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SIMPLE A POSTERIORI ERROR ESTIMATORS

FOR THE h-VERSION OF THE BOUNDARY ELEMENT METHOD

SAMUEL FERRAZ-LEITE AND DIRK PRAETORIUS

Abstract. The h-h/2-strategy is one well-known technique for the a posteriori error esti-
mation for Galerkin discretizations of energy minimization problems. One considers ηH :=
‖φh/2 −φh‖ to estimate the error ‖φ−φh‖, where φh is a Galerkin solution with respect to
a mesh Th and φh/2 is a Galerkin solution with respect to the mesh Th/2 obtained from a
uniform refinement of Th. This error estimator is always efficient and observed to be also re-
liable in practice. However, for boundary element methods, the energy norm is non-local and
thus the error estimator ηH does not provide information for a local mesh-refinement. We
consider Symm’s integral equation of the first kind, where the energy space is the negative-

order Sobolev space H̃−1/2(Γ). Recent localization techniques allow to replace the energy
norm in this case by some weighted L2-norm. Then, this very basic error estimation stra-
tegy is also applicable to steer an h-adaptive algorithm. Numerical experiments in 2D and
3D show that the proposed method works well in practice. A short conclusion is concerned

with other integral equations, e.g., the hypersingular case with energy space H̃1/2(Γ) and

H
1/2

0
(Γ), respectively, or a transmission problem.

Dedicated to Professor Ernst P. Stephan on the occasion of his 60th birthday

1. Introduction and Model Example

We consider Symm’s integral equation

V φ = f on Γ(1.1)

for a relatively open subset Γ ⊆ ∂Ω of the boundary of a bounded Lipschitz domain Ω ⊆ R
d,

for d = 2, 3. Here, V φ denotes the simple-layer potential

V φ(x) =

∫

Γ

G(x− y)φ(y) dsy for x ∈ Γ(1.2)

with G(·) the fundamental solution of the Laplacian, i.e.

G(z) =

{
− 1

2π
log |z| for d = 2,

+ 1
4π
|z|−1 for d = 3,

(1.3)

and with
∫
Γ
ds the integration over the surface piece Γ. The operator V : H̃−1/2(Γ) →

H1/2(Γ) is an elliptic isomorphism between the fractional-order Sobolev space H := H̃−1/2(Γ)
and its dual H∗ = H1/2(Γ), where we additionally assume diam(Ω) < 1 in case of d = 2. It
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thus provides an equivalent scalar product 〈〈· , ·〉〉 on the energy space H defined by 〈〈φ, ψ〉〉 :=
〈V φ, ψ〉. Here, the duality brackets 〈· , ·〉 extend the L2(Γ)-scalar product. We denote by
||| · ||| the induced energy norm.

The right-hand side f ∈ H∗ in (1.1) may either stem from an indirect approach or from
direct integral formulations. In the latter case, f takes the form f = (K + 1/2)g with K the
double-layer potential operator and g ∈ H∗ some known Dirichlet data.

Given f ∈ H∗, the unique solution φ ∈ H of (1.1) solves

〈〈φ, ψ〉〉 = 〈f , ψ〉 for all ψ ∈ H.(1.4)

Let Th be a triangulation of Γ (with local mesh-size h). Then, the lowest-order Galerkin
method is to find a Th-piecewise constant function φh ∈ P0(Th) which solves the weak form

〈〈φh , ψh〉〉 = 〈f , ψh〉 for all ψh ∈ P0(Th).(1.5)

We stress the Galerkin orthogonality

〈〈φ− φh , ψh〉〉 = 0 for all ψh ∈ P0(Th),(1.6)

which in fact characterizes the discrete solution φh. The goal of this work is to contribute to
simple and accurate a posteriori estimation for the error |||φ− φh||| in the energy norm: An
a posteriori error estimator is a computable quantity η which does not depend on the (in
general unknown) exact solution φ but only on computable data, e.g. the discrete solution
φh, and which estimates the error |||φ−φh||| in the energy norm. We aim to provide estimates

C−1
eff η ≤ |||φ− φh||| ≤ Crel η(1.7)

which are referred to as efficiency (lower estimate) and reliability (upper estimate) of η,
respectively. The constants Ceff , Crel may not depend on φ or φh, but on the given right-
hand side f ∈ H∗ as well as weakly on Th, e.g., on the shape of the elements in Th.

To introduce the analytical idea of this paper, let Th/2 be a second triangulation of Γ
obtained from a uniform refinement of Th. We consider the discrete spaces Xh := P0(Th)
and Xh/2 := P0(Th/2) with corresponding Galerkin solutions φh ∈ Xh and φh/2 ∈ Xh/2,
respectively. Recall that the best approximation property of the Galerkin solution with
respect to the energy norm and Xh ⊂ Xh/2 provide

|||φ− φh/2||| ≤ |||φ− φh|||.(1.8)

In a first step, we now consider the h-h/2-error estimator

ηH := |||φh/2 − φh|||.(1.9)

The Galerkin orthogonality (1.6) for Xh/2 and Xh ⊂ Xh/2 yield

|||φ− φh|||2 = |||φ− φh/2|||2 + |||φh/2 − φh|||2 = |||φ− φh/2|||2 + η2
H

and thus ηH ≤ |||φ−φh|||. This proves efficiency of ηH with known efficiency constant Ceff = 1.
The reliability of ηH is usually proven with the help of the saturation assumption, which is
a strengthened version of (1.8) and reads

|||φ− φh/2||| ≤ Csat |||φ− φh|||(A)
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with a constant Csat ∈ (0, 1) which is uniform with respect to the discretization parameter
h→ 0. Under this assumption, we obtain |||φ−φh|||2 = |||φ−φh/2|||2+η2

H ≤ C2
sat |||φ−φh|||2+η2

H

and thus reliability

|||φ− φh||| ≤
1√

1 − C2
sat

ηH .(1.10)

The same arguments show that reliability of ηH , in fact, implies the saturation assump-
tion (A). We state these observations in the following proposition for later reference. We
stress that our considerations are, so far, independent of the precise mathematical setting,
e.g., Symm’s integral equation.

Proposition 1.1. (i) The h-h/2-error estimator ηH is always efficient with Ceff = 1.

(ii) Under the saturation assumption (A), ηH is reliable with Crel = 1/
√

1 − C2
sat.

(iii) If ηH is reliable with constant Crel > 0, there holds (A) with Csat = (1 − C−2
rel )

1/2. �

For the finite element method, the saturation assumption (A) can be proven under some
mild conditions on the local mesh refinement, cf. [10]. However, we stress that the saturation
assumption — although observed in practice — has not been proven for the boundary element
method, yet.

An additional difficulty for boundary element methods is the non-locality of the energy
norm, e.g. ||| · ||| ∼ ‖ · ‖ eH−1/2(Γ) for Symm’s integral equation. Here, non-locality of the norm

means that ||| · ||| cannot be written as sum of local contributions — in contrast to, e.g., the
L2-norm which satisfies ‖·‖2

L2(Γ) =
∑

T∈Th
‖·‖2

L2(T ). One therefore needs so-called localization

techniques which provide lower and upper estimates for |||φh/2−φh||| by use of, e.g., weighted
L2-norms. We use recent ideas from [5] to prove that, for shape-regular meshes,

µH = ‖h1/2(φh/2 − φh)‖L2(Γ)(1.11)

is an equivalent error estimator, i.e. there are constants C1, C2 > 0 such that

C−1
1 µH ≤ ηH ≤ C2µH .(1.12)

Here h ∈ L∞(Γ), h|T := diam(T ) for T ∈ Th, denotes the local mesh-size function. For our
numerical experiments, we thus may use the local contributions µH,j := diam(Tj)

1/2‖φh/2 −
φh‖L2(Tj) to decide whether an element Tj ∈ Th should be refined or not. We stress, that
even though the localization techniques have been developed and used in [5], they have not
been used to derive the localized h-h/2-error estimator which is a new contribution of this
work. Moreover, the h-h/2-strategy — although simple and quite natural — has neither been
proposed for error estimation nor for adaptive mesh-refinement in the context of boundary
element methods, yet.

