Reproducing kernel almost Pontryagin spaces

Harald Woracek

Vienna University of Technology
This presentation is based on:

H. Woracek. “Directing functionals and de Branges space completions in the almost Pontryagin space setting”. manuscript in preparation.

These slides are available from my website

http://asc.tuwien.ac.at/index.php?id=woracek
Outline

Almost Pontryagin Spaces
 Geometry
 Completions

Reproducing Kernel Spaces
 Continuity of point-evaluations
 Kernel Functions
 Reproducing kernel completions

Hamburger moment problem
 Review
 Indefinite version of the moment problem
 Significance of completions

Directing Functionals

Some Selected Literature
Almost Pontryagin Spaces
Definition of aPs

A triple $\langle \mathcal{A}, [\cdot, \cdot], \mathcal{O} \rangle$ is an almost Pontryagin space (aPs for short), if

- \mathcal{A} is a linear space,
- $[\cdot, \cdot]_\mathcal{A}$ is an inner product on \mathcal{A},
- \mathcal{O} is a topology on \mathcal{A},

such that the following axioms hold:
Definition of aPs

A triple $\langle A, [\cdot, \cdot]_A, \mathcal{O} \rangle$ is an *almost Pontryagin space* (*aPs* for short), if

(aPs1) The topology \mathcal{O} is a Hilbert space topology on A (i.e., it is induced by some inner product which turns A into a Hilbert space).

(aPs2) The inner product $[\cdot, \cdot]_A$ is \mathcal{O}-continuous (i.e., it is continuous as a map of $A \times A$ into \mathbb{C} where $A \times A$ carries the product topology $\mathcal{O} \times \mathcal{O}$ and \mathbb{C} the euclidean topology).

(aPs3) There exists an \mathcal{O}-closed linear subspace \mathcal{M} of A with finite codimension in A, such that $\langle \mathcal{M}, [\cdot, \cdot]_A | \mathcal{M} \times \mathcal{M} \rangle$ is a Hilbert space.
Definition of aPs

A triple $\langle A, [\cdot, \cdot]_A, \mathcal{O} \rangle$ is an *almost Pontryagin space* (aPs for short), if

(aPs1) The topology \mathcal{O} is a Hilbert space topology on A (i.e., it is induced by some inner product which turns A into a Hilbert space).

(aPs2) The inner product $[\cdot, \cdot]_A$ is \mathcal{O}-continuous (i.e., it is continuous as a map of $A \times A$ into \mathbb{C} where $A \times A$ carries the product topology $\mathcal{O} \times \mathcal{O}$ and \mathbb{C} the euclidean topology).

(aPs3) There exists an \mathcal{O}-closed linear subspace \mathcal{M} of A with finite codimension in A, such that $\langle \mathcal{M}, [\cdot, \cdot]_A |_{\mathcal{M} \times \mathcal{M}} \rangle$ is a Hilbert space.

If $\langle A, [\cdot, \cdot]_A, \mathcal{O} \rangle$ and $\langle B, [\cdot, \cdot]_B, \mathcal{T} \rangle$ are almost Pontryagin spaces, a map $\psi : A \to B$ is an *isomorphism*, if it is linear, isometric, and homeomorphic.
The role of the topology

Let \(\langle A, [.,.]_A \rangle \) be an inner product space. Denote \(A^\circ := \{ x \in A : [x, y]_A = 0, y \in A \} \).
The role of the topology

Let $\langle A, [\cdot, \cdot]_A \rangle$ be an inner product space. Denote $A^\circ := \{ x \in A : [x, y]_A = 0, y \in A \}$.

- Assume that $[\cdot, \cdot]_A$ is nondegenerated (i.e., $A^\circ = \{0\}$). Then being an aP is a property of the inner product alone: there exists at most one topology \mathcal{O} s.t. $\langle A, [\cdot, \cdot]_A, \mathcal{O} \rangle$ is an aPs.
The role of the topology

Let $\langle \mathcal{A}, [.,.]_{\mathcal{A}} \rangle$ be an inner product space. Denote $\mathcal{A}^\circ := \{ x \in \mathcal{A} : [x, y]_{\mathcal{A}} = 0, y \in \mathcal{A} \}$.

- Assume that $[.,.]_{\mathcal{A}}$ is nondegenerated (i.e., $\mathcal{A}^\circ = \{0\}$). Then being an aPs is a property of the inner product alone: there exists at most one topology \mathcal{O} s.t. $\langle \mathcal{A}, [.,.]_{\mathcal{A}}, \mathcal{O} \rangle$ is an aPs.

- If $[.,.]_{\mathcal{A}}$ is degenerated (i.e., $\mathcal{A}^\circ \neq \{0\}$), $\dim \mathcal{A} = \infty$, and \mathcal{O} is a topology s.t. $\langle \mathcal{A}, [.,.]_{\mathcal{A}}, \mathcal{O} \rangle$ is an aPs, then there exists a topology \mathcal{T}, $\mathcal{T} \neq \mathcal{O}$, s.t. $\langle \mathcal{A}, [.,.]_{\mathcal{A}}, \mathcal{T} \rangle$ is an aPs.
The role of the topology

Let $\langle \mathcal{A}, [.,.]_\mathcal{A} \rangle$ be an inner product space. Denote $\mathcal{A}^\circ := \{ x \in \mathcal{A} : [x, y]_\mathcal{A} = 0, y \in \mathcal{A} \}$.

- Assume that $[.,.]_\mathcal{A}$ is nondegenerated (i.e., $\mathcal{A}^\circ = \{0\}$). Then being an aPs is a property of the inner product alone: there exists at most one topology \mathcal{O} s.t. $\langle \mathcal{A}, [.,.]_\mathcal{A}, \mathcal{O} \rangle$ is an aPs.

- If $[.,.]_\mathcal{A}$ is degenerated (i.e., $\mathcal{A}^\circ \neq \{0\}$), $\dim \mathcal{A} = \infty$, and \mathcal{O} is a topology s.t. $\langle \mathcal{A}, [.,.]_\mathcal{A}, \mathcal{O} \rangle$ is an aPs, then there exists a topology \mathcal{T}, $\mathcal{T} \neq \mathcal{O}$, s.t. $\langle \mathcal{A}, [.,.]_\mathcal{A}, \mathcal{T} \rangle$ is an aPs.

- $\langle \mathcal{A}, [.,.]_\mathcal{A}, \mathcal{O} \rangle$ is a nondegenerated aPs if and only if $\langle \mathcal{A}, [.,.]_\mathcal{A} \rangle$ is a Pontryagin space and \mathcal{O} is its Pontryagin space topology.
The role of the topology

Let \(\langle A, [.,.]_A \rangle \) be an inner product space. Denote
\[A^\circ := \{ x \in A : [x, y]_A = 0, y \in A \} \].

- Assume that \([.,.]_A\) is nondegenerated (i.e., \(A^\circ = \{0\} \)). Then being an aPs is a property of the inner product alone: there exists at most one topology \(\mathcal{O} \) s.t. \(\langle A, [.,.]_A, \mathcal{O} \rangle \) is an aPs.

- If \([.,.]_A\) is degenerated (i.e., \(A^\circ \neq \{0\} \)), \(\dim A = \infty \), and \(\mathcal{O} \) is a topology s.t. \(\langle A, [.,.]_A, \mathcal{O} \rangle \) is an aPs, then there exists a topology \(\mathcal{T}, \mathcal{T} \neq \mathcal{O}, \) s.t. \(\langle A, [.,.]_A, \mathcal{T} \rangle \) is an aPs.

- \(\langle A, [.,.]_A, \mathcal{O} \rangle \) is a nondegenerated aPs if and only if \(\langle A, [.,.]_A \rangle \) is a Pontryagin space and \(\mathcal{O} \) is its Pontryagin space topology.

- \(\langle A, [.,.]_A, \mathcal{O} \rangle \) is a nondegenerated and positive definite aPs if and only if \(\langle A, [.,.]_A \rangle \) is a Hilbert space and \(\mathcal{O} \) is its Hilbert space topology.
Example

For \(a > 0 \), the *Paley-Wiener space* is

\[
\mathcal{PW}_a := \left\{ F \text{ entire} : F \text{ exponential type } \leq a, \, F|_{\mathbb{R}} \in L^2(\mathbb{R}) \right\}
\]

\[
= \left\{ F : \exists f \in L^2([-a, a]) \, \text{s.t.} \, F(z) = \int_{[-a,a]} f(t)e^{-itz} \, dt \right\}.
\]
Example

For \(a > 0 \), the *Paley-Wiener space* is

\[
\mathcal{PW}_a := \left\{ F \text{ entire} : F \text{ exponential type} \leq a, F|_\mathbb{R} \in L^2(\mathbb{R}) \right\}
\]

\[
= \left\{ F : \exists f \in L^2([-a, a]) \text{ s.t. } F(z) = \int_{[-a,a]} f(t) e^{-itz} \, dt \right\}.
\]

Set

\[
[F, G] := \int_\mathbb{R} F(t) \overline{G(t)} \, dt - \pi F(0) \overline{G(0)}, \quad F, G \in \mathcal{PW}_a,
\]

and let \(\mathcal{PW}_a \) be endowed with the subspace topology of \(L^2(\mathbb{R}) \).
Example

For \(a > 0 \), the \textit{Paley-Wiener space} is

\[
\mathcal{PW}_a := \left\{ F \text{ entire} : F \text{ exponential type } \leq a, F|_{\mathbb{R}} \in L^2(\mathbb{R}) \right\}
\]

\[
= \left\{ F : \exists f \in L^2([-a, a]) \text{ s.t. } F(z) = \int_{[-a,a]} f(t)e^{-itz} \, dt \right\}.
\]

Set

\[
[F, G] := \int_{\mathbb{R}} F(t)\overline{G(t)} \, dt - \pi F(0)\overline{G(0)}, \quad F, G \in \mathcal{PW}_a,
\]

and let \(\mathcal{PW}_a \) be endowed with the subspace topology of \(L^2(\mathbb{R}) \).

Then

\[
\mathcal{PW}_a \text{ is } \begin{cases}
\text{Hilbert space} , & a < \pi \\
\text{aPs} \ (\dim A^\circ = 1) , & a = \pi \\
\text{Pontryagin space} , & a > \pi
\end{cases}
\]
Equivalent definitions of aPs

Let there be given

- a linear space \(\mathcal{A} \),
- an inner product \([\cdot, \cdot]_{\mathcal{A}}\) on \(\mathcal{A} \),
- a topology \(\mathcal{O} \) on \(\mathcal{A} \).
Equivalent definitions of aPs

Let there be given

- a linear space A,
- an inner product $[\cdot, \cdot]_A$ on A,
- a topology \mathcal{O} on A.

