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Chapter 1

Introduction

Domain decomposition expands the application range of finite element methods in different ways
by splitting the solution domain into two or more subdomains. For example, the decomposition
of a large problem into smaller ones might make its solution feasible for certain solvers, or it could
facilitate computation on a parallel architecture. Some domain decomposition methods require
the finite element discretization (i.e. the mesh) to match on different sides of the interface (i.e.
the shared boundary of two subdomains). Others, such as the method described in this thesis,
do not. One significant advantage of the latter type in particular arises when different parts of
the domain move in relation to each other.
Consider, for example, a simulation of the magnetic field inside an electric motor. Typically for
many types of motors, a current-carrying armature rotates in the static magnetic field of the
field magnet or field coil. Thus, the configuration of the parts changes continually. In order
to obtain a matching discretization of the space between rotor and stator for different stages of
the simulation, the mesh would have to be recomputed at every time step. With non-matching
domain decomposition, however, one could split off a cylindrical subdomain around the armature
and rotate the subdomain. Because the submeshes remain the same, we will also see that only
the coupling equations of the system matrix have to be reassembled.
One standard approach to non-matching domain decomposition is the mortar method, where
the continuity of the field is enforced by Lagrange multipliers on the interface. This leads to an
indefinite system of equations.
Unlike some mortar methods, the approach described in this thesis does not utilize a saddle-
point problem for the variational formulation. Instead, it bears a relation to Nitsche’s method
of enforcing Dirichlet boundary conditions, where additional stabilization and symmetry terms
are introduced to the variational equation. These fit the problem into the Lax-Milgram / Strang
framework for convergence of non-conforming, coercive formulations. This technique was intro-
duced for the Poisson problem in [1].
In order to arrive at a practicable method, one also has to consider the process of finite element
system assembly. Specifically, element matrices at the interface need to be computed indepen-
dently from the elements of any other subdomain. To that end, we modify the method and
introduce degrees of freedom on the interface similar to those found in hybrid discontinuous
Galerkin methods, as described in [2] for the Poisson problem. The convergence results for this
hybrid method allow for great flexibility in the choice of the finite element space for the hybrid
degrees of freedom on the interface. We propose a space spanned by B-spline basis functions, and
analyze the hybrid method for the Poisson problem in some detail.
This technique is applied to Maxwell’s equations for electromagnetic fields. As it turns out, a
directly equivalent treatment of the boundary conditions that arise from Maxwell’s equations

9



10 CHAPTER 1. INTRODUCTION

leads to an over-penalization of certain components of the solution field. This causes the energy
norm induced by the bilinear form to scale poorly, which has a negative impact on convergence.
We address this problem by imposing weaker transmission conditions using a Helmholtz-type
decomposition of the field. This yields a stronger norm for convergence at the cost of additional
degrees of freedom on the interface.
The methods for the Poisson problem and Maxwell’s equations were implemented in the open
source software package NETGEN / NGSOLVE to demonstrate their feasibility. Numerical ex-
periments were carried out to verify the theoretical results and examine the behavior of the
methods in practical applications.
We begin this thesis by reiterating some of the theory of Sobolev function spaces which forms the
basis for the analysis. Next, the general framework of finite element methods is introduced, in-
cluding standard methods for Maxwell’s equations and some results for non-conforming methods
pertinent to our domain decomposition method. We go on to discuss spline spaces and some of
their properties, before introducing the domain decomposition method for the Poisson problem
in the following chapter. After some numerical results, the method is applied to Maxwell’s equa-
tion. We close with the discussion of a more complex numerical simulation employing domain
decomposition.



Chapter 2

A Short Introduction to function
spaces

We begin with an introduction to function spaces, from Lebesgue spaces to general Sobolev spaces
and vector valued function spaces, where only certain differential operators exist. This chapter
adheres to [6], chapters 4 and 5.

2.1 The L2 space

The Lebesgue function space [L2]n is a superset to all function spaces utilized in this thesis, and
all differential operators are derived from the properties of its Lebesgue integral. The system of
subsets of Rn that integration will be defined on, must form a σ-algebra.

Definition 1 A set Σ of subsets of Rn, such that

(a) Rn ∈ Σ

(b) A ∈ Σ⇒ Ac ∈ Σ

(c) Ak ∈ Σ, k ∈ N ⇒
⋃∞
k=1Ak ∈ Σ

is called a σ-algebra.

Integration on Rn induces a volume function µ : Rn → R via µ(A) :=
∫
A 1. Contrarily, we

will proceed by prescribing certain properties of a volume function and using it to construct the
Lebesgue integral.

Definition 2 For a σ-algebra Σ, a measure is a function µ : Σ→ R+
0 ∪ {∞}, such that

(a) µ(A) ≥ 0 for all A ∈ Σ

(b) µ(
⋃∞
k=1Ak) =

∑∞
k=1 µ(Ak) for Ak ∈ Σ and Ak ∩Al = ∅ for k 6= l

Property (a) is called non-negativity, (b) is called σ-additivity.

We call a measure µ normed, if µ([0, 1]n) = 1, and µ is translation-invariant, if µ(q +A) = µ(A)
for all A ∈ Σ, q ∈ Rn. It can be shown that there exists no non-negative, sigma additive,
normed, and translation invariant measure on P(Rn). For a box E, i.e. an interval of the form
E = [a1, b1)× [a2, b2)× . . .× [an, bn), let µ0(E) :=

∏m
i=1(bi−ai). Then we can define a measure on

the set Σ0 of finite unions of discrete boxes via µ0(
⋃m
i=1Ei) :=

∑m
i=1 µ0(Ei). Note that although

11



12 CHAPTER 2. A SHORT INTRODUCTION TO FUNCTION SPACES

Σ0 is not a σ-algebra, we can construct a measure µ on a σ-algebra Σ, such that Σ0 ⊂ Σ and
µ(A) = µ0(A) for A ∈ Σ0 by applying an extension argument to µ0. We call N ⊂ Rn a null set,
iff µ(N) = 0. See [7] for a proof of the following result:

Proposition 1 There exists a σ-algebra Σ on Rn and a measure µ on Σ, called Lebesgue mea-
sure, such that

(a) All open subsets of Rn are in Σ.

(b) For every A ∈ Σ and ε > 0, there exists an open set B ⊃ A, such that µ(B\A) ≤ ε.

(c) A ⊂ B and B ∈ Σ, µ(B) = 0 ⇒ A ∈ Σ and µ(A) = 0

(d) A = {x ∈ Rn : ak ≤ xk ≤ bk, k = 1, . . . , n} ∈ Σ and µ(A) =
∏n
k=1(bk − ak)

(e) µ(A) = µ(x+ a) for A ∈ Σ, x ∈ Rn

Using the Lebesgue measure, we can identify a class of functions we will assign an integral to.

Definition 3 Let Ω ⊂ Rn be measurable and u : Ω→ R∪{∞}∪{−∞}. We call u measurable,
iff {x : u(x) > a} is measurable for all a ∈ R.

The integral is first introduced on the simple class of step functions.

Definition 4 We call s : Rn → R a step function, iff s(x) =
∑m

k=1 akχAk for some measurable
sets A1, . . . , Am ⊂ Rn, and a1, . . . , am ∈ R. Let Ω ⊂ Rn be measurable and s(x) =

∑m
k=1 akχAk a

step function. Define ∫
Ω
s(x) :=

m∑
k=1

akµ(Ak)

Proposition 2 To every measurable function u ≥ 0, there exists a sequence of monotonically
increasing step functions (sk), such that sk(x)→ u(x) for every x ∈ Ω.

Now we extend integration to all measurable functions:

Definition 5 For a positive measurable function ũ, let∫
Ω
ũ(x) := sup

{∫
Ω
s(x) : s ∈ T (Ω), 0 ≤ s ≤ ũ

}
For a measurable function u, let

∫
Ω u+(x) <∞ or

∫
Ω−u−(x) <∞. Then we define∫

Ω
u(x) :=

∫
Ω
u+(x)−

∫
Ω
−u−(x).

If both integrals are bounded, u is said to be integrable.

In order to construct a complete space from the Lebesgue-measurable functions, we must identify
all functions that are identical up to a null set under the Lebesgue measure.

Definition 6 Let 1 ≤ p < ∞. The set of equivalence classes u of measurable functions on Ω
under the equivalence relation

u ∼ v :⇔ u = v a.e. on Ω,

such that |u|p is integrable on Ω, is called the space Lp(Ω).
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Proposition 3 For 1 ≤ p ≤ ∞, Lp(Ω) with the norm

‖u‖p :=

(∫
Ω
|u(x)|p

)1/p

, if p <∞

‖u‖∞ := inf
µ(N)=0

sup
x∈Ω\N

|u(x)|

is a Banach space.

Note that L2(Ω) together with the inner product (u, v)L2(Ω) =
∫

Ω u(x) · v(x) is a Hilbert space.

2.2 The Weak Derivative

To approximate partial differential equations with finite element methods, we need appropriate
function spaces on which the differential operators that appear in the PDE are well-defined. The
construction of such spaces requires a more general definition for differentiation of Lebesgue-
measurable functions than classic differentiation.

Definition 7 The space of smooth functions with compact support is defined as

D(Ω) := {u ∈ C∞(Ω) | u has compact support in Ω}

The dual space D′(Ω) of continuous functionals on D(Ω) (i.e. continuous linear mappings from
D(Ω) to R, see 15) is called the space of distributions.

