MODIFIED DEFECT CORRECTION
ALGORITHMS FOR ODES.
PART I: GENERAL THEORY

WINFRIED AUZINGER
HARALD HOFSTATTER
WOLFGANG KREUZER

Ewa WEINMULLER

ANUM PreprINT NoO. 1/03

TECHNISCHE

I UNIVERSITAT
I W IEN

VIENNA

WIEN UNIVERSITY OF

TECHNOLOGY

INSTITUTE FOR APPLIED MATHEMATICS
AND NUMERICAL ANALYSIS



Modified Defect Correction Algorithms for ODEs.
Part I: General Theory

W. Auzinger, H. Hofstatter, W. Kreuzer, E. Weinmiiller

Institute for Applied Mathematics and Numerical Analysis,
Vienna University of Technology,
Wiedner Hauptstrasse 8-10/115, A-1040 Wien, Austria, EU.
e-mail: w.auzinger@tuwien.ac.at

Abstract

The well-known method of Iterated Defect Correction (IDeC) is based on the following idea:
Compute a simple, basic approximation and form its defect w.r.t. the given ODE via a piecewise
interpolant. This defect is used to define an auxiliary, neighboring problem whose exact solution
is known. Solving the neighboring problem with the basic discretization scheme yields a global
error estimate. This can be used to construct an improved approximation, and the procedure
can be iterated. The fixed point of such an iterative process corresponds to a certain collocating
solution.

We present a variety of modifications to this algorithm. Some of these have been proposed
only recently, and together they form a family of iterative techniques, each with its particular
advantages. These modifications are based on techniques like defect quadrature (IQDeC), defect
interpolation (IPDeC), and combinations thereof. We investigate the convergence on (locally)
equidistant and nonequidistant grids and show how superconvergent approximations can be
obtained. Numerical examples illustrate our considerations.

The application to stiff initial value problems will be discussed in Part II of this paper.

1 Introduction

Since its introduction in the 1970’s, cf. e.g. [7],[12], [13], the idea of iterated defect correction (IDeC)
has been successfully applied to various classes of differential equations.

The purpose of this work is to describe some useful, recently developed modifications of the
IDeC procedure, and to present them in a unified framework. In particular, their performance when
applied to stiff problems will be discussed. The material is subdivided into two papers. In present
Part T we describe the algorithmic details of the major variants of the procedures and and present
a convergence theory valid for smooth problems, with a moderately Lipschitz continuous right hand
side. Convergence proofs for two main versions are given in Appendix A. Here we will to some
extent refer to previous work, cf. [4], [11], but we try keep the presentation self-contained. Numerical
experiments illustrate our results.

*Supported by the Austrian Research Fund (FWF) grant P-15030.



In principle, the algorithms developed here can be applied to linear or nonlinear ODE systems
with initial or boundary conditions. In this paper, we consider the case of initial value problems
(IVPs) in view of Part II [3], which will be devoted to stiff IVPs.

2 The method of Iterated Defect Correction (IDeC)

2.1 Review of basic ideas and definitions

Consider a system of ordinary differential equations (ODE) with given initial condition,

y'(t) = f(ty(), (2.1a)
y(to) = o, (2.1b)

and exact solution y* : [to, tena] — R™. Assume that a first approximation (grid function) {772[0]} has

been computed on a given grid {¢;, ¢ = 0,1, ...} using a basic discretization scheme. We concentrate

]

on a particular case, namely that the 771{0 are computed by the backward Euler scheme,

TI[O} - 77[0}1 [0]
——— = f{tun ), (22)
ti —ti
for = 1,2,.... This choice is not really essential; for other simple one-step schemes like the forward

Euler scheme or the trapezoidal rule, for instance, the procedure can be realized in an analogous
way. For the general framework see [12].

Now we assume that the integration interval [to,fenq| is divided into subintervals I, =
[t;—1,t;], 7 =1...N, each of them containing m+1 grid points (including the end points t;_;,t;).
Let

h; =t;, —t;_q, and h:= max h;. (2.3)

[0]

Let us briefly motivate and describe the classical IDeC procedure. The 7, are interpolated by a

continuous piecewise polynomial function,

PO = pt),  for tel, (2.4)
where the pgo] are polynomials of degree < m. The resulting defect,
0 d o 0
avl(r) o= 5 pO0) — F(6, 1), (25)
which may expected to be small, is used to define a so-called neighboring problem,
y(t) = f(ty) +d(), (2.6a)
y(to) = o, (2.6b)

with exact solution pl(¢), by construction. Solving (2.6) by means of the basic scheme (backward
0

Euler) yields approximations m; pl%(t;) and a global error estimate

error estimate = WZ[O] —p(t;) = 77@[0] — y*(t;) = error, (2.7)
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Figure 1: Grid and interpolation intervals.

which is used to define an improved approximation 77@[1] = 777[0] - (’/T[O] — pl(¢;)) for the y*(¢;). This

i

procedure can be continued inductively in a straightforward manner. Its general form is

v 0 v v
= gl = (@ - ()
= 771[0] - (WZM - UZM), for v=0,1,.... (2.8)

The WZ[V} are the approximate solutions (obtained by backward Euler) of the neighboring problems

y'(t) = f(ty)+d(t), (2.9a)
y(to) = o, (2.9b)

with the defect
a(r) = M 0) — £, 1), (2.10)

where pl!(t) interpolates the 771[”].
In the sequel, we assume that the relative position of the interior points ¢; is the same in each
interval I;. It is characterized by m + 1 parameters ¢, £ =0...m, with 0 = ¢y <c; < -+ < ¢y <

¢m = 1. Accordingly, we use a notation for the grid points ¢; involving a double index,
tj’g I:tj,1+Cghj, j:1,2,..., EIOTTL, (211)

including the redundant but convenient notation ¢;,, = t,, = ¢;110, cf. Figure 1. For the ‘inner
stepsizes’ (on the t-grid) we write

hj,( = tjf — tj,f—l = (Cg — Cg_l)hj. (212)

Unless otherwise stated, the index range is always j =1... N, £ =1...m. In this sense, it is clear
what h — 0 means and how an asymptotic relation O(h) is to be interpreted (cf. e.g. (2.17) below).
] V]

With this denotation, the backward Euler equations defining the m;" = 7, read
A _
J, . PEL = F(tyemiD) +dY (), for v=0,1,..., (2.13)
4t ’
with the defect values p
A (t;0) = EPM (tj.0) = F(t50, 0" (t5.0))- (2.14)
The resulting approximations are
T]J[QH] = 77][.% - (W][Vg - 77]['/;), for v=0,1,..., (2.15)

cf. (2.8).