Then the following statements are equivalent:
Equivalent definitions of aPs

• \(\langle A, [\cdot, \cdot]_A, O \rangle \) is an almost Pontryagin space.
Equivalent definitions of aPs

- \(\langle \mathcal{A}, [\cdot, \cdot]_{\mathcal{A}}, \mathcal{O} \rangle \) is an almost Pontryagin space.
- \(\dim \mathcal{A}^\circ < \infty \). We have a decomposition

\[
\mathcal{A} = \mathcal{A}_+[\cdot\cdot] \mathcal{A}_- [\cdot\cdot] \mathcal{A}^\circ,
\]

with: \(\mathcal{A}_- \) finite dimensional and negative definite, \(\mathcal{A}_+ \) Hilbert space when endowed with \([\cdot, \cdot]_{\mathcal{A}} \) and \(\mathcal{O} \)-closed.
Equivalent definitions of aPs

- \(\langle \mathcal{A}, [\cdot, \cdot]_\mathcal{A}, \mathcal{O} \rangle \) is an almost Pontryagin space.
- \(\dim \mathcal{A}^\circ < \infty \). We have a decomposition

\[
\mathcal{A} = \mathcal{A}_+ [\dot{+}] \mathcal{A}_- [\dot{+}] \mathcal{A}^\circ,
\]

with: \(\mathcal{A}_- \) finite dimensional and negative definite, \(\mathcal{A}_+ \) Hilbert space when endowed with \([\cdot, \cdot]_\mathcal{A}\) and \(\mathcal{O}\)-closed.
- There exists a Pontryagin space which (isometrically) contains \(\mathcal{A} \) as a closed subspace.
Equivalent definitions of aPs

- \(\langle \mathcal{A}, [\cdot, \cdot]_{\mathcal{A}}, \mathcal{O} \rangle \) is an almost Pontryagin space.
- \(\dim \mathcal{A}^\circ < \infty \). We have a decomposition
 \[
 \mathcal{A} = \mathcal{A}_+ [\cdot] + \mathcal{A}_- [\cdot] \mathcal{A}^\circ,
 \]
 with: \(\mathcal{A}_- \) finite dimensional and negative definite, \(\mathcal{A}_+ \) Hilbert space when endowed with \([\cdot, \cdot]_{\mathcal{A}} \) and \(\mathcal{O} \)-closed.
- There exists a Pontryagin space which (isometrically) contains \(\mathcal{A} \) as a closed subspace.
- There exists a Hilbert space inner product \((\cdot, \cdot) \) on \(\mathcal{A} \), and \(G \) bounded selfadjoint in \(\langle \mathcal{A}, (\cdot, \cdot) \rangle \) s.t. \((E \) spectral measure of \(G) \)
 \[
 [x, y]_{\mathcal{A}} = (Gx, y), \quad x, y \in \mathcal{A},
 \]
 \(\exists \varepsilon > 0 : \dim \text{ran } E((\infty, \varepsilon)) < \infty. \)
The dual space

Let $\langle \mathcal{A}, [\cdot, \cdot]_\mathcal{A}, \mathcal{O} \rangle$ be an aPs, and \mathcal{A}' its topological dual space.
The dual space

Let \(\mathcal{A}, [\cdot, \cdot]_\mathcal{A}, \mathcal{O} \) be an aPs, and \(\mathcal{A}' \) its topological dual space.

- \(\{ [\cdot, y]_\mathcal{A} : y \in \mathcal{A} \} \) is a \(w^* \)-closed linear subspace of \(\mathcal{A}' \).
The dual space

Let \(\langle A, [\cdot, \cdot]_A, \mathcal{O} \rangle \) be an aPs, and \(A' \) its topological dual space.

- \(\{ [\cdot, y]_A : y \in A \} \) is a \(w^* \)-closed linear subspace of \(A' \).
- \(\dim \left(A'/\{ [\cdot, y]_A : y \in A \} \right) = \dim A^\circ. \)
The dual space

Let \(\langle \mathcal{A}, [,]_\mathcal{A}, \mathcal{O} \rangle \) be an aPs, and \(\mathcal{A}' \) its topological dual space.

- \(\{ [,]_\mathcal{A} : y \in \mathcal{A} \} \) is a \(w^* \)-closed linear subspace of \(\mathcal{A}' \).
- \(\dim \left(\mathcal{A}' / \{ [,]_\mathcal{A} : y \in \mathcal{A} \} \right) = \dim \mathcal{A}^\circ \).

Let \(\mathcal{F} \subseteq \mathcal{A}' \) be point separating on \(\mathcal{A}^\circ \), i.e. assume

\[
\mathcal{A}^\circ \cap \bigcap_{\varphi \in \mathcal{F}} \ker \varphi = \{0\},
\]

and denote by \(\pi : \mathcal{A} \to \mathcal{A}/\mathcal{A}^\circ \) the canonical projection.
The dual space

Let $\langle \mathcal{A}, [, ,]_\mathcal{A}, \mathcal{O} \rangle$ be an aPs, and \mathcal{A}' its topological dual space.

- $\{[\cdot, y]_\mathcal{A} : y \in \mathcal{A}\}$ is a w^*-closed linear subspace of \mathcal{A}'.
- $\dim \left(\mathcal{A}' / \{[\cdot, y]_\mathcal{A} : y \in \mathcal{A}\} \right) = \dim \mathcal{A}^\circ$.

Let $\mathcal{F} \subseteq \mathcal{A}'$ be point separating on \mathcal{A}°, i.e. assume

$$\mathcal{A}^\circ \cap \bigcap_{\varphi \in \mathcal{F}} \ker \varphi = \{0\},$$

and denote by $\pi : \mathcal{A} \to \mathcal{A} / \mathcal{A}^\circ$ the canonical projection.

- $\mathcal{A}' = \{[\cdot, y]_\mathcal{A} : y \in \mathcal{A}\} + \text{span} \mathcal{F}$.
The notion of a completion

Definition
Let $\langle \mathcal{L},[.,.]_\mathcal{L} \rangle$ be an inner product space. A pair $\langle \iota, \mathcal{A} \rangle$ is an aPs-completion of \mathcal{L}, if

ι is linear and isometric,
ran ι is dense in \mathcal{A}.

Two aPs-completions $\langle \iota_1, \mathcal{A}_1 \rangle$, $\langle \iota_2, \mathcal{A}_2 \rangle$, are isomorphic, if there exists an isomorphism $\phi: \mathcal{A}_1 \to \mathcal{A}_2$ with $\phi \circ \iota_1 = \iota_2$.

We speak of a Hilbert-space completion or a Pontryagin-space completion, if $\text{ind}^{-\mathcal{A}} = 0$, $\dim \mathcal{A} = 0$ or $\dim \mathcal{A} = 0$, resp.
Definition
Let \(\langle \mathcal{L}, [.,.]_\mathcal{L} \rangle \) be an inner product space. A pair \(\langle \iota, \mathcal{A} \rangle \) is an \textit{aPs-completion} of \(\mathcal{L} \), if

- \(\mathcal{A} \) is an aPs,
- \(\iota : \mathcal{L} \to \mathcal{A} \) is linear and isometric,
- \(\text{ran } \iota \) is dense in \(\mathcal{A} \).
The notion of a completion

Definition
Let $\langle \mathcal{L}, [.,.]_\mathcal{L} \rangle$ be an inner product space. A pair $\langle \iota, \mathcal{A} \rangle$ is an \textit{aPs-completion} of \mathcal{L}, if

- \mathcal{A} is an aPs,
- $\iota : \mathcal{L} \to \mathcal{A}$ is linear and isometric,
- $\text{ran } \iota$ is dense in \mathcal{A}.

Two aPs-completions $\langle \iota_i, \mathcal{A}_i \rangle$, $i = 1, 2$, are \textit{isomorphic}, if there exists an isomorphism $\varphi : \mathcal{A}_1 \to \mathcal{A}_2$ with $\varphi \circ \iota_1 = \iota_2$.
The notion of a completion

Definition
Let \(\langle \mathcal{L}, [.,.]_{\mathcal{L}} \rangle \) be an inner product space. A pair \(\langle \iota, \mathcal{A} \rangle \) is an \textit{aPs-completion} of \(\mathcal{L} \), if

- \(\mathcal{A} \) is an aPs,
- \(\iota : \mathcal{L} \to \mathcal{A} \) is linear and isometric,
- \(\text{ran} \, \iota \) is dense in \(\mathcal{A} \).

Two aPs-completions \(\langle \iota_i, \mathcal{A}_i \rangle, i = 1, 2 \), are \textit{isomorphic}, if there exists an isomorphism \(\varphi : \mathcal{A}_1 \to \mathcal{A}_2 \) with \(\varphi \circ \iota_1 = \iota_2 \).

We speak of a \textit{Hilbert-space completion} or a \textit{Pontryagin-space completion}, if

\[
\text{ind} \, \mathcal{A} = 0, \, \text{dim} \, \mathcal{A}^\circ = 0 \, \text{or} \, \text{dim} \, \mathcal{A}^\circ = 0, \, \text{resp.}
\]
Example

Consider $\mathcal{L} := \bigcup_{0 < a < \pi} \mathcal{P}W_a$ and set

$$[F, G] := \int_{\mathbb{R}} F(t)\overline{G(t)} \, dt - \pi F(0)\overline{G(0)}, \quad F, G \in \mathcal{L}. $$
Example

Consider $\mathcal{L} := \bigcup_{0 < a < \pi} \mathcal{P} W_a$ and set

$$[F, G] := \int_{\mathbb{R}} F(t)G(t) \, dt - \pi F(0)G(0), \quad F, G \in \mathcal{L}. $$

Then

- $\langle \mathcal{L}, [\cdot, \cdot] \rangle$ is positive definite.
Example
Consider $\mathcal{L} := \bigcup_{0 < a < \pi} \mathcal{P}W_a$ and set

$$[F, G] := \int_{\mathbb{R}} F(t)\overline{G(t)} \, dt - \pi F(0)\overline{G(0)}, \quad F, G \in \mathcal{L}.$$

Then

- $\langle \mathcal{L}, [, .] \rangle$ is positive definite.
- The norm $F \mapsto [F, F]^{\frac{1}{2}}$ is not equivalent to the $L^2(\mathbb{R})$-norm on \mathcal{L}.
Example

Consider $\mathcal{L} := \bigcup_{0 < a < \pi} \mathcal{P}W_a$ and set

$$[F, G] := \int_{\mathbb{R}} F(t)\overline{G(t)} \, dt - \pi F(0)\overline{G(0)}, \quad F, G \in \mathcal{L}.$$

Then

- $\langle \mathcal{L}, \langle ., . \rangle \rangle$ is positive definite.
- The norm $F \mapsto [F, F]^{\frac{1}{2}}$ is not equivalent to the $L^2(\mathbb{R})$-norm on \mathcal{L}.
- $\langle \mathcal{P}W_\pi, \langle ., . \rangle \rangle$ with $\iota : F \mapsto F$ is an aPs completion of \mathcal{L}.
Let $\langle \mathcal{L}, [.,.]_\mathcal{L} \rangle$ be an inner product space. Set

$$\text{ind} \mathcal{L} := \sup \left\{ \dim N : N \text{ negative definite subspace of } \mathcal{L} \right\}.$$
Completions: Existence

Let \(\langle \mathcal{L}, [\cdot, \cdot]_{\mathcal{L}} \rangle \) be an inner product space. Set

\[
\text{ind}_- \mathcal{L} := \sup \{ \dim N : N \text{ negative definite subspace of } \mathcal{L} \}.
\]

Proposition

Let \(\mathcal{L} \) be an inner product space. The following are equivalent:

- \(\text{ind}_- \mathcal{L} < \infty \).
- \(\mathcal{L} \) has an aPs-completion.
- \(\mathcal{L} \) has an aPs-completion.
- \(\mathcal{L} \) has a Pontryagin-space completion.
Completions: Description?

Task: describe the totality of completions of \mathcal{L} (up to isomorphism).
Completions: Description?

Task: describe the totality of completions of \mathcal{L} (up to isomorphism).

Proposition

Let \mathcal{L} be an inner product space with $\text{ind}_- \mathcal{L} < \infty$. Then each two Pontryagin-space completions of \mathcal{L} are isomorphic.
Completions: Description?

Task: describe the totality of completions of \mathcal{L} (up to isomorphism).