Definition 8 The space of all measurable functions that are integrable on every compact subset
of Ω is called L1

loc(Ω). In other words,

L1
loc(Ω) = {f ∈ L1(Ω0) : Ω0 ⊂ Ω, Ω0 compact}

Definition 9 For f ∈ L1
loc, define Λf ∈ D′ via

Λf (Φ) =

∫
Ω

Φf

for Φ ∈ D

If f ∈ C∞(Ω), then integration by parts holds:∫
Dαf · Φ = (−1)|α|

∫
f ·DαΦ

for all Φ ∈ D(Ω). Or, in the distributional formulation for f:

ΛDαf (Φ) = (−1)|α|Λf (DαΦ)

We can use this relation to generalize differentiation to all distributions in D′:

Definition 10 (Differentiation of distributions) For a multi-index α and a distribution Λ ∈
D′(Ω), the αth distribution derivative of Λ is the linear functional DαΛ on D′(Ω) with

(DαΛ)(Φ) = (−1)|α|Λ(DαΦ)

for all Φ ∈ D(Ω).
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Partial differentiation shows that DαΛf = ΛDαf for f ∈ C∞. The equality does not hold for all
functions that are not continuously differentiable, however. A distributional derivative can be
assigned to every locally integrable function, but not every derivative can be assigned a function.
With this in mind, we arrive at a definition for differentiation that is more general than classical
differentiation but more restrictive than distributional differentiation:

Definition 11 (Weak derivative) If there exists g ∈ L1
loc, such that Λg = DαΛf for f ∈ L1

loc,
then Dαf := g is the αth weak derivative of f.

In similar fashion, we can define weak differential operators for gradient, curl, and divergence,
respectively:

Definition 12 For w ∈ L2(Ω), g = div w ∈ L2(Ω) is called the weak divergence of w, if∫
g · v = −

∫
w div v for all v ∈ [D(Ω)]3

For u ∈ [L2(Ω)]3, c = curl w is called the weak curl of w, if∫
c · v =

∫
u curl v for all v ∈ [D(Ω)]3

For q ∈ L2(Ω), d = ∇w is called the weak gradient of w, if∫
d · v = −

∫
q ∇v for all v ∈ D(Ω)

Like the weak differential, these operators coincide with their strong counterparts for classically
differentiable functions.

2.3 Sobolev Spaces

Using the weak derivative, we can now construct Banach spaces for finite element methods where
the differential operators are well-defined. We begin with the general Sobolev spaces Wm,p.

Definition 13 For m, p ∈ N we define the spaces

Wm,p(Ω) = {u ∈ Lp(Ω) | Dαu ∈ Lp(Ω) for 0 ≤ |α| ≤ m},

where Dαu is the distributional partial derivative of u. Because the case p = 2 is of special
interest, we write

Hm(Ω) := Wm,2(Ω)

Proposition 4 Wm.p(Ω) is a Banach space w.r.t. the norm:

‖u‖m,p =

 ∑
0≤|α|≤m

‖Dαu‖pp

1/p

for 1 ≤ p <∞,

‖u‖m,∞ = max
0≤|α|≤m

‖Dαu‖∞.
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Proof Let vj , j ∈ N be Cauchy in W p,k(Ω). From the definition of W p,k(Ω), it follows that Dαvj
is Cauchy in Lp(Ω), and converges to some vα ∈ lp(Ω). Let K be the (compact) support of φ.
Then, ∫

Ω
(Dαvj − vα)φ =

∫
K

(Dαvj − vα)φ

≤ ‖Dαvj − vα‖L1(K)‖φ‖L∞
≤ ‖Dαvj − vα‖Lp(K)‖φ‖L∞ → 0

Now, we show that Dαv = vα: ∫
Ω
vαφ = lim

j→∞

∫
Ω
Dαvjφ

= lim
j→∞

(−1)|α|
∫

Ω
vjD

αφ

= (−1)|α|
∫

Ω
vDαφ

This proves Wm.p(Ω) is complete, which makes it a Banach space.

Note that Hm(Ω) is a Hilbert space with the inner product

(u, v)Hm(Ω) :=
∑
|α|≤m

(Dαu,Dαv)L2(Ω) =
∑
|α|≤m

∫
Ω
Dαu ·Dαv.

The spaces Hm(Ω) are natural solution sets for PDE’s where the differential operators manipulate
the components of the field symmetrically, such as the Laplace, elasticity, or the bi-harmonic
problem.

2.4 Vector-Valued Function Spaces

Some PDE’s feature differential operators that couple only certain components of the solution
field. The Maxwell equation, for example, that will be considered in this thesis, uses the curl
operator.
The spaces

H1 = W 1,2(Ω)

H(curl,Ω) = {u ∈ [L2(Ω)]3 | curl u ∈ [L2(Ω)]3}
H(div,Ω) = {q ∈ [L2(Ω)]3 | div q ∈ L2(Ω)}

together with the norms

‖w‖H1 = ‖w‖1,2 = ‖w‖L2 + ‖∇w‖L2

‖u‖H(curl ,Ω) = ‖u‖L2 + ‖curl u‖L2

‖q‖H(div ,Ω) = ‖q‖L2 + ‖div u‖L2 ,

are appropriate solution spaces to problems dominated by the respective differential operators.
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2.5 Trace Theorems

In this section we examine the behavior of Sobolev space functions at the boundary of the domain
Ω. In the following we assume Ω to satisfy a certain restriction to the shape of its boundary that
makes it feasible for analysis:

Definition 14 A domain Ω is Lipschitz-bounded, if there exist open sets Oi, such that Oi ∩ ∂Ω
is the graph of a Lipschitz function φi : Rd − 1→ R

We will also need the following result for the analysis:

Proposition 5 A domain Ω is Lipschitz bounded, iff there exist open sets Uj ∈ Rn, ∂Ω ⊂ Uj
together with diffeomorphisms gj : Uj → B1(0)

At a glance, extension of functions in H1(Ω) to ∂Ω seems like a contradiction of terms, as Sobolev
functions are only defined up to a null set, and the boundary of the domain is, in fact, a null set.
It can be shown, for example, that C∞0 (Ω) is dense in H1(Ω) for Lipschitz bounded domains. As
it turns out, extension to the boundary is possible, however, in the sense that a completion for
the extension operator on C∞ exists:

Proposition 6 (Trace Theorem) For a Lipschitz-bounded domain Ω, there exists a well-defined
continuous operator

tr : H1(Ω)→ L2(∂Ω)

with
u|∂Ω = tr u for u ∈ C1(Ω)

In order to prove the trace theorem, it can be shown that the operator

tr : C1(Ω)→ L2(∂Ω)

u 7→ u|∂Ω

is bounded. Because C1(Ω) is dense in H1(Ω), it follows that there exists a unique completion on
the whole space. First, we map the norm of the continuous trace to the reference domain (0, 1)2

using the transformation from proposition 5:

‖tr u‖2L2(∂Ω) =

M∑
i=1

∫
Γi

u(x)2

=
M∑
i=1

∫
Γi

u(si(ζ, 0))2

∣∣∣∣∂ si∂ζ (ζ, 0)

∣∣∣∣ dζ
The norm in the domain is transformed in the same way:

‖u‖2H2(Ω) ≥
M∑
i=1

∫
Si

|∇xu|2

=

M∑
i=1

∫
Q
|∇x(u ◦ s)|2 det(s′)

≥ c
M∑
i=1

∫
Q
|∇x(ũ)|2

The boundedness of the operator now boils down to the estimate on the reference domain. See
[13] for the two-dimensional case, while [6] has the proof in greater generality.
The Range of the trace operator is a Banach space:
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Proposition 7 The space
W = {tr u | u ∈ H1(Ω)}

with the norm
‖tr u‖W = inf{‖v‖ | v ∈ H1(Ω), tr u = tr v}

is a Banach space.

It is possible to define spaces Hs(Ω) for non-integer values s ∈ R via the broken Sobolev norm.
Let s = m+ σ, m ∈ N0, 0 < σ < 1. Define

|u|2σ,Ω =

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|n+2σ
dx dy.

Then, the broken Sobolev norm of u ∈ H2(Ω) is

‖u‖2s,Ω = ‖u‖2m,Ω +
∑
|α|=m

|Dαu|2σ,Ω

Using the Lipschitz property, we can define broken Sobolev spaces on the boundary of our domain.
As it turns out, the trace space W from proposition 7 is identical to the Sobolev space H1/2(∂Ω).
In fact, there exist continuous trace operators from Hs(Ω) to Hs−1/2(δΩ) for all s > 1

2 . On the

other hand, there also exist continuous extension operators F : Hs−1/2(∂Ω)→ Hs(Ω), such that
tr F = Id.
The dual space of Hs(Ω) is referred to as H−s(Ω). The following trace theorems for the vector-
valued Sobolev spaces hold:

Proposition 8 For a Lipschitz-bounded domain Ω, there exists a well-defined, continuous oper-
ator

trn : H(div,Ω)→ H−1/2(∂Ω)

such that for u ∈ [C(Ω)]3 ∩H(div)

trn u = [u(.) · n(.)]|∂Ω

The inverse normal trace theorem also holds for H(div,Ω).

Proposition 9 For every qn ∈ H−1/2(∂Ω), there exists q ∈ H(div), such that

trnu = qn.

Proposition 10 For a Lipschitz-bounded domain Ω, there exists a well-defined, continuous op-
erator

trτ : H(curl,Ω)→ H−1/2(∂Ω)

such that for u ∈ [C(Ω)]3 ∩H(curl)

trτ u = [u(.)× n(.)]|∂Ω

Proposition 11 For a domain decomposition Ω1,Ω − 2, . . . ,Ωm, let Γij = ∂Ωi ∩ ∂Ωj. If ui ∈
H(curl,Ωi), i = 1, . . . ,m, such that trτ,Γijui = τ,Γijuiuj, then

u ∈ H(curl,Ω) and (curl u)|Ωi = curl ui,

where u|Ωi := ui.

