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1. Poincaré Recurrence Theorem

Let (X,B, µ) be a measure space. A measurable map T : X 7→ X is
called measure preserving if µ(T−1(A)) = µ(A) ∀A ∈ B.

Theorem 1.1. (Poincaré Recurrence Theorem, 1890) Let T be a mea-
sure preserving map on a finite measure space (X,µ) and E ⊆ X mea-
surable with µ(E) > 0, then for µ-a.a. x ∈ E T nx ∈ E for infinitely
many n ∈ N.

Proof. For N ≥ 0 set EN := ∪∞n=NT
−n(E). Then ∩∞N=0EN is the set of

points in X, for which the sequence x, Tx, T 2x, . . . has infinitely many
elements in E. We want to show µ(F ) = µ(E) for F := E

⋂
∩∞N=0EN .

We have T−1(EN) = EN+1, so µ(EN) = µ(EN+1) and µ(EN) =
µ(E0)∀N ∈ N. Since E0 ⊃ E1 ⊃ E2 ⊃ . . . we get µ(∩∞N=0EN) = µ(E0)
and as E ⊂ E0 we see that µ(F ) = µ(E ∩ E0) = µ(E).

�

2. Ergodic Theorems {utiso}
Lemma 2.1. If (X,B, µ), 1 ≤ p is a measure space and T : X → X a
measure preserving map, then the operator UT : Lp(X,µ) 7→ Lp(X,µ),
UTf = f ◦ T is an isometry. If T is invertible, then UT is unitary.

Proof. For a simple function fn we have
∫
X
fn dµ =

∫
X
UTfn dµ since

T is measure preserving. Assume f is positive and integrable and (fn)
a monotone sequence of simple functions converging to f from below,
then by Lebesgue convergence theorem∫

X

UTf dµ = lim
n→∞

∫
X

UTfn dµ = lim
n→∞

∫
X

fn dµ =

∫
X

f dµ.

�

Theorem 2.2. (Mean Ergodic Theorem, v. Neumann 1932) Let T a
measure preserving map on a measure space (X,B, µ) and f ∈ L2(X).
Then there is f̄ ∈ L2(X) with

lim
n→∞

∥∥∥∥∥ 1

n

n−1∑
k=0

f ◦ T k − f̄

∥∥∥∥∥
2

= 0.

Proof. LetM := {f : UTf = f} be the fixed point set of the isometry
UT . Then M is a closed linear subspace of L2(X,µ).

We claim that M = N⊥ for N := {g − UTg : g ∈ L2(X,µ)}.
1
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We have

h ∈ N⊥ ⇔ (g − UTg, h) = 0 ∀g
⇔ (g, h− U∗Th) = 0 ∀g ⇔ h = U∗Th.

Since ‖UT‖ = 1 we have ‖U∗T‖ = 1, so h = U∗Th gives

‖h‖2 = (h, U∗Th) = (UTh, h),

which by virtue of ‖UTh‖ ≤ ‖h‖ gives UTh = h, so M⊃ N⊥.
As above f −UTf = 0 gives ‖f‖2 = (f, U∗Tf) = (UTf, f) and U∗Tf =

f , so

f ∈M⇒ (f − U∗Tf, g) = 0 ∀g ⇒ (f, g − UTg) = 0 ∀g ⇒ f ∈ N⊥

and we have shown M = N⊥.
For f1 ∈ N we have

1

n

n−1∑
k=0

Uk
Tf1 =

1

n

n−1∑
k=0

(Uk
Tg − Uk+1

T g) =
1

n
(g − Un

T g)→ 0.

Since 1
n

∑n−1
k=0 U

k
T is a contraction it follows that this limit vanishes for

f1 in the closure N .
For f2 ∈M we have 1

n

∑n−1
k=0 U

k
Tf2 = f2.

For f ∈ L2(X,µ) let f = f1 + f2 with f1 ∈ N and f2 ∈M. Then

lim
n→∞

1

n

n−1∑
k=0

Uk
Tf = f2,

so the claim follows with f̄ = f2 = Pf , where P is the orthogonal
projector on M.

�

Theorem 2.3. (Maximal Ergodic Theorem, Wiener,Yoshida & Kaku-
tani 1939) Let (X,µ) be a finite measure space and T : X 7→ X a{maxerg}
measure preserving map. For f ∈ L1(X,µ) we have∫

{x: f∗(x)>0}
f dµ ≥ 0 with f ∗(x) := sup

n≥1

1

n

n−1∑
k=0

f(T kx).

Proof. (Garsia) Set f0 = 0, fn := f + UTf + U2
Tf + . . . + Un−1

T f and
FN := max{fn : 0 ≤ n ≤ N}. Since FN ≥ f0 we have FN ≥ 0.
Furthermore FN ∈ L1(X,µ), FN ≥ fn, so by positivity of UT we get
UTFN ≥ UTfn and UTFN + f ≥ fn+1 for 0 ≤ n ≤ N .

It follows that

UTFN(x) + f(x) ≥ max
1≤n≤N

fn(x)
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and for x ∈ AN := {x : FN(x) > 0}:
UTFN(x) + f(x) ≥ max

0≤n≤N
fn(x) = FN(x),

so f ≥ FN − UTFN auf AN . We get∫
AN

f dµ ≥
∫
AN

FN dµ−
∫
AN

UTFN dµ

=

∫
X

FN dµ−
∫
AN

UTFN dµ (FN = 0 on X \ AN)

≥
∫
X

FN dµ−
∫
X

UTFN dµ (FN ≥ 0)

= 0 since UT is an isometry.

As AN is increasing with ∪NAN = {x : f ∗(x) > 0} the claim follows.
�
{cmet}

Corollary 2.4. Let T be a measure preserving map on a measure space
(X,µ) and g ∈ L1(X). For

Bα :=

{
x ∈ X : sup

n≥1

1

n

n−1∑
i=0

g(T i(x)) > α

}
and A ⊂ X with T−1A = A and µ(A) <∞∫

Bα∩A
g dµ ≥ αµ(Bα ∩ A)

obtains.

Proof. For µ(X) < ∞, A = X and f := g − α, Bα := ∪∞N=0{x :
FN(x) > 0}, so by the Maximal Ergodic Theorem 2.3

∫
Bα
f dµ > 0. It

follows that
∫
Bα
g dµ ≥ αµ(Bα).

The general case A ⊂ X follows by considering the restriction of T
to A, since by assumption T maps A to itself. �

{inderg}
Theorem 2.5. (Individual Ergodic Theorem, Birkhoff 1931) Let T be a
measure preserving map on a measure space (X,µ) and f a µ-integrable
function on X. Then 1

n

∑n−1
i=0 f(T i(x)) converges for almost all x to a

function f̄ ∈ L1(X,µ) and f̄ ◦ T = f̄ almost everywhere.
If µ is finite

∫
f̄ dµ =

∫
f dµ obtains.