Example

Let $\langle \mathcal{L}, (., .)\rangle$ be a Hilbert space, $f_1, \ldots, f_n : \mathcal{L} \to \mathbb{C}$ be linear with

$$\mathcal{L}' \cap \text{span}\{ f_1, \ldots, f_n \} = \{0\}.$$

Set

$$\mathcal{A} := \mathcal{L} \times \mathbb{C}^n, \quad \iota(x) := (x; (f_i(x))_{i=1}^n),$$

$$[(x; (\xi_i)_{i=1}^n), (y; (\eta_i)_{i=1}^n)]_{\mathcal{A}} := (x, y)\mathcal{L},$$

$$((x; (\xi_i)_{i=1}^n), (y; (\eta_i)_{i=1}^n))_{\mathcal{A}} := (x, y)\mathcal{L} + \sum_{i=1}^n \xi_i \bar{\eta}_i.$$

Then $\langle \iota, \mathcal{A} \rangle$ is an aPs-completion of \mathcal{L} with $\dim \mathcal{A}^\circ = n$.
The intrinsic dual

Let \mathcal{L} be an inner product space with $\text{ind}^- \mathcal{L} < \infty$.

Definition

Let $\varphi : \mathcal{L} \to \mathbb{C}$ be linear. We write $\varphi \in \mathcal{L}^\wedge$, if

$$\forall (x_n)_{n \in \mathbb{N}}, x_n \in \mathcal{L} :$$

$$\left([x_n, x_n]_\mathcal{L} \to 0, \ [x_n, x]_\mathcal{L} \to 0, x \in \mathcal{L} \right) \Rightarrow \varphi(x_n) \to 0.$$
The intrinsic dual

Let \mathcal{L} be an inner product space with $\text{ind} \mathcal{L} < \infty$.

Definition

Let $\varphi : \mathcal{L} \to \mathbb{C}$ be linear. We write $\varphi \in \mathcal{L}^\wedge$, if

$$\forall (x_n)_{n \in \mathbb{N}}, x_n \in \mathcal{L} :$$

$$\left([x_n, x_n]_\mathcal{L} \to 0, \ [x_n, x]_\mathcal{L} \to 0, x \in \mathcal{L} \right) \Rightarrow \varphi(x_n) \to 0.$$

- \mathcal{L}^\wedge can be interpreted as the topological dual w.r.t. a certain seminorm on \mathcal{L}.
Completions: Description

For an aPs-completion $\langle \iota, A \rangle$ of \mathcal{L}, set

$$\iota^*(A') := \{ f \circ \iota : f \in A' \}.$$
Completions: Description

For an aPs-completion \(\langle \iota, \mathcal{A} \rangle \) of \(\mathcal{L} \), set

\[
i^*(\mathcal{A}') := \{ f \circ \iota : f \in \mathcal{A}' \}.
\]

Theorem

The map \(\langle \iota, \mathcal{A} \rangle \mapsto i^*(\mathcal{A}') \) induces a bijection between

- the set of isomorphy classes of aPs-completions of \(\mathcal{L} \),

and

- the set of those linear subspaces of the algebraic dual \(\mathcal{L}^* \) of \(\mathcal{L} \) which contain \(\mathcal{L}^\perp \) with finite codimension.

For each aPs-completion it holds that

\[
\dim \left(i^*(\mathcal{A}') / \mathcal{L}^\perp \right) = \dim \mathcal{A}^\circ.
\]
Reproducing Kernel Spaces
Continuity of point evaluations

For a set Ω and $\eta \in \Omega$ denote by $\chi_{\eta} : \mathbb{C}^\Omega \rightarrow \mathbb{C}$ the \textit{point-evaluation functional} $\chi_{\eta} : f \mapsto f(\eta)$.
Continuity of point evaluations

For a set Ω and $\eta \in \Omega$ denote by $\chi_\eta : \mathbb{C}^\Omega \to \mathbb{C}$ the point-evaluation functional $\chi_\eta : f \mapsto f(\eta)$.

Definition

Let Ω be a set. An aPs A is a reproducing kernel aPs on Ω, if

1. (rk1) $A \subseteq \mathbb{C}^\Omega$ (linear operations defined pointwise);
2. (rk2) $\forall \eta \in \Omega : \chi_\eta|_A \in A'$.

Continuity of point evaluations

For a set Ω and $\eta \in \Omega$ denote by $\chi_{\eta} : \mathbb{C}^{\Omega} \to \mathbb{C}$ the point-evaluation functional $\chi_{\eta} : f \mapsto f(\eta)$.

Definition

Let Ω be a set. An aPs A is a reproducing kernel aPs on Ω, if

$(rk1)$ $A \subseteq \mathbb{C}^{\Omega}$ (linear operations defined pointwise);

$(rk2)$ $\forall \eta \in \Omega : \chi_{\eta}|_A \in A'$.

Being a reproducing kernel aPs is a property of the inner product alone (regardless whether it is nondegenerated or degenerated):

Proposition

If $\langle A, [, .]_A \rangle$ is an inner product space with $(rk1)$, then there exists at most one topology \mathcal{O} on A such that $\langle A, [, .]_A, \mathcal{O} \rangle$ is a reproducing kernel aPs.
Continuity of point evaluations

Example
For each $a > 0$, the Paley-Wiener space \mathcal{PW}_a endowed with the inner product

$$[F, G] := \int_{\mathbb{R}} F(t) \overline{G(t)} \, dt - \pi F(0) \overline{G(0)}, \quad F, G \in \mathcal{PW}_a,$$

and the subspace topology of $L^2(\mathbb{R})$ is a reproducing kernel aPs of entire functions.
Continuity of point evaluations

Example

For each \(a > 0 \), the Paley-Wiener space \(\mathcal{PW}_a \) endowed with the inner product

\[
[F, G] := \int_\mathbb{R} F(t) \overline{G(t)} \, dt - \pi F(0) \overline{G(0)}, \quad F, G \in \mathcal{PW}_a,
\]

and the subspace topology of \(L^2(\mathbb{R}) \) is a reproducing kernel \(a\Ps \) of entire functions.

Remember

\[
\mathcal{PW}_a \text{ is } \begin{cases}
\text{Hilbert space} & , \quad a < \pi \\
\text{aPs (dim } \mathcal{A}^{\circ} = 1) & , \quad a = \pi \\
\text{Pontryagin space} & , \quad a > \pi
\end{cases}
\]
Kernel functions?

Let \mathcal{A} be a reproducing kernel Pontryagin space (i.e., a nondegerated reproducing kernel aPs). Then

$$\exists! K : \Omega \times \Omega \to \mathbb{C} : \quad K(w,.) \in \mathcal{A}, w \in \Omega,$$

$$f(w) = [f,K(w,.)]_{\mathcal{A}}, f \in \mathcal{A}, w \in \Omega.$$

This function is called the reproducing kernel of \mathcal{A}.

Example:

Let $a > 0$, $a \neq \pi$. The reproducing kernel of $\langle P_{\mathbb{W}^a},[.,.]\rangle$ is

$$K(w,z) := \sin[a(z-w)]\pi(z-w) + 1/\pi - a \cdot \sin[a w] \sin[a z].$$
Kernel functions?

- Let \mathcal{A} be a reproducing kernel Pontryagin space (i.e., a nondegenerated reproducing kernel aPs). Then

$$\exists! K : \Omega \times \Omega \to \mathbb{C} : \quad K(w,.) \in A, w \in \Omega,$$

$$f(w) = [f, K(w,.)]_A, f \in \mathcal{A}, w \in \Omega.$$

This function is called the reproducing kernel of \mathcal{A}.

- Let \mathcal{A} be a degenerated reproducing kernel aPs. Then there cannot exist a function K with these properties:

$$f(w) = [f, K(w,.)]_A = 0, \quad f \in \mathcal{A}^\circ, w \in \Omega.$$
Kernel functions?

- Let \(\mathcal{A} \) be a reproducing kernel Pontryagin space (i.e., a nondegerated reproducing kernel aPs). Then
 \[\exists! K : \Omega \times \Omega \rightarrow \mathbb{C} : \quad K(w,.) \in \mathcal{A}, w \in \Omega, \]
 \[f(w) = [f, K(w,.)]_\mathcal{A}, f \in \mathcal{A}, w \in \Omega. \]

This function is called the reproducing kernel of \(\mathcal{A} \).

- Let \(\mathcal{A} \) be a degenerated reproducing kernel aPs. Then there cannot exist a function \(K \) with these properties:
 \[f(w) = [f, K(w,.)]_\mathcal{A} = 0, \quad f \in \mathcal{A}^\circ, w \in \Omega. \]

Example

Let \(a > 0, a \neq \pi \). The reproducing kernel of \(\langle \mathcal{P}W_a, [.,.] \rangle \) is

\[K(w, z) := \frac{\sin[a(z - \overline{w})]}{\pi(z - \overline{w})} + \frac{1}{\pi - a} \cdot \frac{\sin[a\overline{w}]}{\overline{w}} \cdot \frac{\sin[a\overline{z}]}{z}. \]
Almost reproducing kernels

Definition
Let \mathcal{A} be a reproducing kernel aPs. A function $K : \Omega \times \Omega \rightarrow \mathbb{C}$ is an *almost reproducing kernel of* \mathcal{A}, if
Almost reproducing kernels

Definition

Let \(\mathcal{A} \) be a reproducing kernel aPs. A function \(K : \Omega \times \Omega \rightarrow \mathbb{C} \) is an almost reproducing kernel of \(\mathcal{A} \), if

(aRK1) \(K \) is a hermitian kernel on \(\Omega \), i.e.,
\[
K(z, w) = \overline{K(w, z)}, \quad z, w \in \Omega,
\]

(aRK2) \(K(w, .) \in \mathcal{A}, \quad w \in \Omega, \)

(aRK3) There exists data \(\delta = ((w_i)_{i=1}^n; (\gamma_i)_{i=1}^n) \in \Omega^n \times \mathbb{R}^n \) where \(n := \dim \mathcal{A}^\circ \), such that

\[
\forall f \in \mathcal{A}, w \in \Omega : \quad f(w) = [f, K(w, .)]_{\mathcal{A}} + \sum_{i=1}^n \gamma_i \cdot \chi_{w_i}(f) \overline{\chi_{w_i}(K(w, .))}.
\]
Almost reproducing kernels: Existence

Theorem

Let \mathcal{A} be a reproducing kernel aPs, set $n := \dim \mathcal{A}^\circ$, and let
\[(w_i)_{i=1}^n \in \Omega^n \text{ be such that} \]
\[\mathcal{A}^\circ \cap \bigcap_{i=1}^n \ker \chi_{w_i} = \{0\}.\]
Almost reproducing kernels: Existence

Theorem

Let \(A \) be a reproducing kernel aPs, set \(n := \dim A^\circ \), and let \((w_i)_{i=1}^n \in \Omega^n \) be such that

\[
A^\circ \cap \bigcap_{i=1}^n \ker \chi_{w_i} = \{0\}.
\]

Then there exists a closed and nowhere dense exceptional set \(E \subseteq \mathbb{R}^n \), such that for each \((\gamma_i)_{i=1}^n \in \mathbb{R}^n \setminus E \) there exists an almost reproducing kernel of \(A \) with data \(\delta := ((w_i)_{i=1}^n; (\gamma_i)_{i=1}^n) \).
Almost reproducing kernels: Existence

Theorem

Let \mathcal{A} be a reproducing kernel $\mathcal{A}P$s, set $n := \dim \mathcal{A}^\circ$, and let $(w_i)_{i=1}^n \in \Omega^n$ be such that

$$\mathcal{A}^\circ \cap \bigcap_{i=1}^n \ker \chi_{w_i} = \{0\}.$$

Then there exists a closed and nowhere dense exceptional set $E \subseteq \mathbb{R}^n$, such that for each $(\gamma_i)_{i=1}^n \in \mathbb{R}^n \setminus E$ there exists an almost reproducing kernel of \mathcal{A} with data $\delta := ((w_i)_{i=1}^n; (\gamma_i)_{i=1}^n)$.