This last result is useful because it allows us to construct finite dimensional subspaces of H(curl)
on a partition of Ω. These will be the solution spaces for the finite element method.
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Chapter 3

Finite Element Methods

3.1 Variational Equations

Finite element methods compute a numerical solution to a PDE in the weak form, i.e. they
operate on a variational equation that is equivalent to the differential problem. Thus, the theory of
variational equations provides the basic framework for the analysis of the method’s approximation
behavior. We begin with some elementary concepts from functional analysis.

Definition 15 A functional is a linear mapping l : v → R, where V is a Vector Space. A linear
mapping A : V × V → R is called a bilinear form. A is called symmetric, if A(u, v) = A(v, u)
for all u, v ∈ V .

Every element x of a Hilbert space V can be mapped to a functional fx on V via fx(y) := (y, x).
Riesz’s representation theorem demonstrates, that j : V → V ′, x 7→ fx is a bijective mapping
from V to the space of continuous functionals on V , called the dual space V ′.

Proposition 12 (Riesz Representation Theorem) For every continuous linear functional l on a
Hilbert space V, there exists ul ∈ V , such that

l(v) = (ul, v) for all v ∈ V,

and
‖l‖V ∗ = ‖ul‖V .

Definition 16 A bilinear form A on a Hilbert space V is called coercive, if there exists c1 > 0,
such that

A(u, u) ≥ c1‖u‖2 for all u ∈ V.
It is bounded, if there exists c2 ∈ R, such that

A(u, v) ≤ c2‖u‖V ‖v‖V for all u, v ∈ V.

A variational equation is an equation of the form

Proposition 13 (Lax-Milgram) Let V be a Hilbert space, A a bilinear form, and f a functional
on V. If A is coercive and bounded, then there exists a unique u ∈ V , such that

A(u, v) = f(v) for all v ∈ V,

i.e. the variational equation is uniquely solvable.

Proof According to Riesz’s representation theorem, there exits an isomorphism JV : V ∗ −→ V ,
such that:

(JV g, v)V = g(v)

19
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3.2 The Galerkin Approximation

Finite element methods methods solve a variational equation on a finite-dimensional subspace of
V , the finite element space:

Definition 17 For a closed subspace Vh of a Hilbert space V , the Galerkin approximation of the
solution u to the variational problem

A(u, v) = f(v) for all v ∈ Vh

with a coercive and bounded bilinear form A is the unique solution uh of the variational problem

A(uh, vh) = f(vh) for all vh ∈ Vh

Proposition 14 (Cea’s Lemma) For u, uh as above, it holds that

‖u− uh‖V ≤
c2

c1
inf
v∈Vh
‖u− vh‖.

Proof For the Galerkin approximation, the so-called Galerkin orthogonality holds:

(u− uh, vh) = (u, vh)− (uh, vh) = f(vh)− f(vh) = 0

Now, let vh ∈ Vh

‖u− uh‖2 ≤ c−1
1

Thus, a framework for basic finite element methods is almost complete. If a weak form of a PDE
satisfies coercivity and boundedness, it is uniquely solvable, and the Galerkin approximation is
bounded by the best approximation to the solution in the finite element space. What is left is
to choose a finite element space, so that the best approximation is sufficiently close to the exact
solution.

3.3 Finite Elements

A finite element method (FEM) consists of a Variational equation

A(u, v) = f(v),

where A and f are defined on some finite-dimensional Hilbert space Vh spanned by basis functions
ϕi. The solution of the FEM is a function uh ∈ Vh, such that

A(uh, vh) = f(vh) for all vh ∈ Vh.

If the exact solution u of the problem that is to be approximated satisfies

A(u, v) = f(v) for all v ∈ V. (3.1)

for some Hilbert space V, and Vh is a subspace of V, then the FEM is called conforming. The
basis functions are generally derived from finite elements, i.e. triples (T, VT ,ΨT ), where

• T is a bounded set in Ω

• VT is a function space on T of finite dimension NT
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• ΨT = {ψ1
T , . . . , ψ

NT
T } is a set of linearly independent functionals on VT .

The element basis {ϕ1
T , . . . , ϕ

NT
T } of VT is the dual basis to ΨT , i.e.

ψiT (ϕjT ) = δi,j for 1 ≤ i, j ≤ NT . (3.2)

For v ∈ C(Ω), the local nodal interpolation operator defined as

IT v :=

NT∑
α=1

ψαT (v)φαT . (3.3)

is a projection into VT . A triangulation T = {T1, . . . , TM} is a subdivision of Ω into bounded
subsets Ti, such that

⋃
Ti = Ω, and T̊i ∩ T̊j = ∅. We can define a global Interpolation Operator

on all of Ω via

IT v|T = IT v|T for all T ∈ T . (3.4)

Then the finite element space Vh is the range of the smooth functions Cm(Ω) under the projection
Operator IT :

VT := {v = IT w | w ∈ Cm(Ω)}

VT is said to be of regularity r, if VT ⊂ Cr. The regularity of VT depends on the choice of
functionals ψαT and the local function space VT .

3.4 Nédelec Finite Elements

We can use 11 to construct H(curl)-conforming finite elements (T, VT ,ΨT ), beginning with the
lowest order Nédelec finite element in 2D. Here,

• T is a Triangle

• VT = N0, where

N0 :=

{
v : T → R2 :

(
x
y

)
7→
(
ax
bx

)
+ b

(
y
−x

)
, ax, ay, b ∈ R

}

• the functionals for each edge Eαβ of the triangle are

ψEαβ : v 7→
∫
Eαβ

v · τ

Note that [P 0]2 ⊂ N0 ⊂ [P 1]2. The local space and the functionals are chosen to fulfill certain
properties that give Curl-conformity:

• The 2d curl (curl v =
∂vy
∂x −

∂vx
∂y ) is constant for functions in N0:

curl N0 = P 0

• The tangential component of a function in N0 is constant along a line.
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The resulting local basis functions are

φαβ = λα∇λβ − λβ∇λα,

where λα and λβ are the barycentric coordinates associated with the vertices Vα and Vβ. (Here,
Eα is the edge from Vα to Vβ.) For the global finite element space, the local basis functions that
belong to the same edge are identified. Because the tangential components of the local basis
functions are constant along the shared edge, and the integral along that edge is the same as
prescribed by the local functionals, the tangential components of the global basis functions are
continuous across the edge. With 11, we have

Proposition 15 The finite element space defined by the lowest order Nédelec elements is a sub-
space of H( curl).

3.4.1 High Order 3D Nédelec elements on tetrahedra

For a multi-index α = (α1, α2, α3), we define the total degree by |α| = α1 + α2 + α3. Then we
define the space of polynomials of maximum total degree k via

Pk =

p : R3 → R : p(x) =
∑
|α|≤k

aαx
α1
1 xα2

2 xα3
3 , aα ∈ R

 ,

and the space of homogeneous polynomials of total degree exactly k via

P̃k =

p̃ : R3 → R : p̃(x) =
∑
|α|=k

aαx
α1
1 xα2

2 xα3
3 , aα ∈ R

 .

Then we have the subspace
Sk := {p ∈ [P̃ k]3 : x · p = 0}

of [Pk], i.e. Sk is the kernel of the linear map p 7→ x · p from [P̃ 3] to P̃k+1, which is unto. Thus,

dim(Sk) = 3 dim P̃k − dim P̃k+1 = k(k + 2)

The following subspace of [P̃k]
3 will be important for curl-conforming elements:

Rk := [Pk−1]3 ⊕ Sk

For the dimension of Rk, we have

dim(Rk) = 3 dim(Pk−1) + dim(Sk) =
1

2
(k + 3)(k + 2)k

Because Rk ∩∇P̃k+1 = {0}, and dim([Pk]
3) = dim(Rk) + dim(∇P̃k+1), the space Rk is part of a

Helmholtz-decomposition of [Pk]
3:

Proposition 16 The following algebraic decomposition holds:

[Pk]
3 = Rk ⊕∇P̃k+1.

If curl u = 0 for u ∈ [L2(Ω)]3, then u = ∇p for some p ∈ H1(Ω). The polynomial spaces Rk and
Pk reflect that property:
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Proposition 17 If u ∈ Rk satisfies curlu = 0, then u = ∇p for some p ∈ P − k.

We will first define the Nédelec curl-conforming elements on the reference tetrahedron.

Definition 18 (Curl-conforming reference elements) The Curl-conforming Nédelec reference el-
ements consist of

• The reference tetrahedron T̂

• The local finite element space Rk

• Three types of degrees of freedom:

(1) Edge degrees of freedom:

Mê(û) =

{∫
ê
û · τ̂ q̂ : q̂ ∈ Pk−1(ê), ê ∈ E(T̂ )

}
Here, E(T̂ ) is the set of edges of T̂ , and for ê ∈ E(T̂ ), τ is a unit vector in the direction
of ê.

(2) Face degrees of freedom:

Mf̂ (û) =

{
1

area(f̂)

∫
f̂
û · q̂ : f̂ ∈ F (T̂ ), q̂ ∈ [Pk−2(f̂)]3, q̂ · ν̂ = 0

}

F (T̂ ) is the set of faces of T̂ , and ν̂ is the unit normal of a face f̂ .

(3) Volume degrees of freedom:

MT̂ (û) =

{∫
T̂
û · q̂ : q̂ ∈ [Pk−3(T̂ )]3

}
Let BT be the Jacobi matrix of the transformation from the reference element T̂ to a general
element T . Then, the following transformation maps a H(curl)-function from T̂ to T while
preserving its H(curl)-property:

u ◦ FT = (BT
T )−1û (3.5)

The curl of u is related to the curl of û via

curl u =
1

det(BT )
BT curlu.

An edge tangent vector τ̂ is transformed as follows:

τ =
BT τ̂

|BT τ̂ |

The next result demonstrates the advantage of choosing Rk as the local finite element space:

Proposition 18 RK is invariant under the transformation 3.5, i.e. if û ∈ Rk, then u ∈ Rk, if
û and u are related by 3.5.