Proof. Assume f real. Let

f̄ := lim sup
n→∞

1

n

n−1∑
i=0

f(T i(x)) and f := lim inf
n→∞

1

n

n−1∑
i=0

f(T i(x)),
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then f̄◦T = f̄ and f◦T = f . It remains to show that f̄ = f ∈ L1(X,µ).
For α, β ∈ R set

Eα,β := {x ∈ X : α < f̄(x), f(x) < β}
then Eα,β is a T -invariant subset of X and

{x ∈ X : f(x) < f̄(x)} =
⋃

β<α∈Q

Eα,β.

We have for

Bα :=

{
x ∈ X : sup

n≥1

1

n

n−1∑
i=0

f(T i(x)) > α

}
Eα,β ∩Bα = Eα,β, so by Corollary 2.4∫

Eα,β

f dµ =

∫
Eα,β∩Bα

f dµ ≥ αµ(Eα,β ∩Bα) = αµ(Eα,β)

Replacing f, α, β by −f,−β,−α in the above computation gives
−f = −f ; −f = −f̄ and∫

Eα,β

f dµ ≤ βµ(Eα,β).

We now have αµ(Eα,β) ≤ βµ(Eα,β), so for β < α we have µ(Eα,β) = 0
and f̄ = f µ-almost everywhere.

We next show that f̄ ∈ L1(X,µ): Let

gn :=

∣∣∣∣∣ 1n
n−1∑
i=0

f(T i(x))

∣∣∣∣∣ ≤ 1

n

n−1∑
i=0

|f(T i(x))|,

then
∫
gn dµ ≤

∫
|f | dµ and by Fatou’s Lemma and Lemma 2.1∫

|f̄ | dµ =

∫
lim gn dµ ≤ lim inf

∫
gn dµ ≤

∫
|f | dµ.

Finally we show
∫
f dµ =

∫
f̄ dµ for µ(X) <∞:

Set Dn
k :=

{
x ∈ X : k

n
≤ f̄(x) < k+1

n

}
for k ∈ Z, n ≥ 1. Applying

Corollary 2.4 and observing that for ε > 0 we have Dn
k ∩ B k

n
−ε = Dn

k

we obtain
∫
Dnk
f dµ ≥

(
k
n
− ε
)
µ(Dn

k ), so
∫
Dnk
f dµ ≥ k

n
µ(Dn

k ) and∫
Dnk

f̄ dµ ≤ k + 1

n
µ(Dn

k ) ≤ 1

n
µ(Dn

k ) +

∫
Dnk

f dµ.

It follows that
∫
X
f̄ dµ ≤ 1

n
µ(X) +

∫
X
f dµ and therefore

∫
X
f̄ dµ ≤∫

X
f dµ.



5

Taking −f instead of f in the above computation we get
∫
X
−f dµ ≤

−
∫
X
f dµ, so

∫
X
f dµ ≥

∫
X
f dµ. Since f̄ = f almost everywhere we

get ∫
X

f̄ dµ =

∫
X

f dµ.

�

Theorem 2.6. (Lp-Ergodic Theorem, V. Neumann) For 1 ≤ p < ∞
and T a measure preserving map on a probability space (X,µ) and
f ∈ Lp(X) 1

n

∑n−1
k=0 U

k
Tf converges in Lp-norm to a function f̄ ∈ Lp as

n→∞ with UT f̄ = f̄ .

Proof. For f bounded and measurable we have by the individual er-
godic theorem 2.5 1

n

∑n−1
k=0 f(T kx) → f̄(x) almost everywhere with

f̄ ∈ L∞(X). By Lebesgue dominated convergence theorem we get∥∥∥∥∥ 1

n

n−1∑
k=0

Uk
Tf − f̄

∥∥∥∥∥
p

→ 0, f̄ ∈ L∞(X,µ).

It follows from the individual ergodic theorem 2.5that f̄ ◦ T = f̄ .
If f is unbounded and ε > 0 we find a bounded function fε with

‖f − fε‖p < ε. Since the operators 1
n

∑n−1
k=0 U

k
T are contractions f̄ε

converges as ε→ 0 to some f̄ in Lp-norm. It follows that∥∥∥∥∥ 1

n

n−1∑
k=0

Uk
Tf − f̄

∥∥∥∥∥
p

≤

∥∥∥∥∥ 1

n

n−1∑
k=0

Uk
Tfε − f̄ε

∥∥∥∥∥
p

< 2ε

for sufficiently large n, so f converges to f̄ in Lp-norm. �
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3. Ergodic Maps

On a probability space (X,B, µ) a measure preserving map T which
satisfies µ(B) ∈ {0, 1} for all B ∈ B with T-1(B) = B is ergodic. So
ergodic maps allow no measure theoretical non trivial decomposition
in T -invariant subsets.

{er1}
Theorem 3.1. The following are equivalent:

i) T is ergodic;
ii) B ∈ B with µ(T-1(B)4B) = 0 implies µ(B) ∈ {0, 1};

iii) A ∈ B with µ(A) > 0 implies µ (∪∞n=1T
−nA) = 1;

iv) For A,B ∈ B with µ(A) > 0, µ(B) > 0 there is n ∈ N with
µ(T−nA ∩B) > 0;

v) For A,B ∈ B 1
n

∑n−1
k=0 µ(T−kA ∩B)→ µ(A)µ(B).

Proof. i)⇒ ii): Assume B ∈ B with µ(T-1(B)4B) = 0. For n ≥ 0

T−nB 4B ⊂ ∪n−1
i=0 T

−i−1B 4 T−iB = ∪n−1
i=0 T

−i(T-1(B)4B),

so µ(T−nB 4B) ≤ nµ(T-1(B)4B) = 0. This yields

µ(∪∞i=nT−iB 4B) ≤
∞∑
i=n

µ(T−i(B)4B) = 0

and since ∪∞i=nT−iB is decreasing in n with µ(∪∞i=nT−iB) = µ(B) we
obtain for B∞ := ∩∞n=0 ∪∞i=n T−iB: µ(B∞ 4 B) = 0 and therefore
µ(B∞) = µ(B). We see that

T-1(B∞) = ∩∞n=0 ∪∞i=n T−i−1B = ∩∞n=0 ∪∞i=n+1 T
−iB = B∞.