- Such choices of $(w_i)_{i=1}^n \in \Omega^n$ certainly exist since $\{\chi_w : w \in \Omega\}$ is point separating.
Almost reproducing kernels: Properties

For a hermitian kernel K we denote by $\text{ind}_- K \in \mathbb{N}_0 \cup \{\infty\}$ the supremum of the numbers of negative squares of quadratic forms

$$\sum_{i,j=1}^{n} K(w_j, w_i)\xi_i \bar{\xi}_j$$

where $n \in \mathbb{N}$, $w_1, \ldots, w_n \in \Omega$.
Almost reproducing kernels: Properties

For a hermitian kernel K we denote by $\text{ind}_- K \in \mathbb{N}_0 \cup \{\infty\}$ the supremum of the numbers of negative squares of quadratic forms

$$\sum_{i,j=1}^{n} K(w_j, w_i)\xi_i\bar{\xi}_j \quad \text{where} \quad n \in \mathbb{N}, \ w_1, \ldots, w_n \in \Omega.$$

Theorem

*Let A be a reproducing kernel aPs, set $n := \dim A^\circ$, and let $
\delta = ((w_i)_{i=1}^{n}; (\gamma_i)_{i=1}^{n}) \in \Omega^n \times \mathbb{R}^n.$*
Almost reproducing kernels: Properties

For a hermitian kernel K we denote by $\operatorname{ind}_- K \in \mathbb{N}_0 \cup \{\infty\}$ the supremum of the numbers of negative squares of quadratic forms

$$\sum_{i,j=1}^{n} K(w_j, w_i) \bar{\xi}_i \bar{\xi}_j \quad \text{where} \quad n \in \mathbb{N}, \ w_1, \ldots, w_n \in \Omega.$$

Theorem

*Let A be a reproducing kernel aPs, set $n := \dim A^\circ$, and let $\delta = ((w_i)_{i=1}^{n}; (\gamma_i)_{i=1}^{n}) \in \Omega^n \times \mathbb{R}^n$. Assume K is an almost reproducing kernel of A with data δ.***
Almost reproducing kernels: Properties

For a hermitian kernel K we denote by $\text{ind}_- K \in \mathbb{N}_0 \cup \{\infty\}$ the supremum of the numbers of negative squares of quadratic forms

$$\sum_{i,j=1}^{n} K(w_j, w_i) \xi_i \overline{\xi}_j$$

where $n \in \mathbb{N}$, $w_1, \ldots, w_n \in \Omega$.

Theorem

Let \mathcal{A} be a reproducing kernel aPs, set $n := \dim \mathcal{A}^\circ$, and let $\delta = ((w_i)_{i=1}^{n}; (\gamma_i)_{i=1}^{n}) \in \Omega^n \times \mathbb{R}^n$. Assume K is an almost reproducing kernel of \mathcal{A} with data δ. Then

- $\mathcal{A}^\circ \cap \bigcap_{i=1}^{n} \ker \chi w_i = \{0\}$,
- $\text{ind}_- K < \infty$,
- $\gamma_i \neq 0$, $i, i = 1, \ldots, n$,
- $K(w_i, w_j) = \delta_{ij} \frac{1}{\gamma_i}$, $i, i = 1, \ldots, n$.
Almost reproducing kernels: Uniqueness

Theorem

Let A be a reproducing kernel apS, set $n := \dim A^\circ$, and let K_1 and K_2 be almost reproducing kernels for A with corresponding data δ_1 and δ_2, respectively.
Almost reproducing kernels: Uniqueness

Theorem

Let A be a reproducing kernel aPs, set $n := \dim A^\circ$, and let K_1 and K_2 be almost reproducing kernels for A with corresponding data δ_1 and δ_2, respectively.

Non-uniqueness: If the data δ_1 and δ_2 has the same points $(w_i)_{i=1}^n$ but different weights $(\gamma_i)_{i=1}^n$, then $K_1 \neq K_2$.
Almost reproducing kernels: Uniqueness

Theorem

Let \(\mathcal{A} \) be a reproducing kernel \(aPs \), set \(n := \dim \mathcal{A}^\circ \), and let \(K_1 \) and \(K_2 \) be almost reproducing kernels for \(\mathcal{A} \) with corresponding data \(\delta_1 \) and \(\delta_2 \), respectively.

Non-uniqueness: If the data \(\delta_1 \) and \(\delta_2 \) has the same points \((w_i)_{i=1}^n \) but different weights \((\gamma_i)_{i=1}^n \), then \(K_1 \neq K_2 \).

Uniqueness: If \(\delta_1 = \delta_2 \), then \(K_1 = K_2 \).
Almost reproducing kernels: Uniqueness

Theorem

Let \mathcal{A} be a reproducing kernel aPs, set $n := \dim \mathcal{A}^\circ$, and let K_1 and K_2 be almost reproducing kernels for \mathcal{A} with corresponding data δ_1 and δ_2, respectively.

Non-uniqueness: If the data δ_1 and δ_2 has the same points $(w_i)_{i=1}^n$ but different weights $(\gamma_i)_{i=1}^n$, then $K_1 \neq K_2$.

Uniqueness: If $\delta_1 = \delta_2$, then $K_1 = K_2$.

• Due to the Existence Theorem, \mathcal{A} has many different almost reproducing kernels.
Almost reproducing kernels: Description

Theorem
Let K be a hermitian kernel, let $((w_i)_{i=1}^n, (\gamma_i)_{i=1}^n) \in \Omega^n \times \mathbb{R}^n$, and assume that

- $\text{ind}_- K < \infty$,
- $\gamma_i \neq 0$, $i, i = 1, \ldots, n$,
- $K(w_i, w_j) = \delta_{ij} \frac{1}{\gamma_i}$, $i, i = 1, \ldots, n$.

Then there exists a unique reproducing kernel a_{Ps}, such that K is the almost reproducing kernel of A with data $\delta = ((w_i)_{i=1}^n, (\gamma_i)_{i=1}^n)$.
Almost reproducing kernels: Description

Theorem

Let K be a hermitian kernel, let $((w_i)_{i=1}^n, (\gamma_i)_{i=1}^n) \in \Omega^n \times \mathbb{R}^n$, and assume that

- $\text{ind}_- K < \infty$,
- $\gamma_i \neq 0$, $i, i = 1, \ldots, n$,
- $K(w_i, w_j) = \delta_{ij} \frac{1}{\gamma_i}$, $i, i = 1, \ldots, n$.

Then there exists a unique reproducing kernel aPs, such that K is the almost reproducing kernel of A with data $\delta = ((w_i)_{i=1}^n; (\gamma_i)_{i=1}^n)$.

Reproducing kernel space completions?

Let \mathcal{L} be an inner product space whose elements are functions.

Does there exist a reproducing kernel aP which contains \mathcal{L} isometrically and densely?
Reproducing kernel space completions?

Does there exist a reproducing kernel aPs which contains \(\mathcal{L} \) isometrically and densely?

Example

Consider the space \(\mathcal{L} := \bigcup_{0 < a < \pi} \mathcal{P}W_a \) endowed with

\[
[F, G] := \int_{\mathbb{R}} F(t)G(t) \, dt - \pi F(0)\overline{G(0)}, \quad F, G \in \mathcal{L}.
\]
Reproducing kernel space completions?

Does there exist a reproducing kernel aPs which contains \(\mathcal{L} \) isometrically and densely?

Example

Consider the space \(\mathcal{L} := \bigcup_{0 < a < \pi} \mathcal{P}W_a \) endowed with

\[
[F, G] := \int_{\mathbb{R}} F(t) \overline{G(t)} \, dt - \pi F(0) \overline{G(0)}, \quad F, G \in \mathcal{L}.
\]

Then \(\mathcal{L} \) is positive definite, and

- \(\mathcal{L} \) is isometrically and densely contained in the (degenerated) reproducing kernel aPs \(\langle \mathcal{P}W_\pi, [\cdot, \cdot] \rangle \).
- There does not exist a reproducing kernel Pontryagin space which contains \(\mathcal{L} \) isometrically and densely.
- There does not exist a reproducing kernel Hilbert space which contains \(\mathcal{L} \) isometrically.
Reproducing kernel space completions?

Does there exist a reproducing kernel \(aPs \) which contains \(\mathcal{L} \) isometrically and densely?

Example

Let \(\mu \) be a positive Borel measure on the real line which is compactly supported and not discrete, and consider the space \(\mathcal{L} \) of all polynomials endowed with

\[
[p, q] := \int_{\mathbb{R}} p\overline{q} \, d\mu, \quad p, q \in \mathcal{L}.
\]
Reproducing kernel space completions?

Does there exist a reproducing kernel \mathcal{aPs} which contains \mathcal{L} isometrically and densely?

Example

Let μ be a positive Borel measure on the real line which is compactly supported and not discrete, and consider the space \mathcal{L} of all polynomials endowed with

$$[p, q] := \int_{\mathbb{R}} p\overline{q} \, d\mu, \quad p, q \in \mathcal{L}.$$

Then there does not exist a reproducing kernel \mathcal{aPs} which contains \mathcal{L} isometrically.
Proposition

Let \mathcal{L} be an inner product space with $\text{ind} - \mathcal{L} < \infty$. Then, for each aPs-completion $\langle \iota, \mathcal{A} \rangle$ of \mathcal{L}, it holds that

$$\mathcal{L}^\perp = \iota^* \left(\{ [., y]_{\mathcal{A}} : y \in \mathcal{A} \} \right) = \{ x \mapsto [\iota x, y]_{\mathcal{A}} : y \in \mathcal{A} \}.$$
Topologising the intrinsic dual

Proposition

Let \mathcal{L} be an inner product space with $\text{ind}_- \mathcal{L} < \infty$. Then, for each aPs-completion $\langle \iota, \mathcal{A} \rangle$ of \mathcal{L}, it holds that

$$\mathcal{L}^\perp = \iota^* \left(\{ [., y]_{\mathcal{A}} : y \in \mathcal{A} \} \right) = \{ x \mapsto [\iota x, y]_{\mathcal{A}} : y \in \mathcal{A} \}.$$

- The map $\iota^*|_{\mathcal{A}'}$ is injective since $\iota(\mathcal{L})$ is dense in \mathcal{A}.
Topologising the intrinsic dual

Proposition

Let \mathcal{L} be an inner product space with $\text{ind}_{-} \mathcal{L} < \infty$. Then, for each aPs-completion $\langle \iota, \mathcal{A} \rangle$ of \mathcal{L}, it holds that

$$\mathcal{L}^{\wedge} = \iota^* (\{ [, y]_\mathcal{A} : y \in \mathcal{A} \}) = \{ x \mapsto [\iota x, y]_\mathcal{A} : y \in \mathcal{A} \}.$$

- The map $\iota^* |_{\mathcal{A}'}$ is injective since $\iota(\mathcal{L})$ is dense in \mathcal{A}.

Definition

Let \mathcal{T}^{\wedge} be the topology induced by the norm

$$\| \phi \|^{\wedge} := \| (\iota^* |_{\mathcal{A}'})^{-1} \phi \|_{\mathcal{A}'} , \quad \phi \in \mathcal{L}^{\wedge}.$$
Existence Theorem

Theorem

Let \mathcal{L} be an inner product space whose elements are functions.
Existence Theorem

Theorem
Let \(\mathcal{L} \) be an inner product space whose elements are functions.