Now we define the Nédelec finite element on a general tetrahedron:

Definition 19 The curl-conforming finite element consists of
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• A tetrahedron T

• The local finite element space Rk

• Three types of degrees of freedom:

(1) Edge degrees of freedom:

Me(u) =

{∫
e
u · τq : q ∈ Pk−1(e), e ∈ E(T )

}
Here, E(T ) is the set of edges of T , and for e ∈ E(T ), τ is a unit vector in the direction
of e.

(2) Face degrees of freedom:

Mf (u) =

{
1

area(f)

∫
f
u · q : f ∈ F (T ), q = BT q̂ q̂ ∈ [Pk−2(f̂)]3, q̂ · ν̂ = 0

}
F (T ) is the set of faces of T , and ν̂ is the unit normal of a face f̂ , the face of the
reference tetrahedron corresponding to f .

(3) Volume degrees of freedom:

MT (u) =

{∫
T
u · q : q ◦ FT = (1/ det(BT ))BT q̂, q̂ ∈ [Pk−3(T̂ )]3

}
Because we use the transformation 3.5, the following relation holds:

Proposition 19 If det(BT ) > 0, then the sets of degrees of freedom for u on T equal those of û
on T̂ .

To see that the global finite element functions are curl-conforming, we will need the following
proposition:

Proposition 20 If for u ∈ Rk the degrees of freedom of a face f and its edges vanish, then
u× ν = 0 on f .

Now, let Vh be the finite element space induced by the Nédelec elements on a triangulation T as
described in section 3.3. If u ∈ Vh, then u1 := u|T1 ∈ Rk and u2 := u|T2 ∈ Rk for two neighboring
tetrahedra T1 and T2 that share a face f . We can extend u1 and u2 to the full domain, and
u1 − u2 ∈ Rk holds as well. The degrees of freedom associated with the face f and its edges
vanish for u1 − u2. Thus, according to the preceding proposition, u1 × ν = u2 × ν on the face f ,
and it follows from 11 that u ∈ H(curl).

3.5 Approximation Theorems

According to Cea’s lemma, the approximation error ‖u− uh‖ for the Galerkin approximation uh
of an H(curl)-function u is linearly bounded by the best approximation error infv∈Vh ‖u − v‖ in
the finite element space Vh. Thus, now that we have defined an appropriate curl-conforming finite
element space, we must examine its approximation properties.
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3.5.1 The H1-conforming space

To establish an error estimate in the Sobolev norm we will need the Bramble-Hilbert lemma:

Proposition 21 (Bramble-Hilbert Lemma) Let the bound of Ω ∈ Rn be Lipschitz continuous,
t ≥ 2, and L a bounded, linear Operator from Ht(Ω) into a normed space Y. If Pt−1 ⊂ kerL,
then there exists c = c(Ω)‖L‖ ≥ 0, such that

‖Lv‖ ≤ c|v|tv ∈ Ht(Ω) (3.6)

To establish the relationship between the mesh size h of a triangulation T and the approximation
error ‖u− Ihu‖m,Ω we will need the following transformation formula for affine transformations:

Proposition 22 Let Φ : T̂ → T, x 7→ x0 +BTx be bijective for a non-singular matrix BT . For
v ∈ Hm(T ) and v̂ := Φ ◦ v, it holds that

|v̂|
m,T̂
≤ c · ‖BT ‖m · | detBT |−1/2|v|m,T (3.7)

Now we can prove the following upper bound for the approximation error:

Proposition 23 Let Ih be the interpolation operator induced by H1-conforming finite elements
of piecewise polynomials of order s− 1 on a Triangulation Th. Then, it holds that

‖u− Ihu‖m,Ω ≤ c · hs−m|u|s,Ω

Proof We decompose the approximation error into element-wise contributions and map to the
reference element using the transformation formula 3.7. Then we apply the Bramble-Hilbert
Lemma to L := (id− Ih) and map back to the global element.

The following proposition follows from local scaling:

Proposition 24 For vh ∈ Vh, it holds that

h

∣∣∣∣∂vh∂n
∣∣∣∣2
∂Ωi∩Γ

≤ CI‖∇vh‖2L2(Ωi)
. (3.8)

Proof For the edge E of an element T , transforming to the reference element gives:

|v|2E ≤ hn−1|v̂|2
Ê
,

where Ê is the edge of the reference element T̂ corresponding to E. This is straightforward to
verify for the 2D case (i.e. n = 2):
Without loss of generality let Ê = [0, 1] × {0}. Then, for p := Φ ((0, 0)), and q := Φ ((1, 0)), we
have Φ((s, 0)) = p+ s(q − p), and

|v|2E =

∫
[0,1]

(v ◦ Φ)2((·, 0)) · |Φ′(·, 0)| =
∫
Ê
v̂2 · |p− q| ≤ h|v̂|2

Ê

Because |.|∂vh∩Γ is a semi-norm on Vh, and all norms are equivalent on finite dimensional spaces,
it holds that ∣∣∣∣∂vh∂n

∣∣∣∣2
Ê

≤ |∇vh|2Ê ≤ C‖∇vh‖
2
L2(T̂ )
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Now, using the transformation formula to transform to the reference element and back, we have∣∣∣∣∂vh∂n
∣∣∣∣2
∂Ωi∩Γ

≤ |∇vh|2∂Ωi∩Γ

=
∑
E⊂Γ

|∇vh|2E

≤
∑
E⊂Γ

hn−1
∣∣∣∇̂vh∣∣∣2

Ê

≤
∑
T∈T

hn−1C‖∇̂vh‖L2(T̂ )

≤
∑
T∈T

hn−1C(detBT )−1‖∇vh‖L2T

≤ Ch−1‖∇v‖2L2(Ωi)

Here, we also used the Hadamard inequality, which implies detBT ≤ hn

3.5.2 The H(curl)-conforming space

Let Ih be the projector into Vh induced by the Nédelec high order finite elements on a regular
triangulation Th as described in section 3.3. Note that due to the edge functionals, Ih is not
well-defined for all H(curl)-functions. The trace theorem only provides a tangential trace on the
face of the tetrahedron. Thus, we need to impose additional regularity:

Proposition 25 Let u ∈ [H1(T )]3, curlu ∈ [Lp(T )]3 with p > 2 for every T ∈ Th. Then Ihu is
well-defined and bounded.

The following upper bound for approximation of certain H(curl) functions by polynomials of
degree k holds:

Proposition 26 Let T be a Lipschitz domain, k ∈ N. There exists a constant C, such that for
v ∈ [H1(T )]3, curl v ∈ [H1(T )]3

inf
p∈Pk

‖v − p‖H(curl,T ) ≤ C‖v‖H(curl,T ) (3.9)

Mapping the norm to the reference element and using estimates like the above gives the following
result:

Proposition 27 Let Th be a regular Triangulation of Ω. If u ∈ H1(Ω) and curlu ∈ H1(Ω), then

‖u− Ihu‖H(curl,Ω) ≤ Ch(‖u‖H1(Ω) + ‖ curlu‖H1(Ω)) (3.10)

Thus, we have established h-convergence of an elliptic and bounded problem on H(curl) using
Nédelec high order finite element.

3.6 Non-Conforming Methods

As it turns out, it is possible to drop or weaken certain assumptions we made on the finite element
space and the variational equation without losing convergence. Strictly speaking, the term non-
conforming FEM refers to methods that utilize finite element spaces that are not contained in
the solution space of the PDE. We will also use it, however, to describe classes of finite element
methods that violate one or more of a variety of such assumptions. These so-called variational
crimes include, but are not limited to:
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• As mentioned, the finite element space Sh does not necessarily have to be a subspace of
the solution space Vh. For example, a function that is C∞-smooth on the elements of a
triangulation T is in H1(Ω) if and only if it is continuous on the whole domain Ω. Thus,
Sh is not a subset of V for discontinuous finite element basis functions.

• Instead of the exact variational equation a(u, v) = f(v), one might solve an approximation
ah(u, v) = fh(v).

The following is a tweaked version of Strang’s second lemma (see [5]), which we will use in the
convergence analysis of our domain decomposition method. It serves as a generalization of Cea’s
lemma for a certain class of non-conforming methods:

Proposition 28 Let ah be a bilinear form on on a space V + Sh and u ∈ V , such that

ah(u, v) = f(v) for all v ∈ V. (3.11)

If for a norm ‖.‖h on V + Sh it holds that

ah(vh, vh) ≥ α‖vh‖2h for all vh ∈ Sh, (3.12)

ah(u+ vh, wh) ≤ C‖u+ vh‖h‖wh‖h for all vh, wh ∈ Sh (3.13)

then the solution uh of the Variational Problem

ah(uh, vh) = f(vh) for all vh ∈ Sh (3.14)

satisfies

‖u− uh‖h ≤ c inf
vh∈Sh

‖u− vh‖h + sup
wh∈Sh

|ah(u,wh)− a(u,wh)|
‖wh‖h

(3.15)

Proof Let vh ∈ Sh. Then it follows from boundedness and stability, that

α‖uh − vh‖2h ≤ ah(uh − vh, uh − vh)

= ah(uh − u+ u− vh, uh − vh)

= ah(u− vh, uh − vh) + ah(uh, uh − vh)− ah(u, uh − vh)

= ah(u− vh, uh − vh) + a(u, uh − vh)− ah(u, uh − vh)

≤ C‖u− vh‖h · ‖uh − vh‖h + a(u, uh − vh)− ah(u, uh − vh)

Dividing by ‖uh − vh‖ gives

‖uh − vh‖h ≤
C

α
‖u− vh‖h +

a(u, uh − vh)− ah(u, uh − vh)

‖uh − vh‖

for all vh ∈ Sh. Using the triangle inequality, we get

‖u− uh‖h = ‖u− vh + vh − uh‖h
≤ ‖u− vh‖h + ‖vh − uh‖h

≤
(

1 +
C

α

)
‖u− vh‖h + sup

wh∈Sh

|ah(u,wh)− a(u,wh)|
‖wh‖h

for all vh ∈ Sh.
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Chapter 4

Spline Spaces

The finite element space used for the domain decomposition is a product space Vh ×Mh of a
standard finite element space Vh and a finite-dimensional subspace of L2(Γ) on the interface. For
the latter, we will implement spline spaces, which possess certain properties that are beneficial
to the accuracy and computational efficiency of the method. We follow the outline of [9].