Since T is ergodic and µ(B∞) = µ(B) we obtain µ(B) = µ(B∞) ∈
{0, 1}.

ii)⇒ iii): Assume µ(A) > 0 and set A1 := ∪∞i=1T
−iA. We have

T-1(A1) ⊂ A1 and since T is measure preserving µ(T-1(A1)4 A1) = 0.
By assumption µ(A1) ∈ {0, 1} but T-1(A) ⊂ A1 and µ(T-1(A)) =
µ(A) > 0, so µ(A1) = 1.

iii)⇒ iv): By assumption

0 < µ(B) = µ(B ∩ ∪∞i=1T
−i(A)) = µ(∪∞i=1B ∩ T−i(A)),

so µ(B ∩ T−n(A)) > 0 for some n.
iv)⇒ i): For B ∈ B with T-1(B) = B and 0 < µ(B) < 1 we get

0 = µ(B ∩ (X \B)) = µ(T−n(B) ∩X \B) for all n contradicting iv).
ii)⇒ v): For f := χA the individual ergodic theorem 2.5 implies

1

n

n−1∑
i=0

χA(T ix)→ f̄ with f̄ = f̄ ◦ T a.e.
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Applying ii) to the sets B := {x : f̄(x) ∈ [a, b]} we see that f̄ is
constant a.e., so f̄(x) =

∫
f̄ dµ =

∫
f dµ = µ(A) a.e., so

1

n

n−1∑
i=0

χA(T ix)χB → µ(A)χB for µ a.a. x

and

1

n

n−1∑
k=0

µ(T−kA ∩B)→ µ(A)µ(B)

by Lebesgue convergence theorem.
[v)⇒ i)]: For E ∈ B with T-1E = E we apply v) to A = B = E,

then

1

n

n−1∑
k=0

µ(E)→ µ(E)2

so µ(E) = µ(E)2 and µ(E) ∈ {0, 1}.
�
{er2}

Theorem 3.2. Let (X,B, µ) be a probability space with a measure pre-
serving map T . Then the following are equivalent:

i) T is ergodic;
ii) A measurable function f on X with f ◦ T (x) = f(x)∀x ∈ X is

constant almost everywhere;
iii) A measurable function f on X with f ◦ T (x) = f(x) for almost

all x ∈ X is constant almost everywhere;
iv) A measurable square integrable function f on X with f ◦T (x) =

f(x)∀x ∈ X is constant almost everywhere;
v) A measurable square integrable function f on X with f ◦T (x) =

f(x) for almost all x ∈ X is constant almost everywhere;

Proof. Clearly iii)⇒ii)⇒iv) and iii)⇒v)⇒iv). We show i)⇒iii) and
iv)⇒i).

i)⇒iii): Assume T is ergodic and f measurable with f = f ◦T almost
everywhere. For

Ak,n :=

{
x :

k

2n
≤ f(x) <

k + 1

2n

}
we have T-1Ak,n 4 Ak,n ⊂ {x : f ◦ T (x) 6= f(x)}. It follows that
µ(T-1Ak,n 4 Ak,n) = 0, so by Theorem 3.1 µ(Ak,n) ∈ {0, 1}. We see
that for all n there is k(n) with µ(Ak(n),n) = 1. So µ(∩nAk(n),n) = 1
and f is constant on ∩nAk(n),n, so f is constant almost everywhere.
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iv)⇒i): Let T-1E = E for some E ∈ B. Then χE is square integrable
with χE ◦ T (x) = χE(x) for all x, so by assumption χE = 0 a.e. or
χE = 1 a.e. and it follows that µ(E) ∈ {0, 1}.

�

Corollary 3.3. For f ∈ L1(X) and T ergodic we have

1

n

n−1∑
k=0

f ◦ T k →
∫
X

f dµ a.e..

Proof. By the individual ergodic theorem 2.5 the sums converge to
f̄ = f̄ ◦ T a.e. but

∫
X
f dµ =

∫
X
f̄ dµ = f̄ a.e.. �

Example 3.4. Consider the map T : [0, 1) 7→ [0, 1), x 7→ 2x mod 1
with Lebesgue measure λ on [0, 1). T is measure preserving since
λ(T-1((a, b))) = λ((a, b)) for all intervals (a, b).

For f ∈ L2([0, 1)) with Fourier expansion f(x) =
∑

n∈Z ane
i2πnx we

have f ◦ T (x) =
∑

n∈Z bne
i2πnx with b2n = an and b2n+1 = 0 ∀n ∈ N.

Therefore f = f ◦ T a.e. implies an = 0 for n 6= 0, so f is constant
a.e. and by Theorem 3.2 T is ergodic.

As an application we get:

Theorem 3.5. (Borel Theorem on Normal Numbers, Borel 1909) Al-
most all (w.r.t. Lebesgue measure) numbers in [0, 1) are normal in
basis 2, that is in the binary representation of almost all numbers the
digit 1 appears with asymptotic density 1/2.

Proof. Let T be the ergodic map x 7→ 2x as in the example above.
Allmost all numbers in [0, 1) have a unique binary representation. If
the binary representation of some x ∈ [0, 1) is 0, a1a2 . . ., with ai ∈
{0, 1}, then Tx has binary representation Tx = 0, a2a3 . . .. We have
χ[1/2,1)(x) = a1, so the asymptotic density of the digit 1 is

lim
n→∞

1

n

n∑
i=1

ai = lim
n→∞

1

n

n−1∑
i=0

χ[1/2,1)(T
ix),

which since T is ergodic is just
∫

[0,1)
χ[1/2,1)(x) dλ(x) = 1/2. �

Example 3.6. Irrational rotations of the torus. Consider the map
Tx = x+ α mod 1 for some α ∈ R \Q. We show that T is ergodic:

For f ∈ L2(T) with Fourier expansion f(x) =
∑

n∈Z ane
2πinx, we

have
UTf(x) = f(x+ α) =

∑
n∈Z

ane
2πinαe2πinx.

Now UTf(x) = f(x) gives an = ane
2πinα, therefore an = 0 for n 6= 0

and f(x) = a0, so by Theorem 3.2 T is ergodic.
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4. Mixing maps and spectral properties

By Theorem 3.1 we have for ergodic maps T :

1

n

n−1∑
k=0

µ(T−kA ∩B)→ µ(A)µ(B)

∀A,B ∈ B, which motivates the following definitions: A measure pre-
serving map T is weak mixing if 1

n

∑n−1
k=0 |µ(T−kA∩B)−µ(A)µ(B)| → 0

∀A,B ∈ B. A measure preserving map T is strong mixing if |µ(T−kA∩
B)− µ(A)µ(B)| → 0 ∀A,B ∈ B.

Clearly strong mixing implies weak mixing, which implies ergodicity.
{smix}

Theorem 4.1. T is strong mixing iff for all f, g ∈ L2(X) (Un
T f, g)→

(f, 1)(1, g) as n→∞.

Therefore T is strong mixing iff Un
T f →

∫
X
f dµ in the weak topology

of L2(X).

Proof. If T is strong mixing the asserted convergence holds for char-
acteristic functions, therefore for simple functions, and since simple
functions are dense in L2(X) for all functions.

The converse is obvious by considering characteristic functions. �
{ersiev}

Theorem 4.2. T is ergodic iff 1 is a simple eigenvalue of UT ∈
L(L2(X)).

Proof. Constant functions are UT -invariant, so 1 is always an eigenvalue
of UT .

If 1 is a simple eigenvalue, then for B = T-1(B) we have UTχB = χB,
so χB is constant µ-a.e., so T is ergodic.

The converse implication is an immediate consequence of Theorem
3.2 v). �

Theorem 4.3. If T is ergodic then the eigenvalues of UT are simple
and the set of eigenvalues is a subgroup of {z : |z| = 1}.