There exists a reproducing kernel \(\text{aPs} \) which contains \(\mathcal{L} \) isometrically, if and only if

(A) \(\text{ind} \, \mathcal{L} < \infty \),

and
Existence Theorem

Theorem
Let \(\mathcal{L} \) be an inner product space whose elements are functions. There exists a reproducing kernel \(\alpha \) which contains \(\mathcal{L} \) isometrically, if and only if

(A) \(\text{ind} \, \mathcal{L} < \infty \),

and

(B) \(\dim \left(\left[\mathcal{L}^\wedge + \text{span}\{\chi_w|\mathcal{L} : w \in \Omega\}\right] / \mathcal{L}^\wedge \right) < \infty \),

(C) \(\mathcal{L}^\wedge \cap \text{span}\{\chi_w|\mathcal{L} : w \in \Omega\} \) is \(\mathcal{J}^{\wedge} \)-dense in \(\mathcal{L}^\wedge \).
Existence Theorem

Theorem

Let \mathcal{L} be an inner product space whose elements are functions.
There exists a reproducing kernel αP which contains \mathcal{L} isometrically, if and only if

(A) $\text{ind}_- \mathcal{L} < \infty$,

and

(B) $\dim \left(\left[\mathcal{L}^\wedge + \text{span}\{\chi_w | \mathcal{L} : w \in \Omega\} \right] / \mathcal{L}^\wedge \right) < \infty$,

(C) $\mathcal{L}^\wedge \cap \text{span}\{\chi_w | \mathcal{L} : w \in \Omega\}$ is \mathcal{T}^\wedge-dense in \mathcal{L}^\wedge.

These conditions can be reformulated in a concrete way. It holds that

(B) \Leftrightarrow (B')
(C) \Rightarrow (C')
(B) \land (C') \Rightarrow (C)
(B’) There exist $N \in \mathbb{N}$ and $(w_i)_{i=1}^N \in M^N$, such that the following implication holds. If $(f_n)_{n \in \mathbb{N}}$ is a sequence of elements of \mathcal{L} with

$$\lim_{n \to \infty} [f_n, f_n]_{\mathcal{L}} = 0, \quad \lim_{n \to \infty} [f_n, g]_{\mathcal{L}} = 0, \quad g \in \mathcal{L},$$

$$\lim_{n \to \infty} \chi_{w_i}(f_n) = 0, \quad i = 1, \ldots, N,$$

then $\lim_{n \to \infty} \chi_w(f_n) = 0, \quad w \in \Omega$.
(B′) There exist $N \in \mathbb{N}$ and $(w_i)_{i=1}^N \in M^N$, such that the following implication holds. If $(f_n)_{n \in \mathbb{N}}$ is a sequence of elements of \mathcal{L} with

$$\lim_{n \to \infty} [f_n, f_n]_\mathcal{L} = 0, \quad \lim_{n \to \infty} [f_n, g]_\mathcal{L} = 0, \quad g \in \mathcal{L},$$

$$\lim_{n \to \infty} \chi_{w_i}(f_n) = 0, \quad i = 1, \ldots, N,$$

then $\lim_{n \to \infty} \chi_w(f_n) = 0$, $w \in \Omega$.

(C′) If $(f_n)_{n \in \mathbb{N}}$ is a sequence of elements of \mathcal{L} with

$$\lim_{n,m \to \infty} [f_n - f_m, f_n - f_m]_\mathcal{L} = 0, \quad \lim_{n \to \infty} [f_n - f_m, g]_\mathcal{L} = 0, \quad g \in \mathcal{L},$$

$$\lim_{n \to \infty} \chi_w(f_n) = 0, \quad w \in \Omega,$$

then $\lim_{n \to \infty} [f_n, g]_\mathcal{L} = 0$, $g \in \mathcal{L}$.
Uniqueness

Theorem

Let \mathcal{L} be an inner product space whose elements are functions, and assume that (A), (B), (C) hold. Then there exists a unique reproducing kernel $\mathfrak{aP}s$ which contains \mathcal{L} isometrically and densely.
Uniqueness

Theorem

Let \mathcal{L} be an inner product space whose elements are functions, and assume that (A), (B), (C) hold. Then there exists a unique reproducing kernel aPs which contains \mathcal{L} isometrically and densely.

• We call this unique space the reproducing kernel completion of \mathcal{L}.
Uniqueness

Theorem

Let \(\mathcal{L} \) be an inner product space whose elements are functions, and assume that (A), (B), (C) hold. Then there exists a unique reproducing kernel aPs which contains \(\mathcal{L} \) isometrically and densely.

- We call this unique space the reproducing kernel completion of \(\mathcal{L} \).
- The number \(\Delta(\mathcal{L}) := \dim \mathcal{A}^\circ \) where \(\mathcal{A} \) is the reproducing kernel completion of \(\mathcal{L} \) is an important geometric invariant of \(\mathcal{L} \).
A motivating example: The Hamburger power moment problem
The Hamburger power moment problem

Given \((s_n)_{n=0}^\infty, s_n \in \mathbb{R}\), does there exist a positive Borel measure on \(\mathbb{R}\) with

\[s_n = \int_{\mathbb{R}} t^n \, d\mu(t), \quad n = 0, 1, 2, \ldots \]
Existence of solutions

Theorem

There exists a solution μ if and only if

$$\forall N \in \mathbb{N}_0 : \det \left[\left(s_i + j \right)_{i,j} \right] \geq 0$$

Consider the inner product $\left[\sum_i \alpha_i t^i, \sum_j \beta_j t^j \right] := \sum_{i,j} (s_i + j) \cdot \alpha_i \beta_j$ on the space $C[z]$ of all polynomials. Then $\langle C[z], .,. \rangle$ is positive semidefinite.
Existence of solutions

Theorem

There exists a solution μ if and only if

$$\forall N \in \mathbb{N}_0 : \det [(s_{i+j})_{i,j=0}^N] \geq 0$$
Existence of solutions

Theorem

There exists a solution \(\mu \) if and only if

\[
\forall N \in \mathbb{N}_0 : \quad \det \left[(s_{i+j})_{i,j=0}^N \right] \geq 0
\]

Consider the inner product

\[
\left[\sum_i \alpha_i t^i, \sum_j \beta_j t^j \right] := \sum_{i,j} s_{i+j} \cdot \alpha_i \bar{\beta}_j
\]

on the space \(\mathbb{C}[z] \) of all polynomials. Then \(\langle \mathbb{C}[z], [\cdot, \cdot] \rangle \) is positive semidefinite.
Existence of solutions

Theorem

Assume the moment problem is solvable. Then one of the following alternatives must occur.
Existence of solutions

Theorem

Assume the moment problem is solvable. Then one of the following alternatives must occur.

- The solution μ is unique (*determinate* case).
- There exist infinitely many solutions (*indeterminate* case).
Existence of solutions

Theorem

Assume the moment problem is solvable. Then one of the following alternatives must occur.

- The solution μ is unique (determinate case).
- There exist infinitely many solutions (indeterminate case).

Let S be the multiplication operator $Sp(z) := zp(z)$ on $\mathbb{C}[z]$. Let \mathcal{H} be the Hilbert space completion of $\langle \mathbb{C}[z], [.,.] \rangle$, and let T be the closure of S in \mathcal{H}. Then one of the following holds.

- T is selfadjoint (determinate case).
- T is symmetric with defect index $(1, 1)$ (indeterminate case).
The Nevanlinna parameterisation

Theorem

Assume the moment problem is indeterminate.
The Nevanlinna parameterisation

Theorem

Assume the moment problem is indeterminate.

There exist four entire functions A, B, C, D, such that

$$
\int_{\mathbb{R}} \frac{d\mu(t)}{t - z} = \frac{A(z)\tau(z) + B(z)}{C(z)\tau(z) + D(z)}
$$

establishes a bijection between $\{\mu : \text{solution}\}$ and $\mathcal{N}_0 := \{\tau : \text{analytic in } \mathbb{C}^+, \text{Im} \tau(z) \geq 0\}$.
The Nevanlinna parameterisation

Theorem

Assume the moment problem is indeterminate.

There exist four entire functions A, B, C, D, such that

$$
\int_{\mathbb{R}} \frac{d\mu(t)}{t-z} = \frac{A(z)\tau(z) + B(z)}{C(z)\tau(z) + D(z)}
$$

establishes a bijection between \(\{\mu : \text{solution}\} \) and \(\mathcal{N}_0 := \{\tau : \text{analytic in } \mathbb{C}^+, \text{Im } \tau(z) \geq 0\} \).

The operator T is entire with respect to the gauge $u := 1$. The matrix $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ is the u-resolvent matrix of T.
The three term recurrence

Given μ with all power moments, let $p_n, n \in \mathbb{N}_0$, be the polynomials with degree n and positive leading coefficient, such that $\{p_n : n \in \mathbb{N}_0\}$ is orthonormal w.r.t. $[p,q] := \int_{\mathbb{R}} p\overline{q} \, d\mu$.
The three term recurrence

Given μ with all power moments, let p_n, $n \in \mathbb{N}_0$, be the polynomials with degree n and positive leading coefficient, such that $\{p_n : n \in \mathbb{N}_0\}$ is orthonormal w.r.t. $[p, q] := \int_{\mathbb{R}} p q \, d\mu$.

Theorem

There exist unique $a_n > 0$ and $b_n \in \mathbb{R}$, s.t. ($p_{-1} := 0$)

$$zp_n(z) = a_{n+1} p_{n+1}(z) + b_n p_n(z) + a_n p_{n-1}(z), \quad n \in \mathbb{N}_0$$
The three term recurrence

Given μ with all power moments, let p_n, $n \in \mathbb{N}_0$, be the polynomials with degree n and positive leading coefficient, such that $\{p_n : n \in \mathbb{N}_0\}$ is orthonormal w.r.t. $[p, q] := \int_{\mathbb{R}} p \overline{q} \, d\mu$.

Theorem

There exist unique $a_n > 0$ and $b_n \in \mathbb{R}$, s.t. $(p_{-1} := 0)$

$$zp_n(z) = a_{n+1}p_{n+1}(z) + b_np_n(z) + a_np_{n-1}(z), \quad n \in \mathbb{N}_0$$

The operator T is unitarily equivalent to the operator in ℓ^2 defined by the Jacobi matrix

$$J := \begin{pmatrix} b_0 & a_1 & 0 & 0 & 0 & \cdots \\ a_1 & b_1 & a_2 & 0 & 0 & \cdots \\ 0 & a_2 & b_2 & a_3 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots \end{pmatrix}$$
(In-)determinate measures

Definition
Let μ be a positive measure with all power moments. Then μ is called *determinate* if it is uniquely determined by the sequence of its power moments, and *indeterminate* otherwise.
(In-)determinate measures

Definition
Let \(\mu \) be a positive measure with all power moments. Then \(\mu \) is called \textit{determinate} if it is uniquely determined by the sequence of its power moments, and \textit{indeterminate} otherwise.

Theorem
\(\mu \) is determinate if and only the polynomials are dense in \(L^2(\mu) \).
(In-)determinate measures

Definition
Let μ be a positive measure with all power moments. Then μ is called determinate if it is uniquely determined by the sequence of its power moments, and indeterminate otherwise.

Theorem
\(\mu\) is determinate if and only the polynomials are dense in \(L^2(\mu)\).

Being (in-)determinate means that the moment problem for

\[s_n := \int_{\mathbb{R}} t^n \, d\mu(t), \quad n = 0, 1, 2, \ldots, \]

which is by definition solvable, is actually (in-)determinate.
The index of determinacy

Definition
For μ determinate and $w \in \mathbb{C}$ set

$$\text{ind}_w(\mu) := \sup \left\{ k \in \mathbb{N}_0 : \left| t-w \right|^{2k} d\mu(t) \text{ determinate} \right\} \in \mathbb{N}_0 \cup \{\infty\}.$$
The index of determinacy

Definition
For μ determinate and $w \in \mathbb{C}$ set

$$\text{ind}_w(\mu) := \sup \left\{ k \in \mathbb{N}_0 : |t-w|^{2k}d\mu(t) \text{ determinate} \right\} \in \mathbb{N}_0 \cup \{\infty\}.$$

Theorem
Let μ be determinate.