4.1 The Spaces Pk,τ
Splines are piecewise polynomial functions of degree k − 1 on a partition of an interval, that are
k − 2 times smoothly differentiable on the whole interval:

Definition 20 For a sequence τ = {τ0, . . . , τl+1} satisfying a = τ0 < τ1 < . . . < τl+1 = b, the
space of k-th order splines is defined as

Pk,τ =
{
f ∈ Ck−2([a, b]) | f |[τi,τi+1) ∈ Pk−1, 0 ≤ i ≤ l

}
(4.1)

The following result is derived by enumerating the degrees of freedom in constructing a spline
function:

Proposition 29 It holds that
dimPk,τ = k + l (4.2)

Thus, Pk,τ is a finite-dimensional vector space that the polynomials of degree k−1 are a subspace
of.

4.2 B-Splines

Because of the piecewise structure of splines, it is possible to construct convenient bases for Pk,τ
that are non-zero on a limited set of subintervals [τi, τi+1). We define the B-spline basis functions
via the de-Boor-iteration, which also allows for an efficient computation of function values:

Definition 21 Let τ = {τ0, . . . , τn} be a sequence of knots as in definition 20. For 1 ≤ k < n,
let

Nj,1(x) := χ[tj ,tj+1) for j = 1, . . . , n− 1,

Nj,k(x) :=
x− tj

tj+k−1 − tj
Nj,k−1 +

tj+k − x
tj+k − tj+1

Nj+1,k−1(x),

for k = 2, . . . , n− 1, and j = 1, . . . , n− k

29
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The following observations on B-spline basis functions hold:

• We have

supp Nj,k ⊂ [tj , tj+k],

i.e. Nj,k vanishes outside of [tj , tj+k]. This will prove to be a significant advantage of spline
spaces over polynomial spaces when used as a finite element space, because it reduces
coupling in the linear equation system associated with the method.

• Nj,k(x) > 0 for x ∈ (tj , tj+k)

• (Nj,k)|[ti,ti+1) ∈ Pk−1

• Nj,k ∈ Ck−2([t1, tn])

The last two items imply that Nj,k ∈ Pk,τ . However, we have so far defined only n− k different
B-splines for a set of knots τ = {τ0, . . . , τn}. To expand the B-spline functions to a basis of Pk,τ ,
we add arbitrary knots lower than τ1 to τ as follows (producing a new set of knots T ):

T = {t1, . . . , tn} where n := 2k + l,

t1 < . . . < tk = τ0,

tk + j = τj for j = 1, . . . , l,

τl+1 = tk+l+1 < . . . < t2k+l.

The B-splines associated with the expanded set of knots, restricted to the original interval [a, b],
are still in Pk,τ . Because there are k + l functions in all, linear independence of the B-splines
implies they are indeed a basis of the spline space (see e.g. [3]).

Proposition 30 Let Nj,k be the B-splines of order k associated with the expanded set of knots T
for the interval [a, b]. It holds that

span {Nj,k|[a,b] : 1 ≤ j ≤ k + l} = Pk,τ

Thus, we have a convenient basis for the spline space that is non-zero on a limited set of sub-
intervals of a partition of an interval

Figure 4.1: The spline basis functions of order three to a uniform set of knots.
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4.3 Spline Approximation Properties

The next proposition gives an error bound for the best approximation of a function in the space
of k-th order splines (see e.g. [3]):

Proposition 31 For hΓ = max
j=0,...,l

(τj+1 − τj), there exists c ≤ ∞ such that for all f ∈ Hσ([a, b]),

it holds that
min
Sk∈P

‖v − Sk‖Hr([a,b]) ≤ chσ−rΓ ‖f‖Hσ([a,b])

This last result allows us to bound the error of the finite element method by the knot spacing h,
thus ensuring convergence for decreasing mesh size.
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Chapter 5

Decomposing the Poisson Problem

5.1 The Poisson Transmission Problem

To introduce the concept of the Nitsche-type domain decomposition presented in this thesis, we
will first apply the method to the model Poisson problem:

−∆u = f in Ω, (5.1)

u = 0 on ∂Ω,

where Ω is a bounded two- or three-dimensional domain and f ∈ L2(Ω). For ease of notation,
the L2 scalar products will denoted by

(u, v)Ω :=

∫
Ω
uv dx,

〈u, v〉Γ :=

∫
Γ
uv ds.

Then the Poisson equation can be written in the weak form: Find u ∈ H1
0 (Ω), such that

(∇u,∇v) = (f, v) ∀v ∈ H1
0 (Ω). (5.2)

Let Ω be divided into two subdomains Ω1 and Ω2 with Ω1 ∩ Ω2 = ∅ and Ω1 ∪ Ω2 = Ω. Under
the regularity assumption that u ∈ Hs(Ω) for s > 3/2, the Poisson equation is equivalent to the
following transmission problem:

−∆ui = f in Ωi, i = 1, 2,

ui = 0 on ∂Ω, i = 1, 2, (5.3)

u1 − u2 = 0 on Γ,

∂u1

∂n1
− ∂u2

∂n2
= 0 on Γ

where ui = u|Ωi . The jump and mean value of a function u on the interface are defined as,
respectively:

[u] := u1n1 + u2n2

{u} :=
1

2
u1 +

1

2
u2

33
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Integrating the strong formulation of the Poisson equation over the subdomains separately and
adding them up gives the weak form of the transmission problem.∑

i

(∇ui,∇vi)Ωi
− 〈{∇ui} , [vi]〉Γ = (f, v)Ω ∀v ∈ H1

0 (Ω) (5.4)

This variational formulation is not equivalent to the Poisson equation on the whole domain,
however, as it is satisfied by any two solutions of the Poisson equations on the subdomains. To
ensure uniqueness of the solution, we must take measures to enforce the continuity across the
interface.

5.2 Nitsche-Type Method for Domain Decomposition of the Pois-
son Problem

The solution u being continuous across the interface according to 5.3, adding symmetry and
stabilization terms to 5.4 retains consistency:∑

i

(∇uh,∇vh)Ωi
− 〈{∇uh} , [vh]〉Γ − 〈[uh] , {∇vh}〉Γ︸ ︷︷ ︸

=0

+
α

h
〈[uh] , [vh]〉Γ︸ ︷︷ ︸

=0

= (f, vh)Ω (5.5)

This formulation implies a first finite element method for the transmission problem as introduced
in [1]:

Method 1 (Nitsche-Type Method) Find uh ∈ Vh such that∑
i

(∇uh,∇vh)Ωi
− 〈{∇uh} , [vh]〉Γ − 〈[uh] , {∇vh}〉Γ +

α

h
〈[uh] , [vh]〉Γ = (f, vh)Ω (5.6)

for all vh ∈ Vh.

In the following, we will assume that Vh is a piecewise polynomial finite element space on a shape
regular triangulation Th with mesh-size h, such that vh|Ωi ∈ H1(Ωi) for vh ∈ Vh. Furthermore,
let Ih denote the interpolation operator defined locally by Ihvh|Ωi = Ih,ivh, where Ih,i is the
interpolation operator induced by the H1-conforming finite elements on Ωi, respectively. Analysis
will be performed using the following mesh-dependent energy norm:

|||v|||1,h :=

(
2∑
i=1

‖∇v‖2Ωi +
1

h
|v|2∂Ωi∩Γ + h|∂v

∂n
|2∂Ωi∩Γ

)1/2

(5.7)

Note that the norm |||.|||1,h is well defined only for for functions that have a normal derivative
in L2(Γ) on the interface. This is the case for the piecewise polynomial functions vh ∈ Vh and,
according to the trace theorem 6, for functions in H2(Ω). Now we can prove the stability of the
method:

Proposition 32 (Coercivity) For α sufficiently large, there exists a positive constant C, such
that

B (uh, uh) ≥ C|||u|||21,h (5.8)

for all uh ∈ Vh.
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Proof Inserting into B and applying the Cauchy-Schwarz inequality and Young’s inequality gives:

B (uh, uh)

=
∑
i

[
(∇uh,∇uh)Ωi

− 2

〈
∂uh
∂n

, uh

〉
∂Ωi∩Γ

+
2α

h
〈uh, uh〉∂Ωi∩Γ

]

≥
∑
i

[
‖∇uh‖2L2(Ωi)

− 2h

∣∣∣∣∂uh∂n
∣∣∣∣
∂Ωi∩Γ

1

h
|uh|∂Ωi∩Γ +

2α

h
|uh|2∂Ωi∩Γ

]

≥
∑
i

[
‖∇uh‖2L2(Ωi)

− 2

(
h

4CI

∣∣∣∣∂uh∂n
∣∣∣∣2
∂Ωi∩Γ

+
CI
h
|uh|2∂Ωi∩Γ

)
+

2α

h
|uh|2∂Ωi∩Γ

]

≥
∑
i

[
‖∇uh‖2L2(Ωi)

− 2

(
CI
4CI
‖∇uh‖2L2(Ωi)

+
CI
h
|uh|2∂Ωi∩Γ

)
+

2α

h
|uh−|2∂Ωi∩Γ

]
=
∑
i

[(
1

2
‖∇uh‖2L2(Ωi)

+ (2α− CI)
1

h
|uh|2∂Ωi∩Γ

)]
≥1

2
|||uh|||1,h

Proposition 33 (Boundedness) There exists a positive constant C, such that

B (u, vh) ≤ C|||u|||1,h|||vh|||1,h (5.9)

for all u ∈ H2(Ω), vh ∈ Vh.