Proof. Since UT is an isometry by Lemma 2.1 all eigenvalues λ of UT
satisfy |λ| = 1. So if fλ is eigenfunction with eigenvalue λ, then

UT |fλ| = |UTfλ| = |λfλ| = |fλ|

and |fλ| is constant a.e. by Theorem 4.2.
If fν is an eigenfunction with eigenvalue ν we have, since fλ 6= 0 a.e.,

UT

(
fν
fλ

)
=
ν

λ

fν
fλ
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a.e. and fν/fλ is an eigenfunction with eigenvalue ν/λ. With Theorem
4.2 it follows that the eigenvalues define a subgroup.

Taking ν = λ and applying Theorem 4.2 we see that fν = cfλ a.e.,
so all eigenvalues are simple. �

Recall that a subset S of N has density 0 if

lim
N→∞

1

N
(#{n ∈ S : n ≤ N}) = 0,

where #A denotes the cardinality of the set A.
{wmix}

Theorem 4.4. For a measure preserving map T the following are
equivalent:

i) T is weak mixing;
ii) limn→∞

1
n

∑n−1
i=0 |(Uk

Tf, g)− (f, 1)(1, g)| = 0∀f, g ∈ L2(X);
iii) For A,B ∈ S, S being a semiring generating B, there is E ⊂ N

with density 0 and

lim
(n→∞n/∈E )

µ(T−nA ∩B) = µ(A)µ(B);

iv) T × T is weak mixing on X ×X;
v) T ×S is ergodic on X ×Y for all ergodic transformations S on

Y ;
vi) T × T is ergodic;

We first need:

Lemma 4.5. (Koopman, v. Neumann, 1932) Let f : N → R+ be{kvn}
bounded. Then limn→∞

1
n

∑n−1
k=0 f(k) = 0 iff there is E ⊂ N with density

0 such that lim(n→∞n/∈E ) f(n) = 0.

Proof. Since any sequence converging to 0 has arithmetic means con-
verging to 0

lim
(n→∞n/∈E )

f(n) = 0 gives lim
n→∞

1

n

∑
(0≤k<n
n/∈E )

f(k) = 0.

Clearly any bounded function f satisfies limn→∞
1
n

∑
(0≤k<n
n∈E ) f(k) = 0

if E has density 0, so limn→∞
1
n

∑
0≤k<n f(k) = 0 if lim(n→∞n/∈E ) f(n) = 0.

Conversely assume limn→∞
1
n

∑
0≤k<n f(k) = 0.

We define a density fuction

d(f, n) :=
1

n

n−1∑
k=0

f(k), d(A, n) := d(χA, n)
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and set

E0 := {n ∈ N : 1 ≤ f(n)}, Ei := {n ∈ N : 2−i ≤ f(n) < 2−i+1}.

Then for all i Ei has density 0 and therefore ∪Li=0Ei has density 0 for
all L.

Set nL := max({n : d(∪Li=0Ei, n) > 1
L
} ∪ {1}). It is easily seen that

nL+1 ≥ nL and nL →∞ as L→∞ unless f(n) = 0 for a.a n.
For

E :=
⋃
L∈N

EL ∩ (nL,∞).

we have 1
L
≥ d(∪Li=0Ei, n) for nL < n and d(∪Li=0Ei, n) ≥ d(E, n) for

n ≤ nL+1, so for nL < n ≤ nL+1 we get d(E, n) ≤ 1
L

. Since nL goes to
infinity this shows that E has density 0. �

Proof. (Theorem 4.4)
i)⇔ ii)As in the proof of Theorem 4.1 we first consider characteristic

functions, then simple functions and finally extend by continuity to all
of L2(X).

i) ⇔ iii) This is a consequence of applying the Koopman - V. Neu-
mann Lemma 4.5 to f(n) = |µ(T−nA∩B)− µ(A)µ(B)| and observing
that if i) holds for A,B ∈ S it holds for A,B in the ring R gen-
erated by S since elements in R are finite disjoint unions of sets in
S and finally approximating sets A,B ∈ B by sets Ã, B̃ ∈ R with
µ(A4 Ã) < ε, µ(4Ã) < ε.

iii) ⇒ iv): By the equivalence of i) and iii) it follows that iii) holds
for all A,B ∈ B if it holds for all A,B in some semiring generating B.
So by assumption for A,B,C,D ∈ B there are subsets E1, E2 of N of
density 0 such that

lim
(n→∞n/∈E1

)
µ(T−nA ∩ C) = µ(A)µ(C), lim

(n→∞n/∈E2
)
µ(T−nB ∩D) = µ(B)µ(D).

E := E1 ∪ E2 is a set with density 0 for which we have

lim
(n→∞n/∈E )

|µ× µ((T × T )−n(A×B) ∩ (C ×D))

−µ× µ(A×B)µ× µ(C ×D)|
= lim

(n→∞n/∈E )
|µ(T−nA ∩ C)µ(T−nB ∩D)− µ(A)µ(B)µ(C)µ(D)|

≤ lim
(n→∞n/∈E )

µ(T−nA ∩ C)|µ(T−nB ∩D)− µ(B ∩D)|

+µ(B)µ(D)|µ(T−nA ∩ C)− µ(A)µ(C)| = 0.
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By the equivalence of i) and iii) this is just ergodicity of T ×T acting
on X ×X.

iv)⇒ v): If T ×T is weak mixing on X×X it follows by considering
the sets A×X that T is weak mixing.

As above we see that if

1

n

n−1∑
k=0

µ× ν((T × S)−k(A× C) ∩ (B ×D))→ µ(A)µ(B)ν(C)ν(D)

holds for A,B measurable subsets of X and C,D measurable subsets
of Y .

1

n

n−1∑
k=0

µ× ν((T × S)−k(Ã) ∩ (B̃))→ µ× ν(Ã)µ× ν(B̃)

holds for all measurable Ã, B̃ in X × Y . So by Theorem 3.1 we have
to show the above limit for rectangles A× C and B ×D only:

We have

1

n

n−1∑
k=0

µ× ν[(T × S)−k(A× C) ∩ (B ×D)] =

=
1

n

n−1∑
k=0

µ(T−kA ∩B)ν(S−kC ∩D) =

=
1

n

n−1∑
k=0

µ(A)µ(B)ν(S−kC ∩D)

+
1

n

n−1∑
k=0

[
µ(T−kA ∩B)− µ(A)µ(B)

]
ν(S−kC ∩D).

Since T is weak mixing∣∣∣∣∣ 1n
n−1∑
k=0

[
µ(T−kA ∩B)− µ(A)µ(B)

]
ν(S−kC ∩D)

∣∣∣∣∣
≤ 1

n

n−1∑
k=0

∣∣µ(T−kA ∩B)− µ(A)µ(B)
∣∣→ 0

and as S is ergodic

1

n

n−1∑
k=0

µ(A)µ(B)ν(S−kC ∩D)→ µ(A)µ(B)ν(C)ν(D),

so the claim follows.
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v) ⇒ vi): Applying v) to (X × {1}, T × Id) we see that T is ergodic
and by v) T × T is ergodic.

vi) ⇒ iii) For A,B ∈ B we have

1

n

n−1∑
k=0

µ(T−kA ∩B)− µ(A)µ(B))2

=
1

n

n−1∑
k=0

µ(T−kA ∩B)2 − 2µ(A)µ(B)
1

n

n−1∑
i=0

µ(T−kA ∩B)

+(µ(A)µ(B))2

=
1

n

n−1∑
k=0

µ× µ((T × T )−k(A× A) ∩ (B ×B))

−2µ(A)µ(B)
1

n

n−1∑
k=0

µ× µ((T × T )−k(A×X) ∩ (B ×X))

+(µ(A)µ(B))2.