- If $\text{ind}_w(\mu) = \infty$ for some $w \in \mathbb{C}$, then $\text{ind}_w(\mu) = \infty$ for all $w \in \mathbb{C}$.
- Assume $\text{ind}_w(\mu) < \infty$ for some $w \in \mathbb{C}$. Then μ is discrete and $\text{ind}_w(\mu)$ is constant on $\mathbb{C} \setminus \text{supp } \mu$; denote this constant by $\text{ind}(\mu)$.
- Assume $\text{ind}_w(\mu) < \infty$ for some $w \in \mathbb{C}$. Then $\text{ind}_w(\mu) = \text{ind}(\mu) + 1$, $w \in \text{supp } \mu$.
The index of determinacy

For each $k \in \mathbb{N}$ the (infinite, still well-defined) matrix J^k defines a linear operator V_k on ℓ^2 by taking the closure of the operator defined by the action of J^k on the subspace of finite sequences.
The index of determinacy

For each $k \in \mathbb{N}$ the (infinite, still well-defined) matrix J^k defines a linear operator V_k on ℓ^2 by taking the closure of the operator defined by the action of J^k on the subspace of finite sequences.

Theorem

Let μ be determinate. Then the following are equivalent.
For each $k \in \mathbb{N}$ the (infinite, still well-defined) matrix J^k defines a linear operator V_k on ℓ^2 by taking the closure of the operator defined by the action of J^k on the subspace of finite sequences.

Theorem

Let μ be determinate. Then the following are equivalent.

- μ has finite index of determinacy.
- There exists $N \in \mathbb{N}$ such that V, \ldots, V_N are selfadjoint, but V_{N+1} is not.
The index of determinacy

For each $k \in \mathbb{N}$ the (infinite, still well-defined) matrix J^k defines a linear operator V_k on ℓ^2 by taking the closure of the operator defined by the action of J^k on the subspace of finite sequences.

Theorem

Let μ be determinate. Then the following are equivalent.

- μ has finite index of determinacy.
- There exists $N \in \mathbb{N}$ such that V, \ldots, V_N are selfadjoint, but V_{N+1} is not.

If μ has finite index of determinacy, then $N = \text{ind}(\mu) + 1$.
A class of distributions

Definition

1. Let \(\mu \) be a distribution on \(\mathbb{R} \). We write \(\mu \in \mathcal{D}_{<\infty} \), if

\[\exists N \in \mathbb{N}_0, c_1, \ldots, c_N \in \mathbb{R}, \mu \text{ positive measure on } \mathbb{R} \setminus \{c_1, \ldots, c_N\} : \]

\[\mu(f) = \int_{\mathbb{R} \setminus \{c_1, \ldots, c_N\}} f \, d\mu, \quad f \in C^\infty_{00}(\mathbb{R}), \supp f \subseteq \mathbb{R} \setminus \{c_1, \ldots, c_N\} \]
A class of distributions

Definition

(1) Let μ be a distribution on \mathbb{R}. We write $\mu \in \mathcal{D}_{<\infty}$, if

$$\exists N \in \mathbb{N}_0, c_1, \ldots, c_N \in \mathbb{R}, \mu \text{ positive measure on } \mathbb{R} \setminus \{c_1, \ldots, c_N\} :$$

$$\mu(f) = \int_{\mathbb{R} \setminus \{c_1, \ldots, c_N\}} f \, d\mu, \quad f \in C^\infty_0(\mathbb{R}), \text{ supp } f \subseteq \mathbb{R} \setminus \{c_1, \ldots, c_N\}$$

(2) We say $\mu \in \mathcal{D}_{<\infty}$ has all power moments, if

$$\int_{|t| \geq t_0} |t|^n \, d\mu(t) < \infty, \quad n \in \mathbb{N}, \text{ provided } t_0 > \max\{|c_1|, \ldots, |c_N|\}.$$
A class of distributions

Definition

(1) Let μ be a distribution on \mathbb{R}. We write $\mu \in \mathcal{D}_{<\infty}$, if

$$\exists N \in \mathbb{N}_0, c_1, \ldots, c_N \in \mathbb{R}, \mu \text{ positive measure on } \mathbb{R} \setminus \{c_1, \ldots, c_N\} :$$

$$\mu(f) = \int_{\mathbb{R} \setminus \{c_1, \ldots, c_N\}} f \, d\mu, \quad f \in C^\infty_{00}(\mathbb{R}), \text{supp } f \subseteq \mathbb{R} \setminus \{c_1, \ldots, c_N\}$$

(2) We say $\mu \in \mathcal{D}_{<\infty}$ has all power moments, if

$$\int_{|t| \geq t_0} |t|^n \, d\mu(t) < \infty, \ n \in \mathbb{N}, \text{provided } t_0 > \max\{|c_1|, \ldots, |c_N|\}.$$

(3) Let $\mathcal{R}_{<\infty}$ be the set of formal expressions $\rho := \sum_{i=1}^m \sum_{l=0}^{k_i} a_{il} \delta_{w_i}^{(l)}$ where $w_i \in \mathbb{C}^+$ pairwise different, $k_i \in \mathbb{N}_0$, $a_{il} \in \mathbb{C}$ with $a_{iki} \neq 0$.
A class of distributions

Definition

Let \((\mu, \rho) \in D_{<\infty} \times R_{<\infty}\) and assume that \(\mu\) has all power moments. For \(f\) which is \(C^\infty(\mathbb{R})\) with \(f(t) = O(|t|^n), \ t \to \infty\), and locally holomorphic at \(w_i\), define

\[
(\mu, \rho)(f) := \mu(f) + \sum_{i=1}^m \sum_{l=0}^{k_i} \left(a_{il} \cdot [f]^{(l)}(w_i) + \overline{a_{il}} \cdot [f]^{(l)}(\overline{w_i}) \right), \quad n \in \mathbb{N}_0
\]
The indefinite moment problem

Given \((s_n)_{n=0}^{\infty}, s_n \in \mathbb{R}\), does there exist
\((\mu, \rho) \in \mathcal{D}_\infty \times \mathcal{R}_\infty \) with
\(s_n = (\mu, \rho)(t^n), n \in \mathbb{N}_0\) ?
Existence of solutions

For a sequence \((s_n)_{n=0}^{\infty}\) of real numbers, set \(\mathcal{L} := \mathbb{C}[z]\) and

\[
\left[\sum_i \alpha_i t^i, \sum_j \beta_j t^j \right] := \sum_{i,j} s_{i+j} \cdot \alpha_i \beta_j.
\]
Existence of solutions

For a sequence \((s_n)_{n=0}^\infty\) of real numbers, set \(\mathcal{L} := \mathbb{C}[z]\) and

\[
\left[\sum_i \alpha_i t^i, \sum_j \beta_j t^j \right] := \sum_{i,j} s_{i+j} \cdot \alpha_i \overline{\beta_j}.
\]

Theorem

There exists a solution \((\mu, \rho)\) if and only if
Existence of solutions

For a sequence \((s_n)_{n=0}^{\infty}\) of real numbers, set \(\mathcal{L} := \mathbb{C}[z]\) and

\[
\left[\sum_i \alpha_i t^i, \sum_j \beta_j t^j \right] := \sum_{i,j} s_{i+j} \cdot \alpha_i \beta_j.
\]

Theorem

There exists a solution \((\mu, \rho)\) if and only if

\[
\exists N \in \mathbb{N}_0 : \quad \text{sgn} \det [(s_{i+j})_{i,j=0}^{n}] \text{ constant for } n \geq N
\]
Existence of solutions

For a sequence \((s_n)_{n=0}^\infty\) of real numbers, set \(\mathcal{L} := \mathbb{C}[z]\) and

\[
\left[\sum_i \alpha_i t^i, \sum_j \beta_j t^j \right] := \sum_{i,j} s_{i+j} \cdot \alpha_i \beta_j.
\]

Theorem

There exists a solution \((\mu, \rho)\) if and only if

\[
\exists N \in \mathbb{N}_0 : \quad \text{sgn det } [(s_{i+j})_{i,j=0}^n] \text{ constant for } n \geq N
\]

The inner product space \(\langle \mathbb{C}[z], [,..] \rangle\) has finite negative index.
Existence of solutions

Theorem

Assume the indefinite moment problem is solvable.
Existence of solutions

Theorem

Assume the indefinite moment problem is solvable.

Then there exists a number $\Delta \in \mathbb{N}_0 \cup \{\infty\}$, such that

$(\kappa_0 := \text{ind}_- \mathcal{L})$

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>\cdots</th>
<th>κ_0</th>
<th>$\kappa_0 + 1$</th>
<th>\cdots</th>
<th>$\kappa_0 + \Delta$</th>
<th>$\kappa_0 + \Delta$</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td># solutions</td>
<td>0</td>
<td>\cdots</td>
<td>1</td>
<td>0</td>
<td>\cdots</td>
<td>∞</td>
<td>∞</td>
<td>\cdots</td>
</tr>
<tr>
<td>ind$_- = n$</td>
<td>0</td>
<td>\cdots</td>
<td>1</td>
<td>0</td>
<td>\cdots</td>
<td>∞</td>
<td>∞</td>
<td>\cdots</td>
</tr>
</tbody>
</table>

This includes the extremal case as follows:

- *If $\Delta = 0$, the number of solutions is ∞ for all $n \geq \kappa_0$;*
- *If $\Delta = \infty$, the number of solutions is 0 for all $n > \kappa_0$.***
Parameterization of solutions

Let $\mathcal{K}^\Delta_\kappa$ be the set of all function τ meromorphic in \mathbb{C}^+, such that the maximal number of quadratic forms

$$Q(\xi_1, \ldots, \xi_m; \eta_0, \ldots, \eta_{\Delta-1}) := \sum_{i,j=1}^{m} \frac{\tau(w_i) - \overline{\tau(w_j)}}{w_i - w_j} \xi_i \xi_j + \sum_{k=0}^{\Delta-1} \sum_{i=1}^{m} \text{Re} (z_i^k \xi_i \overline{\eta_k})$$

where $m \in \mathbb{N}_0$, $w_1, \ldots, w_m \in \mathbb{C}^+$, equals κ.
Parameterization of solutions

Let $\mathcal{K}_\kappa^\Delta$ be the set of all function τ meromorphic in \mathbb{C}^+, such that the maximal number of quadratic forms

$$Q(\xi_1, \ldots, \xi_m; \eta_0, \ldots, \eta_{\Delta-1}) := \sum_{i,j=1}^{m} \frac{\tau(w_i) - \tau(w_j)}{w_i - w_j} \xi_i \xi_j + \sum_{k=0}^{\Delta-1} \sum_{i=1}^{m} \text{Re} (z_i^k \xi_i \eta_k)$$

where $m \in \mathbb{N}_0$, $w_1, \ldots, w_m \in \mathbb{C}^+$, equals κ.

Theorem

Assume the indefinite moment problem has $\Delta < \infty$.
Parameterization of solutions

Let K_{κ}^{Δ} be the set of all function τ meromorphic in \mathbb{C}^+, such that the maximal number of quadratic forms

$$Q(\xi_1, \ldots, \xi_m; \eta_0, \ldots, \eta_{\Delta-1}) := \sum_{i,j=1}^{m} \frac{\tau(w_i) - \tau(w_j)}{w_i - w_j} \xi_i \overline{\xi_j} + \sum_{k=0}^{\Delta-1} \sum_{i=1}^{m} \text{Re} \left(z_i^k \xi_i \overline{\eta_k} \right)$$

where $m \in \mathbb{N}_0$, $w_1, \ldots, w_m \in \mathbb{C}^+$, equals κ.

Theorem

Assume the indefinite moment problem has $\Delta < \infty$.

There exist four entire functions A, B, C, D, such that

$$(\mu, \rho) \left(\frac{1}{t - z} \right) = \frac{A(z)\tau(z) + B(z)}{C(z)\tau(z) + D(z)}$$

establishes a bijection between $\{(\mu, \rho) : \text{ind}_-(\mu, \rho) = \kappa, \text{solution}\}$ and $K_{\kappa-\kappa_0}^{\Delta}$.
The significance of completions

The positive definite case:

- The moment problem is solvable and indeterminate if and only if \mathcal{L} has a reproducing kernel Hilbert space completion.
- Assume the moment problem is solvable and determinate, and let μ be its unique solution. Then $\text{ind}(\mu) < \infty$ if and only if \mathcal{L} has a reproducing kernel aPs-completion. If $\text{ind}(\mu) < \infty$, then $\text{ind}(\mu) = \Delta(\mathcal{L}) - 1$.

The indefinite case:

- Assume the indefinite moment problem is solvable. Then $\Delta < \infty$ if and only if \mathcal{L} has a reproducing kernel aPs-completion. If $\Delta < \infty$, then $\Delta = \Delta(\mathcal{L})$.

- Assume the indefinite moment problem is solvable with $\Delta < \infty$. The functions A, B, C, D occur from (an aPs-version) of Krein’s resolvent matrix.
The significance of completions

The positive definite case:

- The moment problem is solvable and indeterminate if and only if \(\mathcal{L} \) has a reproducing kernel Hilbert space completion.
- Assume the moment problem is solvable and determinate, and let \(\mu \) be its unique solution. Then \(\text{ind}(\mu) < \infty \) if and only if \(\mathcal{L} \) has a reproducing kernel aPs-completion. If \(\text{ind}(\mu) < \infty \), then \(\text{ind}(\mu) = \Delta(\mathcal{L}) - 1 \).

The indefinite case:

- Assume the indefinite moment problem is solvable. Then \(\Delta < \infty \) if and only if \(\mathcal{L} \) has a reproducing kernel aPs-completion. If \(\Delta < \infty \), then \(\Delta = \Delta(\mathcal{L}) \).
- Assume the indefinite moment problem is solvable with \(\Delta < \infty \). The functions \(A, B, C, D \) occur from (an aPs-version) of Krein’s resolvent matrix.
Directing Functionals
Let \(\mathcal{L} \) be an inner product space whose elements are analytic functions.

- Can one improve the general conditions for existence of a reproducing kernel aPs-completion of \(\mathcal{L} \) due to analyticity?
- If there exists a reproducing kernel aPs-completion, are its elements again analytic?
Let \mathcal{L} be an inner product space whose elements are analytic functions.

- Can one improve the general conditions for existence of a reproducing kernel aPs-completion of \mathcal{L} due to analyticity?
- If there exists a reproducing kernel aPs-completion, are its elements again analytic?

An answer is obtained from an aPs-version of Krein's method of directing functionals.
Sets of semi-Φ-regularity

Definition

Let \mathcal{L} be an inner product space, let S be a linear relation in \mathcal{L}, let $\Omega \subseteq \mathbb{C}$ and $M \subseteq \Omega$, and $\Phi : \mathcal{L} \times \Omega \rightarrow \mathbb{C}$.

$\mathcal{R}(S, \Phi) := \{ \eta \in \Omega : \text{ran}(S - \eta) \subseteq \ker \Phi(\cdot, \eta) \}$

$\mathcal{R}(S, \Phi) := \{ \eta \in \Omega : \text{ran}(S - \eta) \supseteq \ker \Phi(\cdot, \eta) \}$

$\mathcal{R}(S, \Phi) := \mathcal{R}(S, \Phi) \cap \mathcal{R}(S, \Phi)$

$\mathcal{R}_{\text{app}}(S, \Phi; M) := \{ \eta \in \Omega : \forall x \in \ker \Phi(\cdot, \eta) \exists (x_n)_{n \in \mathbb{N}} \text{ s.t. } x_n \in \text{ran}(S - \eta), \lim_{n \to \infty}[x_n, x_n]_X = [x, x]_X, \lim_{n \to \infty}[x_n, y]_X = [x, y]_X, y \in \mathcal{L}, \lim_{n \to \infty} \Phi(x_n, w) = \Phi(x, w), w \in M \}$.

Sets of semi-Φ-regularity

Definition

Let \mathcal{L} be an inner product space, let S be a linear relation in \mathcal{L}, let $\Omega \subseteq \mathbb{C}$ and $M \subseteq \Omega$, and $\Phi : \mathcal{L} \times \Omega \to \mathbb{C}$.

\[
\begin{align*}
 r_{\subseteq}(S, \Phi) &:= \{ \eta \in \Omega : \text{ran}(S - \eta) \subseteq \ker \Phi(\cdot, \eta) \} \\
 r_{\supseteq}(S, \Phi) &:= \{ \eta \in \Omega : \text{ran}(S - \eta) \supseteq \ker \Phi(\cdot, \eta) \} \\
 r(S, \Phi) &:= r_{\subseteq}(S, \Phi) \cap r_{\supseteq}(S, \Phi)
\end{align*}
\]
Sets of semi-Φ-regularity

Definition

Let \mathcal{L} be an inner product space, let S be a linear relation in \mathcal{L}, let $\Omega \subseteq \mathbb{C}$ and $M \subseteq \Omega$, and $\Phi : \mathcal{L} \times \Omega \to \mathbb{C}$.

$$r_{\leq}(S, \Phi) := \{ \eta \in \Omega : \text{ran}(S - \eta) \subseteq \ker \Phi(\cdot, \eta) \}$$

$$r_{\geq}(S, \Phi) := \{ \eta \in \Omega : \text{ran}(S - \eta) \supseteq \ker \Phi(\cdot, \eta) \}$$

$$r(S, \Phi) := r_{\leq}(S, \Phi) \cap r_{\geq}(S, \Phi)$$

$$r_{\text{app}}(S, \Phi; M) := \left\{ \eta \in \Omega : \forall x \in \ker \Phi(\cdot, \eta) \exists (x_n)_{n \in \mathbb{N}} \text{ s.t.} \right.$$

$$x_n \in \text{ran}(S - \eta),$$

$$\lim_{n \to \infty} [x_n, x_n]_\chi = [x, x]_\chi, \quad \lim_{n \to \infty} [x_n, y]_\chi = [x, y]_\chi, \quad y \in \mathcal{L},$$

$$\lim_{n \to \infty} \Phi(x_n, w) = \Phi(x, w), \quad w \in M \right\}.$$
Directing functionals in aPs

Definition
Let \mathcal{L} be an inner product space, let \mathcal{S} be a symmetric linear relation in \mathcal{L}, let $\Omega \subseteq \mathbb{C}$, and let $\Phi : \mathcal{L} \times \Omega \to \mathbb{C}$.

We call Φ a directing functional for \mathcal{S}, if it satisfies the following axioms.

(DF1) For each $w \in \Omega$ the function $\Phi(\cdot, w) : \mathcal{L} \to \mathbb{C}$ is linear.

(DF2) The set Ω is open. For each $x \in \mathcal{L}$ the function $\Phi(x, \cdot) : \Omega \to \mathbb{C}$ is analytic.

(DF3) There is no nonempty open subset O of Ω, such that $\Phi|_{\mathcal{L} \times O} = 0$.

(DF4) The set $r \subseteq (\mathcal{S}, \Phi)$ has accumulation points in each connected component of $\Omega \setminus \mathcal{R}$.

(DF5) The set $r_{\text{app}} \supseteq (\mathcal{S}, \Phi; \Omega \setminus \mathcal{R})$ has nonempty intersection with both half-planes \mathbb{C}^+ and \mathbb{C}^-.

Directing functionals in aPs

Definition

Let \mathcal{L} be an inner product space, let S be a symmetric linear relation in \mathcal{L}, let $\Omega \subseteq \mathbb{C}$, and let $\Phi : \mathcal{L} \times \Omega \rightarrow \mathbb{C}$.

We call Φ a **directing functional for S**, if it satisfies the following axioms.

(DF1) For each $w \in \Omega$ the function $\Phi(\cdot, w) : \mathcal{L} \rightarrow \mathbb{C}$ is linear.

(DF2) The set Ω is open. For each $x \in \mathcal{L}$ the function $\Phi(x, \cdot) : \Omega \rightarrow \mathbb{C}$ is analytic.

(DF3) There is no nonempty open subset O of Ω, such that $\Phi|_{\mathcal{L} \times O} = 0$.

(DF4) The set $r \subseteq (S, \Phi)$ has accumulation points in each connected component of $\Omega \setminus \mathbb{R}$.

(DF5) The set $r_{app} \supseteq (S, \Phi; \Omega \setminus \mathbb{R})$ has nonempty intersection with both half-planes \mathbb{C}^+ and \mathbb{C}^-.
Directing functionals in aPs

Definition
Let \(\mathcal{L} \) be an inner product space, let \(S \) be a symmetric linear relation in \(\mathcal{L} \), let \(\Omega \subseteq \mathbb{C} \), and let \(\Phi : \mathcal{L} \times \Omega \to \mathbb{C} \).

We call \(\Phi \) a \textit{directing functional for} \(S \), if it satisfies the following axioms.

1. \(\text{(DF1)} \) For each \(w \in \Omega \) the function \(\Phi(\cdot, w) : \mathcal{L} \to \mathbb{C} \) is linear.
2. \(\text{(DF2)} \) The set \(\Omega \) is open. For each \(x \in \mathcal{L} \) the function \(\Phi(x, \cdot) : \Omega \to \mathbb{C} \) is analytic.
Directing functionals in aPs

Definition
Let \mathcal{L} be an inner product space, let S be a symmetric linear relation in \mathcal{L}, let $\Omega \subseteq \mathbb{C}$, and let $\Phi : \mathcal{L} \times \Omega \to \mathbb{C}$.
We call Φ a \textit{directing functional for S}, if it satisfies the following axioms.

(DF1) For each $w \in \Omega$ the function $\Phi(\cdot, w) : \mathcal{L} \to \mathbb{C}$ is linear.
(DF2) The set Ω is open. For each $x \in \mathcal{L}$ the function $\Phi(x, \cdot) : \Omega \to \mathbb{C}$ is analytic.
(DF3) There is no nonempty open subset O of Ω, such that $\Phi|_{\mathcal{L} \times O} = 0$.
Directing functionals in aPs

Definition
Let \mathcal{L} be an inner product space, let S be a symmetric linear relation in \mathcal{L}, let $\Omega \subseteq \mathbb{C}$, and let $\Phi : \mathcal{L} \times \Omega \to \mathbb{C}$.

We call Φ a \textit{directing functional for S}, if it satisfies the following axioms.