Proof From the Cauchy-Schwarz inequality, it follows that

B (u, vh)

=
∑
i

{
(∇u,∇vh)Ωi

−
〈
∂u

∂n
, vh

〉
∂Ωi∩Γ

−
〈
u,
∂vh
∂n

〉
∂Ωi∩Γ

+
2α

h
〈u, vh〉∂Ωi∩Γ

}

≤
∑
i

{
‖u‖L2(Ωi)‖vh‖L2(Ωi) +

∣∣∣∣∂u∂n
∣∣∣∣
∂Ωi∩Γ

|vh|∂Ωi∩Γ

+

∣∣∣∣∂v∂n
∣∣∣∣
∂Ωi∩Γ

|u|∂Ωi∩Γ +
2α

h
|u|∂Ωi∩Γ |vh|∂Ωi∩Γ

}

≤
∑
i

{(
‖u‖L2(Ωi) +

∣∣∣∣∂u∂n
∣∣∣∣
∂Ωi∩Γ

+ |u|∂Ωi∩Γ +
2α

h
|u|∂Ωi∩Γ

) 1
2

·

(
‖vh‖2L2(Ωi)

+

∣∣∣∣∂vh∂n
∣∣∣∣2
∂Ωi∩Γ

+ |vh|2∂Ωi∩Γ +
2α

h
|vh|2∂Ωi∩Γ

) 1
2
}

≤

{∑
i

(
‖u‖L2(Ωi) +

∣∣∣∣∂u∂n
∣∣∣∣
∂Ωi∩Γ

+ |u|∂Ωi∩Γ +
2α

h
|u|∂Ωi∩Γ

)} 1
2

·

{∑
i

(
‖vh‖2L2(Ωi)

+

∣∣∣∣∂vh∂n
∣∣∣∣2
∂Ωi∩Γ

+ |vh|2∂Ωi∩Γ +
2α

h
|vh|2∂Ωi∩Γ

)} 1
2

The following proposition now gives an error bound for the method:
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Proposition 34 For u ∈ Hs(Ω) with 3/2 < s ≤ p+ 1, it holds that

inf
v∈V h

|||u− v|||1,h ≤ Chs−1‖u‖Hs(Ω) (5.10)

Proof Follows separately for the components of the energy norm from approximation formula
23. For an element T ∈ Th, it holds that:

‖∇u− Ih∇u‖2L2(T ) ≤ ‖u− Ihu‖
2
1,T ≤

(
Chs−1|u|s,T

)2
Let E ⊂ Γ for an edge E of T . Mapping to the reference element and back as in the proof of 24
gives

1

h
|u− Ihu|2L2(E) ≤ C

1

h2
‖u− Ihu‖20,T ≤

(
Chs−1|u|s,T

)2
Because the restriction of u− uh to T is in H2(T ), it follows from proposition 24, that

h| ∂
∂n

(u− Ihu)|2E ≤ ‖∇u− Ih∇u‖2T

Decomposing the approximation error into element-wise contribution thus gives the desired result.

This completes the a priori error estimate:

Proposition 35 For α sufficiently large, and u ∈ Hs(Ω) for 3/2 < s ≤ p+ 1, it holds that

|||u− uh|||1,h ≤ Chs−1‖u− v‖Hs(Ω). (5.11)

Proof Follows from coercivity, boundedness with Strang’s second lemma and 34.

Thus, the method converges to the correct solution of the transmission problem. There is, how-
ever, a difficulty in implementing the matrix assembling for this method introduced by the inter-
face integrals in the bilinear form:

. . .− 〈{∇uh} , [vh]〉Γ − 〈[uh] , {∇vh}〉Γ +
α

h
〈[uh] , [vh]〉Γ = . . . (5.12)

These terms introduce coupling in the corresponding system of linear equations between finite
element basis functions defined on elements from different sides of the interface. On the other
hand, matrix assembly for finite elements is done by integrating on the elements sequentially, so
that function values for the basis functions are computed from the local barycentric coordinates
only. In order to calculate the contributions from the interface integrals, one would have to
compute the overlaps of surface elements from different sides of the interface.

5.3 Hybrid Glue Method

In this section we will introduce hybridization to decouple element basis functions across the
interface. Starting from the formulation 1, we introduce the mean values λ := {u} , µ := {v} of
the solution and the test function as hybrid variables. Then it holds that

[u] = u1n1 + u2n2 = 2 (u1 − λ)n1 = 2 (u2 − λ)n2

[v] = v1n1 + v2n2 = 2 (v1 − µ)n1 = 2 (v2 − µ)n2

Now some choice of a finite element spaceMh ⊂ L2 (Γ) on the interface gives the hybrid method:
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Method 2 (Hybrid Glue Method) Find (uh, λh) ∈ Vh ×Mh such that

B (uh, λh; vh, µh) = F (vh) for all (vh, µh) ∈ Vh ×Mh (5.13)

where

B (uh, λh; vh, µh) :=
∑
i

{
(∇uh,∇vh)Ωi

−
〈
∂uh
∂n

, vh − µh
〉

Γi

(5.14)

−
〈
uh − λh,

∂vh
∂n

〉
Γi

+
2α

h
〈uh − λh, vh − µh〉Γi

}
(5.15)

Proposition 36 Method 2 is consistent.

Proof Follows from the consistency of method 1 and∑
i

(∇u,∇v)Ωi
− 〈{∇u} , [v]〉Γ − 〈[u] , {∇v}〉Γ +

α

h
〈[u] , [v]〉Γ

=
∑
i

(∇u,∇v)Ωi
−
〈

1

2
∇u1, [v]

〉
Γ

−
〈

1

2
∇u2, [v]

〉
Γ

−
〈

[u] ,
1

2
∇v1

〉
Γ

−
〈

[u] ,
1

2
∇v2

〉
Γ

+
α

2h
〈[u] , [v]〉Γ +

α

2h
〈[u] , [v]〉Γ

=
∑
i

(∇u,∇v)Ωi
−
〈

1

2
∇u1, 2 (v1 − µ)n1

〉
Γ

−
〈

1

2
∇u2, 2 (v2 − µ)n2

〉
Γ

(5.16)

−
〈

2 (u1 − λ)n1,
1

2
∇v1

〉
Γ

−
〈

2 (u2 − λ)n2,
1

2
∇v2

〉
Γ

+
α

2h
〈2 (u1 − λ)n1, 2 (v1 − µ)n1〉Γ +

α

2h
〈2 (u2 − λ)n2, 2 (v2 − µ)n2〉Γ

=
∑
i

{
(∇u,∇v)Ωi

−
〈
∂u

∂n
, v − µ

〉
Γi

−
〈
u− λ, ∂v

∂n

〉
Γi

+
2α

h
〈u− λ, v − µ〉Γi

}

Next, we prove the ellipticity and boundedness of method 2 in the following norm on (H2(Ω) +
Vh)× L2(Γ):

|||(v, µ)|||1,h :=

(∑
i

‖∇v‖2L2(Ωi)
+

1

h
|v − µ|2L2(∂Ωi∩Γ) + h

∣∣∣∣∂v∂n
∣∣∣∣2
L2(∂Ωi∩Γ)

)1/2

Proposition 37 (Coercivity) For α sufficiently large, there exists a positive constant C, such
that

B (uh, λh;uh, λh) ≥ C||| (uh, λh) |||21,h (5.17)

for all (uh, λh) ∈ Vh.

Proof Coercivity follows as it did for method 1 from the Cauchy-Schwarz inequality and Young’s
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inequality:

B (uh, λh;uh, λh)

=
∑
i

[
(∇uh,∇uh)Ωi

− 2

〈
∂uh
∂n

, uh − λh
〉
∂Ωi∩Γ

+
2α

h
〈uh − λh, uh − λh〉∂Ωi∩Γ

]

≥
∑
i

[
‖∇uh‖2L2(Ωi)

− 2h

∣∣∣∣∂uh∂n
∣∣∣∣
∂Ωi∩Γ

1

h
|uh − λh|∂Ωi∩Γ +

2α

h
|uh − λh|2∂Ωi∩Γ

]

≥
∑
i

[
‖∇uh‖2L2(Ωi)

− 2

(
h

4CI

∣∣∣∣∂uh∂n
∣∣∣∣2
∂Ωi∩Γ

+
CI
h
|uh − λh|2∂Ωi∩Γ

)
+

2α

h
|uh − λh|2∂Ωi∩Γ

]

≥
∑
i

[
‖∇uh‖2L2(Ωi)

− 2

(
CI
4CI
‖∇uh‖2L2(Ωi)

+
CI
h
|uh − λh|2∂Ωi∩Γ

)
+

2α

h
|uh − λh|2∂Ωi∩Γ

]
=
∑
i

[(
1

2
‖∇uh‖2L2(Ωi)

+ (2α− CI)
1

h
|uh − λh|2∂Ωi∩Γ

)]
≥ 1

2
|||(uh, λh)|||1,h

Note that the coercivity does not depend on the choice of the finite element space Mh on the
interface.

Proposition 38 (Boundedness)

B (u− uh, λ− λh; vh, µh) ≤ C|||(u− uh, λ− λh)||||||vh, µh)||| (5.18)

Proof Follows similarly as in the proof of 33 by applying the Cauchy-Schwarz inequality repeat-
edly:

B (u− uh, vh)

=
∑
i

{
(∇(u− uh),∇vh)Ωi

− 〈∇(u− uh), vh〉∂Ωi∩Γ

−
〈
u− uh,

∂vh
∂n

〉
∂Ωi∩Γ

+
2α

h
〈u− uh, vh〉∂Ωi∩Γ

}

≤
∑
i

{
‖u− uh‖L2(Ωi)‖vh‖L2(Ωi) +

∣∣∣∣∂(u− uh)

∂n

∣∣∣∣
∂Ωi∩Γ

|vh|∂Ωi∩Γ

+

∣∣∣∣∂v∂n
∣∣∣∣
∂Ωi∩Γ

|u− uh)|∂Ωi∩Γ +
2α

h
|u− uh|∂Ωi∩Γ |vh|∂Ωi∩Γ

}

≤
∑
i

{(
‖u− uh‖L2(Ωi) +

∣∣∣∣∂(u− uh)

∂n

∣∣∣∣
∂Ωi∩Γ

+ |u− uh|∂Ωi∩Γ +
2α

h
|u− uh|∂Ωi∩Γ

) 1
2

·

(
‖vh‖2L2(Ωi)

+

∣∣∣∣∂vh∂n
∣∣∣∣2
∂Ωi∩Γ

+ |vh|2∂Ωi∩Γ +
2α

h
|vh|2∂Ωi∩Γ

) 1
2
}

≤

{∑
i

(
‖u− uh‖L2(Ωi) +

∣∣∣∣∂(u− hh)

∂n

∣∣∣∣
∂Ωi∩Γ

+ |u− uh|∂Ωi∩Γ +
2α

h
|u− uh|∂Ωi∩Γ

)} 1
2

·

{∑
i

(
‖vh‖2L2(Ωi)

+

∣∣∣∣∂vh∂n
∣∣∣∣2
∂Ωi∩Γ

+ |vh|2∂Ωi∩Γ +
2α

h
|vh|2∂Ωi∩Γ

)} 1
2



5.4. A B-SPLINE INTERFACE SPACE 39

Now it remains to choose a finite element interface space Mh with favorable properties in terms
of approximation quality and efficient computation. One could, for example, use a basis of global
Lagrange polynomials mapped to the interface. This would introduce a lot of coupling in the
corresponding finite element stiffness matrix, however, because every interface basis function
would couple with every volume basis function from elements at the interface.

5.4 A B-Spline Interface Space

The analysis from the previous chapter shows that the finite element space on the interface can
be chosen with great flexibility. In the following, we will focus on the application of a space
spanned by B-spline basis functions (see chapter 4). Now, let τ := { in | i = 0, . . . , n} be a
uniform set of knots on [0, 1]. To construct a spline interface space, we will assume there exists
a parametrization γ : Γ → [0, 1] × [0, ε] of the interface, such that γ is a diffeomorphism. Then,
let Mh = PΓ := {s ◦ γ | s ∈ Pk,τ}. Let Q̂ be the operator from L2([0, 1]) into Pk,τ . Then Q with

Qu = Q̂(u ◦ γ−1) ◦ γ is an operator from L2(Γ) into PΓ.

Proposition 39 For u ∈ H2(Ω), it holds that

|||(u− Iku, u−Qu)|||1,h ≤ Chs‖u‖s+1,h (5.19)

Proof From the definition of the norm, it follows that

|||(u− Iku, u−Qu ◦ γ)|||1,h ≤(∑
‖∇(u− Iku)‖2Ωi +

1

h
|u− Iku|2∂Ωi∩Γ +

1

h
|u−Qu|2∂Ωi∩Γ + h

∣∣∣∣∂v∂n
∣∣∣∣2
L2(∂Ωi∩Γ)

)1/2

For the spline component we have:

1

h
|u−Q(u ◦ γ−1) ◦ γ|2∂Ωi∩Γ =

1

h

∫
Γ
{u−Q(u ◦ γ−1) ◦ γ}2

=
1

h

∫
[0,1]

{[
u ◦ γ−1 −Q(u ◦ γ−1)

]
· | detDγ−1|

}2

≤ d2

h

∫
[0,1]

[
u ◦ γ−1 −Q(u ◦ γ−1)

]2
=
d2

h
‖u ◦ γ−1 −Q(u ◦ γ−1)‖L2([0,1])

≤
chsΓ
h
‖u ◦ γ−1‖Hs([0,1])

≤
chsΓ
h
‖u ◦ γ−1‖Hs([0,1]×[0,ε])

≤
chsΓ
h
‖u ◦ γ−1‖s,h

The other components of the approximation error are identical to those of the non-hybrid method.

This completes the a priori error estimate:

Proposition 40 For α sufficiently large, and u ∈ Hs(Ω) for 3/2 < s ≤ p+ 1, it holds that

|||u− uh|||1,h ≤ Chs−1‖u‖Hs(Ω). (5.20)
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Proof Follows from coercivity, boundedness with Strang’s second lemma and 40.

As a basis for the spline interface space, B-splines can be computed efficiently using DeBoor
iteration:

Ni,r (x) =
x− ti

ti+r−1 − ti
ni,r−1 (x) +

ti+r − x
ti+r − ti+1

Ni+1,r−1 (x) ,

where Ni,r, r = 2, . . . n − 1, j = 1, . . . n − r is the i-th B-spline of order r. B-splines minimize
coupling in the stiffness matrix in the sense that the have minimal support supp Ni,r ⊂ [τi, τi+r],
i.e. they are non-zero only in the interval [τi, τi+r].

5.5 On Numerical Integration

It is important to note that in the practical implementation of the hybrid glue method, the surface
integrals on the interface will not be computed exactly, but numerically using Gauss quadrature
with integration points derived from the finite elements along the interface. Let the integration
points xk ∈ Γ and corresponding weights wk be chosen such that numerical integration on the
interface is exact for finite element functions in the subdomains, i.e.

∑
k

wkuh(xk) =

∫
Γ
uh (5.21)

for all uh ∈ Vh. Now, the approximation of the bilinear form by Gauss quadrature is

BNI (uh, λh; vh, µh) =
∑
i

{
(∇uh,∇vh)Ωi

−
∑
k

wk
∂uh
∂n

(xk)[vh(xk)− µh(xk)]

−
∑
k

wk
∂vh
∂n

(xk)[uh(xk)− λh(xk)]

+
∑
k

wk[uh(xk)− λh(xk)][uh(xk)− λh(xk)]

}
.

Thus, stability has to be proven for the approximation of the bilinear form.

Proposition 41 If ∑
k

wkµ(xk)
2 ≥ c

∫
µ2 (5.22)

for all µ ∈ Pk,τ , then it holds that

BNI(uh, λh;uh, λh) ≥ ‖(uh, λh)‖2 (5.23)
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Proof Using that numerical integration is exact for functions in Vh, it holds that

∑
i

{
‖∇uh‖ − 2

∑
k

[
wk
∂uh
∂n

(xk) (uh(xk)− λh(xk))

]
+

2α

h

[∑
k

wk (uh(xk)− λh(xk))

]2}

≥
∑
i

{
‖∇uh‖ − 2

(∑
k

[
√
wk
∂uh
∂n

(xk)

]2
)1/2(∑

k

[
√
wk (uh(xk)− λh(xk))]

2

)1/2

+
2α

h

∑
k

[
wk (uh(xk)− λh(xk))

2
]}

≥
∑
i

{
‖∇uh‖ −

h

2CI

∑
k

[
√
wk
∂uh
∂n

(xk)

]2

− 2

h

∑
k

[
√
wk (uh(xk)− λh(xk))]

2

+
2α

h

∑
k

[
wk (uh(xk)− λh(xk))

2
]}

=
∑
i

{
‖∇uh‖ − h

∣∣∣∣∂uh∂n
∣∣∣∣2
∂Ωi∩Γ

+
1

h
(2α− 1)

∑
k

[
wk (uh(xk)− λh(xk))

2
]}

Furthermore, using the spline interpolation operator Q, we have∫
Γ
[uh − λh]2 =

∫
Γ
[uh −Quh +Quh − λh]2

≤
∫

Γ
[uh −Quh]2 +

∫
Γ
[Quh − λh]2

≤
∫

Γ
[uh −Quh]2 +

∑
k

wk[Quh(xk)− λh(xk)]
2

≤
∫

Γ
[uh −Quh]2 +

∑
k

wk[uh(xk)−Quh(xk)]
2 +

∑
k

wk[uh(xk)− λh(xk)]
2

Now,
∫

Γ[uh−Quh]2 ≤ C‖uh‖H1(Ωi) according to 31, and
∑

k wk[uh(xk)−Quh(xk)]
2 ≤ ‖uh‖H1(Ωi)

because∑
xk∈δT∩Γ

wk |u(xk)−Qu(xk)|2 ≺ max
x∈δT∩Γ

|u(x)−Qu(x)|2 ≤ ‖u−Qu‖2L∞(δT∩Γ) ≤ ‖u‖
2
H1(Ωi)

(5.24)

Thus, it follows that∑
k

wk[uh(xk)− λh(xk)]
2 + c‖uh‖H1(Ωi) ≥

∫
Γ
[uh − λh]2 (5.25)

5.6 Numerical tests and examples

5.6.1 Tests in 2D

We consider the Laplace model problem on two adjacent squares where the right side of the
equation is given by f = 1 on the left domain and f = 0 on the right. The boundary condition
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Figure 5.1: A simple model problem without domain decomposition.

Figure 5.2: The same problem using domain decomposition. Note that the mesh is non-matching across
the interface. The Nitsche-terms enforce continuity.

u = 0 is set via a Robin penalty term. Inside the domains, the solution is approximated by
H1-conforming Polynomial Finite elements of varying order.

To measure the effect of the domain decomposition on the approximation quality, we model
the following problem:

• The domain Ω = [−1, 1]× [−1, 1] is divided into the subdomains Ω1 = [−1, 0.1]× [−1, 1] and
Ω2 = [0.1, 1]×[−1, 1]. The interface is off-center to obtain a solution that is non-symmetrical
across the interface.

• The mesh is non-matching across the interface.

• We choose the right side f of the Poisson problem −∆u = f , such that the solution u
satisfies

u((x, y)) = cos(5 · π
2
· x) · cos(5 · π

2
· y)

i.e. the solution consists of 25 sinus bubbles on the domain (see 5.3).
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• The boundary condition u(x) = 0 is enforced by a large Robin penalty term.

• High-order H1-conforming triangular finite elements are used inside the subdomains. The
interface space is spanned by B-spline basis functions on 0× [−1, 1].

We compute the approximation error ‖u− uh‖L2(Ω) numerically using Gauss quadrature integra-
tion points on the elements. The results for different configurations of polynomial degrees for the
volume elements and on the interface space are plotted as a function of the mesh size.

Figure 5.3: The solution using a coarse mesh. The polynomial order of the finite elements is already
sufficient to resolve the analytical solution relatively well. There is little distortion from the interface
approximation visible.

Figure 5.4: An example of a finer triangulation of the domain.
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Figure 5.5: The approximation error plotted logarithmically against the decreasing mesh-size for three
levels of density for the interface space: 10 degrees of freedom (blue), 100 degrees of freedom (green), and
1000 degrees of freedom (red). The polynomial order of the volume elements as well as the spline order on
the interface is three.
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Figure 5.6: The same set-up with volume and interface basis functions of order five. Note how the
approximation error for 100 and 1000 interface knots splits for dense triangulations.

We see that for a decreasing mesh-size of the volume elements, the approximation error with
the sparse interface space levels out as the method converges to an inexact solution.
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Figure 5.7: A two-dimensional B-spline patch in the reference domain. Mapped to the interface, these
patches were used as basis functions for the two-dimensional interface space.
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Figure 5.8: B-spline basis patch that ensures continuity and smoothness for a cylindrical interface.
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Figure 5.9: A simple problem in three dimensions using domain decomposition with a cylindrical inter-
face.

Figure 5.10: One component of the gradient of the solution. Note that the gradient is still continuous
across the interface.



Chapter 6

A Method for Maxwell’s Equations

6.1 Hybrid Method

The time harmonic formulation of Maxwell’s equations is

curlµ−1 curlu+ κu = j in Ω

with κ = iωσ − ω2ε, and
E = −iωu, H = µ−1 curlu.

As we did for the Poisson problem, we decompose the Maxwell equation into a problem on two
subdomains Ω1 and Ω2. Now, the transmission conditions are as follows:

u1 × n1 = −u2 × n2,

µ−1
1 curlu1 × n1 = −µ−1

2 curlu2 × n2.

Proceeding from the weak form as with the Poisson equation∫
Ωi

{µ−1 curlu · curl v + κu · v}+

∫
∂Ωi

µ−1 curlu · (v × n) =

∫
Ωi

j · v

we add symmetry and penalty terms, arriving at the hybrid version:

Method 3 Find (u, λ) such that

2∑
i=1

{∫
Ωi

µ−1{curlu · curl v + κu · v}+

∫
∂Ωi

µ−1 curlu · [(v − µ)× n]

+

∫
∂Ωi

µ−1 curl v · [(u− λ)× n] +
αp2

µh

∫
∂Ωi

[(u− λ)× n] · [(v − µ)× n]

}
=

∫
Ω
j · v,

where u, v ∈ H(curl,Ω1)×H(curl,Ω2), and λ, µ are tangential vector valued fields on the interface.
The method is coercive with respect to the norm

|||(u, λ)|||2 =
2∑
i=1

{
µ−1‖ curlu‖2Ωi + κ‖u‖2Ωi +

p2

µh
‖(u− λ)× n‖2∂Ωi

}
Convergence in this norm is less than ideal for reasons we will address in the next chapter.
The Nitsche terms in the formulation require vector valued interface DOF’s. Note that only
the tangential component of the interface space comes into play. Thus, we choose a basis of
two-dimensional, tensorized B-spline patches mapped tangentially to the interface (see fig. 6.1).

47
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Figure 6.1: Two separate basis functions (blue and red) for the vector-valued interface space mapped
together in the reference domain. They consist of tensorized B-spline patches.

Figure 6.2: Numerical result for a simple model problem.

6.2 Helmholtz-Type Decomposition

Let the solution u to 6.1 be a gradient field, i.e. u = ∇φ for some φ ∈ H1(Ω). Then, the energy
norm of u should scale as

‖u‖2 = µ−1‖ curlu‖2 + κ‖u‖2 = κ‖∇φ‖2 = O(κ)
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However, ‖(u−λ)×n‖ scales like O(1) We have u = ∇ φ︸︷︷︸
∈H1

+ z︸︷︷︸
∈[H1]3

, Introduce scalar field variable

φ to be evaluated only at the interface Introduce hybrid variable φΓ to glue φ across the interface
Impose continuity for (u−∇φ)× n and φ

2∑
i=1

{∫
Ωi

{µ−1 curlu · curl v + κuv}+∫
∂Ωi

µ−1 curlu [(v − µ)× n] +

∫
∂Ωi

µ−1 curl v [(u−∇φ− λ)× n]+

αp2

µh

∫
∂Ωi

[(u−∇φ− λ)× n][(v −∇ψ − µ)× n]+

αp2

h

∫
∂Ωi

κ(φ− φΓ)(ψ − ψΓ)

}
=

∫
Ω
jv

Set v = ∇ψ in the weak formulation:∫
Ωi

κu · ∇ψ +

∫
∂Ωi

µ−1 curlu · (∇ψ × n) =

∫
Ω
j · ∇ψ

Apply div operator to Maxwell’s equation:∫
Ωi

div(κu)ψ =

∫
Ωi

div j ψ

−
∫

Ωi

κu · ∇ψ +

∫
∂Ωi

κunψ = −
∫

Ωi

j · ∇ψ +

∫
∂Ωi

jnψ
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Add:
2∑
i=1

{∫
∂Ωi

µ−1 curlu · (∇ψ × n) +

∫
∂Ωi

κunψ

}
=

2∑
i=1

∫
∂Ωi

jnψ

2∑
i=1

{∫
Ωi

{µ−1 curlu · curl v + κuv}+

∫
∂Ωi

µ−1 curlu [(v −∇ψ − µ)× n]

+

∫
∂Ωi

µ−1 curl v [(u−∇φ− λ)× n] +
αp2

µh

∫
∂Ωi

[(u−∇φ− λ)× n][(v −∇ψ − µ)× n]

−
∫
∂Ωi

κun(ψ − ψΓ)−
∫
∂Ωi

κvn(φ− φΓ) +
αp2

h

∫
∂Ωi

κ(φ− φΓ)(ψ − ψΓ)

}
=

2∑
i=1

{∫
Ωi

jv −
∫
∂Ωi

jnψ

}
u, v... H(curl) conforming element basis functions on Ωi φ, ψ... H1 conforming element basis
functions on Ωi ∩ Γ λ, µ... tangential vector valued spline functions on Γ φΓ, ψΓ... scalar spline
functions on Γ

6.3 Numerical Example

Figure 6.3: Simulation of the magnetic field of a permanent magnet using domain decomposition.

6.3.1 Simulation of an LWD

We analyze the results from the domain decomposition in a real-world application, the simulation
of a logging-while-drilling (LWD) tool. Here, a sensor composed of two conducting loops, the
sending and receiving antenna, respectively, is lowered into a bore hole. See figure 6.5 for a
schematic of the sensor configuration. We make use of domain decomposition by splitting off a
cylindrical domain around the sensor at the boundary where the wall of the rock formation meets
the mud inside the bore hole.

The following parameters were set for the simulation:
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Figure 6.4: A cross section of one component of the field

frequency [kHz] standard, rec volt [nV] 185 810 dofs Nitsche, rec volt [nV] 195 383 dofs

20 25.44 - i18.38 25.43 - i18.37
100 71.68 - i197.5 71.65 - i197.3
400 124.9 - i963.0 124.9 - i962.3
2000 -635.9 - i5295 -634.8 - i5255

Table 6.1: Numerical results for the induced voltage in the receiver using first order volume elements

• Electric conductivity of the bore tool: 1.0 · 106 S/m. The tool body is modeled using a
surface impedance boundary condition.

• Electric conductivity of the mud inside the bore hole: 1.0 S/m

• Electric conductivity of the mud inside the bore hole: 0.01 S/m

• Relative electric permittivity: εr = 26.67 for a frequency of 2 MHz, and εr = 38.63 for all
other frequencies.

• Relative permeability: µr = 1.0

• Current in the transmitter: 1.0 A

In order to quantify the effect of the domain decomposition, the experiment was conducted using
standard finite elements on a matching mesh and on a comparable non-matching mesh using
domain decomposition. For the latter, an interface consisting of 5 by 150 B-spline basis functions
in azimuthal and axial direction of order 5 was used. In both cases, the induced voltage in the
receiver resulting from the finite element solution was computed.
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Figure 6.5: Sketch of the LWD tool with dimensions in inches.

frequency [kHz] standard, rec volt [nV] 733 881 dofs Nitsche, rec volt [nV] 736 939 dofs

20 24.99 - i18.47 24.98 - i18.47
100 70.25 - i196.7 70.23 - i196.7
400 121.7 - i957.9 121.7 - i957.7
2000 -648.1 - i5256 -647.9 - i5255

Table 6.2: Numerical results for the induced voltage in the receiver using second order volume elements
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Figure 6.6: The geometry of the sensor domain with the sending and receiving antennae.

Figure 6.7: The geometry of the Two subdomains: The cylindrical bore hole and a cubic section of the
formation surrounding it.
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Figure 6.8: A cross section of a finite element solution vector field.

Figure 6.9: Field lines corresponding to the solution.
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