If T × T is ergodic this converges as n→∞ to

µ× µ(A× A)µ× µ(B ×B)

−2µ(A)µ(B)µ× µ(A×X)µ× µ(B ×X) + (µ(A)µ(B))2

= (µ(A)µ(B))2 − 2µ(A)2µ(B)2 + µ(A)2µ(B)2 = 0.

By Lemma 4.5 1
n

∑n−1
i=1 a

2
i converges to 0 iff 1

n

∑n−1
i=1 |ai| converges to 0,

so the claim follows. �

Theorem 4.6. If T is weak mixing all square-integrable eigenfunctions
of UT are constant a.e. If T is measure preserving and invertible with
the constant functions being the only square-integrable eigenfunctions
of UT , then T is weak mixing.

Proof. Assume f ∈ L2(X), UTf = λf, |λ| = 1, then for g(x, y) :=

f(x)f(y) we have

T × Tg(x, y) = g(Tx, Ty) = f(Tx)f(Ty) = λλ̄g(x, y) = g(x, y),

so g is T × T -invariant. As T × T is ergodic by Theorem 4.4 we have
g is constant µ× µ-a.e., so f is constant µ-a.e..

Let V be the closed linear hull of the eigenfunctions of UT . For
f ∈ V ⊥, g ∈ L2(X) the function λ 7→ (Eλf, g) is continuous in λ
((Eλ)λ∈σ denoting the partition of unity w.r.t. the operator UT as given
by the spectral theorem for unitary operators and σ the spectrum of
UT ). So

∫
D
d(Eλf, g) d(Eλf, g) = 0 if D is the diagonal {(λ, λ) : λ ∈ σ}

in σ × σ.
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We have if µ denotes the measure corresponding to the function
λ 7→ Eλf, g) of bounded variation

1

n

n−1∑
k=0

|(Uk
Tf, g)|2 =

1

n

n−1∑
k=0

∣∣∣∣∫
σ(UT )

λk d(Eλf, g)

∣∣∣∣2
=

1

n

n−1∑
k=0

∣∣∣∣∫
σ(UT )

λk dµ(λ)

∣∣∣∣2
=

∫∫
σ×σ

1

n

n−1∑
k=0

λkζk dµ(λ)dµ̄(ζ)

=

∫∫
σ×σ\D

1

n

1− (λζ̄)n

1− λζ̄
dµ(λ)dµ̄(ζ)

and by Lebesgue convergence theorem (
∣∣∣1−(λζ̄)n

1−λζ̄

∣∣∣ =
∣∣∑n−1

i=0 (λζ̄)i
∣∣ ≤ n):

lim
n→∞

1

n

n−1∑
k=0

|(Uk
Tf, g)|2 = 0 ∀f ∈ V ⊥, g ∈ L2.

The Koopman v. Neumann lemma 4.5 yields

lim
n→∞

1

n

n−1∑
k=0

|(Uk
Tf, g)| = 0 ∀f ∈ V ⊥, g ∈ L2.

Since constant functions are the only eigenfunctions we see f−(f, 1)1 ∈
V ⊥, so

0 = lim
n→∞

1

n

n−1∑
k=0

|(Uk
Tf − (f, 1)1, g)|

= lim
n→∞

1

n

n−1∑
k=0

|(Uk
Tf, g)− (f, 1)(g, 1)|

and the claim follows by Theorem 4.4. �
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5. Topological Dynamics

(X,G) with G a group of homeomorphisms on a compact metric
space X is a dynamical system. If G is generated by a single homeo-
morphism T we write (X,T ) for (X, {T n : n ∈ Z}).

A subset Y of X is invariant if gY = Y for all g ∈ G, so for dynamical
systems (X,T ) Y is invariant iff Y = T (Y ).

A dynamical system (X,T ) is minimal if X contains no nontrivial
invariant subset.

For a dynamical system (X,G) the set O(x) := {gx : g ∈ G} is
called the orbit of x. {misu}
Theorem 5.1. For a dynamical system (X,G) there is a closed non
empty subset Y of X such that (Y,G|Y ) is a minimal dynamical system.

Proof. Set inclusion gives a partial order on the set D of non empty
closed T -invariant subsets of X. By compactness the intersection of
a linearly ordered subset of D is non empty. It is also T -invariant, so
it is a lower bound for this linearly ordered subset of D. The Lemma
of Zorn now gives the existence of a minimal element in D, i.e. of a
minimal dynamical system. � {mino}
Theorem 5.2. For a dynamical system (X,T ) the following are equiv-
alent:

i) (X,T ) is minimal;

ii) {T nx : n ∈ N} = X for all x ∈ X;

iii) O(x) = X for all x ∈ X.

Proof. i) ⇒ ii): For x ∈ X set An := {T kx : k ≥ n}. Then A :=
∩n∈NAn is by compactness non empty and closed. Since T is a homeo-
morphism T (Ak) = Ak+1 and

T (A) = T (∩n∈NAn) = ∩n∈NT (An) = ∩n∈NAn+1 = A.

So A is T -invariant and by minimality of the dynamical system A = X.
Since {T nx : n ∈ N} = A1 ⊃ A the claim follows.

iii) ⇒ i): If Y is a closed T -invariant subset of X, then O(y) ⊂ Y
for y ∈ Y , so the assumption implies X = Y .

ii) ⇒ iii) is obvious. �

The dynamical system ([0, 1], T ) with Tx = x2 shows that without

the assumption of minimality for some x {T nx : n ∈ N} 6= O(x) and x
need not be recurrent. We have however:

Theorem 5.3. (Birkhoff Recurrence Theorem, 1927) For a dynamical {brec}
system (X,T ) there is x ∈ X and a sequence (nk) in N such that
T nkx→ x as k →∞.
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Proof. By Theorem 5.1 we may assume w.l.o.g. that X is minimal.
Then by Theorem 5.2 for x ∈ X the sequence (T nx) has a cluster

point z in X, since X is compact. By Theorem 5.2 x ∈ O(z), so for a
neighbourhood U of x there is l1 ∈ N with T l1z ∈ U . By continuity of
T l1 we have T l1s ∈ U for all s in some neighbourhood V of z. z ∈ O(x),
so there is l2 ∈ N with T l2x ∈ V . It follows that T l1+l2x ∈ U . �

• A dynamical system (X,T ) is topologically ergodic if any closed
T -invariant proper subset of X has empty interior.
• (X,T ) is topologically weakly mixing if (X ×X,T × T ) is topo-

logically ergodic.
• (X,T ) is topologically strongly mixing if for all nonempty open

subsets U, V of X there is n0 ∈ N such that T n(U) ∩ V 6= ∅ for
all n ≥ n0.

Theorem 5.4. In a dynamical system (X,T ) the following are equiv-
alent:

i) (X,T ) is topologically ergodic;
ii) The subset of elements of X with non dense orbit is of first

category;
iii) There is an element in X with dense orbit;
iv) For U, V non empty open subsets of X there is n ∈ Z with

T nU ∩ V 6= ∅.

Proof. i) ⇒ ii): If T is topologically ergodic then for any nonempty
open subset U ofX ∪i∈ZT i(U) is a dense subset, so for a coverB1, . . . , Bk

of X with balls of radius ε/2 and some Ul ⊂ X open, there is xl ∈
Ul, yl ∈ Bl+1, nl ∈ Z with T nlxl = yl. By continuity of T nl there
is an open subset Ul+1 of Ul such that T nl(Ul+1) ⊂ Bl+1. Starting
with an arbitrary open subset U0 of X we therefore find a sequence
U0 ⊃ U1 · · · ⊃ Uk of open sets and a sequence (ni) of integers such that
T ni(Ui+1) ⊂ Bi+1, i = 0, . . . , k − 1. It follows that any x ∈ Uk has an
ε-dense orbit, that is for y ∈ X there is nx,y ∈ Z with d(T nx,yx, y) < ε.
So the interior of the set Vε of elements with ε-dense orbit is dense and
we see that the set of elements without dense orbit ∪n∈NV {1

n

is of first

category.
ii) ⇒ iii) is immediate since compact spaces are of second category.
iii) ⇒ iv): If x has dense orbit then there are n1, n2 with T n1x ∈ V ,

T n2x ∈ U , so T n1−n2(T n2x) ∈ V and the claim follows with n = n1−n2.
iv) ⇒ i): If the maps T i generate for any non empty open subset of

X a dense subset of X, then there is no closed invariant proper subset
of X with non empty interior, so (X,T ) is topologically ergodic.

�
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In a dynamical system (X,T ) a point x ∈ X is uniformly recurrent
(or almost periodic) if for ε > 0 there is an increasing sequence (ni) in
N with d(T nix, x) < ε and supi ni+1 − ni <∞.

Theorem 5.5. (Gottschalk, 1944) A point x in a dynamical system {gott}
(X,T ) is uniformly recurrent iff (O(x), T ) is minimal.

Proof. If O(x) is minimal, then by Theorem 5.2 {T ny : n ∈ N} =

O(y) = O(x)∀y ∈ O(x). So for ε > 0 and y ∈ O(x) there is ny ∈ N
with d(T nyy, x) < ε. By continuity of T ny there is a neighbourhood
U(y) of y with d(T nyz, x) < ε for z ∈ U(y). By compactness there is a

finite cover of O(y) with such neighbourhoods U(y1), . . . , U(yk).

For n0 := max{n1, . . . , nk} we have for all y ∈ O(x) some w ∈
{y, Ty, . . . , T n0y} which satisfies d(x,w) < ε, so x is almost periodic.

If O(x) is not minimal, then for some y ∈ O(x) we have x /∈ O(y),
so for some α > 0 we have d(T ny, x) > α for all n. By continuity of
T n d(T nz, x) > α for all z in some neighbourhood Un(y) of y.

For k ∈ N there is n0 with T n0x ∈ ∩ki=1Ui(y). So d(T n0+lx, x) >
α ∀l ≤ k and x is not almost periodic. �

Two elements x1, x2 of a dynamical system (X,T ) are proximal if
there is z ∈ X and a sequence (nk)in N such that T nkx1 → z; T nkx2 →
z as k →∞.

Let XX denote the space of functions mapping X to itself. Endowed
with the topology of pointwise convergence it is by Tychonoff’s Theo-
rem a compact space. The closure of the set of functions {T n : n ∈ N}
in XX is the Ellis semigroup E = E(X,T ).

Theorem 5.6. For the Ellis semigroup E of a dynamical system (X,T )
we have:

i) Under composition of functions E is a semigroup;
ii) Right multiplication p 7→ pq is continuous in E;

iii) Left multiplication by a continuous element of E is continuous;
iv) Two points x1, x2 ∈ X are proximal iff there is p ∈ E with

p(x1) = p(x2);

v) {T nx : n ∈ N} = Ex ∀x ∈ X.

Proof. i) For p, q ∈ E we have to show that the composition pq is in E.
For ε > 0 and x1, . . . , xk ∈ X we find, since p ∈ E, some m ∈ N such
that d(Tm(q(xi)), pq(xi)) < ε for i ≤ k. By continuity of the map Tm

there are neighbourhoods Ui of q(xi) such that d(Tmy, pq(xi)) < ε for
y ∈ Ui. As q ∈ E there is n such that T nxi ∈ Ui and we then obtain
d(Tm+nxi, pq(xi)) < ε for 1 ≤ i ≤ k.
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ii) This is obvious since the set of r ∈ E for which d(pq(xi), rq(xi)) <
ε is a neighbourhood of p in the topology of pointwise convergence.

iii) If f is continuous at the points p(xi), i = 1, . . . , s, then for ε > 0
there is a δ > 0 such that d(f(p(xi)), f(yi)) < ε for d(p(xi), yi) < δ.
Since {q ∈ E : d(p(xi), q(xi)) < δ} is a neighbourhood of p in E left
multiplication by a continuous function in E is continuous.

iv) Any cluster point p of the sequence T nk satisfies p(x1) = p(x2) = z
if T nk(xi)→ z for k →∞.

Conversely if there is p with p(x1) = p(x2), then for any ε > 0 there is
nε ∈ N with d(T nε(xi), p(xi)) < ε/2 for i = 1, 2, so d(T nε(x1), T nε(x2)) <
ε.

v) Clearly Ex ⊃ O(x). Conversely any y = px is the limit of T nkx

for some sequence (nk), so y ∈ O(x). �

We define a right topological semigroup as a semigroup endowed with
a Hausdorff topology under which right multiplication p 7→ pq is con-
tinuous. Note that some authors refer to these semigroups as left topo-
logical semigroups!

Theorem 5.7. (Ellis, 1958) Any compact right topological semigroup{ellis}
S contains an idempotent, i.e. some element p ∈ S with p = p2.

Proof. If we order closed subsemigroups of S by set inclusion, com-
pactness and the Lemma of Zorn give the existence of a minimal closed
subsemigroup S0. Take p ∈ S0 and set Mp := {q ∈ S0 : qp = p}. Then
Mp is closed since S is right topological. S0p, as the continuous im-
age of a compact set, is a closed subsemigroup of S0, so by minimality
S0p = S0 and there is q in S0 with qp = p, so Mp is non empty. Since
Mp is also a semigroup it has to be S0 by minimality, therefore p ∈Mp

i.e. p is idempotent.
We have in fact shown that the minimal closed subsemigroups are

just the idempotents. �
{proxp}

Theorem 5.8. For x0 in the dynamical system (X,T ) the set L(x0)
of cluster points of {T nx0 : n ≥ 0} is T -invariant. Any minimal
dynamical subsystem (M,T ) of (L(x0), T ) contains an element m0 such
that m0 and x0 are proximal.

Proof. TL(x0) = L(x0) since the cluster points of the set {T nx0 : n ≥
0} are the cluster points of {T nx0 : n ≥ 1}. Since X is a metric space
there is for y ∈ L(x0) a sequence (nk) such that T nkx0 7→ y. Therefore
any cluster point p of {T nk : k ≥ 0} in the Ellis semigroup E satisfies
px0 = y, and Ex0 ⊃ L(x0).

Conversely if px0 = y, then there is a sequence (nk) ∈ N with
T nkx0 → y, so y ∈ L(x0). Therefore Ex0 = L(x0).
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Set F := {p ∈ E : px0 ∈M}, then F is non empty and closed since
the projection E → X : p 7→ px0 is continuous. As M ⊂ L(x0) = Ex0

we have Fx0 = M and since M is T -invariant any p ∈ E maps M to
itself. It follows that F 2 ⊂ EF ⊂ F and we see that F is a closed
semigroup.

By Theorem 5.7 there is an idempotent u in F . Then ux0 ∈ M
and ux0 and x0 are proximal since uux0 = ux0 and for (nk) with
T nk → u at the coordinates x0 and ux0, then T nkux0 → u2x0 = ux0

and T nkx0 → ux0.
�
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6. Applications to Ramsey Theory

Ramsey theory is a collection of theorems in combinatorics, asserting
that if some set is ”large” enough it contains some subset with a certain
structure. The set considered, the meaning of large and the definition
of the structure vary.

For example the classical infinite Ramsey party theorem (Ramsey,
1930) states that if we consider a party with infinitely many guests, it
is always possible to find either an infinite subset of these guests all of
which know each other or an infinite subset of guests in which noone
knows anyone else. In other words for any two-coloring of the set of
unordered pairs of naturals we can find an infinite subset of N for which
the corresponding pairs are monocromatic, i.e. all pairs have the same
color assigned.

In fact pick any guest a1 who knows infinitely many other guests,
eliminate all guests who do not know a1, then pick from the remaining
guests some a2 who knows infinitely many among the remaining and
eliminate all guests who do not know a2 and continue this way. We
either get an infinite sequence a1, a2, . . . of guests all of which know
each other, or we end up with an infinite subset of guests in which
noone knows infinitely many of this subset. In this case we pick any
guest b1 of this subset, eliminate the finite number of guests who know
b1, pick some b2 from the remaining guests, eliminate the finite number
of guests who know b2 and carry on this way. This construction never
ends since we started with an infinite number of guests and eliminated
only finitely many in each step, which yields an infinite sequence of
guests b1, b2, . . . which do not know each other.

By induction it is easy to generalize this statement to n−colorings
of the set of unordered pairs in N and to imply the finite Ramsey
theorem: For k, n ∈ N there is a number R(k, n) ∈ N such that for any
n−coloring of the unordered pairs of a set with at least R(k, n) there
is a subset with k elements, for which all pairs have the same color
assigned.

Ramseys party theorem gives a short proof of Schur’s theorem (1916):
In any n−coloring of N there are two numbers x, y s.t. x, y and x + y
have the same color. Simply assign to any pair zi < zj of naturals the
color of the number zj−zi. Then by Ramsey’s party theorem there are
three numbers z1 < z2 < z3 with z2 − z1, z3 − z2 and z3 − z1 have the
same color. For x = z2 − z1, y = z3 − z2 this yields Schur’s theorem.

We now show how recurrence properties in dynamical systems can be
used to prove theorems in infinite Ramsey theory. Our first application
is a generalization of Schur’s theorem.
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Let C1, . . . , Cr be a partition of N and consider a finite or infinite
sequence (pi), i = 1, 2, . . . in N. This sequence is called an IP-sequence
if there is some r0 ≤ r such that

∑
j ajpj ∈ Cr0 for any non-zero

sequence (aj) with aj = 1 for finitely many j and 0 otherwise. So (pi)
is an IP-sequence if all finite sums pj1 + pj2 + . . . + pjk are in Cr0 for
any 1 ≤ j1 < j2 < . . . < jk, k ≥ 1. If (pj) is an IP-sequence, this can
be thought of some Cr0 containing an infinite parallelepiped.

It was already shown by Hilbert, that any finite partition of N con-
tains finite IP-sequences of arbitrary length.

Theorem 6.1. (Hindman, 1974) For any finite partition N = C1 ∪
. . . ∪ Cr there is i ≤ r such that Ci contains an infinite IP-sequence.

Proof. (Furstenberg & Weiss)
Set X := ΛZ with Λ := {1, . . . , r} and

ω(n) =

{
j n ≥ 1 n ∈ Cj
1 n ≤ 0.

X endowed with the product topology is a compact metrizable space
on which we denote left translation by T : Tx(n) = x(n+ 1).

We therefore have to show that ω(n) has identical values for all n in
some infinite IP-set.

If ω were recurrent we could choose p1 > 0 such that ω(p1) = ω(0)
and define pk+1 > 0 inductively by requiring that T pk+1ω(n) = ω(0)

for all n ∈ Sk :=
{∑k

i=1 aipi : ai ∈ {0, 1}
}

. Then ω(n) = ω(0) for all

n ∈ Sk+1 = Sk ∪ (pk+1 + Sk) and (pi) defines an infinite IP-sequence
with r0 = ω(0).

However ω need not be recurrent, but by Theorem 5.8 there is a m in
X, which is proximal to ω in some minimal subsystem. By Theorems
5.2and 5.5 ω is uniformly recurrent. This allows us to refine the above
argument to find an IP-set on which both ω and m take value m(p1):

As m is uniformly recurrent there is l0 s.t. for all s ∈ N there is
0 ≤ l < l0 with m(0) = m(s + l). As m and ω are proximal we
can choose p1 such that ω(p1) = m(p1) = m(0). We define pk ∈ N
inductively: Set

S∗k :=

{
k∑
i=1

aipi : ai ∈ {0, 1}

}
\ {0}

and assume that p1, . . . , pk have been chosen such that ω(n) = m(n) =
ω(p1) for n ∈ S∗k . Then Uk := {x ∈ X : x(n) = ω(p1)∀n ∈ S∗k} is a
neighbourhood of both m and ω.
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By uniform recurrence of m there is some lk ∈ N such that ∀s ∈ N
there is 0 ≤ l < lk with T s+lm ∈ Uk. Since m and ω are proximal
there is rk ∈ N with T rkω(n) = T rkm(n) for 0 ≤ n < lk +

∑k
i=1 pi. We

therefore can choose 0 ≤ l < lk such that for pk+1 := rk + l we have
T pk+1m ∈ Uk. It follows that ω(n) = m(n) = m(0) for n ∈ pk+1 + Sk.
Since Sk+1 = Sk ∪ (pk+1 + Sk) we have ω(n) = m(n) = m(0) for
n ∈ S∗k+1. �

For a dynamical system (X,T ) a closed subset A of X is called
homogeneous, if there is a groupG of homeomorphisms ofX commuting
with T , such that (A,G) is a minimal dynamical system. Note that A
need not be T -invariant!

