of completeness.

Listing 4
1 function [edge2nodes,element2edges, varargout] ...
2 = provideGeometricData(elements, varargin)
3 nE = size (elements,1);
4 nB = nargin −1;
5 %* ** Node vectors of all edges (interior edges appear twice)
6 I = elements(:);
7 J = reshape (elements(:,[2,3,1]),3 * nE,1);
8 %* ** Symmetrize I and J (so far boundary edges appear only once)
9 pointer = [1,3 * nE, zeros (1,nB)];

10 for j = 1:nB
11 boundary = varargin {j };
12 if ∼ isempty (boundary)
13 I = [I;boundary(:,2)];
14 J = [J;boundary(:,1)];
15 end
16 pointer(j+2) = pointer(j+1) + size (boundary,1);
17 end
18 %* ** Create numbering of edges
19 i dxIJ = find (I < J);
20 edgeNumber = zeros (length (I),1);
21 edgeNumber(idxIJ) = 1: length (idxIJ);
22 idxJI = find (I > J);
23 number2edges = sparse (I(idxIJ),J(idxIJ),1: length (idxIJ));
24 [foo {1:2 },numberingIJ] = find (number2edges);
25 [foo {1:2 },idxJI2IJ] = find (sparse (J(idxJI),I(idxJI),idxJI));
26 edgeNumber(idxJI2IJ) = numberingIJ;
27 %* ** Provide element2edges and edge2nodes
28 element2edges = reshape (edgeNumber(1:3 * nE),nE,3);
29 edge2nodes = [I(idxIJ),J(idxIJ)];
30 %* ** Provide boundary2edges
31 for j = 1:nB
32 varargout {j } = edgeNumber(pointer(j+1)+1:pointer(j+2));
33 end

4.1. Efficient Computation of Geometric Relations (Listing 4). For many computa-
tions, one needs further geometric data besides the arrays coordinates , elements , dirichlet ,
and neumann. For instance, we shall need a neighbour relation, e.g., for a given interior edge
E we aim to find the unique elements T+, T− ∈ T such that E = T+ ∩ T−. To avoid search-
ing certain data structures, one usually builds appropriate further data. The assembly of this
temporary data should be done most efficiently.

The mesh-refinement provided below is edge-based. In particular, we need to generate a
numbering of the edges of T . Moreover, we need the information which edges belong to a

9

given element and which nodes belong to a given edge. The necessary data is generated by the
function provideGeometricData of Listing 4. To this end, we build two additional arrays:
For an edge Eℓ, edge2nodes(ℓ,:) provides the numbers j, k of the nodes zj, zk ∈ N such that
Eℓ = conv{zj , zk}. Moreover, element2edges(i, ℓ) returns the number of the edge between
the nodes elements(i, ℓ) and elements(i, ℓ + 1) , where we identify the index ℓ + 1 = 4
with ℓ = 1. Finally, we return the numbers of the boundary edges, e.g., dirichlet2edges(ℓ)
returns the absolute number of the ℓ-th edge on the Dirichlet boundary.

• Line 1: The function is usually called by
[edge2nodes,element2edges,dirichlet2edges,neumann2edges] ...

= provideGeometricData(elements,dirichlet,neumann)
where the partition of the boundary Γ into certain boundary conditions is hidden in the
optional arguments varargin and varargout . This allows a more flexible treatment and
a partition of Γ with respect to finitely many boundary conditions (instead of precisely two,
namely ΓD and ΓN).

• Lines 6–7: We generate node vectors I and J which describe the edges of T : All directed
edges E = conv{zi, zj} of T with zi, zj ∈ N and tangential vector zj − zi of T appear in
the form (i, j) ∈ {(Iℓ, Jℓ) : ℓ = 1, 2, . . . } =: G. From now on, we identify the edge E with
the corresponding pair (i, j) in G.

• Lines 9–17: Note that a pair (i, j) ∈ G is an interior edge of T if and only if (j, i) ∈ G. We
prolongate G by adding the pair (j, i) to G whenever (i, j) is a boundary edge. Then, G is
symmetrized in the sense that (i, j) belongs to G if and only if (j, i) belongs to G.

• Lines 19–26: Create a numbering of the edges and an index vector such that edgeNumber(ℓ)
returns the edge number of the edge (Iℓ, Jℓ): So far, each edge E of T appears twice in G
as pair (i, j) and (j, i). To create a numbering of the edges, we consider all pairs (i, j) with
i < j and fix a numbering (Lines 19–21). Finally, we need to ensure the same edge number
for (j, i) as for (i, j). Note that G corresponds to a sparse matrix with symmetric pattern.
We provide the coordinate format of the upper triangular part of G, where the entries are
the already prescribed edge numbers (Line 23). Next, we provide the coordinate format
of the upper triangular part of the transpose GT , where the entries are the indices with
respect to I and J (Line 25). This provides the necessary information to store the correct
edge number of all edges (j, i) with i < j (Line 26).

• Lines 28–29: Generate arrays element2edges and edge2nodes .
• Lines 31–33: Generate, e.g. dirichlet2edges , to link boundary edges and numbering of

edges.

Listing 5
1 function [coordinates,newElements, varargout] ...
2 = refineNVB(coordinates,elements, varargin)
3 markedElements = varargin {end};
4 nE = size (elements,1);
5 %* ** Obtain geometric information on edges
6 [edge2nodes,element2edges,boundary2edges {1: nargin −3}] ...
7 = provideGeometricData(elements, varargin {1: end−1}) ;
8 %* ** Mark edges for refinement
9 edge2newNode = zeros (max(max(element2edges)),1);

10 edge2newNode(element2edges(markedElements,:)) = 1;
11 swap = 1;
12 while ∼ isempty (swap)
13 markedEdge = edge2newNode(element2edges);
14 swap = find (∼markedEdge(:,1) & (markedEdge(:,2) | markedEdge(:,3)));
15 edge2newNode(element2edges(swap,1)) = 1;
16 end
17 %* ** Generate new nodes
18 edge2newNode(edge2newNode ∼= 0) = size (coordinates,1) + (1: nnz (edge2newNode));
19 idx = find (edge2newNode);

10

20 coordinates(edge2newNode(idx),:) ...
21 = (coordinates(edge2nodes(idx,1),:)+coordinates(edge2nodes(idx,2),:))/2;
22 %* ** Refine boundary conditions
23 for j = 1: nargout −2
24 boundary = varargin {j };
25 if ∼ isempty (boundary)
26 newNodes = edge2newNode(boundary2edges {j });
27 markedEdges = find (newNodes);
28 if ∼ isempty (markedEdges)
29 boundary = [boundary(∼newNodes,:); ...
30 boundary(markedEdges,1),newNodes(markedEdges); ...
31 newNodes(markedEdges),boundary(markedEdges,2)];
32 end
33 end
34 varargout {j } = boundary;
35 end
36 %* ** Provide new nodes for refinement of elements
37 newNodes = edge2newNode(element2edges);
38 %* ** Determine type of refinement for each element
39 markedEdges = (newNodes ∼= 0);
40 none = ∼markedEdges(:,1);
41 bisec1 = (markedEdges(:,1) & ∼markedEdges(:,2) & ∼markedEdges(:,3));
42 bisec12 = (markedEdges(:,1) & markedEdges(:,2) & ∼markedEdges(:,3));
43 bisec13 = (markedEdges(:,1) & ∼markedEdges(:,2) & markedEdges(:,3));
44 bisec123 = (markedEdges(:,1) & markedEdges(:,2) & markedEdges(:,3));
45 %* ** Generate element numbering for refined mesh
46 i dx = ones (nE,1);
47 idx(bisec1) = 2; %* ** bisec(1): newest vertex bisection of 1st edge
48 i dx(bisec12) = 3; %* ** bisec(2): newest vertex bisection of 1st and 2nd edge
49 i dx(bisec13) = 3; %* ** bisec(2): newest vertex bisection of 1st and 3rd edge
50 i dx(bisec123) = 4; %* ** bisec(3): newest vertex bisection of all edges
51 i dx = [1;1+ cumsum(idx)];
52 %* ** Generate new elements
53 newElements = zeros (idx(end) −1,3);
54 newElements(idx(none),:) = elements(none,:);
55 newElements([idx(bisec1),1+idx(bisec1)],:) ...
56 = [elements(bisec1,3),elements(bisec1,1),newNodes(bisec1,1); ...
57 elements(bisec1,2),elements(bisec1,3),newNodes(bisec1,1)];
58 newElements([idx(bisec12),1+idx(bisec12),2+idx(bisec12)],:) ...
59 = [elements(bisec12,3),elements(bisec12,1),newNodes(bisec12,1); ...
60 newNodes(bisec12,1),elements(bisec12,2),newNodes(bisec12,2); ...
61 elements(bisec12,3),newNodes(bisec12,1),newNodes(bisec12,2)];
62 newElements([idx(bisec13),1+idx(bisec13),2+idx(bisec13)],:) ...
63 = [newNodes(bisec13,1),elements(bisec13,3),newNodes(bisec13,3); ...
64 elements(bisec13,1),newNodes(bisec13,1),newNodes(bisec13,3); ...
65 elements(bisec13,2),elements(bisec13,3),newNodes(bisec13,1)];
66 newElements([idx(bisec123),1+idx(bisec123),2+idx(bisec123),3+idx(bisec123)],:) ...
67 = [newNodes(bisec123,1),elements(bisec123,3),newNodes(bisec123,3); ...
68 elements(bisec123,1),newNodes(bisec123,1),newNodes(bisec123,3); ...
69 newNodes(bisec123,1),elements(bisec123,2),newNodes(bisec123,2); ...
70 elements(bisec123,3),newNodes(bisec123,1),newNodes(bisec123,2)];

4.2. Refinement by Newest Vertex Bisection (Listing 5). Before discussing the im-
plementation, we briefly describe the idea of newest vertex bisection. To that end, let T0 be a
given initial triangulation. For each triangle T ∈ T0 one chooses a so-called reference edge, e.g.,
the longest edge. For newest vertex bisection, the (inductive) refinement rule reads as follows,
where Tℓ is a regular triangulation already obtained from T0 by some successive newest vertex
bisections:

11

T0 T1 T2

Figure 2. For each triangle T0 ∈ T , there is one reference edge, indicated by
the double line (left). Refinement of T0 is done by bisecting the reference edge,
where its midpoint becomes a new node. The reference edges of the son triangles
T1 and T2 are opposite to this newest vertex (right).

Figure 3. Closure of triangulation after refinement of marked elements by
newest vertex bisection: Assume that the small element is marked for refine-
ment (first from left). Bisection of the small element leads to a hanging node,
indicated by a bullet (second from left). To avoid hanging nodes, the large ele-
ment as well as one of its sons have to be refined (third from left). This leads
to a final configuration, for which no hanging nodes occur (right). Throughout,
the respective reference edges are indicated by a double line.

Figure 4. Refinement by newest vertex bisections: We consider one triangle
T and assume that certain edges, but at least the reference edge, are marked
for refinement (top). After refinement, the element is split into 2, 3, or 4 son
triangles, respectively (bottom). Throughout, the reference edges are indicated
by a double line.

• To refine an element T ∈ Tℓ, the midpoint xT of the reference edge ET becomes a new node,
and T is bisected along xT and the node opposite to ET into two son elements T1 and T2,
cf. Figure 2.

• As is also shown in Figure 2, the edges opposite to the newest vertex xT become the reference
edges of the two son triangles T1 and T2.

• Having bisected all marked triangles Tℓ, the resulting partition usually shows hanging nodes.
Therefore, one does some additional bisections and finally obtains a regular triangulation
Tℓ+1, cf. Figure 3.

A moment’s reflection shows that the latter closure step, which leads to a regular triangulation,
only leads to finitely many additional bisections. An easy explanation might be the following,
which is also illustrated in Figure 4:

• Instead of marked elements, one might think of marked edges.
• If any edge of a triangle T is marked for refinement, we ensure that its reference edge is

also marked for refinement. This is done recursively in at most 3 ·#Tℓ recursions since then
all edges would be marked for refinement.

12

• If an element T is bisected, only the reference edge is halved, whereas the other two edges
become the reference edges of the two son triangles. The refinement of T into 2, 3, or 4
sons can then be done in one step.

This will also become clear in the implementation of newest vertex bisection in Listing 5, which
is discussed below. For the implementation, we use the following convention: Let the element
Tℓ be stored by

elements(ℓ,:) = [i j k].

In this case zk ∈ N is the newest vertex of Tℓ, and the reference edge is given by E = conv{zi, zj}.
Said differently, the first edge of Tℓ is the reference edge, and the third node is the newest vertex.

• Line 1: The function is usually called by
[coordinates,elements,dirichlet,neumann] ...

= refineNVB(coordinates,elements,dirichlet,neumann,ma rked)
where marked is a vector containing the numbers of the elements which have to be refined.

• Lines 9–10: Create a vector edge2newNode , where edge2newNode(ℓ) is nonzero if and
only if the ℓ-th edge is refined by bisection. In Line 10, we mark all edges of the marked
elements for refinement. Alternatively, one could only mark the reference edge for all marked
elements. This is done by replacing Line 10 by

edge2newNode(element2edges(markedElements,1)) = 1;
• Lines 11–16: Closure of edge marking: For mesh-refinement by newest vertex bisection, we

have to ensure that if an edge of T ∈ T is marked for refinement, at least the reference edge
(opposite to the newest vertex) is also marked for refinement. Clearly, the loop terminates
after at most #T steps since then all reference edges have been marked for refinement.

• Lines 18–21: For each edge that is marked for refinement, we compute the edge’s midpoint
as a new node of the refined triangulation. The number of new nodes is determined by the
nonzero entries of the vector edge2newNode .

• Lines 23–35: Update boundary conditions for refined edges: The ℓ-th boundary edge is
marked for refinement if and only if newNodes(ℓ) is nonzero. In this case, it contains the
number of the edge’s midpoint (Line 26). If at least one edge is marked for refinement, the
corresponding boundary condition is updated (Lines 27–34).

• Lines 37–44: Mark elements for certain refinement by (iterated) newest vertex bisection:
Generate array such that newNodes(i, ℓ) is nonzero if and only if the ℓ-th edge of element
Ti is marked for refinement. In this case, the entry returns the number of the edge’s
midpoint (Line 37). To speed up the code, we use logical indexing and compute a logical
array markedEdges whose entry markedEdges(i, ℓ) only indicates whether the ℓ-th edge
of element Ti is marked for refinement or not. The sets none , bisec1 , bisec12 , bisec13 ,
and bisec123 contain the indices of elements according to the respective refinement rule,
e.g., bisec12 contains all elements for which the first and the second edge are marked for
refinement. Recall that either none or at least the first edge (reference edge) is marked.

• Lines 46–51: Generate numbering of elements for refined mesh: We aim to conserve the
order of the elements in the sense that sons of a refined element have consecutive element
numbers with respect to the refined mesh. The elements of bisec1 are refined into two ele-
ments, the elements of bisec12 and bisec13 are refined into three elements, the elements
of bisec123 are refined into four elements.

• Lines 53–70: Generate refined mesh according to newest vertex bisection: For all refine-
ments, we respect a certain order of the sons of a refined element. Namely, if T is refined
by newest vertex bisection into two sons Tℓ and Tℓ+1, Tℓ is the left element with respect
to the bisection procedure. This assumption allows the later coarsening of a refined mesh
without storing any additional data, cf. [12] and Section 4.4 below.

In numerical analysis, usually constants may depend on the shape of the elements of a tri-
angulation. More precisely, constants usually depend on a lower bound of the smallest interior
angle that appears in a sequence Tℓ of triangulations. It is thus worth noting that newest vertex
bisection leads to at most 4 · #T0 similarity classes of triangles [20] which only depend on T0,

13

Figure 5. Refinement by newest vertex bisection only leads to finitely many
interior angles for the family of all possible triangulations obtained by arbitrary
newest vertex bisections. To see this, we start from a macro element (left), where
the bottom edge is the reference edge. Using iterated newest vertex bisection, one
observes that only four similarity classes of triangles occur, which are indicated
by the coloring. After three steps of bisections (right), no additional similarity
class appears.

Figure 6. RGB refinement: If all edges of a triangle T are marked for refine-
ment, T is split into four similar sons (left). If one or two edges of T are marked
for refinement (amongst which, by definition, the longest edge), one uses newest
vertex bisection with the longest edge of T as reference edge.

cf. Figure 5. In particular, there is a uniform lower bound for all interior angles in Tℓ which
only depends on T0.

Listing 6
1 %* ** Sort elements such that first edge is longest
2 dx = coordinates(elements(:,[2,3,1]),1) −coordinates(elements,1);
3 dy = coordinates(elements(:,[2,3,1]),2) −coordinates(elements,2);
4 [hT,idxMax] = max(reshape (dx.ˆ2+dy.ˆ2,nE,3),[],2);
5 i dx = (idxMax==2);
6 elements(idx,:) = elements(idx,[2,3,1]);
7 idx = (idxMax==3);
8 elements(idx,:) = elements(idx,[3,1,2]);

Listing 7
44 r ed = (markedEdges(:,1) & markedEdges(:,2) & markedEdges(:,3));

50 idx(red) = 4; %* ** red refinement

66 newElements([idx(red),1+idx(red),2+idx(red),3+idx(red)],:) ...

67 = [elements(red,1),newNodes(red,1),newNodes(red,3); ...

68 newNodes(red,1),elements(red,2),newNodes(red,2); ...

69 newNodes(red,3),newNodes(red,2),elements(red,3); ...

70 newNodes(red,2),newNodes(red,3),newNodes(red,1)];

4.3. Red-Green-Blue Refinement (Listing 6 and Listing 7). An alternative to newest
vertex bisection is the red-green-blue strategy discussed in [21, Section 4.1]. As before, let T0

be a given initial mesh and Tℓ already be obtained by RGB refinement. We assume that certain
elements of Tℓ are marked for further refinement, and we aim to construct Tℓ+1. As for newest
vertex bisection, we proceed recursively to move the markings to the edges:

• If an element T ∈ Tℓ is marked for refinement, we mark all edges of T for refinement.
14

• If any edge of T ∈ Tℓ is marked for refinement, we mark at least the longest edge for
refinement.

Having completed the marking of edges, the refinement rules read as follows, cf. Figure 6:

• The midpoint of a marked edge becomes a new node.
• If all edges of an element T ∈ Tℓ are marked for refinement, T is red-refined, i.e., split into

four similar elements.
• If two edges of an element T ∈ Tℓ are marked for refinement, the element is blue-refined:

We use the longest edge of T as reference edge and bisect T by two successive newest vertex
bisections.

• If only the longest edge of T ∈ Tℓ is marked for refinement, one uses green refinement, i.e.
newest vertex bisection with respect to the longest edge of T .

The implementation of the newest vertex bisection (Listing 5) can easily be modified to yield
a red-green-blue refinement strategy. The essential difference is that one has to guarantee that
the reference edge opposite to the newest vertex is the longest edge of each triangle, i.e. we
have to extend Listing 5 (before Line 6) by some sorting of the array elements in Listing 6.
For each element Tℓ stored by

elements(ℓ,:) = [i j k],

this ensures that E = conv{zi, zj} is the longest edge of Tℓ.

• Lines 2–4: The i-th row of the matrix reshape (dx.ˆ2+dy.ˆ2,nE,3) contains the three
(squared) edge lengths of the element Ti. Taking, the rowwise maxima of this matrix, we
obtain the column vector hT whose i-th component contains the maximal (squared) edge
length of Ti, i.e., hT(i) is the (squared) diameter h2

Ti
= diam(Ti)

2.

• Lines 5–8: The index vector i dxMax contains the information which edge (first, second, or
third) of an element Ti is the longest. Consequently, we have to permute the nodes of an
element Ti if (and only if) idxMax(i) equals two or three.

Despite of this, the only difference between NVB and RGB refinement is that one now uses a red
refinement instead of three bisections if all edges of an element T are marked for refinement. We
thus replace Line 44, Line 50, and Lines 66–70 in Listing 5 by the according lines of Listing 7.

As before it is worth noting, that the interior angles of Tℓ do not degenerate for ℓ → ∞. More
precisely, if C0 > 0 is a lower bound for the minimal interior angle of T0, then C0/2 > 0 is a
lower bound for the minimal interior angle of Tℓ, where Tℓ is obtained from T0 by finitely many
but arbitrary steps of RGB refinement [18].

Listing 8
1 function [coordinates,elements, varargout] = coarsenNVB(N0,coordinates,elements, varargin)
2 nC = size (coordinates,1);
3 nE = size (elements,1);
4 %* ** Obtain geometric information on neighbouring elements
5 I = elements(:);
6 J = reshape (elements(:,[2,3,1]),3 * nE,1);
7 nodes2edge = sparse (I,J,1:3 * nE);
8 mask = nodes2edge >0;
9 [foo {1:2 },idxIJ] = find (nodes2edge);

10 [foo {1:2 },neighbourIJ] = find (mask + mask. * sparse (J,I,[1:nE,1:nE,1:nE]'));
11 element2neighbours(idxIJ) = neighbourIJ − 1;
12 element2neighbours = reshape (element2neighbours,nE,3);
13 %* ** Determine which nodes (created by refineNVB) are deleted by coarsening
14 marked = zeros (nE,1);
15 marked(varargin {end }) = 1;
16 newestNode = unique (elements((marked & elements(:,3) >N0),3));
17 valence = accumarray (elements(:),1,[nC 1]);
18 markedNodes = zeros (nC,1);
19 markedNodes(newestNode((valence(newestNode) == 2 | valence(newestNode) == 4))) = 1;
20 %* ** Collect pairs of brother elements that will be united

15

T0
T1

T2 T3

T4

T12 T34

Figure 7. Coarsening is not fully inverse to refinement by newest vertex bi-
sections: Assume that all edges of a triangle are marked for refinement (left).
Refinement then leads to 4 son elements (middle). One application of the coars-
ening algorithm only removes the bisections on the last level (right).

21 idx = find (markedNodes(elements(:,3)) & (element2neighbours(:,3) > (1:nE)'))';
22 markedElements = zeros (nE,1);
23 markedElements(idx) = 1;
24 for element = idx
25 if markedElements(element)
26 markedElements(element2neighbours(element,3)) = 0;
27 end
28 end
29 i dx = find (markedElements);
30 %* ** Coarsen two brother elements
31 brother = element2neighbours(idx,3);
32 elements(idx,[1 3 2]) = [elements(idx,[2 1]) elements(brother,1)];
33 %* ** Delete redundant nodes
34 activeNodes = find (∼markedNodes);
35 coordinates = coordinates(activeNodes,:);
36 %* ** Provide permutation of nodes to correct further data
37 coordinates2newCoordinates = zeros (1,nC);
38 coordinates2newCoordinates(activeNodes) = 1: length (activeNodes);
39 %* ** Delete redundant elements + correct elements
40 elements(brother,:) = [];
41 elements = coordinates2newCoordinates(elements);
42 %* ** Delete redundant boundaries + correct boundaries
43 for j = 1: nargout −2;
44 boundary = varargin {j };
45 if ∼ isempty (boundary)
46 node2boundary = zeros (nC,2);
47 node2boundary(boundary(:,1),1) = 1: size (boundary,1);
48 node2boundary(boundary(:,2),2) = 1: size (boundary,1);
49 idx = (markedNodes & node2boundary(:,2));
50 boundary(node2boundary(idx,2),2) = boundary(node2boundary(idx,1),2);
51 boundary(node2boundary(idx,1),2) = 0;
52 varargout {j } = coordinates2newCoordinates(boundary(find (boundary(:,2)),:));
53 else
54 varargout {j } = [];
55 end
56 end

4.4. Coarsening of Refined Meshes (Listing 8). Our Matlab function coarsenNVB is
a vectorized version of a Matlab implementation by Chen and Zhang [11]. However, our code
extends the prior version in the sense that a subset of elements can be chosen for coarsening
and redundant memory is set free, e.g., former nodes which have been removed by coarsening.
Moreover, our code respects the boundary conditions which are also affected by coarsening of
T .

The code aims to coarsen T by removing certain newest vertices added by refineNVB : Let
T1, T2 ∈ T be two brothers obtained by newest vertex bisection of a father triangle T0, cf.
Figure 2. Let z ∈ N denote the newest vertex of both T1 and T2. The idea of the algorithm
proposed in [11] is that one may coarsen T1 and T2 by removing the newest vertex z if and only
if z is the newest vertex of all elements T3 ∈ ω̃z := {T ∈ T : z ∈ T} of the patch. In [11] it is
shown that z ∈ N\N0 may be coarsened if and only if its valence satisfies #ω̃z ∈ {2, 4}, where

16

N0 is the set of nodes for the initial mesh T0 from which the current mesh T is generated by
finitely many (but arbitrary) newest vertex bisections. In case #ω̃z = 2, there holds z ∈ N ∩Γ,
whereas #ω̃z = 4 implies z ∈ N ∩ Ω. We refer to [11] for the proofs.

We stress that coarsenNVB only coarsens marked leaves of the current forest generated
by newest vertex bisection. Said differently, coarsenNVB is not inverse to refineNVB : For
instance, assume that all edges of a triangle T0 are marked for refinement and apply newest
vertex bisection to T0, cf. Figure 7 above. In a first (theoretical, but not implementational) step,
T0 is bisected into elements T12 and T34. In a second step, T12 is bisected into T1 and T2, and
T34 is bisected into T3 and T4. The application of coarsenNVB (with all elements marked for
coarsening) then leads to a triangulation containing T12 and T34 instead of the coarse element
T0. However, the benefit of this simple coarsening rule is that no additional data structure as,
e.g., a refinement tree has to be built or stored.

• Line 1: The function is usually called by
[coordinates,elements,dirichlet,neumann] ...

= coarsenNVB(N0,coordinates,elements,dirichlet,neuman n,marked)
where N0 denotes the number #N0 of nodes in the initial mesh and marked is a vector
containing the numbers of the elements to be coarsened (if possible).

• Lines 5–12: Build data structure element2neighbours containing geometric information
on the neighbour relation: Namely, k=element2neighbours(j, ℓ) contains the number of
the neighbouring element Tk along the ℓ-th edge of Tj , where k = 0 if the edge is a boundary
edge.

• Lines 14–19: We mark nodes which are admissible for coarsening, where we take into account
the coarsening rules of [11] in Lines 17–19. However, we consider only newest vertices added
by refineNVB , for which the corresponding elements are marked for coarsening (Lines 14–
16).

• Lines 21–29: Decide which brother elements Tj , Tk ∈ T are resolved into its father element:
We determine which elements may be coarsened (Line 21) and mark them for coarsening
(Lines 22–23). According to the refinement rules in refineNVB , the former father element
T has been bisected into sons Tj, Tk ∈ T with j < k. By definition, Tj is the left brother
with respect to the bisection of T , and the index k satisfies k=element2neighbours(j,3) .
We aim to overwrite Tj with its father and to remove Tk from the list of elements later on.
Therefore, we remove the mark on Tk (Lines 24–28) so that we end up with a list of left
sons which are marked for coarsening (Line 29).

• Lines 31–32: We replace the left sons by its father elements.
• Lines 34–38: We remove the nodes that have been coarsened from the list of coordinates

(Lines 34–35). This leads to a new numbering of the nodes so that we provide a mapping
from the old indices to the new ones (Lines 37–38).

• Lines 40–41: We remove the right sons, which have been coarsened, from the list of elements
(Line 40) and respect the new numbering of the nodes (Line 41).

• Lines 43–56: Correct the boundary partition: For each part of the boundary, e.g. the
Dirichlet boundary ΓD, we check whether some nodes have been removed by coarsening
(Line 49). For these nodes, we replace the respective two boundary edges by the father
edge. More precisely, let zj ∈ N ∩Γ be removed by coarsening. We then overwrite the edge
with zj as second node by the father edge (Line 50) and remove the edge, where zj has
been the first node (Lines 51–52).

5. A Posteriori Error Estimators and Adaptive Mesh-Refinement

In practice, computational time and storage requirements are limiting quantities for numerical
simulations. One is thus interested to construct a mesh T such that the number of elements M =
#T ≤ Mmax stays below a given bound, whereby the error ‖u − U‖H1(Ω) of the corresponding
Galerkin solution U is (in some sense) minimal.

17

Such a mesh T is usually obtained in an iterative manner: For each element T ∈ T , let
ηT ∈ R be a so-called refinement indicator which (at least heuristically) satisfies

ηT ≈ ‖u − U‖H1(T) for all T ∈ T .(5.1)

In particular, the associated error estimator η =
(∑

T∈T η2
T

)1/2
then yields an error estimate

η ≈ ‖u − U‖H1(Ω). Some examples for error estimators and associated refinement indicators
are given in the subsequent sections. Throughout, the focus is on so-called a posteriori error

estimators, where η is computed after the computation and with the knowledge of a discrete
solution U .

The main point at this stage is that the refinement indicators ηT might be computable,
whereas u is unknown and thus the local error ‖u − U‖H1(T) is not.

Listing 9
1 function [x,coordinates,elements,indicators] ...
2 = adaptiveAlgorithm(coordinates,elements,dirichlet,neumann,f,g,uD,nEmax,rho)
3 while 1
4 %* ** Compute discrete solution
5 x = solveLaplace(coordinates,elements,dirichlet,neumann,f,g,uD);
6 %* ** Compute refinement indicators
7 i ndicators = computeEtaR(x,coordinates,elements,dirichlet,neumann,f,g);
8 %* ** Stopping criterion
9 if size (elements,1) ≥ nEmax

10 break
11 end
12 %* ** Mark elements for refinement
13 [indicators,idx] = sort(indicators, 'descend');
14 sumeta = cumsum(indicators);
15 ell = find (sumeta ≥sumeta(end) * r ho,1);
16 marked = idx(1:ell);
17 %* ** Refine mesh
18 [coordinates,elements,dirichlet,neumann] = ...
19 r efineNVB(coordinates,elements,dirichlet,neumann,marked);
20 end

5.1. Adaptive Algorithm (Listing 9). Given some refinement indicators ηT ≈ ‖u−U‖H1(T),
we mark elements T ∈ T for refinement by the Dörfler criterion [13], which seeks to determine
the minimal set M ⊆ T such that

̺
∑

T∈T

η2
T ≤

∑

T∈M

η2
T ,(5.2)

for some parameter ̺ ∈ (0, 1). Then, a new mesh T ′ is generated from T by refinement of (at
least) the marked elements T ∈ M to decrease the error ‖u − U‖H1(Ω) efficiently. Note that
̺ → 1 corresponds to almost uniform mesh-refinement, i.e. most of the elements are marked
for refinement, whereas ̺ → 0 leads to highly adapted meshes.

• Line 1–2: The function takes the initial mesh described by coordinates , elements ,
dirichlet , and neumann as well as the problem data f , g, and uD. Moreover, the user
provides the maximal number nEmax of elements as well as the adaptivity parameter ̺
from (5.2). After termination, the function returns the coefficient vector x of the final
Galerkin solution U ∈ S1

D(T), cf. (2.8), the associated final mesh T , and the corresponding
vector indicators of elementwise error indicators.

• Line 3–20: As long as the number M of elements is smaller than the given bound nEmax,
we proceed as follows: We compute a discrete solution (Line 5) and the vector of refinement
indicators (Line 7), whose j-th coefficient stores the value of η2

j := η2
Tj

. Line 13–16 is the

realization of the marking criterion (5.2): We first find a permutation π of the elements
18

such that the sequence of refinement indicators (η2
π(j))

M
j=1 is decreasing (Line 13). Then

(Line 14), we compute all sums
∑ℓ

j=1 η2
π(j) and determine the minimal index ℓ such that

̺
∑M

j=1 η2
j = ̺

∑M
j=1 η2

π(j) ≤
∑ℓ

j=1 η2
π(j) (Line 15). Formally, we thus determine the set

M = {Tπ(j) : j = 1, . . . , ℓ} of marked elements (Line 16). Finally (Lines 18–19), we refine
the marked elements and so generate a new mesh.

In the current state of research, the Dörfler criterion (5.2) is used to prove convergence and
optimality of AFEM [9]. In practice, more often the bulk criterion is used, which marks elements
T ∈ T for refinement provided

ηT ≥ θ max
T ′∈T

ηT ′ ,(5.3)

where θ ∈ [0, 1] is a given parameter. To use it in the adaptive algorithm, one may simply
replace Lines 13–16 of Listing 9 by

marked = find (indicators ≥t heta * max(indicators));

where theta is the parameter θ from (5.3) which also replaces rho in the function call. In the
current state of research, however the bulk criterion (5.3) is only proven to yield convergence [17],
whereas optimal convergence of AFEM is only empirically observed. In the exemplary code of
Listing 9, we consider the residual-based error estimator from Section 5.2. This can be replaced
by other error estimators, e.g., the hierarchical error estimator or the ZZ-type error estimator
from Sections 5.3–5.4 below. Finally, the function call of refineNVB in Line 16 can be replaced
by refineRGB to yield adaptive RGB refinement instead of newest vertex bisection.

Listing 10
1 function etaR = computeEtaR(x,coordinates,elements,dirichlet,ne umann,f,g)
2 [edge2nodes,element2edges,dirichlet2edges,neumann2edges] ...
3 = provideGeometricData(elements,dirichlet,neumann);
4 %* ** First vertex of elements and corresponding edge vectors
5 c1 = coordinates(elements(:,1),:);
6 d21 = coordinates(elements(:,2),:) − c1;
7 d31 = coordinates(elements(:,3),:) − c1;
8 %* ** Vector of element volumes 2 * |T |
9 area2 = d21(:,1). * d31(:,2) −d21(:,2). * d31(:,1);

10 %* ** Compute curl(uh) = (−duh/dy, duh/dx)
11 u21 = repmat (x(elements(:,2)) −x(elements(:,1)), 1,2);
12 u31 = repmat (x(elements(:,3)) −x(elements(:,1)), 1,2);
13 curl = (d31. * u21 − d21. * u31)./ repmat (area2,1,2);
14 %* ** Compute edge terms hE * (duh/dn) for uh
15 dudn21 = sum(d21. * curl,2);
16 dudn13 = −sum(d31. * curl,2);
17 dudn32 = −(dudn13+dudn21);
18 etaR = accumarray (element2edges(:),[dudn21;dudn32;dudn13],[size (edge2nodes,1) 1]);
19 %* ** Incorporate Neumann data
20 if ∼ isempty (neumann)
21 cn1 = coordinates(neumann(:,1),:);
22 cn2 = coordinates(neumann(:,2),:);
23 gmE = feval (g,(cn1+cn2)/2);
24 etaR(neumann2edges) = etaR(neumann2edges) − sqrt (sum((cn2 −cn1).ˆ2,2)). * gmE;
25 end
26 %* ** Incorporate Dirichlet data
27 etaR(dirichlet2edges) = 0;
28 %* ** Assemble edge contributions of indicators
29 etaR = sum(etaR(element2edges).ˆ2,2);
30 %* ** Add volume residual to indicators
31 f sT = feval (f,(c1+(d21+d31)/3));
32 etaR = etaR + (0.5 * area2. * fsT).ˆ2;

19

5.2. Residual-Based Error Estimator (Listing 10). We consider the error estimator

ηR :=
(∑

T∈T η2
T

)1/2
with refinement indicators

η2
T := h2

T ‖f‖
2
L2(T) + hT ‖Jh(∂nU)‖2

L2(∂T∩Ω) + hT ‖g − ∂nU‖2
L2(∂T∩ΓN).(5.4)

Here, Jh(·) denotes the jump over an interior edge E ∈ E with E 6⊂ Γ. For neighbouring elements
T± ∈ T with respective outer normal vectors n±, the jump of the T -piecewise constant function
∇U over the common edge E = T+ ∩ T− ∈ E is defined by

Jh(∂nU)|E := ∇U |T+
· n+ + ∇U |T−

· n−,(5.5)

which is, in fact, a difference since n+ = −n−. The residual-based error estimator ηR is known
to be reliable and efficient in the sense that

C−1
rel ‖u − U‖H1(Ω) ≤ ηR ≤ Ceff

[
‖u − U‖H1(Ω) + ‖h(f − fT)‖L2(Ω) + ‖h1/2(g − gE)‖L2(ΓN)

]
(5.6)

where the constants Crel, Ceff > 0 only depend on the shape of the elements in T as well as
on Ω and the data f , g, see [21, Section 1.2]. Moreover, fT and gE denote the T -elementwise
and E-edgewise integral mean of f and g, respectively. Note that for smooth data, there holds
‖h(f − fT)‖L2(Ω) = O(h2) as well as ‖h1/2(g − gE)‖L2(ΓN) = O(h3/2) so that these terms are of
higher order when compared with error ‖u − U‖H1(Ω) and error estimator ηR.

For the implementation, we replace f |T ≈ f(sT) and g|E ≈ g(mE), where sT again denotes
the center of mass of an element T ∈ T and where mE denotes the midpoint of E ∈ E . We
realize

η̃2
T := |T |2 f(sT)2 +

∑

E∈∂T∩Ω

h2
E

(
Jh(∂nU)|E

)2
+

∑

E∈∂T∩ΓN

h2
E

(
g(mE) − ∂nU |E

)2
(5.7)

Note that shape regularity of the triangulation T implies

hE ≤ hT ≤ C hE as well as 2|T | ≤ h2
T ≤ C |T |, for all T ∈ T with edge E ⊂ ∂T,(5.8)

with some constant C > 0, which only depends on a lower bound for the minimal interior
angle and thus stays bounded for both, newest vertex bisection and red-green-blue refinement.
Up to some higher-order consistency errors, the refinement indicators η̃T and ηT are therefore
equivalent.

The implementation from Listing 10 returns the vector of squared refinement indicators
(η̃2

T1
, . . . , η̃2

TM
), where T = {T1, . . . , TM}. The computation is performed in the following way:

• Lines 5–9 are discussed for Listing 3 above, see Section 3.4.
• Lines 11–13: Compute the T -piecewise constant (curlU)|T = (−∂U/∂x2, ∂U/∂x1)|T ∈ R

2

for all T ∈ T simultaneously. To that end, let z1, z2, z3 be the vertices of a triangle T ∈
T , given in counterclockwise order, and let Vj be the hat function associated with zj =
(xj , yj) ∈ R

2. Note that the gradient of Vj reads

∇Vj |T =
1

2|T |
(yj+1 − yj+2, xj+2 − xj+1),(5.9)

where we identify z4 = z1 and z5 = z2. In particular, there holds

2|T | curlVj|T = (xj+1 − xj+2, yj+1 − yj+2) = zj+1 − zj+2,

where we assume zj ∈ R
2 to be a row-vector. With U |T =

∑3
j=1 ujVj, we infer

2|T | curlU |T = 2|T |
3∑

j=1

uj curlVj |T = u1 (z2 − z3) + u2 (z3 − z1) + u3 (z1 − z2)

= (z3 − z1)(u2 − u1) − (z2 − z1)(u3 − u1),

(5.10)

which is realized in Lines 11–13.
20

• Lines 15–18: For all edges E ∈ E , we compute the jump term hE Jh(∂U/∂n)|E if E is an
interior edge, and hE (∂U/∂n)|E if E ⊆ Γ is a boundary edge, respectively. To that end,
let z1, z2, z3 denote the vertices of a triangle T ∈ T in counterclockwise order and identify
z4 = z1 etc. Let nj denote the outer normal vector of T on its j-th edge Ej of T . Then,
dj = (zj+1 − zj)/|zj+1 − zj | is the tangential unit vector of Ej . By definition, there holds

hEj
(∂U/∂nT,Ej

) = hEj
(∇U · nT,Ej

) = hEj
(curlU · dj) = curlU · (zj+1 − zj).

Therefore, dudn21 and dudn13 are the vectors of the respective values for all first edges
(between z2 and z1) and all third edges (between z1 and z3), respectively (Lines 15–16).
The values for the second edges (between z3 and z2) are obtained from the equality

−(z3 − z2) = (z2 − z1) + (z1 − z3)

for the tangential directions (Line 17). We now sum the edge-terms of neighbouring ele-
ments, i.e. for E = T+ ∩ T− ∈ E (Line 18). This leads to a vector etaR which contains
hE Jh(∂U/∂n)|E for all interior edges E ∈ E , whereas etaR contains hE (∂U/∂n)|E for
boundary edges.

• Lines 20–29: For Neumann edges E ∈ E , we subtract hEg(mE) to the respective entry in
etaR (Lines 20–25). For Dirichlet edges E ∈ E , we set the respective entry of etaR to zero,
since Dirichlet edges do not contribute to η̃T (Line 27), cf. (5.7).

• Line 29: Assembly of edge contributions of η̃T . We compute
∑

E∈∂T∩Ω

h2
E

(
Jh(∂nU)|E

)2
+

∑

E∈∂T∩ΓN

h2
E

(
g(mE) − ∂nU |E

)2

for all T ∈ T simultaneously.

• Line 31–32: We finally add the volume contribution
(
|T |f(sT)

)2
, which yields η̃2

T for all
T ∈ T .

Listing 11
1 function etaH = computeEtaH(x,coordinates,elements,dirichlet,ne umann,f,g)
2 nE = size (elements,1);
3 [edge2nodes,element2edges,dirichlet2edges,neumann2edges] ...
4 = provideGeometricData(elements,dirichlet,neumann);
5 %* ** First vertex of elements and corresponding edge vectors
6 c1 = coordinates(elements(:,1),:);
7 d21 = coordinates(elements(:,2),:) − c1;
8 d31 = coordinates(elements(:,3),:) − c1;
9 %* ** Vector of element volumes 2 * |T |

10 area2 = d21(:,1). * d31(:,2) −d21(:,2). * d31(:,1);
11 %* ** Elementwise gradient of uh
12 u21 = repmat ((x(elements(:,2)) −x(elements(:,1)))./area2, 1,2);
13 u31 = repmat ((x(elements(:,3)) −x(elements(:,1)))./area2, 1,2);
14 grad = (d31. * u21 − d21. * u31) * [0 −1 ; 1 0];
15 %* ** Elementwise integrated gradients of hat functions −−> 2* int(T,grad Vj)
16 grad1 = [d21(:,2) −d31(:,2) d31(:,1) −d21(:,1)];
17 grad2 = [d31(:,2) −d31(:,1)];
18 grad3 = [−d21(:,2) d21(:,1)];
19 %* ** Compute volume contribution of rT (contribution of element bubble)
20 f sT = feval (f,c1+(d21+d31)/3);
21 rT = area2. * fsT/120;
22 %* ** Compute volume contributions of rE edgewise (contribution of edge bubbles)
23 r E = repmat (area2. * f sT/24,1,3) − [sum((grad1+grad2). * grad,2) ...
24 sum((grad2+grad3). * grad,2) ...
25 sum((grad3+grad1). * grad,2)]/6;
26 rE = accumarray (element2edges(:),rE(:),[size (edge2nodes,1) 1]);
27 %* ** Incorporate Neumann contributions to rE
28 if ∼ isempty (neumann)
29 cn1 = coordinates(edge2nodes(neumann2edges,1),:);

21

30 cn2 = coordinates(edge2nodes(neumann2edges,2),:);
31 gmE = feval (g,(cn1+cn2)/2);
32 rE(neumann2edges) = rE(neumann2edges) + sqrt (sum((cn2 −cn1).ˆ2,2)). * gmE/6;
33 end
34 %* ** Incorporate Dirichlet data to rE
35 r E(dirichlet2edges) = 0;
36 %* ** Compute error indicators
37 etaH = rT.ˆ2 + accumarray (repmat (1:nE,1,3)',rE(element2edges(:)).ˆ2,[nE 1]);

5.3. Hierarchical Error Estimator (Listing 11). Next, we consider the hierarchical error

estimator ηH :=
(∑

T∈T η2
T

)1/2
introduced by Bank and Smith [5], where our presentation

follows [21, Section 1.4]. Here,

η2
T :=

(∫

Ω
fbT dx

)2

+
∑

E⊂∂T\ΓD

(∫

Ω

(
fbE −∇U · ∇bE

)
dx +

∫

ΓN

gbE ds

)2

(5.11)

with the cubic element bubble bT and the quadratic edge bubble bE given by

bT =
∏

z∈N∩T

Vz and bE =
∏

z∈N∩E

Vz,(5.12)

respectively. The error estimator ηH is reliable and efficient in the sense of (5.6), see [21,
Proposition 1.15]. The function from Listing (11) computes the vector (η̃2

T1
, . . . , η̃2

TM
), where

M = #T and η̃T ≈ ηT in the sense that the integrals in (5.11) are replaced by appropriate
quadrature formulae discussed below.

• Lines 5–10 are discussed for Listing 3 above, see Section 3.4.
• Lines 12–14: Compute the T -elementwise gradient ∇U |T simultaneously for all elements

T ∈ T . For details on the computation, see Lines 12–14 of Listing 10, where we compute
curlU |T , cf. Equation (5.10). We only stress that curlU |T is the orthogonally rotated
gradient ∇U |T , namely

∇U |T = curlU |T

(
0 −1
1 0

)
,

where curlU |T and ∇U |T are understood as row vectors.
• Lines 16–18: With z1, z2, z3 the vertices of an element T ∈ T in counterclockwise order, we

compute the integrated gradients 2
∫
T ∇Vj dx = 2|T |∇Vj |T of the associated hat functions,

cf. Equation (5.9).
• Lines 20–21: The volume term

∫
Ω fbT ds =

∫
T fbT dx is computed by quadrature. Up to

higher-order terms, it is sufficient to choose a quadrature rule of third order so that the
integral is computed exactly for a T -piecewise constant force f . We employ a 10-point
Newton-Côtes formula, which evaluates the integrand on the edges and in the barycenter
sT of T . Since bT vanishes on all edges and outside of T , we obtain

∫

Ω
fbT ds ≈

9

20
|T |f(sT)bT (sT) =

|T |

60
f(sT).

• Lines 23–26: We compute, for all edges E ∈ E , the integrals
∫
Ω fbE dx −

∫
Ω ∇U · ∇bE dx

by numerical quadrature. First, this is done T -elementwise. Up to higher-order terms, it is
sufficient to approximate

∫
T fbE by a quadrature rule of second order. We employ a 4-point

formula, which evaluates the integrand in the vertices and in the barycenter sT of T . Since
bE vanishes in all nodes of T , this yields

∫

T
fbE ds ≈

3

4
|T | f(sT)bE(sT) =

|T |

12
f(sT),

which is independent of the edge E of T . Let z1, z2, z3 denote the vertices of a triangle
T ∈ T in counterclockwise order with associated hat functions Vj . Let Ej = conv{zj , zj+1}

22

denote the j-th edge of T with associated edge bubble function bj = VjVj+1, where we
identify z4 = z1 and V4 = V1. Then, ∇bj = Vj∇Vj+1 + Vj+1∇Vj leads to

∫

T
∇U · ∇bj dx = ∇U |T ·

(∫

T
Vj dx∇Vj+1|T +

∫

T
Vj+1 dx∇Vj |T

)

=
|T |

3
∇U |T ·

(
∇Vj|T + ∇Vj+1|T

)

=
1

6
∇U |T ·

(
2

∫

T

(
∇Vj + ∇Vj+1

)
dx
)
.

This explains Lines 23–25. Finally (Line 26), we compute, for all edges E ∈ E ,
∫

Ω

(
fbE −∇U · ∇bE

)
dx =

∑

T∈T
E⊆∂T

∫

T

(
fbE −∇U · ∇bE

)
dx.

• Lines 28–33: For Neumann edges E ⊆ ΓN , we have to add
∫
ΓN

gbE ds =
∫
E gbE ds. The

latter integral is approximated by the Simpson rule, which yields
∫

ΓN

gbE ds ≈
2

3
hEg(mE)bE(mE) =

hE

6
g(mE).

• Line 35: Dirichlet edges do not contribute to (5.11), and we set the corresponding edge
contributions to zero.

• Line 37: We sum the contributions of η2
T as indicated by (5.11).

Listing 12
1 function etaZ = computeEtaZ(x,coordinates,elements)
2 nE = size (elements,1);
3 nC = size (coordinates,1);
4 %* ** First vertex of elements and corresponding edge vectors
5 c1 = coordinates(elements(:,1),:);
6 d21 = coordinates(elements(:,2),:) − c1;
7 d31 = coordinates(elements(:,3),:) − c1;
8 %* ** Vector of element volumes 2 * |T |
9 area2 = d21(:,1). * d31(:,2) −d21(:,2). * d31(:,1);

10 %* ** Elementwise integrated gradient of uh −−> 2* int(T,grad uh)
11 u21 = x(elements(:,2)) −x(elements(:,1));
12 u31 = x(elements(:,3)) −x(elements(:,1));
13 dudx = d31(:,2). * u21 − d21(:,2). * u31;
14 dudy = d21(:,1). * u31 − d31(:,1). * u21;
15 %* ** Compute coefficients for Clement interpolant Jh(grad uh)
16 zArea2 = accumarray (elements(:),[area2;area2;area2],[nC 1]);
17 qz = [accumarray (elements(:),[dudx;dudx;dudx],[nC 1])./zArea2, ...
18 accumarray (elements(:),[dudy;dudy;dudy],[nC 1])./zArea2];
19 %* ** Compute ZZ−refinement indicators
20 dudx = dudx./area2;
21 dudy = dudy./area2;
22 sz = [dudx dudx dudx dudy dudy dudy] − reshape (qz(elements,:), nE,6);
23 etaZ = (sum(sz.ˆ2,2) + sum(sz. * sz(:,[2 3 1 5 6 4]),2)). * area2/12;

5.4. ZZ-Type Error Estimator (Listing 12). Error estimation by local averaging has
been proposed in the pioneering work of Zienkiewicz and Zhu [23]. The idea is to smoothen
the discrete gradient ∇U appropriately to obtain an improved approximation of ∇u. This
smoothing is usually based on some averaging operator

Ah : P0(T)2 → S1(T)2(5.13)

23

which maps the T -piecewise constant gradient ∇U onto a T -piecewise affine and globally con-
tinuous vector field. Originally, the work [23] uses the usual Clément interpolation operator
defined by

Ahq =
∑

z∈N

qzVz with qz :=
1

|Ωz|

∫

Ωz

q dx and Ωz :=
⋃

{T ∈ T : z ∈ T}.(5.14)

The ZZ-type error estimator then reads

ηZ := ‖∇U −Ah∇U‖L2(Ω) =
(∑

T∈T

η2
T

)1/2
with ηT = ‖∇U −Ah∇U‖L2(T).(5.15)

For the Dirichlet problem Γ = ΓD, this error estimator is reliable and efficient up to terms of
higher order [8]. For the mixed boundary value problem, the operator Ah has to be slightly
modified, and we refer to [3] for details.

• Lines 5–9 are discussed for Listing 3 above, see Section 3.4.
• Lines 11–14 compute the weighted T -elementwise gradient 2|T |∇U |T = 2

∫
T ∇U dx si-

multaneously for all elements T ∈ T . The gradients ∇U |T are computed analogously to
Lines 12–14 in Listing 11. The vectors dudx and dudy store the x- resp. y-component of
the elementwise quantity 2|T |∇U |T .

• Lines 16–18: In Line 16, the areas 2|Ωz| from (5.14) are computed simultaneously for all
nodes z ∈ N . Consequently, Lines 17–18 compute the Clément coefficients qz ∈ R

2,

qz =
1

|Ωz|

∫

Ωz

∇U dx =
1

2|Ωz|

∑

T∋z

2|T |∇U |T for all nodes z ∈ N .

• Lines 20–23: Simultaneous assembly of the elementwise contributions ‖∇U −Ah∇U‖L2(T)

of (5.15) for all elements T ∈ T . Let zℓ,1, zℓ,2, zℓ,3 ∈ N be the nodes of an element Tℓ in
counterclockwise order. With Vℓ,j the corresponding hatfunction and qℓ,j the associated
Clément weights, there holds

‖∇U −Ah∇U‖2
L2(Tℓ)

=
∥∥∥∇U |T −

3∑

j=1

qℓ,jVℓ,j

∥∥∥
2

L2(Tℓ)
=
∥∥∥

3∑

j=1

(∇U |T − qℓ,j)Vℓ,j

∥∥∥
2

L2(Tℓ)

With M = #T the number of elements, the coefficients sℓ,j := ∇U |Tℓ
− qℓ,j are stored in an

M × 6 array sz (Line 22) in the form sz(ℓ,:) = [sℓ,1 , sℓ,2 , sℓ,3], where sℓ,j is understood
as 1 × 2 row vector. Note that

∫

Tℓ

Vℓ,iVℓ,j dx =

{
|Tℓ|/6 for i = j,

|Tℓ|/12 for i 6= j.

This leads to

‖∇U −Ah∇U‖2
L2(Tℓ)

=

3∑

i,j=1

sℓ,i · sℓ,j

∫

Tℓ

Vℓ,iVℓ,j dx

=
|T |

6
(|sℓ,1|

2 + |sℓ,2|
2 + |sℓ,3|

2 + sℓ,1 · sℓ,2 + sℓ,1 · sℓ,3 + sℓ,2 · sℓ,3),

so that Line 23 finally computes the vector
(
η2

T1
, . . . , η2

TM

)
.

6. Numerical Experiments

To underline the efficiency of the developed Matlab code, this section briefly comments on some
numerical experiments. Throughout, we used the latest Matlab version 7.6.0.324 (R2008a) on
a common dual-board 64-bit PC with 7 GB of RAM and two AMD Opteron(tm) 248 CPUs
with 1 MB cache and 2.2 GHz each running under Linux.

24

u = 0

u = 0

u = 0

∂nu = 1

∂nu = 0

∂nu = 0 ∂nu = 1

∂nu = 0

−1
−0.5

0
0.5

1 −1

−0.5

0

0.5

1

0

0.5

1

1.5

2

2.5

Figure 8. Coarse triangulation T0 of the L-shaped domain Ω =
(−1, 1)2\([0, 1] × [−1, 0]) into 12 triangles used for all numerical experiments
(left). In Example 6.1, the Dirichlet boundary ΓD consists of 3 edges which are
plotted in red. The Neumann boundary ΓN consists of 5 edges which are plot-
ted in blue. The Dirichlet nodes N ∩ ΓD are indicated by red squares, the free
nodes N\ΓD are visualized by black bullets. The exact solution has a singular
behaviour (right), and we plot the discrete solution U ∈ S1

D(T1) on a uniform
triangulation T1 with M1 = 3.072 triangles.

6.1. Stationary Model Problem. For the first experiment, we consider the Poisson problem

−∆u = 1 in Ω(6.1)

with mixed Dirichlet-Neumann boundary conditions, where the L-shaped domain as well as
the boundary conditions are visualized in Figure 8. The exact solution then shows a singular
behaviour at the re-entrant corner. Before the actual computations, the triangulation shown
in Figure 8 is generally refined by four successive uniform RGB refinements, which leads to a
triangulation T1 with M1 = 3.072 similar triangles. Throughout, the triangulation T1 is used as
initial triangulation in our numerical computations.

The focus of the experiments is on the following aspects: First, we compare the computational
times for different implementations of the matrix assembly discussed in Section 3.2–3.4. Second,
we consider the runtimes for the modules computeEtaR , computeEtaH , computeEtaZ , and
refineNVB for various meshes obtained by adaptive or uniform refinement. Finally, we show
that these codes favour the use of adaptive mesh-refinement when we plot the Galerkin error
over the total runtime.

Throughout, the computational time is measured by use of the built-in function cputime
which returns the CPU time in seconds. Moreover, we take the mean of 20 iterations for the
evaluation of these computational times, where the slowest execution is eliminated.

Table 1 gives the computational times of certain components of our Matlab code for uniform
and adaptive mesh-refinement, namely the assembly of the Galerkin data, the indicator-wise
computation of the three error estimators from Section 5.2–5.4 as well as the refinement by
newest vertex bisection (NVB). For the assembly, we consider the naive implementation from
Listing 1 resp. [2] (slow), the implementation from Listing 2 (medium), and the fully vectorized
implementation from Listing 3 (optimized). Finally (optimized2), we give the assembly times
by use of Listing 3 and an improved version of sparse which is written in C and embedded
through Matlab’s MEX interface [16]. Since this appears to be twice as fast as the original
sparse function, we use the improved implementation also for the computation of the error
estimators ηR, ηH , and ηZ as well as for the mesh-refinement (NVB).

Besides the absolute computational times, one is always interested in the computational
complexity, i.e. in the dependence of the computational time t(M) on the number of elements M .

25

assembly time [s] computational time [s] time [s]
N slow medium optimized optimized2 ηR ηH ηZ NVB

3072 4.10−01 2.20−01 1.00−02 1.00−02 1.00−02 1.00−02 1.00−02 1.00−02

12288 1.83+00 8.75−01 4.00−02 3.00−02 2.00−02 4.00−02 3.00−02 6.00−02

49152 3.65+01 3.67+00 3.40−01 2.60−01 2.30−01 2.20−01 1.45−01 1.90−01

196608 6.17+02 1.42+01 1.00+00 5.95−01 5.45−01 7.60−01 3.00−01 7.50−01

786432 1.00+04 5.70+01 3.75+00 2.12+00 1.89+00 2.53+00 1.21+00 3.02+00

3145728 − 2.29+02 1.61+01 8.46+00 7.53+00 1.00+01 4.86+00 1.21+01

assembly time [s] computational time [s] time [s]
N slow medium optimized optimized2 ηR ηH ηZ NVB

3072 4.10−01 2.20−01 1.00−02 1.00−02 1.00−02 1.00−02 1.00−02 1.00−02

3134 4.40−01 2.20−01 1.00−02 1.00−02 5.00−03 1.00−02 0.00+00 1.00−02

3584 4.80−01 2.50−01 1.00−02 1.00−02 5.00−03 1.00−02 1.00−02 1.00−02

5496 7.20−01 3.90−01 1.00−02 1.00−02 1.00−02 1.50−02 1.00−02 2.00−02

8998 1.31+00 6.40−01 3.00−02 2.00−02 1.50−02 3.00−02 2.00−02 3.00−02

13982 2.42+00 1.00+00 5.00−02 3.00−02 3.00−02 4.00−02 3.00−02 5.00−02

24929 7.19+00 1.93+00 1.90−01 1.25−01 1.20−01 1.45−01 7.00−02 1.30−01

45036 3.55+01 3.36+00 3.30−01 2.50−01 2.20−01 2.40−01 1.40−01 1.50−01

78325 1.16+02 5.71+00 4.60−01 3.00−01 3.50−01 3.30−01 1.70−01 2.20−01

145060 4.17+02 1.04+01 7.25−01 4.75−01 4.80−01 6.10−01 2.30−01 4.00−01

252679 1.19+03 1.80+01 1.19+00 7.05−01 6.85−01 1.00+00 3.90−01 7.35−01

460342 4.10+03 3.30+01 2.08+00 1.18+00 1.13+00 1.56+00 7.10−01 1.27+00

816727 1.21+04 5.86+01 3.76+00 2.08+00 1.97+00 2.64+00 1.24+00 2.31+00

1395226 − 1.00+02 6.54+00 3.53+00 3.36+00 4.42+00 2.11+00 3.83+00

2528443 − 1.82+02 1.23+01 6.39+00 6.08+00 7.95+00 3.84+00 6.79+00

4305409 − 3.11+02 2.22+01 1.11+01 1.04+01 1.34+01 6.60+00 1.23+01

Table 1. Absolute computational times for Example 6.1 and uniform (top)
resp. adaptive (bottom) mesh-refinement. Here, uniform refinement means that
all elements are marked for refinement. We use newest vertex bisection, and
marking of an element corresponds to marking all of its edges, i.e. marked
elements are refined by three bisections. The last column gives the time for the
refinement from Mℓ to Mℓ+1 elements, i.e., it takes about 2 minutes to refine
the mesh T unif

6 with Munif
6 = 3.145.728 elements uniformly to obtain a mesh

T unif
7 with Munif

7 = 12.582.912 elements. Note that, for instance, the assembly
of the Galerkin data for the uniform mesh T unif

6 can be done in about 8 seconds
(optimized2), whereas the naive assembly of [2] from Listing 1 already takes more
than 2 hours for a uniform mesh with Munif

5 = 786.432 elements (slow). For
adaptive mesh-refinement we use the algorithm implemented in Listing 9 with
the residual-based error estimator ηR from Listing 10 for marking. We stress
that in any case, the computation of ηR is faster than building the Galerkin
data, whence the computation of the discrete solution U ∈ S1

D(Tℓ).

Thus, one is interested in the quotients

α1(M) :=
t(M)

M
resp. α2(M) :=

t(M)

M2
,(6.2)

where t(M) is the runtime for a computation on a mesh with M elements. For a code of exact
linear order the value α1(M) is constant for all M . Analogously, routines with quadratic order
have approximately constant α2(M).

26

relative assembly time α2(N) resp. α1(N) relative computational time α1(N)
N slow medium optimized optimized2 ηR ηH ηZ NVB

3072 4.34−08 7.16−05 3.26−06 3.26−06 3.26−06 3.26−06 3.26−06 3.26−06

12288 1.21−08 7.12−05 3.26−06 2.44−06 1.63−06 3.26−06 2.44−06 4.88−06

49152 1.51−08 7.48−05 6.92−06 5.29−06 4.68−06 4.48−06 2.95−06 3.87−06

196608 1.60−08 7.21−05 4.86−06 3.03−06 2.77−06 3.87−06 1.53−06 3.81−06

786432 1.56−08 7.25−05 4.77−06 2.70−06 2.40−06 3.22−06 1.54−06 3.84−06

3145728 − 7.28−05 5.12−06 2.69−06 2.39−06 3.10−06 1.54−06 3.83−06

relative assembly time α2(N) resp. α1(N) relative computational time α1(N)
N slow medium optimized optimized2 ηR ηH ηZ NVB

3072 4.34−08 7.16−05 3.26−06 3.26−06 3.26−06 3.26−06 3.26−06 3.26−06

3134 4.48−08 7.02−05 3.19−06 3.19−06 1.60−06 3.19−06 0.00+00 3.19−06

3584 3.74−08 6.98−05 2.79−06 2.79−06 1.40−06 2.79−06 2.79−06 2.79−06

5496 2.38−08 7.10−05 1.82−06 1.82−06 1.82−06 2.73−06 1.82−06 3.64−06

8998 1.62−08 7.11−05 3.33−06 2.22−06 1.67−06 3.33−06 2.22−06 3.33−06

13982 1.24−08 7.08−05 3.58−06 2.15−06 2.15−06 2.86−06 2.15−06 3.58−06

24929 1.16−08 7.74−05 7.62−06 5.01−06 4.81−06 5.82−06 2.81−06 5.21−06

45036 1.75−08 7.46−05 7.33−06 5.55−06 4.88−06 5.33−06 3.11−06 3.33−06

78325 1.88−08 7.28−05 5.87−06 3.83−06 4.47−06 4.21−06 2.17−06 2.81−06

145060 1.98−08 7.19−05 5.00−06 3.27−06 3.31−06 4.21−06 1.59−06 2.76−06

252679 1.87−08 7.14−05 4.71−06 2.79−06 2.71−06 3.68−06 1.54−06 2.91−06

460342 1.94−08 7.16−05 4.52−06 2.56−06 2.45−06 3.39−06 1.54−06 2.76−06

816727 1.82−08 7.18−05 4.60−06 2.55−06 2.41−06 3.23−06 1.52−06 2.83−06

1395226 − 7.18−05 4.69−06 2.53−06 2.41−06 3.17−06 1.51−06 2.75−06

2528443 − 7.19−05 4.85−06 2.53−06 2.40−06 3.15−06 1.52−06 2.69−06

4305409 − 7.22−05 5.16−06 2.59−06 2.41−06 3.10−06 1.53−06 2.85−06

Table 2. Relative computational times for Example 6.1 and uniform (top) as
well as adaptive mesh-refinement (bottom). Note that the second column shows
α2(M) = t(M)/M2 and proves that the assembly of the Galerkin data in List-
ing 1 is of quadratic complexity. The remaining columns show α1(M) = t(M)/M
and prove that proper use of sparse leads to (almost) linear complexity instead.

These relative runtimes are shown in Table 2. As can be expected from Section 3.2–3.3, the
naive assembly (slow) of the Galerkin data from [2] yields quadratic dependence, whereas all
remaining codes are empirically proven to be of linear complexity.

Note that Tables 1–2 do not include the time for the solution of the Galerkin system by use
of Matlab’s backslash operator. In Figure 9, we plot the computational time for one loop
of the adaptive algorithm in Listing 9 (Lines 4–19). For a given mesh Tℓ, this includes the
computation and solution of the Galerkin system, the computation of the residual-based error
estimator ηR, the marking of the elements by use of the Dörfler marking (5.2) with ̺ = 0.25,
and the refinement of the marked elements by use of newest vertex bisection. For the assembly
of the Galerkin data, we again consider the four variants (slow, medium, optimized, optimized2)
implemented in Listing 1 (slow), Listing 2 (medium), and Listing 3 (optimized, optimized2).
We observe that the assembly of the Galerkin data dominates the computational time and that
the direct solution of the sparse Galerkin system appears to be of (almost) linear complexity.
Therefore, the improved implementations (medium, optimized, optimized2) provide a code,
whose overall computational complexity only grows linearly.

Finally, we compare uniform and adaptive mesh-refinement, where we plot the error in the
energy norm ‖∇(u − U)‖L2(Ω) over the computational time. Here, the error is computed with

27

10
4

10
5

10
6

10
7

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

slow

medium

optimized

optimized2

∝
M

∝
M

lo
g(

M
)∝

M
2

number of elements

co
m

p
u
ta

ti
o
n
a
l
ti
m

e
[s

]

Figure 9. Overall computational time in Example 6.1 for one loop of the adap-
tive algorithm from Listing 9 (Lines 4–19): For the assembly of the Galerkin
data, we use the implementations of Listing 1 (slow), Listing 2 (medium), and
Listing 3 (optimized, optimized2). We see that the assembly of the Galerkin data
dominates the computational time. Moreover, the improved assembly (medium,
optimized, optimized2) only lead to (almost) linear growth of the computational
time.

the help of the Galerkin orthogonality which provides

‖∇(u − U)‖L2(Ω) =
(
‖∇u‖2

L2(Ω) − ‖∇U‖2
L2(Ω)

)1/2
.(6.3)

Let T be a given triangulation with associated Galerkin solution U ∈ S1
D(T). If A denotes the

Galerkin matrix and x denotes the coefficient vector of U , the discrete energy reads

‖∇U‖2
L2(Ω) = x ·Ax.(6.4)

Since the exact solution u ∈ H1(Ω) is not given analytically, we used Aitkin’s ∆2 method to
extrapolate the discrete energies obtained from a sequence of uniformly refined meshes with
M = 3.072 to M = 3.145.728 elements. This led to the extrapolated value

‖∇u‖2
L2(Ω) ≈ 6.261224(6.5)

which is used to compute the error (6.3) for uniform as well as for adaptive mesh-refinement.
Figure 10 plots the Galerkin error in dependence of the computational time with respect to

different mesh-refinement strategies. First, we consider uniform mesh-refinement based on either
a red-green-blue strategy (RGB) or newest vertex bisection (NVB). To allow a fair comparison
with the adaptive strategies, the times plotted are computed as follows: For the ℓ-th entry in
the plot, the computational time tunif

ℓ is the sum of

• the time for ℓ − 1 successive uniform refinements,
28

10
−2

10
−1

10
0

10
1

10
2

10
−3

10
−2

10
−1

uniform – RGB

uniform – NVB

adaptive – RGB

adaptive – NVB

er
ro

r
in

en
er

g
y

n
o
rm

computational time [s]

Figure 10. Galerkin error in Example 6.1 with respect to computational time
for different mesh-refinement strategies: We consider uniform mesh-refinement
by use of a red-green-blue strategy (RGB) or newest vertex bisection (NVB) as
well as the adaptive algorithm from Listing 9, where marked elements are either
refined by RGB or NVB refinement. For the uniform strategies, we only measure
the computational time for ℓ uniform mesh-refinements plus one assembly and
solution of the Galerkin system. For the adaptive strategies, we measure the
time for the assembly and solution of the Galerkin system, the time for the
computation of the residual-based error estimator ηR and the refinement of the
marked elements, and we add the time used for the adaptive history. In any case,
one observes that the adaptive strategies are much superior to uniform mesh-
refinement.

• the time for one assembly and solution of the Galerkin system,

where we always start with the initial mesh T1 with M1 = 3.072 elements. Contrary to that, the
adaptive algorithm from Listing 9 with ̺ = 0.25 constructs a sequence of successively refined
meshes, where Tℓ+1 is obtained by local refinement of Tℓ based on the discrete solution Uℓ.

We therefore define the computational time tadap
ℓ for adaptive mesh-refinement in a different

way: We set tadap
0 := 0. Starting with the initial mesh T1 with M1 = 3.072 elements, the

computational time tadap
ℓ is the sum of

• the time tadap
ℓ−1 already used in prior steps,

• the time for the assembly and solution of the Galerkin system for Tℓ,
• the time for the computation of the residual-based error estimator ηR,
• the time for the refinement of the marked elements to provide Tℓ+1.

Independently on the precise refinement, namely RGB or NVB, we observe that the computa-
tional overhead in the adaptive computations is negligible even if we aim for an approximation

29

Set T1,0 = T0, n = 1, t = 0 Initialization
Do while t ≤ tmax Time loop

k = 0
Do Loop for adaptive mesh-refinement

Compute discrete solution Un,k on mesh Tn,k

For all T ∈ Tn,k compute error indicators ηT Refinement indicator
and estimator η2

n :=
∑

T∈Tn,k
η2

T Error estimator

If ηn > τ Adaptive mesh-refinement
Use Dörfler criterion (5.2) to mark

elements for refinement
Refine marked elements by NVB to

obtain a ’finer’ triangulation Tn,k+1

Update k 7→ k + 1
End If

While ηn > τ Solution Un,k is accurate enough
Set Un := Un,k, T ∗

n,k = Tn,k

Do Loop for adaptive mesh-coarsening
Update k 7→ k − 1
For all T ∈ T ∗

n,k+1 compute error indicators ηT Refinement (resp. coarsening) indicator

Mark elements T for coarsening
provided ηT ≤ σ τ/#T ∗

n,k+1

Generate a ’coarser’ triangulation T ∗
n,k

by coarsening marked elements
If T ∗

n,k 6= T ∗
n,k+1

Compute discrete solution Un,k on mesh T ∗
n,k

End if
While T ∗

n,k 6= T ∗
n,k+1 Mesh cannot be coarsened furthermore

Set Tn+1,0 = T ∗
n,k+1

Update n := n + 1, t := t + ∆t Go to next time step
End Do

Table 3. Adaptive algorithm with refinement and coarsening used for the quasi-
stationary Example 6.2.

U with low accuracy ‖∇(u − U)‖L2(Ω) ≈ 5/100. Within 100 seconds, our Matlab code for

AFEM computes an approximation with accuracy ‖∇(u−Uadap)‖L2(Ω) ≈ 1/1000, whereas uni-

form mesh-refinement would only lead to ‖∇(u−Uunif)‖L2(Ω) ≈ 1/100 within roughly the same
time. This shows that not only from a mathematical, but even from a practical point of view,
adaptive algorithms are much superior.

6.2. Quasi-Stationary Model Problem. In the second example, we consider a homogeneous
Dirichlet problem (2.1) with ΓD = ∂Ω on the domain Ω = (0, 3)2 \ [1, 2]2, cf. Figure 11. The
right-hand side f(x, t) := exp(−10 ‖x−x0(t)‖

2) is time dependent with x0(t) := (1.5+cos t, 1.5+
sin t). The initial mesh T0 consists of 32 elements obtained from refinement of the 8 squares
along their diagonals.

In the following, we compute for n = 0, 1, 2, . . . , 200 and corresponding time steps tn :=
nπ/100 ∈ [0, 2π] a discrete solution Un such that the residual-based error estimator ηR = ηR(Un)
from Section 5.2 satisfies ηR ≤ τ for a given tolerance τ > 0. Instead of starting always from
the coarsest mesh T0, we use the adaptive algorithm from Table 3 which allows adaptive mesh-
refinement as well as mesh-coarsening. For the refinement, we use the Dörfler criterion (5.2)
with parameter ̺ ∈ (0, 1). For the coarsening process, we mark those elements T ∈ T , which
satisfy ηT ≤ σ ηR/#T for some given parameter σ ∈ (0, 1). Hence, we try to get some equal
distribution of the residual for each triangle T ∈ T . We stop our coarsening process if none of
the marked elements can be modified by our procedure described in Section 4.4.

30

Elements = 2247 # Elements = 3096 # Elements = 3111

Elements = 3754 # Elements = 3190 # Elements = 2691

Figure 11. Adaptively generated meshes Tn at different time steps n =
1, 11, 21, 31, 41, 51 for the quasi-stationary Example 6.2, where we used the adap-
tive algorithm from Table 3 with tolerance τ = 0.001 and parameters σ = 0.25
and ̺ = 0.25.

For our numerical experiment, we choose the tolerance τ = 0.001 as well as the parameters
σ = 0.25 for adaptive mesh-coarsening and ̺ = 0.25 for adaptive mesh-refinement. A sequence
of adapted meshes is shown in Figure 11 at times t1 = 0, t11, t21, t31, t41, and t51. We see that
the refinement follows mainly the source term f . Moreover, we observe a certain refinement at
reentrant corners, and elements ’behind’ the source are coarsened.

In Figure 12 we plot the evolution of the number of elements. The upper curve shows
the number of elements to satisfy the condition ηR ≤ τ for each time step, while the lower
graph gives the number of elements after coarsening of the fine triangulation. Both curves show
oscillations. This is in agreement with the theory due to the character of the source term f , since
more degrees of freedom are needed for the same accuracy when the source density increases
at one of the reentrant corners. Besides the first mesh, the algorithm needs at most 2 steps of
refinement or coarsening for each time step to satisfy certain properties as mentioned above.
Hence, a refinement-coarsening strategy as considered here is much faster than computing an
adaptive mesh always starting from the coarsest mesh T0.

References

[1] M. Abramowitz, I. A. Stegun: Handbook of Mathematical Functions, Dover, New York, 1972,
[2] J. Alberty, C. Carstensen, S. Funken: Remarks around 50 Lines of Matlab: Short Finite Element

Implementation, Numer. Algorithms 20 (1999), 117–137.
[3] S. Bartels, C. Carstensen: Each Averaging Technique Yields Reliable Error Control in FEM on Unstruc-

tured Grids, Part I: Low Order Conforming, Nonconforming, and Mixed FEM, Math. Comput. 71 (239),
945–969.

[4] I. Babuška, A. Miller: A Feedback Finite Element Method with A Posteriori Error Control, Part I,
Comput. Methods Appl. Mech. Engrg 61 (1987), 1–40.

[5] R. Bank, K. Smith: A Posteriori Error Estimates Based on Hierarchical Bases, SIAM J. Numer. Anal. 30
(1993), 921–935.

31

20 40 60 80 100 120 140 160 180 200
1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

3800

N
um

be
r

of
 e

le
m

en
ts

maxk{card(Tn,k)}

mink{card(T ∗
n,k)}

time steps

Figure 12. Number maxk #Tn,k of elements in quasi-stationary Example 6.2 af-
ter refinement resp. number mink #T ∗

n,k of elements after coarsening for all time
steps n = 1, 2, 3, . . . , 200, where we used the adaptive algorithm from Table 3
with tolerance τ = 0.001 and parameters σ = 0.25 and ̺ = 0.25.

[6] R. Barrett, M. Berry, T. Chan, et al.: Templates for the Solution of Linear Systems: Building Blocks

for Iterative Methods, SIAM, Philadelphia 21994.
[7] F. Bornemann, B. Erdmann, R. Kornhuber: A Posteriori Error Estimates for Elliptic Problems in Two

and Three Space Dimensions, SIAM J. Numer. Anal. 33 (1996), 1188-1204.
[8] C. Carstensen: All First-Order Averaging Techniques for A Posteriori Finite Element Error Control on

Unstructured Grids are Effective and Reliable, Math. Comput. 73 (2004), 1153–1165.
[9] J. Cascon, C. Kreuzer, R. Nochetto, K. Siebert: Quasi-Optimal Convergence Rate for an Adaptive

Finite Element Method, Preprint, University of Augsburg 2007.
[10] L. Chen: Short Bisection Implementation in Matlab, Research Notes, University of Maryland 2006.
[11] L. Chen, C. Zhang: AFEM@Matlab: A Matlab Package of Adaptive Finite Element Methods, Technical

Report, University of Maryland 2006.
[12] L. Chen, C. Zhang: A Coarsening Algorithm and Multilevel Methods on Adaptive Grids by Newest Vertex

Bisection, Preprint, University of California, Irvine 2007.
[13] W. Dörfler: A Convergent Adaptive Algorithm for Poisson’s Equation, SIAM J. Numer. Anal. 33 (1996),

1106–1129.
[14] J. Gilbert, C. Moler, R. Schreiber: Sparse Matrices in Matlab: Design and Implementation, SIAM

J. Matrix Anal. Appl. 13 (1992), 333–385.
[15] S. Funken, D. Praetorius, P. Wissgott: Efficient Matlab Implementation of P1-AFEM, Software down-

load at http://www.asc.tuwien.ac.at/∼dirk/matlab

[16] S. Funken, D. Praetorius, P. Wissgott: Efficient Implementation of Matlab’s Sparse Command for

FEM Matrices, Technical Report, Institute for Numerical Mathematics, University of Ulm, 2008.
[17] P. Morin, K. Siebert, A. Veeser: A Basic Convergence Result for Conforming Adaptive Finite Elements

M3AS 18 (2008), 707–737.
[18] I. Rosenberg, F. Stenger: A Lower Bound on the Angles of Triangles Constructed by Bisecting the

Longest Edge, Math. Comput. 29 (1975), 390–395.
[19] H.R. Schwarz: Finite Element Methods, Academic Press, London, 1988.
[20] E. Sewell: Automatic Generation of Triangulations for Piecewise Polynomial Approximations, Ph.D. thesis,

Purdue University, West Lafayette 1972.

32

[21] R. Verfürth: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques,
Teubner, Stuttgart, 1996.

[22] P. Wissgott: A Space-Time Adaptive Algorithm for Linear Parabolic Problems, Diploma thesis, Institute
for Analysis and Scientific Computing, Vienna University of Technology, 2007.

[23] O. Zienkiewicz, J, Zhu: A Simple Error Estimator and Adaptive Procedure for Practical Engineering

Analysis, Internat. J. Numer. Methods Engrg. 24 (1987), 337–357.

Institute for Numerical Mathematics, University of Ulm, Helmholtzstraße 18, D-89069 Ulm,

Germany

E-mail address: Stefan.Funken@uni-ulm.de

Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner

Hauptstraße 8-10, A-1040 Wien, Austria

E-mail address: Dirk.Praetorius@tuwien.ac.at (corresponding author)

33

	titelseite19-8.pdf
	p1afem