We conclude the introduction with some general remarks on the proposed method, which
are discussed in more detail in Section 4–6 below: First, h-h/2 error estimation can be used
within a general framework and is, in particular, applicable to direct or indirect boundary
integral formulations. Second, there is almost no implementational overhead: The compu-
tation of ηH only uses the Galerkin matrix, whereas µH only needs the computation of a
weighted L2-norm of piecewise constant functions. Third, only the Galerkin matrix Ah/2

with respect to Th/2 has to be built. Then, both Galerkin solutions φh/2 and φh can be
computed simultaneously, cf. Section 4.1. By use of certain matrix compression techniques

3



and fast solvers the additional cost for the computation of the estimator ηH , i.e. the compu-
tation of φh/2, is almost bounded by a factor 3 in three dimensions. In the two dimensional
case, the additional cost for the computation of ηH is only of the same complexity as the
computation of the Galerkin solution φh. Fourth, the numerical experiments give empirical
evidence that ηH is reliable and efficient and that the error estimation ηH ≈ |||φ−φh||| is very
accurate. Finally, recent techniques allow to prove convergence of the µH-steered adaptive
BEM [14]. On the other hand, we admit that the analysis strongly depends on the satu-
ration assumption (A). From the mathematical point of view, this can be seen as a major
disadvantage.

The remaining contents of this paper are organized as follows: In Section 2 we recall
some notations and restrictions for the triangulations under consideration. In Section 3, we
provide the localization of the energy norm in case of Symm’s integral equation. Details
on the implementation of ηH and µH are found in Section 4. We stress that our analysis,
so far, is restricted to the case of isotropic mesh-refinement in 3D, whereas anisotropic
mesh-refinement is necessary to resolve edge-singularities efficiently. We thus give some
heuristics for a µH-steered adaptive algorithm which leads to anisotropic meshes. Numerical
experiments in 2D and 3D are found in Section 5. These underline that the developed
techniques and proposed algorithms are even capable to control the Galerkin error in case
of both, isotropic and anisotropic mesh-refinement. Some concluding remarks are drawn in
Section 6 and we outline at least some further applications of the proposed method.

2. Preliminaries

General Triangulations and Piecewise Polynomials. Let Th = {T1, . . . , TN} be a
triangulation of Γ, i.e.

• Γ =
⋃N

j=1 Tj , i.e. Th covers Γ,

• each Tj ∈ Th is closed and non-degenerate, i.e. |Tj | > 0,
• |Tj ∩ Tk| = 0 for the intersection of two elements Tj , Tk ∈ Th with Tj 6= Tk.

Here, | · | denotes the (d − 1)-dimensional surface measure. For the ease of presentation,
we assume that, for d = 2, the elements Tj ∈ Th are affine boundary pieces. For d = 3,
the elements Tj ∈ Th are assumed to be either flat triangles or flat rectangles, respectively.
For p ≥ 0, we denote by Pp(Th) the space of all Th-piecewise polynomials. As usual, these
discrete functions are defined on a reference element T ref and mapped onto the respective
elements by affine transformations. The reference element is given by T ref

2D = [0, 1] in case of
d = 2, and either T ref

3D,△ = conv{(0, 0), (0, 1), (1, 0)} or T ref
3D,� = [0, 1]2 in case of d = 3. Only

in the latter case, Pp(Th) contains polynomials of partial degree ≤ p. In the other cases p
denotes the maximal total degree.

Local Mesh-Widths and K-Mesh Property. For each element Tj ∈ Th, we define the
diameter hj := diam(Tj) > 0. Moreover, let ̺j > 0 be the diameter of the largest sphere
centered at a point in Tj , whose intersection with Γ lies entirely inside Tj . To deal with error
estimates on adaptively refined meshes, we define local mesh-width functions h, ̺ ∈ L∞(Γ)
by h|Tj

:= hj and ̺|Tj
:= ̺j for Tj ∈ Th, respectively. Obviously, there holds ̺ = h pointwise

for d = 2, whereas only ̺ ≤ h for d = 3. We thus define the shape-regularity constant

σ(Th) := sup
Tj∈Th

(hj/̺j) = ‖h/̺‖L∞(Γ) ≥ 1.(2.1)
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By definition, there holds the pointwise estimate ̺ ≤ h ≤ σ(Th)̺, with σ(Th) = 1 for d = 2.

A mesh-refinement strategy, which yields a sequence (T (ℓ)
h ) of triangulations, is called

isotropic, provided that σ0 := supℓ∈N σ(T (ℓ)
h ) < ∞. However, in 3D the mesh-refinement

strategies of practical interest often lead to an anisotropic mesh-refinement. More precisely,
the adaptive meshes obtained below satisfy the K-mesh property for some constant κ(Th) ≥
1, i.e. there hold:

• For any Tj , Tk ∈ Th with Tj ∩ Tk 6= ∅ holds hj/hk ≤ κ(Th) as well as ̺j/̺k ≤ κ(Th),
i.e. the local mesh-widths of neighbouring elements do not vary too rapidly.

• For any node z ∈ Γ of Th holds #{T ∈ Th : z ∈ T} ≤ κ(Th), i.e. each node does not
belong to too many elements of Th.

We stress that the estimates below depend on (an upper bound of) the mesh-constant κ(Th).

Regular Meshes vs. Hanging Nodes. We recall that the triangulation Th is regular in
the sense of Ciarlet, if, for all elements Tj, Tk ∈ Th with Tj 6= Tk, the intersection Tj ∩ Tk

• is either empty,
• or a vertex of both Tj and Tk,
• or an edge of both Tj and Tk.

These properties are needed to ensure global continuity and thus H1-conformity of certain
Th-piecewise polynomials.

However, for the analysis of Symm’s integral equation we may deal with discontinuous

Th-piecewise polynomials to discretize the energy space H̃−1/2(Γ). In this case, we thus drop
the regularity assumption and allow hanging nodes instead. For the analysis, we shall assume

that Th is almost regular, i.e. there is a regular triangulation T̂h of Γ such that

• T̂h is obtained from certain refinements of Th, i.e. P0(Th) ⊆ P0(T̂h),
• there is a constant κ̂(Th), which only depends on Th such that

κ(T̂h) ≤ κ̂(Th) κ(Th)(2.2)

and that

ĥ ≤ h ≤ κ̂(Th) ĥ as well as ̺̂≤ ̺ ≤ κ̂(Th) ̺̂.(2.3)

Here, h and ̺ as well as ĥ and ̺̂ denote the mesh-width functions with respect to Th

and T̂h, respectively.

We stress that both assumptions hold for the 3D experiments provided below.

3. Symm’s Integral Equation

For the entire section, let Th be an almost-regular triangulation of Γ. We adopt the notations
of the introductory section. The first lemma provides a localization of the H̃−1/2-norm for
discrete functions vh ∈ L2(Γ). This localization is naturally given in terms of a mesh-
size weighted L2-norm. The inverse estimate (3.1) is proven in [15]. The approximation
estimates (3.2)–(3.3) are taken from [5].

Lemma 3.1. (i) For any discrete function vh ∈ P0(Th) holds the inverse estimate

‖̺1/2vh‖L2(Γ) ≤ C3|||vh|||,(3.1)
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where the constant C3 > 0 only depends on Γ and the mesh-constants κ(Th) and κ̂(Th).
(ii) For Πh the L2-projection onto P0(Th) and any v ∈ L2(Γ) holds

|||v − Πhv||| ≤ C4‖h1/2(v − Πhv)‖L2(Γ) ≤ C4‖h1/2v‖L2(Γ).(3.2)

The constant C4 > 0 only depends on Γ but not on the triangulation Th.