(DF1) For each $w \in \Omega$ the function $\Phi(\cdot, w) : \mathcal{L} \to \mathbb{C}$ is linear.
(DF2) The set Ω is open. For each $x \in \mathcal{L}$ the function $\Phi(x, \cdot) : \Omega \to \mathbb{C}$ is analytic.
(DF3) There is no nonempty open subset O of Ω, such that $\Phi|_{\mathcal{L} \times O} = 0$.
(DF4) The set $r_{\subseteq}(S, \Phi)$ has accumulation points in each connected component of $\Omega \setminus \mathbb{R}$.
(DF5) The set $r_{\geq}^{\text{app}}(S, \Phi; \Omega \setminus \mathbb{R})$ has nonempty intersection with both half-planes \mathbb{C}^+ and \mathbb{C}^-.
Directing functionals in aPs

Example
Let \((s_n)_{n=0}^{\infty}, s_n \in \mathbb{R}\), be given and consider:

- \(\mathcal{L} := \mathbb{C}[z] \text{ with } [.,.]\);
- \(S := \{(p(z); zp(z)) : p \in \mathbb{C}[z]\}\);
- \(\Omega := \mathbb{C}\);
- \(\Phi(p, w) := p(w)\).

Then
Example

Let \((s_n)_{n=0}^{\infty}, s_n \in \mathbb{R}\), be given and consider:

- \(\mathcal{L} := \mathbb{C}[z] \) with \([.,.];\)
- \(S := \{(p(z); zp(z)) : p \in \mathbb{C}[z]\};\)
- \(\Omega := \mathbb{C};\)
- \(\Phi(p, w) := p(w).\)

Then

- \(\Phi(\cdot, w) = \chi_w\) is linear;
Directing functionals in aPs

Example
Let \((s_n)_{n=0}^{\infty}, s_n \in \mathbb{R}\), be given and consider:

- \(\mathcal{L} := \mathbb{C}[z] \text{ with } [\cdot, \cdot]\);
- \(S := \{(p(z); zp(z)) : p \in \mathbb{C}[z]\}\);
- \(\Omega := \mathbb{C}\);
- \(\Phi(p, w) := p(w)\).

Then

- \(\Phi(\cdot, w) = \chi_w\) is linear;
- \(\Phi(p, \cdot) = p\) is entire;
Directing functionals in aPs

Example
Let \((s_n)_{n=0}^{\infty}, s_n \in \mathbb{R}\), be given and consider:

- \(\mathcal{L} := \mathbb{C}[z] \text{ with } [.,.];\)
- \(S := \{(p(z); zp(z)) : p \in \mathbb{C}[z]\};\)
- \(\Omega := \mathbb{C};\)
- \(\Phi(p, w) := p(w).\)

Then

- \(\Phi(\cdot, w) = \chi_w\) is linear;
- \(\Phi(p, \cdot) = p\) is entire;
- \(\Phi(1, w) = 1\), hence \(\Phi(1, \cdot)\) vanishes nowhere.
Directing functionals in aPs

Example

Let \((s_n)_{n=0}^{\infty}, s_n \in \mathbb{R}\), be given and consider:

- \(\mathcal{L} := \mathbb{C}[z] \text{ with } [., .]\);
- \(S := \{(p(z); zp(z)) : p \in \mathbb{C}[z]\}\);
- \(\Omega := \mathbb{C}\);
- \(\Phi(p, w) := p(w)\).

Then

- \(\Phi(\cdot, w) = \chi_w\) is linear;
- \(\Phi(p, \cdot) = p\) is entire;
- \(\Phi(1, w) = 1\), hence \(\Phi(1, \cdot)\) vanishes nowhere;
- \(\forall w \in \mathbb{C} : \text{ran}(S - w) = \{p \in \mathbb{C}[z] : p(w) = 0\} = \ker \Phi(\cdot, w)\), hence \(r(S, \Phi) = \mathbb{C}\).
aPs-completion of spaces of analytic functions

Theorem

Let \mathcal{L} be an inner product space with $\text{ind}_{\mathcal{L}} \mathcal{L} < \infty$, let S be a symmetric linear relation in \mathcal{L}, let $\Omega \subseteq \mathbb{C}$, and let $\Phi : \mathcal{L} \times \Omega \to \mathbb{C}$ be a directing functional for S.
aPs-completion of spaces of analytic functions

Theorem
Let \(\mathcal{L} \) be an inner product space with \(\text{ind} \mathcal{L} < \infty \), let \(S \) be a symmetric linear relation in \(\mathcal{L} \), let \(\Omega \subseteq \mathbb{C} \), and let \(\Phi : \mathcal{L} \times \Omega \rightarrow \mathbb{C} \) be a directing functional for \(S \).

Assume that

- \(\exists M \subseteq r_{\subseteq}(S, \Phi) \) s.t. \(M \) has accumulation points in each connected component of \(\Omega \setminus \mathbb{R} \), and

\[
\dim \left(\left[\mathcal{L}^\perp + \text{span}\{\Phi(\cdot, w) : w \in M\} \right] / \mathcal{L}^\perp \right) < \infty;
\]
Theorem

Let \mathcal{L} be an inner product space with $\text{ind}_{\mathcal{L}} \mathcal{L} < \infty$, let S be a symmetric linear relation in \mathcal{L}, let $\Omega \subseteq \mathbb{C}$, and let $\Phi : \mathcal{L} \times \Omega \to \mathbb{C}$ be a directing functional for S. Assume that

- $\exists M \subseteq r_{\subseteq}(S, \Phi)$ s.t. M has accumulation points in each connected component of $\Omega \setminus \mathbb{R}$, and
 \[
 \text{dim} \left(\left[\mathcal{L}^\wedge + \text{span}\{\Phi(\cdot, w) : w \in M\} \right] / \mathcal{L}^\wedge \right) < \infty;
 \]

- Either $\mathcal{L}^\wedge \cap \text{span}\{\Phi(\cdot, w) : w \in r_{\subseteq}(S, \Phi), \Phi(\cdot, w) \in \mathcal{L}^\wedge + \text{span}\{\Phi(\cdot, w) : w \in M\}\}$
 or $\mathcal{L}^\wedge \cap \text{span}\{\Phi(\cdot, w) : w \in r_{\supseteq}^{\text{app}}(S, \Phi; \Omega \setminus \mathbb{R}) \setminus \mathbb{R}\}$
 is dense in \mathcal{L}^\wedge w.r.t. \mathcal{T}^\wedge.

reproducing kernel spaces

Hamburger moment problem

Directing Functionals

Almost Pontryagin Spaces

Reproducing Kernel Spaces

Hamburger moment problem

Directing Functionals
aPs-completion of spaces of analytic functions

Theorem

Let \(\mathcal{L} \) be an inner product space with \(\text{ind}_- \mathcal{L} < \infty \), let \(S \) be a symmetric linear relation in \(\mathcal{L} \), let \(\Omega \subseteq \mathbb{C} \), and let \(\Phi : \mathcal{L} \times \Omega \to \mathbb{C} \) be a directing functional for \(S \).

Under these assumptions:

- There exists a unique reproducing kernel aPs \(\mathcal{B} \), such that \(\Phi_{\mathcal{L}} : x \mapsto \Phi(x, \cdot) \) maps \(\mathcal{L} \) isometrically onto a dense subspace of \(\mathcal{B} \).
- The elements of \(\mathcal{B} \) are analytic on \(\Omega \).
- \(\text{Clos}_\mathcal{B} ((\Phi_{\mathcal{L}} \times \Phi_{\mathcal{L}})(S)) = S(\mathcal{B}) \).

Here \(S(\mathcal{B}) \) is the multiplication operator in \(\mathcal{B} \).
aPs-completion of spaces of analytic functions

Theorem

Let \mathcal{L} be an inner product space with $\text{ind}_- \mathcal{L} < \infty$, let S be a symmetric linear relation in \mathcal{L}, let $\Omega \subseteq \mathbb{C}$, and let $\Phi : \mathcal{L} \times \Omega \rightarrow \mathbb{C}$ be a directing functional for S.

Under these assumptions:

Concerning the geometry of \mathcal{B}, we have

- $\Phi^*_L(\mathcal{B}') = \mathcal{L}^\wedge + \text{span} \{ \Phi(\cdot, w) : w \in M \} = \mathcal{L}^\wedge + \text{span} \{ \Phi(\cdot, w) : w \in \Omega \}$

- $\text{ind}_0 \mathcal{B} = \dim \left(\left[\mathcal{L}^\wedge + \text{span}\{ \Phi(\cdot, w) : w \in \Omega \} \right] / \mathcal{L}^\wedge \right)$

- The set $\{ w \in \Omega : \vartheta_\mathcal{B}(w) > 0 \}$ is discrete.
 Here $\vartheta_\mathcal{B}(w)$ is the minimal multiplicity of w as a zero of some element of $\mathcal{B} \setminus \{0\}$.
aPs-completion of spaces of analytic functions

Theorem

Let \mathcal{L} be an inner product space with $\text{ind}_- \mathcal{L} < \infty$, let S be a symmetric linear relation in \mathcal{L}, let $\Omega \subseteq \mathbb{C}$, and let $\Phi : \mathcal{L} \times \Omega \rightarrow \mathbb{C}$ be a directing functional for S.

Under these assumptions:

Concerning the operator theory of $S(\mathcal{B})$, we have

- $S(\mathcal{B})$ is of defect $(1, 1)$;
- $\Omega \subseteq r(S(\mathcal{B}))$
- $\text{ran}(S(\mathcal{B}) - w) = \ker \chi_{w}(\partial^{\mathcal{B}(w)})|_{\mathcal{B}}$, $w \in \Omega$
De Branges space completions

Definition

An inner product space \mathcal{L} whose elements are entire functions is called \textit{algebraic de Branges space}, if

- If $f \in \mathcal{L}$, $w \in \mathbb{C} \setminus \mathbb{R}$ with $f(w) = 0$, then $\frac{f(z)}{z-w} \in \mathcal{L}$. We have

$$\begin{bmatrix} \frac{z-w}{z-w} f(z), \frac{z-w}{z-w} g(z) \end{bmatrix}_\mathcal{L} = [f(z), g(z)]_\mathcal{L},$$

$$f, g \in \mathcal{B}, f(w) = g(w) = 0.$$

- If $f \in \mathcal{L}$ then $f^\#(z) := \overline{f(\overline{z})} \in \mathcal{L}$. We have

$$[f^\#, g^\#]_\mathcal{L} = [g, f]_\mathcal{L}, \quad f, g \in \mathcal{L}.$$
De Branges space completions

Definition

An inner product space \(\mathcal{L} \) whose elements are entire functions is called \textit{algebraic de Branges space}, if

- If \(f \in \mathcal{L}, w \in \mathbb{C} \setminus \mathbb{R} \) with \(f(w) = 0 \), then \(\frac{f(z)}{z-w} \in \mathcal{L} \). We have

\[
\begin{bmatrix}
 z - \overline{w} f(z), & z - \overline{w} g(z)
\end{bmatrix}_{\mathcal{L}} = \begin{bmatrix} f(z), g(z) \end{bmatrix}_{\mathcal{L}},
\]

\(f, g \in \mathcal{B}, f(w) = g(w) = 0 \).

- If \(f \in \mathcal{L} \) then \(f^\#(z) := \overline{f(\overline{z})} \in \mathcal{L} \). We have

\[
\begin{bmatrix} f^\#, g^\# \end{bmatrix}_{\mathcal{L}} = \begin{bmatrix} g, f \end{bmatrix}_{\mathcal{L}}, \quad f, g \in \mathcal{L}.
\]

If in addition \(\mathcal{L} \) is a reproducing kernel aPs, then \(\mathcal{L} \) is called a \textit{de Branges aPs}.
Theorem

Let \mathcal{L} be an algebraic de Branges space. If \mathcal{L} has a reproducing kernel aPs-completion, then this completion is a de Branges aPs.
Selected Literature

INDEFINITE INNER PRODUCTS:

Selected Literature

Reproducing kernel spaces:

Selected Literature

Moment problems:

Selected Literature

DIRECTING FUNCTIONALS:

