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ADAPTIVE CELL-CENTERED FINITE VOLUME METHOD

CHRISTOPH ERATH, STEFAN FUNKEN, AND DIRK PRAETORIUS

Abstract. In our talk, we propose an adaptive mesh-refining strategy for the cell-centered
FVM based on some a posteriori error control for the quantity ‖∇T (u − Iuh)‖L2. Here,
uh ∈ P0(T ) denotes the FVM approximation of u and I is a certain interpolation operator.
As model example serves the Laplace equation with mixed boundary conditions, where
our contributions extend a result of [NIC05]. Moreover, this approach allows the coupling
of finite volume schemes with the boundary element method, which is a new and fruitful
combination of the FVM with ideas from [CAR99a, CAR99b].

1. Introduction and Elliptic Model Problem

Let Ω ⊂ R
2 be a bounded and connected domain with Lipschitz boundary Γ := ∂Ω, which

is divided into a closed Dirichlet boundary ΓD ⊆ Γ with positive surface measure and a
Neumann boundary ΓN := Γ\ΓD. We consider the elliptic boundary value problem

−∆u = f in Ω,

u = uD on ΓD and ∂u/∂n = g on ΓN .
(1.1)

Here, f ∈ L2(Ω), uD ∈ H1(ΓD), and g ∈ L2(ΓN) are given data, and L2(·) and H1(·) denote
the standard Lebesgue- and Sobolev-spaces equipped with the usual norms ‖ · ‖L2(·) and
‖ · ‖H1(·). We aim to approximate the unique weak solution u ∈ H1(Ω) by a postprocessed
finite volume scheme. Throughout, T denotes a certain triangulation of Ω, where N and
E are the corresponding sets of nodes and edges, respectively. The set of nodes (edges) on
the Dirichlet resp. Neumann boundary are ND resp. NN (ED resp. EN). For brevity, we
assume that the elements T ∈ T are non-degenerate rectangles and refer to [ERA07] for
triangular elements. For T ∈ T , hT := diam(T ) denotes the Euclidean diameter, and for an
edge E ∈ E , we denote by hE its length. We say that the triangulation T is almost regular,
if

(i) the mixed boundary conditions are resolved, i.e. each edge E ∈ E with E ∩ Γ 6= ∅
satisfies either E ⊆ ΓD or E ⊆ ΓN .

(ii) the intersection T1 ∩ T2 of two elements T1, T2 ∈ T with T1 6= T2 is either empty or a
node or an edge.

(iii) the edge E ∈ E contains an interior (i.e. hanging) node, there are two edges E1, E2 ∈
E with E = E1 ∪E2, cf. Figure 2.1 for examples.

A node a ∈ N\(ND ∪ NN) is a hanging node provided that there are elements T1, T2 ∈ T
such that a ∈ T1 ∩ T2 is a node of T1 but not of T2. Let NH be the set of all hanging nodes.

Date: January 3, 2008.
Key words and phrases. finite volume method, cell-centered method, diamond path, a posteriori error
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Figure 2.1. The weights ψT for an almost regular mesh of squares.

2. Cell-Centered Finite Volume Method

We integrate the differential equation (1.1) over a control volume T ∈ T and use the Gauss
divergence theorem to obtain, with ET the set of edges of T ,

∫

T

f dx = −

∫

∂T

∂u

∂nT

ds = −
∑

E∈ET

ΦT,E(u) ds for all T ∈ T .

Here, ΦT,E(u) =
∫

E
∂u/∂nT,E ds is the diffusive flux and nT,E is the outer normal vector of

T on E. Let uh ∈ P0(T ) be a piecewise constant approximation of u, namely uT := uh|T ≈
u(xT ), where xT denotes the center of an element T ∈ T . For the cell-centered finite volume
method, uh is computed by replacing the diffusion flux ΦT,E(u) by a discrete diffusion flux
FT,E(uh). First, ΦT,E(u) =

∫
E
g ds is known for a Neumann edge E ∈ EN . One therefore

defines

FT,E(uh) := ΦT,E(uh) =

∫

E

g ds for E ∈ EN .

Second, for a non-elementary edge with E = E1∪E2 ∈ E and E1, E2 ∈ EE, where EE denotes
the set of elementary edges (i.e. neither E1 nor E2 contain an interior node), there holds
ΦT,E(u) = ΦT,E1

(u) + ΦT,E2
(u), which leads to the definition

FT,E(uh) := FT,E1
(uh) + FT,E2

(uh) for E = E1 ∪E2 ∈ E with E1, E2 ∈ EE.

Finally, it remains to define FT,E(uh) for elementary and Dirichlet edges E ∈ EE ∪ ED. This
is done by the diamond path method in the following way: For each node a ∈ N , we define

ua =





∑

T∈eωa

ψT (a) uT , for all a ∈ N\(ND ∪NN),

uD(a), for all a ∈ ND,

ua + ga, for all a ∈ NN ,

(2.1)

with certain weights
{
ψT (a)

∣∣T ∈ T , a ∈ NT

}
for each element of the patch ω̃a :=

{
T ∈

T
∣∣ a ∈ ∂T

}
. Here, NT denotes the set of nodes of T . For details on the computation of

the weights, the reader is referred to [COU00]. Figure 2.1 gives the precise values for almost
regular triangulations of squares. Details on the computation of ua and ga are found in
[ERA07]. For an elementary edge E ∈ EE, let xTa

and xTb
be the starting and end point of
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Figure 2.2. Notation for the diamond path.

E ∈ EE ∪ ED and T, T ′ ∈ T the unique elements with E = T ∩ T ′, cf. Figure 2.2. Then,

FT,E(uh) := hE

(
uT ′ − uT

dE

− αE
uTb

− uTa

hE

)

with αE =
(xT ′ − xT ) · tT,E

(xT ′ − xT ) · nT,E

, dE = (xT ′ − xT ) · nT,E.

(2.2)

Here, the additional unknowns uTb
and uTa

are located at the nodes xTb
and xTa

and are
computed by (2.1). Finally, the tangential vector tT,E is chosen orthogonal to nT,E in mathe-
matically positive sense. For a Dirichlet edge E ∈ ED, we compute FT,E(uh) by (2.2), where
xT ′ is now replaced by the midpoint xEm

of E and uTE
becomes uD(xEm

). Altogether, the
discrete problem reads: Find uh ∈ P0(T ) such that

−
∑

E∈ET

FT,E(uh) =

∫

T

f dx, for all T ∈ T .

Note, that the conservativity of the continuous flux ΦT,E(u) = −ΦT ′,E(u) also holds for the
discrete flux FT,E(uh) = −FT ′,E(uh).

Remark. We stress, that even for an admissible triangular mesh T in the sense of [EYM00,
Definition 9.1], local mesh-refinement is nontrivial, since admissibility necessarily implies
that all angles are strictly less than π/2. For rectangular meshes, local mesh-refinement
cannot avoid hanging nodes and thus contradicts the admissibility condition.

3. A Posteriori Error Estimate

For a non-degenerate rectangular element T = conv{a1, a2, a3, a4} ⊂ R
2 with edges Ej =

conv{aj , aj+1} and a5 := a1, we define PT = P2 ⊕ span{x3 − 3xy2, y3 − 3yx2} and ΣT =
(S1, . . . , S8), where

Sj(p) = p(aj), Sj+4(p) =

∫

Ej

∂p

∂nT,Ej

ds for j = 1, . . . , 4 (p ∈ PT ),

cf. [NIC05, Section 4.2]. Then, the Morley-type element (T,PT ,ΣT ) is a nonconforming
finite element. The corresponding Morley interpolant Iuh is now defined T -elementwise
by (3.1)–(3.4). The definition of which is an extension of the definition in [NIC05, Section
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5] to the case of hanging nodes and mixed boundary conditions. For each free node a ∈
NT ∩

(
N\(ND ∪ NN ∪NH)

)
, we enforce

(Iuh)|T (a) =
∑

Ta∈eωa

ψTa
(a)uh|Ta

.(3.1)

For each boundary node, the value Iuh(a) is prescribed by

(Iuh)|T (a) =

{
uD(a) for a ∈ NT ∩ND,

ua + ga for a ∈ NT ∩NN .
(3.2)

For each hanging node a ∈ NT ∩ NH , there holds

(Iuh)|T (a) = (Iuh)|Ta
(a),(3.3)

where Ta ∈ T is the unique element with a ∈ int(E) for some (non-elementary) edge E ∈ ETa
.

Finally, for each edge E ∈ ET holds
∫

E

∂(Iuh)|T
∂nT,E

ds = FT,E(uh).(3.4)

We stress, that the Morley interpolant Iuh is uniquely defined by (3.1)–(3.4). Moreover, the
definition ensures the following orthogonality properties, which are essential for the analysis
of the proposed error estimator: First, the residual R := f + ∆(Iuh) is L2-orthogonal to
P0(T ), i.e.

∫

T

(
f + ∆(Iuh)

)
dx = 0 for all T ∈ T .

In particular, R = f − fT , where fT denotes the T -piecewise integral mean, i.e. fT |T :=
|T |−1

∫
T
f dx. Second, for boundary edges hold

∫

E

∂(u − Iuh)

∂tT,E

ds = 0 (E ∈ ED) resp.

∫

E

∂(u− Iuh)

∂nT,E

ds = 0 (E ∈ EN).

Finally, for interior edges hold
∫

E

[[∂(Iuh)

∂nT,E

]]
ds = 0 (E ∈ E0) resp.

∫

E

[[∂(Iuh)

∂tT,E

]]
ds = 0 (E ∈ EE).

Here, E0 denotes the set of all interior edges which are not part of a non-elementary edge.

To introduce our error estimator, we define the normal jump over an edge E ∈ EE by

[[∂(Iuh)/∂nT,E ]] = ∂(Iuh)/∂nT,E + ∂(Iuh)/∂nT ′,E,

where T, T ′ ∈ T and E = T ∩T ′. Note that nT,E = −nT ′,E so that the sum in the definition
is in fact a difference. For each non-elementary edge E = E1 ∪E2 ∈ E with E1, E2 ∈ EE, we
define the normal jump

[[∂(Iuh)/∂nT,E ]]E(x) := [[∂(Iuh)/∂nT,E ]]Ei
(x) for all x ∈ Ei, i = 1, 2.
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Figure 4.1. Errors EI and Eh as well as a posteriori error estimator η in
Problem (1.1) for uniform and adaptive mesh-refinement.

The tangential jump [[∂(Iuh)/∂tT,E ]] is defined analogously. For each element T ∈ T , we now
define the refinement indicator

η2
T := h2

T‖f − fT ‖
2
L2(T ) +

∑

E∈ET \(ED∪EN )

hE‖[[∇T (Iuh)]]‖
2
L2(E)

+
∑

E∈ET∩EN

hE

∥∥∥
∂(u − Iuh)

∂nT,E

∥∥∥
2

L2(E)
+

∑

E∈ET∩ED

hE

∥∥∥
∂(u− Iuh)

∂tT,E

∥∥∥
2

L2(E)
.

(3.5)

With techniques known from the finite element method [AIN00], one proves reliability

C−1
rel ‖∇T (u− Iuh)‖L2(Ω) ≤ η :=

( ∑

T∈T

η2
T

)1/2

.(3.6)

As for non-conforming FEM the proof employs a Helmholtz decomposition. The Galerkin
orthogonality is replaced by the orthogonality properties of Iuh stated before. The converse
inequality holds even T -elementwise, namely for all T ∈ T

C−1
ℓocηT ≤

(
‖∇T (u− Iuh)‖

2
L2(ωT ) + h2

T‖f − fT ‖
2
L2(ωT )

)1/2
,(3.7)

where the involved patch reads ωT :=
⋃{

T ′ ∈ T
∣∣T ∩ T ′ 6= ∅

}
. This estimate follows

by usual techniques and the use of appropriate bubble functions. In particular, we obtain
efficiency of η up to oscillation terms,

C−1
eff η ≤ ‖∇T (u− Iuh)‖L2(Ω) + ‖h(f − fT )‖L2(Ω),(3.8)

where h ∈ L∞(Ω), h|T := hT denotes the local mesh-width. The constants Crel, Cℓoc, Ceff > 0
only depend on the shape of the elements in T . We refer to [ERA07] for the detailed proofs
of the estimates (3.6)–(3.8).
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#T = 69 #T = 567 #T = 4629

Figure 4.2. Adaptively generated meshes in problem (1.1).

4. Numerical Experiments

We consider the Laplace problem (1.1) on the L-shaped domain Ω = (−1, 1)2\
(
[0, 1] ×

[−1, 0]
)
. The given exact solution is the harmonic function u(x, y) = ℑ

(
(x + iy)2/3

)
which

reads in polar coordinates

u(x, y) = r2/3 sin(2ϕ/3) with (x, y) = r (cosϕ, sinϕ).

Note that u has a generic singularity at the reentrant corner (0, 0). For the numerical
computation, we prescribe the exact Neumann and Dirichlet data, where ΓD = Γ\ΓN and
ΓN := {0} × (−1, 0) ∪ (0, 1) × {0}. Note that ΓN includes the reentrant corner, where the
normal derivative ∂u/∂n is singular. We compute the energy error Eh :=

(
‖u − uh‖2

L2(Ω) +

|uT −uh|21,h

)1/2
, with uT ∈ P0(T ) the T -piecewise integral mean of u, and where the discrete

H1-seminorm is defined by

|vh|1,h =
( ∑

E∈EE∪ED

∣∣∣(vT ′ − vT )/dE

∣∣∣
2

hEdE

)1/2

for any vh ∈ P0(T ). Provided that u ∈ H2(Ω), the diamond path method leads to Eh =
O(N−1/2) with respect to the number N = |T | of elements [COU00]. Moreover, we compute
the Morley error EI = ‖∇T (u − Iuh)‖L2(Ω) and the corresponding error estimator η. All
computations are done in Matlab in the spirit of [ALB99, ERA08]. We employ an adaptive
mesh-refining algorithm, which is steered by the local refinement indicators ηT from (3.5):
An element Tj ∈ T is marked for refinement provided ηTj

≥ θmax{ηT1
, . . . , ηTN

}, where
we use θ = 0 for uniform and θ = 0.5 for adaptive mesh-refinement, respectively. The
numerical outcome is plotted in Figure 4.1 over the number N of elements. For uniform
mesh-refinement, the energy error Eh converges with a suboptimal order which appears to
be slightly better than O(N−1/3). The proposed adaptive strategy regains the optimal order
of convergence O(N−1/2). As can be expected from the finite element method, the Morley
error EI decreases like O(N−1/3) for uniform mesh-refinement. The adaptive algorithm leads
to an improved order of convergence O(N−1/2). As predicted by theory, the error estimator
η is observed to be reliable and efficient.

5. Outlook

The finite volume method is a well adapted method for the discretization of various con-
vection dominated partial differential equations. It is very popular in the engineering com-
munity (fluid mechanics) because of its conservative properties. This method is contrary to
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the boundary element method (BEM), which can be applied to the most important linear
and homogeneous partial differential equations with constant coefficients also in unbounded
domains. The coupling of FVM and BEM combines the advantages of both methods, e.g.
in problems where stationary diffusive heat and convection in different media are coupled.
While convection would be modelled by the finite volume method, diffusive heat (in a pos-
sibly unbounded domain) is solved using the boundary element method.
First numerical examples show the efficiency of the symmetric coupling of FVM and BEM,
where we used the results given here for the FVM and results from [CAR99a, CAR99b]
to develop a stable discretization. The resulting system of linear equations is now a 4 × 4
block-system instead of a 3 × 3 system for the FEMNC-BEM coupling.
The coupling of FVM and BEM involves two further continuous ansatz functions on the
interface to link the discontinuous displacement field to necessarily continuous boundary
ansatz functions on the boundary. Quasi-optimal a priori error estimates and sharp a poste-
riori error estimates are almost established which justify adaptive mesh-refining algorithms.
Numerical experiments show the adaptive coupling as an efficient tool for the numerical
treatment of transmission problems.
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