(iii) For Gh the Galerkin projection onto P0(Th) and any v ∈ L2(Γ) holds

|||v − Ghv||| ≤ C4 min
{
‖h1/2(v − Ghv)‖L2(Γ), ‖h1/2v‖L2(Γ)

}
.(3.3)

(iv) Neither of the constants C3 and C4 depend on the local mesh-sizes h and ̺ or on the

number #Th of elements. �

Sketch of Proof. Let T̂h be the regular triangulation corresponding to Th in the sense of the
preliminary section. According to [15, Theorem 3.6], there holds

‖̺1/2vh‖L2(Γ) ≤ C3|||vh||| for all vh ∈ P0(T̂h),

where the constant C3 > 0 depends only on κ(T̂h) and thus on κ(Th) and κ̂(Th). In particular,

(i) follows from P0(Th) ⊆ P0(T̂h). (In [15] the local mesh-width is a certain nodal P1

interpolant of the local mesh-width ̺ defined here. Both definitions are equivalent up to

the multiplicative constant κ(T̂h).) (ii) is proven in [5, Theorem 4.1]. Therefore, the best
approximation property of the Galerkin projection yields, for v ∈ L2(Γ),

|||v − Ghv||| ≤ |||v − Πhv||| ≤ C4‖h1/2v‖L2(Γ).

Defining, w := v − Ghv ∈ L2(Γ) and observing w − Ghw = v − Ghv, we additionally obtain

|||v − Ghv||| = |||w − Ghw||| ≤ C4‖h1/2w‖L2(Γ) = C4‖h1/2(v − Ghv)‖L2(Γ).

The combination of the latter estimates proves (iii). �

Remark 1. For the ease of presentation, we restrict to the lowest-order case. We stress
that (3.2)–(3.3) hold under some richness assumptions on the discrete space Xh. Namely,
we have to assume that Πh : L2(Γ) → Xh is the L2-projection and that Xh contains at
least either P0(Th) or P1(Th) ∩ C(Γ), where in the latter case C4 additionally depends on
the shape-regularity constant σ(Th), cf. [5]. The lower localization estimate (3.1) holds for

any T̂h-piecewise polynomial vh ∈ Pp(T̂h), where the constant C3 depends on the polynomial

degree p and on the mesh-constant κ(T̂h), cf. [15]. The dependence of C3 and C4 on Γ follows
from equivalence of norms ||| · ||| ∼ ‖ · ‖ eH−1/2(Γ). �

Theorem 3.2. The a posteriori error estimator

µH := ‖̺1/2(φh/2 − φh)‖L2(Γ)(3.4)

satisfies

(
√

2C3)
−1µH ≤ ηH ≤ C4 σ(Th)

1/2 µH(3.5)

with the constants C3, C4 > 0 from Lemma 3.1. In particular, µH is always efficient.

Proof. Let Gh denote the Galerkin projection onto P0(Th) and note that P0(Th) ⊂ P0(Th/2)
implies Ghφh/2 = φh. Therefore, we have φh/2 −φh = (1−Gh)(φh/2 −φh). Now, (3.3) proves

|||φh/2 − φh||| = |||(1− Gh)(φh/2 − φh)||| ≤ C4‖h1/2(φh/2 − φh)‖L2(Γ) ≤ C4‖(h/̺)1/2‖L∞(Γ) µH .
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By definition, there holds σ(Th)
1/2 = ‖(h/̺)1/2‖L∞(Γ), which leads to the upper estimate

in (3.5). For the lower estimate, we use the inverse estimate (3.1) on P0(Th/2) to obtain

‖(̺/2)1/2(φh/2 − φh)‖L2(Γ) ≤ C3 |||φh/2 − φh|||,
which concludes the proof. �

Remark 2. Theorem 3.2 states equivalence of ηH and µH in case of either d = 2 or isotropic
mesh-refinement in case of d = 3. However, the numerical experiments below indicate that
the critical estimate ηH . µH does even hold for anisotropic mesh-refinement. �

The following algorithm realizes an adaptive mesh-refining strategy based on the localized
h-h/2-error estimator µH .

Algorithm 3.3. Let ε > 0 be a given tolerance and θ ∈ (0, 1) the adaptivity parameter.

Given ℓ := 0 and an initial mesh T (0)
h , do the following:

(i) Refine T (ℓ)
h uniformly to obtain T (ℓ)

h/2.

(ii) Compute Galerkin solutions φ
(ℓ)
h ∈ P0(T (ℓ)

h ) and φ
(ℓ)
h/2 ∈ P0(T (ℓ)

h/2).

(iii) Compute error estimator ηH := |||φ(ℓ)
h/2 − φ

(ℓ)
h ||| and stop provided ηH ≤ ε.

(iv) Compute refinement indicators µH,j := ̺
1/2
j ‖φ(ℓ)

h/2−φ
(ℓ)
h ‖L2(Tj) for T (ℓ)

h = {T1, . . . , TN}.
(v) Determine set M(ℓ)

h ⊆ T (ℓ)
h of minimal cardinality such that

θ
∑

Tj∈T
(ℓ)

h

µ2
H,j ≤

∑

Tj∈M
(ℓ)
h

µ2
H,j.(3.6)

(vi) Refine the marked elements M(ℓ)
h to obtain a new mesh T (ℓ+1)

h .

(vii) Update ℓ 7→ ℓ+ 1, and go to (i). �

Remark 3. We stress that we do some additional marking in (v) to guarantee that

κ(T (ℓ)
h ) ≤ C5 as well as κ̂(T (ℓ)

h ) ≤ C5

with a constant C5 > 0 that only depends on T (0)
h but not on ℓ. We refer to Section 4.3–4.5

below for details. — For instance, in 2D, let Tj and Tk be two neighbouring elements. If Tk

is marked for refinement and hj > hk, we also mark Tj for refinement. By this procedure,

we guarantee that κ(T (ℓ)
h ) ≤ 2 κ(T (0)

h ) is uniformly bounded as ℓ→ ∞. �

Remark 4. The marking criterion (3.6) was introduced in [9] to prove convergence of
an adaptive algorithm for some P1-FEM for the Laplace equation. In the context of the
boundary element method, the mathematical proof of convergence and optimality of adaptive
algorithms is widely open. Only recently, it could be proven that —under the saturation

assumption (A) — Algorithm 3.3 yields convergence of the discrete solutions φ
(ℓ)
h towards

the exact solution φ ∈ H̃−1/2(Γ) for any choice of θ ∈ (0, 1), cf. [14]. For the numerical
experiments below, we always used θ = 0.5 for adaptive mesh-refinement. �

When Algorithm 3.3 stops with ηH ≤ ε, the Galerkin solution φ
(ℓ)
h/2 is a better approxima-

tion of φ than φ
(ℓ)
h as |||φ− φ

(ℓ)
h/2||| ≤ |||φ− φ

(ℓ)
h |||. Thus, Algorithm 3.3 should usually return
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φ
(ℓ)
h/2 instead of φ

(ℓ)
h . From this point of view, the quantity φh becomes a temporary result

only. One usually aims to compute side results with as less computational effort as possible.
In our case, we can simply avoid to compute φh as follows:

Theorem 3.4. With Πh : L2(Γ) → P0(Th) the L2-projection, we define the error estimators

η̃H := |||φh/2 − Πhφh/2||| and µ̃H := ‖̺1/2(φh/2 − Πhφh/2)‖L2(Γ).(3.7)

Then, there holds

µ̃H ≤ µH ≤
√

2C3 ηH and ηH ≤ η̃H ≤ C4 σ(Th)
1/2 µ̃H(3.8)

with the constants C3, C4 > 0 from Lemma 3.1. In particular, µ̃H is always efficient.

Proof. From the best approximation property of the Galerkin projection, we infer

ηH = |||φh/2 − φh||| = |||(1 − Gh)φh/2||| ≤ |||(1 − Πh)φh/2||| = η̃H .

An application of (3.2) proves η̃H ≤ C4 ‖(h/̺)1/2‖L∞(Γ) µ̃H . To dominate µ̃H by µH , note that
Πh is the Th-elementwise L2-projection, whence ‖(1 − Πh)φh/2‖L2(Tj) ≤ ‖(1 − Gh)φh/2‖L2(Tj)

for all Tj ∈ Th. If we sum this estimate over all elements, we are led to

µ̃H = ‖̺1/2(1 − Πh)φh/2‖L2(Γ) ≤ ‖̺1/2(1 − Gh)φh/2‖L2(Γ) = µH

which concludes the proof. �

Remark 5. Theorem 3.2 states equivalence of all introduced error estimators — namely,
ηH , η̃H , µH , and µ̃H — in case of either d = 2 or isotropic mesh-refinement in case of d = 3.
However, the numerical experiments below indicate that the critical estimate η̃H . µ̃H does
even hold for anisotropic mesh-refinement and d = 3. We stress that Theorem 3.4 is stronger
than Theorem 3.2 in the sense that Equation (3.8) implies (3.5). �

4. Implementational Aspects

4.1. Computation of Galerkin Solutions. The implementation of Symm’s integral
equation is done as follows: For a given triangulation Th = {T1, . . . , TN} of Γ we use the set
of characteristic functions Bh := {χTj

: Tj ∈ Th} as a basis of P0(Th). In the experiments
below, we restrict to the case that each element T ∈ Th is an affine boundary piece for d = 2
and an axis parallel rectangle for d = 3, respectively. The entries

Ajk = 〈V χTk
, χTj

〉
of the Galerkin matrix A ∈ RN×N

sym are then computed analytically [17]. The computation of

the right-hand side b ∈ RN with bj = 〈f , χTj
〉 is discussed for each experiment separately.

We refer to Section 5 for details. The Galerkin solution φh ∈ P0(Th) then reads φh =∑N
j=1 xjχTj

, where the coefficient vector x ∈ RN is the unique solution of the linear system
Ax = b.

Algorithm 3.3 requires the computation of discrete solutions with respect to a given coarse
mesh Th = {T1, . . . , TN} and its uniform refinement Th/2 = {T1, . . . , Tn}, where n = kN with
k = 2 in case of d = 2 and k = 4 in case of d = 3. We denote variables corresponding to the
coarse and the fine mesh with an index h or h/2, respectively. The solution φh/2 ∈ P0(Th/2) is
then obtained by solving the linear system Ah/2xh/2 = bh/2 as described above. In principle,
the solution φh ∈ P0(Th) can be obtained by solving Ahxh = bh. This naive approach,
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however, needs the assembly of Ah and bh, which one aims to avoid for obvious reasons.
Since iterative solvers like CG or GMRES only require a function for the matrix-vector
multiplication with Ah, we aim to provide this by use of the already computed matrix
Ah/2. To that end, note that each basis function χTj

∈ Bh of P0(Th) may be written as
a uniquely determined sum of functions in Bh/2, e.g. χTj

= χTj1
+ χTj2

+ χTj3
+ χTj4

for

d = 3, cf. Figure 1. We define the prolongation operator Ph : R
N → R

n which maps the
coefficient vector vh ∈ RN of a discrete function vh ∈ P0(Th) with respect to the basis Bh

to the coefficient vector vh/2 = Ph vh ∈ Rn with respect to Bh/2. We then compute the
matrix-vector product Ahvh in the following way:

• Compute the prolongation Ph vh ∈ R
n.

• Compute the matrix-vector product Ah/2Ph vh ∈ Rn.
• Compute Ahvh ∈ RN by summing up (Ahvh)j = (Ah/2Ph vh)j1 + . . .+ (Ah/2Ph vh)jk

with χTj
= χTj1

+ . . .+ χTjk
.

By use of a Krylov-type solver one may thus obtain the Galerkin solution φh ∈ P0(Th)
without computing and storing the corresponding matrix Ah ∈ RN×N

sym explicitly. The same

idea applies for the right-hand side bh ∈ RN which can be computed on-the-fly:

• Compute bh ∈ R
N by summing up (bh)j = 〈f , χTj

〉 = (bh/2)j1 + · · · + (bh/2)jk
with

χTj
= χTj1

+ . . .+ χTjk
.

In this way, only Ah/2 and bh/2 have to be computed and stored, which lowers the compu-
tational effort as well as the storage requirements significantly.

Remark 6. If one uses matrix compression techniques like H-matrices [2] and adaptive
cross approximation [1], we found that it is a matter of stability to proceed in the afore-
going way to compute φh by use of Ah/2 instead of Ah. Compression techniques often use
domain decompositions according to the geometry of a given mesh and try to store blocks
of the matrix in a sparse way. Approximation errors in Ah and Ah/2 stemming from this
compression may thus correspond to different blocks of the matrices leading to artificially
large deviances between φh and φh/2 on certain boundary elements. In contrast to that,
using Ah/2 to compute φh, we observed that the compression error seems to have only minor
influence on the difference φh/2 − φh. �

4.2. Computation of Error Estimators. First, the error estimator ηH is simply
computed by the Galerkin orthogonality

η2
H = |||φh/2 − φh|||2 = |||φh/2|||2 − |||φh|||2,(4.1)

where both discrete energies are byproducts of the computation: The coefficient vector x ∈
Rn of a Galerkin solution φh solves the Galerkin system Ax = b, so that the corresponding
energy reads |||φh|||2 = x · Ax = x · b.

To compute η̃H , note that the L2-projection Πh onto P0(Th) reads

(Πhv)|T =
1

|T |

∫

T

v ds for all v ∈ L2(Γ) and T ∈ Th,(4.2)

where |T | denotes the surface measure of T ∈ Th. Let xh/2 denote the coefficient vector of
the Galerkin solution φh/2 ∈ P0(Th/2). Then the coefficient vector x̃h of the L2-projection of
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TTT

marked element

T1T1T1 T2T2T2

T3T3T3T4T4T4

isotropic refinement

Figure 1. For the first implementation of Algorithm 3.3, a marked element T
is always refined uniformly into 4 new elements Tj. This isotropic refinement
obviously yields hj = h/2 and ̺j = ̺/2 for the refined mesh-sizes.

φh/2 onto P0(Th) may be simply computed as

(x̃h)j = (xh/2,j1 + . . .+ xh/2,jk
)/k.(4.3)

This follows from Th/2 being the uniform refinement of Th, so that there holds |Tjℓ
| = |Tj|/k

for ℓ = 1, . . . , k with k = 2, 4 for d = 2, 3, respectively. The computation of η̃H thus reads

η̃2
H = |||φh/2 − Πhφh/2|||2 = (xh/2 − Ph x̃h) · Ah/2(xh/2 − Ph x̃h),(4.4)

where Ph again denotes the prolongation operator from Section 4.1.
The estimators µH = ‖̺1/2(φh/2 − φh)‖L2(Γ) and µ̃H = ‖̺1/2(φh/2 − Πhφh/2)‖L2(Γ) are

computable from the already assembled data. Note, that the implementation of a mesh-
size weighted L2-norm for piecewise polynomials is fairly standard and can be performed
analytically without any additional quadrature error.

In particular, we stress that the computational complexity of the estimators η̃H , µ̃H and
µH is negligible compared to the cost for the computation of the Galerkin solution φh resp.
φh/2.

4.3. Mesh-Refinement in 2D. In our 2D experiments, we restrict to the case that
the boundary Γ is split into affine boundary pieces Γ1, . . . ,Γr and that the triangulation
consists of flat boundary elements, i.e. line segments. In the experiments below, we choose a

uniform initial mesh T (0)
h . For both, uniform and adaptive mesh-refinement, marked elements

T are halved into two new elements T1 and T2 with hT = 2hT1 = 2hT2 . For adaptive
mesh-refinement, we use Algorithm 3.3 steered by the localized error estimator µH and the
adaptivity parameter θ = 0.5. In order to ensure a uniform upper bound for the K-mesh
constant, we check the mesh-size ratio of neighbouring elements: If an element Ti is marked
for refinement we additionally mark neighbouring elements Tj with

hj/hi ≥ 2 and Ti ∩ Tj 6= ∅.(4.5)

This guarantees κ(T (ℓ)
h ) ≤ 2κ(T (0)

h ) for all adaptively generated meshes T (ℓ)
h . We stress,

that the K-mesh property is crucial for the estimates stated in Lemma 3.1, and thus the
equivalency of the introduced error estimators.

4.4. Isotropic Mesh-Refinement in 3D. In our 3D experiments, we restrict to the
case that the elements Tj ∈ Th are axis parallel squares. For uniform and adaptive isotropic
refinement, each marked element Tj is split into 4 new elements such that hj as well as ̺j

10



T1T1T1 T2T2T2

T3T3T3T4T4T4

SSS

T1T1T1

T3T3T3T4T4T4

S1S1S1 S2S2S2

S3S3S3S4S4S4

Figure 2. One hanging node per edge is allowed (left). If, in the left configu-
ration, element T2 is marked for refinement, we mark element S for refinement
as well (right).

TTT

marked element

T1T1T1 T2T2T2

T3T3T3T4T4T4

isotropic refinement

T1T1T1

T2T2T2

vertical refinement

T1T1T1 T2T2T2

horizontal refinement

Figure 3. The modification of Algorithm 3.3 gives a criterion whether a
marked rectangle T ∈ Th (left) is refined isotropically into four elements
T1, . . . , T4 or anisotropically into two elements T1 and T2. In the latter case,
the algorithm decides whether vertical or horizontal refinement seems to be
more appropriate.

+1+1+1

ψT,1

+1+1+1

+1+1+1

−1−1−1

−1−1−1

ψT,2

+1+1+1

−1−1−1

ψT,3

+1+1+1 −1−1−1

ψT,4

Figure 4. For each rectangle T ∈ Th, we introduce four Th/2-piecewise con-
stant functions ψT,j ∈ P0(Th/2), which are extended by zero to Γ\T .

are halved, cf. Figure 1. We stress that, due to the initial mesh and this mesh-refinement
rule, the mesh-widths ̺ = h coincide. For adaptive isotropic mesh-refinement, we again
use Algorithm 3.3 with θ = 0.5 and µH for marking. To ensure the K-mesh property of
the triangulations, we only allow one hanging node per edge, cf. Figure 2. Note, that this
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restriction automatically ensures ̺i/̺j = hi/hj ≤ 2 for neighbouring elements Ti, Tj which
share an edge.

4.5. Anisotropic Mesh-Refinement in 3D. The 3D experiments in Section 5.4–5.5
show that the experimental order of convergence is improved in the case of isotropic mesh-
refinement when compared to the order of convergence for uniform mesh-refinement. How-
ever, the isotropic refinement strategy does not reveal the optimal order of convergence. To
overcome this gap, we extend Algorithm 3.3 to allow anisotropic mesh-refinement. More
precisely, we extend step (vi) of Algorithm 3.3 by a heuristic criterion to decide whether a
marked rectangle T ∈ Th is refined into 2 or 4 rectangles, cf. Figure 3. To that end, we use
that we have already computed φh/2. Let T1, . . . , T4 ∈ Th/2 denote the four son-elements of a
marked coarse-mesh element T ∈ Th, where we use the same numbering as for the isotropic
refinement of Figure 3. Now, consider the four piecewise constant functions ψT,j ∈ P0(Th/2)
from Figure 4 and observe that {ψT,1, . . . , ψT,4} is an L2-orthogonal basis of P0({T1, . . . , T4}).
Therefore, φh/2|T ∈ P0({T1, . . . , T4}) reads

φh/2|T =

4∑

j=1

cT,jψT,j with the Fourier coefficients cT,j =
(ψT,j , φh/2)L2(T )

‖ψT,j‖2
L2(T )

.(4.6)

The decision whether isotropic or anisotropic refinement is more appropriate, is now done
as follows. We assume that T ∈ Th is marked for refinement:

• If cT,3 is significantly larger than the Fourier coefficients cT,2 and cT,4 the discrete
solution φh/2|T is rather constant in the horizontal direction. Therefore, the vertical
refinement from Figure 3 seems to be more efficient than isotropic refinement.

• If cT,4 is significantly larger than the Fourier coefficients cT,2 and cT,3, the discrete
solution φh/2|T is rather constant in the vertical direction. Therefore, the horizontal
refinement from Figure 3 seems to be more efficient than isotropic refinement.

• Otherwise, we do isotropic refinement.

Here, significantly larger is understood in the following sense: Let τ ∈ (0, 1) be a fixed
parameter. Then, cT,3, for instance, is significantly larger than cT,2 and cT,4, provided that

τ |cT,3| ≥
(
|cT,2|2 + |cT,4|2

)1/2
.(4.7)

For the numerical experiments below, we choose τ = 0.5.
Note, that the Fourier coefficients are easy to compute. Since we use characteristic basis

functions, our computations provide the coefficients λT,1, . . . , λT,4 ∈ R such that

φh/2|T =

4∑

k=1

λT,kχTk
,

where T1, . . . , T4 ∈ Th/2 are the sons of T ∈ Th as in Figure 3. We then observe

‖ψTj
‖2

L2(T ) = |T | as well as (ψT,j , φh/2)L2(T ) =

4∑

k=1

λT,k

∫

Tk

ψT,j dx.
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Note that the integral has the value ±|T |/4 according to the definition of the functions ψT,j .
A comparison of Figure 3 and 4 now shows that




cT,1

cT,2

cT,3

cT,4


 =

1

4




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1







λT,1

λT,2

λT,3

λT,4


 ,

where we simply plugged-in the values ψT,j|Tk
.

As in the isotropic case, we restrict to one hanging node per edge. This, however, does not
ensure, that the K-mesh constant κ(Th) stays uniformly bounded, since the local mesh-size
̺ may vary arbitrarily between neighbouring elements due to the anisotropic refinements.
In our implementation, we therefore do some additional marking, where we check the aspect
ratio ̺i/̺j for neighbouring elements: Let Ti be marked and let Tj share an edge with Ti. If

̺j/̺i ≥ 2, we also mark Tj for refinement. Together with the uniform initial mesh T (0)
h , this

ensures that ̺ and h may only vary by a factor 2 on neighbouring elements.

5. Numerical Experiments

This section reports on three numerical experiments to study the accuracy of the introduced
error estimators and the performance of the proposed adaptive strategy. Example 5.3 con-
siders Symm’s integral equation in 2D corresponding to a Dirichlet problem on the L-shaped
domain with reentrant corner at the origin. The exact solution of the PDE is given in po-
lar coordinates by u(r, ϕ) = rα cos(αϕ) and has a generic singularity with α = 2/3 at the
reentrant corner (0, 0), where the interior angle is 3π/2.

In Example 5.4–5.5, we study the performance of the proposed method for Symm’s integral
equation in 3D. For the ease of implementation and to exclude any positive or negative effects
of numerical quadrature, we consider

(5.1) V φ = 1 on Γ,

for Γ being the L-shaped screen in Example 5.4 and the surface Γ = ∂Ω of the Fichera cube
Ω = (−1, 1)3\[0, 1]3 in Example 5.5. In both cases, the solution φ appears to be singular
so that uniform mesh-refinement leads to a suboptimal order of convergence for the error
|||φ− φh|||.

All adaptive experiments are performed by use of Algorithm 3.3, where we choose θ = 0.5
to steer the mesh-refinement. For the marking step (v) in Algorithm 3.3, we use the local
contributions

µ2
H,j = ̺j‖φh/2 − φh‖2

L2(Tj)

of µH . Anisotropic mesh-refinement in 3D is obtained by the extended Algorithm described
in Section 4.5, where we use θ = 0.5 for marking and τ = 0.5 for the decision which kind
of refinement is chosen, cf. Figure 3. To control the K-mesh property of the adaptively

generated meshes T (ℓ)
h , we perform some additional marking as described in Sections 4.3–

4.5.
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5.1. Visualization and Interpretation of Numerical Results. The error in the
energy norm is computed by use of the Galerkin orthogonality

|||φ− φh||| =
(
|||φ|||2 − |||φh|||2

)1/2
.(5.2)

We obtained |||φ|||2 with the help of Aitkin’s ∆2-method, where we extrapolated the energies

|||φ(ℓ)
h |||2 for a sequence of discrete solutions on uniform meshes T (ℓ)

h . Besides the error, we
compute the four introduced error estimators

ηH = |||φh/2 − φh|||, µH = ‖̺1/2(φh/2 − φh)‖L2(Γ),

η̃H = |||φh/2 − Πhφh/2|||, µ̃H = ‖̺1/2(φh/2 − Πhφh/2)‖L2(Γ).

In Figure 7, 10, 11, 14, and 15, we then plot the Galerkin error |||φ − φh||| as well as the
four error estimators against the number N = #Th of elements, where both axes are scaled
logarithmically. In the double-logarithmic plot, an experimental convergence order O(N−α)
is visible in the slope −α of a straight curve. Note that, for uniform mesh-refinement, the
order O(N−α) with respect to the number N of elements corresponds to the order O(hα) in
two dimensions and to O(h2α) in three dimensions with respect to the uniform mesh-size h.

We recall that for piecewise constant ansatz functions, the optimal order of convergence
is α = 3/2 and α = 3/4 for d = 2, 3, respectively, cf. [19]. However, this order is usually

spoiled by lack of regularity of the exact solution φ ∈ H̃−1/2(Γ) and not observed for uniform
mesh-refinement. We thus aim to regain this optimal order experimentally by use of adaptive
mesh-refinement.

From our analysis, we know that ηH is always efficient with constant Ceff = 1. Therefore,
the absolute values and hence the curve of the error estimator ηH should be below the error.
In all experiments, we observe that the curves of the error and ηH are even parallel. This
empirically proves reliability of ηH , which is equivalent to the saturation assumption (A),
cf. Proposition 1.1. For 2D and isotropic mesh-refinement in 3D, Theorem 3.4 states the
equivalency of the four error estimators, namely there hold the inequalities

ηH ≤ η̃H . µ̃H ≤ µH . ηH ,

whose implications are threefold: First, the curve corresponding to ηH should always be
below the curve of η̃H . Second, the curve corresponding to µ̃H should always be below the
curve of µH . Finally, all of the four curves of the error estimators should be parallel in a
certain range. We stress, that our analysis only provides equivalency of all introduced error

estimators in the case, that the shape-regularity σ(T (ℓ)
h ) stays uniformly bounded as ℓ→ ∞.

In particular our results do not cover adaptive anisotropic mesh-refinements in 3D. However,
we observe that even in the latter case the curves of the error estimators are (up to a certain
range) parallel. This gives empirical evidence that the factor σ(Th)

1/2 in (3.5) resp. (3.8) is
too pessimistic and can be dropped.

For all refinement strategies, we observe that ηH ≈ η̃H and µH ≈ µ̃H in the sense that
the curves almost coincide. For optimal mesh-refinement, i.e. adaptive refinement in 2D
and anisotropic adaptive refinement in 3D, we see furthermore that the error |||φ − φh||| is
accurately estimated by ηH . To exploit these observations in more detail, Figure 8 and 12
provide the experimental constants Crel, Cη, and Cµ for the three estimates

ηH ≤ |||φ− φh||| ≤ Crel ηH , ηH ≤ η̃H ≤ C−1
η ηH , µ̃H ≤ µH ≤ C−1

µ µ̃H .(5.3)
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Figure 5. Experimental saturation constant Csat = |||φ− φh/2|||/|||φ− φh||| for
uniform as well as µH-adaptive (isotropic and anisotropic) mesh-refinement. In
any case holds Csat ≤ 0.65 in 2D and Csat ≤ 0.75 in 3D, which yields reliability
of ηH .

For the two 3D experiments, Figure 9 and 13 show adaptively generated meshes, from
which edge singularities of the exact solution are visible. Finally, Figure 16 plots the error
over the corresponding computational time. We observe that, even from this practical point
of view, adaptive mesh-refinement is superior to uniform mesh-refinement.

5.2. Remarks on the Saturation Assumption. Reliability of ηH holds under the
saturation assumption, which then implies that the error curve is parallel to the curve of ηH .
In Figure 5, we thus plot the experimental saturation constant Csat = |||φ− φh/2|||/|||φ− φh|||
and observe Csat < 0.65 in 2D and Csat < 0.75 uniformly for both, uniform and adaptive
mesh-refinement. This gives empirical evidence that the saturation assumption (A) holds.

Under some additional regularity assumptions on the exact solution φ, a numerical scheme
usually leads to some convergence order |||φ− φh||| = O(N−α) for some α > 0. We suppose
that we are in an asymptotic regime and use the ansatz

|||φ− φh||| = CN−α as well as |||φ− φh/2||| = C(kN)−α

with k = 2, 4 for d = 2, 3, respectively. Under this assumption and in an asymptotic sense,
the saturation constant then satisfies

Csat =
|||φ− φh/2|||
|||φ− φh|||

= k−α < 1.

For 2D and if the (adaptive) algorithm reveals the optimal order of convergence α = 3/2,
this asymptotically predicts

Csat = 2−3/2 ≈ 0.3536 as well as Crel = (1 − C2
sat)

−1/2 ≈ 1.0690,

cf. Proposition 1.1. The same holds for 3D, where k = 4 and α = 3/4 in case of optimal
order of convergence, i.e., Csat = 4−3/4 = 2−3/2.
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Figure 6. Initial mesh T (0)
h with N = 8 elements (left) in Example 5.3 and

corresponding discrete solution φ
(0)
h ∈ P0(T (0)

h ) plotted over the arc-length s
(right), where s(0) = s(2) corresponds to the reentrant corner (0, 0) ∈ Γ. For
comparison, the right figure even shows the exact solution φ ∈ H1/6−ε(Γ).

5.3. Symm’s Integral Equation for Dirichlet Problem in 2D. We consider the
Dirichlet problem

−∆u = 0 in Ω with boundary conditions u = g on Γ := ∂Ω(5.4)

on the L-shaped domain Ω ⊂ R2 shown in Figure 6 with known exact solution

u(x) = rα cos(αϕ) in polar coordinates x = r (cosϕ, sinϕ)(5.5)

for some fixed parameter α > 0. With the simple-layer potential V from (1.2) and the
double-layer potential K defined by

K : H1/2(Γ) → H1/2(Γ), Kv(x) = C

∫

Γ

v(y)
∂

∂ny
G(x− y) dsy,(5.6)

Symm’s integral equation

V φ = (1/2 +K)g(5.7)

is an equivalent formulation of the Dirichlet problem (5.5), cf. [18]. The unique solution
φ ∈ H−1/2(Γ) of (5.7) is the normal derivative φ = ∂u/∂n, which reads in polar coordinates

φ(x) = (w · n(x))αrα−1 with w :=

(
cos(ϕ) cos(αϕ) + sin(ϕ) sin(αϕ)
sin(ϕ) cos(αϕ) − cos(ϕ) sin(αϕ)

)
∈ R

2.(5.8)

For the numerical experiment, we choose α = 2/3. The Dirichlet problem then leads to
u 6∈ H2(Ω) with a generic singularity at the reentrant corner.
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Figure 7. Error |||φ− φh||| and error estimators ηH , η̃H , µH , µ̃H in Dirichlet
Problem 5.3 on L-shaped domain for uniform and µH-adaptive mesh-
refinement.

To compute the entries of the right-hand side b ∈ RN for the Galerkin scheme, we use the
adjoint double-layer potential K ′ and write

bj = 〈(1/2 +K)g , χTj
〉 = 〈g , (1/2 +K ′)χTj

〉 =
1

2

∫

Tj

g ds+
N∑

k=1

∫

Tk

g(x)K ′χTj
(x) dsx.

The first integral is computed by Gauss quadrature. Although adlp(Tj ; x) := (K∗χTj
)(x)

can be computed via an analytic formula, it leads to weak singularities for x near Tj. For a
neighbouring element Tk, we thus use an explicit decomposition

adlp(Tj ; x) = a log(|x− b|/|x− c|) + smooth(x)

for some parameters a, b, and c to obtain
∫

Tk

g(x) adlp(Tj; x) dsx =

∫ 1

0

g(γ(s)) log s ds+

∫

Tk

g(x) smooth(x) dsx.

The first integral is computed with a weighted Gauss quadrature rule, whereas the other
integral involves a smooth integrand and is hence approximated by simple Gauss quadrature.
Throughout, we found that the use of quadrature rules of order 7 was sufficient.

The initial coarse mesh T (0)
h with N = 8 equisized elements and the corresponding discrete

solution φ
(0)
h ∈ P0(T (0)

h ) as well as the exact solution are visualized in Figure 6. Here, φ

and φ
(0)
h are shown as plots over the arc-length. The singularity of φ at (0, 0) is visible at
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Figure 8. Experimental reliability constant Crel = |||φ − φh|||/ηH as well as
quotients Cη = η̃H/ηH and Cµ = µH/µ̃H in Dirichlet Problem 5.3 for uniform
and µH-adaptive mesh-refinement.

arc-length parameter s = 0 and s = 2 by periodicity. We computed the Galerkin error by
use of the extrapolated value |||φ|||2 = 0.4041161973 in (5.2).

Figure 7 provides the curves of the error and the four error estimators for both, uniform and
adaptive mesh-refinement. As can be predicted from theory, we observe a suboptimal order
of convergence |||φ− φh||| = O(N−2/3) for the error for uniform mesh-refinement. Moreover,
all five curves are parallel, which empirically proves reliability and efficiency of all error
estimators.

The adaptively generated meshes show a strong refinement towards the reentrant corner,
and the adaptive mesh-refinement leads to the optimal order of convergence |||φ − φh||| =
O(N−3/2). As for uniform mesh-refinement, we observe reliability and efficiency of all error
estimators in the sense that the corresponding curves are parallel.

In Figure 8, we see that the reliability constant satisfies Crel ≈ 1.29 for uniform mesh-
refinement, where the asymptotic ansatz from Section 5.2 predicts Crel ≈ 1.2876 for α = 2/3.
Moreover, Crel is even improved by adaptive mesh-refinement. For the experimental constants
defined in (5.3), we observe Cη ≈ 1.06 and Cµ ≈ 1.03 for uniform mesh-refinement, where
both constants tend to 1 for adaptive mesh-refinement.

5.4. Symm’s Integral Equation on L-Shaped Screen in 3D. We consider Symm’s
integral equation (5.1) on the L-shaped screen Γ, which is visualized together with some
adaptively generated meshes in Figure 9. The exact solution φ is unknown, but discrete
solutions show certain singularities along the edges and at the five convex corners of Γ.
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Figure 9. Adaptively generated isotropic mesh T (29)
h with N = 49.116 ele-

ments (left) in Screen Problem 5.4 as well as adaptively generated anisotropic

mesh T (37)
h with N = 3.313 elements (right). The initial mesh T (0)

h consisted
of N = 12 squares with uniform mesh-size h = ̺ = 1/2. We observe mesh-
refinement along all edges of Γ.

To compute the energy error, we use the extrapolated value |||φ|||2 = 8.28466 in (5.2).
Error and error estimators for uniform and isotropic mesh-refinement are plotted in Figure
10. As predicted by theory, all error estimators are efficient, and the corresponding curves
are parallel. Moreover, for both mesh-refining strategies, uniform and isotropic adaptive, we
obtain experimental reliability since the curve of the error |||φ− φh||| is parallel to the curves
of the corresponding error estimators.

With respect to the order of convergence, we observe that uniform refinement leads to
a suboptimal order O(N−1/4). Isotropic mesh-refinement steered by µH and Algorithm 3.3
leads to an improved convergence order of almost O(N−1/2). However, the optimal order
of convergence is O(N−3/4). One therefore should be able to resolve the singularities more
effectively than isotropic refinements allow to.

Figure 11 shows the error and error estimators for uniform and anisotropic adaptive mesh-
refinement, cf. Section 4.5. We observe that the optimal order of convergence O(N−3/4) is,
in fact, revealed by the anisotropic strategy. Moreover, the curves of all error estimators are
parallel in a certain range, which suggests that our analysis is too pessimistic and the factor
σ(Th)

1/2 in (3.5) resp. (3.8) may be dropped.

Figure 9 shows the meshes T (29)
h with N = 49.116 elements generated by µH-adaptive

isotropic mesh-refinement and T (37)
h with N = 3.313 elements obtained by µH-adaptive

anisotropic mesh-refinement. We observe strong refinements towards all the edges and the
convex corners. Obviously the anisotropic mesh resolves edge singularities more efficiently,
that the isotropic mesh. Even though the solution φ seems to be smooth at the reentrant
corner (1, 1, 0), the algorithm leads to a local refinement to ensure the uniform boundedness
of the K-mesh constant κ(Th), cf. Section 4.5.
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Figure 10. Error |||φ − φh||| and error estimators ηH , η̃H , µH , µ̃H in Screen
Problem 5.4 for uniform and µH-adaptive isotropic mesh-refinement.

Considering the experimental constants Crel = |||φ − φh|||/ηH, Cη = η̃H/ηH , and Cµ =
µH/µ̃H from (5.3), we observe that Cη and Cµ are not as close to 1 as in the 2D experiment.
However, Crel is improved in the anisotropic adaptive case, i.e., Crel decreases with increasing
number N = #Th of elements. This is also reflected by the fact, that the curve of ηH

gets closer to the curve of the error |||φ − φh||| with increasing N in Figure 11. Moreover,
for adaptive anisotropic mesh-refinement, we see that Cη and Cµ seem to be even slightly
increasing with N .

5.5. Capacity of Fichera’s Cube in 3D. We consider Symm’s integral equation (5.1)
on the boundary Γ of the Fichera cube Ω = [−1, 1]3 \ [0, 1]3. The boundary together with
some adaptively generated meshes is shown in Figure 13. Even though the exact solution
φ is unknown, theory predicts that generic singularities should arise along all edges for this
capacity problem.

To compute the energy error, we use the extrapolated value |||φ|||2 = 16.2265 in (5.2). Error
and error estimators for uniform and isotropic mesh-refinement are plotted in Figure 14. As
predicted by theory, all error estimators are efficient, and the corresponding curves are even
parallel. Moreover, we again obtain numerical evidence of reliability since the curve of the
error |||φ− φh||| is parallel to the curves of the corresponding error estimators.

With respect to the order of convergence, we observe a similar behaviour to the one
obtained in Screen Problem 5.4: Uniform refinement leads to a suboptimal order O(N−1/4),
isotropic mesh-refinement steered by µH and Algorithm 3.3 leads to an improved convergence
order of almost O(N−1/2), cf. Figure 14. Adaptive anisotropic mesh-refinement again reveals
the optimal order of convergence O(N−3/4), cf. Figure 15.
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Figure 11. Error |||φ − φh||| and error estimators ηH , η̃H , µH , µ̃H in Screen
Problem 5.4 for uniform and µH-adaptive anisotropic mesh-refinement, where
we chose θ = 0.5 in Algorithm 3.3 for the marking strategy and τ = 0.5 to steer
the anisotropic mesh-refinement. A comparison with Figure 10 shows that
anisotropic (instead of isotropic) mesh-refinement is necessary (and sufficient)
to retain the optimal order of convergence.

Figure 13 shows the meshes T (17)
h with N = 11.349 elements generated by µH-adaptive

isotropic mesh-refinement and T (17)
h with N = 2.403 elements obtained by µH-adaptive

anisotropic mesh-refinement. We observe strong refinements towards all edges.
Considering the constants Crel, Cη, and Cµ as defined in (5.3) we observe that Cη and Cµ

behave very similar to the constants obtained in Screen Problem 5.4.

5.6. Empirical Observations on Computational Times. We have observed that
the proposed Algorithm 3.3 steered by µH , enhanced in 3D by the anisotropic strategy,
leads to the optimal order of convergence for the lowest-order Galerkin scheme. However, in
practice, computational time is a significant issue in boundary element methods. To compare
the computational time tℓ for uniform and adaptive mesh-refinment, we proceed as follows:

• For uniform mesh-refinement, we define tunif
ℓ as the overall time for ℓ successive uni-

form mesh-refinements plus the time for the assembly and solution of the Galerkin
system.

• For adaptive computations, the ℓ-th solution depends of the entire history of solutions.
To reflect this fact, we define the computational time in this case in an inductive way:
With tadap

−1 := 0, tadap
ℓ is the sum of tadap

ℓ−1 plus the computational time for the assembly
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well as µH-adaptive isotropic and anisotropic mesh-refinement.

and the solution of the Galerkin system, the computation of the error estimators, and
the refinement of the marked elements.

In Figure 16, we plot the error |||φ− φ
(ℓ)
h ||| over the corresponding computational time tℓ for

both 3D experiments. On a first glance, this comparison may seem to favor the uniform

mesh-refinement, since for the ℓ-th adaptive step, we measure the time to compute φ
(ℓ)
h

and φ
(ℓ)
h/2, but we only plot |||φ− φ

(ℓ)
h ||| although the better approximation φ

(ℓ)
h/2 is available.

Nevertheless, we see that even for a low accuracy |||φ − φh||| ≈ 10−1, the adaptive schemes
are superior to uniform mesh-refinement. Besides the optimal convergence order, we observe
that adaptive anisotropic mesh-refinement even leads to the best behaviour with respect to
the computational cost necessary to reach a certain accuracy.

6. Conclusions and Remarks

6.1. Analytical Results. In this paper, we derived a posteriori error estimators for the
Galerkin boundary element method by use of the well-known h-h/2-strategy. For the weakly
singular integral equation, we provided estimators µH that are equivalent to the basic error
estimator ηH := |||φh/2 − φh|||. Here, φh and φh/2 are Galerkin solutions with respect to a
mesh Th and its uniform refinement Th/2. The advantage of the equivalent error estimator
µH is that the nonlocal energy norm ||| · ||| is replaced by a mesh-size weighted L2-norm.
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Figure 13. Adaptively generated isotropic mesh T (17)
h with N = 11.349

elements (left) in Capacity Problem 5.5 as well as adaptively generated

anisotropic mesh T (17)
h with N = 2.403 elements (right). The initial mesh

T (0)
h consisted of N = 96 squares with uniform mesh-size h = ̺ = 1/2. We

observe mesh-refinement along all edges of Γ.

Therefore, the local contributions of µH are capable to steer an h-adaptive mesh-refinement.
There always holds efficiency

µH . ηH ≤ |||φ− φh|||(6.1)

under very weak assumptions on the triangulation Th used. The converse inequality

ηH . µH(6.2)

could only be proven for 2D and isotropic mesh-refinement in 3D. More precisely, the constant
in this estimate depends on the shape regularity of Th. Numerical experiments for Symm’s
integral equation in 3D indicate that this result is too pessimistic in the sense that (6.2) is
observed to hold even for anisotropic mesh-refinement. The reliability estimate

|||φ− φh||| . ηH(6.3)

depends crucially on the saturation assumption

|||φ− φh/2||| ≤ Csat |||φ− φh||| with a uniform constant Csat < 1.(6.4)

Contrary to the finite element method, the saturation assumption has not been proven for
the boundary element method, yet. However, in all numerical experiments, we got empirical
evidence that the saturation assumption holds. This might be due to additional regularity
of the exact solution. For instance, all exact solutions appeared to belong not only to the

energy space H̃−1/2(Γ) but also at least to H−ε(Γ), for all ε > 0.

6.2. Advantages of the Proposed Method. Usually, other a posteriori error estimators
involve the evaluation of the residual, e.g. [3, 12, 13], or higher-order elements, e.g. [5, 6,
16], and thus need additional implementation. One great advantage of the proposed error
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Figure 14. Error |||φ− φh||| and error estimators ηH , η̃H , µH, µ̃H in Capacity
Problem 5.5 for uniform and µH-adaptive isotropic mesh-refinement.

estimators is that there is almost no implementational overhead. Contrary to that, residual-
based error estimators usually involve certain quadrature rules to integrate the residual.
These quadrature formulae have to deal, by others, with weak singularities according to the
integral operator V (and K in case of direct integral formulations).

With respect to the error estimation, we stress that the efficiency estimate for ηH holds
with known constant Ceff = 1 so that ηH gives a concrete lower bound for the unknown error
|||φ − φh|||. In the numerical experiments, we observed that the error estimation of ηH is
very accurate. The accuracy of ηH is even improved if the mesh Th is adaptively generated
by the introduced adaptive algorithm. We thus propose to use µH to steer the adaptive
mesh-refinement and to use ηH for the simultaneous error control.

6.3. Obvious Extensions of the Analysis. Instead of the h-h/2-strategy, one can even
think of a posteriori error estimators arising from a p-(p + 1)-strategy: In case of Symm’s
integral equation with lowest-order boundary elements, let φh,0 ∈ P0(Th) and φh,1 ∈ P1(Th)
be Galerkin solutions corresponding to a given triangulation Th = {T1, . . . , TN}. As for the
h-h/2-strategy, we have nestedness of the discrete spaces P0(Th) ⊂ P1(Th) which yields

|||φ− φh,0|||2 = |||φ− φh,1|||2 + |||φh,1 − φh,0|||2.(6.5)

From this, we infer efficiency of the error estimator

ηP := |||φh,1 − φh,0||| ≤ |||φ− φh,0|||.(6.6)
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Figure 15. Error |||φ− φh||| and error estimators ηH , η̃H , µH, µ̃H in Capacity
Problem 5.5 for uniform and µH-adaptive anisotropic mesh-refinement, where
we chose θ = 0.5 in Algorithm 3.3 for the marking strategy and τ = 0.5 to steer
the anisotropic mesh-refinement. A comparison with Figure 14 shows that
anisotropic (instead of isotropic) mesh-refinement is necessary (and sufficient)
to retain the optimal order of convergence.

As above, the saturation assumption

|||φ− φh,1||| ≤ Csat |||φ− φh,0||| with a uniform constant Csat < 1,(6.7)

is equivalent to reliability

|||φ− φh,0||| ≤
1√

1 − C2
sat

ηP .(6.8)

Moreover, the same techniques as for ηH apply to prove that the ̺-weighted error estimator

µP := ‖̺1/2(φh,1 − φh,0)‖L2(Γ)(6.9)

satisfies µP . ηP . µP , where only the upper estimate depends on the shape regularity of
Th. Numerical experiments and a comparison of the corresponding adaptive strategies are
postponed to a forthcoming paper [11].

6.4. Application to Other Integral Equations. Clearly, the idea of this paper works

for other elliptic integral operators with energy space H̃−1/2(Γ) as for, e.g., the Lamé or

the Stokes problem. For hypersingular integral operators with energy space H̃1/2(Γ) and
continuous P1-functions, the localization of the energy norm ||| · ||| ∼ ‖ · ‖ eH1/2(Γ) can be done
by nodal interpolation, where we replace Πh in Lemma 3.1 by the usual nodal interpolation
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Figure 16. Error in the energy norm with respect to the computational time
for Examples 5.4–5.5: Besides the optimal convergence order, we observe that
adaptive anisotropic mesh-refinement even leads to the best behaviour with
respect to the computational cost necessary to reach a certain accuracy.

operator Ih onto P1(Th)∩C(Γ), cf. [6] for details in 2D. In particular, the h-h/2-strategy can
even be applied to mixed formulations or transmission problems involving the full Calderón
projector, cf. [7, Section 8] in the context of averaging based error estimators.
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