Remark 1 The IDeC iteration may be organized in a slightly different way based on local instead of global
error estimates (‘version B’ in the terminology of Stetter [12]). Moreover, the process may be restarted at
the begin of each interval I; by setting 7,0 := 77]['[5}1,m> assuming that K IDeC steps have been performed in
the interval I;_;. We do not consider these modifications here, because they are usually less effective for
stiff problems (cf. e.g. [2]).

We will illustrate our results using the (nonstiff) nonlinear ODE system

Vi = e+l -y - ),

2.16
v = yut+3ua(l =i — ), (2.16)
as a test example, with initial condition »(0) = (1,0)" and exact solution y*(t) = (cost,sint)". All
numerical experiments were performed in MATLAB 6 using IEEE double precision arithmetic and
Newton iteration with stringent tolerances.

2.2 Convergence behavior on equidistant and nonequidistant grids

It is well known that, under appropriate smoothness assumptions, the IDeC scheme is convergent
for h — 0. This means that if, for instance, an Euler scheme is used as the basic discretization on a
piecewise equidistant grid (equidistant in each I;), and if m is the degree of interpolation, then

177 = y*(t0) || = O, for v=0...m—1, (2.17)

and O(h™) is the maximal achievable order in general. The original proof of (2.17), cf. e.g. [7], is
based on an asymptotic expansion for the global error of the basic scheme. Results for other basic
schemes, including faster convergence rates depending on the basic order, have also been obtained.

Remark 2 Whenever we use the symbol O(h), this means the ‘classical order’ of a discretization method,
i.e. the asymptotic order for h — 0 in the conventional sense. In particular, the error constant involved is
allowed to depend on the right hand side f, in particular on a Lipschitz constant for f, and on certain higher
derivatives of f and y* which are assumed to be sufficiently smooth. The convergence results presented in
this paper (Propositions 1 and 2) are to be understood in this sense. In the same spirit, we use the denotation
C for generic constants.

For stiff equations this classical order is usually not relevant, because order reductions occur. Therefore

the theoretical results presented in this paper have no immediate consequence for stiff problems, which will
be investigated in Part II [3].

Concerning convergence results like (2.17) it is important to note that, for the classical IDeC
method, the assumption of piecewise equidistant grids is essential, i.e., the stepsize for the basic
discretization (Euler) is required to be constant in each of the subintervals I; . This fact is remarkable
in the sense that the heuristic idea underlying the IDeC procedure is independent of the particular
grid used. However, the above result is sharp, as a simple experiment carried out on a nonequidistant
grid shows.

Example 1 We consider the test problem (2.16) and divide the interval [to,tena] = [0,3] into n = 3/h
subintervals I; of equal length h; = h. We choose m = 4, and in each I; we apply the backward Euler
scheme (BEUL) with nonequidistant interior grid points chosen ‘at random’: t;, = t;_1 + ¢/h with ¢; =
0.0185, co = 0.4565, c3 = 0.7721, c4 = 1.0.



Table 1 shows the resulting global errors and the observed orders for the IDeC iterates at T = 3.0.
Furthermore, the column labelled COLL shows the results for the collocation solution of degree 4 (piecewise
polynomial function satisfying the given ODE at the grid points ¢;,) which is the fixed point of the IDeC
iteration, cf. Section 3.

We observe that the first IDeC step results in a slight increase of accuracy, but further iterations stall,

and no increase of order compared to the basic order 1 is observed.

n h BEUL IDeC1 [DeC2 IDeC3 IDeC4 COLL
151 0.200 || 1.19E-02 | 1.26E-03 | 4.20E-03 | 3.31E-03 | 3.71E-04 || 1.07E-06
30 | 0.100 || 6.07TE-03 | 3.42E-04 | 1.36E-03 | 1.55E-03 | 2.04E-04 || 6.68E-08
60 | 0.050 || 3.06E-03 | 1.03E-04 | 4.81E-04 | 7.64E-04 | 1.04E-04 || 4.17E-09
120 | 0.025 || 1.54E-03 | 3.66E-05 | 1.94E-04 | 3.83E-04 | 5.88E-05 | 2.61E-10
15 | 0.200
30 | 0.100 0.98 1.88 1.63 1.10 0.87 4.00
60 | 0.050 0.99 1.73 1.50 1.02 0.96 4.00
120 | 0.025 0.99 1.49 1.31 1.00 0.83 4.00

Table 1: IDeC results for Example 1 (‘random’ grid)

In the following sections we will consider certain modifications of the IDeC procedure, overcoming
the restriction of piecewise equidistant grids. Here, the structure (2.15) of the iterative scheme
remains the same as for the conventional IDeC algorithm, but the defect terms dl(¢;,) from (2.13)
V[V

i

7,0

will be replaced by alternative variants. In all these cases, we will use the notation 7 and

J7£,
p(t) introduced above, but we will indicate the modified defect versions using different accents, cf.

(3.9), (4.1), (5.2), (5.6).

3 IDeC with defect quadrature (IQDeC)

3.1 IDeC and collocation

The IDeC scheme introduced in Section 2 is an iterative nonlinear correction scheme based on
residuals (= defects). Iterative schemes of this type are frequently used in the design of numerical
algorithms. A characteristic property of the IDeC method is that, due to the interpolation p!¥! (tje) =
nj[.ljg, the given ODE (2.1) is directly involved in the definition of the defect. The resulting neighboring

problems (2.9) are perturbed versions of (2.1).

This way of using the defect is related to the idea of collocation: The fixed point of an IDeC
iteration (on a given, fixed grid) is characterized by the property that the defect vanishes at certain
grid points. Let pl¢!(¢) denote the continuous collocating solution defined by

Pty =),  for tel, (3.1)
where the pg»c] (t) are polynomials of degree < m satisfying the collocation relations
d .
)Nt = Fte P (), j=1...N, £=1...m. (3.2)

dt



Collocation solutions feature the uniform classical order O(h™), cf. e.g. [8]. Relation (3.2) means
that the defect of pl®!() vanishes at all these grid points, and thus an IDeC step starting from the
grid function {pl°!(¢;,)} maps it onto itself (cf. (2.8), (2.13)). Thus, IDeC may simply be considered
as an iterative collocation solver.

Except for special choices of the collocation nodes, the order of the global error of such a collo-
cation is O(h™), and this order is also achieved by the IDeC method on the piecewise equidistant
grid after m—1 iterations (cf. (2.17)). However, as Example 1 shows, this is not the case for general,
nonequidistant grids.

3.2 IDeC, Runge-Kutta, and local defect quadrature

It is well known that collocation methods form a subclass of implicit Runge-Kutta methods (cf. e.g.
[9]). Here, we consider the collocation method from (3.2) and identify the collocation solution pl“l(#)
with a mesh function {p; = pl“/(t;)} on the mesh {t;}, while the intermediate values p;, = pl¢I(,; )
play the role of the intermediate unknowns in the corresponding m-stage Runge-Kutta system

pﬂ = pj_l + hj Z (I&M f(tj”u,pj#), £ =1.. .m, (33&)
pn=1
P, = pj-1+h; Z be f(tje, pie), (3.3b)
=1
for j =1,2,.... As usual, we characterize such a scheme by its so-called Butcher array,
Ci | Q11 -+ A1m
c| A B : -
bT B Cm | Am,1 " Amm ( ‘ )
‘ by - b,
Here we have c¢,, = 1, by = ane, P; = pjm because the endpoint t; = t;,, is assumed to

be a collocation node (cf. (3.2)). In the context of collocation, the a,, have a straightforward
interpretation as interpolatory quadrature coefficients (cf. e.g. [9]).

As already discussed in [12], IDeC can in a more abstract setting be interpreted as an iterative
method to solve a high order scheme F(p) = 0 (in our case: collocation) by means of a simpler
scheme F'(n) = 0, (in our case: backward Euler). We now adopt this more abstract point of view,
and identify F'(p) not with the original collocation formulation (3.2) as before, but with its Runge-
Kutta equivalent (3.3) and check the outcome. Still we have to be careful: The ansatz for the
iteration makes sense only if F is a reasonable approximation for F' at each grid point. Therefore
we rewrite the Runge-Kutta equations (3.3) by means of a linear combination of the stages in the
following way:

Dit = Djt-1 N
= h,zﬂ 1 :Za&uf(tj,uapj,u)a t=1...m, (3.5)
]7 IJ,:].



and p; := pjm,. Here the coefficients oy, are given by

ai,1 . al,m
Q11 o Qim a1 c1
a a az21—ai,1 . a2 m—0a1,m
2,1 T 2,m co—cC1 c2—C1
= (3.6)
Am,1 —0m—1,1 . Am,m —0m—1,m
am’l T am’m Cm —Cm—1 Cm —Cm—1
Comparing (3.5) with the backward Euler scheme on the grid {t;},
N0 — 1je—1
= f(t.%Z’ TIJ:Z)’ (3'7)
hije

we see that the left hand sides, i.e. the discretizations of the first derivative, coincide. The schemes
differ only by their weighting of f-values on the right hand side (trivial weighting for backward
Euler). Due to the nature of the a,,, the weights oy, are easy to characterize:

Lemma 1 The ay,, from (3.6) are the unique coefficients for which

Ce

1
Zawqcu /q(s)ds, (=1...m, (3.8)

Cp — Cp—1
co—1

holds for arbitrary polynomials q(s) of degree < m—1.

The equations (3.5) are locally integrated (weighted) versions of the collocation equations (3.2),
where on the right hand side the set of quadrature rules given by the ay, has been used. With
collocation rewritten in this way, we now consider the following modification of the IDeC procedure
based on the backward FEuler scheme:

Definition 1 (IDeC with defect quadrature, IQDeC) Consider the IDeC method described

in Section 2 and modify it as follows: Replace the (pointwise) defect values d"(¢;,) (cf. (2.14)) by

the residuals of the p% = pl] (tje) = 77% with respect to the modified Runge-Kutta equations (3.5),

7] Py = p% 1 [v]
djf = J: h. Kj _Zaf,u,f ]M?pjp)
.]7

77[ V] V]

L7 e
= Tj—Zawf ”,77]#) (=1...m. (3.9)
We call such a method 1QDeC: IDeC with defect quadrature.
All other algorithmic details remain unchanged. In particular, the 77% are computed as before

(cf. (2.15)), with neighboring solutions W][Vé defined by
s

= f(tje,m7) +dY). (3.10)
h],g

This is the analog of (2.13), with cﬁﬂ replacing the pointwise defect d(¢;,).

7



The terminology ‘defect quadrature’ is motivated by the fact that, due to Lemma 1, the J% can
also be written as the weighted sums of the conventional defect values d!(t; ), see (2.14):

} m d ) m y m )
dﬂj,tl = ZO‘@,# ap[ }(tj,u) - Z O f(tj,uvpg',i) = Zaf,u d }(tj,f)’ t=1...m. (3.11)
pn=1 pn=1 pn=1

This may also be interpreted as a kind of defect preconditioning.

For practical computation of the dﬂjﬁ, (3.9) is preferable. (For any given distribution of the t;,,
the coefficients ay,, are easy to compute.)

Example 2 We repeat the experiment from Example 1, on the same nonequidistant grid, with IDeC
replaced by the modified version 1QDeC.

Table 2 shows the resulting global errors and the observed orders for the IQDeC iterates at T' = 3.0.
Obviously, the order sequence is 1,2, 3,4. After 3 iteration steps, the order m = 4 of the collocation scheme
(fixed point) has been reached. The fourth IQDeC iteration step yields no further increase in order but takes
the iterates very close to the fixed point. This behavior is completely analogous to that of the conventional
IDeC iteration on a piecewise equidistant grid.

n| h BEUL | IQDeC1 | IQDeC2 | IQDeC3 | IQDeC4 | COLL
15 | 0.200 || 1.19E-02 | 2.44E-03 | 7.31E-05 | 7.98E-06 | 1.10E-06 || 1.07E-06
30 | 0.100 || 6.07E-03 | 5.99E-04 | 8.10E-06 | 4.94E-07 | 6.66E-08 | 6.68E-08
60 | 0.050 || 3.06E-03 | 1.48E-04 | 9.65E-07 | 3.07E-08 | 4.15E-09 | 4.17E-09
120 | 0.025 | 1.54E-03 | 3.69E-05 | 1.18E-07 | 1.91E-09 | 2.60E-10 | 2.61E-10
15 | 0.200

20 | 0.100 0.98 2.03 3.17 4.01 4.05 4.00
60 | 0050 0.99 2.01 3.07 4.01 4.01 4.00
190 | 0.025 0.99 2.01 3.03 4.01 4.00 4.00

Table 2: 1QDeC results for Example 2 (‘random’ grid)

3.3 1IQDeC convergence

The robust convergence behavior of the IQDeC iteration observed above generally holds for smooth
problems; as the following result shows. It describes the asymptotic rate of convergence towards the
fixed point pl¢! for arbitrary grids.

Proposition 1 (IQDeC fixed point convergence) Let 77][”5; denote the iterates of the 1QDeC
iteration according to Definition 1, based on the backward Euler scheme. On arbitrary grids of the
type (2.11), the error of the 77% = p(t; ) w.r.t. the corresponding fized point pl“}(t) (collocation at
tie, L =1...m) satisfies

102} =i | = 0w+, for all

o v>0. (3.12)

Proof: See Appendix A. O



As an immediate consequence of Proposition 1, the IQDeC errors n][.”g — y*(t) satisty

1727 =y (te) | = OB, for v=0...m—1, (3.13)
on arbitrary grids. The maximal achievable order is O(h™), which cannot be improved by further

iteration in general.

Furthermore, due to Proposition 1, the IQDeC iteration may be applied in a way producing
superconvergent solutions. Consider collocation schemes of the type Radau Ila or Gauss, for instance.
Then we have |[pl“)(t;) — y*(t;)|| = O(h?) with p = 2m—1 or p = 2m, respectively (cf. [8],[9]). If we
apply the IQDeC method an a grid where in each interval I, the ¢; , are the corresponding collocation
nodes, the superconvergence order is attained at the points t; after an appropriate number of IQDeC
steps.

Example 3 We repeat the IQDeC experiment from Example 2, but with m = 3 and with ¢; ; corresponding
to ‘Radau right’ nodes in each interval I;, i.e., ¢; = (4—v/6)/10, c2 = (4++/6)/10, c3 = 1.

Table 3 shows the resulting global errors and the observed orders at T' = 3.0. The order 5 is obtained after
4 iteration steps. This corresponds to the superconvergence order of the Radau Ila scheme with polynomial
degree m = 3 which defines the fixed point of this iteration.

n| h BEUL | IQDeC1 | IQDeC2 | IQDeC3 | IQDeC4 | RADAU
15 | 0.200 | 1.40E-02 | 2.80E-03 | 7.56E-05 | 1.36E-05 | 1.72E-07 || 1.22E-07
30 | 0.100 || 6.99E-03 | 6.87E-04 | 8.82E-06 | 8.53E-07 | 6.36E-09 | 3.86E-09
60 | 0.050 || 3.51E-03 | 1.70E-04 | 1.09E-06 | 5.33E-08 | 2.10E-10 | 1.21E-10
120 | 0.025 || 1.76E-03 | 4.24E-05 | 1.36E-07 | 3.33E-09 | 6.68E-12 | 3.78E-12
15 | 0.200

20 | 0.100 1.00 2.03 3.10 4.00 4.76 4.99
o0 | 0.050 1.00 2.01 3.02 4.00 4.92 5.00
190 | 0,095 1.00 2.01 3.00 4.00 4.97 5.00

Table 3: 1QDeC results for Example 3 (grid based on RadauIla(3) nodes)

4 IDeC with defect interpolation (IPDeC)

4.1 Motivation and definition

In Section 3, we have shown how the IDeC method can be modified to converge on nonequidistant
grids. This modification increases the grid flexibility, and it enables the realization of superconvergent
approximations.

From an efficiency viewpoint, however, in particular concerning the application to stiff problems,
a basic scheme operating on a nonequidistant grid is rather undesirable. For stiff problems, the
use of an implicit basic scheme becomes indispensable, and in a practical implementation it will
be important to optimize the effort in the linear algebra involved in a Newton iteration for the
corresponding implicit equations. In particular, a LU-decomposition for the basic scheme is usually
frozen as far as possible. But this is only possible as long as the stepsize does not change.

9



Therefore the question is how to design a version of the IDeC procedure where the basic scheme
works on a piecewise equidistant grid but which converges towards a collocation scheme with
nonequidistant nodes. This sounds paradoxical but can be realized in the following way. We use two
different grids: A grid {t;,} which is piecewise equidistant on the intervals I, and a nonequidistant
grid {t;., K = 1...m} where, for each j, the ¢;, correspond to the desired collocation nodes. Now
we use both sets of grid points to design another variant of the IDeC procedure.

Definition 2 (IDeC with defect interpolation, IPDeC) Consider the IDeC method described
in Section 2 and modify it as follows: Replace the (pointwise) defect values d"!(¢; ) (cf. (2.14)) by the
values d”! (tjr), where dv) (t) is a piecewise polynomial function of degree < m—1 which interpolates
d¥(t) at the ¢, i.e.,

d"(t;,) is defined via d"(t;,) = d"({;,), wk=1...m. (4.1)
We call such a method IPDeC: IDeC with defect interpolation.

Here the point is that due to (4.1), we have shifted the fixed point of our iteration: Consider an
IPDeC step starting from the collocating solution pl¢l(t) w.r.t. the collocation nodes #;,, (continuous,
piecewise polynomial of degree < m). Then, by definition, its defect 4 pl(t) — f(t,pl(t)) vanishes
for all t = ;. Therefore the resulting interpolated defect is identically zero, and so the IPDeC step
starting from the grid function {pl°!(¢;,)} will map it onto itself. This means that {pl“)(¢;,)} is a
fixed point of the IPDeC iteration.

This procedure may be interpreted as an alternative way of defect preconditioning, i.e., the
d"(t;4) can be written in the form (3.11) but with other coefficients ay,, defined by (4.1).

Next we study the convergence of IPDeC towards its fixed point.

4.2 TPDeC convergence
For the IPDeC iteration, the analog of Proposition 1 holds.

Proposition 2 (IPDeC fixed point convergence) Let 17% denote the iterates of the IPDeC
iteration according to Definition 2, based on the backward Fuler scheme on a piecewise equidistant
grid {t;s}. Moreover, let the defect be interpolated at arbitrary nodes t;,, € I;. Then the error of the

nj[yg = pl(t;,) w.r.t. the corresponding fived point pI°I(t) (collocation at t;,., k= 1...m) satisfies

I =59 = om ), forall v>o0. (4.2)

Proof: See Appendix A. O

Concerning [super|convergence towards y*(t), the same conclusions apply as for the IQDeC case
(see Subsection 3.3).

Example 4 We illustrate the behavior of the IPDeC iteration by means of test problem (2.16). We choose
m = 3 and execute the backward Euler scheme on an equidistant mesh first. In each iteration step, the
defect d(t) is replaced by its interpolant d(t) of degree < 2, with interpolation at the Radau nodes #;,, which
have played the role of the ¢;, in Example 3.

Table 4 shows the resulting convergence history, which is qualitatively the same as for the IQDeC
iteration from Example 3: Again the superconvergence order 5 of the fixed point is reproduced after 4
iteration steps.

10
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Figure 2: Equidistant and Radaulla(3) nodes.
n h BEUL | IPDeC1 | IPDeC2 | IPDeC3 | IPDeC4 RADAU
15| 0.200 || 1.20E-02 | 9.13E-04 | 1.62E-04 | 1.50E-05 | 1.84E-06 || 1.22E-07
30 | 0.100 || 6.00E-03 | 2.47E-04 | 2.25E-05 | 1.14E-06 | 6.79E-08 || 3.86E-09
60 | 0.050 || 3.00E-03 | 6.41E-05 | 2.96E-06 | 7.82E-08 | 2.30E-09 | 1.21E-10
120 | 0.025 || 1.50E-03 | 1.63E-05 | 3.79E-07 | 5.10E-09 | 7.47E-11 || 3.78E-12
151 0.200 1.00 1.89 2.85 3.71 4.76 5.26
501 0199 100 195 .03 3.87 4.88 5.22
601 0.050 1.00 1.97 2.96 3.94 4.94 5.12

120 | 0.025

Table 4: IPDeC results for Example 4 (equidistant combined with RadauIla(3) grid)

Remark 3 Our main motivation for introducing IPDeC was its application to stiff problems. In contrast to
equidistant collocation, Gauss or Radau schemes are superconvergent in the classical sense and have excellent
stability properties also in the stiff case, and therefore the ij,i will be chosen accordingly. Concerning the
presence or failure of superconvergence in the stiff case, we refer the reader to Part II [3].

5 Further variants

We have not tried to describe our family of I*DeC methods in full generality. Rather, we conclude
this presentation with a discussion of some further useful variants. These arise from an alternative
choice of quadrature or interpolation nodes and of the underlying discretization scheme, and include
a symmetric IPDeC method resulting in a faster convergence with an order sequence 2,4,.... We
show that this version is closely related to a defect correction method proposed and analyzed in [11].
In the final subsection we briefly remark on IQDeC as the basis for a-posteriori error estimation.

5.1 IQDeC with m+1 quadrature nodes

Let us take another look at the defect (3.9) in the definition of the IQDeC procedure. There, the oy,
were chosen as the quadrature coefficients according to Lemma 1, based on the quadrature nodes
tiws 1= 1...m. But it is also perfectly reasonable to include the leftmost point t;_; = ¢, as a
further quadrature node, and to use a set of coefficients {&y,, { =1...m, p=0...m} corresponding

to m quadrature rules of higher precision. Here the d,, are uniquely characterized by the property
that

Ce

/q(s)ds, (=1...m,

co—1

UL 1
> uqle) = ———

Cyp — Cy—
‘=0 ¢ — Co—1

(5.1)
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holds for arbitrary polynomials ¢(s) of degree < m.
This choice leads to a modified IQDeC algorithm, where the dﬁ;’g from (3.9) are replaced by

e =i

d¥) = B > Gy f(tigenih), (=1...m. (5.2)
) ;U':O

It can be shown that this modified IQDeC iteration has essentially the same convergence properties
as the original IQDeC version. The fixed point is a Runge-Kutta solution which can again be
identified with a collocation polynomial, but not in a completely straightforward way (cf. [4]). Since
the asymptotic accuracy of this fixed point is higher as for the original IQDeC version, the iterates

[v]

1,0 of the modified IQDeC iteration can be shown to satisty

| m['}l —y* (o) || = Om"), for v=0...m, (5.3)
which is to be compared with (3.13). Here, the best possible order of accuracy is m+1 > m, and
it is achieved after m iteration steps. For further details concerning this modified IQDeC procedure
we refer to [4], where also a proof of (5.3) can be found in the context of boundary value problems.

This is related to the proof of Proposition 1 given in Appendix A.

Example 5 We repeat the simple experiment from Example 1, on the same nonequidistant grid, with the
modified version of IQDeC including the left end points t; = ¢ of the I; as quadrature nodes. This enables
a direct comparison with Tables 1 and 2.

Table 5 displays the resulting global errors and the observed orders. Indeed, we observe order 5 after 4
iterations steps, which corresponds to the order of the Runge-Kutta scheme defining the fixed point of the
iteration.

n h BEUL | IQDeC1 | IQDeC2 | IQDeC3 | 1QDeC 4
15 | 0.200 | 1.195-02 | 1.92E-03 | 7.34E-05 | 6.13E-06 | 1.62E-07
30 | 0.100 | 6.04E-03 | 4.80E-04 | 8.58E-06 | 3.85E-07 | 4.68E-09
60 | 0.050 | 3.05E-03 | 1.20E-04 | 1.05E-06 | 2.41E-08 | 1.47E-10
120 | 0.025 | 1.53E-03 | 3.01E-05 | 1.30E-07 | 1.51E-09 | 4.71E-12
15 | 0.200

20 | 0.100 0.98 2.00 3.10 3.99 5.12
50 | 0.050 0.99 2.00 3.03 4.00 4.99
190 | 0,095 0.99 2.00 3.01 4.00 4.97

Table 5: 1QDeC results for Example 5 (‘random’ grid, defect according to (5.2))

5.2 Symmetric IPDeC

The IDeC method and its descendants can be adapted to work with different basic discretizations.
So far we have only used an Euler scheme. We now consider the IPDeC method as introduced before
but we use a basic method of order 2, namely the implicit trapezoidal rule (ITR) working on locally
equidistant ¢;,. (The implicit midpoint rule would be another natural candidate.) Furthermore

12



j1 33
ti tj2
t; =t;0 iz =tj

Figure 3: Equidistant and Gauss(3) nodes.

we choose a symmetric distribution for the quadrature nodes #;,, i.e. t;, —t;_1 = t; — {1 for
k= 1...m, and expect in this case an asymptotically faster convergence towards the fixed point.
The neighboring solutions Wj[.yg are now computed from

[v] [v]
A

1
- 5.4
hi 2 (5.4)

v v 1~y v
(Fge ) + F e ) + 5 (@ (temn) +d¥ (150)).

with the interpolated defect d(t) according to (4.1). The original fixed point argument from Sub-
section 4.1 remains valid, because the inhomogencous term in (5.4) vanishes for d*(t) = 0. In
particular, if the th,H are chosen as Gauss nodes (transformed zeros of the Legendre polynomials of
degree m), then the fixed point of the IPDeC iteration corresponds to Gauss collocation with the
optimal classical (super)convergence order 2m.

Example 6 Table 6 shows the numerical results for the symmetric IPDeC iteration with m = 3 and
Gaussian interpolation nodes (see Figure 3). The problem data are the same as before (see Example 1).

The optimal order 2m = 6 is achieved after m = 3 iteration steps.

n h ITR IPDeC1 | IPDeC2 | IPDeC3 || GAUSS
15 ] 0.200 || 1.11E-03 | 1.29E-06 | 2.07E-08 | 1.75E-09 || 1.79E-09
30 | 0.100 || 2.78E-04 | 8.06E-08 | 3.26E-10 | 2.87E-11 || 2.88E-11
60 | 0.050 || 6.94E-05 | 5.04E-09 | 5.10E-12 | 4.53E-13 || 4.54E-13
120 | 0.025 || 1.74E-05 | 3.15E-10 | 7.99E-14 | 5.59E-15 || 6.57TE-15
15 | 0.200
30 | 0.100 2.00 4.00 5.99 9.93 5.96
60 | 0.050 2.00 4.00 6.00 5.99 5.99
120 | 0.025 2.00 4.00 6.00 6.34 6.11

Table 6: Symmetric IPDeC results for Example 6 (equidistant combined with Gauss(3) grid)

5.3 Combination of IQDeC and IPDeC. Schild’s method

Consider the following combination of IQDeC and IPDeC: We proceed from the symmetric IPDeC
algorithm based on the ITR as described in Subsection 5.2, but we modify (5.4) according to

(V] V]
e~ Tie—1

(f(tyemr, Tl) + ftyenmiD) +d, (5.5)

1
hje 2
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where the inhomogeneous term,

tie

STy 1 y
dY} = hé/d[ t)dt = Zam i) (5.6)

th 1

is the integral analog of the weighted defect %(cﬂ”] (tjo1) + d¥(t;,)) from (5.4). In (5.6), d" (1) is
the conventional (pointwise) defect, and the ¢,y are quadrature coefficients defined analogously as
in Lemma 1, but associated with the symmetrically placed quadrature nodes fj,ﬁ =t;,_1+¢h;, k=
1...m. The second identity in (5.6) follows from the fact that the interpolated defect (with inter-
polation nodes #;,, x = 1...m) is a polynomial of degree < m—1 (cf. Definition 2) for which the
quadrature rules based on the gy are exact. Again, as (5.6) shows, this way of defect evaluation
can be interpreted as defect preconditioning, i.e., the d! (tjr) are weighted sums of values of the
pointwise defect dl(#).

We have introduced this latter modification in order to relate our work to an earlier approach.
Namely, for the case that the ¢;, are Gauss nodes, defect evaluation in the sense of (5.6) has been
used in a defect correction algorithm proposed by K. H. Schild for the solution of non-stiff boundary
value problems (see [11, (3.6)]). However, the motivation and some technical details of the procedure
described in [11] differ from ours.

The convergence properties of our symmetric IPDeC algorithm based on (5.4) are very similar to
that of Schild’s method ([11]). We have repeated the experiment from Example 6 but using (5.5),
(5.6) instead of (5.4). The results are nearly identical.

We do not present a convergence proof for our symmetric IPDeC algorithm in this paper. We
simply note that the analysis given in [11] could easily be adapted to cover our version.

5.4 Remark on a-posteriori error estimation

The defect correction idea can also be applied for the construction of efficient a-posteriori error
estimators for high order schemes, see [12]. However, if this is based on the classical, pointwise
defect, this method fails even in the equidistant case if the global error to be estimated is not
perfectly smooth.

In such cases, a modification based on a locally integrated defect in the spirit of IQDeC is
significantly more robust, on equidistant as well as on nonequidistant grids. In [5] and [6], numerical
results and a proof of the asymptotic correctness of such an estimator are presented in the context
of collocation schemes for regular and singular boundary value problems.

A Appendix. Convergence proofs

In the proofs given below, a conventional stability argument for the backward Euler scheme, based
on the smoothness and Lipschitz continuity of f(¢,y) and valid for sufficiently small h, will be used
several times. However, since this is a standard argument, we have refrained from explicitly writing
down the corresponding inductive growth estimates.

Throughout, the range of indicesis j = 1... N, £ = 1...m, cf. Figure 1. Concerning the use of
the O(h™)-symbol, cf. Remark 2 in Subsection 2.2.
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Proof of Proposition 1. (IQDeC fixed point convergence.)

This is an extension of the proof of Theorem 2.1 in [4]. We use the compact denotation 9,7, for
difference quotients of grid functions, i.e.,

Onnje = % (A1)
7,0

The error of the n][”j = pll(t,4) w.r.t. the pﬁ := plI(t;,) (collocation solution = fixed point of the

IQDeC iteration) is denoted by 8%:
et =i =il =Mt — (). (A.2)

We will prove Proposition 1 inductively by deriving the estimates

le7ll=0Mm*), and oy | = O, (A3)
for v =0,1,.... First we introduce the auxiliary quantities
&) =m i (A.4)
We have 5% = ¢ 0 =0, and
eyt = Ent— Ene s (A.5)
by definition of the iteration, cf. (2.15). Furthermore we use the notation
oV (t) = f(t,p" (1)) — f(t,pl9)(t)),  for v=0,1,.... (A.6)

o Let v=0. The z—:ﬂ satisfy the difference equation (cf. Subsection 3.2)

C
ahg% J@”]é Zagluf ]uupgi) (A?)

Using Taylor arguments and »_ ", ay, =1 for all £ (cf. Lemma 1), we write (A.7) in the form
0 0 c c
Oneje = (Ftiemia) = (b p)) + (Pt pid) Z%f (t10:750))

_ /Df(ﬂ,pﬂuae[o])da ¥+ O(n). (A.8)

0

Now, by means of a conventional stability estimate, the bound

e Il = O(h), (A.9)

follows from (A.7) (classical convergence order 1 of the backward Euler scheme). Furthermore,

|Onege | = O(h), (A.10)

follows immediately from (A.8). With (A.9) and (A.10) the proof of (A.3) for v = 0 is completed.
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o Induction step v—1 — v. We assume that (A.3) holds for v—1 > 0, i.e.,
I 1 = omY), (A.11a)
|0nel, ) = o). (A.11b)

We shall also need an asymptotic bound for the defect cﬁ” as defined in (3.9). This bound follows
from (A.11a), (A.11b) by using the identity (cf. Subsectlon 3.2)

ahp]g = Zafuf jwp],b (A'12)

and the Lipschitz continuity of f in the following way:

v—1 v—1 v—1
L = oty =3 anu Ftimnn )|
pn=1

IN

v—1 v—1
| 9nel; ]HHIZOM ti e ) — Onpl D |

= ||3€””||+||Zaw (Lo M ) = Ft Do) | = O"). (A13)

The &, 1] ( (A.4)) satisfy a difference relation which follows from the equations (3.10) defining the
[" ! together with (3.9):

el = Gl — gl "

— f(t]g, ‘EVK 1)-'—62[»1/_1] ahn[l/ 1

v—1] v—1]
- J57 ][E Zaé,uf ]uungu ) (A.14)

Now, from (A.5), (A.7) and (A.14) we obtain a difference equation for the 5% and rewrite it using
the notation ¢~ from (A.6):

et} = Onely — el
= fltiens) — Zo"fﬂf (tiger Pigt) = f(tis ) +Z‘”ﬂf (tigus i )
= (fte5) - f(tje,pﬁg])) — (Fltiemyy ) - f@e,ngz ) -
— (6" () Zaz Ut ). (A.15)
To estimate the right hand side of (A.15) we use Taylor arguments. First, we have

6050 = 3 e ”<M>H<6hmaxu Ol } (A.16)

pn=1
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for all £, where

d 0 0
=" O < Nl 5 FE @) = o f(E PN |+

d 0 d

5 £ )G 70 = 2 F(6 P 0) 550 | = O, (A7

due to our inductive assumption (A.lla). Furthermore, to derive a bound for the difference of
f-differences in (A.15) we write them in the form

Ftiemd) = St vi3) / Df (tia: Py + 0j)do - €5 = (L) €50 (A18a)

Pty ) = Flgeny ) /Df e+ o€l o €7 = T 7 (Aas)
and use relation (A.5),

(Ftie D) — FE5005) = (Fie i) = fltienty )
= J(tze) el — (J(tze) — J(t50) €5V (A.19)

To estimate || J(t;,) — J(t;¢) ||, we rewrite the difference of the integrands in (A.18) according to the
identity
v—1 v—1] v—1 v—1 0
O = p) + 0§ — e = (1= o)l M+ o =), (A.20)

and observe that the Euler equations defining the n z ) and the 7T[V 1 (cf. (3.10)) together with (A.13)
yield

|7 = ni | = O(hY), (A.21)

by a conventional stability argument for the backward Euler scheme. Now, since Df is Lipschitz
continuous, (A.20) together with (A.3) and (A.21) implies

1T (t.0) = I (t;0) | = O("). (A.22)
We also note that
v—1 v—1 v—1]
I < m = m  + gy — e = O(h, (A.23)
and combining (A.15)—(A.23) we obtain
Onejt = I(tie) et = (T (t0) = T (1)) +O ). (A.24)
—O(hv+1)

We can interpret (A.24) as a linear difference equation of the backward Euler type, with inhomo-
geneous part O(h”™!) and initial value 5[1'% = 0. (A.24) together with a stability argument for the
backward Euler scheme yields (A.3).

This completes the proof of Proposition 1.
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Proof of Proposition 2. (IPDeC fixed point convergence, linear analysis.)

We confine ourselves to the case of linear initial value problems

y'(t) = At)y(t) + g(t), y(to) = yo, (A.25)

with sufficiently smooth data functions A(t) and g(¢). (Using standard linearization techniques
similarly as in the proof of Proposition 1 above, the results can be extended to problems with a
smooth nonlinearity, but we do not work out the details in this case.)

We use the convention that, if a piecewise (polynomial) function p(¢) is mentioned, this refers to a
function, defined via N pieces py(t),...,pn(t), such that p(t) = p;(t), t € I; =[t;_1,t;], j=1...N
(not necessarily continuous at the t;). The space of all such piecewise polynomial functions of degree
< k is denoted by Pf.

We will make use of the following auxiliary results.

(i) For p € P, let Ohp € P! be defined by

pi(t) = pi(t — hy)

(Onp); (1) := 7 (A.26)
J
Then there holds
k k-1
157(@) | < Cmax || @)@, k=1...m, (A.27)

with a constant C independent of p and h. The estimate (A.27) easily follows from the rep-
resentation of the derivative of a polynomial ¢(t) (degree < m) by a linear combination of

difference quotients,
m

q(t) = Bu(t) (Onq)(te), (A.28)

=1
where the coefficients (,(t) can be expressed using Lagrange representation; cf. e.g. [4, (2.20)].

(ii) If ¢ € Py*~! interpolates the values of a function f(¢) (with m times continuously differentiable
pieces f;(t)) at m distinct points in I;, then for 0 < k <1 < m we have

1@ =790l < e max | () [, e (A.29)

For a proof of (A.29) see [1] or [10].

Some denotation: Difference quotients are written according to (A.1), O == (00— 1j.e-1)/hj,
now with the piecewise constant stepsizes h;, = h;. For the error w.r.t. to the IPDeC fixed point
(collocation solution) pl¢! we write

el =) = #NE0) = M (t0) — P L), (A30)

and
el(t) .= pt(t) — p (1), (A.31)

i.e. the function € P} which interpolates the 5% at the grid points ¢;,. Furthermore we define

u’ € Pt interpolant of A(t)el(t) at the grid points t;1,...,tjm, (A.32a)
a e Pt .. interpolant of A(t)el(t) at the collocation nodes #;1,...,%m. (A.32b)
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To prove Proposition 2 we will now inductively derive the estimates
l<fill = oM™, (A.33a)
I % e[”]( t) | = Om", k=0...m, (A.33Db)

forv=0,1,....
o Let v=0. Here, (A.33a) holds due to

e | < Wi = v (o) |+ 1159 (E50) = o7 (15.) || = O(h) + O(0™) = O(h), (A.34)

where we have made use of the fact that the backward Euler method and polynomial collocation
(degree m) have uniform convergence order 1 and m, respectively. For (A.33b) we split el(¢) into
el = (pl0 — y7) — (5 — ). The estimate || (@*/dt*)(FE)(t) -y (1)) | = O(Bmntnm+1-8) < O(h) is
a standard result about collocation methods, cf. [8, Theorem 7.1]. The fact that || (d*/dt*)(pl%(t) —
y*(t)) ]| = O(h) holds is a standard result for the backward Euler method, which can be proved
by means of an asymptotic expansion of its global error. Note that the assumption of a piecewise
equidistant grid is essential here.

o Induction step v—1 — v. We assume that (A.33) holds for v—1 >0, i.e.,

I sv 1] | = O(h"), (A.35a)
d* "
| — e )| = Om), k=0...m. (A.35b)
Using the equations

oy = Altio)msg + 9(tse), (A.36)
O = A+ gltia) + A ), (A.81)

and b _ =1 o] [v] [v—1] (0] [v—1]

v v—1 0 v—1 v v—1 0 v—1
S0 T Ee =W~ M s O Ongjy = Oumig — OhTyy (4.38)

which hold by definition of the backward Euler and IPDeC schemes, we see that 5% satisfies the
difference equation

ah%z = A(tj,e)ﬁﬂ + 7‘%, (A.39)
where
v—1 v—1 Flv—
P = 0nel N — Atk — A ey). (A.40)

We shall now derive an estimate for the 7“[ Yl To this end, let g and gl¢! € PlT’l interpolate the
functions A(#)pl"~U(t) + g(t) and A(¢)pl(¢ ) + g(t) at the collocation nodes ;.. By definition of the
interpolated defect d¥—Y e P! and of the collocation polynomial pl¢! € Pj* (cf. Subsection 4.1)
there holds

- d d
dv(t) = —p" () = "), and 0= —p(H) — (1), (A.41)
Together with ¢~ — gl = alv=1 (cf. definition (A.32b)) this yields
B d o
d[y_l] (tjj) = % €[V_1] (tjj) - U[ 1 (tjj). (A42)



Inserting (A.42) into (A.40) yields

v v— d v— v— ~|v—
7= Ol t0) = = e I(t50)) — (Alti)e e — V(). (A.43)
v =¥t

« [V ]
The contributions 7, and T ;¢ are now estimated separately.

(*) First, the ;% are the grid values of the function i (t) == Opel(t) — L el=t(t) € Pt

Expressed in Taylor form, this reads

*[V] i (_1)i_1h‘i'71 dz v—
;o (t) :ZTJ e e 1), (A.44)
1=2

from which with the help of (A.35b) we obtain

«[V] v
H il ®)|=0m"*h), k=0...m-1 (A.45)

In particular, we have ;’% = O(h"*1).

xx[V] (V]
(**) Furthermore, the function r € P;*~! which interpolates the r ;0 at the grid points t;1,..., tjm
**[ ]
is given by r = ul"U— a1 (cf. (A.32)). We write this as a difference of interpolation errors,
*x[V]
Tt = () = AU (@) - (@) — A () (A.46)

and apply (A.29) twice with [ = k+1 to estimate its derivatives:

192 01 < 1S ) — A 0) |+ S (@) — A ) |
< Ch max || - (AR @) || = O™,  k=0...m—1(A47)

t€tostena)  dLFH
Here we have used (A.35b) and suitable smoothness assumptions for A(?).

Altogether, for the inhomogeneous part in (A.39) we obtain

= om, (A.48a)
k
[ ﬁr[l’](t) | = O™, k=0...m-1, (A.48Db)
where 7 € P{"~! interpolates the 7’% at the grid points ¢;1,...,¢jmn.

Finally, from (A.39) together with (A.48a) and using a conventional stability argument for the
backward Euler scheme we obtain (A.33a) and (A.33b,k =0). To prove (A.33b) inductively for

k=1...m, we consider the function del’) € P{*~! interpolating the 8h5j = A(t0) % + TE ; at the
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grid points 1, ..., t;,. This function satisfies the identity Oyl (t) = ull(¢) + 7" (¢). Now we apply
(A.27) to obtain

dk k—1 dk—l

— )| <c My + ¢
l o € )< temid}H T U )+ teﬁéiﬁd]” g

r(t) ). (A.49)

Due to (A.48Db), the second term on the right hand side of (A.49) is O(h**!) for k = 1...m. Using
(A.32a) and (A.29) with [ = k, the first term can be estimated by

dkfl dkfl dkfl dkfl
| S a O < o A@) ||+ | S u (1) = Z AW () |
dkfl 0]
< C max | A @) . (A.50)

te[t07tend} dtk_l

Now we use an induction argument w.r.t. k. Assume that (A.33b) has already been shown for all
k' < k; then,
dkfl
|| dtk—1
easily follows using suitable smoothness assumptions for A(t). Due to (A.49)-(A.51), (A.33b) is
indeed valid for k =1...m.

A)et(#) || = O+ (A.51)

This completes the proof of Proposition 2. Il
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