{homsub1}
Proposition 6.2. Let A be a homogeneous subset of X and assume
that for ε > 0 there is x0, y0 ∈ A, n0 ≥ 1 with d(T n0x0, y0) < ε. Then
for all ε > 0 there is z ∈ A, n ≥ 1 with d(T nz, z) < ε.

Proof. The set V := {(x, y) : d(x, y) < ε/2} is an open subset of
the compact set X × X and the homeomorphisms g, g ∈ G induce
continuous maps again denoted by g: X×X → X×X, (x, y) 7→ (gx, y).

Since (A,G) is minimal we have for x ∈ A : Gx = A, ∪g∈Gg−1V ⊃
A × A and there are g1, . . . , gk ∈ G such that g−1

1 V ∪ · · · ∪ g−1
k V is a

finite cover of A× A, so min{d(gix, y) : i ≤ k} < ε/2 for all x, y ∈ A.
Let δ > 0 be such that d(gix, gix

′) < ε/2 for d(x, x′) < δ and 1 ≤
i ≤ k.

By assumption there is x0, y0 ∈ A, n1 ≥ 1 with d(T n1x0, y0) < δ, so

d(giT
n1x0, giy0) = d(T n1gix0, giy0) < ε/2 ∀1 ≤ i ≤ k.

For i with d(giy0, y) < ε/2 we get d(T n1gix0, y) < ε.
Therefore the assumption holds for all y0 ∈ A, i.e. for z0 ∈ A, ε > 0

there is 0 < ε1 < ε/2, z1 ∈ A, n1 ≥ 1 with d(T n1z1, z0) < ε1.
By continuity of T n1 there is ε2 < ε1 such that d(T n1z, z0) < ε1 for

d(z, z1) < ε2. We then choose n2, z2 with d(T n2z2, z1) < ε2, so we get
d(T n2+n1z2, z0) < ε/2.

Proceeding inductively we have sequences (εi), (zi), (ni), with

d(T nizi, zi−1) < εi < ε/2

and d(z, zi−1) < εi implies d(T ni−1z, zi−2) < εi−1, which yields

d(T njzj, zj−1) < εj

d(T nj+nj−1zj, zj−2) < εj−1

...

d(T nj+nj−1+...+ni+1zj, zi) < εi+1 < ε/2.
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By compactness of A there are i < j, such that d(zi, zj) < ε/2 and
d(T nzj, zi) < ε/2 for n = ni+1+. . .+nj, which gives d(T nzj, zj) < ε. �

{homsub2}
Proposition 6.3. Let A be a homogeneous subset of X and assume
that for ε > 0 there is x0, y0 ∈ A, n0 ≥ 1 with d(T n0x0, y0) < ε. Then
there is x ∈ A which is recurrent in (X,T ).

Proof. We have to show that ∪nEn 6= A for

En := {x ∈ A : d(T kx, x) ≥ 1/n∀k ≥ 1}.
Since the sets En are closed it suffices by Baire’s category theorem to
show that the interior E◦n of En is empty for all n.

So assume V := E◦n 6= ∅ for some n. Then by minimality of (A,G)
for a ∈ A there is g ∈ G with ga ∈ V or equivalently A ⊂ ∪g∈GgV ,
so there are g1, . . . , gr ∈ G with ∪i≤rg−1

i V ⊃ A and a δ > 0 such that
d(gix, giy) < 1/n for d(x, y) < δ and i ≤ r.

By Proposition 6.2 there is z ∈ A, k ≥ 1 with d(T kz, z) < δ. Take
i ≤ r such that z = g−1

i v for some v ∈ V , then d(giT
kz, giz) =

d(T kv, v) < 1/n contradicting v ∈ En. �

Theorem 6.4. (Furstenberg, Weiss, 1978) Let T1, . . . , Tk be commut- {fwthm}
ing homeomorphisms of a compact metric space X. Then there is x ∈
X such that for all ε > 0 there is n ≥ 1 with d(T ni x, x) < ε∀i = 1, . . . , k.

Proof. For k = 1 this is just Birkhoff’s recurrence theorem 5.3. We
prove by induction.

Let G be the group generated by T1, . . . , Tk. We may assume by
Theorem 5.1 that (X,G) is minimal. Set T = T1×· · ·×Tk, then T and
G act on Xk by T (x1, . . . , xk) = (T1x1, . . . , Tkxk) and g(x1, . . . , xk) =
(gx1, . . . , gxk), g ∈ G. We endow Xk with the metric

d((x1, . . . , xk), (y1, . . . , yk)) = max{d(xi, yi) : i ≤ k}.
g ∈ G and T commute and if ∆ denotes the diagonal in Xk then (∆, G)
being isomorphic to (X,G) is minimal. Therefore ∆ is a homogeneous
subset of (Xk, T ).

For i = 1, . . . , k − 1 there is by induction hypothesis a z ∈ X and
nm →∞ with T nmi T−nmk z → z for i = 1, . . . , k − 1.

Set x∗0 = (T−nmk z, T−nmk z, . . . , T−nmk z), y∗0 = (z, z, . . . , z) ∈ Xk, then
for ε > 0 there is m such that

d(T nmx∗0, y
∗
0) = d(T nm1 × T nm2 × . . .× T nmk x∗0, y

∗
0)

= d((T nm1 T−nmk z, . . . , T nmk−1T
−nm
k z, z), (z, . . . , z)) < ε.

By Proposition 6.3 there is x∗ ∈ ∆ which is recurrent under T =
T1 × . . .× Tk.

�
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Theorem 6.5. (Van der Waerden, 1927) Any finite partition of N =
C1∪ . . .∪Cr contains a set Cr0 with arithmetic progressions of arbitrary
length, i.e. for k ∈ N there is a, b ∈ N with a+ ib ∈ Cr0 for 0 ≤ i ≤ k.

Proof. Set Ω := ΛZ, Λ := {1, . . . , r} and

d(ω1, ω2) = 2−s, s = inf{|n| : ω1(n) 6= ω2(n)}.
We denote left translation on Ω by σ: σω(n) = ω(n+1). Define ω0 ∈ Ω
by

ω0(n) =

{
j n ≥ 1 n ∈ Cj
1 n ≤ 0.

Set X := Eω0, where E is the Ellis semigroup generated by σ. Then
X is closed and σ-invariant.

Applying the Furstenberg-Weiss theorem 6.4 to the space X and the
maps Ti := σi, i = 1, . . . , k and ε = 1 shows that there is x ∈ X, b ≥ 1
such that d(T bi x, x) < 1 ∀i = 1, 2, . . . , k. Therefore all elements σblx,
0 ≤ l ≤ k have the same 0-th coordinate, i.e. x(0) = x(b) = x(2b) =
. . . = x(kb).

As x is a cluster point of {σbω0} there is some a ≥ 0 such that
σaω0(lb) = x(lb) for 0 ≤ l ≤ k, so

ω0(a) = ω0(a+ b) = . . . = ω0(a+ kb).

�


